##// END OF EJS Templates
interfaces: introduce and use a protocol class for the `bdiff` module...
interfaces: introduce and use a protocol class for the `bdiff` module This is allowed by PEP 544[1], and we basically follow the example there. The class here is copied from `mercurial.pure.bdiff`, and the implementation removed. There are several modules that have a few different implementations, and the implementation chosen is controlled by `HGMODULEPOLICY`. The module is loaded via `mercurial/policy.py`, and has been inferred by pytype as `Any` up to this point. Therefore it and PyCharm were blind to all functions on the module, and their signatures. Also, having multiple instances of the same module allows their signatures to get out of sync. Introducing a protocol class allows the loaded module that is stored in a variable to be given type info, which cascades through the various places it is used. This change alters 11 *.pyi files, for example. In theory, this would also allow us to ensure the various implementations of the same module are kept in alignment- simply import the module in a test module, attempt to pass it to a function that uses the corresponding protocol as an argument, and run pytype on it. In practice, this doesn't work (yet). PyCharm (erroneously) flags imported modules being passed where a protocol class is used[2]. Pytype has problems the other way- it fails to detect when a module that doesn't adhere to the protocol is passed to a protocol argument. The good news is that mypy properly detects this case. The bad news is that mypy spews a bunch of other errors when importing even simple modules, like the various `bdiff` modules. Therefore I'm punting on the tests for now because the type info around a loaded module in PyCharm is a clear win by itself. [1] https://peps.python.org/pep-0544/#modules-as-implementations-of-protocols [2] https://youtrack.jetbrains.com/issue/PY-58679/Support-modules-implementing-protocols

File last commit:

r50538:e1c586b9 default
r52826:f2832de2 default
Show More
_next_gen.py
220 lines | 5.7 KiB | text/x-python | PythonLexer
# SPDX-License-Identifier: MIT
"""
These are Python 3.6+-only and keyword-only APIs that call `attr.s` and
`attr.ib` with different default values.
"""
from functools import partial
from . import setters
from ._funcs import asdict as _asdict
from ._funcs import astuple as _astuple
from ._make import (
NOTHING,
_frozen_setattrs,
_ng_default_on_setattr,
attrib,
attrs,
)
from .exceptions import UnannotatedAttributeError
def define(
maybe_cls=None,
*,
these=None,
repr=None,
hash=None,
init=None,
slots=True,
frozen=False,
weakref_slot=True,
str=False,
auto_attribs=None,
kw_only=False,
cache_hash=False,
auto_exc=True,
eq=None,
order=False,
auto_detect=True,
getstate_setstate=None,
on_setattr=None,
field_transformer=None,
match_args=True,
):
r"""
Define an ``attrs`` class.
Differences to the classic `attr.s` that it uses underneath:
- Automatically detect whether or not *auto_attribs* should be `True` (c.f.
*auto_attribs* parameter).
- If *frozen* is `False`, run converters and validators when setting an
attribute by default.
- *slots=True*
.. caution::
Usually this has only upsides and few visible effects in everyday
programming. But it *can* lead to some suprising behaviors, so please
make sure to read :term:`slotted classes`.
- *auto_exc=True*
- *auto_detect=True*
- *order=False*
- Some options that were only relevant on Python 2 or were kept around for
backwards-compatibility have been removed.
Please note that these are all defaults and you can change them as you
wish.
:param Optional[bool] auto_attribs: If set to `True` or `False`, it behaves
exactly like `attr.s`. If left `None`, `attr.s` will try to guess:
1. If any attributes are annotated and no unannotated `attrs.fields`\ s
are found, it assumes *auto_attribs=True*.
2. Otherwise it assumes *auto_attribs=False* and tries to collect
`attrs.fields`\ s.
For now, please refer to `attr.s` for the rest of the parameters.
.. versionadded:: 20.1.0
.. versionchanged:: 21.3.0 Converters are also run ``on_setattr``.
"""
def do_it(cls, auto_attribs):
return attrs(
maybe_cls=cls,
these=these,
repr=repr,
hash=hash,
init=init,
slots=slots,
frozen=frozen,
weakref_slot=weakref_slot,
str=str,
auto_attribs=auto_attribs,
kw_only=kw_only,
cache_hash=cache_hash,
auto_exc=auto_exc,
eq=eq,
order=order,
auto_detect=auto_detect,
collect_by_mro=True,
getstate_setstate=getstate_setstate,
on_setattr=on_setattr,
field_transformer=field_transformer,
match_args=match_args,
)
def wrap(cls):
"""
Making this a wrapper ensures this code runs during class creation.
We also ensure that frozen-ness of classes is inherited.
"""
nonlocal frozen, on_setattr
had_on_setattr = on_setattr not in (None, setters.NO_OP)
# By default, mutable classes convert & validate on setattr.
if frozen is False and on_setattr is None:
on_setattr = _ng_default_on_setattr
# However, if we subclass a frozen class, we inherit the immutability
# and disable on_setattr.
for base_cls in cls.__bases__:
if base_cls.__setattr__ is _frozen_setattrs:
if had_on_setattr:
raise ValueError(
"Frozen classes can't use on_setattr "
"(frozen-ness was inherited)."
)
on_setattr = setters.NO_OP
break
if auto_attribs is not None:
return do_it(cls, auto_attribs)
try:
return do_it(cls, True)
except UnannotatedAttributeError:
return do_it(cls, False)
# maybe_cls's type depends on the usage of the decorator. It's a class
# if it's used as `@attrs` but ``None`` if used as `@attrs()`.
if maybe_cls is None:
return wrap
else:
return wrap(maybe_cls)
mutable = define
frozen = partial(define, frozen=True, on_setattr=None)
def field(
*,
default=NOTHING,
validator=None,
repr=True,
hash=None,
init=True,
metadata=None,
converter=None,
factory=None,
kw_only=False,
eq=None,
order=None,
on_setattr=None,
):
"""
Identical to `attr.ib`, except keyword-only and with some arguments
removed.
.. versionadded:: 20.1.0
"""
return attrib(
default=default,
validator=validator,
repr=repr,
hash=hash,
init=init,
metadata=metadata,
converter=converter,
factory=factory,
kw_only=kw_only,
eq=eq,
order=order,
on_setattr=on_setattr,
)
def asdict(inst, *, recurse=True, filter=None, value_serializer=None):
"""
Same as `attr.asdict`, except that collections types are always retained
and dict is always used as *dict_factory*.
.. versionadded:: 21.3.0
"""
return _asdict(
inst=inst,
recurse=recurse,
filter=filter,
value_serializer=value_serializer,
retain_collection_types=True,
)
def astuple(inst, *, recurse=True, filter=None):
"""
Same as `attr.astuple`, except that collections types are always retained
and `tuple` is always used as the *tuple_factory*.
.. versionadded:: 21.3.0
"""
return _astuple(
inst=inst, recurse=recurse, filter=filter, retain_collection_types=True
)