// Copyright 2018-2023 Georges Racinet // and Mercurial contributors // // This software may be used and distributed according to the terms of the // GNU General Public License version 2 or any later version. //! Mercurial concepts for handling revision history pub mod node; pub mod nodemap; mod nodemap_docket; pub mod path_encode; pub use node::{FromHexError, Node, NodePrefix}; pub mod changelog; pub mod filelog; pub mod index; pub mod manifest; pub mod patch; use std::borrow::Cow; use std::io::Read; use std::ops::Deref; use std::path::Path; use flate2::read::ZlibDecoder; use sha1::{Digest, Sha1}; use std::cell::RefCell; use zstd; use self::node::{NODE_BYTES_LENGTH, NULL_NODE}; use self::nodemap_docket::NodeMapDocket; use super::index::Index; use super::nodemap::{NodeMap, NodeMapError}; use crate::errors::HgError; use crate::vfs::Vfs; /// As noted in revlog.c, revision numbers are actually encoded in /// 4 bytes, and are liberally converted to ints, whence the i32 pub type BaseRevision = i32; /// Mercurial revision numbers /// In contrast to the more general [`UncheckedRevision`], these are "checked" /// in the sense that they should only be used for revisions that are /// valid for a given index (i.e. in bounds). #[derive( Debug, derive_more::Display, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord, )] pub struct Revision(pub BaseRevision); impl format_bytes::DisplayBytes for Revision { fn display_bytes( &self, output: &mut dyn std::io::Write, ) -> std::io::Result<()> { self.0.display_bytes(output) } } /// Unchecked Mercurial revision numbers. /// /// Values of this type have no guarantee of being a valid revision number /// in any context. Use method `check_revision` to get a valid revision within /// the appropriate index object. #[derive( Debug, derive_more::Display, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord, )] pub struct UncheckedRevision(pub BaseRevision); impl format_bytes::DisplayBytes for UncheckedRevision { fn display_bytes( &self, output: &mut dyn std::io::Write, ) -> std::io::Result<()> { self.0.display_bytes(output) } } impl From for UncheckedRevision { fn from(value: Revision) -> Self { Self(value.0) } } impl From for UncheckedRevision { fn from(value: BaseRevision) -> Self { Self(value) } } /// Marker expressing the absence of a parent /// /// Independently of the actual representation, `NULL_REVISION` is guaranteed /// to be smaller than all existing revisions. pub const NULL_REVISION: Revision = Revision(-1); /// Same as `mercurial.node.wdirrev` /// /// This is also equal to `i32::max_value()`, but it's better to spell /// it out explicitely, same as in `mercurial.node` #[allow(clippy::unreadable_literal)] pub const WORKING_DIRECTORY_REVISION: UncheckedRevision = UncheckedRevision(0x7fffffff); pub const WORKING_DIRECTORY_HEX: &str = "ffffffffffffffffffffffffffffffffffffffff"; /// The simplest expression of what we need of Mercurial DAGs. pub trait Graph { /// Return the two parents of the given `Revision`. /// /// Each of the parents can be independently `NULL_REVISION` fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError>; } #[derive(Clone, Debug, PartialEq)] pub enum GraphError { ParentOutOfRange(Revision), } /// The Mercurial Revlog Index /// /// This is currently limited to the minimal interface that is needed for /// the [`nodemap`](nodemap/index.html) module pub trait RevlogIndex { /// Total number of Revisions referenced in this index fn len(&self) -> usize; fn is_empty(&self) -> bool { self.len() == 0 } /// Return a reference to the Node or `None` for `NULL_REVISION` fn node(&self, rev: Revision) -> Option<&Node>; /// Return a [`Revision`] if `rev` is a valid revision number for this /// index fn check_revision(&self, rev: UncheckedRevision) -> Option { let rev = rev.0; if rev == NULL_REVISION.0 || (rev >= 0 && (rev as usize) < self.len()) { Some(Revision(rev)) } else { None } } } const REVISION_FLAG_CENSORED: u16 = 1 << 15; const REVISION_FLAG_ELLIPSIS: u16 = 1 << 14; const REVISION_FLAG_EXTSTORED: u16 = 1 << 13; const REVISION_FLAG_HASCOPIESINFO: u16 = 1 << 12; // Keep this in sync with REVIDX_KNOWN_FLAGS in // mercurial/revlogutils/flagutil.py const REVIDX_KNOWN_FLAGS: u16 = REVISION_FLAG_CENSORED | REVISION_FLAG_ELLIPSIS | REVISION_FLAG_EXTSTORED | REVISION_FLAG_HASCOPIESINFO; const NULL_REVLOG_ENTRY_FLAGS: u16 = 0; #[derive(Debug, derive_more::From, derive_more::Display)] pub enum RevlogError { InvalidRevision, /// Working directory is not supported WDirUnsupported, /// Found more than one entry whose ID match the requested prefix AmbiguousPrefix, #[from] Other(HgError), } impl From for RevlogError { fn from(error: NodeMapError) -> Self { match error { NodeMapError::MultipleResults => RevlogError::AmbiguousPrefix, NodeMapError::RevisionNotInIndex(rev) => RevlogError::corrupted( format!("nodemap point to revision {} not in index", rev), ), } } } fn corrupted>(context: S) -> HgError { HgError::corrupted(format!("corrupted revlog, {}", context.as_ref())) } impl RevlogError { fn corrupted>(context: S) -> Self { RevlogError::Other(corrupted(context)) } } /// Read only implementation of revlog. pub struct Revlog { /// When index and data are not interleaved: bytes of the revlog index. /// When index and data are interleaved: bytes of the revlog index and /// data. index: Index, /// When index and data are not interleaved: bytes of the revlog data data_bytes: Option + Send>>, /// When present on disk: the persistent nodemap for this revlog nodemap: Option, } impl Graph for Revlog { fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> { self.index.parents(rev) } } impl Revlog { /// Open a revlog index file. /// /// It will also open the associated data file if index and data are not /// interleaved. pub fn open( store_vfs: &Vfs, index_path: impl AsRef, data_path: Option<&Path>, use_nodemap: bool, ) -> Result { Self::open_gen(store_vfs, index_path, data_path, use_nodemap, None) } fn open_gen( store_vfs: &Vfs, index_path: impl AsRef, data_path: Option<&Path>, use_nodemap: bool, nodemap_for_test: Option, ) -> Result { let index_path = index_path.as_ref(); let index = { match store_vfs.mmap_open_opt(&index_path)? { None => Index::new(Box::new(vec![])), Some(index_mmap) => { let index = Index::new(Box::new(index_mmap))?; Ok(index) } } }?; let default_data_path = index_path.with_extension("d"); // type annotation required // won't recognize Mmap as Deref let data_bytes: Option + Send>> = if index.is_inline() { None } else { let data_path = data_path.unwrap_or(&default_data_path); let data_mmap = store_vfs.mmap_open(data_path)?; Some(Box::new(data_mmap)) }; let nodemap = if index.is_inline() || !use_nodemap { None } else { NodeMapDocket::read_from_file(store_vfs, index_path)?.map( |(docket, data)| { nodemap::NodeTree::load_bytes( Box::new(data), docket.data_length, ) }, ) }; let nodemap = nodemap_for_test.or(nodemap); Ok(Revlog { index, data_bytes, nodemap, }) } /// Return number of entries of the `Revlog`. pub fn len(&self) -> usize { self.index.len() } /// Returns `true` if the `Revlog` has zero `entries`. pub fn is_empty(&self) -> bool { self.index.is_empty() } /// Returns the node ID for the given revision number, if it exists in this /// revlog pub fn node_from_rev(&self, rev: UncheckedRevision) -> Option<&Node> { if rev == NULL_REVISION.into() { return Some(&NULL_NODE); } let rev = self.index.check_revision(rev)?; Some(self.index.get_entry(rev)?.hash()) } /// Return the revision number for the given node ID, if it exists in this /// revlog pub fn rev_from_node( &self, node: NodePrefix, ) -> Result { if let Some(nodemap) = &self.nodemap { nodemap .find_bin(&self.index, node)? .ok_or(RevlogError::InvalidRevision) } else { self.rev_from_node_no_persistent_nodemap(node) } } /// Same as `rev_from_node`, without using a persistent nodemap /// /// This is used as fallback when a persistent nodemap is not present. /// This happens when the persistent-nodemap experimental feature is not /// enabled, or for small revlogs. fn rev_from_node_no_persistent_nodemap( &self, node: NodePrefix, ) -> Result { // Linear scan of the revlog // TODO: consider building a non-persistent nodemap in memory to // optimize these cases. let mut found_by_prefix = None; for rev in (-1..self.len() as BaseRevision).rev() { let rev = Revision(rev as BaseRevision); let candidate_node = if rev == Revision(-1) { NULL_NODE } else { let index_entry = self.index.get_entry(rev).ok_or_else(|| { HgError::corrupted( "revlog references a revision not in the index", ) })?; *index_entry.hash() }; if node == candidate_node { return Ok(rev); } if node.is_prefix_of(&candidate_node) { if found_by_prefix.is_some() { return Err(RevlogError::AmbiguousPrefix); } found_by_prefix = Some(rev) } } found_by_prefix.ok_or(RevlogError::InvalidRevision) } /// Returns whether the given revision exists in this revlog. pub fn has_rev(&self, rev: UncheckedRevision) -> bool { self.index.check_revision(rev).is_some() } /// Return the full data associated to a revision. /// /// All entries required to build the final data out of deltas will be /// retrieved as needed, and the deltas will be applied to the inital /// snapshot to rebuild the final data. pub fn get_rev_data( &self, rev: UncheckedRevision, ) -> Result, RevlogError> { if rev == NULL_REVISION.into() { return Ok(Cow::Borrowed(&[])); }; self.get_entry(rev)?.data() } /// [`Self::get_rev_data`] for checked revisions. pub fn get_rev_data_for_checked_rev( &self, rev: Revision, ) -> Result, RevlogError> { if rev == NULL_REVISION { return Ok(Cow::Borrowed(&[])); }; self.get_entry_for_checked_rev(rev)?.data() } /// Check the hash of some given data against the recorded hash. pub fn check_hash( &self, p1: Revision, p2: Revision, expected: &[u8], data: &[u8], ) -> bool { let e1 = self.index.get_entry(p1); let h1 = match e1 { Some(ref entry) => entry.hash(), None => &NULL_NODE, }; let e2 = self.index.get_entry(p2); let h2 = match e2 { Some(ref entry) => entry.hash(), None => &NULL_NODE, }; hash(data, h1.as_bytes(), h2.as_bytes()) == expected } /// Build the full data of a revision out its snapshot /// and its deltas. fn build_data_from_deltas( snapshot: RevlogEntry, deltas: &[RevlogEntry], ) -> Result, HgError> { let snapshot = snapshot.data_chunk()?; let deltas = deltas .iter() .rev() .map(RevlogEntry::data_chunk) .collect::, _>>()?; let patches: Vec<_> = deltas.iter().map(|d| patch::PatchList::new(d)).collect(); let patch = patch::fold_patch_lists(&patches); Ok(patch.apply(&snapshot)) } /// Return the revlog data. fn data(&self) -> &[u8] { match &self.data_bytes { Some(data_bytes) => data_bytes, None => panic!( "forgot to load the data or trying to access inline data" ), } } pub fn make_null_entry(&self) -> RevlogEntry { RevlogEntry { revlog: self, rev: NULL_REVISION, bytes: b"", compressed_len: 0, uncompressed_len: 0, base_rev_or_base_of_delta_chain: None, p1: NULL_REVISION, p2: NULL_REVISION, flags: NULL_REVLOG_ENTRY_FLAGS, hash: NULL_NODE, } } fn get_entry_for_checked_rev( &self, rev: Revision, ) -> Result { if rev == NULL_REVISION { return Ok(self.make_null_entry()); } let index_entry = self .index .get_entry(rev) .ok_or(RevlogError::InvalidRevision)?; let start = index_entry.offset(); let end = start + index_entry.compressed_len() as usize; let data = if self.index.is_inline() { self.index.data(start, end) } else { &self.data()[start..end] }; let base_rev = self .index .check_revision(index_entry.base_revision_or_base_of_delta_chain()) .ok_or_else(|| { RevlogError::corrupted(format!( "base revision for rev {} is invalid", rev )) })?; let p1 = self.index.check_revision(index_entry.p1()).ok_or_else(|| { RevlogError::corrupted(format!( "p1 for rev {} is invalid", rev )) })?; let p2 = self.index.check_revision(index_entry.p2()).ok_or_else(|| { RevlogError::corrupted(format!( "p2 for rev {} is invalid", rev )) })?; let entry = RevlogEntry { revlog: self, rev, bytes: data, compressed_len: index_entry.compressed_len(), uncompressed_len: index_entry.uncompressed_len(), base_rev_or_base_of_delta_chain: if base_rev == rev { None } else { Some(base_rev) }, p1, p2, flags: index_entry.flags(), hash: *index_entry.hash(), }; Ok(entry) } /// Get an entry of the revlog. pub fn get_entry( &self, rev: UncheckedRevision, ) -> Result { if rev == NULL_REVISION.into() { return Ok(self.make_null_entry()); } let rev = self.index.check_revision(rev).ok_or_else(|| { RevlogError::corrupted(format!("rev {} is invalid", rev)) })?; self.get_entry_for_checked_rev(rev) } } /// The revlog entry's bytes and the necessary informations to extract /// the entry's data. #[derive(Clone)] pub struct RevlogEntry<'revlog> { revlog: &'revlog Revlog, rev: Revision, bytes: &'revlog [u8], compressed_len: u32, uncompressed_len: i32, base_rev_or_base_of_delta_chain: Option, p1: Revision, p2: Revision, flags: u16, hash: Node, } thread_local! { // seems fine to [unwrap] here: this can only fail due to memory allocation // failing, and it's normal for that to cause panic. static ZSTD_DECODER : RefCell> = RefCell::new(zstd::bulk::Decompressor::new().ok().unwrap()); } fn zstd_decompress_to_buffer( bytes: &[u8], buf: &mut Vec, ) -> Result { ZSTD_DECODER .with(|decoder| decoder.borrow_mut().decompress_to_buffer(bytes, buf)) } impl<'revlog> RevlogEntry<'revlog> { pub fn revision(&self) -> Revision { self.rev } pub fn node(&self) -> &Node { &self.hash } pub fn uncompressed_len(&self) -> Option { u32::try_from(self.uncompressed_len).ok() } pub fn has_p1(&self) -> bool { self.p1 != NULL_REVISION } pub fn p1_entry( &self, ) -> Result>, RevlogError> { if self.p1 == NULL_REVISION { Ok(None) } else { Ok(Some(self.revlog.get_entry_for_checked_rev(self.p1)?)) } } pub fn p2_entry( &self, ) -> Result>, RevlogError> { if self.p2 == NULL_REVISION { Ok(None) } else { Ok(Some(self.revlog.get_entry_for_checked_rev(self.p2)?)) } } pub fn p1(&self) -> Option { if self.p1 == NULL_REVISION { None } else { Some(self.p1) } } pub fn p2(&self) -> Option { if self.p2 == NULL_REVISION { None } else { Some(self.p2) } } pub fn is_censored(&self) -> bool { (self.flags & REVISION_FLAG_CENSORED) != 0 } pub fn has_length_affecting_flag_processor(&self) -> bool { // Relevant Python code: revlog.size() // note: ELLIPSIS is known to not change the content (self.flags & (REVIDX_KNOWN_FLAGS ^ REVISION_FLAG_ELLIPSIS)) != 0 } /// The data for this entry, after resolving deltas if any. pub fn rawdata(&self) -> Result, RevlogError> { let mut entry = self.clone(); let mut delta_chain = vec![]; // The meaning of `base_rev_or_base_of_delta_chain` depends on // generaldelta. See the doc on `ENTRY_DELTA_BASE` in // `mercurial/revlogutils/constants.py` and the code in // [_chaininfo] and in [index_deltachain]. let uses_generaldelta = self.revlog.index.uses_generaldelta(); while let Some(base_rev) = entry.base_rev_or_base_of_delta_chain { entry = if uses_generaldelta { delta_chain.push(entry); self.revlog.get_entry_for_checked_rev(base_rev)? } else { let base_rev = UncheckedRevision(entry.rev.0 - 1); delta_chain.push(entry); self.revlog.get_entry(base_rev)? }; } let data = if delta_chain.is_empty() { entry.data_chunk()? } else { Revlog::build_data_from_deltas(entry, &delta_chain)?.into() }; Ok(data) } fn check_data( &self, data: Cow<'revlog, [u8]>, ) -> Result, RevlogError> { if self.revlog.check_hash( self.p1, self.p2, self.hash.as_bytes(), &data, ) { Ok(data) } else { if (self.flags & REVISION_FLAG_ELLIPSIS) != 0 { return Err(HgError::unsupported( "ellipsis revisions are not supported by rhg", ) .into()); } Err(corrupted(format!( "hash check failed for revision {}", self.rev )) .into()) } } pub fn data(&self) -> Result, RevlogError> { let data = self.rawdata()?; if self.rev == NULL_REVISION { return Ok(data); } if self.is_censored() { return Err(HgError::CensoredNodeError.into()); } self.check_data(data) } /// Extract the data contained in the entry. /// This may be a delta. (See `is_delta`.) fn data_chunk(&self) -> Result, HgError> { if self.bytes.is_empty() { return Ok(Cow::Borrowed(&[])); } match self.bytes[0] { // Revision data is the entirety of the entry, including this // header. b'\0' => Ok(Cow::Borrowed(self.bytes)), // Raw revision data follows. b'u' => Ok(Cow::Borrowed(&self.bytes[1..])), // zlib (RFC 1950) data. b'x' => Ok(Cow::Owned(self.uncompressed_zlib_data()?)), // zstd data. b'\x28' => Ok(Cow::Owned(self.uncompressed_zstd_data()?)), // A proper new format should have had a repo/store requirement. format_type => Err(corrupted(format!( "unknown compression header '{}'", format_type ))), } } fn uncompressed_zlib_data(&self) -> Result, HgError> { let mut decoder = ZlibDecoder::new(self.bytes); if self.is_delta() { let mut buf = Vec::with_capacity(self.compressed_len as usize); decoder .read_to_end(&mut buf) .map_err(|e| corrupted(e.to_string()))?; Ok(buf) } else { let cap = self.uncompressed_len.max(0) as usize; let mut buf = vec![0; cap]; decoder .read_exact(&mut buf) .map_err(|e| corrupted(e.to_string()))?; Ok(buf) } } fn uncompressed_zstd_data(&self) -> Result, HgError> { let cap = self.uncompressed_len.max(0) as usize; if self.is_delta() { // [cap] is usually an over-estimate of the space needed because // it's the length of delta-decoded data, but we're interested // in the size of the delta. // This means we have to [shrink_to_fit] to avoid holding on // to a large chunk of memory, but it also means we must have a // fallback branch, for the case when the delta is longer than // the original data (surprisingly, this does happen in practice) let mut buf = Vec::with_capacity(cap); match zstd_decompress_to_buffer(self.bytes, &mut buf) { Ok(_) => buf.shrink_to_fit(), Err(_) => { buf.clear(); zstd::stream::copy_decode(self.bytes, &mut buf) .map_err(|e| corrupted(e.to_string()))?; } }; Ok(buf) } else { let mut buf = Vec::with_capacity(cap); let len = zstd_decompress_to_buffer(self.bytes, &mut buf) .map_err(|e| corrupted(e.to_string()))?; if len != self.uncompressed_len as usize { Err(corrupted("uncompressed length does not match")) } else { Ok(buf) } } } /// Tell if the entry is a snapshot or a delta /// (influences on decompression). fn is_delta(&self) -> bool { self.base_rev_or_base_of_delta_chain.is_some() } } /// Calculate the hash of a revision given its data and its parents. fn hash( data: &[u8], p1_hash: &[u8], p2_hash: &[u8], ) -> [u8; NODE_BYTES_LENGTH] { let mut hasher = Sha1::new(); let (a, b) = (p1_hash, p2_hash); if a > b { hasher.update(b); hasher.update(a); } else { hasher.update(a); hasher.update(b); } hasher.update(data); *hasher.finalize().as_ref() } #[cfg(test)] mod tests { use super::*; use crate::index::{IndexEntryBuilder, INDEX_ENTRY_SIZE}; use itertools::Itertools; #[test] fn test_empty() { let temp = tempfile::tempdir().unwrap(); let vfs = Vfs { base: temp.path() }; std::fs::write(temp.path().join("foo.i"), b"").unwrap(); let revlog = Revlog::open(&vfs, "foo.i", None, false).unwrap(); assert!(revlog.is_empty()); assert_eq!(revlog.len(), 0); assert!(revlog.get_entry(0.into()).is_err()); assert!(!revlog.has_rev(0.into())); assert_eq!( revlog.rev_from_node(NULL_NODE.into()).unwrap(), NULL_REVISION ); let null_entry = revlog.get_entry(NULL_REVISION.into()).ok().unwrap(); assert_eq!(null_entry.revision(), NULL_REVISION); assert!(null_entry.data().unwrap().is_empty()); } #[test] fn test_inline() { let temp = tempfile::tempdir().unwrap(); let vfs = Vfs { base: temp.path() }; let node0 = Node::from_hex("2ed2a3912a0b24502043eae84ee4b279c18b90dd") .unwrap(); let node1 = Node::from_hex("b004912a8510032a0350a74daa2803dadfb00e12") .unwrap(); let node2 = Node::from_hex("dd6ad206e907be60927b5a3117b97dffb2590582") .unwrap(); let entry0_bytes = IndexEntryBuilder::new() .is_first(true) .with_version(1) .with_inline(true) .with_offset(INDEX_ENTRY_SIZE) .with_node(node0) .build(); let entry1_bytes = IndexEntryBuilder::new() .with_offset(INDEX_ENTRY_SIZE) .with_node(node1) .build(); let entry2_bytes = IndexEntryBuilder::new() .with_offset(INDEX_ENTRY_SIZE) .with_p1(Revision(0)) .with_p2(Revision(1)) .with_node(node2) .build(); let contents = vec![entry0_bytes, entry1_bytes, entry2_bytes] .into_iter() .flatten() .collect_vec(); std::fs::write(temp.path().join("foo.i"), contents).unwrap(); let revlog = Revlog::open(&vfs, "foo.i", None, false).unwrap(); let entry0 = revlog.get_entry(0.into()).ok().unwrap(); assert_eq!(entry0.revision(), Revision(0)); assert_eq!(*entry0.node(), node0); assert!(!entry0.has_p1()); assert_eq!(entry0.p1(), None); assert_eq!(entry0.p2(), None); let p1_entry = entry0.p1_entry().unwrap(); assert!(p1_entry.is_none()); let p2_entry = entry0.p2_entry().unwrap(); assert!(p2_entry.is_none()); let entry1 = revlog.get_entry(1.into()).ok().unwrap(); assert_eq!(entry1.revision(), Revision(1)); assert_eq!(*entry1.node(), node1); assert!(!entry1.has_p1()); assert_eq!(entry1.p1(), None); assert_eq!(entry1.p2(), None); let p1_entry = entry1.p1_entry().unwrap(); assert!(p1_entry.is_none()); let p2_entry = entry1.p2_entry().unwrap(); assert!(p2_entry.is_none()); let entry2 = revlog.get_entry(2.into()).ok().unwrap(); assert_eq!(entry2.revision(), Revision(2)); assert_eq!(*entry2.node(), node2); assert!(entry2.has_p1()); assert_eq!(entry2.p1(), Some(Revision(0))); assert_eq!(entry2.p2(), Some(Revision(1))); let p1_entry = entry2.p1_entry().unwrap(); assert!(p1_entry.is_some()); assert_eq!(p1_entry.unwrap().revision(), Revision(0)); let p2_entry = entry2.p2_entry().unwrap(); assert!(p2_entry.is_some()); assert_eq!(p2_entry.unwrap().revision(), Revision(1)); } #[test] fn test_nodemap() { let temp = tempfile::tempdir().unwrap(); let vfs = Vfs { base: temp.path() }; // building a revlog with a forced Node starting with zeros // This is a corruption, but it does not preclude using the nodemap // if we don't try and access the data let node0 = Node::from_hex("00d2a3912a0b24502043eae84ee4b279c18b90dd") .unwrap(); let node1 = Node::from_hex("b004912a8510032a0350a74daa2803dadfb00e12") .unwrap(); let entry0_bytes = IndexEntryBuilder::new() .is_first(true) .with_version(1) .with_inline(true) .with_offset(INDEX_ENTRY_SIZE) .with_node(node0) .build(); let entry1_bytes = IndexEntryBuilder::new() .with_offset(INDEX_ENTRY_SIZE) .with_node(node1) .build(); let contents = vec![entry0_bytes, entry1_bytes] .into_iter() .flatten() .collect_vec(); std::fs::write(temp.path().join("foo.i"), contents).unwrap(); let mut idx = nodemap::tests::TestNtIndex::new(); idx.insert_node(Revision(0), node0).unwrap(); idx.insert_node(Revision(1), node1).unwrap(); let revlog = Revlog::open_gen(&vfs, "foo.i", None, true, Some(idx.nt)).unwrap(); // accessing the data shows the corruption revlog.get_entry(0.into()).unwrap().data().unwrap_err(); assert_eq!( revlog.rev_from_node(NULL_NODE.into()).unwrap(), Revision(-1) ); assert_eq!(revlog.rev_from_node(node0.into()).unwrap(), Revision(0)); assert_eq!(revlog.rev_from_node(node1.into()).unwrap(), Revision(1)); assert_eq!( revlog .rev_from_node(NodePrefix::from_hex("000").unwrap()) .unwrap(), Revision(-1) ); assert_eq!( revlog .rev_from_node(NodePrefix::from_hex("b00").unwrap()) .unwrap(), Revision(1) ); // RevlogError does not implement PartialEq // (ultimately because io::Error does not) match revlog .rev_from_node(NodePrefix::from_hex("00").unwrap()) .expect_err("Expected to give AmbiguousPrefix error") { RevlogError::AmbiguousPrefix => (), e => { panic!("Got another error than AmbiguousPrefix: {:?}", e); } }; } }