##// END OF EJS Templates
rust: apply clippy lints...
rust: apply clippy lints They are at most harmless and at best make the codebase more readable and simpler.

File last commit:

r52600:ec717174 default
r52600:ec717174 default
Show More
index.rs
2035 lines | 63.4 KiB | application/rls-services+xml | RustLexer
use std::collections::{HashMap, HashSet};
use std::fmt::Debug;
use std::ops::Deref;
use std::sync::{RwLock, RwLockReadGuard, RwLockWriteGuard};
use bitvec::prelude::*;
use byteorder::{BigEndian, ByteOrder};
use bytes_cast::{unaligned, BytesCast};
use super::REVIDX_KNOWN_FLAGS;
use crate::errors::HgError;
use crate::node::{NODE_BYTES_LENGTH, NULL_NODE, STORED_NODE_ID_BYTES};
use crate::revlog::node::Node;
use crate::revlog::{Revision, NULL_REVISION};
use crate::{
dagops, BaseRevision, FastHashMap, Graph, GraphError, RevlogError,
RevlogIndex, UncheckedRevision,
};
pub const INDEX_ENTRY_SIZE: usize = 64;
pub const INDEX_HEADER_SIZE: usize = 4;
pub const COMPRESSION_MODE_INLINE: u8 = 2;
#[derive(Debug)]
pub struct IndexHeader {
pub(super) header_bytes: [u8; INDEX_HEADER_SIZE],
}
#[derive(Copy, Clone)]
pub struct IndexHeaderFlags {
flags: u16,
}
/// Corresponds to the high bits of `_format_flags` in python
impl IndexHeaderFlags {
/// Corresponds to FLAG_INLINE_DATA in python
pub fn is_inline(self) -> bool {
self.flags & 1 != 0
}
/// Corresponds to FLAG_GENERALDELTA in python
pub fn uses_generaldelta(self) -> bool {
self.flags & 2 != 0
}
}
/// Corresponds to the INDEX_HEADER structure,
/// which is parsed as a `header` variable in `_loadindex` in `revlog.py`
impl IndexHeader {
fn format_flags(&self) -> IndexHeaderFlags {
// No "unknown flags" check here, unlike in python. Maybe there should
// be.
IndexHeaderFlags {
flags: BigEndian::read_u16(&self.header_bytes[0..2]),
}
}
/// The only revlog version currently supported by rhg.
const REVLOGV1: u16 = 1;
/// Corresponds to `_format_version` in Python.
fn format_version(&self) -> u16 {
BigEndian::read_u16(&self.header_bytes[2..4])
}
pub fn parse(index_bytes: &[u8]) -> Result<Option<IndexHeader>, HgError> {
if index_bytes.is_empty() {
return Ok(None);
}
if index_bytes.len() < 4 {
return Err(HgError::corrupted(
"corrupted revlog: can't read the index format header",
));
}
Ok(Some(IndexHeader {
header_bytes: {
let bytes: [u8; 4] =
index_bytes[0..4].try_into().expect("impossible");
bytes
},
}))
}
}
/// Abstracts the access to the index bytes since they can be spread between
/// the immutable (bytes) part and the mutable (added) part if any appends
/// happened. This makes it transparent for the callers.
struct IndexData {
/// Immutable bytes, most likely taken from disk
bytes: Box<dyn Deref<Target = [u8]> + Send + Sync>,
/// Used when stripping index contents, keeps track of the start of the
/// first stripped revision, which is used to give a slice of the
/// `bytes` field.
truncation: Option<usize>,
/// Bytes that were added after reading the index
added: Vec<u8>,
first_entry: [u8; INDEX_ENTRY_SIZE],
}
impl IndexData {
pub fn new(bytes: Box<dyn Deref<Target = [u8]> + Send + Sync>) -> Self {
let mut first_entry = [0; INDEX_ENTRY_SIZE];
if bytes.len() >= INDEX_ENTRY_SIZE {
first_entry[INDEX_HEADER_SIZE..]
.copy_from_slice(&bytes[INDEX_HEADER_SIZE..INDEX_ENTRY_SIZE])
}
Self {
bytes,
truncation: None,
added: vec![],
first_entry,
}
}
pub fn len(&self) -> usize {
match self.truncation {
Some(truncation) => truncation + self.added.len(),
None => self.bytes.len() + self.added.len(),
}
}
fn remove(
&mut self,
rev: Revision,
offsets: Option<&[usize]>,
) -> Result<(), RevlogError> {
let rev = rev.0 as usize;
let truncation = if let Some(offsets) = offsets {
offsets[rev]
} else {
rev * INDEX_ENTRY_SIZE
};
if truncation < self.bytes.len() {
self.truncation = Some(truncation);
self.added.clear();
} else {
self.added.truncate(truncation - self.bytes.len());
}
Ok(())
}
fn is_new(&self) -> bool {
self.bytes.is_empty()
}
}
impl std::ops::Index<std::ops::Range<usize>> for IndexData {
type Output = [u8];
fn index(&self, index: std::ops::Range<usize>) -> &Self::Output {
let start = index.start;
let end = index.end;
let immutable_len = match self.truncation {
Some(truncation) => truncation,
None => self.bytes.len(),
};
if start < immutable_len {
if end > immutable_len {
panic!("index data cannot span existing and added ranges");
}
&self.bytes[index]
} else {
&self.added[start - immutable_len..end - immutable_len]
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct RevisionDataParams {
pub flags: u16,
pub data_offset: u64,
pub data_compressed_length: i32,
pub data_uncompressed_length: i32,
pub data_delta_base: i32,
pub link_rev: i32,
pub parent_rev_1: i32,
pub parent_rev_2: i32,
pub node_id: [u8; NODE_BYTES_LENGTH],
pub _sidedata_offset: u64,
pub _sidedata_compressed_length: i32,
pub data_compression_mode: u8,
pub _sidedata_compression_mode: u8,
pub _rank: i32,
}
impl Default for RevisionDataParams {
fn default() -> Self {
Self {
flags: 0,
data_offset: 0,
data_compressed_length: 0,
data_uncompressed_length: 0,
data_delta_base: -1,
link_rev: -1,
parent_rev_1: -1,
parent_rev_2: -1,
node_id: [0; NODE_BYTES_LENGTH],
_sidedata_offset: 0,
_sidedata_compressed_length: 0,
data_compression_mode: COMPRESSION_MODE_INLINE,
_sidedata_compression_mode: COMPRESSION_MODE_INLINE,
_rank: -1,
}
}
}
#[derive(BytesCast)]
#[repr(C)]
pub struct RevisionDataV1 {
data_offset_or_flags: unaligned::U64Be,
data_compressed_length: unaligned::I32Be,
data_uncompressed_length: unaligned::I32Be,
data_delta_base: unaligned::I32Be,
link_rev: unaligned::I32Be,
parent_rev_1: unaligned::I32Be,
parent_rev_2: unaligned::I32Be,
node_id: [u8; STORED_NODE_ID_BYTES],
}
fn _static_assert_size_of_revision_data_v1() {
let _ = std::mem::transmute::<RevisionDataV1, [u8; 64]>;
}
impl RevisionDataParams {
pub fn validate(&self) -> Result<(), RevlogError> {
if self.flags & !REVIDX_KNOWN_FLAGS != 0 {
return Err(RevlogError::corrupted(format!(
"unknown revlog index flags: {}",
self.flags
)));
}
if self.data_compression_mode != COMPRESSION_MODE_INLINE {
return Err(RevlogError::corrupted(format!(
"invalid data compression mode: {}",
self.data_compression_mode
)));
}
// FIXME isn't this only for v2 or changelog v2?
if self._sidedata_compression_mode != COMPRESSION_MODE_INLINE {
return Err(RevlogError::corrupted(format!(
"invalid sidedata compression mode: {}",
self._sidedata_compression_mode
)));
}
Ok(())
}
pub fn into_v1(self) -> RevisionDataV1 {
let data_offset_or_flags = self.data_offset << 16 | self.flags as u64;
let mut node_id = [0; STORED_NODE_ID_BYTES];
node_id[..NODE_BYTES_LENGTH].copy_from_slice(&self.node_id);
RevisionDataV1 {
data_offset_or_flags: data_offset_or_flags.into(),
data_compressed_length: self.data_compressed_length.into(),
data_uncompressed_length: self.data_uncompressed_length.into(),
data_delta_base: self.data_delta_base.into(),
link_rev: self.link_rev.into(),
parent_rev_1: self.parent_rev_1.into(),
parent_rev_2: self.parent_rev_2.into(),
node_id,
}
}
}
/// A Revlog index
pub struct Index {
bytes: IndexData,
/// Offsets of starts of index blocks.
/// Only needed when the index is interleaved with data.
offsets: RwLock<Option<Vec<usize>>>,
uses_generaldelta: bool,
is_inline: bool,
/// Cache of (head_revisions, filtered_revisions)
///
/// The head revisions in this index, kept in sync. Should
/// be accessed via the [`Self::head_revs`] method.
/// The last filtered revisions in this index, used to make sure
/// we haven't changed filters when returning the cached `head_revs`.
head_revs: RwLock<(Vec<Revision>, HashSet<Revision>)>,
}
impl Debug for Index {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Index")
.field("offsets", &self.offsets)
.field("uses_generaldelta", &self.uses_generaldelta)
.finish()
}
}
impl Graph for Index {
#[inline(always)]
fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
let err = || GraphError::ParentOutOfRange(rev);
match self.get_entry(rev) {
Some(entry) => {
// The C implementation checks that the parents are valid
// before returning
Ok([
self.check_revision(entry.p1()).ok_or_else(err)?,
self.check_revision(entry.p2()).ok_or_else(err)?,
])
}
None => Ok([NULL_REVISION, NULL_REVISION]),
}
}
}
/// A cache suitable for find_snapshots
///
/// Logically equivalent to a mapping whose keys are [`BaseRevision`] and
/// values sets of [`BaseRevision`]
///
/// TODO the dubious part is insisting that errors must be RevlogError
/// we would probably need to sprinkle some magic here, such as an associated
/// type that would be Into<RevlogError> but even that would not be
/// satisfactory, as errors potentially have nothing to do with the revlog.
pub trait SnapshotsCache {
fn insert_for(
&mut self,
rev: BaseRevision,
value: BaseRevision,
) -> Result<(), RevlogError>;
}
impl SnapshotsCache for FastHashMap<BaseRevision, HashSet<BaseRevision>> {
fn insert_for(
&mut self,
rev: BaseRevision,
value: BaseRevision,
) -> Result<(), RevlogError> {
let all_values = self.entry(rev).or_default();
all_values.insert(value);
Ok(())
}
}
impl Index {
/// Create an index from bytes.
/// Calculate the start of each entry when is_inline is true.
pub fn new(
bytes: Box<dyn Deref<Target = [u8]> + Send + Sync>,
default_header: IndexHeader,
) -> Result<Self, HgError> {
let header =
IndexHeader::parse(bytes.as_ref())?.unwrap_or(default_header);
if header.format_version() != IndexHeader::REVLOGV1 {
// A proper new version should have had a repo/store
// requirement.
return Err(HgError::corrupted("unsupported revlog version"));
}
// This is only correct because we know version is REVLOGV1.
// In v2 we always use generaldelta, while in v0 we never use
// generaldelta. Similar for [is_inline] (it's only used in v1).
let uses_generaldelta = header.format_flags().uses_generaldelta();
if header.format_flags().is_inline() {
let mut offset: usize = 0;
let mut offsets = Vec::new();
while offset + INDEX_ENTRY_SIZE <= bytes.len() {
offsets.push(offset);
let end = offset + INDEX_ENTRY_SIZE;
let entry = IndexEntry {
bytes: &bytes[offset..end],
};
offset += INDEX_ENTRY_SIZE + entry.compressed_len() as usize;
}
if offset == bytes.len() {
Ok(Self {
bytes: IndexData::new(bytes),
offsets: RwLock::new(Some(offsets)),
uses_generaldelta,
is_inline: true,
head_revs: RwLock::new((vec![], HashSet::new())),
})
} else {
Err(HgError::corrupted("unexpected inline revlog length"))
}
} else {
Ok(Self {
bytes: IndexData::new(bytes),
offsets: RwLock::new(None),
uses_generaldelta,
is_inline: false,
head_revs: RwLock::new((vec![], HashSet::new())),
})
}
}
pub fn uses_generaldelta(&self) -> bool {
self.uses_generaldelta
}
/// Value of the inline flag.
pub fn is_inline(&self) -> bool {
self.is_inline
}
/// Return a slice of bytes if `revlog` is inline. Panic if not.
pub fn data(&self, start: usize, end: usize) -> &[u8] {
if !self.is_inline() {
panic!("tried to access data in the index of a revlog that is not inline");
}
&self.bytes[start..end]
}
/// Return number of entries of the revlog index.
pub fn len(&self) -> usize {
if self.is_inline() {
(*self.get_offsets())
.as_ref()
.expect("inline should have offsets")
.len()
} else {
self.bytes.len() / INDEX_ENTRY_SIZE
}
}
pub fn get_offsets(&self) -> RwLockReadGuard<Option<Vec<usize>>> {
assert!(self.is_inline());
{
// Wrap in a block to drop the read guard
// TODO perf?
let mut offsets = self.offsets.write().unwrap();
if offsets.is_none() {
offsets.replace(inline_scan(&self.bytes.bytes).1);
}
}
self.offsets.read().unwrap()
}
pub fn get_offsets_mut(&mut self) -> RwLockWriteGuard<Option<Vec<usize>>> {
assert!(self.is_inline());
let mut offsets = self.offsets.write().unwrap();
if offsets.is_none() {
offsets.replace(inline_scan(&self.bytes.bytes).1);
}
offsets
}
/// Returns `true` if the `Index` has zero `entries`.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Return the index entry corresponding to the given revision or `None`
/// for [`NULL_REVISION`]
///
/// The specified revision being of the checked type, it always exists
/// if it was validated by this index.
pub fn get_entry(&self, rev: Revision) -> Option<IndexEntry> {
if rev == NULL_REVISION {
return None;
}
if rev.0 == 0 {
Some(IndexEntry {
bytes: &self.bytes.first_entry[..],
})
} else {
Some(if self.is_inline() {
self.get_entry_inline(rev)
} else {
self.get_entry_separated(rev)
})
}
}
/// Return the binary content of the index entry for the given revision
///
/// See [get_entry()](`Self::get_entry()`) for cases when `None` is
/// returned.
pub fn entry_binary(&self, rev: Revision) -> Option<&[u8]> {
self.get_entry(rev).map(|e| {
let bytes = e.as_bytes();
if rev.0 == 0 {
&bytes[4..]
} else {
bytes
}
})
}
pub fn entry_as_params(
&self,
rev: UncheckedRevision,
) -> Option<RevisionDataParams> {
let rev = self.check_revision(rev)?;
self.get_entry(rev).map(|e| RevisionDataParams {
flags: e.flags(),
data_offset: if rev.0 == 0 && !self.bytes.is_new() {
e.flags() as u64
} else {
e.raw_offset()
},
data_compressed_length: e
.compressed_len()
.try_into()
.unwrap_or_else(|_| {
// Python's `unionrepo` sets the compressed length to be
// `-1` (or `u32::MAX` if transmuted to `u32`) because it
// cannot know the correct compressed length of a given
// revision. I'm not sure if this is true, but having this
// edge case won't hurt other use cases, let's handle it.
assert_eq!(e.compressed_len(), u32::MAX);
NULL_REVISION.0
}),
data_uncompressed_length: e.uncompressed_len(),
data_delta_base: e.base_revision_or_base_of_delta_chain().0,
link_rev: e.link_revision().0,
parent_rev_1: e.p1().0,
parent_rev_2: e.p2().0,
node_id: e.hash().as_bytes().try_into().unwrap(),
..Default::default()
})
}
fn get_entry_inline(&self, rev: Revision) -> IndexEntry {
let offsets = &self.get_offsets();
let offsets = offsets.as_ref().expect("inline should have offsets");
let start = offsets[rev.0 as usize];
let end = start + INDEX_ENTRY_SIZE;
let bytes = &self.bytes[start..end];
IndexEntry { bytes }
}
fn get_entry_separated(&self, rev: Revision) -> IndexEntry {
let start = rev.0 as usize * INDEX_ENTRY_SIZE;
let end = start + INDEX_ENTRY_SIZE;
let bytes = &self.bytes[start..end];
IndexEntry { bytes }
}
fn null_entry(&self) -> IndexEntry {
IndexEntry {
bytes: &[0; INDEX_ENTRY_SIZE],
}
}
/// Return the head revisions of this index
pub fn head_revs(&self) -> Result<Vec<Revision>, GraphError> {
self.head_revs_filtered(&HashSet::new(), false)
.map(|h| h.unwrap())
}
/// Python-specific shortcut to save on PyList creation
pub fn head_revs_shortcut(
&self,
) -> Result<Option<Vec<Revision>>, GraphError> {
self.head_revs_filtered(&HashSet::new(), true)
}
/// Return the heads removed and added by advancing from `begin` to `end`.
/// In revset language, we compute:
/// - `heads(:begin)-heads(:end)`
/// - `heads(:end)-heads(:begin)`
pub fn head_revs_diff(
&self,
begin: Revision,
end: Revision,
) -> Result<(Vec<Revision>, Vec<Revision>), GraphError> {
let mut heads_added = vec![];
let mut heads_removed = vec![];
let mut acc = HashSet::new();
let Revision(begin) = begin;
let Revision(end) = end;
let mut i = end;
while i > begin {
// acc invariant:
// `j` is in the set iff `j <= i` and it has children
// among `i+1..end` (inclusive)
if !acc.remove(&i) {
heads_added.push(Revision(i));
}
for Revision(parent) in self.parents(Revision(i))? {
acc.insert(parent);
}
i -= 1;
}
// At this point `acc` contains old revisions that gained new children.
// We need to check if they had any children before. If not, those
// revisions are the removed heads.
while !acc.is_empty() {
// acc invariant:
// `j` is in the set iff `j <= i` and it has children
// among `begin+1..end`, but not among `i+1..begin` (inclusive)
assert!(i >= -1); // yes, `-1` can also be a head if the repo is empty
if acc.remove(&i) {
heads_removed.push(Revision(i));
}
for Revision(parent) in self.parents(Revision(i))? {
acc.remove(&parent);
}
i -= 1;
}
Ok((heads_removed, heads_added))
}
/// Return the head revisions of this index
pub fn head_revs_filtered(
&self,
filtered_revs: &HashSet<Revision>,
py_shortcut: bool,
) -> Result<Option<Vec<Revision>>, GraphError> {
{
let guard = self
.head_revs
.read()
.expect("RwLock on Index.head_revs should not be poisoned");
let self_head_revs = &guard.0;
let self_filtered_revs = &guard.1;
if !self_head_revs.is_empty()
&& filtered_revs == self_filtered_revs
{
if py_shortcut {
// Don't copy the revs since we've already cached them
// on the Python side.
return Ok(None);
} else {
return Ok(Some(self_head_revs.to_owned()));
}
}
}
let as_vec = if self.is_empty() {
vec![NULL_REVISION]
} else {
let mut not_heads = bitvec![0; self.len()];
dagops::retain_heads_fast(
self,
not_heads.as_mut_bitslice(),
filtered_revs,
)?;
not_heads
.into_iter()
.enumerate()
.filter_map(|(idx, is_not_head)| {
if is_not_head {
None
} else {
Some(Revision(idx as BaseRevision))
}
})
.collect()
};
*self
.head_revs
.write()
.expect("RwLock on Index.head_revs should not be poisoned") =
(as_vec.to_owned(), filtered_revs.to_owned());
Ok(Some(as_vec))
}
/// Obtain the delta chain for a revision.
///
/// `stop_rev` specifies a revision to stop at. If not specified, we
/// stop at the base of the chain.
///
/// Returns a 2-tuple of (chain, stopped) where `chain` is a vec of
/// revs in ascending order and `stopped` is a bool indicating whether
/// `stoprev` was hit.
pub fn delta_chain(
&self,
rev: Revision,
stop_rev: Option<Revision>,
using_general_delta: Option<bool>,
) -> Result<(Vec<Revision>, bool), HgError> {
let mut current_rev = rev;
let mut entry = self.get_entry(rev).unwrap();
let mut chain = vec![];
let using_general_delta =
using_general_delta.unwrap_or_else(|| self.uses_generaldelta());
while current_rev.0 != entry.base_revision_or_base_of_delta_chain().0
&& stop_rev.map(|r| r != current_rev).unwrap_or(true)
{
chain.push(current_rev);
let new_rev = if using_general_delta {
entry.base_revision_or_base_of_delta_chain()
} else {
UncheckedRevision(current_rev.0 - 1)
};
current_rev = self.check_revision(new_rev).ok_or_else(|| {
HgError::corrupted(format!("Revision {new_rev} out of range"))
})?;
if current_rev.0 == NULL_REVISION.0 {
break;
}
entry = self.get_entry(current_rev).unwrap()
}
let stopped = if stop_rev.map(|r| current_rev == r).unwrap_or(false) {
true
} else {
chain.push(current_rev);
false
};
chain.reverse();
Ok((chain, stopped))
}
pub fn find_snapshots(
&self,
start_rev: UncheckedRevision,
end_rev: UncheckedRevision,
cache: &mut impl SnapshotsCache,
) -> Result<(), RevlogError> {
let mut start_rev = start_rev.0;
let mut end_rev = end_rev.0;
end_rev += 1;
let len = self.len().try_into().unwrap();
if end_rev > len {
end_rev = len;
}
if start_rev < 0 {
start_rev = 0;
}
for rev in start_rev..end_rev {
if !self.is_snapshot_unchecked(Revision(rev))? {
continue;
}
let mut base = self
.get_entry(Revision(rev))
.unwrap()
.base_revision_or_base_of_delta_chain();
if base.0 == rev {
base = NULL_REVISION.into();
}
cache.insert_for(base.0, rev)?;
}
Ok(())
}
fn clear_head_revs(&self) {
self.head_revs
.write()
.expect("RwLock on Index.head_revs should not be poisoined")
.0
.clear()
}
/// TODO move this to the trait probably, along with other things
pub fn append(
&mut self,
revision_data: RevisionDataParams,
) -> Result<(), RevlogError> {
revision_data.validate()?;
let entry_v1 = revision_data.into_v1();
let entry_bytes = entry_v1.as_bytes();
if self.bytes.len() == 0 {
self.bytes.first_entry[INDEX_HEADER_SIZE..].copy_from_slice(
&entry_bytes[INDEX_HEADER_SIZE..INDEX_ENTRY_SIZE],
)
}
if self.is_inline() {
let new_offset = self.bytes.len();
if let Some(offsets) = &mut *self.get_offsets_mut() {
offsets.push(new_offset)
}
}
self.bytes.added.extend(entry_bytes);
self.clear_head_revs();
Ok(())
}
pub fn pack_header(&self, header: i32) -> [u8; 4] {
header.to_be_bytes()
}
pub fn remove(&mut self, rev: Revision) -> Result<(), RevlogError> {
let offsets = if self.is_inline() {
self.get_offsets().clone()
} else {
None
};
self.bytes.remove(rev, offsets.as_deref())?;
if self.is_inline() {
if let Some(offsets) = &mut *self.get_offsets_mut() {
offsets.truncate(rev.0 as usize)
}
}
self.clear_head_revs();
Ok(())
}
pub fn clear_caches(&self) {
// We need to get the 'inline' value from Python at init and use this
// instead of offsets to determine whether we're inline since we might
// clear caches. This implies re-populating the offsets on-demand.
*self
.offsets
.write()
.expect("RwLock on Index.offsets should not be poisoed") = None;
self.clear_head_revs();
}
/// Unchecked version of `is_snapshot`.
/// Assumes the caller checked that `rev` is within a valid revision range.
pub fn is_snapshot_unchecked(
&self,
mut rev: Revision,
) -> Result<bool, RevlogError> {
while rev.0 >= 0 {
let entry = self.get_entry(rev).unwrap();
let mut base = entry.base_revision_or_base_of_delta_chain().0;
if base == rev.0 {
base = NULL_REVISION.0;
}
if base == NULL_REVISION.0 {
return Ok(true);
}
let [mut p1, mut p2] = self
.parents(rev)
.map_err(|_| RevlogError::InvalidRevision)?;
while let Some(p1_entry) = self.get_entry(p1) {
if p1_entry.compressed_len() != 0 || p1.0 == 0 {
break;
}
let parent_base =
p1_entry.base_revision_or_base_of_delta_chain();
if parent_base.0 == p1.0 {
break;
}
p1 = self
.check_revision(parent_base)
.ok_or(RevlogError::InvalidRevision)?;
}
while let Some(p2_entry) = self.get_entry(p2) {
if p2_entry.compressed_len() != 0 || p2.0 == 0 {
break;
}
let parent_base =
p2_entry.base_revision_or_base_of_delta_chain();
if parent_base.0 == p2.0 {
break;
}
p2 = self
.check_revision(parent_base)
.ok_or(RevlogError::InvalidRevision)?;
}
if base == p1.0 || base == p2.0 {
return Ok(false);
}
rev = self
.check_revision(base.into())
.ok_or(RevlogError::InvalidRevision)?;
}
Ok(rev == NULL_REVISION)
}
/// Return whether the given revision is a snapshot. Returns an error if
/// `rev` is not within a valid revision range.
pub fn is_snapshot(
&self,
rev: UncheckedRevision,
) -> Result<bool, RevlogError> {
let rev = self
.check_revision(rev)
.ok_or_else(|| RevlogError::corrupted("test"))?;
self.is_snapshot_unchecked(rev)
}
/// Slice revs to reduce the amount of unrelated data to be read from disk.
///
/// The index is sliced into groups that should be read in one time.
///
/// The initial chunk is sliced until the overall density
/// (payload/chunks-span ratio) is above `target_density`.
/// No gap smaller than `min_gap_size` is skipped.
pub fn slice_chunk_to_density(
&self,
revs: &[Revision],
target_density: f64,
min_gap_size: usize,
) -> Vec<Vec<Revision>> {
if revs.is_empty() {
return vec![];
}
if revs.len() == 1 {
return vec![revs.to_owned()];
}
let delta_chain_span = self.segment_span(revs);
if delta_chain_span < min_gap_size {
return vec![revs.to_owned()];
}
let entries: Vec<_> = revs
.iter()
.map(|r| {
(*r, self.get_entry(*r).unwrap_or_else(|| self.null_entry()))
})
.collect();
let mut read_data = delta_chain_span;
let chain_payload: u32 =
entries.iter().map(|(_r, e)| e.compressed_len()).sum();
let mut density = if delta_chain_span > 0 {
chain_payload as f64 / delta_chain_span as f64
} else {
1.0
};
if density >= target_density {
return vec![revs.to_owned()];
}
// Store the gaps in a heap to have them sorted by decreasing size
let mut gaps = Vec::new();
let mut previous_end = None;
for (i, (_rev, entry)) in entries.iter().enumerate() {
let start = entry.c_start() as usize;
let length = entry.compressed_len();
// Skip empty revisions to form larger holes
if length == 0 {
continue;
}
if let Some(end) = previous_end {
let gap_size = start - end;
// Only consider holes that are large enough
if gap_size > min_gap_size {
gaps.push((gap_size, i));
}
}
previous_end = Some(start + length as usize);
}
if gaps.is_empty() {
return vec![revs.to_owned()];
}
// sort the gaps to pop them from largest to small
gaps.sort_unstable();
// Collect the indices of the largest holes until
// the density is acceptable
let mut selected = vec![];
while let Some((gap_size, gap_id)) = gaps.pop() {
if density >= target_density {
break;
}
selected.push(gap_id);
// The gap sizes are stored as negatives to be sorted decreasingly
// by the heap
read_data -= gap_size;
density = if read_data > 0 {
chain_payload as f64 / read_data as f64
} else {
1.0
};
if density >= target_density {
break;
}
}
selected.sort_unstable();
selected.push(revs.len());
// Cut the revs at collected indices
let mut previous_idx = 0;
let mut chunks = vec![];
for idx in selected {
let chunk = self.trim_chunk(&entries, previous_idx, idx);
if !chunk.is_empty() {
chunks.push(chunk.iter().map(|(rev, _entry)| *rev).collect());
}
previous_idx = idx;
}
let chunk = self.trim_chunk(&entries, previous_idx, entries.len());
if !chunk.is_empty() {
chunks.push(chunk.iter().map(|(rev, _entry)| *rev).collect());
}
chunks
}
/// Get the byte span of a segment of sorted revisions.
///
/// Occurrences of [`NULL_REVISION`] are ignored at the beginning of
/// the `revs` segment.
///
/// panics:
/// - if `revs` is empty or only made of `NULL_REVISION`
/// - if cannot retrieve entry for the last or first not null element of
/// `revs`.
fn segment_span(&self, revs: &[Revision]) -> usize {
if revs.is_empty() {
return 0;
}
let last_entry = &self.get_entry(revs[revs.len() - 1]).unwrap();
let end = last_entry.c_start() + last_entry.compressed_len() as u64;
let first_rev = revs.iter().find(|r| r.0 != NULL_REVISION.0).unwrap();
let start = if first_rev.0 == 0 {
0
} else {
self.get_entry(*first_rev).unwrap().c_start()
};
(end - start) as usize
}
/// Returns `&revs[startidx..endidx]` without empty trailing revs
fn trim_chunk<'a>(
&'a self,
revs: &'a [(Revision, IndexEntry)],
start: usize,
mut end: usize,
) -> &'a [(Revision, IndexEntry)] {
// Trim empty revs at the end, except the very first rev of a chain
let last_rev = revs[end - 1].0;
if last_rev.0 < self.len() as BaseRevision {
while end > 1
&& end > start
&& revs[end - 1].1.compressed_len() == 0
{
end -= 1
}
}
&revs[start..end]
}
/// Computes the set of revisions for each non-public phase from `roots`,
/// which are the last known roots for each non-public phase.
pub fn compute_phases_map_sets(
&self,
roots: HashMap<Phase, Vec<Revision>>,
) -> Result<(usize, RootsPerPhase), GraphError> {
let mut phases = vec![Phase::Public; self.len()];
let mut min_phase_rev = NULL_REVISION;
for phase in Phase::non_public_phases() {
if let Some(phase_roots) = roots.get(phase) {
let min_rev =
self.add_roots_get_min(phase_roots, &mut phases, *phase);
if min_rev != NULL_REVISION
&& (min_phase_rev == NULL_REVISION
|| min_rev < min_phase_rev)
{
min_phase_rev = min_rev;
}
} else {
continue;
};
}
let mut phase_sets: RootsPerPhase = Default::default();
if min_phase_rev == NULL_REVISION {
min_phase_rev = Revision(self.len() as BaseRevision);
}
for rev in min_phase_rev.0..self.len() as BaseRevision {
let rev = Revision(rev);
let [p1, p2] = self.parents(rev)?;
if p1.0 >= 0 && phases[p1.0 as usize] > phases[rev.0 as usize] {
phases[rev.0 as usize] = phases[p1.0 as usize];
}
if p2.0 >= 0 && phases[p2.0 as usize] > phases[rev.0 as usize] {
phases[rev.0 as usize] = phases[p2.0 as usize];
}
let set = match phases[rev.0 as usize] {
Phase::Public => continue,
phase => &mut phase_sets[phase as usize - 1],
};
set.push(rev);
}
Ok((self.len(), phase_sets))
}
fn add_roots_get_min(
&self,
phase_roots: &[Revision],
phases: &mut [Phase],
phase: Phase,
) -> Revision {
let mut min_rev = NULL_REVISION;
for root in phase_roots {
phases[root.0 as usize] = phase;
if min_rev == NULL_REVISION || min_rev > *root {
min_rev = *root;
}
}
min_rev
}
/// Return `(heads(::(<roots> and <roots>::<heads>)))`
/// If `include_path` is `true`, return `(<roots>::<heads>)`."""
///
/// `min_root` and `roots` are unchecked since they are just used as
/// a bound or for comparison and don't need to represent a valid revision.
/// In practice, the only invalid revision passed is the working directory
/// revision ([`i32::MAX`]).
pub fn reachable_roots(
&self,
min_root: UncheckedRevision,
mut heads: Vec<Revision>,
roots: HashSet<UncheckedRevision>,
include_path: bool,
) -> Result<HashSet<Revision>, GraphError> {
if roots.is_empty() {
return Ok(HashSet::new());
}
let mut reachable = HashSet::new();
let mut seen = HashMap::new();
while let Some(rev) = heads.pop() {
if roots.contains(&rev.into()) {
reachable.insert(rev);
if !include_path {
continue;
}
}
let parents = self.parents(rev)?;
seen.insert(rev, parents);
for parent in parents {
if parent.0 >= min_root.0 && !seen.contains_key(&parent) {
heads.push(parent);
}
}
}
if !include_path {
return Ok(reachable);
}
let mut revs: Vec<_> = seen.keys().collect();
revs.sort_unstable();
for rev in revs {
for parent in seen[rev] {
if reachable.contains(&parent) {
reachable.insert(*rev);
}
}
}
Ok(reachable)
}
/// Given a (possibly overlapping) set of revs, return all the
/// common ancestors heads: `heads(::args[0] and ::a[1] and ...)`
pub fn common_ancestor_heads(
&self,
revisions: &[Revision],
) -> Result<Vec<Revision>, GraphError> {
// given that revisions is expected to be small, we find this shortcut
// potentially acceptable, especially given that `hg-cpython` could
// very much bypass this, constructing a vector of unique values from
// the onset.
let as_set: HashSet<Revision> = revisions.iter().copied().collect();
// Besides deduplicating, the C version also implements the shortcut
// for `NULL_REVISION`:
if as_set.contains(&NULL_REVISION) {
return Ok(vec![]);
}
let revisions: Vec<Revision> = as_set.into_iter().collect();
if revisions.len() < 8 {
self.find_gca_candidates::<u8>(&revisions)
} else if revisions.len() < 64 {
self.find_gca_candidates::<u64>(&revisions)
} else {
self.find_gca_candidates::<NonStaticPoisonableBitSet>(&revisions)
}
}
pub fn ancestors(
&self,
revisions: &[Revision],
) -> Result<Vec<Revision>, GraphError> {
self.find_deepest_revs(&self.common_ancestor_heads(revisions)?)
}
/// Given a disjoint set of revs, return all candidates for the
/// greatest common ancestor. In revset notation, this is the set
/// `heads(::a and ::b and ...)`
fn find_gca_candidates<BS: PoisonableBitSet + Clone>(
&self,
revs: &[Revision],
) -> Result<Vec<Revision>, GraphError> {
if revs.is_empty() {
return Ok(vec![]);
}
let revcount = revs.len();
let mut candidates = vec![];
let max_rev = revs.iter().max().unwrap();
let mut seen = BS::vec_of_empty(revs.len(), (max_rev.0 + 1) as usize);
for (idx, rev) in revs.iter().enumerate() {
seen[rev.0 as usize].add(idx);
}
let mut current_rev = *max_rev;
// Number of revisions whose inspection in the main loop
// will give a result or trigger inspection of other revisions
let mut interesting = revcount;
// The algorithm works on a vector of bit sets, indexed by revision
// numbers and iterated on reverse order.
// An entry in this vector is poisoned if and only if the corresponding
// revision is a common, yet not maximal ancestor.
// The principle of the algorithm is as follows:
// For a revision `r`, when entering the loop, `seen[r]` is either
// poisoned or the sub set of `revs` of which `r` is an ancestor.
// In this sub set is full, then `r` is a solution and its parents
// have to be poisoned.
//
// At each iteration, the bit sets of the parents are updated by
// union with `seen[r]`.
// As we walk the index from the end, we are sure we have encountered
// all children of `r` before `r`, hence we know that `seen[r]` is
// fully computed.
//
// On top of that there are several optimizations that make reading
// less obvious than the comment above:
// - The `interesting` counter allows to break early
// - The loop starts from `max(revs)`
// - Early return in case it is detected that one of the incoming revs
// is a common ancestor of all of them.
while current_rev.0 >= 0 && interesting > 0 {
let current_seen = seen[current_rev.0 as usize].clone();
if current_seen.is_empty() {
current_rev = Revision(current_rev.0 - 1);
continue;
}
let mut poison = current_seen.is_poisoned();
if !poison {
interesting -= 1;
if current_seen.is_full_range(revcount) {
candidates.push(current_rev);
poison = true;
// Being a common ancestor, if `current_rev` is among
// the input revisions, it is *the* answer.
for rev in revs {
if *rev == current_rev {
return Ok(candidates);
}
}
}
}
for parent in self.parents(current_rev)? {
if parent == NULL_REVISION {
continue;
}
let parent_seen = &mut seen[parent.0 as usize];
if poison {
// this block is logically equivalent to poisoning parent
// and counting it as non interesting if it
// has been seen before (hence counted then as interesting)
if !parent_seen.is_empty() && !parent_seen.is_poisoned() {
interesting -= 1;
}
parent_seen.poison();
} else {
if parent_seen.is_empty() {
interesting += 1;
}
parent_seen.union(&current_seen);
}
}
current_rev = Revision(current_rev.0 - 1);
}
Ok(candidates)
}
/// Given a disjoint set of revs, return the subset with the longest path
/// to the root.
fn find_deepest_revs(
&self,
revs: &[Revision],
) -> Result<Vec<Revision>, GraphError> {
// TODO replace this all with just comparing rank?
// Also, the original implementations in C/Python are cryptic, not
// even sure we actually need this?
if revs.len() <= 1 {
return Ok(revs.to_owned());
}
let max_rev = revs.iter().max().unwrap().0;
let mut interesting = HashMap::new();
let mut seen = vec![0; max_rev as usize + 1];
let mut depth = vec![0; max_rev as usize + 1];
let mut mapping = vec![];
let mut revs = revs.to_owned();
revs.sort_unstable();
for (idx, rev) in revs.iter().enumerate() {
depth[rev.0 as usize] = 1;
let shift = 1 << idx;
seen[rev.0 as usize] = shift;
interesting.insert(shift, 1);
mapping.push((shift, *rev));
}
let mut current_rev = Revision(max_rev);
while current_rev.0 >= 0 && interesting.len() > 1 {
let current_depth = depth[current_rev.0 as usize];
if current_depth == 0 {
current_rev = Revision(current_rev.0 - 1);
continue;
}
let current_seen = seen[current_rev.0 as usize];
for parent in self.parents(current_rev)? {
if parent == NULL_REVISION {
continue;
}
let parent_seen = seen[parent.0 as usize];
let parent_depth = depth[parent.0 as usize];
if parent_depth <= current_depth {
depth[parent.0 as usize] = current_depth + 1;
if parent_seen != current_seen {
*interesting.get_mut(&current_seen).unwrap() += 1;
seen[parent.0 as usize] = current_seen;
if parent_seen != 0 {
let parent_interesting =
interesting.get_mut(&parent_seen).unwrap();
*parent_interesting -= 1;
if *parent_interesting == 0 {
interesting.remove(&parent_seen);
}
}
}
} else if current_depth == parent_depth - 1 {
let either_seen = parent_seen | current_seen;
if either_seen == parent_seen {
continue;
}
seen[parent.0 as usize] = either_seen;
interesting
.entry(either_seen)
.and_modify(|v| *v += 1)
.or_insert(1);
*interesting.get_mut(&parent_seen).unwrap() -= 1;
if interesting[&parent_seen] == 0 {
interesting.remove(&parent_seen);
}
}
}
*interesting.get_mut(&current_seen).unwrap() -= 1;
if interesting[&current_seen] == 0 {
interesting.remove(&current_seen);
}
current_rev = Revision(current_rev.0 - 1);
}
if interesting.len() != 1 {
return Ok(vec![]);
}
let mask = interesting.keys().next().unwrap();
Ok(mapping
.into_iter()
.filter_map(|(shift, rev)| {
if (mask & shift) != 0 {
return Some(rev);
}
None
})
.collect())
}
}
/// The kind of functionality needed by find_gca_candidates
///
/// This is a bit mask which can be declared to be "poisoned", which callers
/// interpret to break out of some loops.
///
/// The maximum capacity of the bit mask is up to the actual implementation
trait PoisonableBitSet: Sized + PartialEq {
/// Return a vector of exactly n elements, initialized to be empty.
///
/// Optimization can vastly depend on implementation. Those being `Copy`
/// and having constant capacity typically can have a very simple
/// implementation.
fn vec_of_empty(sets_size: usize, vec_len: usize) -> Vec<Self>;
/// The size of the bit mask in memory
#[allow(unused)]
fn size(&self) -> usize;
/// The number of elements that can be represented in the set.
///
/// Another way to put it is that it is the highest integer `C` such that
/// the set is guaranteed to always be a subset of the integer range
/// `[0, C)`
#[allow(unused)]
fn capacity(&self) -> usize;
/// Declare `n` to belong to the set
fn add(&mut self, n: usize);
/// Declare `n` not to belong to the set
#[allow(unused)]
fn discard(&mut self, n: usize);
/// Replace this bit set by its union with other
fn union(&mut self, other: &Self);
/// Poison the bit set
///
/// Interpretation up to the caller
fn poison(&mut self);
/// Is the bit set poisoned?
///
/// Interpretation is up to the caller
fn is_poisoned(&self) -> bool;
/// Is the bit set empty?
fn is_empty(&self) -> bool;
/// return `true` if and only if the bit is the full range `[0, n)`
/// of integers
fn is_full_range(&self, n: usize) -> bool;
}
const U64_POISON: u64 = 1 << 63;
const U8_POISON: u8 = 1 << 7;
impl PoisonableBitSet for u64 {
fn vec_of_empty(_sets_size: usize, vec_len: usize) -> Vec<Self> {
vec![0u64; vec_len]
}
fn size(&self) -> usize {
8
}
fn capacity(&self) -> usize {
63
}
fn add(&mut self, n: usize) {
(*self) |= 1u64 << n;
}
fn discard(&mut self, n: usize) {
(*self) &= u64::MAX - (1u64 << n);
}
fn union(&mut self, other: &Self) {
if *self != *other {
(*self) |= *other;
}
}
fn is_full_range(&self, n: usize) -> bool {
*self + 1 == (1u64 << n)
}
fn is_empty(&self) -> bool {
*self == 0
}
fn poison(&mut self) {
*self = U64_POISON;
}
fn is_poisoned(&self) -> bool {
// equality comparison would be tempting but would not resist
// operations after poisoning (even if these should be bogus).
*self >= U64_POISON
}
}
impl PoisonableBitSet for u8 {
fn vec_of_empty(_sets_size: usize, vec_len: usize) -> Vec<Self> {
vec![0; vec_len]
}
fn size(&self) -> usize {
1
}
fn capacity(&self) -> usize {
7
}
fn add(&mut self, n: usize) {
(*self) |= 1 << n;
}
fn discard(&mut self, n: usize) {
(*self) &= u8::MAX - (1 << n);
}
fn union(&mut self, other: &Self) {
if *self != *other {
(*self) |= *other;
}
}
fn is_full_range(&self, n: usize) -> bool {
*self + 1 == (1 << n)
}
fn is_empty(&self) -> bool {
*self == 0
}
fn poison(&mut self) {
*self = U8_POISON;
}
fn is_poisoned(&self) -> bool {
// equality comparison would be tempting but would not resist
// operations after poisoning (even if these should be bogus).
*self >= U8_POISON
}
}
/// A poisonable bit set whose capacity is not known at compile time but
/// is constant after initial construction
///
/// This can be way further optimized if performance assessments (speed
/// and/or RAM) require it.
/// As far as RAM is concerned, for large vectors of these, the main problem
/// would be the repetition of set_size in each item. We would need a trait
/// to abstract over the idea of a vector of such bit sets to do better.
#[derive(Clone, PartialEq)]
struct NonStaticPoisonableBitSet {
set_size: usize,
bit_set: Vec<u64>,
}
/// Number of `u64` needed for a [`NonStaticPoisonableBitSet`] of given size
fn non_static_poisonable_inner_len(set_size: usize) -> usize {
1 + (set_size + 1) / 64
}
impl NonStaticPoisonableBitSet {
/// The index of the sub-bit set for the given n, and the index inside
/// the latter
fn index(&self, n: usize) -> (usize, usize) {
(n / 64, n % 64)
}
}
/// Mock implementation to ensure that the trait makes sense
impl PoisonableBitSet for NonStaticPoisonableBitSet {
fn vec_of_empty(set_size: usize, vec_len: usize) -> Vec<Self> {
let tmpl = Self {
set_size,
bit_set: vec![0u64; non_static_poisonable_inner_len(set_size)],
};
vec![tmpl; vec_len]
}
fn size(&self) -> usize {
8 + self.bit_set.len() * 8
}
fn capacity(&self) -> usize {
self.set_size
}
fn add(&mut self, n: usize) {
let (sub_bs, bit_pos) = self.index(n);
self.bit_set[sub_bs] |= 1 << bit_pos
}
fn discard(&mut self, n: usize) {
let (sub_bs, bit_pos) = self.index(n);
self.bit_set[sub_bs] |= u64::MAX - (1 << bit_pos)
}
fn union(&mut self, other: &Self) {
assert!(
self.set_size == other.set_size,
"Binary operations on bit sets can only be done on same size"
);
for i in 0..self.bit_set.len() - 1 {
self.bit_set[i] |= other.bit_set[i]
}
}
fn is_full_range(&self, n: usize) -> bool {
let (sub_bs, bit_pos) = self.index(n);
self.bit_set[..sub_bs].iter().all(|bs| *bs == u64::MAX)
&& self.bit_set[sub_bs] == (1 << (bit_pos + 1)) - 1
}
fn is_empty(&self) -> bool {
self.bit_set.iter().all(|bs| *bs == 0u64)
}
fn poison(&mut self) {
let (sub_bs, bit_pos) = self.index(self.set_size);
self.bit_set[sub_bs] = 1 << bit_pos;
}
fn is_poisoned(&self) -> bool {
let (sub_bs, bit_pos) = self.index(self.set_size);
self.bit_set[sub_bs] >= 1 << bit_pos
}
}
/// Set of roots of all non-public phases
pub type RootsPerPhase = [Vec<Revision>; Phase::non_public_phases().len()];
#[derive(Debug, Copy, Clone, PartialEq, Eq, Ord, PartialOrd, Hash)]
pub enum Phase {
Public = 0,
Draft = 1,
Secret = 2,
Archived = 3,
Internal = 4,
}
impl TryFrom<usize> for Phase {
type Error = RevlogError;
fn try_from(value: usize) -> Result<Self, Self::Error> {
Ok(match value {
0 => Self::Public,
1 => Self::Draft,
2 => Self::Secret,
32 => Self::Archived,
96 => Self::Internal,
v => {
return Err(RevlogError::corrupted(format!(
"invalid phase value {}",
v
)))
}
})
}
}
impl Phase {
pub const fn all_phases() -> &'static [Self] {
&[
Self::Public,
Self::Draft,
Self::Secret,
Self::Archived,
Self::Internal,
]
}
pub const fn non_public_phases() -> &'static [Self] {
&[Self::Draft, Self::Secret, Self::Archived, Self::Internal]
}
}
fn inline_scan(bytes: &[u8]) -> (usize, Vec<usize>) {
let mut offset: usize = 0;
let mut offsets = Vec::new();
while offset + INDEX_ENTRY_SIZE <= bytes.len() {
offsets.push(offset);
let end = offset + INDEX_ENTRY_SIZE;
let entry = IndexEntry {
bytes: &bytes[offset..end],
};
offset += INDEX_ENTRY_SIZE + entry.compressed_len() as usize;
}
(offset, offsets)
}
impl super::RevlogIndex for Index {
fn len(&self) -> usize {
self.len()
}
fn node(&self, rev: Revision) -> Option<&Node> {
if rev == NULL_REVISION {
return Some(&NULL_NODE);
}
self.get_entry(rev).map(|entry| entry.hash())
}
}
#[derive(Debug)]
pub struct IndexEntry<'a> {
bytes: &'a [u8],
}
impl<'a> IndexEntry<'a> {
/// Return the offset of the data.
pub fn offset(&self) -> usize {
let mut bytes = [0; 8];
bytes[2..8].copy_from_slice(&self.bytes[0..=5]);
BigEndian::read_u64(&bytes[..]) as usize
}
pub fn raw_offset(&self) -> u64 {
BigEndian::read_u64(&self.bytes[0..8])
}
/// Same result (except potentially for rev 0) as C `index_get_start()`
fn c_start(&self) -> u64 {
self.raw_offset() >> 16
}
pub fn flags(&self) -> u16 {
BigEndian::read_u16(&self.bytes[6..=7])
}
/// Return the compressed length of the data.
pub fn compressed_len(&self) -> u32 {
BigEndian::read_u32(&self.bytes[8..=11])
}
/// Return the uncompressed length of the data.
pub fn uncompressed_len(&self) -> i32 {
BigEndian::read_i32(&self.bytes[12..=15])
}
/// Return the revision upon which the data has been derived.
pub fn base_revision_or_base_of_delta_chain(&self) -> UncheckedRevision {
// TODO Maybe return an Option when base_revision == rev?
// Requires to add rev to IndexEntry
BigEndian::read_i32(&self.bytes[16..]).into()
}
pub fn link_revision(&self) -> UncheckedRevision {
BigEndian::read_i32(&self.bytes[20..]).into()
}
pub fn p1(&self) -> UncheckedRevision {
BigEndian::read_i32(&self.bytes[24..]).into()
}
pub fn p2(&self) -> UncheckedRevision {
BigEndian::read_i32(&self.bytes[28..]).into()
}
/// Return the hash of revision's full text.
///
/// Currently, SHA-1 is used and only the first 20 bytes of this field
/// are used.
pub fn hash(&self) -> &'a Node {
(&self.bytes[32..52]).try_into().unwrap()
}
pub fn as_bytes(&self) -> &'a [u8] {
self.bytes
}
}
#[cfg(test)]
pub use tests::IndexEntryBuilder;
#[cfg(test)]
mod tests {
use super::*;
use crate::node::NULL_NODE;
#[cfg(test)]
#[derive(Debug, Copy, Clone)]
pub struct IndexEntryBuilder {
is_first: bool,
is_inline: bool,
is_general_delta: bool,
version: u16,
offset: usize,
compressed_len: usize,
uncompressed_len: usize,
base_revision_or_base_of_delta_chain: Revision,
link_revision: Revision,
p1: Revision,
p2: Revision,
node: Node,
}
#[cfg(test)]
impl IndexEntryBuilder {
#[allow(clippy::new_without_default)]
pub fn new() -> Self {
Self {
is_first: false,
is_inline: false,
is_general_delta: true,
version: 1,
offset: 0,
compressed_len: 0,
uncompressed_len: 0,
base_revision_or_base_of_delta_chain: Revision(0),
link_revision: Revision(0),
p1: NULL_REVISION,
p2: NULL_REVISION,
node: NULL_NODE,
}
}
pub fn is_first(&mut self, value: bool) -> &mut Self {
self.is_first = value;
self
}
pub fn with_inline(&mut self, value: bool) -> &mut Self {
self.is_inline = value;
self
}
pub fn with_general_delta(&mut self, value: bool) -> &mut Self {
self.is_general_delta = value;
self
}
pub fn with_version(&mut self, value: u16) -> &mut Self {
self.version = value;
self
}
pub fn with_offset(&mut self, value: usize) -> &mut Self {
self.offset = value;
self
}
pub fn with_compressed_len(&mut self, value: usize) -> &mut Self {
self.compressed_len = value;
self
}
pub fn with_uncompressed_len(&mut self, value: usize) -> &mut Self {
self.uncompressed_len = value;
self
}
pub fn with_base_revision_or_base_of_delta_chain(
&mut self,
value: Revision,
) -> &mut Self {
self.base_revision_or_base_of_delta_chain = value;
self
}
pub fn with_link_revision(&mut self, value: Revision) -> &mut Self {
self.link_revision = value;
self
}
pub fn with_p1(&mut self, value: Revision) -> &mut Self {
self.p1 = value;
self
}
pub fn with_p2(&mut self, value: Revision) -> &mut Self {
self.p2 = value;
self
}
pub fn with_node(&mut self, value: Node) -> &mut Self {
self.node = value;
self
}
pub fn build(&self) -> Vec<u8> {
let mut bytes = Vec::with_capacity(INDEX_ENTRY_SIZE);
if self.is_first {
bytes.extend(match (self.is_general_delta, self.is_inline) {
(false, false) => [0u8, 0],
(false, true) => [0u8, 1],
(true, false) => [0u8, 2],
(true, true) => [0u8, 3],
});
bytes.extend(self.version.to_be_bytes());
// Remaining offset bytes.
bytes.extend([0u8; 2]);
} else {
// Offset stored on 48 bits (6 bytes)
bytes.extend(&(self.offset as u64).to_be_bytes()[2..]);
}
bytes.extend([0u8; 2]); // Revision flags.
bytes.extend((self.compressed_len as u32).to_be_bytes());
bytes.extend((self.uncompressed_len as u32).to_be_bytes());
bytes.extend(
self.base_revision_or_base_of_delta_chain.0.to_be_bytes(),
);
bytes.extend(self.link_revision.0.to_be_bytes());
bytes.extend(self.p1.0.to_be_bytes());
bytes.extend(self.p2.0.to_be_bytes());
bytes.extend(self.node.as_bytes());
bytes.extend(vec![0u8; 12]);
bytes
}
}
pub fn is_inline(index_bytes: &[u8]) -> bool {
IndexHeader::parse(index_bytes)
.expect("too short")
.unwrap()
.format_flags()
.is_inline()
}
pub fn uses_generaldelta(index_bytes: &[u8]) -> bool {
IndexHeader::parse(index_bytes)
.expect("too short")
.unwrap()
.format_flags()
.uses_generaldelta()
}
pub fn get_version(index_bytes: &[u8]) -> u16 {
IndexHeader::parse(index_bytes)
.expect("too short")
.unwrap()
.format_version()
}
#[test]
fn flags_when_no_inline_flag_test() {
let bytes = IndexEntryBuilder::new()
.is_first(true)
.with_general_delta(false)
.with_inline(false)
.build();
assert!(!is_inline(&bytes));
assert!(!uses_generaldelta(&bytes));
}
#[test]
fn flags_when_inline_flag_test() {
let bytes = IndexEntryBuilder::new()
.is_first(true)
.with_general_delta(false)
.with_inline(true)
.build();
assert!(is_inline(&bytes));
assert!(!uses_generaldelta(&bytes));
}
#[test]
fn flags_when_inline_and_generaldelta_flags_test() {
let bytes = IndexEntryBuilder::new()
.is_first(true)
.with_general_delta(true)
.with_inline(true)
.build();
assert!(is_inline(&bytes));
assert!(uses_generaldelta(&bytes));
}
#[test]
fn test_offset() {
let bytes = IndexEntryBuilder::new().with_offset(1).build();
let entry = IndexEntry { bytes: &bytes };
assert_eq!(entry.offset(), 1)
}
#[test]
fn test_compressed_len() {
let bytes = IndexEntryBuilder::new().with_compressed_len(1).build();
let entry = IndexEntry { bytes: &bytes };
assert_eq!(entry.compressed_len(), 1)
}
#[test]
fn test_uncompressed_len() {
let bytes = IndexEntryBuilder::new().with_uncompressed_len(1).build();
let entry = IndexEntry { bytes: &bytes };
assert_eq!(entry.uncompressed_len(), 1)
}
#[test]
fn test_base_revision_or_base_of_delta_chain() {
let bytes = IndexEntryBuilder::new()
.with_base_revision_or_base_of_delta_chain(Revision(1))
.build();
let entry = IndexEntry { bytes: &bytes };
assert_eq!(entry.base_revision_or_base_of_delta_chain(), 1.into())
}
#[test]
fn link_revision_test() {
let bytes = IndexEntryBuilder::new()
.with_link_revision(Revision(123))
.build();
let entry = IndexEntry { bytes: &bytes };
assert_eq!(entry.link_revision(), 123.into());
}
#[test]
fn p1_test() {
let bytes = IndexEntryBuilder::new().with_p1(Revision(123)).build();
let entry = IndexEntry { bytes: &bytes };
assert_eq!(entry.p1(), 123.into());
}
#[test]
fn p2_test() {
let bytes = IndexEntryBuilder::new().with_p2(Revision(123)).build();
let entry = IndexEntry { bytes: &bytes };
assert_eq!(entry.p2(), 123.into());
}
#[test]
fn node_test() {
let node = Node::from_hex("0123456789012345678901234567890123456789")
.unwrap();
let bytes = IndexEntryBuilder::new().with_node(node).build();
let entry = IndexEntry { bytes: &bytes };
assert_eq!(*entry.hash(), node);
}
#[test]
fn version_test() {
let bytes = IndexEntryBuilder::new()
.is_first(true)
.with_version(2)
.build();
assert_eq!(get_version(&bytes), 2)
}
}