##// END OF EJS Templates
dirstate: expose a sparse matcher on dirstate (API)...
dirstate: expose a sparse matcher on dirstate (API) The sparse extension performs a lot of monkeypatching of dirstate to make it sparse aware. Essentially, various operations need to take the active sparse config into account. They do this by obtaining a matcher representing the sparse config and filtering paths through it. The monkeypatching is done by stuffing a reference to a repo on dirstate and calling sparse.matcher() (which takes a repo instance) during each function call. The reason this function takes a repo instance is because resolving the sparse config may require resolving file contents from filelogs, and that requires a repo. (If the current sparse config references "profile" files, the contents of those files from the dirstate's parent revisions is resolved.) I seem to recall people having strong opinions that the dirstate object not have a reference to a repo. So copying what the sparse extension does probably won't fly in core. Plus, the dirstate modifications shouldn't require a full repo: they only need a matcher. So there's no good reason to stuff a reference to the repo in dirstate. This commit exposes a sparse matcher to dirstate via a property that when looked up will call a function that eventually calls sparse.matcher(). The repo instance is bound in a closure, so it isn't exposed to dirstate. This approach is functionally similar to what the sparse extension does today, except it hides the repo instance from dirstate. The approach is not optimal because we have to call a proxy function and sparse.matcher() on every property lookup. There is room to cache the matcher instance in dirstate. After all, the matcher only changes if the dirstate's parents change or if the sparse config changes. It feels like we should be able to detect both events and update the matcher when this occurs. But for now we preserve the existing semantics so we can move the dirstate sparseness bits into core. Once in core, refactoring becomes a bit easier since it will be clearer how all these components interact. The sparse extension has been updated to use the new property. Because all references to the repo on dirstate have been removed, the code for setting it has been removed.

File last commit:

r33192:5d8942db default
r33373:fb320398 default
Show More
profiling.py
238 lines | 7.5 KiB | text/x-python | PythonLexer
# profiling.py - profiling functions
#
# Copyright 2016 Gregory Szorc <gregory.szorc@gmail.com>
#
# This software may be used and distributed according to the terms of the
# GNU General Public License version 2 or any later version.
from __future__ import absolute_import, print_function
import contextlib
from .i18n import _
from . import (
encoding,
error,
extensions,
util,
)
def _loadprofiler(ui, profiler):
"""load profiler extension. return profile method, or None on failure"""
extname = profiler
extensions.loadall(ui, whitelist=[extname])
try:
mod = extensions.find(extname)
except KeyError:
return None
else:
return getattr(mod, 'profile', None)
@contextlib.contextmanager
def lsprofile(ui, fp):
format = ui.config('profiling', 'format', default='text')
field = ui.config('profiling', 'sort', default='inlinetime')
limit = ui.configint('profiling', 'limit', default=30)
climit = ui.configint('profiling', 'nested', default=0)
if format not in ['text', 'kcachegrind']:
ui.warn(_("unrecognized profiling format '%s'"
" - Ignored\n") % format)
format = 'text'
try:
from . import lsprof
except ImportError:
raise error.Abort(_(
'lsprof not available - install from '
'http://codespeak.net/svn/user/arigo/hack/misc/lsprof/'))
p = lsprof.Profiler()
p.enable(subcalls=True)
try:
yield
finally:
p.disable()
if format == 'kcachegrind':
from . import lsprofcalltree
calltree = lsprofcalltree.KCacheGrind(p)
calltree.output(fp)
else:
# format == 'text'
stats = lsprof.Stats(p.getstats())
stats.sort(field)
stats.pprint(limit=limit, file=fp, climit=climit)
@contextlib.contextmanager
def flameprofile(ui, fp):
try:
from flamegraph import flamegraph
except ImportError:
raise error.Abort(_(
'flamegraph not available - install from '
'https://github.com/evanhempel/python-flamegraph'))
# developer config: profiling.freq
freq = ui.configint('profiling', 'freq', default=1000)
filter_ = None
collapse_recursion = True
thread = flamegraph.ProfileThread(fp, 1.0 / freq,
filter_, collapse_recursion)
start_time = util.timer()
try:
thread.start()
yield
finally:
thread.stop()
thread.join()
print('Collected %d stack frames (%d unique) in %2.2f seconds.' % (
util.timer() - start_time, thread.num_frames(),
thread.num_frames(unique=True)))
@contextlib.contextmanager
def statprofile(ui, fp):
from . import statprof
freq = ui.configint('profiling', 'freq', default=1000)
if freq > 0:
# Cannot reset when profiler is already active. So silently no-op.
if statprof.state.profile_level == 0:
statprof.reset(freq)
else:
ui.warn(_("invalid sampling frequency '%s' - ignoring\n") % freq)
statprof.start(mechanism='thread')
try:
yield
finally:
data = statprof.stop()
profformat = ui.config('profiling', 'statformat', 'hotpath')
formats = {
'byline': statprof.DisplayFormats.ByLine,
'bymethod': statprof.DisplayFormats.ByMethod,
'hotpath': statprof.DisplayFormats.Hotpath,
'json': statprof.DisplayFormats.Json,
'chrome': statprof.DisplayFormats.Chrome,
}
if profformat in formats:
displayformat = formats[profformat]
else:
ui.warn(_('unknown profiler output format: %s\n') % profformat)
displayformat = statprof.DisplayFormats.Hotpath
kwargs = {}
def fraction(s):
if isinstance(s, (float, int)):
return float(s)
if s.endswith('%'):
v = float(s[:-1]) / 100
else:
v = float(s)
if 0 <= v <= 1:
return v
raise ValueError(s)
if profformat == 'chrome':
showmin = ui.configwith(fraction, 'profiling', 'showmin', 0.005)
showmax = ui.configwith(fraction, 'profiling', 'showmax', 0.999)
kwargs.update(minthreshold=showmin, maxthreshold=showmax)
elif profformat == 'hotpath':
# inconsistent config: profiling.showmin
limit = ui.configwith(fraction, 'profiling', 'showmin', 0.05)
kwargs['limit'] = limit
statprof.display(fp, data=data, format=displayformat, **kwargs)
class profile(object):
"""Start profiling.
Profiling is active when the context manager is active. When the context
manager exits, profiling results will be written to the configured output.
"""
def __init__(self, ui, enabled=True):
self._ui = ui
self._output = None
self._fp = None
self._fpdoclose = True
self._profiler = None
self._enabled = enabled
self._entered = False
self._started = False
def __enter__(self):
self._entered = True
if self._enabled:
self.start()
return self
def start(self):
"""Start profiling.
The profiling will stop at the context exit.
If the profiler was already started, this has no effect."""
if not self._entered:
raise error.ProgrammingError()
if self._started:
return
self._started = True
profiler = encoding.environ.get('HGPROF')
proffn = None
if profiler is None:
profiler = self._ui.config('profiling', 'type', default='stat')
if profiler not in ('ls', 'stat', 'flame'):
# try load profiler from extension with the same name
proffn = _loadprofiler(self._ui, profiler)
if proffn is None:
self._ui.warn(_("unrecognized profiler '%s' - ignored\n")
% profiler)
profiler = 'stat'
self._output = self._ui.config('profiling', 'output')
try:
if self._output == 'blackbox':
self._fp = util.stringio()
elif self._output:
path = self._ui.expandpath(self._output)
self._fp = open(path, 'wb')
else:
self._fpdoclose = False
self._fp = self._ui.ferr
if proffn is not None:
pass
elif profiler == 'ls':
proffn = lsprofile
elif profiler == 'flame':
proffn = flameprofile
else:
proffn = statprofile
self._profiler = proffn(self._ui, self._fp)
self._profiler.__enter__()
except: # re-raises
self._closefp()
raise
def __exit__(self, exception_type, exception_value, traceback):
propagate = None
if self._profiler is not None:
propagate = self._profiler.__exit__(exception_type, exception_value,
traceback)
if self._output == 'blackbox':
val = 'Profile:\n%s' % self._fp.getvalue()
# ui.log treats the input as a format string,
# so we need to escape any % signs.
val = val.replace('%', '%%')
self._ui.log('profile', val)
self._closefp()
return propagate
def _closefp(self):
if self._fpdoclose and self._fp is not None:
self._fp.close()