// macros.rs // // Copyright 2019 Raphaël Gomès // // This software may be used and distributed according to the terms of the // GNU General Public License version 2 or any later version. //! Macros for use in the `hg-cpython` bridge library. use crate::exceptions::AlreadyBorrowed; use cpython::{PyResult, Python}; use std::cell::{Cell, Ref, RefCell, RefMut}; /// Manages the shared state between Python and Rust #[derive(Default)] pub struct PySharedState { leak_count: Cell, mutably_borrowed: Cell, } impl PySharedState { pub fn borrow_mut<'a, T>( &'a self, py: Python<'a>, pyrefmut: RefMut<'a, T>, ) -> PyResult> { if self.mutably_borrowed.get() { return Err(AlreadyBorrowed::new( py, "Cannot borrow mutably while there exists another \ mutable reference in a Python object", )); } match self.leak_count.get() { 0 => { self.mutably_borrowed.replace(true); Ok(PyRefMut::new(py, pyrefmut, self)) } // TODO // For now, this works differently than Python references // in the case of iterators. // Python does not complain when the data an iterator // points to is modified if the iterator is never used // afterwards. // Here, we are stricter than this by refusing to give a // mutable reference if it is already borrowed. // While the additional safety might be argued for, it // breaks valid programming patterns in Python and we need // to fix this issue down the line. _ => Err(AlreadyBorrowed::new( py, "Cannot borrow mutably while there are \ immutable references in Python objects", )), } } /// Return a reference to the wrapped data with an artificial static /// lifetime. /// We need to be protected by the GIL for thread-safety. /// /// # Safety /// /// This is highly unsafe since the lifetime of the given data can be /// extended. Do not call this function directly. pub unsafe fn leak_immutable( &self, py: Python, data: &PySharedRefCell, ) -> PyResult<&'static T> { if self.mutably_borrowed.get() { return Err(AlreadyBorrowed::new( py, "Cannot borrow immutably while there is a \ mutable reference in Python objects", )); } let ptr = data.as_ptr(); self.leak_count.replace(self.leak_count.get() + 1); Ok(&*ptr) } /// # Safety /// /// It's unsafe to update the reference count without knowing the /// reference is deleted. Do not call this function directly. pub unsafe fn decrease_leak_count(&self, _py: Python, mutable: bool) { self.leak_count .replace(self.leak_count.get().saturating_sub(1)); if mutable { self.mutably_borrowed.replace(false); } } } /// `RefCell` wrapper to be safely used in conjunction with `PySharedState`. /// /// Only immutable operation is allowed through this interface. #[derive(Debug)] pub struct PySharedRefCell { inner: RefCell, } impl PySharedRefCell { pub const fn new(value: T) -> PySharedRefCell { Self { inner: RefCell::new(value), } } pub fn borrow(&self) -> Ref { // py_shared_state isn't involved since // - inner.borrow() would fail if self is mutably borrowed, // - and inner.borrow_mut() would fail while self is borrowed. self.inner.borrow() } pub fn as_ptr(&self) -> *mut T { self.inner.as_ptr() } pub unsafe fn borrow_mut(&self) -> RefMut { // must be borrowed by self.py_shared_state(py).borrow_mut(). self.inner.borrow_mut() } } /// Holds a mutable reference to data shared between Python and Rust. pub struct PyRefMut<'a, T> { inner: RefMut<'a, T>, py_shared_state: &'a PySharedState, } impl<'a, T> PyRefMut<'a, T> { // Must be constructed by PySharedState after checking its leak_count. // Otherwise, drop() would incorrectly update the state. fn new( _py: Python<'a>, inner: RefMut<'a, T>, py_shared_state: &'a PySharedState, ) -> Self { Self { inner, py_shared_state, } } } impl<'a, T> std::ops::Deref for PyRefMut<'a, T> { type Target = RefMut<'a, T>; fn deref(&self) -> &Self::Target { &self.inner } } impl<'a, T> std::ops::DerefMut for PyRefMut<'a, T> { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.inner } } impl<'a, T> Drop for PyRefMut<'a, T> { fn drop(&mut self) { let gil = Python::acquire_gil(); let py = gil.python(); unsafe { self.py_shared_state.decrease_leak_count(py, true); } } } /// Allows a `py_class!` generated struct to share references to one of its /// data members with Python. /// /// # Warning /// /// The targeted `py_class!` needs to have the /// `data py_shared_state: PySharedState;` data attribute to compile. /// A better, more complicated macro is needed to automatically insert it, /// but this one is not yet really battle tested (what happens when /// multiple references are needed?). See the example below. /// /// TODO allow Python container types: for now, integration with the garbage /// collector does not extend to Rust structs holding references to Python /// objects. Should the need surface, `__traverse__` and `__clear__` will /// need to be written as per the `rust-cpython` docs on GC integration. /// /// # Parameters /// /// * `$name` is the same identifier used in for `py_class!` macro call. /// * `$inner_struct` is the identifier of the underlying Rust struct /// * `$data_member` is the identifier of the data member of `$inner_struct` /// that will be shared. /// * `$leaked` is the identifier to give to the struct that will manage /// references to `$name`, to be used for example in other macros like /// `py_shared_mapping_iterator`. /// /// # Example /// /// ``` /// struct MyStruct { /// inner: Vec; /// } /// /// py_class!(pub class MyType |py| { /// data inner: PySharedRefCell; /// data py_shared_state: PySharedState; /// }); /// /// py_shared_ref!(MyType, MyStruct, inner, MyTypeLeakedRef); /// ``` macro_rules! py_shared_ref { ( $name: ident, $inner_struct: ident, $data_member: ident, $leaked: ident, ) => { impl $name { fn borrow_mut<'a>( &'a self, py: Python<'a>, ) -> PyResult> { // assert $data_member type use crate::ref_sharing::PySharedRefCell; let data: &PySharedRefCell<_> = self.$data_member(py); self.py_shared_state(py) .borrow_mut(py, unsafe { data.borrow_mut() }) } /// Returns a leaked reference and its management object. /// /// # Safety /// /// It's up to you to make sure that the management object lives /// longer than the leaked reference. Otherwise, you'll get a /// dangling reference. unsafe fn leak_immutable<'a>( &'a self, py: Python<'a>, ) -> PyResult<($leaked, &'static $inner_struct)> { // assert $data_member type use crate::ref_sharing::PySharedRefCell; let data: &PySharedRefCell<_> = self.$data_member(py); let static_ref = self.py_shared_state(py).leak_immutable(py, data)?; let leak_handle = $leaked::new(py, self); Ok((leak_handle, static_ref)) } } /// Manage immutable references to `$name` leaked into Python /// iterators. /// /// In truth, this does not represent leaked references themselves; /// it is instead useful alongside them to manage them. pub struct $leaked { inner: $name, } impl $leaked { // Marked as unsafe so client code wouldn't construct $leaked // struct by mistake. Its drop() is unsafe. unsafe fn new(py: Python, inner: &$name) -> Self { Self { inner: inner.clone_ref(py), } } } impl Drop for $leaked { fn drop(&mut self) { let gil = Python::acquire_gil(); let py = gil.python(); let state = self.inner.py_shared_state(py); unsafe { state.decrease_leak_count(py, false); } } } }; } /// Defines a `py_class!` that acts as a Python iterator over a Rust iterator. macro_rules! py_shared_iterator_impl { ( $name: ident, $leaked: ident, $iterator_type: ty, $success_func: expr, $success_type: ty ) => { py_class!(pub class $name |py| { data inner: RefCell>; data it: RefCell<$iterator_type>; def __next__(&self) -> PyResult<$success_type> { let mut inner_opt = self.inner(py).borrow_mut(); if inner_opt.is_some() { match self.it(py).borrow_mut().next() { None => { // replace Some(inner) by None, drop $leaked inner_opt.take(); Ok(None) } Some(res) => { $success_func(py, res) } } } else { Ok(None) } } def __iter__(&self) -> PyResult { Ok(self.clone_ref(py)) } }); impl $name { pub fn from_inner( py: Python, leaked: Option<$leaked>, it: $iterator_type ) -> PyResult { Self::create_instance( py, RefCell::new(leaked), RefCell::new(it) ) } } }; } /// Defines a `py_class!` that acts as a Python mapping iterator over a Rust /// iterator. /// /// TODO: this is a bit awkward to use, and a better (more complicated) /// procedural macro would simplify the interface a lot. /// /// # Parameters /// /// * `$name` is the identifier to give to the resulting Rust struct. /// * `$leaked` corresponds to `$leaked` in the matching `py_shared_ref!` call. /// * `$key_type` is the type of the key in the mapping /// * `$value_type` is the type of the value in the mapping /// * `$success_func` is a function for processing the Rust `(key, value)` /// tuple on iteration success, turning it into something Python understands. /// * `$success_func` is the return type of `$success_func` /// /// # Example /// /// ``` /// struct MyStruct { /// inner: HashMap, Vec>; /// } /// /// py_class!(pub class MyType |py| { /// data inner: PySharedRefCell; /// data py_shared_state: PySharedState; /// /// def __iter__(&self) -> PyResult { /// let (leak_handle, leaked_ref) = unsafe { self.leak_immutable(py)? }; /// MyTypeItemsIterator::create_instance( /// py, /// RefCell::new(Some(leak_handle)), /// RefCell::new(leaked_ref.iter()), /// ) /// } /// }); /// /// impl MyType { /// fn translate_key_value( /// py: Python, /// res: (&Vec, &Vec), /// ) -> PyResult> { /// let (f, entry) = res; /// Ok(Some(( /// PyBytes::new(py, f), /// PyBytes::new(py, entry), /// ))) /// } /// } /// /// py_shared_ref!(MyType, MyStruct, inner, MyTypeLeakedRef); /// /// py_shared_mapping_iterator!( /// MyTypeItemsIterator, /// MyTypeLeakedRef, /// Vec, /// Vec, /// MyType::translate_key_value, /// Option<(PyBytes, PyBytes)> /// ); /// ``` #[allow(unused)] // Removed in a future patch macro_rules! py_shared_mapping_iterator { ( $name:ident, $leaked:ident, $key_type: ty, $value_type: ty, $success_func: path, $success_type: ty ) => { py_shared_iterator_impl!( $name, $leaked, Box< dyn Iterator + Send, >, $success_func, $success_type ); }; } /// Works basically the same as `py_shared_mapping_iterator`, but with only a /// key. macro_rules! py_shared_sequence_iterator { ( $name:ident, $leaked:ident, $key_type: ty, $success_func: path, $success_type: ty ) => { py_shared_iterator_impl!( $name, $leaked, Box + Send>, $success_func, $success_type ); }; }