//! A layer of lower-level revlog functionality to encapsulate most of the //! IO work and expensive operations. use std::{ borrow::Cow, cell::RefCell, io::{ErrorKind, Seek, SeekFrom, Write}, ops::Deref, path::PathBuf, sync::{Arc, Mutex}, }; use schnellru::{ByMemoryUsage, LruMap}; use sha1::{Digest, Sha1}; use crate::{ errors::{HgError, IoResultExt}, exit_codes, transaction::Transaction, vfs::Vfs, }; use super::{ compression::{ uncompressed_zstd_data, CompressionConfig, Compressor, NoneCompressor, ZlibCompressor, ZstdCompressor, ZLIB_BYTE, ZSTD_BYTE, }, file_io::{DelayedBuffer, FileHandle, RandomAccessFile, WriteHandles}, index::{Index, IndexHeader, INDEX_ENTRY_SIZE}, node::{NODE_BYTES_LENGTH, NULL_NODE}, options::{RevlogDataConfig, RevlogDeltaConfig, RevlogFeatureConfig}, BaseRevision, Node, Revision, RevlogEntry, RevlogError, RevlogIndex, UncheckedRevision, NULL_REVISION, NULL_REVLOG_ENTRY_FLAGS, }; /// Matches the `_InnerRevlog` class in the Python code, as an arbitrary /// boundary to incrementally rewrite higher-level revlog functionality in /// Rust. pub struct InnerRevlog { /// When index and data are not interleaved: bytes of the revlog index. /// When index and data are interleaved (inline revlog): bytes of the /// revlog index and data. pub index: Index, /// The store vfs that is used to interact with the filesystem vfs: Box, /// The index file path, relative to the vfs root pub index_file: PathBuf, /// The data file path, relative to the vfs root (same as `index_file` /// if inline) data_file: PathBuf, /// Data config that applies to this revlog data_config: RevlogDataConfig, /// Delta config that applies to this revlog delta_config: RevlogDeltaConfig, /// Feature config that applies to this revlog feature_config: RevlogFeatureConfig, /// A view into this revlog's data file segment_file: RandomAccessFile, /// A cache of uncompressed chunks that have previously been restored. /// Its eviction policy is defined in [`Self::new`]. uncompressed_chunk_cache: Option, /// Used to keep track of the actual target during diverted writes /// for the changelog original_index_file: Option, /// Write handles to the index and data files /// XXX why duplicate from `index` and `segment_file`? writing_handles: Option, /// See [`DelayedBuffer`]. delayed_buffer: Option>>, /// Whether this revlog is inline. XXX why duplicate from `index`? pub inline: bool, /// A cache of the last revision, which is usually accessed multiple /// times. pub last_revision_cache: Mutex>, } impl InnerRevlog { pub fn new( vfs: Box, index: Index, index_file: PathBuf, data_file: PathBuf, data_config: RevlogDataConfig, delta_config: RevlogDeltaConfig, feature_config: RevlogFeatureConfig, ) -> Self { assert!(index_file.is_relative()); assert!(data_file.is_relative()); let segment_file = RandomAccessFile::new( dyn_clone::clone_box(&*vfs), if index.is_inline() { index_file.to_owned() } else { data_file.to_owned() }, ); let uncompressed_chunk_cache = data_config.uncompressed_cache_factor.map( // Arbitrary initial value // TODO check if using a hasher specific to integers is useful |_factor| RefCell::new(LruMap::with_memory_budget(65536)), ); let inline = index.is_inline(); Self { index, vfs, index_file, data_file, data_config, delta_config, feature_config, segment_file, uncompressed_chunk_cache, original_index_file: None, writing_handles: None, delayed_buffer: None, inline, last_revision_cache: Mutex::new(None), } } /// Return number of entries of the revlog index pub fn len(&self) -> usize { self.index.len() } /// Return `true` if this revlog has no entries pub fn is_empty(&self) -> bool { self.len() == 0 } /// Return whether this revlog is inline (mixed index and data) pub fn is_inline(&self) -> bool { self.inline } /// Clear all caches from this revlog pub fn clear_cache(&mut self) { assert!(!self.is_delaying()); if let Some(cache) = self.uncompressed_chunk_cache.as_ref() { // We don't clear the allocation here because it's probably faster. // We could change our minds later if this ends up being a problem // with regards to memory consumption. cache.borrow_mut().clear(); } } /// Return an entry for the null revision pub fn make_null_entry(&self) -> RevlogEntry { RevlogEntry { revlog: self, rev: NULL_REVISION, uncompressed_len: 0, p1: NULL_REVISION, p2: NULL_REVISION, flags: NULL_REVLOG_ENTRY_FLAGS, hash: NULL_NODE, } } /// Return the [`RevlogEntry`] for a [`Revision`] that is known to exist pub fn get_entry( &self, rev: Revision, ) -> Result { if rev == NULL_REVISION { return Ok(self.make_null_entry()); } let index_entry = self .index .get_entry(rev) .ok_or_else(|| RevlogError::InvalidRevision(rev.to_string()))?; let p1 = self.index.check_revision(index_entry.p1()).ok_or_else(|| { RevlogError::corrupted(format!( "p1 for rev {} is invalid", rev )) })?; let p2 = self.index.check_revision(index_entry.p2()).ok_or_else(|| { RevlogError::corrupted(format!( "p2 for rev {} is invalid", rev )) })?; let entry = RevlogEntry { revlog: self, rev, uncompressed_len: index_entry.uncompressed_len(), p1, p2, flags: index_entry.flags(), hash: *index_entry.hash(), }; Ok(entry) } /// Return the [`RevlogEntry`] for `rev`. If `rev` fails to check, this /// returns a [`RevlogError`]. pub fn get_entry_for_unchecked_rev( &self, rev: UncheckedRevision, ) -> Result { if rev == NULL_REVISION.into() { return Ok(self.make_null_entry()); } let rev = self.index.check_revision(rev).ok_or_else(|| { RevlogError::corrupted(format!("rev {} is invalid", rev)) })?; self.get_entry(rev) } /// Is the revlog currently delaying the visibility of written data? /// /// The delaying mechanism can be either in-memory or written on disk in a /// side-file. pub fn is_delaying(&self) -> bool { self.delayed_buffer.is_some() || self.original_index_file.is_some() } /// The offset of the data chunk for this revision #[inline(always)] pub fn data_start(&self, rev: Revision) -> usize { self.index.start( rev, &self .index .get_entry(rev) .unwrap_or_else(|| self.index.make_null_entry()), ) } /// The length of the data chunk for this revision #[inline(always)] pub fn data_compressed_length(&self, rev: Revision) -> usize { self.index .get_entry(rev) .unwrap_or_else(|| self.index.make_null_entry()) .compressed_len() as usize } /// The end of the data chunk for this revision #[inline(always)] pub fn end(&self, rev: Revision) -> usize { self.data_start(rev) + self.data_compressed_length(rev) } /// Return the delta parent of the given revision pub fn delta_parent(&self, rev: Revision) -> Revision { let base = self .index .get_entry(rev) .unwrap() .base_revision_or_base_of_delta_chain(); if base.0 == rev.0 { NULL_REVISION } else if self.delta_config.general_delta { Revision(base.0) } else { Revision(rev.0 - 1) } } /// Return whether `rev` points to a snapshot revision (i.e. does not have /// a delta base). pub fn is_snapshot(&self, rev: Revision) -> Result { if !self.delta_config.sparse_revlog { return Ok(self.delta_parent(rev) == NULL_REVISION); } self.index.is_snapshot_unchecked(rev) } /// Return the delta chain for `rev` according to this revlog's config. /// See [`Index::delta_chain`] for more information. pub fn delta_chain( &self, rev: Revision, stop_rev: Option, ) -> Result<(Vec, bool), HgError> { self.index.delta_chain( rev, stop_rev, self.delta_config.general_delta.into(), ) } fn compressor(&self) -> Result, HgError> { // TODO cache the compressor? Ok(match self.feature_config.compression_engine { CompressionConfig::Zlib { level } => { Box::new(ZlibCompressor::new(level)) } CompressionConfig::Zstd { level, threads } => { Box::new(ZstdCompressor::new(level, threads)) } CompressionConfig::None => Box::new(NoneCompressor), }) } /// Generate a possibly-compressed representation of data. /// Returns `None` if the data was not compressed. pub fn compress<'data>( &self, data: &'data [u8], ) -> Result>, RevlogError> { if data.is_empty() { return Ok(Some(data.into())); } let res = self.compressor()?.compress(data)?; if let Some(compressed) = res { // The revlog compressor added the header in the returned data. return Ok(Some(compressed.into())); } if data[0] == b'\0' { return Ok(Some(data.into())); } Ok(None) } /// Decompress a revlog chunk. /// /// The chunk is expected to begin with a header identifying the /// format type so it can be routed to an appropriate decompressor. pub fn decompress<'a>( &'a self, data: &'a [u8], ) -> Result, RevlogError> { if data.is_empty() { return Ok(data.into()); } // Revlogs are read much more frequently than they are written and many // chunks only take microseconds to decompress, so performance is // important here. let header = data[0]; match header { // Settings don't matter as they only affect compression ZLIB_BYTE => Ok(ZlibCompressor::new(0).decompress(data)?.into()), // Settings don't matter as they only affect compression ZSTD_BYTE => { Ok(ZstdCompressor::new(0, 0).decompress(data)?.into()) } b'\0' => Ok(data.into()), b'u' => Ok((&data[1..]).into()), other => Err(HgError::UnsupportedFeature(format!( "unknown compression header '{}'", other )) .into()), } } /// Obtain a segment of raw data corresponding to a range of revisions. /// /// Requests for data may be satisfied by a cache. /// /// Returns a 2-tuple of (offset, data) for the requested range of /// revisions. Offset is the integer offset from the beginning of the /// revlog and data is a slice of the raw byte data. /// /// Callers will need to call `self.start(rev)` and `self.length(rev)` /// to determine where each revision's data begins and ends. pub fn get_segment_for_revs( &self, start_rev: Revision, end_rev: Revision, ) -> Result<(usize, Vec), HgError> { let start = if start_rev == NULL_REVISION { 0 } else { let start_entry = self .index .get_entry(start_rev) .expect("null revision segment"); self.index.start(start_rev, &start_entry) }; let end_entry = self .index .get_entry(end_rev) .expect("null revision segment"); let end = self.index.start(end_rev, &end_entry) + self.data_compressed_length(end_rev); let length = end - start; // XXX should we use mmap instead of doing this for platforms that // support madvise/populate? Ok((start, self.segment_file.read_chunk(start, length)?)) } /// Return the uncompressed raw data for `rev` pub fn chunk_for_rev(&self, rev: Revision) -> Result, HgError> { if let Some(cache) = self.uncompressed_chunk_cache.as_ref() { if let Some(chunk) = cache.borrow_mut().get(&rev) { return Ok(chunk.clone()); } } // TODO revlogv2 should check the compression mode let data = self.get_segment_for_revs(rev, rev)?.1; let uncompressed = self.decompress(&data).map_err(|e| { HgError::abort( format!("revlog decompression error: {}", e), exit_codes::ABORT, None, ) })?; let uncompressed: Arc<[u8]> = Arc::from(uncompressed.into_owned()); if let Some(cache) = self.uncompressed_chunk_cache.as_ref() { cache.borrow_mut().insert(rev, uncompressed.clone()); } Ok(uncompressed) } /// Execute `func` within a read context for the data file, meaning that /// the read handle will be taken and discarded after the operation. pub fn with_read( &self, func: impl FnOnce() -> Result, ) -> Result { self.enter_reading_context()?; let res = func(); self.exit_reading_context(); res.map_err(Into::into) } /// `pub` only for use in hg-cpython #[doc(hidden)] pub fn enter_reading_context(&self) -> Result<(), HgError> { if self.is_empty() { // Nothing to be read return Ok(()); } if self.delayed_buffer.is_some() && self.is_inline() { return Err(HgError::abort( "revlog with delayed write should not be inline", exit_codes::ABORT, None, )); } self.segment_file.get_read_handle()?; Ok(()) } /// `pub` only for use in hg-cpython #[doc(hidden)] pub fn exit_reading_context(&self) { self.segment_file.exit_reading_context() } /// Fill the buffer returned by `get_buffer` with the possibly un-validated /// raw text for a revision. It can be already validated if it comes /// from the cache. pub fn raw_text( &self, rev: Revision, get_buffer: G, ) -> Result<(), RevlogError> where G: FnOnce( usize, &mut dyn FnMut( &mut dyn RevisionBuffer, ) -> Result<(), RevlogError>, ) -> Result<(), RevlogError>, { let entry = &self.get_entry(rev)?; let raw_size = entry.uncompressed_len(); let mut mutex_guard = self .last_revision_cache .lock() .expect("lock should not be held"); let cached_rev = if let Some((_node, rev, data)) = &*mutex_guard { Some((*rev, data.deref().as_ref())) } else { None }; if let Some(cache) = &self.uncompressed_chunk_cache { let cache = &mut cache.borrow_mut(); if let Some(size) = raw_size { // Dynamically update the uncompressed_chunk_cache size to the // largest revision we've seen in this revlog. // Do it *before* restoration in case the current revision // is the largest. let factor = self .data_config .uncompressed_cache_factor .expect("cache should not exist without factor"); let candidate_size = (size as f64 * factor) as usize; let limiter_mut = cache.limiter_mut(); if candidate_size > limiter_mut.max_memory_usage() { std::mem::swap( limiter_mut, &mut ByMemoryUsage::new(candidate_size), ); } } } entry.rawdata(cached_rev, get_buffer)?; // drop cache to save memory, the caller is expected to update // the revision cache after validating the text mutex_guard.take(); Ok(()) } /// Only `pub` for `hg-cpython`. /// Obtain decompressed raw data for the specified revisions that are /// assumed to be in ascending order. /// /// Returns a list with decompressed data for each requested revision. #[doc(hidden)] pub fn chunks( &self, revs: Vec, target_size: Option, ) -> Result>, RevlogError> { if revs.is_empty() { return Ok(vec![]); } let mut fetched_revs = vec![]; let mut chunks = Vec::with_capacity(revs.len()); match self.uncompressed_chunk_cache.as_ref() { Some(cache) => { let mut cache = cache.borrow_mut(); for rev in revs.iter() { match cache.get(rev) { Some(hit) => chunks.push((*rev, hit.to_owned())), None => fetched_revs.push(*rev), } } } None => fetched_revs = revs, } let already_cached = chunks.len(); let sliced_chunks = if fetched_revs.is_empty() { vec![] } else if !self.data_config.with_sparse_read || self.is_inline() { vec![fetched_revs] } else { self.slice_chunk(&fetched_revs, target_size)? }; self.with_read(|| { for revs_chunk in sliced_chunks { let first_rev = revs_chunk[0]; // Skip trailing revisions with empty diff let last_rev_idx = revs_chunk .iter() .rposition(|r| self.data_compressed_length(*r) != 0) .unwrap_or(revs_chunk.len() - 1); let last_rev = revs_chunk[last_rev_idx]; let (offset, data) = self.get_segment_for_revs(first_rev, last_rev)?; let revs_chunk = &revs_chunk[..=last_rev_idx]; for rev in revs_chunk { let chunk_start = self.data_start(*rev); let chunk_length = self.data_compressed_length(*rev); // TODO revlogv2 should check the compression mode let bytes = &data[chunk_start - offset..][..chunk_length]; let chunk = if !bytes.is_empty() && bytes[0] == ZSTD_BYTE { // If we're using `zstd`, we want to try a more // specialized decompression let entry = self.index.get_entry(*rev).unwrap(); let is_delta = entry .base_revision_or_base_of_delta_chain() != (*rev).into(); let uncompressed = uncompressed_zstd_data( bytes, is_delta, entry.uncompressed_len(), )?; Cow::Owned(uncompressed) } else { // Otherwise just fallback to generic decompression. self.decompress(bytes)? }; chunks.push((*rev, chunk.into())); } } Ok(()) })?; if let Some(cache) = self.uncompressed_chunk_cache.as_ref() { let mut cache = cache.borrow_mut(); for (rev, chunk) in chunks.iter().skip(already_cached) { cache.insert(*rev, chunk.clone()); } } // Use stable sort here since it's *mostly* sorted chunks.sort_by(|a, b| a.0.cmp(&b.0)); Ok(chunks.into_iter().map(|(_r, chunk)| chunk).collect()) } /// Slice revs to reduce the amount of unrelated data to be read from disk. /// /// ``revs`` is sliced into groups that should be read in one time. /// Assume that revs are sorted. /// /// The initial chunk is sliced until the overall density /// (payload/chunks-span ratio) is above /// `revlog.data_config.sr_density_threshold`. /// No gap smaller than `revlog.data_config.sr_min_gap_size` is skipped. /// /// If `target_size` is set, no chunk larger than `target_size` /// will be returned. /// For consistency with other slicing choices, this limit won't go lower /// than `revlog.data_config.sr_min_gap_size`. /// /// If individual revision chunks are larger than this limit, they will /// still be raised individually. pub fn slice_chunk( &self, revs: &[Revision], target_size: Option, ) -> Result>, RevlogError> { let target_size = target_size.map(|size| size.max(self.data_config.sr_min_gap_size)); let target_density = self.data_config.sr_density_threshold; let min_gap_size = self.data_config.sr_min_gap_size as usize; let to_density = self.index.slice_chunk_to_density( revs, target_density, min_gap_size, ); let mut sliced = vec![]; for chunk in to_density { sliced.extend( self.slice_chunk_to_size(&chunk, target_size)? .into_iter() .map(ToOwned::to_owned), ); } Ok(sliced) } /// Slice revs to match the target size /// /// This is intended to be used on chunks that density slicing selected, /// but that are still too large compared to the read guarantee of revlogs. /// This might happen when the "minimal gap size" interrupted the slicing /// or when chains are built in a way that create large blocks next to /// each other. fn slice_chunk_to_size<'a>( &self, revs: &'a [Revision], target_size: Option, ) -> Result, RevlogError> { let mut start_data = self.data_start(revs[0]); let end_data = self.end(revs[revs.len() - 1]); let full_span = end_data - start_data; let nothing_to_do = target_size .map(|size| full_span <= size as usize) .unwrap_or(true); if nothing_to_do { return Ok(vec![revs]); } let target_size = target_size.expect("target_size is set") as usize; let mut start_rev_idx = 0; let mut end_rev_idx = 1; let mut chunks = vec![]; for (idx, rev) in revs.iter().enumerate().skip(1) { let span = self.end(*rev) - start_data; let is_snapshot = self.is_snapshot(*rev)?; if span <= target_size && is_snapshot { end_rev_idx = idx + 1; } else { let chunk = self.trim_chunk(revs, start_rev_idx, Some(end_rev_idx)); if !chunk.is_empty() { chunks.push(chunk); } start_rev_idx = idx; start_data = self.data_start(*rev); end_rev_idx = idx + 1; } if !is_snapshot { break; } } // For the others, we use binary slicing to quickly converge towards // valid chunks (otherwise, we might end up looking for the start/end // of many revisions). This logic is not looking for the perfect // slicing point, it quickly converges towards valid chunks. let number_of_items = revs.len(); while (end_data - start_data) > target_size { end_rev_idx = number_of_items; if number_of_items - start_rev_idx <= 1 { // Protect against individual chunks larger than the limit break; } let mut local_end_data = self.end(revs[end_rev_idx - 1]); let mut span = local_end_data - start_data; while span > target_size { if end_rev_idx - start_rev_idx <= 1 { // Protect against individual chunks larger than the limit break; } end_rev_idx -= (end_rev_idx - start_rev_idx) / 2; local_end_data = self.end(revs[end_rev_idx - 1]); span = local_end_data - start_data; } let chunk = self.trim_chunk(revs, start_rev_idx, Some(end_rev_idx)); if !chunk.is_empty() { chunks.push(chunk); } start_rev_idx = end_rev_idx; start_data = self.data_start(revs[start_rev_idx]); } let chunk = self.trim_chunk(revs, start_rev_idx, None); if !chunk.is_empty() { chunks.push(chunk); } Ok(chunks) } /// Returns `revs[startidx..endidx]` without empty trailing revs fn trim_chunk<'a>( &self, revs: &'a [Revision], start_rev_idx: usize, end_rev_idx: Option, ) -> &'a [Revision] { let mut end_rev_idx = end_rev_idx.unwrap_or(revs.len()); // If we have a non-empty delta candidate, there is nothing to trim if revs[end_rev_idx - 1].0 < self.len() as BaseRevision { // Trim empty revs at the end, except the very first rev of a chain while end_rev_idx > 1 && end_rev_idx > start_rev_idx && self.data_compressed_length(revs[end_rev_idx - 1]) == 0 { end_rev_idx -= 1 } } &revs[start_rev_idx..end_rev_idx] } /// Check the hash of some given data against the recorded hash. pub fn check_hash( &self, p1: Revision, p2: Revision, expected: &[u8], data: &[u8], ) -> bool { let e1 = self.index.get_entry(p1); let h1 = match e1 { Some(ref entry) => entry.hash(), None => &NULL_NODE, }; let e2 = self.index.get_entry(p2); let h2 = match e2 { Some(ref entry) => entry.hash(), None => &NULL_NODE, }; hash(data, h1.as_bytes(), h2.as_bytes()) == expected } /// Returns whether we are currently in a [`Self::with_write`] context pub fn is_writing(&self) -> bool { self.writing_handles.is_some() } /// Open the revlog files for writing /// /// Adding content to a revlog should be done within this context. /// TODO try using `BufRead` and `BufWrite` and see if performance improves pub fn with_write( &mut self, transaction: &mut impl Transaction, data_end: Option, func: impl FnOnce() -> R, ) -> Result { if self.is_writing() { return Ok(func()); } self.enter_writing_context(data_end, transaction) .inspect_err(|_| { self.exit_writing_context(); })?; let res = func(); self.exit_writing_context(); Ok(res) } /// `pub` only for use in hg-cpython #[doc(hidden)] pub fn exit_writing_context(&mut self) { self.writing_handles.take(); self.segment_file.writing_handle.take(); self.segment_file.reading_handle.take(); } /// `pub` only for use in hg-cpython #[doc(hidden)] pub fn python_writing_handles(&self) -> Option<&WriteHandles> { self.writing_handles.as_ref() } /// `pub` only for use in hg-cpython #[doc(hidden)] pub fn enter_writing_context( &mut self, data_end: Option, transaction: &mut impl Transaction, ) -> Result<(), HgError> { let data_size = if self.is_empty() { 0 } else { self.end(Revision((self.len() - 1) as BaseRevision)) }; let data_handle = if !self.is_inline() { let data_handle = match self.vfs.open_write(&self.data_file) { Ok(mut f) => { if let Some(end) = data_end { f.seek(SeekFrom::Start(end as u64)) .when_reading_file(&self.data_file)?; } else { f.seek(SeekFrom::End(0)) .when_reading_file(&self.data_file)?; } f } Err(e) => match e { HgError::IoError { error, context } => { if error.kind() != ErrorKind::NotFound { return Err(HgError::IoError { error, context }); } self.vfs.create(&self.data_file, true)? } e => return Err(e), }, }; transaction.add(&self.data_file, data_size); Some(FileHandle::from_file( data_handle, dyn_clone::clone_box(&*self.vfs), &self.data_file, )) } else { None }; let index_size = self.len() * INDEX_ENTRY_SIZE; let index_handle = self.index_write_handle()?; if self.is_inline() { transaction.add(&self.index_file, data_size); } else { transaction.add(&self.index_file, index_size); } self.writing_handles = Some(WriteHandles { index_handle: index_handle.clone(), data_handle: data_handle.clone(), }); *self.segment_file.reading_handle.borrow_mut() = if self.is_inline() { Some(index_handle) } else { data_handle }; Ok(()) } /// Get a write handle to the index, sought to the end of its data. fn index_write_handle(&self) -> Result { let res = if self.delayed_buffer.is_none() { if self.data_config.check_ambig { self.vfs.open_check_ambig(&self.index_file) } else { self.vfs.open_write(&self.index_file) } } else { self.vfs.open_write(&self.index_file) }; match res { Ok(mut handle) => { handle .seek(SeekFrom::End(0)) .when_reading_file(&self.index_file)?; Ok( if let Some(delayed_buffer) = self.delayed_buffer.as_ref() { FileHandle::from_file_delayed( handle, dyn_clone::clone_box(&*self.vfs), &self.index_file, delayed_buffer.clone(), )? } else { FileHandle::from_file( handle, dyn_clone::clone_box(&*self.vfs), &self.index_file, ) }, ) } Err(e) => match e { HgError::IoError { error, context } => { if error.kind() != ErrorKind::NotFound { return Err(HgError::IoError { error, context }); }; if let Some(delayed_buffer) = self.delayed_buffer.as_ref() { FileHandle::new_delayed( dyn_clone::clone_box(&*self.vfs), &self.index_file, true, delayed_buffer.clone(), ) } else { FileHandle::new( dyn_clone::clone_box(&*self.vfs), &self.index_file, true, true, ) } } e => Err(e), }, } } /// Split the data of an inline revlog into an index and a data file pub fn split_inline( &mut self, header: IndexHeader, new_index_file_path: Option, ) -> Result { assert!(self.delayed_buffer.is_none()); let existing_handles = self.writing_handles.is_some(); if let Some(handles) = &mut self.writing_handles { handles.index_handle.flush()?; self.writing_handles.take(); self.segment_file.writing_handle.take(); } let mut new_data_file_handle = self.vfs.create(&self.data_file, true)?; // Drop any potential data, possibly redundant with the VFS impl. new_data_file_handle .set_len(0) .when_writing_file(&self.data_file)?; self.with_read(|| -> Result<(), RevlogError> { for r in 0..self.index.len() { let rev = Revision(r as BaseRevision); let rev_segment = self.get_segment_for_revs(rev, rev)?.1; new_data_file_handle .write_all(&rev_segment) .when_writing_file(&self.data_file)?; } new_data_file_handle .flush() .when_writing_file(&self.data_file)?; Ok(()) })?; if let Some(index_path) = new_index_file_path { self.index_file = index_path } let mut new_index_handle = self.vfs.create(&self.index_file, true)?; let mut new_data = Vec::with_capacity(self.len() * INDEX_ENTRY_SIZE); for r in 0..self.len() { let rev = Revision(r as BaseRevision); let entry = self.index.entry_binary(rev).unwrap_or_else(|| { panic!( "entry {} should exist in {}", r, self.index_file.display() ) }); if r == 0 { new_data.extend(header.header_bytes); } new_data.extend(entry); } new_index_handle .write_all(&new_data) .when_writing_file(&self.index_file)?; // Replace the index with a new one because the buffer contains inline // data self.index = Index::new(Box::new(new_data), header)?; self.inline = false; self.segment_file = RandomAccessFile::new( dyn_clone::clone_box(&*self.vfs), self.data_file.to_owned(), ); if existing_handles { // Switched from inline to conventional, reopen the index let new_data_handle = Some(FileHandle::from_file( new_data_file_handle, dyn_clone::clone_box(&*self.vfs), &self.data_file, )); self.writing_handles = Some(WriteHandles { index_handle: self.index_write_handle()?, data_handle: new_data_handle.clone(), }); *self.segment_file.writing_handle.borrow_mut() = new_data_handle; } Ok(self.index_file.to_owned()) } /// Write a new entry to this revlog. /// - `entry` is the index bytes /// - `header_and_data` is the compression header and the revision data /// - `offset` is the position in the data file to write to /// - `index_end` is the overwritten position in the index in revlog-v2, /// since the format may allow a rewrite of garbage data at the end. /// - `data_end` is the overwritten position in the data-file in revlog-v2, /// since the format may allow a rewrite of garbage data at the end. /// /// XXX Why do we have `data_end` *and* `offset`? Same question in Python pub fn write_entry( &mut self, mut transaction: impl Transaction, entry: &[u8], header_and_data: (&[u8], &[u8]), mut offset: usize, index_end: Option, data_end: Option, ) -> Result<(u64, Option), HgError> { let current_revision = self.len() - 1; let canonical_index_file = self.canonical_index_file(); let is_inline = self.is_inline(); let handles = match &mut self.writing_handles { None => { return Err(HgError::abort( "adding revision outside of the `with_write` context", exit_codes::ABORT, None, )); } Some(handles) => handles, }; let index_handle = &mut handles.index_handle; let data_handle = &mut handles.data_handle; if let Some(end) = index_end { index_handle .seek(SeekFrom::Start(end)) .when_reading_file(&self.index_file)?; } else { index_handle .seek(SeekFrom::End(0)) .when_reading_file(&self.index_file)?; } if let Some(data_handle) = data_handle { if let Some(end) = data_end { data_handle .seek(SeekFrom::Start(end)) .when_reading_file(&self.data_file)?; } else { data_handle .seek(SeekFrom::End(0)) .when_reading_file(&self.data_file)?; } } let (header, data) = header_and_data; if !is_inline { transaction.add(&self.data_file, offset); transaction .add(&canonical_index_file, current_revision * entry.len()); let data_handle = data_handle .as_mut() .expect("data handle should exist when not inline"); if !header.is_empty() { data_handle.write_all(header)?; } data_handle.write_all(data)?; match &mut self.delayed_buffer { Some(buf) => { buf.lock() .expect("propagate the panic") .buffer .write_all(entry) .expect("write to delay buffer should succeed"); } None => index_handle.write_all(entry)?, } } else if self.delayed_buffer.is_some() { return Err(HgError::abort( "invalid delayed write on inline revlog", exit_codes::ABORT, None, )); } else { offset += current_revision * entry.len(); transaction.add(&canonical_index_file, offset); index_handle.write_all(entry)?; index_handle.write_all(header)?; index_handle.write_all(data)?; } let data_position = match data_handle { Some(h) => Some(h.position()?), None => None, }; Ok((index_handle.position()?, data_position)) } /// Return the real target index file and not the temporary when diverting pub fn canonical_index_file(&self) -> PathBuf { self.original_index_file .as_ref() .map(ToOwned::to_owned) .unwrap_or_else(|| self.index_file.to_owned()) } /// Return the path to the diverted index fn diverted_index(&self) -> PathBuf { self.index_file.with_extension("i.a") } /// True if we're in a [`Self::with_write`] or [`Self::with_read`] context pub fn is_open(&self) -> bool { self.segment_file.is_open() } /// Set this revlog to delay its writes to a buffer pub fn delay(&mut self) -> Result, HgError> { assert!(!self.is_open()); if self.is_inline() { return Err(HgError::abort( "revlog with delayed write should not be inline", exit_codes::ABORT, None, )); } if self.delayed_buffer.is_some() || self.original_index_file.is_some() { // Delay or divert already happening return Ok(None); } if self.is_empty() { self.original_index_file = Some(self.index_file.to_owned()); self.index_file = self.diverted_index(); if self.vfs.exists(&self.index_file) { self.vfs.unlink(&self.index_file)?; } Ok(Some(self.index_file.to_owned())) } else { self.delayed_buffer = Some(Arc::new(Mutex::new(DelayedBuffer::default()))); Ok(None) } } /// Write the pending data (in memory) if any to the diverted index file /// (on disk temporary file) pub fn write_pending( &mut self, ) -> Result<(Option, bool), HgError> { assert!(!self.is_open()); if self.is_inline() { return Err(HgError::abort( "revlog with delayed write should not be inline", exit_codes::ABORT, None, )); } if self.original_index_file.is_some() { return Ok((None, true)); } let mut any_pending = false; let pending_index_file = self.diverted_index(); if self.vfs.exists(&pending_index_file) { self.vfs.unlink(&pending_index_file)?; } self.vfs.copy(&self.index_file, &pending_index_file)?; if let Some(delayed_buffer) = self.delayed_buffer.take() { let mut index_file_handle = self.vfs.open_write(&pending_index_file)?; index_file_handle .seek(SeekFrom::End(0)) .when_writing_file(&pending_index_file)?; let delayed_data = &delayed_buffer.lock().expect("propagate the panic").buffer; index_file_handle .write_all(delayed_data) .when_writing_file(&pending_index_file)?; any_pending = true; } self.original_index_file = Some(self.index_file.to_owned()); self.index_file = pending_index_file; Ok((Some(self.index_file.to_owned()), any_pending)) } /// Overwrite the canonical file with the diverted file, or write out the /// delayed buffer. /// Returns an error if the revlog is neither diverted nor delayed. pub fn finalize_pending(&mut self) -> Result { assert!(!self.is_open()); if self.is_inline() { return Err(HgError::abort( "revlog with delayed write should not be inline", exit_codes::ABORT, None, )); } match ( self.delayed_buffer.as_ref(), self.original_index_file.as_ref(), ) { (None, None) => { return Err(HgError::abort( "neither delay nor divert found on this revlog", exit_codes::ABORT, None, )); } (Some(delay), None) => { let mut index_file_handle = self.vfs.open_write(&self.index_file)?; index_file_handle .seek(SeekFrom::End(0)) .when_writing_file(&self.index_file)?; index_file_handle .write_all( &delay.lock().expect("propagate the panic").buffer, ) .when_writing_file(&self.index_file)?; self.delayed_buffer = None; } (None, Some(divert)) => { if self.vfs.exists(&self.index_file) { self.vfs.rename(&self.index_file, divert, true)?; } divert.clone_into(&mut self.index_file); self.original_index_file = None; } (Some(_), Some(_)) => unreachable!( "{} is in an inconsistent state of both delay and divert", self.canonical_index_file().display(), ), } Ok(self.canonical_index_file()) } /// `pub` only for `hg-cpython`. This is made a different method than /// [`Revlog::index`] in case there is a different invariant that pops up /// later. #[doc(hidden)] pub fn shared_index(&self) -> &Index { &self.index } } /// The use of a [`Refcell`] assumes that a given revlog will only /// be accessed (read or write) by a single thread. type UncompressedChunkCache = RefCell, ByMemoryUsage>>; /// The node, revision and data for the last revision we've seen. Speeds up /// a lot of sequential operations of the revlog. /// /// The data is not just bytes since it can come from Python and we want to /// avoid copies if possible. type SingleRevisionCache = (Node, Revision, Box + Send>); /// A way of progressively filling a buffer with revision data, then return /// that buffer. Used to abstract away Python-allocated code to reduce copying /// for performance reasons. pub trait RevisionBuffer { /// The owned buffer type to return type Target; /// Copies the slice into the buffer fn extend_from_slice(&mut self, slice: &[u8]); /// Returns the now finished owned buffer fn finish(self) -> Self::Target; } /// A simple vec-based buffer. This is uselessly complicated for the pure Rust /// case, but it's the price to pay for Python compatibility. #[derive(Debug)] pub(super) struct CoreRevisionBuffer { buf: Vec, } impl CoreRevisionBuffer { pub fn new() -> Self { Self { buf: vec![] } } #[inline] pub fn resize(&mut self, size: usize) { self.buf.reserve_exact(size - self.buf.capacity()); } } impl RevisionBuffer for CoreRevisionBuffer { type Target = Vec; #[inline] fn extend_from_slice(&mut self, slice: &[u8]) { self.buf.extend_from_slice(slice); } #[inline] fn finish(self) -> Self::Target { self.buf } } /// Calculate the hash of a revision given its data and its parents. pub fn hash( data: &[u8], p1_hash: &[u8], p2_hash: &[u8], ) -> [u8; NODE_BYTES_LENGTH] { let mut hasher = Sha1::new(); let (a, b) = (p1_hash, p2_hash); if a > b { hasher.update(b); hasher.update(a); } else { hasher.update(a); hasher.update(b); } hasher.update(data); *hasher.finalize().as_ref() }