##// END OF EJS Templates
cmdutil: convert _revertprefetch() to a generic stored file hook (API)...
cmdutil: convert _revertprefetch() to a generic stored file hook (API) This will be used by LFS to fetch required files in a group for multiple commands, prior to being accessed. That avoids the one-at-a-time fetch when the filelog wrapper goes to access it, and it is missing locally (which costs two round trips to the server.) The core command list that needs this is probably at least: - annotate - archive (which is also used by extdiff) - cat - diff - export - grep - verify (sadly) - anything that has the '{data}' template There are no core users of the revert prefetch hook, and never have been since it was introduced in 45e02cfad4bd for remotefilelog. Thanks to Yuya for figuring out a way to reliably trigger the deprecated warning. Unfortunately, it wanted to blame the caller of revert. Passing along an adjusted stack level seemed the least bad choice (although it still blames a core function). One thing to note is that the store lock isn't being held when this is called. I'm not at all familiar with remotefilelog or its locking requirements, so this may not be a big deal. Currently, LFS doesn't hold a lock when downloading files. Even though largefiles doesn't either, I'm starting to think it should, and maybe the .hg/store/lock isn't good enough to cover the globally shared cache. .. api:: The cmdutil._revertprefetch() hook point for prefetching stored files has been replaced by the command agnostic cmdutil._prefetchfiles(). The new function takes a list of files, instead of a list of lists of files.

File last commit:

r32201:ded48ad5 default
r35941:efbd0423 default
Show More
similar.py
122 lines | 4.1 KiB | text/x-python | PythonLexer
# similar.py - mechanisms for finding similar files
#
# Copyright 2005-2007 Matt Mackall <mpm@selenic.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
from .i18n import _
from . import (
mdiff,
)
def _findexactmatches(repo, added, removed):
'''find renamed files that have no changes
Takes a list of new filectxs and a list of removed filectxs, and yields
(before, after) tuples of exact matches.
'''
numfiles = len(added) + len(removed)
# Build table of removed files: {hash(fctx.data()): [fctx, ...]}.
# We use hash() to discard fctx.data() from memory.
hashes = {}
for i, fctx in enumerate(removed):
repo.ui.progress(_('searching for exact renames'), i, total=numfiles,
unit=_('files'))
h = hash(fctx.data())
if h not in hashes:
hashes[h] = [fctx]
else:
hashes[h].append(fctx)
# For each added file, see if it corresponds to a removed file.
for i, fctx in enumerate(added):
repo.ui.progress(_('searching for exact renames'), i + len(removed),
total=numfiles, unit=_('files'))
adata = fctx.data()
h = hash(adata)
for rfctx in hashes.get(h, []):
# compare between actual file contents for exact identity
if adata == rfctx.data():
yield (rfctx, fctx)
break
# Done
repo.ui.progress(_('searching for exact renames'), None)
def _ctxdata(fctx):
# lazily load text
orig = fctx.data()
return orig, mdiff.splitnewlines(orig)
def _score(fctx, otherdata):
orig, lines = otherdata
text = fctx.data()
# mdiff.blocks() returns blocks of matching lines
# count the number of bytes in each
equal = 0
matches = mdiff.blocks(text, orig)
for x1, x2, y1, y2 in matches:
for line in lines[y1:y2]:
equal += len(line)
lengths = len(text) + len(orig)
return equal * 2.0 / lengths
def score(fctx1, fctx2):
return _score(fctx1, _ctxdata(fctx2))
def _findsimilarmatches(repo, added, removed, threshold):
'''find potentially renamed files based on similar file content
Takes a list of new filectxs and a list of removed filectxs, and yields
(before, after, score) tuples of partial matches.
'''
copies = {}
for i, r in enumerate(removed):
repo.ui.progress(_('searching for similar files'), i,
total=len(removed), unit=_('files'))
data = None
for a in added:
bestscore = copies.get(a, (None, threshold))[1]
if data is None:
data = _ctxdata(r)
myscore = _score(a, data)
if myscore > bestscore:
copies[a] = (r, myscore)
repo.ui.progress(_('searching'), None)
for dest, v in copies.iteritems():
source, bscore = v
yield source, dest, bscore
def _dropempty(fctxs):
return [x for x in fctxs if x.size() > 0]
def findrenames(repo, added, removed, threshold):
'''find renamed files -- yields (before, after, score) tuples'''
wctx = repo[None]
pctx = wctx.p1()
# Zero length files will be frequently unrelated to each other, and
# tracking the deletion/addition of such a file will probably cause more
# harm than good. We strip them out here to avoid matching them later on.
addedfiles = _dropempty(wctx[fp] for fp in sorted(added))
removedfiles = _dropempty(pctx[fp] for fp in sorted(removed) if fp in pctx)
# Find exact matches.
matchedfiles = set()
for (a, b) in _findexactmatches(repo, addedfiles, removedfiles):
matchedfiles.add(b)
yield (a.path(), b.path(), 1.0)
# If the user requested similar files to be matched, search for them also.
if threshold < 1.0:
addedfiles = [x for x in addedfiles if x not in matchedfiles]
for (a, b, score) in _findsimilarmatches(repo, addedfiles,
removedfiles, threshold):
yield (a.path(), b.path(), score)