##// END OF EJS Templates
py3: make stdout line-buffered if connected to a TTY...
py3: make stdout line-buffered if connected to a TTY Status messages that are to be shown on the terminal should be written to the file descriptor before anything further is done, to keep the user updated. One common way to achieve this is to make stdout line-buffered if it is connected to a TTY. This is done on Python 2 (except on Windows, where libc, which the CPython 2 streams depend on, does not properly support this). Python 3 rolls it own I/O streams. On Python 3, buffered binary streams can't be set line-buffered. The previous code (added in 227ba1afcb65) incorrectly assumed that on Python 3, pycompat.stdout (sys.stdout.buffer) is already line-buffered. However the interpreter initializes it with a block-buffered stream or an unbuffered stream (when the -u option or the PYTHONUNBUFFERED environment variable is set), never with a line-buffered stream. One example where the current behavior is unacceptable is when running `hg pull https://www.mercurial-scm.org/repo/hg` on Python 3, where the line "pulling from https://www.mercurial-scm.org/repo/hg" does not appear on the terminal before the hg process blocks while waiting for the server. Various approaches to fix this problem are possible, including: 1. Weaken the contract of procutil.stdout to not give any guarantees about buffering behavior. In this case, users of procutil.stdout need to be changed to do enough flushes. In particular, 1. either ui must insert enough flushes for ui.write() and friends, or 2. ui.write() and friends get split into flushing and fully buffered methods, or 3. users of ui.write() and friends must flush explicitly. 2. Make stdout unbuffered. 3. Make stdout line-buffered. Since Python 3 does not natively support that for binary streams, we must implement it ourselves. (2.) is problematic because using unbuffered I/O changes the performance characteristics significantly compared to line-buffered (which is used on Python 2) and this would be a regression. (1.2.) and (1.3) are a substantial amount of work. It’s unclear whether the added complexity would be justified, given that raw performance doesn’t matter that much when writing to a terminal much faster than the user could read it. (1.1.) pushes complexity into the ui class instead of separating the concern of how stdout is buffered. Other users of procutil.stdout would still need to take care of the flushes. This patch implements (3.). The general performance considerations are very similar to (1.1.). The extra method invocation and method forwarding add a little more overhead if the class is used. In exchange, it doesn’t add overhead if not used. For the benchmarks, I compared the previous implementation (incorrect on Python 3), (1.1.), (3.) and (2.). The command was chosen so that the streams were configured as if they were writing to a TTY, but actually write to a pager, which is also the default: HGRCPATH=/dev/null python3 ./hg --cwd ~/vcs/mozilla-central --time --pager yes --config pager.pager='cat > /dev/null' status --all previous: time: real 7.880 secs (user 7.290+0.050 sys 0.580+0.170) time: real 7.830 secs (user 7.220+0.070 sys 0.590+0.140) time: real 7.800 secs (user 7.210+0.050 sys 0.570+0.170) (1.1.) using Yuya Nishihara’s patch: time: real 9.860 secs (user 8.670+0.350 sys 1.160+0.830) time: real 9.540 secs (user 8.430+0.370 sys 1.100+0.770) time: real 9.830 secs (user 8.630+0.370 sys 1.180+0.840) (3.) using this patch: time: real 9.580 secs (user 8.480+0.350 sys 1.090+0.770) time: real 9.670 secs (user 8.480+0.330 sys 1.170+0.860) time: real 9.640 secs (user 8.500+0.350 sys 1.130+0.810) (2.) using a previous patch by me: time: real 10.480 secs (user 8.850+0.720 sys 1.590+1.500) time: real 10.490 secs (user 8.750+0.750 sys 1.710+1.470) time: real 10.240 secs (user 8.600+0.700 sys 1.590+1.510) As expected, there’s no difference on Python 2, as exactly the same code paths are used: previous: time: real 6.950 secs (user 5.870+0.330 sys 1.070+0.770) time: real 7.040 secs (user 6.040+0.360 sys 0.980+0.750) time: real 7.070 secs (user 5.950+0.360 sys 1.100+0.760) this patch: time: real 7.010 secs (user 5.900+0.390 sys 1.070+0.730) time: real 7.000 secs (user 5.850+0.350 sys 1.120+0.760) time: real 7.000 secs (user 5.790+0.380 sys 1.170+0.710)

File last commit:

r45477:f9734b2d default
r45477:f9734b2d default
Show More
procutil.py
701 lines | 20.3 KiB | text/x-python | PythonLexer
# procutil.py - utility for managing processes and executable environment
#
# Copyright 2005 K. Thananchayan <thananck@yahoo.com>
# Copyright 2005-2007 Matt Mackall <mpm@selenic.com>
# Copyright 2006 Vadim Gelfer <vadim.gelfer@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import
import contextlib
import errno
import io
import os
import signal
import subprocess
import sys
import threading
import time
from ..i18n import _
from ..pycompat import (
getattr,
open,
)
from .. import (
encoding,
error,
policy,
pycompat,
)
# Import like this to keep import-checker happy
from ..utils import resourceutil
osutil = policy.importmod('osutil')
stderr = pycompat.stderr
stdin = pycompat.stdin
stdout = pycompat.stdout
def isatty(fp):
try:
return fp.isatty()
except AttributeError:
return False
if pycompat.ispy3:
class LineBufferedWrapper(object):
def __init__(self, orig):
self.orig = orig
def __getattr__(self, attr):
return getattr(self.orig, attr)
def write(self, s):
orig = self.orig
res = orig.write(s)
if s.endswith(b'\n'):
orig.flush()
return res
io.BufferedIOBase.register(LineBufferedWrapper)
# glibc determines buffering on first write to stdout - if we replace a TTY
# destined stdout with a pipe destined stdout (e.g. pager), we want line
# buffering (or unbuffered, on Windows)
if isatty(stdout):
if pycompat.iswindows:
# Windows doesn't support line buffering
stdout = os.fdopen(stdout.fileno(), 'wb', 0)
elif pycompat.ispy3:
# On Python 3, buffered binary streams can't be set line-buffered.
# Therefore we have a wrapper that implements line buffering.
if isinstance(stdout, io.BufferedIOBase) and not isinstance(
stdout, LineBufferedWrapper
):
stdout = LineBufferedWrapper(stdout)
else:
stdout = os.fdopen(stdout.fileno(), 'wb', 1)
if pycompat.iswindows:
from .. import windows as platform
stdout = platform.winstdout(stdout)
else:
from .. import posix as platform
findexe = platform.findexe
_gethgcmd = platform.gethgcmd
getuser = platform.getuser
getpid = os.getpid
hidewindow = platform.hidewindow
readpipe = platform.readpipe
setbinary = platform.setbinary
setsignalhandler = platform.setsignalhandler
shellquote = platform.shellquote
shellsplit = platform.shellsplit
spawndetached = platform.spawndetached
sshargs = platform.sshargs
testpid = platform.testpid
try:
setprocname = osutil.setprocname
except AttributeError:
pass
try:
unblocksignal = osutil.unblocksignal
except AttributeError:
pass
closefds = pycompat.isposix
def explainexit(code):
"""return a message describing a subprocess status
(codes from kill are negative - not os.system/wait encoding)"""
if code >= 0:
return _(b"exited with status %d") % code
return _(b"killed by signal %d") % -code
class _pfile(object):
"""File-like wrapper for a stream opened by subprocess.Popen()"""
def __init__(self, proc, fp):
self._proc = proc
self._fp = fp
def close(self):
# unlike os.popen(), this returns an integer in subprocess coding
self._fp.close()
return self._proc.wait()
def __iter__(self):
return iter(self._fp)
def __getattr__(self, attr):
return getattr(self._fp, attr)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_tb):
self.close()
def popen(cmd, mode=b'rb', bufsize=-1):
if mode == b'rb':
return _popenreader(cmd, bufsize)
elif mode == b'wb':
return _popenwriter(cmd, bufsize)
raise error.ProgrammingError(b'unsupported mode: %r' % mode)
def _popenreader(cmd, bufsize):
p = subprocess.Popen(
tonativestr(cmd),
shell=True,
bufsize=bufsize,
close_fds=closefds,
stdout=subprocess.PIPE,
)
return _pfile(p, p.stdout)
def _popenwriter(cmd, bufsize):
p = subprocess.Popen(
tonativestr(cmd),
shell=True,
bufsize=bufsize,
close_fds=closefds,
stdin=subprocess.PIPE,
)
return _pfile(p, p.stdin)
def popen2(cmd, env=None):
# Setting bufsize to -1 lets the system decide the buffer size.
# The default for bufsize is 0, meaning unbuffered. This leads to
# poor performance on Mac OS X: http://bugs.python.org/issue4194
p = subprocess.Popen(
tonativestr(cmd),
shell=True,
bufsize=-1,
close_fds=closefds,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
env=tonativeenv(env),
)
return p.stdin, p.stdout
def popen3(cmd, env=None):
stdin, stdout, stderr, p = popen4(cmd, env)
return stdin, stdout, stderr
def popen4(cmd, env=None, bufsize=-1):
p = subprocess.Popen(
tonativestr(cmd),
shell=True,
bufsize=bufsize,
close_fds=closefds,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=tonativeenv(env),
)
return p.stdin, p.stdout, p.stderr, p
def pipefilter(s, cmd):
'''filter string S through command CMD, returning its output'''
p = subprocess.Popen(
tonativestr(cmd),
shell=True,
close_fds=closefds,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
)
pout, perr = p.communicate(s)
return pout
def tempfilter(s, cmd):
'''filter string S through a pair of temporary files with CMD.
CMD is used as a template to create the real command to be run,
with the strings INFILE and OUTFILE replaced by the real names of
the temporary files generated.'''
inname, outname = None, None
try:
infd, inname = pycompat.mkstemp(prefix=b'hg-filter-in-')
fp = os.fdopen(infd, 'wb')
fp.write(s)
fp.close()
outfd, outname = pycompat.mkstemp(prefix=b'hg-filter-out-')
os.close(outfd)
cmd = cmd.replace(b'INFILE', inname)
cmd = cmd.replace(b'OUTFILE', outname)
code = system(cmd)
if pycompat.sysplatform == b'OpenVMS' and code & 1:
code = 0
if code:
raise error.Abort(
_(b"command '%s' failed: %s") % (cmd, explainexit(code))
)
with open(outname, b'rb') as fp:
return fp.read()
finally:
try:
if inname:
os.unlink(inname)
except OSError:
pass
try:
if outname:
os.unlink(outname)
except OSError:
pass
_filtertable = {
b'tempfile:': tempfilter,
b'pipe:': pipefilter,
}
def filter(s, cmd):
"""filter a string through a command that transforms its input to its
output"""
for name, fn in pycompat.iteritems(_filtertable):
if cmd.startswith(name):
return fn(s, cmd[len(name) :].lstrip())
return pipefilter(s, cmd)
_hgexecutable = None
def hgexecutable():
"""return location of the 'hg' executable.
Defaults to $HG or 'hg' in the search path.
"""
if _hgexecutable is None:
hg = encoding.environ.get(b'HG')
mainmod = sys.modules['__main__']
if hg:
_sethgexecutable(hg)
elif resourceutil.mainfrozen():
if getattr(sys, 'frozen', None) == 'macosx_app':
# Env variable set by py2app
_sethgexecutable(encoding.environ[b'EXECUTABLEPATH'])
else:
_sethgexecutable(pycompat.sysexecutable)
elif (
not pycompat.iswindows
and os.path.basename(getattr(mainmod, '__file__', '')) == 'hg'
):
_sethgexecutable(pycompat.fsencode(mainmod.__file__))
else:
_sethgexecutable(
findexe(b'hg') or os.path.basename(pycompat.sysargv[0])
)
return _hgexecutable
def _sethgexecutable(path):
"""set location of the 'hg' executable"""
global _hgexecutable
_hgexecutable = path
def _testfileno(f, stdf):
fileno = getattr(f, 'fileno', None)
try:
return fileno and fileno() == stdf.fileno()
except io.UnsupportedOperation:
return False # fileno() raised UnsupportedOperation
def isstdin(f):
return _testfileno(f, sys.__stdin__)
def isstdout(f):
return _testfileno(f, sys.__stdout__)
def protectstdio(uin, uout):
"""Duplicate streams and redirect original if (uin, uout) are stdio
If uin is stdin, it's redirected to /dev/null. If uout is stdout, it's
redirected to stderr so the output is still readable.
Returns (fin, fout) which point to the original (uin, uout) fds, but
may be copy of (uin, uout). The returned streams can be considered
"owned" in that print(), exec(), etc. never reach to them.
"""
uout.flush()
fin, fout = uin, uout
if _testfileno(uin, stdin):
newfd = os.dup(uin.fileno())
nullfd = os.open(os.devnull, os.O_RDONLY)
os.dup2(nullfd, uin.fileno())
os.close(nullfd)
fin = os.fdopen(newfd, 'rb')
if _testfileno(uout, stdout):
newfd = os.dup(uout.fileno())
os.dup2(stderr.fileno(), uout.fileno())
fout = os.fdopen(newfd, 'wb')
return fin, fout
def restorestdio(uin, uout, fin, fout):
"""Restore (uin, uout) streams from possibly duplicated (fin, fout)"""
uout.flush()
for f, uif in [(fin, uin), (fout, uout)]:
if f is not uif:
os.dup2(f.fileno(), uif.fileno())
f.close()
def shellenviron(environ=None):
"""return environ with optional override, useful for shelling out"""
def py2shell(val):
"""convert python object into string that is useful to shell"""
if val is None or val is False:
return b'0'
if val is True:
return b'1'
return pycompat.bytestr(val)
env = dict(encoding.environ)
if environ:
env.update((k, py2shell(v)) for k, v in pycompat.iteritems(environ))
env[b'HG'] = hgexecutable()
return env
if pycompat.iswindows:
def shelltonative(cmd, env):
return platform.shelltocmdexe( # pytype: disable=module-attr
cmd, shellenviron(env)
)
tonativestr = encoding.strfromlocal
else:
def shelltonative(cmd, env):
return cmd
tonativestr = pycompat.identity
def tonativeenv(env):
'''convert the environment from bytes to strings suitable for Popen(), etc.
'''
return pycompat.rapply(tonativestr, env)
def system(cmd, environ=None, cwd=None, out=None):
'''enhanced shell command execution.
run with environment maybe modified, maybe in different dir.
if out is specified, it is assumed to be a file-like object that has a
write() method. stdout and stderr will be redirected to out.'''
try:
stdout.flush()
except Exception:
pass
env = shellenviron(environ)
if out is None or isstdout(out):
rc = subprocess.call(
tonativestr(cmd),
shell=True,
close_fds=closefds,
env=tonativeenv(env),
cwd=pycompat.rapply(tonativestr, cwd),
)
else:
proc = subprocess.Popen(
tonativestr(cmd),
shell=True,
close_fds=closefds,
env=tonativeenv(env),
cwd=pycompat.rapply(tonativestr, cwd),
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
)
for line in iter(proc.stdout.readline, b''):
out.write(line)
proc.wait()
rc = proc.returncode
if pycompat.sysplatform == b'OpenVMS' and rc & 1:
rc = 0
return rc
_is_gui = None
def _gui():
'''Are we running in a GUI?'''
if pycompat.isdarwin:
if b'SSH_CONNECTION' in encoding.environ:
# handle SSH access to a box where the user is logged in
return False
elif getattr(osutil, 'isgui', None):
# check if a CoreGraphics session is available
return osutil.isgui()
else:
# pure build; use a safe default
return True
else:
return pycompat.iswindows or encoding.environ.get(b"DISPLAY")
def gui():
global _is_gui
if _is_gui is None:
_is_gui = _gui()
return _is_gui
def hgcmd():
"""Return the command used to execute current hg
This is different from hgexecutable() because on Windows we want
to avoid things opening new shell windows like batch files, so we
get either the python call or current executable.
"""
if resourceutil.mainfrozen():
if getattr(sys, 'frozen', None) == 'macosx_app':
# Env variable set by py2app
return [encoding.environ[b'EXECUTABLEPATH']]
else:
return [pycompat.sysexecutable]
return _gethgcmd()
def rundetached(args, condfn):
"""Execute the argument list in a detached process.
condfn is a callable which is called repeatedly and should return
True once the child process is known to have started successfully.
At this point, the child process PID is returned. If the child
process fails to start or finishes before condfn() evaluates to
True, return -1.
"""
# Windows case is easier because the child process is either
# successfully starting and validating the condition or exiting
# on failure. We just poll on its PID. On Unix, if the child
# process fails to start, it will be left in a zombie state until
# the parent wait on it, which we cannot do since we expect a long
# running process on success. Instead we listen for SIGCHLD telling
# us our child process terminated.
terminated = set()
def handler(signum, frame):
terminated.add(os.wait())
prevhandler = None
SIGCHLD = getattr(signal, 'SIGCHLD', None)
if SIGCHLD is not None:
prevhandler = signal.signal(SIGCHLD, handler)
try:
pid = spawndetached(args)
while not condfn():
if (pid in terminated or not testpid(pid)) and not condfn():
return -1
time.sleep(0.1)
return pid
finally:
if prevhandler is not None:
signal.signal(signal.SIGCHLD, prevhandler)
@contextlib.contextmanager
def uninterruptible(warn):
"""Inhibit SIGINT handling on a region of code.
Note that if this is called in a non-main thread, it turns into a no-op.
Args:
warn: A callable which takes no arguments, and returns True if the
previous signal handling should be restored.
"""
oldsiginthandler = [signal.getsignal(signal.SIGINT)]
shouldbail = []
def disabledsiginthandler(*args):
if warn():
signal.signal(signal.SIGINT, oldsiginthandler[0])
del oldsiginthandler[0]
shouldbail.append(True)
try:
try:
signal.signal(signal.SIGINT, disabledsiginthandler)
except ValueError:
# wrong thread, oh well, we tried
del oldsiginthandler[0]
yield
finally:
if oldsiginthandler:
signal.signal(signal.SIGINT, oldsiginthandler[0])
if shouldbail:
raise KeyboardInterrupt
if pycompat.iswindows:
# no fork on Windows, but we can create a detached process
# https://msdn.microsoft.com/en-us/library/windows/desktop/ms684863.aspx
# No stdlib constant exists for this value
DETACHED_PROCESS = 0x00000008
# Following creation flags might create a console GUI window.
# Using subprocess.CREATE_NEW_CONSOLE might helps.
# See https://phab.mercurial-scm.org/D1701 for discussion
_creationflags = (
DETACHED_PROCESS
| subprocess.CREATE_NEW_PROCESS_GROUP # pytype: disable=module-attr
)
def runbgcommand(
script,
env,
shell=False,
stdout=None,
stderr=None,
ensurestart=True,
record_wait=None,
):
'''Spawn a command without waiting for it to finish.'''
# we can't use close_fds *and* redirect stdin. I'm not sure that we
# need to because the detached process has no console connection.
p = subprocess.Popen(
tonativestr(script),
shell=shell,
env=tonativeenv(env),
close_fds=True,
creationflags=_creationflags,
stdout=stdout,
stderr=stderr,
)
if record_wait is not None:
record_wait(p.wait)
else:
def runbgcommand(
cmd,
env,
shell=False,
stdout=None,
stderr=None,
ensurestart=True,
record_wait=None,
):
'''Spawn a command without waiting for it to finish.
When `record_wait` is not None, the spawned process will not be fully
detached and the `record_wait` argument will be called with a the
`Subprocess.wait` function for the spawned process. This is mostly
useful for developers that need to make sure the spawned process
finished before a certain point. (eg: writing test)'''
if pycompat.isdarwin:
# avoid crash in CoreFoundation in case another thread
# calls gui() while we're calling fork().
gui()
# double-fork to completely detach from the parent process
# based on http://code.activestate.com/recipes/278731
if record_wait is None:
pid = os.fork()
if pid:
if not ensurestart:
# Even though we're not waiting on the child process,
# we still must call waitpid() on it at some point so
# it's not a zombie/defunct. This is especially relevant for
# chg since the parent process won't die anytime soon.
# We use a thread to make the overhead tiny.
def _do_wait():
os.waitpid(pid, 0)
threading.Thread(target=_do_wait, daemon=True).start()
return
# Parent process
(_pid, status) = os.waitpid(pid, 0)
if os.WIFEXITED(status):
returncode = os.WEXITSTATUS(status)
else:
returncode = -(os.WTERMSIG(status))
if returncode != 0:
# The child process's return code is 0 on success, an errno
# value on failure, or 255 if we don't have a valid errno
# value.
#
# (It would be slightly nicer to return the full exception info
# over a pipe as the subprocess module does. For now it
# doesn't seem worth adding that complexity here, though.)
if returncode == 255:
returncode = errno.EINVAL
raise OSError(
returncode,
b'error running %r: %s'
% (cmd, os.strerror(returncode)),
)
return
returncode = 255
try:
if record_wait is None:
# Start a new session
os.setsid()
stdin = open(os.devnull, b'r')
if stdout is None:
stdout = open(os.devnull, b'w')
if stderr is None:
stderr = open(os.devnull, b'w')
# connect stdin to devnull to make sure the subprocess can't
# muck up that stream for mercurial.
p = subprocess.Popen(
cmd,
shell=shell,
env=env,
close_fds=True,
stdin=stdin,
stdout=stdout,
stderr=stderr,
)
if record_wait is not None:
record_wait(p.wait)
returncode = 0
except EnvironmentError as ex:
returncode = ex.errno & 0xFF
if returncode == 0:
# This shouldn't happen, but just in case make sure the
# return code is never 0 here.
returncode = 255
except Exception:
returncode = 255
finally:
# mission accomplished, this child needs to exit and not
# continue the hg process here.
if record_wait is None:
os._exit(returncode)