##// END OF EJS Templates
lfs: show a friendly message when pushing lfs to a server without lfs enabled...
lfs: show a friendly message when pushing lfs to a server without lfs enabled Upfront disclaimer: I don't know anything about the wire protocol, and this was pretty much cargo-culted from largefiles, and then clonebundles, since it seems more modern. I was surprised that exchange.push() will ensure all of the proper requirements when exchanging between two local repos, but doesn't care when one is remote. All this new capability marker does is inform the client that the extension is enabled remotely. It may or may not contain commits with external blobs. Open issues: - largefiles uses 'largefiles=serve' for its capability. Someday I hope to be able to push lfs blobs to an `hg serve` instance. That will probably require a distinct capability. Should it change to '=serve' then? Or just add an 'lfs-serve' capability then? - The flip side of this is more complicated. It looks like largefiles adds an 'lheads' command for the client to signal to the server that the extension is loaded. That is then converted to 'heads' and sent through the normal wire protocol plumbing. A client using the 'heads' command directly is kicked out with a message indicating that the largefiles extension must be loaded. We could do similar with 'lfsheads', but then a repo with both largefiles and lfs blobs can't be pushed over the wire. Hopefully somebody with more wire protocol experience can think of something else. I see 'x-hgarg-1' on some commands in the tests, but not on heads, and didn't dig any further.

File last commit:

r34398:765eb17a default
r35522:fa865878 default
Show More
_compat.py
90 lines | 2.8 KiB | text/x-python | PythonLexer
from __future__ import absolute_import, division, print_function
import sys
import types
PY2 = sys.version_info[0] == 2
if PY2:
from UserDict import IterableUserDict
# We 'bundle' isclass instead of using inspect as importing inspect is
# fairly expensive (order of 10-15 ms for a modern machine in 2016)
def isclass(klass):
return isinstance(klass, (type, types.ClassType))
# TYPE is used in exceptions, repr(int) is different on Python 2 and 3.
TYPE = "type"
def iteritems(d):
return d.iteritems()
def iterkeys(d):
return d.iterkeys()
# Python 2 is bereft of a read-only dict proxy, so we make one!
class ReadOnlyDict(IterableUserDict):
"""
Best-effort read-only dict wrapper.
"""
def __setitem__(self, key, val):
# We gently pretend we're a Python 3 mappingproxy.
raise TypeError("'mappingproxy' object does not support item "
"assignment")
def update(self, _):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'update'")
def __delitem__(self, _):
# We gently pretend we're a Python 3 mappingproxy.
raise TypeError("'mappingproxy' object does not support item "
"deletion")
def clear(self):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'clear'")
def pop(self, key, default=None):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'pop'")
def popitem(self):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'popitem'")
def setdefault(self, key, default=None):
# We gently pretend we're a Python 3 mappingproxy.
raise AttributeError("'mappingproxy' object has no attribute "
"'setdefault'")
def __repr__(self):
# Override to be identical to the Python 3 version.
return "mappingproxy(" + repr(self.data) + ")"
def metadata_proxy(d):
res = ReadOnlyDict()
res.data.update(d) # We blocked update, so we have to do it like this.
return res
else:
def isclass(klass):
return isinstance(klass, type)
TYPE = "class"
def iteritems(d):
return d.items()
def iterkeys(d):
return d.keys()
def metadata_proxy(d):
return types.MappingProxyType(dict(d))