##// END OF EJS Templates
copies: clarify the return of _merge_copies_dict...
copies: clarify the return of _merge_copies_dict I misused that function twice in the past few days, so lets clarify the API. Differential Revision: https://phab.mercurial-scm.org/D9418

File last commit:

r46589:23679379 default
r46600:f9f8d8aa default
Show More
copy_tracing.rs
415 lines | 15.2 KiB | application/rls-services+xml | RustLexer
use crate::utils::hg_path::HgPath;
use crate::utils::hg_path::HgPathBuf;
use crate::Revision;
use im_rc::ordmap::DiffItem;
use im_rc::ordmap::OrdMap;
use std::collections::HashMap;
use std::collections::HashSet;
pub type PathCopies = HashMap<HgPathBuf, HgPathBuf>;
#[derive(Clone, Debug, PartialEq)]
struct TimeStampedPathCopy {
/// revision at which the copy information was added
rev: Revision,
/// the copy source, (Set to None in case of deletion of the associated
/// key)
path: Option<HgPathBuf>,
}
/// maps CopyDestination to Copy Source (+ a "timestamp" for the operation)
type TimeStampedPathCopies = OrdMap<HgPathBuf, TimeStampedPathCopy>;
/// hold parent 1, parent 2 and relevant files actions.
pub type RevInfo = (Revision, Revision, ChangedFiles);
/// represent the files affected by a changesets
///
/// This hold a subset of mercurial.metadata.ChangingFiles as we do not need
/// all the data categories tracked by it.
pub struct ChangedFiles {
removed: HashSet<HgPathBuf>,
merged: HashSet<HgPathBuf>,
salvaged: HashSet<HgPathBuf>,
copied_from_p1: PathCopies,
copied_from_p2: PathCopies,
}
/// Represent active changes that affect the copy tracing.
enum Action<'a> {
/// The parent ? children edge is removing a file
///
/// (actually, this could be the edge from the other parent, but it does
/// not matters)
Removed(&'a HgPath),
/// The parent ? children edge introduce copy information between (dest,
/// source)
Copied(&'a HgPath, &'a HgPath),
}
/// This express the possible "special" case we can get in a merge
///
/// See mercurial/metadata.py for details on these values.
#[derive(PartialEq)]
enum MergeCase {
/// Merged: file had history on both side that needed to be merged
Merged,
/// Salvaged: file was candidate for deletion, but survived the merge
Salvaged,
/// Normal: Not one of the two cases above
Normal,
}
impl ChangedFiles {
pub fn new(
removed: HashSet<HgPathBuf>,
merged: HashSet<HgPathBuf>,
salvaged: HashSet<HgPathBuf>,
copied_from_p1: PathCopies,
copied_from_p2: PathCopies,
) -> Self {
ChangedFiles {
removed,
merged,
salvaged,
copied_from_p1,
copied_from_p2,
}
}
pub fn new_empty() -> Self {
ChangedFiles {
removed: HashSet::new(),
merged: HashSet::new(),
salvaged: HashSet::new(),
copied_from_p1: PathCopies::new(),
copied_from_p2: PathCopies::new(),
}
}
/// Return an iterator over all the `Action` in this instance.
fn iter_actions(&self, parent: usize) -> impl Iterator<Item = Action> {
let copies_iter = match parent {
1 => self.copied_from_p1.iter(),
2 => self.copied_from_p2.iter(),
_ => unreachable!(),
};
let remove_iter = self.removed.iter();
let copies_iter = copies_iter.map(|(x, y)| Action::Copied(x, y));
let remove_iter = remove_iter.map(|x| Action::Removed(x));
copies_iter.chain(remove_iter)
}
/// return the MergeCase value associated with a filename
fn get_merge_case(&self, path: &HgPath) -> MergeCase {
if self.salvaged.contains(path) {
return MergeCase::Salvaged;
} else if self.merged.contains(path) {
return MergeCase::Merged;
} else {
return MergeCase::Normal;
}
}
}
/// A struct responsible for answering "is X ancestors of Y" quickly
///
/// The structure will delegate ancestors call to a callback, and cache the
/// result.
#[derive(Debug)]
struct AncestorOracle<'a, A: Fn(Revision, Revision) -> bool> {
inner: &'a A,
pairs: HashMap<(Revision, Revision), bool>,
}
impl<'a, A: Fn(Revision, Revision) -> bool> AncestorOracle<'a, A> {
fn new(func: &'a A) -> Self {
Self {
inner: func,
pairs: HashMap::default(),
}
}
/// returns `true` if `anc` is an ancestors of `desc`, `false` otherwise
fn is_ancestor(&mut self, anc: Revision, desc: Revision) -> bool {
if anc > desc {
false
} else if anc == desc {
true
} else {
if let Some(b) = self.pairs.get(&(anc, desc)) {
*b
} else {
let b = (self.inner)(anc, desc);
self.pairs.insert((anc, desc), b);
b
}
}
}
}
/// Same as mercurial.copies._combine_changeset_copies, but in Rust.
///
/// Arguments are:
///
/// revs: all revisions to be considered
/// children: a {parent ? [childrens]} mapping
/// target_rev: the final revision we are combining copies to
/// rev_info(rev): callback to get revision information:
/// * first parent
/// * second parent
/// * ChangedFiles
/// isancestors(low_rev, high_rev): callback to check if a revision is an
/// ancestor of another
pub fn combine_changeset_copies<A: Fn(Revision, Revision) -> bool>(
revs: Vec<Revision>,
children: HashMap<Revision, Vec<Revision>>,
target_rev: Revision,
rev_info: &impl Fn(Revision) -> RevInfo,
is_ancestor: &A,
) -> PathCopies {
let mut all_copies = HashMap::new();
let mut oracle = AncestorOracle::new(is_ancestor);
for rev in revs {
// Retrieve data computed in a previous iteration
let copies = all_copies.remove(&rev);
let copies = match copies {
Some(c) => c,
None => TimeStampedPathCopies::default(), // root of the walked set
};
let current_children = match children.get(&rev) {
Some(c) => c,
None => panic!("inconsistent `revs` and `children`"),
};
for child in current_children {
// We will chain the copies information accumulated for `rev` with
// the individual copies information for each of its children.
// Creating a new PathCopies for each `rev` ? `children` vertex.
let (p1, p2, changes) = rev_info(*child);
let parent = if rev == p1 {
1
} else {
assert_eq!(rev, p2);
2
};
let mut new_copies = copies.clone();
for action in changes.iter_actions(parent) {
match action {
Action::Copied(dest, source) => {
let entry;
if let Some(v) = copies.get(source) {
entry = match &v.path {
Some(path) => Some((*(path)).to_owned()),
None => Some(source.to_owned()),
}
} else {
entry = Some(source.to_owned());
}
// Each new entry is introduced by the children, we
// record this information as we will need it to take
// the right decision when merging conflicting copy
// information. See merge_copies_dict for details.
let ttpc = TimeStampedPathCopy {
rev: *child,
path: entry,
};
new_copies.insert(dest.to_owned(), ttpc);
}
Action::Removed(f) => {
// We must drop copy information for removed file.
//
// We need to explicitly record them as dropped to
// propagate this information when merging two
// TimeStampedPathCopies object.
if new_copies.contains_key(f.as_ref()) {
let ttpc = TimeStampedPathCopy {
rev: *child,
path: None,
};
new_copies.insert(f.to_owned(), ttpc);
}
}
}
}
// Merge has two parents needs to combines their copy information.
//
// If the vertex from the other parent was already processed, we
// will have a value for the child ready to be used. We need to
// grab it and combine it with the one we already
// computed. If not we can simply store the newly
// computed data. The processing happening at
// the time of the second parent will take care of combining the
// two TimeStampedPathCopies instance.
match all_copies.remove(child) {
None => {
all_copies.insert(child, new_copies);
}
Some(other_copies) => {
let (minor, major) = match parent {
1 => (other_copies, new_copies),
2 => (new_copies, other_copies),
_ => unreachable!(),
};
let merged_copies =
merge_copies_dict(minor, major, &changes, &mut oracle);
all_copies.insert(child, merged_copies);
}
};
}
}
// Drop internal information (like the timestamp) and return the final
// mapping.
let tt_result = all_copies
.remove(&target_rev)
.expect("target revision was not processed");
let mut result = PathCopies::default();
for (dest, tt_source) in tt_result {
if let Some(path) = tt_source.path {
result.insert(dest, path);
}
}
result
}
/// merge two copies-mapping together, minor and major
///
/// In case of conflict, value from "major" will be picked, unless in some
/// cases. See inline documentation for details.
#[allow(clippy::if_same_then_else)]
fn merge_copies_dict<A: Fn(Revision, Revision) -> bool>(
minor: TimeStampedPathCopies,
major: TimeStampedPathCopies,
changes: &ChangedFiles,
oracle: &mut AncestorOracle<A>,
) -> TimeStampedPathCopies {
if minor.is_empty() {
return major;
} else if major.is_empty() {
return minor;
}
let mut override_minor = Vec::new();
let mut override_major = Vec::new();
let mut to_major = |k: &HgPathBuf, v: &TimeStampedPathCopy| {
override_major.push((k.clone(), v.clone()))
};
let mut to_minor = |k: &HgPathBuf, v: &TimeStampedPathCopy| {
override_minor.push((k.clone(), v.clone()))
};
// The diff function leverage detection of the identical subpart if minor
// and major has some common ancestors. This make it very fast is most
// case.
//
// In case where the two map are vastly different in size, the current
// approach is still slowish because the iteration will iterate over
// all the "exclusive" content of the larger on. This situation can be
// frequent when the subgraph of revision we are processing has a lot
// of roots. Each roots adding they own fully new map to the mix (and
// likely a small map, if the path from the root to the "main path" is
// small.
//
// We could do better by detecting such situation and processing them
// differently.
for d in minor.diff(&major) {
match d {
DiffItem::Add(k, v) => to_minor(k, v),
DiffItem::Remove(k, v) => to_major(k, v),
DiffItem::Update { old, new } => {
let (dest, src_major) = new;
let (_, src_minor) = old;
let mut pick_minor = || (to_major(dest, src_minor));
let mut pick_major = || (to_minor(dest, src_major));
if src_major.path == src_minor.path {
// we have the same value, but from other source;
if src_major.rev == src_minor.rev {
// If the two entry are identical, no need to do
// anything (but diff should not have yield them)
unreachable!();
} else if oracle.is_ancestor(src_major.rev, src_minor.rev)
{
pick_minor();
} else {
pick_major();
}
} else if src_major.rev == src_minor.rev {
// We cannot get copy information for both p1 and p2 in the
// same rev. So this is the same value.
unreachable!();
} else {
let action = changes.get_merge_case(&dest);
if src_major.path.is_none()
&& action == MergeCase::Salvaged
{
// If the file is "deleted" in the major side but was
// salvaged by the merge, we keep the minor side alive
pick_minor();
} else if src_minor.path.is_none()
&& action == MergeCase::Salvaged
{
// If the file is "deleted" in the minor side but was
// salvaged by the merge, unconditionnaly preserve the
// major side.
pick_major();
} else if action == MergeCase::Merged {
// If the file was actively merged, copy information
// from each side might conflict. The major side will
// win such conflict.
pick_major();
} else if oracle.is_ancestor(src_major.rev, src_minor.rev)
{
// If the minor side is strictly newer than the major
// side, it should be kept.
pick_minor();
} else if src_major.path.is_some() {
// without any special case, the "major" value win
// other the "minor" one.
pick_major();
} else if oracle.is_ancestor(src_minor.rev, src_major.rev)
{
// the "major" rev is a direct ancestors of "minor",
// any different value should
// overwrite
pick_major();
} else {
// major version is None (so the file was deleted on
// that branch) and that branch is independant (neither
// minor nor major is an ancestors of the other one.)
// We preserve the new
// information about the new file.
pick_minor();
}
}
}
};
}
let updates;
let mut result;
if override_major.is_empty() {
result = major
} else if override_minor.is_empty() {
result = minor
} else {
if override_minor.len() < override_major.len() {
updates = override_minor;
result = minor;
} else {
updates = override_major;
result = major;
}
for (k, v) in updates {
result.insert(k, v);
}
}
result
}