##// END OF EJS Templates
xdiff: add a preprocessing step that trims files...
xdiff: add a preprocessing step that trims files xdiff has a `xdl_trim_ends` step that removes common lines, unmatchable lines. That is in theory good, but happens too late - after splitting, hashing, and adjusting the hash values so they are unique. Those splitting, hashing and adjusting hash values steps could have noticeable overhead. Diffing two large files with minor (one-line-ish) changes are not uncommon. In that case, the raw performance of those preparation steps seriously matter. Even allocating an O(N) array and storing line offsets to it is expensive. Therefore my previous attempts [1] [2] cannot be good enough since they do not remove the O(N) array assignment. This patch adds a preprocessing step - `xdl_trim_files` that runs before other preprocessing steps. It counts common prefix and suffix and lines in them (needed for displaying line number), without doing anything else. Testing with a crafted large (169MB) file, with minor change: ``` open('a','w').write(''.join('%s\n' % (i % 100000) for i in xrange(30000000) if i != 6000000)) open('b','w').write(''.join('%s\n' % (i % 100000) for i in xrange(30000000) if i != 6003000)) ``` Running xdiff by a simple binary [3], this patch improves the xdiff perf by more than 10x for the above case: ``` # xdiff before this patch 2.41s user 1.13s system 98% cpu 3.592 total # xdiff after this patch 0.14s user 0.16s system 98% cpu 0.309 total # gnu diffutils 0.12s user 0.15s system 98% cpu 0.272 total # (best of 20 runs) ``` It's still slightly slower than GNU diffutils. But it's pretty close now. Testing with real repo data: For the whole repo, this patch makes xdiff 25% faster: ``` # hg perfbdiff --count 100 --alldata -c d334afc585e2 --blocks [--xdiff] # xdiff, after ! wall 0.058861 comb 0.050000 user 0.050000 sys 0.000000 (best of 100) # xdiff, before ! wall 0.077816 comb 0.080000 user 0.080000 sys 0.000000 (best of 91) # bdiff ! wall 0.117473 comb 0.120000 user 0.120000 sys 0.000000 (best of 67) ``` For files that are long (ex. commands.py), the speedup is more than 3x, very significant: ``` # hg perfbdiff --count 3000 --blocks commands.py.i 1 [--xdiff] # xdiff, after ! wall 0.690583 comb 0.690000 user 0.690000 sys 0.000000 (best of 12) # xdiff, before ! wall 2.240361 comb 2.210000 user 2.210000 sys 0.000000 (best of 4) # bdiff ! wall 2.469852 comb 2.440000 user 2.440000 sys 0.000000 (best of 4) ``` [1]: https://phab.mercurial-scm.org/D2631 [2]: https://phab.mercurial-scm.org/D2634 [3]: ``` // Code to run xdiff from command line. No proper error handling. #include <stdlib.h> #include <unistd.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include "mercurial/thirdparty/xdiff/xdiff.h" #define ensure(x) if (!(x)) exit(255); mmfile_t readfile(const char *path) { struct stat st; int fd = open(path, O_RDONLY); fstat(fd, &st); mmfile_t file = { malloc(st.st_size), st.st_size }; ensure(read(fd, file.ptr, st.st_size) == st.st_size); close(fd); return file; } int main(int argc, char const *argv[]) { mmfile_t a = readfile(argv[1]), b = readfile(argv[2]); xpparam_t xpp = {0}; xdemitconf_t xecfg = {0}; xdemitcb_t ecb = {0}; xdl_diff(&a, &b, &xpp, &xecfg, &ecb); return 0; } ``` Differential Revision: https://phab.mercurial-scm.org/D2686

File last commit:

r35469:44fd4cfc @6 default
r36838:f33a87cf default
Show More
worker.py
327 lines | 11.4 KiB | text/x-python | PythonLexer
# worker.py - master-slave parallelism support
#
# Copyright 2013 Facebook, Inc.
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import errno
import os
import signal
import sys
import threading
import time
from .i18n import _
from . import (
encoding,
error,
pycompat,
scmutil,
util,
)
def countcpus():
'''try to count the number of CPUs on the system'''
# posix
try:
n = int(os.sysconf(r'SC_NPROCESSORS_ONLN'))
if n > 0:
return n
except (AttributeError, ValueError):
pass
# windows
try:
n = int(encoding.environ['NUMBER_OF_PROCESSORS'])
if n > 0:
return n
except (KeyError, ValueError):
pass
return 1
def _numworkers(ui):
s = ui.config('worker', 'numcpus')
if s:
try:
n = int(s)
if n >= 1:
return n
except ValueError:
raise error.Abort(_('number of cpus must be an integer'))
return min(max(countcpus(), 4), 32)
if pycompat.isposix or pycompat.iswindows:
_startupcost = 0.01
else:
_startupcost = 1e30
def worthwhile(ui, costperop, nops):
'''try to determine whether the benefit of multiple processes can
outweigh the cost of starting them'''
linear = costperop * nops
workers = _numworkers(ui)
benefit = linear - (_startupcost * workers + linear / workers)
return benefit >= 0.15
def worker(ui, costperarg, func, staticargs, args):
'''run a function, possibly in parallel in multiple worker
processes.
returns a progress iterator
costperarg - cost of a single task
func - function to run
staticargs - arguments to pass to every invocation of the function
args - arguments to split into chunks, to pass to individual
workers
'''
enabled = ui.configbool('worker', 'enabled')
if enabled and worthwhile(ui, costperarg, len(args)):
return _platformworker(ui, func, staticargs, args)
return func(*staticargs + (args,))
def _posixworker(ui, func, staticargs, args):
rfd, wfd = os.pipe()
workers = _numworkers(ui)
oldhandler = signal.getsignal(signal.SIGINT)
signal.signal(signal.SIGINT, signal.SIG_IGN)
pids, problem = set(), [0]
def killworkers():
# unregister SIGCHLD handler as all children will be killed. This
# function shouldn't be interrupted by another SIGCHLD; otherwise pids
# could be updated while iterating, which would cause inconsistency.
signal.signal(signal.SIGCHLD, oldchldhandler)
# if one worker bails, there's no good reason to wait for the rest
for p in pids:
try:
os.kill(p, signal.SIGTERM)
except OSError as err:
if err.errno != errno.ESRCH:
raise
def waitforworkers(blocking=True):
for pid in pids.copy():
p = st = 0
while True:
try:
p, st = os.waitpid(pid, (0 if blocking else os.WNOHANG))
break
except OSError as e:
if e.errno == errno.EINTR:
continue
elif e.errno == errno.ECHILD:
# child would already be reaped, but pids yet been
# updated (maybe interrupted just after waitpid)
pids.discard(pid)
break
else:
raise
if not p:
# skip subsequent steps, because child process should
# be still running in this case
continue
pids.discard(p)
st = _exitstatus(st)
if st and not problem[0]:
problem[0] = st
def sigchldhandler(signum, frame):
waitforworkers(blocking=False)
if problem[0]:
killworkers()
oldchldhandler = signal.signal(signal.SIGCHLD, sigchldhandler)
ui.flush()
parentpid = os.getpid()
for pargs in partition(args, workers):
# make sure we use os._exit in all worker code paths. otherwise the
# worker may do some clean-ups which could cause surprises like
# deadlock. see sshpeer.cleanup for example.
# override error handling *before* fork. this is necessary because
# exception (signal) may arrive after fork, before "pid =" assignment
# completes, and other exception handler (dispatch.py) can lead to
# unexpected code path without os._exit.
ret = -1
try:
pid = os.fork()
if pid == 0:
signal.signal(signal.SIGINT, oldhandler)
signal.signal(signal.SIGCHLD, oldchldhandler)
def workerfunc():
os.close(rfd)
for i, item in func(*(staticargs + (pargs,))):
os.write(wfd, '%d %s\n' % (i, item))
return 0
ret = scmutil.callcatch(ui, workerfunc)
except: # parent re-raises, child never returns
if os.getpid() == parentpid:
raise
exctype = sys.exc_info()[0]
force = not issubclass(exctype, KeyboardInterrupt)
ui.traceback(force=force)
finally:
if os.getpid() != parentpid:
try:
ui.flush()
except: # never returns, no re-raises
pass
finally:
os._exit(ret & 255)
pids.add(pid)
os.close(wfd)
fp = os.fdopen(rfd, pycompat.sysstr('rb'), 0)
def cleanup():
signal.signal(signal.SIGINT, oldhandler)
waitforworkers()
signal.signal(signal.SIGCHLD, oldchldhandler)
status = problem[0]
if status:
if status < 0:
os.kill(os.getpid(), -status)
sys.exit(status)
try:
for line in util.iterfile(fp):
l = line.split(' ', 1)
yield int(l[0]), l[1][:-1]
except: # re-raises
killworkers()
cleanup()
raise
cleanup()
def _posixexitstatus(code):
'''convert a posix exit status into the same form returned by
os.spawnv
returns None if the process was stopped instead of exiting'''
if os.WIFEXITED(code):
return os.WEXITSTATUS(code)
elif os.WIFSIGNALED(code):
return -os.WTERMSIG(code)
def _windowsworker(ui, func, staticargs, args):
class Worker(threading.Thread):
def __init__(self, taskqueue, resultqueue, func, staticargs,
group=None, target=None, name=None, verbose=None):
threading.Thread.__init__(self, group=group, target=target,
name=name, verbose=verbose)
self._taskqueue = taskqueue
self._resultqueue = resultqueue
self._func = func
self._staticargs = staticargs
self._interrupted = False
self.daemon = True
self.exception = None
def interrupt(self):
self._interrupted = True
def run(self):
try:
while not self._taskqueue.empty():
try:
args = self._taskqueue.get_nowait()
for res in self._func(*self._staticargs + (args,)):
self._resultqueue.put(res)
# threading doesn't provide a native way to
# interrupt execution. handle it manually at every
# iteration.
if self._interrupted:
return
except util.empty:
break
except Exception as e:
# store the exception such that the main thread can resurface
# it as if the func was running without workers.
self.exception = e
raise
threads = []
def trykillworkers():
# Allow up to 1 second to clean worker threads nicely
cleanupend = time.time() + 1
for t in threads:
t.interrupt()
for t in threads:
remainingtime = cleanupend - time.time()
t.join(remainingtime)
if t.is_alive():
# pass over the workers joining failure. it is more
# important to surface the inital exception than the
# fact that one of workers may be processing a large
# task and does not get to handle the interruption.
ui.warn(_("failed to kill worker threads while "
"handling an exception\n"))
return
workers = _numworkers(ui)
resultqueue = util.queue()
taskqueue = util.queue()
# partition work to more pieces than workers to minimize the chance
# of uneven distribution of large tasks between the workers
for pargs in partition(args, workers * 20):
taskqueue.put(pargs)
for _i in range(workers):
t = Worker(taskqueue, resultqueue, func, staticargs)
threads.append(t)
t.start()
try:
while len(threads) > 0:
while not resultqueue.empty():
yield resultqueue.get()
threads[0].join(0.05)
finishedthreads = [_t for _t in threads if not _t.is_alive()]
for t in finishedthreads:
if t.exception is not None:
raise t.exception
threads.remove(t)
except (Exception, KeyboardInterrupt): # re-raises
trykillworkers()
raise
while not resultqueue.empty():
yield resultqueue.get()
if pycompat.iswindows:
_platformworker = _windowsworker
else:
_platformworker = _posixworker
_exitstatus = _posixexitstatus
def partition(lst, nslices):
'''partition a list into N slices of roughly equal size
The current strategy takes every Nth element from the input. If
we ever write workers that need to preserve grouping in input
we should consider allowing callers to specify a partition strategy.
mpm is not a fan of this partitioning strategy when files are involved.
In his words:
Single-threaded Mercurial makes a point of creating and visiting
files in a fixed order (alphabetical). When creating files in order,
a typical filesystem is likely to allocate them on nearby regions on
disk. Thus, when revisiting in the same order, locality is maximized
and various forms of OS and disk-level caching and read-ahead get a
chance to work.
This effect can be quite significant on spinning disks. I discovered it
circa Mercurial v0.4 when revlogs were named by hashes of filenames.
Tarring a repo and copying it to another disk effectively randomized
the revlog ordering on disk by sorting the revlogs by hash and suddenly
performance of my kernel checkout benchmark dropped by ~10x because the
"working set" of sectors visited no longer fit in the drive's cache and
the workload switched from streaming to random I/O.
What we should really be doing is have workers read filenames from a
ordered queue. This preserves locality and also keeps any worker from
getting more than one file out of balance.
'''
for i in range(nslices):
yield lst[i::nslices]