use crate::utils::hg_path::HgPath; use crate::utils::hg_path::HgPathBuf; use crate::Revision; use im_rc::ordmap::DiffItem; use im_rc::ordmap::OrdMap; use std::collections::HashMap; use std::collections::HashSet; pub type PathCopies = HashMap; #[derive(Clone, Debug, PartialEq)] struct TimeStampedPathCopy { /// revision at which the copy information was added rev: Revision, /// the copy source, (Set to None in case of deletion of the associated /// key) path: Option, } /// maps CopyDestination to Copy Source (+ a "timestamp" for the operation) type TimeStampedPathCopies = OrdMap; /// hold parent 1, parent 2 and relevant files actions. pub type RevInfo = (Revision, Revision, ChangedFiles); /// represent the files affected by a changesets /// /// This hold a subset of mercurial.metadata.ChangingFiles as we do not need /// all the data categories tracked by it. pub struct ChangedFiles { removed: HashSet, merged: HashSet, salvaged: HashSet, copied_from_p1: PathCopies, copied_from_p2: PathCopies, } /// Represent active changes that affect the copy tracing. enum Action<'a> { /// The parent ? children edge is removing a file /// /// (actually, this could be the edge from the other parent, but it does /// not matters) Removed(&'a HgPath), /// The parent ? children edge introduce copy information between (dest, /// source) Copied(&'a HgPath, &'a HgPath), } /// This express the possible "special" case we can get in a merge /// /// See mercurial/metadata.py for details on these values. #[derive(PartialEq)] enum MergeCase { /// Merged: file had history on both side that needed to be merged Merged, /// Salvaged: file was candidate for deletion, but survived the merge Salvaged, /// Normal: Not one of the two cases above Normal, } impl ChangedFiles { pub fn new( removed: HashSet, merged: HashSet, salvaged: HashSet, copied_from_p1: PathCopies, copied_from_p2: PathCopies, ) -> Self { ChangedFiles { removed, merged, salvaged, copied_from_p1, copied_from_p2, } } pub fn new_empty() -> Self { ChangedFiles { removed: HashSet::new(), merged: HashSet::new(), salvaged: HashSet::new(), copied_from_p1: PathCopies::new(), copied_from_p2: PathCopies::new(), } } /// Return an iterator over all the `Action` in this instance. fn iter_actions(&self, parent: usize) -> impl Iterator { let copies_iter = match parent { 1 => self.copied_from_p1.iter(), 2 => self.copied_from_p2.iter(), _ => unreachable!(), }; let remove_iter = self.removed.iter(); let copies_iter = copies_iter.map(|(x, y)| Action::Copied(x, y)); let remove_iter = remove_iter.map(|x| Action::Removed(x)); copies_iter.chain(remove_iter) } /// return the MergeCase value associated with a filename fn get_merge_case(&self, path: &HgPath) -> MergeCase { if self.salvaged.contains(path) { return MergeCase::Salvaged; } else if self.merged.contains(path) { return MergeCase::Merged; } else { return MergeCase::Normal; } } } /// A struct responsible for answering "is X ancestors of Y" quickly /// /// The structure will delegate ancestors call to a callback, and cache the /// result. #[derive(Debug)] struct AncestorOracle<'a, A: Fn(Revision, Revision) -> bool> { inner: &'a A, pairs: HashMap<(Revision, Revision), bool>, } impl<'a, A: Fn(Revision, Revision) -> bool> AncestorOracle<'a, A> { fn new(func: &'a A) -> Self { Self { inner: func, pairs: HashMap::default(), } } /// returns `true` if `anc` is an ancestors of `desc`, `false` otherwise fn is_ancestor(&mut self, anc: Revision, desc: Revision) -> bool { if anc > desc { false } else if anc == desc { true } else { if let Some(b) = self.pairs.get(&(anc, desc)) { *b } else { let b = (self.inner)(anc, desc); self.pairs.insert((anc, desc), b); b } } } } /// Same as mercurial.copies._combine_changeset_copies, but in Rust. /// /// Arguments are: /// /// revs: all revisions to be considered /// children: a {parent ? [childrens]} mapping /// target_rev: the final revision we are combining copies to /// rev_info(rev): callback to get revision information: /// * first parent /// * second parent /// * ChangedFiles /// isancestors(low_rev, high_rev): callback to check if a revision is an /// ancestor of another pub fn combine_changeset_copies bool>( revs: Vec, children: HashMap>, target_rev: Revision, rev_info: &impl Fn(Revision) -> RevInfo, is_ancestor: &A, ) -> PathCopies { let mut all_copies = HashMap::new(); let mut oracle = AncestorOracle::new(is_ancestor); for rev in revs { // Retrieve data computed in a previous iteration let copies = all_copies.remove(&rev); let copies = match copies { Some(c) => c, None => TimeStampedPathCopies::default(), // root of the walked set }; let current_children = match children.get(&rev) { Some(c) => c, None => panic!("inconsistent `revs` and `children`"), }; for child in current_children { // We will chain the copies information accumulated for `rev` with // the individual copies information for each of its children. // Creating a new PathCopies for each `rev` ? `children` vertex. let (p1, p2, changes) = rev_info(*child); let parent = if rev == p1 { 1 } else { assert_eq!(rev, p2); 2 }; let mut new_copies = copies.clone(); for action in changes.iter_actions(parent) { match action { Action::Copied(dest, source) => { let entry; if let Some(v) = copies.get(source) { entry = match &v.path { Some(path) => Some((*(path)).to_owned()), None => Some(source.to_owned()), } } else { entry = Some(source.to_owned()); } // Each new entry is introduced by the children, we // record this information as we will need it to take // the right decision when merging conflicting copy // information. See merge_copies_dict for details. let ttpc = TimeStampedPathCopy { rev: *child, path: entry, }; new_copies.insert(dest.to_owned(), ttpc); } Action::Removed(f) => { // We must drop copy information for removed file. // // We need to explicitly record them as dropped to // propagate this information when merging two // TimeStampedPathCopies object. if new_copies.contains_key(f.as_ref()) { let ttpc = TimeStampedPathCopy { rev: *child, path: None, }; new_copies.insert(f.to_owned(), ttpc); } } } } // Merge has two parents needs to combines their copy information. // // If the vertex from the other parent was already processed, we // will have a value for the child ready to be used. We need to // grab it and combine it with the one we already // computed. If not we can simply store the newly // computed data. The processing happening at // the time of the second parent will take care of combining the // two TimeStampedPathCopies instance. match all_copies.remove(child) { None => { all_copies.insert(child, new_copies); } Some(other_copies) => { let (minor, major) = match parent { 1 => (other_copies, new_copies), 2 => (new_copies, other_copies), _ => unreachable!(), }; let merged_copies = merge_copies_dict(minor, major, &changes, &mut oracle); all_copies.insert(child, merged_copies); } }; } } // Drop internal information (like the timestamp) and return the final // mapping. let tt_result = all_copies .remove(&target_rev) .expect("target revision was not processed"); let mut result = PathCopies::default(); for (dest, tt_source) in tt_result { if let Some(path) = tt_source.path { result.insert(dest, path); } } result } /// merge two copies-mapping together, minor and major /// /// In case of conflict, value from "major" will be picked, unless in some /// cases. See inline documentation for details. #[allow(clippy::if_same_then_else)] fn merge_copies_dict bool>( minor: TimeStampedPathCopies, major: TimeStampedPathCopies, changes: &ChangedFiles, oracle: &mut AncestorOracle, ) -> TimeStampedPathCopies { if minor.is_empty() { return major; } else if major.is_empty() { return minor; } let mut override_minor = Vec::new(); let mut override_major = Vec::new(); let mut to_major = |k: &HgPathBuf, v: &TimeStampedPathCopy| { override_major.push((k.clone(), v.clone())) }; let mut to_minor = |k: &HgPathBuf, v: &TimeStampedPathCopy| { override_minor.push((k.clone(), v.clone())) }; // The diff function leverage detection of the identical subpart if minor // and major has some common ancestors. This make it very fast is most // case. // // In case where the two map are vastly different in size, the current // approach is still slowish because the iteration will iterate over // all the "exclusive" content of the larger on. This situation can be // frequent when the subgraph of revision we are processing has a lot // of roots. Each roots adding they own fully new map to the mix (and // likely a small map, if the path from the root to the "main path" is // small. // // We could do better by detecting such situation and processing them // differently. for d in minor.diff(&major) { match d { DiffItem::Add(k, v) => to_minor(k, v), DiffItem::Remove(k, v) => to_major(k, v), DiffItem::Update { old, new } => { let (dest, src_major) = new; let (_, src_minor) = old; let mut pick_minor = || (to_major(dest, src_minor)); let mut pick_major = || (to_minor(dest, src_major)); if src_major.path == src_minor.path { // we have the same value, but from other source; if src_major.rev == src_minor.rev { // If the two entry are identical, no need to do // anything (but diff should not have yield them) unreachable!(); } else if oracle.is_ancestor(src_major.rev, src_minor.rev) { pick_minor(); } else { pick_major(); } } else if src_major.rev == src_minor.rev { // We cannot get copy information for both p1 and p2 in the // same rev. So this is the same value. unreachable!(); } else { let action = changes.get_merge_case(&dest); if src_major.path.is_none() && action == MergeCase::Salvaged { // If the file is "deleted" in the major side but was // salvaged by the merge, we keep the minor side alive pick_minor(); } else if src_minor.path.is_none() && action == MergeCase::Salvaged { // If the file is "deleted" in the minor side but was // salvaged by the merge, unconditionnaly preserve the // major side. pick_major(); } else if action == MergeCase::Merged { // If the file was actively merged, copy information // from each side might conflict. The major side will // win such conflict. pick_major(); } else if oracle.is_ancestor(src_major.rev, src_minor.rev) { // If the minor side is strictly newer than the major // side, it should be kept. pick_minor(); } else if src_major.path.is_some() { // without any special case, the "major" value win // other the "minor" one. pick_major(); } else if oracle.is_ancestor(src_minor.rev, src_major.rev) { // the "major" rev is a direct ancestors of "minor", // any different value should // overwrite pick_major(); } else { // major version is None (so the file was deleted on // that branch) and that branch is independant (neither // minor nor major is an ancestors of the other one.) // We preserve the new // information about the new file. pick_minor(); } } } }; } let updates; let mut result; if override_major.is_empty() { result = major } else if override_minor.is_empty() { result = minor } else { if override_minor.len() < override_major.len() { updates = override_minor; result = minor; } else { updates = override_major; result = major; } for (k, v) in updates { result.insert(k, v); } } result }