##// END OF EJS Templates
interfaces: introduce and use a protocol class for the `bdiff` module...
interfaces: introduce and use a protocol class for the `bdiff` module This is allowed by PEP 544[1], and we basically follow the example there. The class here is copied from `mercurial.pure.bdiff`, and the implementation removed. There are several modules that have a few different implementations, and the implementation chosen is controlled by `HGMODULEPOLICY`. The module is loaded via `mercurial/policy.py`, and has been inferred by pytype as `Any` up to this point. Therefore it and PyCharm were blind to all functions on the module, and their signatures. Also, having multiple instances of the same module allows their signatures to get out of sync. Introducing a protocol class allows the loaded module that is stored in a variable to be given type info, which cascades through the various places it is used. This change alters 11 *.pyi files, for example. In theory, this would also allow us to ensure the various implementations of the same module are kept in alignment- simply import the module in a test module, attempt to pass it to a function that uses the corresponding protocol as an argument, and run pytype on it. In practice, this doesn't work (yet). PyCharm (erroneously) flags imported modules being passed where a protocol class is used[2]. Pytype has problems the other way- it fails to detect when a module that doesn't adhere to the protocol is passed to a protocol argument. The good news is that mypy properly detects this case. The bad news is that mypy spews a bunch of other errors when importing even simple modules, like the various `bdiff` modules. Therefore I'm punting on the tests for now because the type info around a loaded module in PyCharm is a clear win by itself. [1] https://peps.python.org/pep-0544/#modules-as-implementations-of-protocols [2] https://youtrack.jetbrains.com/issue/PY-58679/Support-modules-implementing-protocols

File last commit:

r37195:68ee6182 default
r52826:f2832de2 default
Show More
verify.py
122 lines | 4.6 KiB | text/x-python | PythonLexer
##############################################################################
#
# Copyright (c) 2001, 2002 Zope Foundation and Contributors.
# All Rights Reserved.
#
# This software is subject to the provisions of the Zope Public License,
# Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
# THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
# WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
# FOR A PARTICULAR PURPOSE.
#
##############################################################################
"""Verify interface implementations
"""
from __future__ import absolute_import
from .exceptions import BrokenImplementation, DoesNotImplement
from .exceptions import BrokenMethodImplementation
from types import FunctionType, MethodType
from .interface import fromMethod, fromFunction, Method
import sys
# This will be monkey-patched when running under Zope 2, so leave this
# here:
MethodTypes = (MethodType, )
def _verify(iface, candidate, tentative=0, vtype=None):
"""Verify that 'candidate' might correctly implements 'iface'.
This involves:
o Making sure the candidate defines all the necessary methods
o Making sure the methods have the correct signature
o Making sure the candidate asserts that it implements the interface
Note that this isn't the same as verifying that the class does
implement the interface.
If optional tentative is true, suppress the "is implemented by" test.
"""
if vtype == 'c':
tester = iface.implementedBy
else:
tester = iface.providedBy
if not tentative and not tester(candidate):
raise DoesNotImplement(iface)
# Here the `desc` is either an `Attribute` or `Method` instance
for name, desc in iface.namesAndDescriptions(1):
try:
attr = getattr(candidate, name)
except AttributeError:
if (not isinstance(desc, Method)) and vtype == 'c':
# We can't verify non-methods on classes, since the
# class may provide attrs in it's __init__.
continue
raise BrokenImplementation(iface, name)
if not isinstance(desc, Method):
# If it's not a method, there's nothing else we can test
continue
if isinstance(attr, FunctionType):
if sys.version_info[0] >= 3 and isinstance(candidate, type):
# This is an "unbound method" in Python 3.
meth = fromFunction(attr, iface, name=name,
imlevel=1)
else:
# Nope, just a normal function
meth = fromFunction(attr, iface, name=name)
elif (isinstance(attr, MethodTypes)
and type(attr.__func__) is FunctionType):
meth = fromMethod(attr, iface, name)
elif isinstance(attr, property) and vtype == 'c':
# We without an instance we cannot be sure it's not a
# callable.
continue
else:
if not callable(attr):
raise BrokenMethodImplementation(name, "Not a method")
# sigh, it's callable, but we don't know how to introspect it, so
# we have to give it a pass.
continue
# Make sure that the required and implemented method signatures are
# the same.
desc = desc.getSignatureInfo()
meth = meth.getSignatureInfo()
mess = _incompat(desc, meth)
if mess:
raise BrokenMethodImplementation(name, mess)
return True
def verifyClass(iface, candidate, tentative=0):
return _verify(iface, candidate, tentative, vtype='c')
def verifyObject(iface, candidate, tentative=0):
return _verify(iface, candidate, tentative, vtype='o')
def _incompat(required, implemented):
#if (required['positional'] !=
# implemented['positional'][:len(required['positional'])]
# and implemented['kwargs'] is None):
# return 'imlementation has different argument names'
if len(implemented['required']) > len(required['required']):
return 'implementation requires too many arguments'
if ((len(implemented['positional']) < len(required['positional']))
and not implemented['varargs']):
return "implementation doesn't allow enough arguments"
if required['kwargs'] and not implemented['kwargs']:
return "implementation doesn't support keyword arguments"
if required['varargs'] and not implemented['varargs']:
return "implementation doesn't support variable arguments"