##// END OF EJS Templates
util: lower water mark when removing nodes after cost limit reached...
util: lower water mark when removing nodes after cost limit reached See the inline comment for the reasoning here. This is a pretty common strategy for garbage collectors, other cache-like primtives. The performance impact is substantial: $ hg perflrucachedict --size 4 --gets 1000000 --sets 1000000 --mixed 1000000 --costlimit 100 ! inserts w/ cost limit ! wall 1.659181 comb 1.650000 user 1.650000 sys 0.000000 (best of 7) ! wall 1.722122 comb 1.720000 user 1.720000 sys 0.000000 (best of 6) ! mixed w/ cost limit ! wall 1.139955 comb 1.140000 user 1.140000 sys 0.000000 (best of 9) ! wall 1.182513 comb 1.180000 user 1.180000 sys 0.000000 (best of 9) $ hg perflrucachedict --size 1000 --gets 1000000 --sets 1000000 --mixed 1000000 --costlimit 10000 ! inserts ! wall 0.679546 comb 0.680000 user 0.680000 sys 0.000000 (best of 15) ! sets ! wall 0.825147 comb 0.830000 user 0.830000 sys 0.000000 (best of 13) ! inserts w/ cost limit ! wall 25.105273 comb 25.080000 user 25.080000 sys 0.000000 (best of 3) ! wall 1.724397 comb 1.720000 user 1.720000 sys 0.000000 (best of 6) ! mixed ! wall 0.807096 comb 0.810000 user 0.810000 sys 0.000000 (best of 13) ! mixed w/ cost limit ! wall 12.104470 comb 12.070000 user 12.070000 sys 0.000000 (best of 3) ! wall 1.190563 comb 1.190000 user 1.190000 sys 0.000000 (best of 9) $ hg perflrucachedict --size 1000 --gets 1000000 --sets 1000000 --mixed 1000000 --costlimit 10000 --mixedgetfreq 90 ! inserts ! wall 0.711177 comb 0.710000 user 0.710000 sys 0.000000 (best of 14) ! sets ! wall 0.846992 comb 0.850000 user 0.850000 sys 0.000000 (best of 12) ! inserts w/ cost limit ! wall 25.963028 comb 25.960000 user 25.960000 sys 0.000000 (best of 3) ! wall 2.184311 comb 2.180000 user 2.180000 sys 0.000000 (best of 5) ! mixed ! wall 0.728256 comb 0.730000 user 0.730000 sys 0.000000 (best of 14) ! mixed w/ cost limit ! wall 3.174256 comb 3.170000 user 3.170000 sys 0.000000 (best of 4) ! wall 0.773186 comb 0.770000 user 0.770000 sys 0.000000 (best of 13) $ hg perflrucachedict --size 100000 --gets 1000000 --sets 1000000 --mixed 1000000 --mixedgetfreq 90 --costlimit 5000000 ! gets ! wall 1.191368 comb 1.190000 user 1.190000 sys 0.000000 (best of 9) ! wall 1.195304 comb 1.190000 user 1.190000 sys 0.000000 (best of 9) ! inserts ! wall 0.950995 comb 0.950000 user 0.950000 sys 0.000000 (best of 11) ! inserts w/ cost limit ! wall 1.589732 comb 1.590000 user 1.590000 sys 0.000000 (best of 7) ! sets ! wall 1.094941 comb 1.100000 user 1.090000 sys 0.010000 (best of 9) ! mixed ! wall 0.936420 comb 0.940000 user 0.930000 sys 0.010000 (best of 10) ! mixed w/ cost limit ! wall 0.882780 comb 0.870000 user 0.870000 sys 0.000000 (best of 11) This puts us ~2x slower than caches without cost accounting. And for read-heavy workloads (the prime use cases for caches), performance is nearly identical. In the worst case (pure write workloads with cost accounting enabled), we're looking at ~1.5us per insert on large caches. That seems "fast enough." Differential Revision: https://phab.mercurial-scm.org/D4505

File last commit:

r39482:5bfab940 default
r39606:f296c0b3 default
Show More
state.py
87 lines | 2.8 KiB | text/x-python | PythonLexer
# state.py - writing and reading state files in Mercurial
#
# Copyright 2018 Pulkit Goyal <pulkitmgoyal@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
"""
This file contains class to wrap the state for commands and other
related logic.
All the data related to the command state is stored as dictionary in the object.
The class has methods using which the data can be stored to disk in a file under
.hg/ directory.
We store the data on disk in cbor, for which we use the third party cbor library
to serialize and deserialize data.
"""
from __future__ import absolute_import
from . import (
error,
util,
)
from .utils import (
cborutil,
)
class cmdstate(object):
"""a wrapper class to store the state of commands like `rebase`, `graft`,
`histedit`, `shelve` etc. Extensions can also use this to write state files.
All the data for the state is stored in the form of key-value pairs in a
dictionary.
The class object can write all the data to a file in .hg/ directory and
can populate the object data reading that file.
Uses cbor to serialize and deserialize data while writing and reading from
disk.
"""
def __init__(self, repo, fname):
""" repo is the repo object
fname is the file name in which data should be stored in .hg directory
"""
self._repo = repo
self.fname = fname
def read(self):
"""read the existing state file and return a dict of data stored"""
return self._read()
def save(self, version, data):
"""write all the state data stored to .hg/<filename> file
we use third-party library cbor to serialize data to write in the file.
"""
if not isinstance(version, int):
raise error.ProgrammingError("version of state file should be"
" an integer")
with self._repo.vfs(self.fname, 'wb', atomictemp=True) as fp:
fp.write('%d\n' % version)
for chunk in cborutil.streamencode(data):
fp.write(chunk)
def _read(self):
"""reads the state file and returns a dictionary which contain
data in the same format as it was before storing"""
with self._repo.vfs(self.fname, 'rb') as fp:
try:
int(fp.readline())
except ValueError:
raise error.CorruptedState("unknown version of state file"
" found")
return cborutil.decodeall(fp.read())[0]
def delete(self):
"""drop the state file if exists"""
util.unlinkpath(self._repo.vfs.join(self.fname), ignoremissing=True)
def exists(self):
"""check whether the state file exists or not"""
return self._repo.vfs.exists(self.fname)