from mercurial import ancestor, commands, hg, ui, util from mercurial.node import nullrev import binascii, getopt, math, os, random, sys, time def buildgraph(rng, nodes=100, rootprob=0.05, mergeprob=0.2, prevprob=0.7): '''nodes: total number of nodes in the graph rootprob: probability that a new node (not 0) will be a root mergeprob: probability that, excluding a root a node will be a merge prevprob: probability that p1 will be the previous node return value is a graph represented as an adjacency list. ''' graph = [None] * nodes for i in xrange(nodes): if i == 0 or rng.random() < rootprob: graph[i] = [nullrev] elif i == 1: graph[i] = [0] elif rng.random() < mergeprob: if i == 2 or rng.random() < prevprob: # p1 is prev p1 = i - 1 else: p1 = rng.randrange(i - 1) p2 = rng.choice(range(0, p1) + range(p1 + 1, i)) graph[i] = [p1, p2] elif rng.random() < prevprob: graph[i] = [i - 1] else: graph[i] = [rng.randrange(i - 1)] return graph def buildancestorsets(graph): ancs = [None] * len(graph) for i in xrange(len(graph)): ancs[i] = set([i]) if graph[i] == [nullrev]: continue for p in graph[i]: ancs[i].update(ancs[p]) return ancs def naivemissingancestors(ancs, revs, bases): res = set() for rev in revs: if rev != nullrev: res.update(ancs[rev]) for base in bases: if base != nullrev: res.difference_update(ancs[base]) return sorted(res) def test_missingancestors(seed, rng): # empirically observed to take around 1 second graphcount = 100 testcount = 100 nerrs = [0] # the default mu and sigma give us a nice distribution of mostly # single-digit counts (including 0) with some higher ones def lognormrandom(mu, sigma): return int(math.floor(rng.lognormvariate(mu, sigma))) def samplerevs(nodes, mu=1.1, sigma=0.8): count = min(lognormrandom(mu, sigma), len(nodes)) return rng.sample(nodes, count) def err(seed, graph, bases, revs, output, expected): if nerrs[0] == 0: print >> sys.stderr, 'seed:', hex(seed)[:-1] if gerrs[0] == 0: print >> sys.stderr, 'graph:', graph print >> sys.stderr, '* bases:', bases print >> sys.stderr, '* revs: ', revs print >> sys.stderr, '* output: ', output print >> sys.stderr, '* expected:', expected nerrs[0] += 1 gerrs[0] += 1 for g in xrange(graphcount): graph = buildgraph(rng) ancs = buildancestorsets(graph) gerrs = [0] for _ in xrange(testcount): # start from nullrev to include it as a possibility graphnodes = range(nullrev, len(graph)) bases = samplerevs(graphnodes) revs = samplerevs(graphnodes) # fast algorithm inc = ancestor.incrementalmissingancestors(graph.__getitem__, bases) h = inc.missingancestors(revs) # reference slow algorithm r = naivemissingancestors(ancs, revs, bases) if h != r: err(seed, graph, bases, revs, h, r) # graph is a dict of child->parent adjacency lists for this graph: # o 13 # | # | o 12 # | | # | | o 11 # | | |\ # | | | | o 10 # | | | | | # | o---+ | 9 # | | | | | # o | | | | 8 # / / / / # | | o | 7 # | | | | # o---+ | 6 # / / / # | | o 5 # | |/ # | o 4 # | | # o | 3 # | | # | o 2 # |/ # o 1 # | # o 0 graph = {0: [-1], 1: [0], 2: [1], 3: [1], 4: [2], 5: [4], 6: [4], 7: [4], 8: [-1], 9: [6, 7], 10: [5], 11: [3, 7], 12: [9], 13: [8]} def genlazyancestors(revs, stoprev=0, inclusive=False): print ("%% lazy ancestor set for %s, stoprev = %s, inclusive = %s" % (revs, stoprev, inclusive)) return ancestor.lazyancestors(graph.get, revs, stoprev=stoprev, inclusive=inclusive) def printlazyancestors(s, l): print 'membership: %r' % [n for n in l if n in s] print 'iteration: %r' % list(s) def test_lazyancestors(): # Empty revs s = genlazyancestors([]) printlazyancestors(s, [3, 0, -1]) # Standard example s = genlazyancestors([11, 13]) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # Standard with ancestry in the initial set (1 is ancestor of 3) s = genlazyancestors([1, 3]) printlazyancestors(s, [1, -1, 0]) # Including revs s = genlazyancestors([11, 13], inclusive=True) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # Test with stoprev s = genlazyancestors([11, 13], stoprev=6) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) s = genlazyancestors([11, 13], stoprev=6, inclusive=True) printlazyancestors(s, [11, 13, 7, 9, 8, 3, 6, 4, 1, -1, 0]) # The C gca algorithm requires a real repo. These are textual descriptions of # DAGs that have been known to be problematic. dagtests = [ '+2*2*2/*3/2', '+3*3/*2*2/*4*4/*4/2*4/2*2', ] def test_gca(): u = ui.ui() for i, dag in enumerate(dagtests): repo = hg.repository(u, 'gca%d' % i, create=1) cl = repo.changelog if not util.safehasattr(cl.index, 'ancestors'): # C version not available return commands.debugbuilddag(u, repo, dag) # Compare the results of the Python and C versions. This does not # include choosing a winner when more than one gca exists -- we make # sure both return exactly the same set of gcas. for a in cl: for b in cl: cgcas = sorted(cl.index.ancestors(a, b)) pygcas = sorted(ancestor.ancestors(cl.parentrevs, a, b)) if cgcas != pygcas: print "test_gca: for dag %s, gcas for %d, %d:" % (dag, a, b) print " C returned: %s" % cgcas print " Python returned: %s" % pygcas def main(): seed = None opts, args = getopt.getopt(sys.argv[1:], 's:', ['seed=']) for o, a in opts: if o in ('-s', '--seed'): seed = long(a, base=0) # accepts base 10 or 16 strings if seed is None: try: seed = long(binascii.hexlify(os.urandom(16)), 16) except AttributeError: seed = long(time.time() * 1000) rng = random.Random(seed) test_missingancestors(seed, rng) test_lazyancestors() test_gca() if __name__ == '__main__': main()