##// END OF EJS Templates
git: correctly handle p1() on dirstate when underlying git repo is empty...
git: correctly handle p1() on dirstate when underlying git repo is empty This shows up in my next change, which ends up making an empty git repo and then running hg. Differential Revision: https://phab.mercurial-scm.org/D8271

File last commit:

r44446:de783805 default
r44976:eb061d27 default
Show More
zstd_compress_sequences.c
415 lines | 18.6 KiB | text/x-c | CLexer
/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "zstd_compress_sequences.h"
/**
* -log2(x / 256) lookup table for x in [0, 256).
* If x == 0: Return 0
* Else: Return floor(-log2(x / 256) * 256)
*/
static unsigned const kInverseProbabilityLog256[256] = {
0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889,
874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734,
724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626,
618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542,
535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473,
468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415,
411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366,
362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322,
318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282,
279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247,
244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215,
212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185,
182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157,
155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132,
130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108,
106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85,
83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64,
62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44,
42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25,
23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7,
5, 4, 2, 1,
};
static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
void const* ptr = ctable;
U16 const* u16ptr = (U16 const*)ptr;
U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
return maxSymbolValue;
}
/**
* Returns the cost in bytes of encoding the normalized count header.
* Returns an error if any of the helper functions return an error.
*/
static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
size_t const nbSeq, unsigned const FSELog)
{
BYTE wksp[FSE_NCOUNTBOUND];
S16 norm[MaxSeq + 1];
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max));
return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
}
/**
* Returns the cost in bits of encoding the distribution described by count
* using the entropy bound.
*/
static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
{
unsigned cost = 0;
unsigned s;
for (s = 0; s <= max; ++s) {
unsigned norm = (unsigned)((256 * count[s]) / total);
if (count[s] != 0 && norm == 0)
norm = 1;
assert(count[s] < total);
cost += count[s] * kInverseProbabilityLog256[norm];
}
return cost >> 8;
}
/**
* Returns the cost in bits of encoding the distribution in count using ctable.
* Returns an error if ctable cannot represent all the symbols in count.
*/
static size_t ZSTD_fseBitCost(
FSE_CTable const* ctable,
unsigned const* count,
unsigned const max)
{
unsigned const kAccuracyLog = 8;
size_t cost = 0;
unsigned s;
FSE_CState_t cstate;
FSE_initCState(&cstate, ctable);
RETURN_ERROR_IF(ZSTD_getFSEMaxSymbolValue(ctable) < max, GENERIC,
"Repeat FSE_CTable has maxSymbolValue %u < %u",
ZSTD_getFSEMaxSymbolValue(ctable), max);
for (s = 0; s <= max; ++s) {
unsigned const tableLog = cstate.stateLog;
unsigned const badCost = (tableLog + 1) << kAccuracyLog;
unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
if (count[s] == 0)
continue;
RETURN_ERROR_IF(bitCost >= badCost, GENERIC,
"Repeat FSE_CTable has Prob[%u] == 0", s);
cost += count[s] * bitCost;
}
return cost >> kAccuracyLog;
}
/**
* Returns the cost in bits of encoding the distribution in count using the
* table described by norm. The max symbol support by norm is assumed >= max.
* norm must be valid for every symbol with non-zero probability in count.
*/
static size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
unsigned const* count, unsigned const max)
{
unsigned const shift = 8 - accuracyLog;
size_t cost = 0;
unsigned s;
assert(accuracyLog <= 8);
for (s = 0; s <= max; ++s) {
unsigned const normAcc = norm[s] != -1 ? norm[s] : 1;
unsigned const norm256 = normAcc << shift;
assert(norm256 > 0);
assert(norm256 < 256);
cost += count[s] * kInverseProbabilityLog256[norm256];
}
return cost >> 8;
}
symbolEncodingType_e
ZSTD_selectEncodingType(
FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
FSE_CTable const* prevCTable,
short const* defaultNorm, U32 defaultNormLog,
ZSTD_defaultPolicy_e const isDefaultAllowed,
ZSTD_strategy const strategy)
{
ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
if (mostFrequent == nbSeq) {
*repeatMode = FSE_repeat_none;
if (isDefaultAllowed && nbSeq <= 2) {
/* Prefer set_basic over set_rle when there are 2 or less symbols,
* since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
* If basic encoding isn't possible, always choose RLE.
*/
DEBUGLOG(5, "Selected set_basic");
return set_basic;
}
DEBUGLOG(5, "Selected set_rle");
return set_rle;
}
if (strategy < ZSTD_lazy) {
if (isDefaultAllowed) {
size_t const staticFse_nbSeq_max = 1000;
size_t const mult = 10 - strategy;
size_t const baseLog = 3;
size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */
assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */
assert(mult <= 9 && mult >= 7);
if ( (*repeatMode == FSE_repeat_valid)
&& (nbSeq < staticFse_nbSeq_max) ) {
DEBUGLOG(5, "Selected set_repeat");
return set_repeat;
}
if ( (nbSeq < dynamicFse_nbSeq_min)
|| (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
DEBUGLOG(5, "Selected set_basic");
/* The format allows default tables to be repeated, but it isn't useful.
* When using simple heuristics to select encoding type, we don't want
* to confuse these tables with dictionaries. When running more careful
* analysis, we don't need to waste time checking both repeating tables
* and default tables.
*/
*repeatMode = FSE_repeat_none;
return set_basic;
}
}
} else {
size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
if (isDefaultAllowed) {
assert(!ZSTD_isError(basicCost));
assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
}
assert(!ZSTD_isError(NCountCost));
assert(compressedCost < ERROR(maxCode));
DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
(unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
if (basicCost <= repeatCost && basicCost <= compressedCost) {
DEBUGLOG(5, "Selected set_basic");
assert(isDefaultAllowed);
*repeatMode = FSE_repeat_none;
return set_basic;
}
if (repeatCost <= compressedCost) {
DEBUGLOG(5, "Selected set_repeat");
assert(!ZSTD_isError(repeatCost));
return set_repeat;
}
assert(compressedCost < basicCost && compressedCost < repeatCost);
}
DEBUGLOG(5, "Selected set_compressed");
*repeatMode = FSE_repeat_check;
return set_compressed;
}
size_t
ZSTD_buildCTable(void* dst, size_t dstCapacity,
FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
unsigned* count, U32 max,
const BYTE* codeTable, size_t nbSeq,
const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
const FSE_CTable* prevCTable, size_t prevCTableSize,
void* entropyWorkspace, size_t entropyWorkspaceSize)
{
BYTE* op = (BYTE*)dst;
const BYTE* const oend = op + dstCapacity;
DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
switch (type) {
case set_rle:
FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max));
RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall);
*op = codeTable[0];
return 1;
case set_repeat:
memcpy(nextCTable, prevCTable, prevCTableSize);
return 0;
case set_basic:
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize)); /* note : could be pre-calculated */
return 0;
case set_compressed: {
S16 norm[MaxSeq + 1];
size_t nbSeq_1 = nbSeq;
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
if (count[codeTable[nbSeq-1]] > 1) {
count[codeTable[nbSeq-1]]--;
nbSeq_1--;
}
assert(nbSeq_1 > 1);
FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max));
{ size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
FORWARD_IF_ERROR(NCountSize);
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, norm, max, tableLog, entropyWorkspace, entropyWorkspaceSize));
return NCountSize;
}
}
default: assert(0); RETURN_ERROR(GENERIC);
}
}
FORCE_INLINE_TEMPLATE size_t
ZSTD_encodeSequences_body(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
BIT_CStream_t blockStream;
FSE_CState_t stateMatchLength;
FSE_CState_t stateOffsetBits;
FSE_CState_t stateLitLength;
RETURN_ERROR_IF(
ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
dstSize_tooSmall, "not enough space remaining");
DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)",
(int)(blockStream.endPtr - blockStream.startPtr),
(unsigned)dstCapacity);
/* first symbols */
FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream);
if (longOffsets) {
U32 const ofBits = ofCodeTable[nbSeq-1];
int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) {
BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits);
BIT_flushBits(&blockStream);
}
BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits,
ofBits - extraBits);
} else {
BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
}
BIT_flushBits(&blockStream);
{ size_t n;
for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
BYTE const llCode = llCodeTable[n];
BYTE const ofCode = ofCodeTable[n];
BYTE const mlCode = mlCodeTable[n];
U32 const llBits = LL_bits[llCode];
U32 const ofBits = ofCode;
U32 const mlBits = ML_bits[mlCode];
DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
(unsigned)sequences[n].litLength,
(unsigned)sequences[n].matchLength + MINMATCH,
(unsigned)sequences[n].offset);
/* 32b*/ /* 64b*/
/* (7)*/ /* (7)*/
FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
BIT_flushBits(&blockStream); /* (7)*/
BIT_addBits(&blockStream, sequences[n].litLength, llBits);
if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
if (longOffsets) {
int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) {
BIT_addBits(&blockStream, sequences[n].offset, extraBits);
BIT_flushBits(&blockStream); /* (7)*/
}
BIT_addBits(&blockStream, sequences[n].offset >> extraBits,
ofBits - extraBits); /* 31 */
} else {
BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
}
BIT_flushBits(&blockStream); /* (7)*/
DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
} }
DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
FSE_flushCState(&blockStream, &stateMatchLength);
DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
FSE_flushCState(&blockStream, &stateOffsetBits);
DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
FSE_flushCState(&blockStream, &stateLitLength);
{ size_t const streamSize = BIT_closeCStream(&blockStream);
RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
return streamSize;
}
}
static size_t
ZSTD_encodeSequences_default(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
return ZSTD_encodeSequences_body(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#if DYNAMIC_BMI2
static TARGET_ATTRIBUTE("bmi2") size_t
ZSTD_encodeSequences_bmi2(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
return ZSTD_encodeSequences_body(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#endif
size_t ZSTD_encodeSequences(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
{
DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
#if DYNAMIC_BMI2
if (bmi2) {
return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#endif
(void)bmi2;
return ZSTD_encodeSequences_default(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}