##// END OF EJS Templates
util: lower water mark when removing nodes after cost limit reached...
util: lower water mark when removing nodes after cost limit reached See the inline comment for the reasoning here. This is a pretty common strategy for garbage collectors, other cache-like primtives. The performance impact is substantial: $ hg perflrucachedict --size 4 --gets 1000000 --sets 1000000 --mixed 1000000 --costlimit 100 ! inserts w/ cost limit ! wall 1.659181 comb 1.650000 user 1.650000 sys 0.000000 (best of 7) ! wall 1.722122 comb 1.720000 user 1.720000 sys 0.000000 (best of 6) ! mixed w/ cost limit ! wall 1.139955 comb 1.140000 user 1.140000 sys 0.000000 (best of 9) ! wall 1.182513 comb 1.180000 user 1.180000 sys 0.000000 (best of 9) $ hg perflrucachedict --size 1000 --gets 1000000 --sets 1000000 --mixed 1000000 --costlimit 10000 ! inserts ! wall 0.679546 comb 0.680000 user 0.680000 sys 0.000000 (best of 15) ! sets ! wall 0.825147 comb 0.830000 user 0.830000 sys 0.000000 (best of 13) ! inserts w/ cost limit ! wall 25.105273 comb 25.080000 user 25.080000 sys 0.000000 (best of 3) ! wall 1.724397 comb 1.720000 user 1.720000 sys 0.000000 (best of 6) ! mixed ! wall 0.807096 comb 0.810000 user 0.810000 sys 0.000000 (best of 13) ! mixed w/ cost limit ! wall 12.104470 comb 12.070000 user 12.070000 sys 0.000000 (best of 3) ! wall 1.190563 comb 1.190000 user 1.190000 sys 0.000000 (best of 9) $ hg perflrucachedict --size 1000 --gets 1000000 --sets 1000000 --mixed 1000000 --costlimit 10000 --mixedgetfreq 90 ! inserts ! wall 0.711177 comb 0.710000 user 0.710000 sys 0.000000 (best of 14) ! sets ! wall 0.846992 comb 0.850000 user 0.850000 sys 0.000000 (best of 12) ! inserts w/ cost limit ! wall 25.963028 comb 25.960000 user 25.960000 sys 0.000000 (best of 3) ! wall 2.184311 comb 2.180000 user 2.180000 sys 0.000000 (best of 5) ! mixed ! wall 0.728256 comb 0.730000 user 0.730000 sys 0.000000 (best of 14) ! mixed w/ cost limit ! wall 3.174256 comb 3.170000 user 3.170000 sys 0.000000 (best of 4) ! wall 0.773186 comb 0.770000 user 0.770000 sys 0.000000 (best of 13) $ hg perflrucachedict --size 100000 --gets 1000000 --sets 1000000 --mixed 1000000 --mixedgetfreq 90 --costlimit 5000000 ! gets ! wall 1.191368 comb 1.190000 user 1.190000 sys 0.000000 (best of 9) ! wall 1.195304 comb 1.190000 user 1.190000 sys 0.000000 (best of 9) ! inserts ! wall 0.950995 comb 0.950000 user 0.950000 sys 0.000000 (best of 11) ! inserts w/ cost limit ! wall 1.589732 comb 1.590000 user 1.590000 sys 0.000000 (best of 7) ! sets ! wall 1.094941 comb 1.100000 user 1.090000 sys 0.010000 (best of 9) ! mixed ! wall 0.936420 comb 0.940000 user 0.930000 sys 0.010000 (best of 10) ! mixed w/ cost limit ! wall 0.882780 comb 0.870000 user 0.870000 sys 0.000000 (best of 11) This puts us ~2x slower than caches without cost accounting. And for read-heavy workloads (the prime use cases for caches), performance is nearly identical. In the worst case (pure write workloads with cost accounting enabled), we're looking at ~1.5us per insert on large caches. That seems "fast enough." Differential Revision: https://phab.mercurial-scm.org/D4505

File last commit:

r35128:8287df8b default
r39606:f296c0b3 default
Show More
hbisect.py
294 lines | 10.3 KiB | text/x-python | PythonLexer
# changelog bisection for mercurial
#
# Copyright 2007 Matt Mackall
# Copyright 2005, 2006 Benoit Boissinot <benoit.boissinot@ens-lyon.org>
#
# Inspired by git bisect, extension skeleton taken from mq.py.
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import collections
from .i18n import _
from .node import (
hex,
short,
)
from . import (
error,
)
def bisect(repo, state):
"""find the next node (if any) for testing during a bisect search.
returns a (nodes, number, good) tuple.
'nodes' is the final result of the bisect if 'number' is 0.
Otherwise 'number' indicates the remaining possible candidates for
the search and 'nodes' contains the next bisect target.
'good' is True if bisect is searching for a first good changeset, False
if searching for a first bad one.
"""
changelog = repo.changelog
clparents = changelog.parentrevs
skip = set([changelog.rev(n) for n in state['skip']])
def buildancestors(bad, good):
badrev = min([changelog.rev(n) for n in bad])
ancestors = collections.defaultdict(lambda: None)
for rev in repo.revs("descendants(%ln) - ancestors(%ln)", good, good):
ancestors[rev] = []
if ancestors[badrev] is None:
return badrev, None
return badrev, ancestors
good = False
badrev, ancestors = buildancestors(state['bad'], state['good'])
if not ancestors: # looking for bad to good transition?
good = True
badrev, ancestors = buildancestors(state['good'], state['bad'])
bad = changelog.node(badrev)
if not ancestors: # now we're confused
if (len(state['bad']) == 1 and len(state['good']) == 1 and
state['bad'] != state['good']):
raise error.Abort(_("starting revisions are not directly related"))
raise error.Abort(_("inconsistent state, %d:%s is good and bad")
% (badrev, short(bad)))
# build children dict
children = {}
visit = collections.deque([badrev])
candidates = []
while visit:
rev = visit.popleft()
if ancestors[rev] == []:
candidates.append(rev)
for prev in clparents(rev):
if prev != -1:
if prev in children:
children[prev].append(rev)
else:
children[prev] = [rev]
visit.append(prev)
candidates.sort()
# have we narrowed it down to one entry?
# or have all other possible candidates besides 'bad' have been skipped?
tot = len(candidates)
unskipped = [c for c in candidates if (c not in skip) and (c != badrev)]
if tot == 1 or not unskipped:
return ([changelog.node(c) for c in candidates], 0, good)
perfect = tot // 2
# find the best node to test
best_rev = None
best_len = -1
poison = set()
for rev in candidates:
if rev in poison:
# poison children
poison.update(children.get(rev, []))
continue
a = ancestors[rev] or [rev]
ancestors[rev] = None
x = len(a) # number of ancestors
y = tot - x # number of non-ancestors
value = min(x, y) # how good is this test?
if value > best_len and rev not in skip:
best_len = value
best_rev = rev
if value == perfect: # found a perfect candidate? quit early
break
if y < perfect and rev not in skip: # all downhill from here?
# poison children
poison.update(children.get(rev, []))
continue
for c in children.get(rev, []):
if ancestors[c]:
ancestors[c] = list(set(ancestors[c] + a))
else:
ancestors[c] = a + [c]
assert best_rev is not None
best_node = changelog.node(best_rev)
return ([best_node], tot, good)
def extendrange(repo, state, nodes, good):
# bisect is incomplete when it ends on a merge node and
# one of the parent was not checked.
parents = repo[nodes[0]].parents()
if len(parents) > 1:
if good:
side = state['bad']
else:
side = state['good']
num = len(set(i.node() for i in parents) & set(side))
if num == 1:
return parents[0].ancestor(parents[1])
return None
def load_state(repo):
state = {'current': [], 'good': [], 'bad': [], 'skip': []}
for l in repo.vfs.tryreadlines("bisect.state"):
kind, node = l[:-1].split()
node = repo.lookup(node)
if kind not in state:
raise error.Abort(_("unknown bisect kind %s") % kind)
state[kind].append(node)
return state
def save_state(repo, state):
f = repo.vfs("bisect.state", "w", atomictemp=True)
with repo.wlock():
for kind in sorted(state):
for node in state[kind]:
f.write("%s %s\n" % (kind, hex(node)))
f.close()
def resetstate(repo):
"""remove any bisect state from the repository"""
if repo.vfs.exists("bisect.state"):
repo.vfs.unlink("bisect.state")
def checkstate(state):
"""check we have both 'good' and 'bad' to define a range
Raise Abort exception otherwise."""
if state['good'] and state['bad']:
return True
if not state['good']:
raise error.Abort(_('cannot bisect (no known good revisions)'))
else:
raise error.Abort(_('cannot bisect (no known bad revisions)'))
def get(repo, status):
"""
Return a list of revision(s) that match the given status:
- ``good``, ``bad``, ``skip``: csets explicitly marked as good/bad/skip
- ``goods``, ``bads`` : csets topologically good/bad
- ``range`` : csets taking part in the bisection
- ``pruned`` : csets that are goods, bads or skipped
- ``untested`` : csets whose fate is yet unknown
- ``ignored`` : csets ignored due to DAG topology
- ``current`` : the cset currently being bisected
"""
state = load_state(repo)
if status in ('good', 'bad', 'skip', 'current'):
return map(repo.changelog.rev, state[status])
else:
# In the following sets, we do *not* call 'bisect()' with more
# than one level of recursion, because that can be very, very
# time consuming. Instead, we always develop the expression as
# much as possible.
# 'range' is all csets that make the bisection:
# - have a good ancestor and a bad descendant, or conversely
# that's because the bisection can go either way
range = '( bisect(bad)::bisect(good) | bisect(good)::bisect(bad) )'
_t = repo.revs('bisect(good)::bisect(bad)')
# The sets of topologically good or bad csets
if len(_t) == 0:
# Goods are topologically after bads
goods = 'bisect(good)::' # Pruned good csets
bads = '::bisect(bad)' # Pruned bad csets
else:
# Goods are topologically before bads
goods = '::bisect(good)' # Pruned good csets
bads = 'bisect(bad)::' # Pruned bad csets
# 'pruned' is all csets whose fate is already known: good, bad, skip
skips = 'bisect(skip)' # Pruned skipped csets
pruned = '( (%s) | (%s) | (%s) )' % (goods, bads, skips)
# 'untested' is all cset that are- in 'range', but not in 'pruned'
untested = '( (%s) - (%s) )' % (range, pruned)
# 'ignored' is all csets that were not used during the bisection
# due to DAG topology, but may however have had an impact.
# E.g., a branch merged between bads and goods, but whose branch-
# point is out-side of the range.
iba = '::bisect(bad) - ::bisect(good)' # Ignored bads' ancestors
iga = '::bisect(good) - ::bisect(bad)' # Ignored goods' ancestors
ignored = '( ( (%s) | (%s) ) - (%s) )' % (iba, iga, range)
if status == 'range':
return repo.revs(range)
elif status == 'pruned':
return repo.revs(pruned)
elif status == 'untested':
return repo.revs(untested)
elif status == 'ignored':
return repo.revs(ignored)
elif status == "goods":
return repo.revs(goods)
elif status == "bads":
return repo.revs(bads)
else:
raise error.ParseError(_('invalid bisect state'))
def label(repo, node):
rev = repo.changelog.rev(node)
# Try explicit sets
if rev in get(repo, 'good'):
# i18n: bisect changeset status
return _('good')
if rev in get(repo, 'bad'):
# i18n: bisect changeset status
return _('bad')
if rev in get(repo, 'skip'):
# i18n: bisect changeset status
return _('skipped')
if rev in get(repo, 'untested') or rev in get(repo, 'current'):
# i18n: bisect changeset status
return _('untested')
if rev in get(repo, 'ignored'):
# i18n: bisect changeset status
return _('ignored')
# Try implicit sets
if rev in get(repo, 'goods'):
# i18n: bisect changeset status
return _('good (implicit)')
if rev in get(repo, 'bads'):
# i18n: bisect changeset status
return _('bad (implicit)')
return None
def printresult(ui, repo, state, displayer, nodes, good):
if len(nodes) == 1:
# narrowed it down to a single revision
if good:
ui.write(_("The first good revision is:\n"))
else:
ui.write(_("The first bad revision is:\n"))
displayer.show(repo[nodes[0]])
extendnode = extendrange(repo, state, nodes, good)
if extendnode is not None:
ui.write(_('Not all ancestors of this changeset have been'
' checked.\nUse bisect --extend to continue the '
'bisection from\nthe common ancestor, %s.\n')
% extendnode)
else:
# multiple possible revisions
if good:
ui.write(_("Due to skipped revisions, the first "
"good revision could be any of:\n"))
else:
ui.write(_("Due to skipped revisions, the first "
"bad revision could be any of:\n"))
for n in nodes:
displayer.show(repo[n])
displayer.close()