use crate::utils::hg_path::HgPath; use crate::utils::hg_path::HgPathBuf; use crate::Revision; use crate::NULL_REVISION; use im_rc::ordmap::DiffItem; use im_rc::ordmap::Entry; use im_rc::ordmap::OrdMap; use std::cmp::Ordering; use std::collections::HashMap; use std::collections::HashSet; use std::convert::TryInto; pub type PathCopies = HashMap; type PathToken = usize; #[derive(Clone, Debug, PartialEq)] struct CopySource { /// revision at which the copy information was added rev: Revision, /// the copy source, (Set to None in case of deletion of the associated /// key) path: Option, /// a set of previous `CopySource.rev` value directly or indirectly /// overwritten by this one. overwritten: HashSet, } impl CopySource { /// create a new CopySource /// /// Use this when no previous copy source existed. fn new(rev: Revision, path: Option) -> Self { Self { rev, path, overwritten: HashSet::new(), } } /// create a new CopySource from merging two others /// /// Use this when merging two InternalPathCopies requires active merging of /// some entries. fn new_from_merge(rev: Revision, winner: &Self, loser: &Self) -> Self { let mut overwritten = HashSet::new(); overwritten.extend(winner.overwritten.iter().copied()); overwritten.extend(loser.overwritten.iter().copied()); overwritten.insert(winner.rev); overwritten.insert(loser.rev); Self { rev, path: winner.path, overwritten: overwritten, } } /// Update the value of a pre-existing CopySource /// /// Use this when recording copy information from parent → child edges fn overwrite(&mut self, rev: Revision, path: Option) { self.overwritten.insert(self.rev); self.rev = rev; self.path = path; } /// Mark pre-existing copy information as "dropped" by a file deletion /// /// Use this when recording copy information from parent → child edges fn mark_delete(&mut self, rev: Revision) { self.overwritten.insert(self.rev); self.rev = rev; self.path = None; } fn is_overwritten_by(&self, other: &Self) -> bool { other.overwritten.contains(&self.rev) } } /// maps CopyDestination to Copy Source (+ a "timestamp" for the operation) type InternalPathCopies = OrdMap; /// hold parent 1, parent 2 and relevant files actions. pub type RevInfo<'a> = (Revision, Revision, ChangedFiles<'a>); /// represent the files affected by a changesets /// /// This hold a subset of mercurial.metadata.ChangingFiles as we do not need /// all the data categories tracked by it. /// This hold a subset of mercurial.metadata.ChangingFiles as we do not need /// all the data categories tracked by it. pub struct ChangedFiles<'a> { nb_items: u32, index: &'a [u8], data: &'a [u8], } /// Represent active changes that affect the copy tracing. enum Action<'a> { /// The parent ? children edge is removing a file /// /// (actually, this could be the edge from the other parent, but it does /// not matters) Removed(&'a HgPath), /// The parent ? children edge introduce copy information between (dest, /// source) Copied(&'a HgPath, &'a HgPath), } /// This express the possible "special" case we can get in a merge /// /// See mercurial/metadata.py for details on these values. #[derive(PartialEq)] enum MergeCase { /// Merged: file had history on both side that needed to be merged Merged, /// Salvaged: file was candidate for deletion, but survived the merge Salvaged, /// Normal: Not one of the two cases above Normal, } type FileChange<'a> = (u8, &'a HgPath, &'a HgPath); const EMPTY: &[u8] = b""; const COPY_MASK: u8 = 3; const P1_COPY: u8 = 2; const P2_COPY: u8 = 3; const ACTION_MASK: u8 = 28; const REMOVED: u8 = 12; const MERGED: u8 = 8; const SALVAGED: u8 = 16; impl<'a> ChangedFiles<'a> { const INDEX_START: usize = 4; const ENTRY_SIZE: u32 = 9; const FILENAME_START: u32 = 1; const COPY_SOURCE_START: u32 = 5; pub fn new(data: &'a [u8]) -> Self { assert!( data.len() >= 4, "data size ({}) is too small to contain the header (4)", data.len() ); let nb_items_raw: [u8; 4] = (&data[0..=3]) .try_into() .expect("failed to turn 4 bytes into 4 bytes"); let nb_items = u32::from_be_bytes(nb_items_raw); let index_size = (nb_items * Self::ENTRY_SIZE) as usize; let index_end = Self::INDEX_START + index_size; assert!( data.len() >= index_end, "data size ({}) is too small to fit the index_data ({})", data.len(), index_end ); let ret = ChangedFiles { nb_items, index: &data[Self::INDEX_START..index_end], data: &data[index_end..], }; let max_data = ret.filename_end(nb_items - 1) as usize; assert!( ret.data.len() >= max_data, "data size ({}) is too small to fit all data ({})", data.len(), index_end + max_data ); ret } pub fn new_empty() -> Self { ChangedFiles { nb_items: 0, index: EMPTY, data: EMPTY, } } /// internal function to return an individual entry at a given index fn entry(&'a self, idx: u32) -> FileChange<'a> { if idx >= self.nb_items { panic!( "index for entry is higher that the number of file {} >= {}", idx, self.nb_items ) } let flags = self.flags(idx); let filename = self.filename(idx); let copy_idx = self.copy_idx(idx); let copy_source = self.filename(copy_idx); (flags, filename, copy_source) } /// internal function to return the filename of the entry at a given index fn filename(&self, idx: u32) -> &HgPath { let filename_start; if idx == 0 { filename_start = 0; } else { filename_start = self.filename_end(idx - 1) } let filename_end = self.filename_end(idx); let filename_start = filename_start as usize; let filename_end = filename_end as usize; HgPath::new(&self.data[filename_start..filename_end]) } /// internal function to return the flag field of the entry at a given /// index fn flags(&self, idx: u32) -> u8 { let idx = idx as usize; self.index[idx * (Self::ENTRY_SIZE as usize)] } /// internal function to return the end of a filename part at a given index fn filename_end(&self, idx: u32) -> u32 { let start = (idx * Self::ENTRY_SIZE) + Self::FILENAME_START; let end = (idx * Self::ENTRY_SIZE) + Self::COPY_SOURCE_START; let start = start as usize; let end = end as usize; let raw = (&self.index[start..end]) .try_into() .expect("failed to turn 4 bytes into 4 bytes"); u32::from_be_bytes(raw) } /// internal function to return index of the copy source of the entry at a /// given index fn copy_idx(&self, idx: u32) -> u32 { let start = (idx * Self::ENTRY_SIZE) + Self::COPY_SOURCE_START; let end = (idx + 1) * Self::ENTRY_SIZE; let start = start as usize; let end = end as usize; let raw = (&self.index[start..end]) .try_into() .expect("failed to turn 4 bytes into 4 bytes"); u32::from_be_bytes(raw) } /// Return an iterator over all the `Action` in this instance. fn iter_actions(&self, parent: Parent) -> ActionsIterator { ActionsIterator { changes: &self, parent: parent, current: 0, } } /// return the MergeCase value associated with a filename fn get_merge_case(&self, path: &HgPath) -> MergeCase { if self.nb_items == 0 { return MergeCase::Normal; } let mut low_part = 0; let mut high_part = self.nb_items; while low_part < high_part { let cursor = (low_part + high_part - 1) / 2; let (flags, filename, _source) = self.entry(cursor); match path.cmp(filename) { Ordering::Less => low_part = cursor + 1, Ordering::Greater => high_part = cursor, Ordering::Equal => { return match flags & ACTION_MASK { MERGED => MergeCase::Merged, SALVAGED => MergeCase::Salvaged, _ => MergeCase::Normal, }; } } } MergeCase::Normal } } /// A struct responsible for answering "is X ancestors of Y" quickly /// /// The structure will delegate ancestors call to a callback, and cache the /// result. #[derive(Debug)] struct AncestorOracle<'a, A: Fn(Revision, Revision) -> bool> { inner: &'a A, pairs: HashMap<(Revision, Revision), bool>, } impl<'a, A: Fn(Revision, Revision) -> bool> AncestorOracle<'a, A> { fn new(func: &'a A) -> Self { Self { inner: func, pairs: HashMap::default(), } } fn record_overwrite(&mut self, anc: Revision, desc: Revision) { self.pairs.insert((anc, desc), true); } /// returns `true` if `anc` is an ancestors of `desc`, `false` otherwise fn is_overwrite(&mut self, anc: Revision, desc: Revision) -> bool { if anc > desc { false } else if anc == desc { true } else { if let Some(b) = self.pairs.get(&(anc, desc)) { *b } else { let b = (self.inner)(anc, desc); self.pairs.insert((anc, desc), b); b } } } } struct ActionsIterator<'a> { changes: &'a ChangedFiles<'a>, parent: Parent, current: u32, } impl<'a> Iterator for ActionsIterator<'a> { type Item = Action<'a>; fn next(&mut self) -> Option> { let copy_flag = match self.parent { Parent::FirstParent => P1_COPY, Parent::SecondParent => P2_COPY, }; while self.current < self.changes.nb_items { let (flags, file, source) = self.changes.entry(self.current); self.current += 1; if (flags & ACTION_MASK) == REMOVED { return Some(Action::Removed(file)); } let copy = flags & COPY_MASK; if copy == copy_flag { return Some(Action::Copied(file, source)); } } return None; } } /// A small struct whose purpose is to ensure lifetime of bytes referenced in /// ChangedFiles /// /// It is passed to the RevInfoMaker callback who can assign any necessary /// content to the `data` attribute. The copy tracing code is responsible for /// keeping the DataHolder alive at least as long as the ChangedFiles object. pub struct DataHolder { /// RevInfoMaker callback should assign data referenced by the /// ChangedFiles struct it return to this attribute. The DataHolder /// lifetime will be at least as long as the ChangedFiles one. pub data: Option, } pub type RevInfoMaker<'a, D> = Box Fn(Revision, &'r mut DataHolder) -> RevInfo<'r> + 'a>; /// enum used to carry information about the parent → child currently processed #[derive(Copy, Clone, Debug)] enum Parent { /// The `p1(x) → x` edge FirstParent, /// The `p2(x) → x` edge SecondParent, } /// A small "tokenizer" responsible of turning full HgPath into lighter /// PathToken /// /// Dealing with small object, like integer is much faster, so HgPath input are /// turned into integer "PathToken" and converted back in the end. #[derive(Clone, Debug, Default)] struct TwoWayPathMap { token: HashMap, path: Vec, } impl TwoWayPathMap { fn tokenize(&mut self, path: &HgPath) -> PathToken { match self.token.get(path) { Some(a) => *a, None => { let a = self.token.len(); let buf = path.to_owned(); self.path.push(buf.clone()); self.token.insert(buf, a); a } } } fn untokenize(&self, token: PathToken) -> &HgPathBuf { assert!(token < self.path.len(), format!("Unknown token: {}", token)); &self.path[token] } } /// Same as mercurial.copies._combine_changeset_copies, but in Rust. /// /// Arguments are: /// /// revs: all revisions to be considered /// children: a {parent ? [childrens]} mapping /// target_rev: the final revision we are combining copies to /// rev_info(rev): callback to get revision information: /// * first parent /// * second parent /// * ChangedFiles /// isancestors(low_rev, high_rev): callback to check if a revision is an /// ancestor of another pub fn combine_changeset_copies bool, D>( revs: Vec, mut children_count: HashMap, target_rev: Revision, rev_info: RevInfoMaker, is_ancestor: &A, ) -> PathCopies { let mut all_copies = HashMap::new(); let mut oracle = AncestorOracle::new(is_ancestor); let mut path_map = TwoWayPathMap::default(); for rev in revs { let mut d: DataHolder = DataHolder { data: None }; let (p1, p2, changes) = rev_info(rev, &mut d); // We will chain the copies information accumulated for the parent with // the individual copies information the curent revision. Creating a // new TimeStampedPath for each `rev` → `children` vertex. let mut copies: Option = None; if p1 != NULL_REVISION { // Retrieve data computed in a previous iteration let parent_copies = get_and_clean_parent_copies( &mut all_copies, &mut children_count, p1, ); if let Some(parent_copies) = parent_copies { // combine it with data for that revision let vertex_copies = add_from_changes( &mut path_map, &mut oracle, &parent_copies, &changes, Parent::FirstParent, rev, ); // keep that data around for potential later combination copies = Some(vertex_copies); } } if p2 != NULL_REVISION { // Retrieve data computed in a previous iteration let parent_copies = get_and_clean_parent_copies( &mut all_copies, &mut children_count, p2, ); if let Some(parent_copies) = parent_copies { // combine it with data for that revision let vertex_copies = add_from_changes( &mut path_map, &mut oracle, &parent_copies, &changes, Parent::SecondParent, rev, ); copies = match copies { None => Some(vertex_copies), // Merge has two parents needs to combines their copy // information. // // If we got data from both parents, We need to combine // them. Some(copies) => Some(merge_copies_dict( &path_map, rev, vertex_copies, copies, &changes, &mut oracle, )), }; } } match copies { Some(copies) => { all_copies.insert(rev, copies); } _ => {} } } // Drop internal information (like the timestamp) and return the final // mapping. let tt_result = all_copies .remove(&target_rev) .expect("target revision was not processed"); let mut result = PathCopies::default(); for (dest, tt_source) in tt_result { if let Some(path) = tt_source.path { let path_dest = path_map.untokenize(dest).to_owned(); let path_path = path_map.untokenize(path).to_owned(); result.insert(path_dest, path_path); } } result } /// fetch previous computed information /// /// If no other children are expected to need this information, we drop it from /// the cache. /// /// If parent is not part of the set we are expected to walk, return None. fn get_and_clean_parent_copies( all_copies: &mut HashMap, children_count: &mut HashMap, parent_rev: Revision, ) -> Option { let count = children_count.get_mut(&parent_rev)?; *count -= 1; if *count == 0 { match all_copies.remove(&parent_rev) { Some(c) => Some(c), None => Some(InternalPathCopies::default()), } } else { match all_copies.get(&parent_rev) { Some(c) => Some(c.clone()), None => Some(InternalPathCopies::default()), } } } /// Combine ChangedFiles with some existing PathCopies information and return /// the result fn add_from_changes bool>( path_map: &mut TwoWayPathMap, oracle: &mut AncestorOracle, base_copies: &InternalPathCopies, changes: &ChangedFiles, parent: Parent, current_rev: Revision, ) -> InternalPathCopies { let mut copies = base_copies.clone(); for action in changes.iter_actions(parent) { match action { Action::Copied(path_dest, path_source) => { let dest = path_map.tokenize(path_dest); let source = path_map.tokenize(path_source); let entry; if let Some(v) = base_copies.get(&source) { entry = match &v.path { Some(path) => Some((*(path)).to_owned()), None => Some(source.to_owned()), } } else { entry = Some(source.to_owned()); } // Each new entry is introduced by the children, we // record this information as we will need it to take // the right decision when merging conflicting copy // information. See merge_copies_dict for details. match copies.entry(dest) { Entry::Vacant(slot) => { let ttpc = CopySource::new(current_rev, entry); slot.insert(ttpc); } Entry::Occupied(mut slot) => { let ttpc = slot.get_mut(); oracle.record_overwrite(ttpc.rev, current_rev); ttpc.overwrite(current_rev, entry); } } } Action::Removed(deleted_path) => { // We must drop copy information for removed file. // // We need to explicitly record them as dropped to // propagate this information when merging two // InternalPathCopies object. let deleted = path_map.tokenize(deleted_path); copies.entry(deleted).and_modify(|old| { oracle.record_overwrite(old.rev, current_rev); old.mark_delete(current_rev); }); } } } copies } /// merge two copies-mapping together, minor and major /// /// In case of conflict, value from "major" will be picked, unless in some /// cases. See inline documentation for details. fn merge_copies_dict bool>( path_map: &TwoWayPathMap, current_merge: Revision, mut minor: InternalPathCopies, mut major: InternalPathCopies, changes: &ChangedFiles, oracle: &mut AncestorOracle, ) -> InternalPathCopies { // This closure exist as temporary help while multiple developper are // actively working on this code. Feel free to re-inline it once this // code is more settled. let cmp_value = |oracle: &mut AncestorOracle, dest: &PathToken, src_minor: &CopySource, src_major: &CopySource| { compare_value( path_map, current_merge, changes, oracle, dest, src_minor, src_major, ) }; if minor.is_empty() { major } else if major.is_empty() { minor } else if minor.len() * 2 < major.len() { // Lets says we are merging two InternalPathCopies instance A and B. // // If A contains N items, the merge result will never contains more // than N values differents than the one in A // // If B contains M items, with M > N, the merge result will always // result in a minimum of M - N value differents than the on in // A // // As a result, if N < (M-N), we know that simply iterating over A will // yield less difference than iterating over the difference // between A and B. // // This help performance a lot in case were a tiny // InternalPathCopies is merged with a much larger one. for (dest, src_minor) in minor { let src_major = major.get(&dest); match src_major { None => { major.insert(dest, src_minor); } Some(src_major) => { let (pick, overwrite) = cmp_value(oracle, &dest, &src_minor, src_major); if overwrite { oracle.record_overwrite(src_minor.rev, current_merge); oracle.record_overwrite(src_major.rev, current_merge); let src = match pick { MergePick::Major => CopySource::new_from_merge( current_merge, src_major, &src_minor, ), MergePick::Minor => CopySource::new_from_merge( current_merge, &src_minor, src_major, ), MergePick::Any => CopySource::new_from_merge( current_merge, src_major, &src_minor, ), }; major.insert(dest, src); } else { match pick { MergePick::Any | MergePick::Major => None, MergePick::Minor => major.insert(dest, src_minor), }; } } }; } major } else if major.len() * 2 < minor.len() { // This use the same rational than the previous block. // (Check previous block documentation for details.) for (dest, src_major) in major { let src_minor = minor.get(&dest); match src_minor { None => { minor.insert(dest, src_major); } Some(src_minor) => { let (pick, overwrite) = cmp_value(oracle, &dest, src_minor, &src_major); if overwrite { oracle.record_overwrite(src_minor.rev, current_merge); oracle.record_overwrite(src_major.rev, current_merge); let src = match pick { MergePick::Major => CopySource::new_from_merge( current_merge, &src_major, src_minor, ), MergePick::Minor => CopySource::new_from_merge( current_merge, src_minor, &src_major, ), MergePick::Any => CopySource::new_from_merge( current_merge, &src_major, src_minor, ), }; minor.insert(dest, src); } else { match pick { MergePick::Any | MergePick::Minor => None, MergePick::Major => minor.insert(dest, src_major), }; } } }; } minor } else { let mut override_minor = Vec::new(); let mut override_major = Vec::new(); let mut to_major = |k: &PathToken, v: &CopySource| { override_major.push((k.clone(), v.clone())) }; let mut to_minor = |k: &PathToken, v: &CopySource| { override_minor.push((k.clone(), v.clone())) }; // The diff function leverage detection of the identical subpart if // minor and major has some common ancestors. This make it very // fast is most case. // // In case where the two map are vastly different in size, the current // approach is still slowish because the iteration will iterate over // all the "exclusive" content of the larger on. This situation can be // frequent when the subgraph of revision we are processing has a lot // of roots. Each roots adding they own fully new map to the mix (and // likely a small map, if the path from the root to the "main path" is // small. // // We could do better by detecting such situation and processing them // differently. for d in minor.diff(&major) { match d { DiffItem::Add(k, v) => to_minor(k, v), DiffItem::Remove(k, v) => to_major(k, v), DiffItem::Update { old, new } => { let (dest, src_major) = new; let (_, src_minor) = old; let (pick, overwrite) = cmp_value(oracle, dest, src_minor, src_major); if overwrite { oracle.record_overwrite(src_minor.rev, current_merge); oracle.record_overwrite(src_major.rev, current_merge); let src = match pick { MergePick::Major => CopySource::new_from_merge( current_merge, src_major, src_minor, ), MergePick::Minor => CopySource::new_from_merge( current_merge, src_minor, src_major, ), MergePick::Any => CopySource::new_from_merge( current_merge, src_major, src_minor, ), }; to_minor(dest, &src); to_major(dest, &src); } else { match pick { MergePick::Major => to_minor(dest, src_major), MergePick::Minor => to_major(dest, src_minor), // If the two entry are identical, no need to do // anything (but diff should not have yield them) MergePick::Any => unreachable!(), } } } }; } let updates; let mut result; if override_major.is_empty() { result = major } else if override_minor.is_empty() { result = minor } else { if override_minor.len() < override_major.len() { updates = override_minor; result = minor; } else { updates = override_major; result = major; } for (k, v) in updates { result.insert(k, v); } } result } } /// represent the side that should prevail when merging two /// InternalPathCopies enum MergePick { /// The "major" (p1) side prevails Major, /// The "minor" (p2) side prevails Minor, /// Any side could be used (because they are the same) Any, } /// decide which side prevails in case of conflicting values #[allow(clippy::if_same_then_else)] fn compare_value bool>( path_map: &TwoWayPathMap, current_merge: Revision, changes: &ChangedFiles, oracle: &mut AncestorOracle, dest: &PathToken, src_minor: &CopySource, src_major: &CopySource, ) -> (MergePick, bool) { if src_major.rev == current_merge { if src_minor.rev == current_merge { if src_major.path.is_none() { // We cannot get different copy information for both p1 and p2 // from the same revision. Unless this was a // deletion. // // However the deletion might come over different data on each // branch. let need_over = src_major.overwritten != src_minor.overwritten; (MergePick::Any, need_over) } else { unreachable!(); } } else { // The last value comes the current merge, this value -will- win // eventually. (MergePick::Major, true) } } else if src_minor.rev == current_merge { // The last value comes the current merge, this value -will- win // eventually. (MergePick::Minor, true) } else if src_major.path == src_minor.path { // we have the same value, but from other source; if src_major.rev == src_minor.rev { // If the two entry are identical, they are both valid debug_assert!(src_minor.overwritten == src_minor.overwritten); (MergePick::Any, false) } else if src_major.is_overwritten_by(src_minor) { (MergePick::Minor, false) } else if src_minor.is_overwritten_by(src_major) { (MergePick::Major, false) } else { (MergePick::Any, true) } } else if src_major.rev == src_minor.rev { // We cannot get copy information for both p1 and p2 in the // same rev. So this is the same value. unreachable!( "conflicting information from p1 and p2 in the same revision" ); } else { let dest_path = path_map.untokenize(*dest); let action = changes.get_merge_case(dest_path); if src_minor.path.is_some() && src_major.path.is_none() && action == MergeCase::Salvaged { // If the file is "deleted" in the major side but was // salvaged by the merge, we keep the minor side alive (MergePick::Minor, true) } else if src_major.path.is_some() && src_minor.path.is_none() && action == MergeCase::Salvaged { // If the file is "deleted" in the minor side but was // salvaged by the merge, unconditionnaly preserve the // major side. (MergePick::Major, true) } else if src_minor.is_overwritten_by(src_major) { // The information from the minor version are strictly older than // the major version if action == MergeCase::Merged { // If the file was actively merged, its means some non-copy // activity happened on the other branch. It // mean the older copy information are still relevant. // // The major side wins such conflict. (MergePick::Major, true) } else { // No activity on the minor branch, pick the newer one. (MergePick::Major, false) } } else if src_major.is_overwritten_by(src_minor) { if action == MergeCase::Merged { // If the file was actively merged, its means some non-copy // activity happened on the other branch. It // mean the older copy information are still relevant. // // The major side wins such conflict. (MergePick::Major, true) } else { // No activity on the minor branch, pick the newer one. (MergePick::Minor, false) } } else if src_minor.path.is_none() { // the minor side has no relevant information, pick the alive one (MergePick::Major, true) } else if src_major.path.is_none() { // the major side has no relevant information, pick the alive one (MergePick::Minor, true) } else { // by default the major side wins (MergePick::Major, true) } } }