##// END OF EJS Templates
push: another test for checks preventing pushing orphaness to a server...
push: another test for checks preventing pushing orphaness to a server In this one, orphan was create with and amend instead of a prune.

File last commit:

r45726:a5be403d default
r45784:fc751824 stable
Show More
mergestate.py
879 lines | 30.0 KiB | text/x-python | PythonLexer
from __future__ import absolute_import
import errno
import shutil
import struct
from .i18n import _
from .node import (
bin,
hex,
nullhex,
nullid,
)
from .pycompat import delattr
from . import (
error,
filemerge,
pycompat,
util,
)
from .utils import hashutil
_pack = struct.pack
_unpack = struct.unpack
def _droponode(data):
# used for compatibility for v1
bits = data.split(b'\0')
bits = bits[:-2] + bits[-1:]
return b'\0'.join(bits)
def _filectxorabsent(hexnode, ctx, f):
if hexnode == nullhex:
return filemerge.absentfilectx(ctx, f)
else:
return ctx[f]
# Merge state record types. See ``mergestate`` docs for more.
####
# merge records which records metadata about a current merge
# exists only once in a mergestate
#####
RECORD_LOCAL = b'L'
RECORD_OTHER = b'O'
# record merge labels
RECORD_LABELS = b'l'
# store info about merge driver used and it's state
RECORD_MERGE_DRIVER_STATE = b'm'
#####
# record extra information about files, with one entry containing info about one
# file. Hence, multiple of them can exists
#####
RECORD_FILE_VALUES = b'f'
#####
# merge records which represents state of individual merges of files/folders
# These are top level records for each entry containing merge related info.
# Each record of these has info about one file. Hence multiple of them can
# exists
#####
RECORD_MERGED = b'F'
RECORD_CHANGEDELETE_CONFLICT = b'C'
RECORD_MERGE_DRIVER_MERGE = b'D'
# the path was dir on one side of merge and file on another
RECORD_PATH_CONFLICT = b'P'
#####
# possible state which a merge entry can have. These are stored inside top-level
# merge records mentioned just above.
#####
MERGE_RECORD_UNRESOLVED = b'u'
MERGE_RECORD_RESOLVED = b'r'
MERGE_RECORD_UNRESOLVED_PATH = b'pu'
MERGE_RECORD_RESOLVED_PATH = b'pr'
MERGE_RECORD_DRIVER_RESOLVED = b'd'
# represents that the file was automatically merged in favor
# of other version. This info is used on commit.
MERGE_RECORD_MERGED_OTHER = b'o'
#####
# top level record which stores other unknown records. Multiple of these can
# exists
#####
RECORD_OVERRIDE = b't'
#####
# possible states which a merge driver can have. These are stored inside a
# RECORD_MERGE_DRIVER_STATE entry
#####
MERGE_DRIVER_STATE_UNMARKED = b'u'
MERGE_DRIVER_STATE_MARKED = b'm'
MERGE_DRIVER_STATE_SUCCESS = b's'
ACTION_FORGET = b'f'
ACTION_REMOVE = b'r'
ACTION_ADD = b'a'
ACTION_GET = b'g'
ACTION_PATH_CONFLICT = b'p'
ACTION_PATH_CONFLICT_RESOLVE = b'pr'
ACTION_ADD_MODIFIED = b'am'
ACTION_CREATED = b'c'
ACTION_DELETED_CHANGED = b'dc'
ACTION_CHANGED_DELETED = b'cd'
ACTION_MERGE = b'm'
ACTION_LOCAL_DIR_RENAME_GET = b'dg'
ACTION_DIR_RENAME_MOVE_LOCAL = b'dm'
ACTION_KEEP = b'k'
ACTION_EXEC = b'e'
ACTION_CREATED_MERGE = b'cm'
# GET the other/remote side and store this info in mergestate
ACTION_GET_OTHER_AND_STORE = b'gs'
class mergestate(object):
'''track 3-way merge state of individual files
The merge state is stored on disk when needed. Two files are used: one with
an old format (version 1), and one with a new format (version 2). Version 2
stores a superset of the data in version 1, including new kinds of records
in the future. For more about the new format, see the documentation for
`_readrecordsv2`.
Each record can contain arbitrary content, and has an associated type. This
`type` should be a letter. If `type` is uppercase, the record is mandatory:
versions of Mercurial that don't support it should abort. If `type` is
lowercase, the record can be safely ignored.
Currently known records:
L: the node of the "local" part of the merge (hexified version)
O: the node of the "other" part of the merge (hexified version)
F: a file to be merged entry
C: a change/delete or delete/change conflict
D: a file that the external merge driver will merge internally
(experimental)
P: a path conflict (file vs directory)
m: the external merge driver defined for this merge plus its run state
(experimental)
f: a (filename, dictionary) tuple of optional values for a given file
l: the labels for the parts of the merge.
Merge driver run states (experimental):
u: driver-resolved files unmarked -- needs to be run next time we're about
to resolve or commit
m: driver-resolved files marked -- only needs to be run before commit
s: success/skipped -- does not need to be run any more
Merge record states (stored in self._state, indexed by filename):
u: unresolved conflict
r: resolved conflict
pu: unresolved path conflict (file conflicts with directory)
pr: resolved path conflict
d: driver-resolved conflict
The resolve command transitions between 'u' and 'r' for conflicts and
'pu' and 'pr' for path conflicts.
'''
statepathv1 = b'merge/state'
statepathv2 = b'merge/state2'
@staticmethod
def clean(repo, node=None, other=None, labels=None):
"""Initialize a brand new merge state, removing any existing state on
disk."""
ms = mergestate(repo)
ms.reset(node, other, labels)
return ms
@staticmethod
def read(repo):
"""Initialize the merge state, reading it from disk."""
ms = mergestate(repo)
ms._read()
return ms
def __init__(self, repo):
"""Initialize the merge state.
Do not use this directly! Instead call read() or clean()."""
self._repo = repo
self._dirty = False
self._labels = None
def reset(self, node=None, other=None, labels=None):
self._state = {}
self._stateextras = {}
self._local = None
self._other = None
self._labels = labels
for var in ('localctx', 'otherctx'):
if var in vars(self):
delattr(self, var)
if node:
self._local = node
self._other = other
self._readmergedriver = None
if self.mergedriver:
self._mdstate = MERGE_DRIVER_STATE_SUCCESS
else:
self._mdstate = MERGE_DRIVER_STATE_UNMARKED
shutil.rmtree(self._repo.vfs.join(b'merge'), True)
self._results = {}
self._dirty = False
def _read(self):
"""Analyse each record content to restore a serialized state from disk
This function process "record" entry produced by the de-serialization
of on disk file.
"""
self._state = {}
self._stateextras = {}
self._local = None
self._other = None
for var in ('localctx', 'otherctx'):
if var in vars(self):
delattr(self, var)
self._readmergedriver = None
self._mdstate = MERGE_DRIVER_STATE_SUCCESS
unsupported = set()
records = self._readrecords()
for rtype, record in records:
if rtype == RECORD_LOCAL:
self._local = bin(record)
elif rtype == RECORD_OTHER:
self._other = bin(record)
elif rtype == RECORD_MERGE_DRIVER_STATE:
bits = record.split(b'\0', 1)
mdstate = bits[1]
if len(mdstate) != 1 or mdstate not in (
MERGE_DRIVER_STATE_UNMARKED,
MERGE_DRIVER_STATE_MARKED,
MERGE_DRIVER_STATE_SUCCESS,
):
# the merge driver should be idempotent, so just rerun it
mdstate = MERGE_DRIVER_STATE_UNMARKED
self._readmergedriver = bits[0]
self._mdstate = mdstate
elif rtype in (
RECORD_MERGED,
RECORD_CHANGEDELETE_CONFLICT,
RECORD_PATH_CONFLICT,
RECORD_MERGE_DRIVER_MERGE,
):
bits = record.split(b'\0')
self._state[bits[0]] = bits[1:]
elif rtype == RECORD_FILE_VALUES:
filename, rawextras = record.split(b'\0', 1)
extraparts = rawextras.split(b'\0')
extras = {}
i = 0
while i < len(extraparts):
extras[extraparts[i]] = extraparts[i + 1]
i += 2
self._stateextras[filename] = extras
elif rtype == RECORD_LABELS:
labels = record.split(b'\0', 2)
self._labels = [l for l in labels if len(l) > 0]
elif not rtype.islower():
unsupported.add(rtype)
# contains a mapping of form:
# {filename : (merge_return_value, action_to_be_performed}
# these are results of re-running merge process
# this dict is used to perform actions on dirstate caused by re-running
# the merge
self._results = {}
self._dirty = False
if unsupported:
raise error.UnsupportedMergeRecords(unsupported)
def _readrecords(self):
"""Read merge state from disk and return a list of record (TYPE, data)
We read data from both v1 and v2 files and decide which one to use.
V1 has been used by version prior to 2.9.1 and contains less data than
v2. We read both versions and check if no data in v2 contradicts
v1. If there is not contradiction we can safely assume that both v1
and v2 were written at the same time and use the extract data in v2. If
there is contradiction we ignore v2 content as we assume an old version
of Mercurial has overwritten the mergestate file and left an old v2
file around.
returns list of record [(TYPE, data), ...]"""
v1records = self._readrecordsv1()
v2records = self._readrecordsv2()
if self._v1v2match(v1records, v2records):
return v2records
else:
# v1 file is newer than v2 file, use it
# we have to infer the "other" changeset of the merge
# we cannot do better than that with v1 of the format
mctx = self._repo[None].parents()[-1]
v1records.append((RECORD_OTHER, mctx.hex()))
# add place holder "other" file node information
# nobody is using it yet so we do no need to fetch the data
# if mctx was wrong `mctx[bits[-2]]` may fails.
for idx, r in enumerate(v1records):
if r[0] == RECORD_MERGED:
bits = r[1].split(b'\0')
bits.insert(-2, b'')
v1records[idx] = (r[0], b'\0'.join(bits))
return v1records
def _v1v2match(self, v1records, v2records):
oldv2 = set() # old format version of v2 record
for rec in v2records:
if rec[0] == RECORD_LOCAL:
oldv2.add(rec)
elif rec[0] == RECORD_MERGED:
# drop the onode data (not contained in v1)
oldv2.add((RECORD_MERGED, _droponode(rec[1])))
for rec in v1records:
if rec not in oldv2:
return False
else:
return True
def _readrecordsv1(self):
"""read on disk merge state for version 1 file
returns list of record [(TYPE, data), ...]
Note: the "F" data from this file are one entry short
(no "other file node" entry)
"""
records = []
try:
f = self._repo.vfs(self.statepathv1)
for i, l in enumerate(f):
if i == 0:
records.append((RECORD_LOCAL, l[:-1]))
else:
records.append((RECORD_MERGED, l[:-1]))
f.close()
except IOError as err:
if err.errno != errno.ENOENT:
raise
return records
def _readrecordsv2(self):
"""read on disk merge state for version 2 file
This format is a list of arbitrary records of the form:
[type][length][content]
`type` is a single character, `length` is a 4 byte integer, and
`content` is an arbitrary byte sequence of length `length`.
Mercurial versions prior to 3.7 have a bug where if there are
unsupported mandatory merge records, attempting to clear out the merge
state with hg update --clean or similar aborts. The 't' record type
works around that by writing out what those versions treat as an
advisory record, but later versions interpret as special: the first
character is the 'real' record type and everything onwards is the data.
Returns list of records [(TYPE, data), ...]."""
records = []
try:
f = self._repo.vfs(self.statepathv2)
data = f.read()
off = 0
end = len(data)
while off < end:
rtype = data[off : off + 1]
off += 1
length = _unpack(b'>I', data[off : (off + 4)])[0]
off += 4
record = data[off : (off + length)]
off += length
if rtype == RECORD_OVERRIDE:
rtype, record = record[0:1], record[1:]
records.append((rtype, record))
f.close()
except IOError as err:
if err.errno != errno.ENOENT:
raise
return records
@util.propertycache
def mergedriver(self):
# protect against the following:
# - A configures a malicious merge driver in their hgrc, then
# pauses the merge
# - A edits their hgrc to remove references to the merge driver
# - A gives a copy of their entire repo, including .hg, to B
# - B inspects .hgrc and finds it to be clean
# - B then continues the merge and the malicious merge driver
# gets invoked
configmergedriver = self._repo.ui.config(
b'experimental', b'mergedriver'
)
if (
self._readmergedriver is not None
and self._readmergedriver != configmergedriver
):
raise error.ConfigError(
_(b"merge driver changed since merge started"),
hint=_(b"revert merge driver change or abort merge"),
)
return configmergedriver
@util.propertycache
def local(self):
if self._local is None:
msg = b"local accessed but self._local isn't set"
raise error.ProgrammingError(msg)
return self._local
@util.propertycache
def localctx(self):
return self._repo[self.local]
@util.propertycache
def other(self):
if self._other is None:
msg = b"other accessed but self._other isn't set"
raise error.ProgrammingError(msg)
return self._other
@util.propertycache
def otherctx(self):
return self._repo[self.other]
def active(self):
"""Whether mergestate is active.
Returns True if there appears to be mergestate. This is a rough proxy
for "is a merge in progress."
"""
return bool(self._local) or bool(self._state)
def commit(self):
"""Write current state on disk (if necessary)"""
if self._dirty:
records = self._makerecords()
self._writerecords(records)
self._dirty = False
def _makerecords(self):
records = []
records.append((RECORD_LOCAL, hex(self._local)))
records.append((RECORD_OTHER, hex(self._other)))
if self.mergedriver:
records.append(
(
RECORD_MERGE_DRIVER_STATE,
b'\0'.join([self.mergedriver, self._mdstate]),
)
)
# Write out state items. In all cases, the value of the state map entry
# is written as the contents of the record. The record type depends on
# the type of state that is stored, and capital-letter records are used
# to prevent older versions of Mercurial that do not support the feature
# from loading them.
for filename, v in pycompat.iteritems(self._state):
if v[0] == MERGE_RECORD_DRIVER_RESOLVED:
# Driver-resolved merge. These are stored in 'D' records.
records.append(
(RECORD_MERGE_DRIVER_MERGE, b'\0'.join([filename] + v))
)
elif v[0] in (
MERGE_RECORD_UNRESOLVED_PATH,
MERGE_RECORD_RESOLVED_PATH,
):
# Path conflicts. These are stored in 'P' records. The current
# resolution state ('pu' or 'pr') is stored within the record.
records.append(
(RECORD_PATH_CONFLICT, b'\0'.join([filename] + v))
)
elif v[0] == MERGE_RECORD_MERGED_OTHER:
records.append((RECORD_MERGED, b'\0'.join([filename] + v)))
elif v[1] == nullhex or v[6] == nullhex:
# Change/Delete or Delete/Change conflicts. These are stored in
# 'C' records. v[1] is the local file, and is nullhex when the
# file is deleted locally ('dc'). v[6] is the remote file, and
# is nullhex when the file is deleted remotely ('cd').
records.append(
(RECORD_CHANGEDELETE_CONFLICT, b'\0'.join([filename] + v))
)
else:
# Normal files. These are stored in 'F' records.
records.append((RECORD_MERGED, b'\0'.join([filename] + v)))
for filename, extras in sorted(pycompat.iteritems(self._stateextras)):
rawextras = b'\0'.join(
b'%s\0%s' % (k, v) for k, v in pycompat.iteritems(extras)
)
records.append(
(RECORD_FILE_VALUES, b'%s\0%s' % (filename, rawextras))
)
if self._labels is not None:
labels = b'\0'.join(self._labels)
records.append((RECORD_LABELS, labels))
return records
def _writerecords(self, records):
"""Write current state on disk (both v1 and v2)"""
self._writerecordsv1(records)
self._writerecordsv2(records)
def _writerecordsv1(self, records):
"""Write current state on disk in a version 1 file"""
f = self._repo.vfs(self.statepathv1, b'wb')
irecords = iter(records)
lrecords = next(irecords)
assert lrecords[0] == RECORD_LOCAL
f.write(hex(self._local) + b'\n')
for rtype, data in irecords:
if rtype == RECORD_MERGED:
f.write(b'%s\n' % _droponode(data))
f.close()
def _writerecordsv2(self, records):
"""Write current state on disk in a version 2 file
See the docstring for _readrecordsv2 for why we use 't'."""
# these are the records that all version 2 clients can read
allowlist = (RECORD_LOCAL, RECORD_OTHER, RECORD_MERGED)
f = self._repo.vfs(self.statepathv2, b'wb')
for key, data in records:
assert len(key) == 1
if key not in allowlist:
key, data = RECORD_OVERRIDE, b'%s%s' % (key, data)
format = b'>sI%is' % len(data)
f.write(_pack(format, key, len(data), data))
f.close()
@staticmethod
def getlocalkey(path):
"""hash the path of a local file context for storage in the .hg/merge
directory."""
return hex(hashutil.sha1(path).digest())
def add(self, fcl, fco, fca, fd):
"""add a new (potentially?) conflicting file the merge state
fcl: file context for local,
fco: file context for remote,
fca: file context for ancestors,
fd: file path of the resulting merge.
note: also write the local version to the `.hg/merge` directory.
"""
if fcl.isabsent():
localkey = nullhex
else:
localkey = mergestate.getlocalkey(fcl.path())
self._repo.vfs.write(b'merge/' + localkey, fcl.data())
self._state[fd] = [
MERGE_RECORD_UNRESOLVED,
localkey,
fcl.path(),
fca.path(),
hex(fca.filenode()),
fco.path(),
hex(fco.filenode()),
fcl.flags(),
]
self._stateextras[fd] = {b'ancestorlinknode': hex(fca.node())}
self._dirty = True
def addpathconflict(self, path, frename, forigin):
"""add a new conflicting path to the merge state
path: the path that conflicts
frename: the filename the conflicting file was renamed to
forigin: origin of the file ('l' or 'r' for local/remote)
"""
self._state[path] = [MERGE_RECORD_UNRESOLVED_PATH, frename, forigin]
self._dirty = True
def addmergedother(self, path):
self._state[path] = [MERGE_RECORD_MERGED_OTHER, nullhex, nullhex]
self._dirty = True
def __contains__(self, dfile):
return dfile in self._state
def __getitem__(self, dfile):
return self._state[dfile][0]
def __iter__(self):
return iter(sorted(self._state))
def files(self):
return self._state.keys()
def mark(self, dfile, state):
self._state[dfile][0] = state
self._dirty = True
def mdstate(self):
return self._mdstate
def unresolved(self):
"""Obtain the paths of unresolved files."""
for f, entry in pycompat.iteritems(self._state):
if entry[0] in (
MERGE_RECORD_UNRESOLVED,
MERGE_RECORD_UNRESOLVED_PATH,
):
yield f
def driverresolved(self):
"""Obtain the paths of driver-resolved files."""
for f, entry in self._state.items():
if entry[0] == MERGE_RECORD_DRIVER_RESOLVED:
yield f
def extras(self, filename):
return self._stateextras.setdefault(filename, {})
def _resolve(self, preresolve, dfile, wctx):
"""rerun merge process for file path `dfile`.
Returns whether the merge was completed and the return value of merge
obtained from filemerge._filemerge().
"""
if self[dfile] in (MERGE_RECORD_RESOLVED, MERGE_RECORD_DRIVER_RESOLVED):
return True, 0
if self._state[dfile][0] == MERGE_RECORD_MERGED_OTHER:
return True, 0
stateentry = self._state[dfile]
state, localkey, lfile, afile, anode, ofile, onode, flags = stateentry
octx = self._repo[self._other]
extras = self.extras(dfile)
anccommitnode = extras.get(b'ancestorlinknode')
if anccommitnode:
actx = self._repo[anccommitnode]
else:
actx = None
fcd = _filectxorabsent(localkey, wctx, dfile)
fco = _filectxorabsent(onode, octx, ofile)
# TODO: move this to filectxorabsent
fca = self._repo.filectx(afile, fileid=anode, changectx=actx)
# "premerge" x flags
flo = fco.flags()
fla = fca.flags()
if b'x' in flags + flo + fla and b'l' not in flags + flo + fla:
if fca.node() == nullid and flags != flo:
if preresolve:
self._repo.ui.warn(
_(
b'warning: cannot merge flags for %s '
b'without common ancestor - keeping local flags\n'
)
% afile
)
elif flags == fla:
flags = flo
if preresolve:
# restore local
if localkey != nullhex:
f = self._repo.vfs(b'merge/' + localkey)
wctx[dfile].write(f.read(), flags)
f.close()
else:
wctx[dfile].remove(ignoremissing=True)
complete, merge_ret, deleted = filemerge.premerge(
self._repo,
wctx,
self._local,
lfile,
fcd,
fco,
fca,
labels=self._labels,
)
else:
complete, merge_ret, deleted = filemerge.filemerge(
self._repo,
wctx,
self._local,
lfile,
fcd,
fco,
fca,
labels=self._labels,
)
if merge_ret is None:
# If return value of merge is None, then there are no real conflict
del self._state[dfile]
self._stateextras.pop(dfile, None)
self._dirty = True
elif not merge_ret:
self.mark(dfile, MERGE_RECORD_RESOLVED)
if complete:
action = None
if deleted:
if fcd.isabsent():
# dc: local picked. Need to drop if present, which may
# happen on re-resolves.
action = ACTION_FORGET
else:
# cd: remote picked (or otherwise deleted)
action = ACTION_REMOVE
else:
if fcd.isabsent(): # dc: remote picked
action = ACTION_GET
elif fco.isabsent(): # cd: local picked
if dfile in self.localctx:
action = ACTION_ADD_MODIFIED
else:
action = ACTION_ADD
# else: regular merges (no action necessary)
self._results[dfile] = merge_ret, action
return complete, merge_ret
def preresolve(self, dfile, wctx):
"""run premerge process for dfile
Returns whether the merge is complete, and the exit code."""
return self._resolve(True, dfile, wctx)
def resolve(self, dfile, wctx):
"""run merge process (assuming premerge was run) for dfile
Returns the exit code of the merge."""
return self._resolve(False, dfile, wctx)[1]
def counts(self):
"""return counts for updated, merged and removed files in this
session"""
updated, merged, removed = 0, 0, 0
for r, action in pycompat.itervalues(self._results):
if r is None:
updated += 1
elif r == 0:
if action == ACTION_REMOVE:
removed += 1
else:
merged += 1
return updated, merged, removed
def unresolvedcount(self):
"""get unresolved count for this merge (persistent)"""
return len(list(self.unresolved()))
def actions(self):
"""return lists of actions to perform on the dirstate"""
actions = {
ACTION_REMOVE: [],
ACTION_FORGET: [],
ACTION_ADD: [],
ACTION_ADD_MODIFIED: [],
ACTION_GET: [],
}
for f, (r, action) in pycompat.iteritems(self._results):
if action is not None:
actions[action].append((f, None, b"merge result"))
return actions
def queueremove(self, f):
"""queues a file to be removed from the dirstate
Meant for use by custom merge drivers."""
self._results[f] = 0, ACTION_REMOVE
def queueadd(self, f):
"""queues a file to be added to the dirstate
Meant for use by custom merge drivers."""
self._results[f] = 0, ACTION_ADD
def queueget(self, f):
"""queues a file to be marked modified in the dirstate
Meant for use by custom merge drivers."""
self._results[f] = 0, ACTION_GET
def recordupdates(repo, actions, branchmerge, getfiledata):
"""record merge actions to the dirstate"""
# remove (must come first)
for f, args, msg in actions.get(ACTION_REMOVE, []):
if branchmerge:
repo.dirstate.remove(f)
else:
repo.dirstate.drop(f)
# forget (must come first)
for f, args, msg in actions.get(ACTION_FORGET, []):
repo.dirstate.drop(f)
# resolve path conflicts
for f, args, msg in actions.get(ACTION_PATH_CONFLICT_RESOLVE, []):
(f0, origf0) = args
repo.dirstate.add(f)
repo.dirstate.copy(origf0, f)
if f0 == origf0:
repo.dirstate.remove(f0)
else:
repo.dirstate.drop(f0)
# re-add
for f, args, msg in actions.get(ACTION_ADD, []):
repo.dirstate.add(f)
# re-add/mark as modified
for f, args, msg in actions.get(ACTION_ADD_MODIFIED, []):
if branchmerge:
repo.dirstate.normallookup(f)
else:
repo.dirstate.add(f)
# exec change
for f, args, msg in actions.get(ACTION_EXEC, []):
repo.dirstate.normallookup(f)
# keep
for f, args, msg in actions.get(ACTION_KEEP, []):
pass
# get
for f, args, msg in actions.get(ACTION_GET, []):
if branchmerge:
repo.dirstate.otherparent(f)
else:
parentfiledata = getfiledata[f] if getfiledata else None
repo.dirstate.normal(f, parentfiledata=parentfiledata)
# merge
for f, args, msg in actions.get(ACTION_MERGE, []):
f1, f2, fa, move, anc = args
if branchmerge:
# We've done a branch merge, mark this file as merged
# so that we properly record the merger later
repo.dirstate.merge(f)
if f1 != f2: # copy/rename
if move:
repo.dirstate.remove(f1)
if f1 != f:
repo.dirstate.copy(f1, f)
else:
repo.dirstate.copy(f2, f)
else:
# We've update-merged a locally modified file, so
# we set the dirstate to emulate a normal checkout
# of that file some time in the past. Thus our
# merge will appear as a normal local file
# modification.
if f2 == f: # file not locally copied/moved
repo.dirstate.normallookup(f)
if move:
repo.dirstate.drop(f1)
# directory rename, move local
for f, args, msg in actions.get(ACTION_DIR_RENAME_MOVE_LOCAL, []):
f0, flag = args
if branchmerge:
repo.dirstate.add(f)
repo.dirstate.remove(f0)
repo.dirstate.copy(f0, f)
else:
repo.dirstate.normal(f)
repo.dirstate.drop(f0)
# directory rename, get
for f, args, msg in actions.get(ACTION_LOCAL_DIR_RENAME_GET, []):
f0, flag = args
if branchmerge:
repo.dirstate.add(f)
repo.dirstate.copy(f0, f)
else:
repo.dirstate.normal(f)