mcdriver.py
144 lines
| 4.6 KiB
| text/x-python
|
PythonLexer
MinRK
|
r3621 | #!/usr/bin/env python | ||
"""Run a Monte-Carlo options pricer in parallel.""" | ||||
#----------------------------------------------------------------------------- | ||||
# Imports | ||||
#----------------------------------------------------------------------------- | ||||
import sys | ||||
import time | ||||
from IPython.zmq.parallel import client | ||||
import numpy as np | ||||
from mcpricer import price_options | ||||
from matplotlib import pyplot as plt | ||||
#----------------------------------------------------------------------------- | ||||
# Setup parameters for the run | ||||
#----------------------------------------------------------------------------- | ||||
def ask_question(text, the_type, default): | ||||
s = '%s [%r]: ' % (text, the_type(default)) | ||||
result = raw_input(s) | ||||
if result: | ||||
return the_type(result) | ||||
else: | ||||
return the_type(default) | ||||
cluster_profile = ask_question("Cluster profile", str, "default") | ||||
price = ask_question("Initial price", float, 100.0) | ||||
rate = ask_question("Interest rate", float, 0.05) | ||||
days = ask_question("Days to expiration", int, 260) | ||||
paths = ask_question("Number of MC paths", int, 10000) | ||||
n_strikes = ask_question("Number of strike values", int, 5) | ||||
min_strike = ask_question("Min strike price", float, 90.0) | ||||
max_strike = ask_question("Max strike price", float, 110.0) | ||||
n_sigmas = ask_question("Number of volatility values", int, 5) | ||||
min_sigma = ask_question("Min volatility", float, 0.1) | ||||
max_sigma = ask_question("Max volatility", float, 0.4) | ||||
strike_vals = np.linspace(min_strike, max_strike, n_strikes) | ||||
sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas) | ||||
#----------------------------------------------------------------------------- | ||||
# Setup for parallel calculation | ||||
#----------------------------------------------------------------------------- | ||||
# The Client is used to setup the calculation and works with all | ||||
# engines. | ||||
c = client.Client(profile=cluster_profile) | ||||
# A LoadBalancedView is an interface to the engines that provides dynamic load | ||||
# balancing at the expense of not knowing which engine will execute the code. | ||||
view = c[None] | ||||
# Initialize the common code on the engines. This Python module has the | ||||
# price_options function that prices the options. | ||||
#----------------------------------------------------------------------------- | ||||
# Perform parallel calculation | ||||
#----------------------------------------------------------------------------- | ||||
print "Running parallel calculation over strike prices and volatilities..." | ||||
print "Strike prices: ", strike_vals | ||||
print "Volatilities: ", sigma_vals | ||||
sys.stdout.flush() | ||||
# Submit tasks to the TaskClient for each (strike, sigma) pair as a MapTask. | ||||
t1 = time.time() | ||||
async_results = [] | ||||
for strike in strike_vals: | ||||
for sigma in sigma_vals: | ||||
ar = view.apply_async(price_options, price, strike, sigma, rate, days, paths) | ||||
async_results.append(ar) | ||||
print "Submitted tasks: ", len(async_results) | ||||
sys.stdout.flush() | ||||
# Block until all tasks are completed. | ||||
c.barrier(async_results) | ||||
t2 = time.time() | ||||
t = t2-t1 | ||||
print "Parallel calculation completed, time = %s s" % t | ||||
print "Collecting results..." | ||||
# Get the results using TaskClient.get_task_result. | ||||
results = [ar.get() for ar in async_results] | ||||
# Assemble the result into a structured NumPy array. | ||||
prices = np.empty(n_strikes*n_sigmas, | ||||
dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)] | ||||
) | ||||
for i, price in enumerate(results): | ||||
prices[i] = tuple(price) | ||||
prices.shape = (n_strikes, n_sigmas) | ||||
strike_mesh, sigma_mesh = np.meshgrid(strike_vals, sigma_vals) | ||||
print "Results are available: strike_mesh, sigma_mesh, prices" | ||||
print "To plot results type 'plot_options(sigma_mesh, strike_mesh, prices)'" | ||||
#----------------------------------------------------------------------------- | ||||
# Utilities | ||||
#----------------------------------------------------------------------------- | ||||
def plot_options(sigma_mesh, strike_mesh, prices): | ||||
""" | ||||
Make a contour plot of the option price in (sigma, strike) space. | ||||
""" | ||||
plt.figure(1) | ||||
plt.subplot(221) | ||||
plt.contourf(sigma_mesh, strike_mesh, prices['ecall']) | ||||
plt.axis('tight') | ||||
plt.colorbar() | ||||
plt.title('European Call') | ||||
plt.ylabel("Strike Price") | ||||
plt.subplot(222) | ||||
plt.contourf(sigma_mesh, strike_mesh, prices['acall']) | ||||
plt.axis('tight') | ||||
plt.colorbar() | ||||
plt.title("Asian Call") | ||||
plt.subplot(223) | ||||
plt.contourf(sigma_mesh, strike_mesh, prices['eput']) | ||||
plt.axis('tight') | ||||
plt.colorbar() | ||||
plt.title("European Put") | ||||
plt.xlabel("Volatility") | ||||
plt.ylabel("Strike Price") | ||||
plt.subplot(224) | ||||
plt.contourf(sigma_mesh, strike_mesh, prices['aput']) | ||||
plt.axis('tight') | ||||
plt.colorbar() | ||||
plt.title("Asian Put") | ||||
plt.xlabel("Volatility") | ||||