##// END OF EJS Templates
copies: move from a copy on branchpoint to a copy on write approach...
copies: move from a copy on branchpoint to a copy on write approach Before this changes, any branch points results in a copy of the dictionary containing the copy information. This can be very costly for branchy history with few rename information. Instead, we take a "copy on write" approach. Copying the input data only when we are about to update them. In practice we where already doing the copying in half of these case (because `_chain` makes a copy), so we don't add a significant cost here even in the linear case. However the speed up in branchy case is very significant. Here are some timing on the pypy repository. revision: large amount; added files: large amount; rename small amount; c3b14617fbd7 9ba6ab77fd29 before: ! wall 1.399863 comb 1.400000 user 1.370000 sys 0.030000 (median of 10) after: ! wall 0.766453 comb 0.770000 user 0.750000 sys 0.020000 (median of 11) revision: large amount; added files: small amount; rename small amount; c3b14617fbd7 f650a9b140d2 before: ! wall 1.876748 comb 1.890000 user 1.870000 sys 0.020000 (median of 10) after: ! wall 1.167223 comb 1.170000 user 1.150000 sys 0.020000 (median of 10) revision: large amount; added files: large amount; rename large amount; 08ea3258278e d9fa043f30c0 before: ! wall 0.242457 comb 0.240000 user 0.240000 sys 0.000000 (median of 39) after: ! wall 0.211476 comb 0.210000 user 0.210000 sys 0.000000 (median of 45) revision: small amount; added files: large amount; rename large amount; df6f7a526b60 a83dc6a2d56f before: ! wall 0.013193 comb 0.020000 user 0.020000 sys 0.000000 (median of 224) after: ! wall 0.013290 comb 0.010000 user 0.010000 sys 0.000000 (median of 222) revision: small amount; added files: large amount; rename small amount; 4aa4e1f8e19a 169138063d63 before: ! wall 0.001673 comb 0.000000 user 0.000000 sys 0.000000 (median of 1000) after: ! wall 0.001677 comb 0.000000 user 0.000000 sys 0.000000 (median of 1000) revision: small amount; added files: small amount; rename small amount; 4bc173b045a6 964879152e2e before: ! wall 0.000119 comb 0.000000 user 0.000000 sys 0.000000 (median of 8023) after: ! wall 0.000119 comb 0.000000 user 0.000000 sys 0.000000 (median of 7997) revision: medium amount; added files: large amount; rename medium amount; c95f1ced15f2 2c68e87c3efe before: ! wall 0.201898 comb 0.210000 user 0.200000 sys 0.010000 (median of 48) after: ! wall 0.167415 comb 0.170000 user 0.160000 sys 0.010000 (median of 58) revision: medium amount; added files: medium amount; rename small amount; d343da0c55a8 d7746d32bf9d before: ! wall 0.036820 comb 0.040000 user 0.040000 sys 0.000000 (median of 100) after: ! wall 0.035797 comb 0.040000 user 0.040000 sys 0.000000 (median of 100) The extra cost in the linear case can be reclaimed later with some extra logic. Differential Revision: https://phab.mercurial-scm.org/D7124

File last commit:

r42237:675775c3 default
r43594:ffd04bc9 default
Show More
common.py
185 lines | 5.5 KiB | text/x-python | PythonLexer
import imp
import inspect
import io
import os
import types
try:
import hypothesis
except ImportError:
hypothesis = None
def make_cffi(cls):
"""Decorator to add CFFI versions of each test method."""
# The module containing this class definition should
# `import zstandard as zstd`. Otherwise things may blow up.
mod = inspect.getmodule(cls)
if not hasattr(mod, 'zstd'):
raise Exception('test module does not contain "zstd" symbol')
if not hasattr(mod.zstd, 'backend'):
raise Exception('zstd symbol does not have "backend" attribute; did '
'you `import zstandard as zstd`?')
# If `import zstandard` already chose the cffi backend, there is nothing
# for us to do: we only add the cffi variation if the default backend
# is the C extension.
if mod.zstd.backend == 'cffi':
return cls
old_env = dict(os.environ)
os.environ['PYTHON_ZSTANDARD_IMPORT_POLICY'] = 'cffi'
try:
try:
mod_info = imp.find_module('zstandard')
mod = imp.load_module('zstandard_cffi', *mod_info)
except ImportError:
return cls
finally:
os.environ.clear()
os.environ.update(old_env)
if mod.backend != 'cffi':
raise Exception('got the zstandard %s backend instead of cffi' % mod.backend)
# If CFFI version is available, dynamically construct test methods
# that use it.
for attr in dir(cls):
fn = getattr(cls, attr)
if not inspect.ismethod(fn) and not inspect.isfunction(fn):
continue
if not fn.__name__.startswith('test_'):
continue
name = '%s_cffi' % fn.__name__
# Replace the "zstd" symbol with the CFFI module instance. Then copy
# the function object and install it in a new attribute.
if isinstance(fn, types.FunctionType):
globs = dict(fn.__globals__)
globs['zstd'] = mod
new_fn = types.FunctionType(fn.__code__, globs, name,
fn.__defaults__, fn.__closure__)
new_method = new_fn
else:
globs = dict(fn.__func__.func_globals)
globs['zstd'] = mod
new_fn = types.FunctionType(fn.__func__.func_code, globs, name,
fn.__func__.func_defaults,
fn.__func__.func_closure)
new_method = types.UnboundMethodType(new_fn, fn.im_self,
fn.im_class)
setattr(cls, name, new_method)
return cls
class NonClosingBytesIO(io.BytesIO):
"""BytesIO that saves the underlying buffer on close().
This allows us to access written data after close().
"""
def __init__(self, *args, **kwargs):
super(NonClosingBytesIO, self).__init__(*args, **kwargs)
self._saved_buffer = None
def close(self):
self._saved_buffer = self.getvalue()
return super(NonClosingBytesIO, self).close()
def getvalue(self):
if self.closed:
return self._saved_buffer
else:
return super(NonClosingBytesIO, self).getvalue()
class OpCountingBytesIO(NonClosingBytesIO):
def __init__(self, *args, **kwargs):
self._flush_count = 0
self._read_count = 0
self._write_count = 0
return super(OpCountingBytesIO, self).__init__(*args, **kwargs)
def flush(self):
self._flush_count += 1
return super(OpCountingBytesIO, self).flush()
def read(self, *args):
self._read_count += 1
return super(OpCountingBytesIO, self).read(*args)
def write(self, data):
self._write_count += 1
return super(OpCountingBytesIO, self).write(data)
_source_files = []
def random_input_data():
"""Obtain the raw content of source files.
This is used for generating "random" data to feed into fuzzing, since it is
faster than random content generation.
"""
if _source_files:
return _source_files
for root, dirs, files in os.walk(os.path.dirname(__file__)):
dirs[:] = list(sorted(dirs))
for f in sorted(files):
try:
with open(os.path.join(root, f), 'rb') as fh:
data = fh.read()
if data:
_source_files.append(data)
except OSError:
pass
# Also add some actual random data.
_source_files.append(os.urandom(100))
_source_files.append(os.urandom(1000))
_source_files.append(os.urandom(10000))
_source_files.append(os.urandom(100000))
_source_files.append(os.urandom(1000000))
return _source_files
def generate_samples():
inputs = [
b'foo',
b'bar',
b'abcdef',
b'sometext',
b'baz',
]
samples = []
for i in range(128):
samples.append(inputs[i % 5])
samples.append(inputs[i % 5] * (i + 3))
samples.append(inputs[-(i % 5)] * (i + 2))
return samples
if hypothesis:
default_settings = hypothesis.settings(deadline=10000)
hypothesis.settings.register_profile('default', default_settings)
ci_settings = hypothesis.settings(deadline=20000, max_examples=1000)
hypothesis.settings.register_profile('ci', ci_settings)
expensive_settings = hypothesis.settings(deadline=None, max_examples=10000)
hypothesis.settings.register_profile('expensive', expensive_settings)
hypothesis.settings.load_profile(
os.environ.get('HYPOTHESIS_PROFILE', 'default'))