// Copyright 2018-2023 Georges Racinet // and Mercurial contributors // // This software may be used and distributed according to the terms of the // GNU General Public License version 2 or any later version. //! Mercurial concepts for handling revision history pub mod node; pub mod nodemap; mod nodemap_docket; pub mod path_encode; pub use node::{FromHexError, Node, NodePrefix}; pub mod changelog; pub mod filelog; pub mod index; pub mod manifest; pub mod patch; use std::borrow::Cow; use std::collections::HashSet; use std::io::Read; use std::ops::Deref; use std::path::Path; use flate2::read::ZlibDecoder; use sha1::{Digest, Sha1}; use std::cell::RefCell; use zstd; use self::node::{NODE_BYTES_LENGTH, NULL_NODE}; use self::nodemap_docket::NodeMapDocket; use super::index::Index; use super::index::INDEX_ENTRY_SIZE; use super::nodemap::{NodeMap, NodeMapError}; use crate::config::{Config, ResourceProfileValue}; use crate::errors::HgError; use crate::exit_codes; use crate::requirements::{ GENERALDELTA_REQUIREMENT, NARROW_REQUIREMENT, SPARSEREVLOG_REQUIREMENT, }; use crate::vfs::VfsImpl; /// As noted in revlog.c, revision numbers are actually encoded in /// 4 bytes, and are liberally converted to ints, whence the i32 pub type BaseRevision = i32; /// Mercurial revision numbers /// In contrast to the more general [`UncheckedRevision`], these are "checked" /// in the sense that they should only be used for revisions that are /// valid for a given index (i.e. in bounds). #[derive( Debug, derive_more::Display, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord, )] pub struct Revision(pub BaseRevision); impl format_bytes::DisplayBytes for Revision { fn display_bytes( &self, output: &mut dyn std::io::Write, ) -> std::io::Result<()> { self.0.display_bytes(output) } } /// Unchecked Mercurial revision numbers. /// /// Values of this type have no guarantee of being a valid revision number /// in any context. Use method `check_revision` to get a valid revision within /// the appropriate index object. #[derive( Debug, derive_more::Display, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord, )] pub struct UncheckedRevision(pub BaseRevision); impl format_bytes::DisplayBytes for UncheckedRevision { fn display_bytes( &self, output: &mut dyn std::io::Write, ) -> std::io::Result<()> { self.0.display_bytes(output) } } impl From for UncheckedRevision { fn from(value: Revision) -> Self { Self(value.0) } } impl From for UncheckedRevision { fn from(value: BaseRevision) -> Self { Self(value) } } /// Marker expressing the absence of a parent /// /// Independently of the actual representation, `NULL_REVISION` is guaranteed /// to be smaller than all existing revisions. pub const NULL_REVISION: Revision = Revision(-1); /// Same as `mercurial.node.wdirrev` /// /// This is also equal to `i32::max_value()`, but it's better to spell /// it out explicitely, same as in `mercurial.node` #[allow(clippy::unreadable_literal)] pub const WORKING_DIRECTORY_REVISION: UncheckedRevision = UncheckedRevision(0x7fffffff); pub const WORKING_DIRECTORY_HEX: &str = "ffffffffffffffffffffffffffffffffffffffff"; /// The simplest expression of what we need of Mercurial DAGs. pub trait Graph { /// Return the two parents of the given `Revision`. /// /// Each of the parents can be independently `NULL_REVISION` fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError>; } #[derive(Clone, Debug, PartialEq)] pub enum GraphError { ParentOutOfRange(Revision), } impl Graph for &T { fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> { (*self).parents(rev) } } /// The Mercurial Revlog Index /// /// This is currently limited to the minimal interface that is needed for /// the [`nodemap`](nodemap/index.html) module pub trait RevlogIndex { /// Total number of Revisions referenced in this index fn len(&self) -> usize; fn is_empty(&self) -> bool { self.len() == 0 } /// Return a reference to the Node or `None` for `NULL_REVISION` fn node(&self, rev: Revision) -> Option<&Node>; /// Return a [`Revision`] if `rev` is a valid revision number for this /// index. /// /// [`NULL_REVISION`] is considered to be valid. #[inline(always)] fn check_revision(&self, rev: UncheckedRevision) -> Option { let rev = rev.0; if rev == NULL_REVISION.0 || (rev >= 0 && (rev as usize) < self.len()) { Some(Revision(rev)) } else { None } } } const REVISION_FLAG_CENSORED: u16 = 1 << 15; const REVISION_FLAG_ELLIPSIS: u16 = 1 << 14; const REVISION_FLAG_EXTSTORED: u16 = 1 << 13; const REVISION_FLAG_HASCOPIESINFO: u16 = 1 << 12; // Keep this in sync with REVIDX_KNOWN_FLAGS in // mercurial/revlogutils/flagutil.py const REVIDX_KNOWN_FLAGS: u16 = REVISION_FLAG_CENSORED | REVISION_FLAG_ELLIPSIS | REVISION_FLAG_EXTSTORED | REVISION_FLAG_HASCOPIESINFO; const NULL_REVLOG_ENTRY_FLAGS: u16 = 0; #[derive(Debug, derive_more::From, derive_more::Display)] pub enum RevlogError { InvalidRevision, /// Working directory is not supported WDirUnsupported, /// Found more than one entry whose ID match the requested prefix AmbiguousPrefix, #[from] Other(HgError), } impl From for RevlogError { fn from(error: NodeMapError) -> Self { match error { NodeMapError::MultipleResults => RevlogError::AmbiguousPrefix, NodeMapError::RevisionNotInIndex(rev) => RevlogError::corrupted( format!("nodemap point to revision {} not in index", rev), ), } } } fn corrupted>(context: S) -> HgError { HgError::corrupted(format!("corrupted revlog, {}", context.as_ref())) } impl RevlogError { fn corrupted>(context: S) -> Self { RevlogError::Other(corrupted(context)) } } #[derive(derive_more::Display, Debug, Copy, Clone, PartialEq, Eq)] pub enum RevlogType { Changelog, Manifestlog, Filelog, } impl TryFrom for RevlogType { type Error = HgError; fn try_from(value: usize) -> Result { match value { 1001 => Ok(Self::Changelog), 1002 => Ok(Self::Manifestlog), 1003 => Ok(Self::Filelog), t => Err(HgError::abort( format!("Unknown revlog type {}", t), exit_codes::ABORT, None, )), } } } #[derive(Debug, Copy, Clone, PartialEq, Eq)] pub enum CompressionEngine { Zlib { /// Between 0 and 9 included level: u32, }, Zstd { /// Between 0 and 22 included level: u32, /// Never used in practice for now threads: u32, }, /// No compression is performed None, } impl CompressionEngine { pub fn set_level(&mut self, new_level: usize) -> Result<(), HgError> { match self { CompressionEngine::Zlib { level } => { if new_level > 9 { return Err(HgError::abort( format!( "invalid compression zlib compression level {}", new_level ), exit_codes::ABORT, None, )); } *level = new_level as u32; } CompressionEngine::Zstd { level, .. } => { if new_level > 22 { return Err(HgError::abort( format!( "invalid compression zstd compression level {}", new_level ), exit_codes::ABORT, None, )); } *level = new_level as u32; } CompressionEngine::None => {} } Ok(()) } pub fn zstd( zstd_level: Option, ) -> Result { let mut engine = CompressionEngine::Zstd { level: 3, threads: 0, }; if let Some(level) = zstd_level { engine.set_level(level as usize)?; } Ok(engine) } } impl Default for CompressionEngine { fn default() -> Self { Self::Zlib { level: 6 } } } #[derive(Debug, Clone, Copy, PartialEq)] /// Holds configuration values about how the revlog data is read pub struct RevlogDataConfig { /// Should we try to open the "pending" version of the revlog pub try_pending: bool, /// Should we try to open the "split" version of the revlog pub try_split: bool, /// When True, `indexfile` should be opened with `checkambig=True` at /// writing time, to avoid file stat ambiguity pub check_ambig: bool, /// If true, use mmap instead of reading to deal with large indexes pub mmap_large_index: bool, /// How much data is considered large pub mmap_index_threshold: Option, /// How much data to read and cache into the raw revlog data cache pub chunk_cache_size: u64, /// The size of the uncompressed cache compared to the largest revision /// seen pub uncompressed_cache_factor: Option, /// The number of chunks cached pub uncompressed_cache_count: Option, /// Allow sparse reading of the revlog data pub with_sparse_read: bool, /// Minimal density of a sparse read chunk pub sr_density_threshold: f64, /// Minimal size of the data we skip when performing sparse reads pub sr_min_gap_size: u64, /// Whether deltas are encoded against arbitrary bases pub general_delta: bool, } impl RevlogDataConfig { pub fn new( config: &Config, requirements: &HashSet, ) -> Result { let mut data_config = Self::default(); if let Some(chunk_cache_size) = config.get_byte_size(b"format", b"chunkcachesize")? { data_config.chunk_cache_size = chunk_cache_size; } let memory_profile = config.get_resource_profile(Some("memory")); if memory_profile.value >= ResourceProfileValue::Medium { data_config.uncompressed_cache_count = Some(10_000); data_config.uncompressed_cache_factor = Some(4.0); if memory_profile.value >= ResourceProfileValue::High { data_config.uncompressed_cache_factor = Some(10.0) } } if let Some(mmap_index_threshold) = config .get_byte_size(b"storage", b"revlog.mmap.index:size-threshold")? { data_config.mmap_index_threshold = Some(mmap_index_threshold); } let with_sparse_read = config.get_bool(b"experimental", b"sparse-read")?; if let Some(sr_density_threshold) = config .get_f64(b"experimental", b"sparse-read.density-threshold")? { data_config.sr_density_threshold = sr_density_threshold; } data_config.with_sparse_read = with_sparse_read; if let Some(sr_min_gap_size) = config .get_byte_size(b"experimental", b"sparse-read.min-gap-size")? { data_config.sr_min_gap_size = sr_min_gap_size; } data_config.with_sparse_read = requirements.contains(SPARSEREVLOG_REQUIREMENT); Ok(data_config) } } impl Default for RevlogDataConfig { fn default() -> Self { Self { chunk_cache_size: 65536, sr_density_threshold: 0.50, sr_min_gap_size: 262144, try_pending: Default::default(), try_split: Default::default(), check_ambig: Default::default(), mmap_large_index: Default::default(), mmap_index_threshold: Default::default(), uncompressed_cache_factor: Default::default(), uncompressed_cache_count: Default::default(), with_sparse_read: Default::default(), general_delta: Default::default(), } } } #[derive(Debug, Clone, Copy, PartialEq)] /// Holds configuration values about how new deltas are computed. /// /// Some attributes are duplicated from [`RevlogDataConfig`] to help having /// each object self contained. pub struct RevlogDeltaConfig { /// Whether deltas can be encoded against arbitrary bases pub general_delta: bool, /// Allow sparse writing of the revlog data pub sparse_revlog: bool, /// Maximum length of a delta chain pub max_chain_len: Option, /// Maximum distance between a delta chain's start and end pub max_deltachain_span: Option, /// If `upper_bound_comp` is not None, this is the expected maximal /// gain from compression for the data content pub upper_bound_comp: Option, /// Should we try a delta against both parents pub delta_both_parents: bool, /// Test delta base candidate groups by chunks of this maximal size pub candidate_group_chunk_size: u64, /// Should we display debug information about delta computation pub debug_delta: bool, /// Trust incoming deltas by default pub lazy_delta: bool, /// Trust the base of incoming deltas by default pub lazy_delta_base: bool, } impl RevlogDeltaConfig { pub fn new( config: &Config, requirements: &HashSet, revlog_type: RevlogType, ) -> Result { let mut delta_config = Self { delta_both_parents: config .get_option_no_default( b"storage", b"revlog.optimize-delta-parent-choice", )? .unwrap_or(true), candidate_group_chunk_size: config .get_u64( b"storage", b"revlog.delta-parent-search.candidate-group-chunk-size", )? .unwrap_or_default(), ..Default::default() }; delta_config.debug_delta = config.get_bool(b"debug", b"revlog.debug-delta")?; delta_config.general_delta = requirements.contains(GENERALDELTA_REQUIREMENT); let lazy_delta = config.get_bool(b"storage", b"revlog.reuse-external-delta")?; if revlog_type == RevlogType::Manifestlog { // upper bound of what we expect from compression // (real life value seems to be 3) delta_config.upper_bound_comp = Some(3.0) } let mut lazy_delta_base = false; if lazy_delta { lazy_delta_base = match config.get_option_no_default( b"storage", b"revlog.reuse-external-delta-parent", )? { Some(base) => base, None => config.get_bool(b"format", b"generaldelta")?, }; } delta_config.lazy_delta = lazy_delta; delta_config.lazy_delta_base = lazy_delta_base; delta_config.max_deltachain_span = match config.get_i64(b"experimental", b"maxdeltachainspan")? { Some(span) => { if span < 0 { None } else { Some(span as u64) } } None => None, }; delta_config.sparse_revlog = requirements.contains(SPARSEREVLOG_REQUIREMENT); delta_config.max_chain_len = config.get_byte_size_no_default(b"format", b"maxchainlen")?; Ok(delta_config) } } impl Default for RevlogDeltaConfig { fn default() -> Self { Self { delta_both_parents: true, lazy_delta: true, general_delta: Default::default(), sparse_revlog: Default::default(), max_chain_len: Default::default(), max_deltachain_span: Default::default(), upper_bound_comp: Default::default(), candidate_group_chunk_size: Default::default(), debug_delta: Default::default(), lazy_delta_base: Default::default(), } } } #[derive(Debug, Default, Clone, Copy, PartialEq)] /// Holds configuration values about the available revlog features pub struct RevlogFeatureConfig { /// The compression engine and its options pub compression_engine: CompressionEngine, /// Can we use censor on this revlog pub censorable: bool, /// Does this revlog use the "side data" feature pub has_side_data: bool, /// Might remove this configuration once the rank computation has no /// impact pub compute_rank: bool, /// Parent order is supposed to be semantically irrelevant, so we /// normally re-sort parents to ensure that the first parent is non-null, /// if there is a non-null parent at all. /// filelog abuses the parent order as a flag to mark some instances of /// meta-encoded files, so allow it to disable this behavior. pub canonical_parent_order: bool, /// Can ellipsis commit be used pub enable_ellipsis: bool, } impl RevlogFeatureConfig { pub fn new( config: &Config, requirements: &HashSet, ) -> Result { let mut feature_config = Self::default(); let zlib_level = config.get_u32(b"storage", b"revlog.zlib.level")?; let zstd_level = config.get_u32(b"storage", b"revlog.zstd.level")?; feature_config.compression_engine = CompressionEngine::default(); for requirement in requirements { if requirement.starts_with("revlog-compression-") || requirement.starts_with("exp-compression-") { let split = &mut requirement.splitn(3, '-'); split.next(); split.next(); feature_config.compression_engine = match split.next().unwrap() { "zstd" => CompressionEngine::zstd(zstd_level)?, e => { return Err(HgError::UnsupportedFeature(format!( "Unsupported compression engine '{e}'" ))) } }; } } if let Some(level) = zlib_level { if matches!( feature_config.compression_engine, CompressionEngine::Zlib { .. } ) { feature_config .compression_engine .set_level(level as usize)?; } } feature_config.enable_ellipsis = requirements.contains(NARROW_REQUIREMENT); Ok(feature_config) } } /// Read only implementation of revlog. pub struct Revlog { /// When index and data are not interleaved: bytes of the revlog index. /// When index and data are interleaved: bytes of the revlog index and /// data. index: Index, /// When index and data are not interleaved: bytes of the revlog data data_bytes: Option + Send>>, /// When present on disk: the persistent nodemap for this revlog nodemap: Option, } impl Graph for Revlog { fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> { self.index.parents(rev) } } #[derive(Debug, Copy, Clone, PartialEq)] pub enum RevlogVersionOptions { V0, V1 { general_delta: bool, inline: bool }, V2, ChangelogV2 { compute_rank: bool }, } /// Options to govern how a revlog should be opened, usually from the /// repository configuration or requirements. #[derive(Debug, Copy, Clone)] pub struct RevlogOpenOptions { /// The revlog version, along with any option specific to this version pub version: RevlogVersionOptions, /// Whether the revlog uses a persistent nodemap. pub use_nodemap: bool, pub delta_config: RevlogDeltaConfig, pub data_config: RevlogDataConfig, pub feature_config: RevlogFeatureConfig, } #[cfg(test)] impl Default for RevlogOpenOptions { fn default() -> Self { Self { version: RevlogVersionOptions::V1 { general_delta: true, inline: false, }, use_nodemap: true, data_config: Default::default(), delta_config: Default::default(), feature_config: Default::default(), } } } impl RevlogOpenOptions { pub fn new( inline: bool, data_config: RevlogDataConfig, delta_config: RevlogDeltaConfig, feature_config: RevlogFeatureConfig, ) -> Self { Self { version: RevlogVersionOptions::V1 { general_delta: data_config.general_delta, inline, }, use_nodemap: false, data_config, delta_config, feature_config, } } pub fn index_header(&self) -> index::IndexHeader { index::IndexHeader { header_bytes: match self.version { RevlogVersionOptions::V0 => [0, 0, 0, 0], RevlogVersionOptions::V1 { general_delta, inline, } => [ 0, if general_delta && inline { 3 } else if general_delta { 2 } else { u8::from(inline) }, 0, 1, ], RevlogVersionOptions::V2 => 0xDEADu32.to_be_bytes(), RevlogVersionOptions::ChangelogV2 { compute_rank: _ } => { 0xD34Du32.to_be_bytes() } }, } } } impl Revlog { /// Open a revlog index file. /// /// It will also open the associated data file if index and data are not /// interleaved. pub fn open( // Todo use the `Vfs` trait here once we create a function for mmap store_vfs: &VfsImpl, index_path: impl AsRef, data_path: Option<&Path>, options: RevlogOpenOptions, ) -> Result { Self::open_gen(store_vfs, index_path, data_path, options, None) } fn open_gen( // Todo use the `Vfs` trait here once we create a function for mmap store_vfs: &VfsImpl, index_path: impl AsRef, data_path: Option<&Path>, options: RevlogOpenOptions, nodemap_for_test: Option, ) -> Result { let index_path = index_path.as_ref(); let index = { match store_vfs.mmap_open_opt(index_path)? { None => Index::new( Box::>::default(), options.index_header(), ), Some(index_mmap) => { let index = Index::new( Box::new(index_mmap), options.index_header(), )?; Ok(index) } } }?; let default_data_path = index_path.with_extension("d"); // type annotation required // won't recognize Mmap as Deref let data_bytes: Option + Send>> = if index.is_inline() { None } else if index.is_empty() { // No need to even try to open the data file then. Some(Box::new(&[][..])) } else { let data_path = data_path.unwrap_or(&default_data_path); let data_mmap = store_vfs.mmap_open(data_path)?; Some(Box::new(data_mmap)) }; let nodemap = if index.is_inline() || !options.use_nodemap { None } else { NodeMapDocket::read_from_file(store_vfs, index_path)?.map( |(docket, data)| { nodemap::NodeTree::load_bytes( Box::new(data), docket.data_length, ) }, ) }; let nodemap = nodemap_for_test.or(nodemap); Ok(Revlog { index, data_bytes, nodemap, }) } /// Return number of entries of the `Revlog`. pub fn len(&self) -> usize { self.index.len() } /// Returns `true` if the `Revlog` has zero `entries`. pub fn is_empty(&self) -> bool { self.index.is_empty() } /// Returns the node ID for the given revision number, if it exists in this /// revlog pub fn node_from_rev(&self, rev: UncheckedRevision) -> Option<&Node> { if rev == NULL_REVISION.into() { return Some(&NULL_NODE); } let rev = self.index.check_revision(rev)?; Some(self.index.get_entry(rev)?.hash()) } /// Return the revision number for the given node ID, if it exists in this /// revlog pub fn rev_from_node( &self, node: NodePrefix, ) -> Result { if let Some(nodemap) = &self.nodemap { nodemap .find_bin(&self.index, node)? .ok_or(RevlogError::InvalidRevision) } else { self.rev_from_node_no_persistent_nodemap(node) } } /// Same as `rev_from_node`, without using a persistent nodemap /// /// This is used as fallback when a persistent nodemap is not present. /// This happens when the persistent-nodemap experimental feature is not /// enabled, or for small revlogs. fn rev_from_node_no_persistent_nodemap( &self, node: NodePrefix, ) -> Result { // Linear scan of the revlog // TODO: consider building a non-persistent nodemap in memory to // optimize these cases. let mut found_by_prefix = None; for rev in (-1..self.len() as BaseRevision).rev() { let rev = Revision(rev as BaseRevision); let candidate_node = if rev == Revision(-1) { NULL_NODE } else { let index_entry = self.index.get_entry(rev).ok_or_else(|| { HgError::corrupted( "revlog references a revision not in the index", ) })?; *index_entry.hash() }; if node == candidate_node { return Ok(rev); } if node.is_prefix_of(&candidate_node) { if found_by_prefix.is_some() { return Err(RevlogError::AmbiguousPrefix); } found_by_prefix = Some(rev) } } found_by_prefix.ok_or(RevlogError::InvalidRevision) } /// Returns whether the given revision exists in this revlog. pub fn has_rev(&self, rev: UncheckedRevision) -> bool { self.index.check_revision(rev).is_some() } /// Return the full data associated to a revision. /// /// All entries required to build the final data out of deltas will be /// retrieved as needed, and the deltas will be applied to the inital /// snapshot to rebuild the final data. pub fn get_rev_data( &self, rev: UncheckedRevision, ) -> Result, RevlogError> { if rev == NULL_REVISION.into() { return Ok(Cow::Borrowed(&[])); }; self.get_entry(rev)?.data() } /// [`Self::get_rev_data`] for checked revisions. pub fn get_rev_data_for_checked_rev( &self, rev: Revision, ) -> Result, RevlogError> { if rev == NULL_REVISION { return Ok(Cow::Borrowed(&[])); }; self.get_entry_for_checked_rev(rev)?.data() } /// Check the hash of some given data against the recorded hash. pub fn check_hash( &self, p1: Revision, p2: Revision, expected: &[u8], data: &[u8], ) -> bool { let e1 = self.index.get_entry(p1); let h1 = match e1 { Some(ref entry) => entry.hash(), None => &NULL_NODE, }; let e2 = self.index.get_entry(p2); let h2 = match e2 { Some(ref entry) => entry.hash(), None => &NULL_NODE, }; hash(data, h1.as_bytes(), h2.as_bytes()) == expected } /// Build the full data of a revision out its snapshot /// and its deltas. fn build_data_from_deltas( snapshot: RevlogEntry, deltas: &[RevlogEntry], ) -> Result, HgError> { let snapshot = snapshot.data_chunk()?; let deltas = deltas .iter() .rev() .map(RevlogEntry::data_chunk) .collect::, _>>()?; let patches: Vec<_> = deltas.iter().map(|d| patch::PatchList::new(d)).collect(); let patch = patch::fold_patch_lists(&patches); Ok(patch.apply(&snapshot)) } /// Return the revlog data. fn data(&self) -> &[u8] { match &self.data_bytes { Some(data_bytes) => data_bytes, None => panic!( "forgot to load the data or trying to access inline data" ), } } pub fn make_null_entry(&self) -> RevlogEntry { RevlogEntry { revlog: self, rev: NULL_REVISION, bytes: b"", compressed_len: 0, uncompressed_len: 0, base_rev_or_base_of_delta_chain: None, p1: NULL_REVISION, p2: NULL_REVISION, flags: NULL_REVLOG_ENTRY_FLAGS, hash: NULL_NODE, } } fn get_entry_for_checked_rev( &self, rev: Revision, ) -> Result { if rev == NULL_REVISION { return Ok(self.make_null_entry()); } let index_entry = self .index .get_entry(rev) .ok_or(RevlogError::InvalidRevision)?; let offset = index_entry.offset(); let start = if self.index.is_inline() { offset + ((rev.0 as usize + 1) * INDEX_ENTRY_SIZE) } else { offset }; let end = start + index_entry.compressed_len() as usize; let data = if self.index.is_inline() { self.index.data(start, end) } else { &self.data()[start..end] }; let base_rev = self .index .check_revision(index_entry.base_revision_or_base_of_delta_chain()) .ok_or_else(|| { RevlogError::corrupted(format!( "base revision for rev {} is invalid", rev )) })?; let p1 = self.index.check_revision(index_entry.p1()).ok_or_else(|| { RevlogError::corrupted(format!( "p1 for rev {} is invalid", rev )) })?; let p2 = self.index.check_revision(index_entry.p2()).ok_or_else(|| { RevlogError::corrupted(format!( "p2 for rev {} is invalid", rev )) })?; let entry = RevlogEntry { revlog: self, rev, bytes: data, compressed_len: index_entry.compressed_len(), uncompressed_len: index_entry.uncompressed_len(), base_rev_or_base_of_delta_chain: if base_rev == rev { None } else { Some(base_rev) }, p1, p2, flags: index_entry.flags(), hash: *index_entry.hash(), }; Ok(entry) } /// Get an entry of the revlog. pub fn get_entry( &self, rev: UncheckedRevision, ) -> Result { if rev == NULL_REVISION.into() { return Ok(self.make_null_entry()); } let rev = self.index.check_revision(rev).ok_or_else(|| { RevlogError::corrupted(format!("rev {} is invalid", rev)) })?; self.get_entry_for_checked_rev(rev) } } /// The revlog entry's bytes and the necessary informations to extract /// the entry's data. #[derive(Clone)] pub struct RevlogEntry<'revlog> { revlog: &'revlog Revlog, rev: Revision, bytes: &'revlog [u8], compressed_len: u32, uncompressed_len: i32, base_rev_or_base_of_delta_chain: Option, p1: Revision, p2: Revision, flags: u16, hash: Node, } thread_local! { // seems fine to [unwrap] here: this can only fail due to memory allocation // failing, and it's normal for that to cause panic. static ZSTD_DECODER : RefCell> = RefCell::new(zstd::bulk::Decompressor::new().ok().unwrap()); } fn zstd_decompress_to_buffer( bytes: &[u8], buf: &mut Vec, ) -> Result { ZSTD_DECODER .with(|decoder| decoder.borrow_mut().decompress_to_buffer(bytes, buf)) } impl<'revlog> RevlogEntry<'revlog> { pub fn revision(&self) -> Revision { self.rev } pub fn node(&self) -> &Node { &self.hash } pub fn uncompressed_len(&self) -> Option { u32::try_from(self.uncompressed_len).ok() } pub fn has_p1(&self) -> bool { self.p1 != NULL_REVISION } pub fn p1_entry( &self, ) -> Result>, RevlogError> { if self.p1 == NULL_REVISION { Ok(None) } else { Ok(Some(self.revlog.get_entry_for_checked_rev(self.p1)?)) } } pub fn p2_entry( &self, ) -> Result>, RevlogError> { if self.p2 == NULL_REVISION { Ok(None) } else { Ok(Some(self.revlog.get_entry_for_checked_rev(self.p2)?)) } } pub fn p1(&self) -> Option { if self.p1 == NULL_REVISION { None } else { Some(self.p1) } } pub fn p2(&self) -> Option { if self.p2 == NULL_REVISION { None } else { Some(self.p2) } } pub fn is_censored(&self) -> bool { (self.flags & REVISION_FLAG_CENSORED) != 0 } pub fn has_length_affecting_flag_processor(&self) -> bool { // Relevant Python code: revlog.size() // note: ELLIPSIS is known to not change the content (self.flags & (REVIDX_KNOWN_FLAGS ^ REVISION_FLAG_ELLIPSIS)) != 0 } /// The data for this entry, after resolving deltas if any. pub fn rawdata(&self) -> Result, RevlogError> { let mut entry = self.clone(); let mut delta_chain = vec![]; // The meaning of `base_rev_or_base_of_delta_chain` depends on // generaldelta. See the doc on `ENTRY_DELTA_BASE` in // `mercurial/revlogutils/constants.py` and the code in // [_chaininfo] and in [index_deltachain]. let uses_generaldelta = self.revlog.index.uses_generaldelta(); while let Some(base_rev) = entry.base_rev_or_base_of_delta_chain { entry = if uses_generaldelta { delta_chain.push(entry); self.revlog.get_entry_for_checked_rev(base_rev)? } else { let base_rev = UncheckedRevision(entry.rev.0 - 1); delta_chain.push(entry); self.revlog.get_entry(base_rev)? }; } let data = if delta_chain.is_empty() { entry.data_chunk()? } else { Revlog::build_data_from_deltas(entry, &delta_chain)?.into() }; Ok(data) } fn check_data( &self, data: Cow<'revlog, [u8]>, ) -> Result, RevlogError> { if self.revlog.check_hash( self.p1, self.p2, self.hash.as_bytes(), &data, ) { Ok(data) } else { if (self.flags & REVISION_FLAG_ELLIPSIS) != 0 { return Err(HgError::unsupported( "ellipsis revisions are not supported by rhg", ) .into()); } Err(corrupted(format!( "hash check failed for revision {}", self.rev )) .into()) } } pub fn data(&self) -> Result, RevlogError> { let data = self.rawdata()?; if self.rev == NULL_REVISION { return Ok(data); } if self.is_censored() { return Err(HgError::CensoredNodeError.into()); } self.check_data(data) } /// Extract the data contained in the entry. /// This may be a delta. (See `is_delta`.) fn data_chunk(&self) -> Result, HgError> { if self.bytes.is_empty() { return Ok(Cow::Borrowed(&[])); } match self.bytes[0] { // Revision data is the entirety of the entry, including this // header. b'\0' => Ok(Cow::Borrowed(self.bytes)), // Raw revision data follows. b'u' => Ok(Cow::Borrowed(&self.bytes[1..])), // zlib (RFC 1950) data. b'x' => Ok(Cow::Owned(self.uncompressed_zlib_data()?)), // zstd data. b'\x28' => Ok(Cow::Owned(self.uncompressed_zstd_data()?)), // A proper new format should have had a repo/store requirement. format_type => Err(corrupted(format!( "unknown compression header '{}'", format_type ))), } } fn uncompressed_zlib_data(&self) -> Result, HgError> { let mut decoder = ZlibDecoder::new(self.bytes); if self.is_delta() { let mut buf = Vec::with_capacity(self.compressed_len as usize); decoder .read_to_end(&mut buf) .map_err(|e| corrupted(e.to_string()))?; Ok(buf) } else { let cap = self.uncompressed_len.max(0) as usize; let mut buf = vec![0; cap]; decoder .read_exact(&mut buf) .map_err(|e| corrupted(e.to_string()))?; Ok(buf) } } fn uncompressed_zstd_data(&self) -> Result, HgError> { let cap = self.uncompressed_len.max(0) as usize; if self.is_delta() { // [cap] is usually an over-estimate of the space needed because // it's the length of delta-decoded data, but we're interested // in the size of the delta. // This means we have to [shrink_to_fit] to avoid holding on // to a large chunk of memory, but it also means we must have a // fallback branch, for the case when the delta is longer than // the original data (surprisingly, this does happen in practice) let mut buf = Vec::with_capacity(cap); match zstd_decompress_to_buffer(self.bytes, &mut buf) { Ok(_) => buf.shrink_to_fit(), Err(_) => { buf.clear(); zstd::stream::copy_decode(self.bytes, &mut buf) .map_err(|e| corrupted(e.to_string()))?; } }; Ok(buf) } else { let mut buf = Vec::with_capacity(cap); let len = zstd_decompress_to_buffer(self.bytes, &mut buf) .map_err(|e| corrupted(e.to_string()))?; if len != self.uncompressed_len as usize { Err(corrupted("uncompressed length does not match")) } else { Ok(buf) } } } /// Tell if the entry is a snapshot or a delta /// (influences on decompression). fn is_delta(&self) -> bool { self.base_rev_or_base_of_delta_chain.is_some() } } /// Calculate the hash of a revision given its data and its parents. fn hash( data: &[u8], p1_hash: &[u8], p2_hash: &[u8], ) -> [u8; NODE_BYTES_LENGTH] { let mut hasher = Sha1::new(); let (a, b) = (p1_hash, p2_hash); if a > b { hasher.update(b); hasher.update(a); } else { hasher.update(a); hasher.update(b); } hasher.update(data); *hasher.finalize().as_ref() } #[cfg(test)] mod tests { use super::*; use crate::index::IndexEntryBuilder; use itertools::Itertools; #[test] fn test_empty() { let temp = tempfile::tempdir().unwrap(); let vfs = VfsImpl { base: temp.path().to_owned(), }; std::fs::write(temp.path().join("foo.i"), b"").unwrap(); std::fs::write(temp.path().join("foo.d"), b"").unwrap(); let revlog = Revlog::open(&vfs, "foo.i", None, RevlogOpenOptions::default()) .unwrap(); assert!(revlog.is_empty()); assert_eq!(revlog.len(), 0); assert!(revlog.get_entry(0.into()).is_err()); assert!(!revlog.has_rev(0.into())); assert_eq!( revlog.rev_from_node(NULL_NODE.into()).unwrap(), NULL_REVISION ); let null_entry = revlog.get_entry(NULL_REVISION.into()).ok().unwrap(); assert_eq!(null_entry.revision(), NULL_REVISION); assert!(null_entry.data().unwrap().is_empty()); } #[test] fn test_inline() { let temp = tempfile::tempdir().unwrap(); let vfs = VfsImpl { base: temp.path().to_owned(), }; let node0 = Node::from_hex("2ed2a3912a0b24502043eae84ee4b279c18b90dd") .unwrap(); let node1 = Node::from_hex("b004912a8510032a0350a74daa2803dadfb00e12") .unwrap(); let node2 = Node::from_hex("dd6ad206e907be60927b5a3117b97dffb2590582") .unwrap(); let entry0_bytes = IndexEntryBuilder::new() .is_first(true) .with_version(1) .with_inline(true) .with_node(node0) .build(); let entry1_bytes = IndexEntryBuilder::new().with_node(node1).build(); let entry2_bytes = IndexEntryBuilder::new() .with_p1(Revision(0)) .with_p2(Revision(1)) .with_node(node2) .build(); let contents = vec![entry0_bytes, entry1_bytes, entry2_bytes] .into_iter() .flatten() .collect_vec(); std::fs::write(temp.path().join("foo.i"), contents).unwrap(); let revlog = Revlog::open(&vfs, "foo.i", None, RevlogOpenOptions::default()) .unwrap(); let entry0 = revlog.get_entry(0.into()).ok().unwrap(); assert_eq!(entry0.revision(), Revision(0)); assert_eq!(*entry0.node(), node0); assert!(!entry0.has_p1()); assert_eq!(entry0.p1(), None); assert_eq!(entry0.p2(), None); let p1_entry = entry0.p1_entry().unwrap(); assert!(p1_entry.is_none()); let p2_entry = entry0.p2_entry().unwrap(); assert!(p2_entry.is_none()); let entry1 = revlog.get_entry(1.into()).ok().unwrap(); assert_eq!(entry1.revision(), Revision(1)); assert_eq!(*entry1.node(), node1); assert!(!entry1.has_p1()); assert_eq!(entry1.p1(), None); assert_eq!(entry1.p2(), None); let p1_entry = entry1.p1_entry().unwrap(); assert!(p1_entry.is_none()); let p2_entry = entry1.p2_entry().unwrap(); assert!(p2_entry.is_none()); let entry2 = revlog.get_entry(2.into()).ok().unwrap(); assert_eq!(entry2.revision(), Revision(2)); assert_eq!(*entry2.node(), node2); assert!(entry2.has_p1()); assert_eq!(entry2.p1(), Some(Revision(0))); assert_eq!(entry2.p2(), Some(Revision(1))); let p1_entry = entry2.p1_entry().unwrap(); assert!(p1_entry.is_some()); assert_eq!(p1_entry.unwrap().revision(), Revision(0)); let p2_entry = entry2.p2_entry().unwrap(); assert!(p2_entry.is_some()); assert_eq!(p2_entry.unwrap().revision(), Revision(1)); } #[test] fn test_nodemap() { let temp = tempfile::tempdir().unwrap(); let vfs = VfsImpl { base: temp.path().to_owned(), }; // building a revlog with a forced Node starting with zeros // This is a corruption, but it does not preclude using the nodemap // if we don't try and access the data let node0 = Node::from_hex("00d2a3912a0b24502043eae84ee4b279c18b90dd") .unwrap(); let node1 = Node::from_hex("b004912a8510032a0350a74daa2803dadfb00e12") .unwrap(); let entry0_bytes = IndexEntryBuilder::new() .is_first(true) .with_version(1) .with_inline(true) .with_node(node0) .build(); let entry1_bytes = IndexEntryBuilder::new().with_node(node1).build(); let contents = vec![entry0_bytes, entry1_bytes] .into_iter() .flatten() .collect_vec(); std::fs::write(temp.path().join("foo.i"), contents).unwrap(); let mut idx = nodemap::tests::TestNtIndex::new(); idx.insert_node(Revision(0), node0).unwrap(); idx.insert_node(Revision(1), node1).unwrap(); let revlog = Revlog::open_gen( &vfs, "foo.i", None, RevlogOpenOptions::default(), Some(idx.nt), ) .unwrap(); // accessing the data shows the corruption revlog.get_entry(0.into()).unwrap().data().unwrap_err(); assert_eq!( revlog.rev_from_node(NULL_NODE.into()).unwrap(), Revision(-1) ); assert_eq!(revlog.rev_from_node(node0.into()).unwrap(), Revision(0)); assert_eq!(revlog.rev_from_node(node1.into()).unwrap(), Revision(1)); assert_eq!( revlog .rev_from_node(NodePrefix::from_hex("000").unwrap()) .unwrap(), Revision(-1) ); assert_eq!( revlog .rev_from_node(NodePrefix::from_hex("b00").unwrap()) .unwrap(), Revision(1) ); // RevlogError does not implement PartialEq // (ultimately because io::Error does not) match revlog .rev_from_node(NodePrefix::from_hex("00").unwrap()) .expect_err("Expected to give AmbiguousPrefix error") { RevlogError::AmbiguousPrefix => (), e => { panic!("Got another error than AmbiguousPrefix: {:?}", e); } }; } }