##// END OF EJS Templates
hgweb: render next pages on /graph incrementally...
hgweb: render next pages on /graph incrementally Previously, when user scrolled down to see the next page on /graph, all hgweb did was re-render everything that would be visible (by simply incrementing revcount). It was not efficient at all, and this patch makes /graph page behave similarly to the regular /log: every new page only consists of new changesets, no duplication, and only jsdata is based on the full set of changesets required to build accurate graph. This is achieved by adding "?graphtop=<node>" to the next page URL template, effectively remembering where the graph started, and using that value to create the new `tree` that covers the whole visible graph. That variable is then used to produce jsdata for redrawing graph client-side. nextentry is used for the same purpose as on /log page (to format the next page URL), but it's not a part of the graph.

File last commit:

r32291:bd872f64 default
r35410:f84b0125 default
Show More
generate-working-copy-states.py
88 lines | 3.2 KiB | text/x-python | PythonLexer
/ tests / generate-working-copy-states.py
# Helper script used for generating history and working copy files and content.
# The file's name corresponds to its history. The number of changesets can
# be specified on the command line. With 2 changesets, files with names like
# content1_content2_content1-untracked are generated. The first two filename
# segments describe the contents in the two changesets. The third segment
# ("content1-untracked") describes the state in the working copy, i.e.
# the file has content "content1" and is untracked (since it was previously
# tracked, it has been forgotten).
#
# This script generates the filenames and their content, but it's up to the
# caller to tell hg about the state.
#
# There are two subcommands:
# filelist <numchangesets>
# state <numchangesets> (<changeset>|wc)
#
# Typical usage:
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 1
# $ hg addremove --similarity 0
# $ hg commit -m 'first'
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 1
# $ hg addremove --similarity 0
# $ hg commit -m 'second'
#
# $ python $TESTDIR/generate-working-copy-states.py state 2 wc
# $ hg addremove --similarity 0
# $ hg forget *_*_*-untracked
# $ rm *_*_missing-*
from __future__ import absolute_import, print_function
import os
import sys
# Generates pairs of (filename, contents), where 'contents' is a list
# describing the file's content at each revision (or in the working copy).
# At each revision, it is either None or the file's actual content. When not
# None, it may be either new content or the same content as an earlier
# revisions, so all of (modified,clean,added,removed) can be tested.
def generatestates(maxchangesets, parentcontents):
depth = len(parentcontents)
if depth == maxchangesets + 1:
for tracked in ('untracked', 'tracked'):
filename = "_".join([(content is None and 'missing' or content) for
content in parentcontents]) + "-" + tracked
yield (filename, parentcontents)
else:
for content in ({None, 'content' + str(depth + 1)} |
set(parentcontents)):
for combination in generatestates(maxchangesets,
parentcontents + [content]):
yield combination
# retrieve the command line arguments
target = sys.argv[1]
maxchangesets = int(sys.argv[2])
if target == 'state':
depth = sys.argv[3]
# sort to make sure we have stable output
combinations = sorted(generatestates(maxchangesets, []))
# compute file content
content = []
for filename, states in combinations:
if target == 'filelist':
print(filename)
elif target == 'state':
if depth == 'wc':
# Make sure there is content so the file gets written and can be
# tracked. It will be deleted outside of this script.
content.append((filename, states[maxchangesets] or 'TOBEDELETED'))
else:
content.append((filename, states[int(depth) - 1]))
else:
print("unknown target:", target, file=sys.stderr)
sys.exit(1)
# write actual content
for filename, data in content:
if data is not None:
f = open(filename, 'wb')
f.write(data + '\n')
f.close()
elif os.path.exists(filename):
os.remove(filename)