use crate::utils::hg_path::HgPath; use crate::utils::hg_path::HgPathBuf; use crate::Revision; use im_rc::ordmap::DiffItem; use im_rc::ordmap::OrdMap; use std::cmp::Ordering; use std::collections::HashMap; use std::convert::TryInto; pub type PathCopies = HashMap; #[derive(Clone, Debug, PartialEq)] struct TimeStampedPathCopy { /// revision at which the copy information was added rev: Revision, /// the copy source, (Set to None in case of deletion of the associated /// key) path: Option, } /// maps CopyDestination to Copy Source (+ a "timestamp" for the operation) type TimeStampedPathCopies = OrdMap; /// hold parent 1, parent 2 and relevant files actions. pub type RevInfo<'a> = (Revision, Revision, ChangedFiles<'a>); /// represent the files affected by a changesets /// /// This hold a subset of mercurial.metadata.ChangingFiles as we do not need /// all the data categories tracked by it. /// This hold a subset of mercurial.metadata.ChangingFiles as we do not need /// all the data categories tracked by it. pub struct ChangedFiles<'a> { nb_items: u32, index: &'a [u8], data: &'a [u8], } /// Represent active changes that affect the copy tracing. enum Action<'a> { /// The parent ? children edge is removing a file /// /// (actually, this could be the edge from the other parent, but it does /// not matters) Removed(&'a HgPath), /// The parent ? children edge introduce copy information between (dest, /// source) Copied(&'a HgPath, &'a HgPath), } /// This express the possible "special" case we can get in a merge /// /// See mercurial/metadata.py for details on these values. #[derive(PartialEq)] enum MergeCase { /// Merged: file had history on both side that needed to be merged Merged, /// Salvaged: file was candidate for deletion, but survived the merge Salvaged, /// Normal: Not one of the two cases above Normal, } type FileChange<'a> = (u8, &'a HgPath, &'a HgPath); const EMPTY: &[u8] = b""; const COPY_MASK: u8 = 3; const P1_COPY: u8 = 2; const P2_COPY: u8 = 3; const ACTION_MASK: u8 = 28; const REMOVED: u8 = 12; const MERGED: u8 = 8; const SALVAGED: u8 = 16; impl<'a> ChangedFiles<'a> { const INDEX_START: usize = 4; const ENTRY_SIZE: u32 = 9; const FILENAME_START: u32 = 1; const COPY_SOURCE_START: u32 = 5; pub fn new(data: &'a [u8]) -> Self { assert!( data.len() >= 4, "data size ({}) is too small to contain the header (4)", data.len() ); let nb_items_raw: [u8; 4] = (&data[0..=3]) .try_into() .expect("failed to turn 4 bytes into 4 bytes"); let nb_items = u32::from_be_bytes(nb_items_raw); let index_size = (nb_items * Self::ENTRY_SIZE) as usize; let index_end = Self::INDEX_START + index_size; assert!( data.len() >= index_end, "data size ({}) is too small to fit the index_data ({})", data.len(), index_end ); let ret = ChangedFiles { nb_items, index: &data[Self::INDEX_START..index_end], data: &data[index_end..], }; let max_data = ret.filename_end(nb_items - 1) as usize; assert!( ret.data.len() >= max_data, "data size ({}) is too small to fit all data ({})", data.len(), index_end + max_data ); ret } pub fn new_empty() -> Self { ChangedFiles { nb_items: 0, index: EMPTY, data: EMPTY, } } /// internal function to return an individual entry at a given index fn entry(&'a self, idx: u32) -> FileChange<'a> { if idx >= self.nb_items { panic!( "index for entry is higher that the number of file {} >= {}", idx, self.nb_items ) } let flags = self.flags(idx); let filename = self.filename(idx); let copy_idx = self.copy_idx(idx); let copy_source = self.filename(copy_idx); (flags, filename, copy_source) } /// internal function to return the filename of the entry at a given index fn filename(&self, idx: u32) -> &HgPath { let filename_start; if idx == 0 { filename_start = 0; } else { filename_start = self.filename_end(idx - 1) } let filename_end = self.filename_end(idx); let filename_start = filename_start as usize; let filename_end = filename_end as usize; HgPath::new(&self.data[filename_start..filename_end]) } /// internal function to return the flag field of the entry at a given /// index fn flags(&self, idx: u32) -> u8 { let idx = idx as usize; self.index[idx * (Self::ENTRY_SIZE as usize)] } /// internal function to return the end of a filename part at a given index fn filename_end(&self, idx: u32) -> u32 { let start = (idx * Self::ENTRY_SIZE) + Self::FILENAME_START; let end = (idx * Self::ENTRY_SIZE) + Self::COPY_SOURCE_START; let start = start as usize; let end = end as usize; let raw = (&self.index[start..end]) .try_into() .expect("failed to turn 4 bytes into 4 bytes"); u32::from_be_bytes(raw) } /// internal function to return index of the copy source of the entry at a /// given index fn copy_idx(&self, idx: u32) -> u32 { let start = (idx * Self::ENTRY_SIZE) + Self::COPY_SOURCE_START; let end = (idx + 1) * Self::ENTRY_SIZE; let start = start as usize; let end = end as usize; let raw = (&self.index[start..end]) .try_into() .expect("failed to turn 4 bytes into 4 bytes"); u32::from_be_bytes(raw) } /// Return an iterator over all the `Action` in this instance. fn iter_actions(&self, parent: Parent) -> ActionsIterator { ActionsIterator { changes: &self, parent: parent, current: 0, } } /// return the MergeCase value associated with a filename fn get_merge_case(&self, path: &HgPath) -> MergeCase { if self.nb_items == 0 { return MergeCase::Normal; } let mut low_part = 0; let mut high_part = self.nb_items; while low_part < high_part { let cursor = (low_part + high_part - 1) / 2; let (flags, filename, _source) = self.entry(cursor); match path.cmp(filename) { Ordering::Less => low_part = cursor + 1, Ordering::Greater => high_part = cursor, Ordering::Equal => { return match flags & ACTION_MASK { MERGED => MergeCase::Merged, SALVAGED => MergeCase::Salvaged, _ => MergeCase::Normal, }; } } } MergeCase::Normal } } /// A struct responsible for answering "is X ancestors of Y" quickly /// /// The structure will delegate ancestors call to a callback, and cache the /// result. #[derive(Debug)] struct AncestorOracle<'a, A: Fn(Revision, Revision) -> bool> { inner: &'a A, pairs: HashMap<(Revision, Revision), bool>, } impl<'a, A: Fn(Revision, Revision) -> bool> AncestorOracle<'a, A> { fn new(func: &'a A) -> Self { Self { inner: func, pairs: HashMap::default(), } } /// returns `true` if `anc` is an ancestors of `desc`, `false` otherwise fn is_ancestor(&mut self, anc: Revision, desc: Revision) -> bool { if anc > desc { false } else if anc == desc { true } else { if let Some(b) = self.pairs.get(&(anc, desc)) { *b } else { let b = (self.inner)(anc, desc); self.pairs.insert((anc, desc), b); b } } } } struct ActionsIterator<'a> { changes: &'a ChangedFiles<'a>, parent: Parent, current: u32, } impl<'a> Iterator for ActionsIterator<'a> { type Item = Action<'a>; fn next(&mut self) -> Option> { let copy_flag = match self.parent { Parent::FirstParent => P1_COPY, Parent::SecondParent => P2_COPY, }; while self.current < self.changes.nb_items { let (flags, file, source) = self.changes.entry(self.current); self.current += 1; if (flags & ACTION_MASK) == REMOVED { return Some(Action::Removed(file)); } let copy = flags & COPY_MASK; if copy == copy_flag { return Some(Action::Copied(file, source)); } } return None; } } /// A small struct whose purpose is to ensure lifetime of bytes referenced in /// ChangedFiles /// /// It is passed to the RevInfoMaker callback who can assign any necessary /// content to the `data` attribute. The copy tracing code is responsible for /// keeping the DataHolder alive at least as long as the ChangedFiles object. pub struct DataHolder { /// RevInfoMaker callback should assign data referenced by the /// ChangedFiles struct it return to this attribute. The DataHolder /// lifetime will be at least as long as the ChangedFiles one. pub data: Option, } pub type RevInfoMaker<'a, D> = Box Fn(Revision, &'r mut DataHolder) -> RevInfo<'r> + 'a>; /// enum used to carry information about the parent → child currently processed #[derive(Copy, Clone, Debug)] enum Parent { /// The `p1(x) → x` edge FirstParent, /// The `p2(x) → x` edge SecondParent, } /// Same as mercurial.copies._combine_changeset_copies, but in Rust. /// /// Arguments are: /// /// revs: all revisions to be considered /// children: a {parent ? [childrens]} mapping /// target_rev: the final revision we are combining copies to /// rev_info(rev): callback to get revision information: /// * first parent /// * second parent /// * ChangedFiles /// isancestors(low_rev, high_rev): callback to check if a revision is an /// ancestor of another pub fn combine_changeset_copies bool, D>( revs: Vec, children: HashMap>, target_rev: Revision, rev_info: RevInfoMaker, is_ancestor: &A, ) -> PathCopies { let mut all_copies = HashMap::new(); let mut oracle = AncestorOracle::new(is_ancestor); for rev in revs { // Retrieve data computed in a previous iteration let copies = all_copies.remove(&rev); let copies = match copies { Some(c) => c, None => TimeStampedPathCopies::default(), // root of the walked set }; let current_children = match children.get(&rev) { Some(c) => c, None => panic!("inconsistent `revs` and `children`"), }; for child in current_children { // We will chain the copies information accumulated for `rev` with // the individual copies information for each of its children. // Creating a new PathCopies for each `rev` → `children` vertex. let mut d: DataHolder = DataHolder { data: None }; let (p1, p2, changes) = rev_info(*child, &mut d); let parent = if rev == p1 { Parent::FirstParent } else { assert_eq!(rev, p2); Parent::SecondParent }; let new_copies = add_from_changes(&copies, &changes, parent, *child); // Merge has two parents needs to combines their copy information. // // If the vertex from the other parent was already processed, we // will have a value for the child ready to be used. We need to // grab it and combine it with the one we already // computed. If not we can simply store the newly // computed data. The processing happening at // the time of the second parent will take care of combining the // two TimeStampedPathCopies instance. match all_copies.remove(child) { None => { all_copies.insert(child, new_copies); } Some(other_copies) => { let (minor, major) = match parent { Parent::FirstParent => (other_copies, new_copies), Parent::SecondParent => (new_copies, other_copies), }; let merged_copies = merge_copies_dict(minor, major, &changes, &mut oracle); all_copies.insert(child, merged_copies); } }; } } // Drop internal information (like the timestamp) and return the final // mapping. let tt_result = all_copies .remove(&target_rev) .expect("target revision was not processed"); let mut result = PathCopies::default(); for (dest, tt_source) in tt_result { if let Some(path) = tt_source.path { result.insert(dest, path); } } result } /// Combine ChangedFiles with some existing PathCopies information and return /// the result fn add_from_changes( base_copies: &TimeStampedPathCopies, changes: &ChangedFiles, parent: Parent, current_rev: Revision, ) -> TimeStampedPathCopies { let mut copies = base_copies.clone(); for action in changes.iter_actions(parent) { match action { Action::Copied(dest, source) => { let entry; if let Some(v) = base_copies.get(source) { entry = match &v.path { Some(path) => Some((*(path)).to_owned()), None => Some(source.to_owned()), } } else { entry = Some(source.to_owned()); } // Each new entry is introduced by the children, we // record this information as we will need it to take // the right decision when merging conflicting copy // information. See merge_copies_dict for details. let ttpc = TimeStampedPathCopy { rev: current_rev, path: entry, }; copies.insert(dest.to_owned(), ttpc); } Action::Removed(f) => { // We must drop copy information for removed file. // // We need to explicitly record them as dropped to // propagate this information when merging two // TimeStampedPathCopies object. if copies.contains_key(f.as_ref()) { let ttpc = TimeStampedPathCopy { rev: current_rev, path: None, }; copies.insert(f.to_owned(), ttpc); } } } } copies } /// merge two copies-mapping together, minor and major /// /// In case of conflict, value from "major" will be picked, unless in some /// cases. See inline documentation for details. fn merge_copies_dict bool>( minor: TimeStampedPathCopies, major: TimeStampedPathCopies, changes: &ChangedFiles, oracle: &mut AncestorOracle, ) -> TimeStampedPathCopies { if minor.is_empty() { major } else if major.is_empty() { minor } else { let mut override_minor = Vec::new(); let mut override_major = Vec::new(); let mut to_major = |k: &HgPathBuf, v: &TimeStampedPathCopy| { override_major.push((k.clone(), v.clone())) }; let mut to_minor = |k: &HgPathBuf, v: &TimeStampedPathCopy| { override_minor.push((k.clone(), v.clone())) }; // The diff function leverage detection of the identical subpart if // minor and major has some common ancestors. This make it very // fast is most case. // // In case where the two map are vastly different in size, the current // approach is still slowish because the iteration will iterate over // all the "exclusive" content of the larger on. This situation can be // frequent when the subgraph of revision we are processing has a lot // of roots. Each roots adding they own fully new map to the mix (and // likely a small map, if the path from the root to the "main path" is // small. // // We could do better by detecting such situation and processing them // differently. for d in minor.diff(&major) { match d { DiffItem::Add(k, v) => to_minor(k, v), DiffItem::Remove(k, v) => to_major(k, v), DiffItem::Update { old, new } => { let (dest, src_major) = new; let (_, src_minor) = old; match compare_value( changes, oracle, dest, src_minor, src_major, ) { MergePick::Major => to_minor(dest, src_major), MergePick::Minor => to_major(dest, src_minor), // If the two entry are identical, no need to do // anything (but diff should not have yield them) MergePick::Any => unreachable!(), } } }; } let updates; let mut result; if override_major.is_empty() { result = major } else if override_minor.is_empty() { result = minor } else { if override_minor.len() < override_major.len() { updates = override_minor; result = minor; } else { updates = override_major; result = major; } for (k, v) in updates { result.insert(k, v); } } result } } /// represent the side that should prevail when merging two /// TimeStampedPathCopies enum MergePick { /// The "major" (p1) side prevails Major, /// The "minor" (p2) side prevails Minor, /// Any side could be used (because they are the same) Any, } /// decide which side prevails in case of conflicting values #[allow(clippy::if_same_then_else)] fn compare_value bool>( changes: &ChangedFiles, oracle: &mut AncestorOracle, dest: &HgPathBuf, src_minor: &TimeStampedPathCopy, src_major: &TimeStampedPathCopy, ) -> MergePick { if src_major.path == src_minor.path { // we have the same value, but from other source; if src_major.rev == src_minor.rev { // If the two entry are identical, they are both valid MergePick::Any } else if oracle.is_ancestor(src_major.rev, src_minor.rev) { MergePick::Minor } else { MergePick::Major } } else if src_major.rev == src_minor.rev { // We cannot get copy information for both p1 and p2 in the // same rev. So this is the same value. unreachable!( "conflict information from p1 and p2 in the same revision" ); } else { let action = changes.get_merge_case(&dest); if src_major.path.is_none() && action == MergeCase::Salvaged { // If the file is "deleted" in the major side but was // salvaged by the merge, we keep the minor side alive MergePick::Minor } else if src_minor.path.is_none() && action == MergeCase::Salvaged { // If the file is "deleted" in the minor side but was // salvaged by the merge, unconditionnaly preserve the // major side. MergePick::Major } else if action == MergeCase::Merged { // If the file was actively merged, copy information // from each side might conflict. The major side will // win such conflict. MergePick::Major } else if oracle.is_ancestor(src_major.rev, src_minor.rev) { // If the minor side is strictly newer than the major // side, it should be kept. MergePick::Minor } else if src_major.path.is_some() { // without any special case, the "major" value win // other the "minor" one. MergePick::Major } else if oracle.is_ancestor(src_minor.rev, src_major.rev) { // the "major" rev is a direct ancestors of "minor", // any different value should // overwrite MergePick::Major } else { // major version is None (so the file was deleted on // that branch) and that branch is independant (neither // minor nor major is an ancestors of the other one.) // We preserve the new // information about the new file. MergePick::Minor } } }