import imp import inspect import io import os import types import unittest try: import hypothesis except ImportError: hypothesis = None class TestCase(unittest.TestCase): if not getattr(unittest.TestCase, "assertRaisesRegex", False): assertRaisesRegex = unittest.TestCase.assertRaisesRegexp def make_cffi(cls): """Decorator to add CFFI versions of each test method.""" # The module containing this class definition should # `import zstandard as zstd`. Otherwise things may blow up. mod = inspect.getmodule(cls) if not hasattr(mod, "zstd"): raise Exception('test module does not contain "zstd" symbol') if not hasattr(mod.zstd, "backend"): raise Exception( 'zstd symbol does not have "backend" attribute; did ' "you `import zstandard as zstd`?" ) # If `import zstandard` already chose the cffi backend, there is nothing # for us to do: we only add the cffi variation if the default backend # is the C extension. if mod.zstd.backend == "cffi": return cls old_env = dict(os.environ) os.environ["PYTHON_ZSTANDARD_IMPORT_POLICY"] = "cffi" try: try: mod_info = imp.find_module("zstandard") mod = imp.load_module("zstandard_cffi", *mod_info) except ImportError: return cls finally: os.environ.clear() os.environ.update(old_env) if mod.backend != "cffi": raise Exception("got the zstandard %s backend instead of cffi" % mod.backend) # If CFFI version is available, dynamically construct test methods # that use it. for attr in dir(cls): fn = getattr(cls, attr) if not inspect.ismethod(fn) and not inspect.isfunction(fn): continue if not fn.__name__.startswith("test_"): continue name = "%s_cffi" % fn.__name__ # Replace the "zstd" symbol with the CFFI module instance. Then copy # the function object and install it in a new attribute. if isinstance(fn, types.FunctionType): globs = dict(fn.__globals__) globs["zstd"] = mod new_fn = types.FunctionType( fn.__code__, globs, name, fn.__defaults__, fn.__closure__ ) new_method = new_fn else: globs = dict(fn.__func__.func_globals) globs["zstd"] = mod new_fn = types.FunctionType( fn.__func__.func_code, globs, name, fn.__func__.func_defaults, fn.__func__.func_closure, ) new_method = types.UnboundMethodType(new_fn, fn.im_self, fn.im_class) setattr(cls, name, new_method) return cls class NonClosingBytesIO(io.BytesIO): """BytesIO that saves the underlying buffer on close(). This allows us to access written data after close(). """ def __init__(self, *args, **kwargs): super(NonClosingBytesIO, self).__init__(*args, **kwargs) self._saved_buffer = None def close(self): self._saved_buffer = self.getvalue() return super(NonClosingBytesIO, self).close() def getvalue(self): if self.closed: return self._saved_buffer else: return super(NonClosingBytesIO, self).getvalue() class OpCountingBytesIO(NonClosingBytesIO): def __init__(self, *args, **kwargs): self._flush_count = 0 self._read_count = 0 self._write_count = 0 return super(OpCountingBytesIO, self).__init__(*args, **kwargs) def flush(self): self._flush_count += 1 return super(OpCountingBytesIO, self).flush() def read(self, *args): self._read_count += 1 return super(OpCountingBytesIO, self).read(*args) def write(self, data): self._write_count += 1 return super(OpCountingBytesIO, self).write(data) _source_files = [] def random_input_data(): """Obtain the raw content of source files. This is used for generating "random" data to feed into fuzzing, since it is faster than random content generation. """ if _source_files: return _source_files for root, dirs, files in os.walk(os.path.dirname(__file__)): dirs[:] = list(sorted(dirs)) for f in sorted(files): try: with open(os.path.join(root, f), "rb") as fh: data = fh.read() if data: _source_files.append(data) except OSError: pass # Also add some actual random data. _source_files.append(os.urandom(100)) _source_files.append(os.urandom(1000)) _source_files.append(os.urandom(10000)) _source_files.append(os.urandom(100000)) _source_files.append(os.urandom(1000000)) return _source_files def generate_samples(): inputs = [ b"foo", b"bar", b"abcdef", b"sometext", b"baz", ] samples = [] for i in range(128): samples.append(inputs[i % 5]) samples.append(inputs[i % 5] * (i + 3)) samples.append(inputs[-(i % 5)] * (i + 2)) return samples if hypothesis: default_settings = hypothesis.settings(deadline=10000) hypothesis.settings.register_profile("default", default_settings) ci_settings = hypothesis.settings(deadline=20000, max_examples=1000) hypothesis.settings.register_profile("ci", ci_settings) expensive_settings = hypothesis.settings(deadline=None, max_examples=10000) hypothesis.settings.register_profile("expensive", expensive_settings) hypothesis.settings.load_profile(os.environ.get("HYPOTHESIS_PROFILE", "default"))