|
|
#!/usr/bin/env python
|
|
|
"""Run a Monte-Carlo options pricer in parallel."""
|
|
|
|
|
|
#-----------------------------------------------------------------------------
|
|
|
# Imports
|
|
|
#-----------------------------------------------------------------------------
|
|
|
|
|
|
import sys
|
|
|
import time
|
|
|
from IPython.zmq.parallel import client
|
|
|
import numpy as np
|
|
|
from mcpricer import price_options
|
|
|
from matplotlib import pyplot as plt
|
|
|
|
|
|
#-----------------------------------------------------------------------------
|
|
|
# Setup parameters for the run
|
|
|
#-----------------------------------------------------------------------------
|
|
|
|
|
|
def ask_question(text, the_type, default):
|
|
|
s = '%s [%r]: ' % (text, the_type(default))
|
|
|
result = raw_input(s)
|
|
|
if result:
|
|
|
return the_type(result)
|
|
|
else:
|
|
|
return the_type(default)
|
|
|
|
|
|
cluster_profile = ask_question("Cluster profile", str, "default")
|
|
|
price = ask_question("Initial price", float, 100.0)
|
|
|
rate = ask_question("Interest rate", float, 0.05)
|
|
|
days = ask_question("Days to expiration", int, 260)
|
|
|
paths = ask_question("Number of MC paths", int, 10000)
|
|
|
n_strikes = ask_question("Number of strike values", int, 5)
|
|
|
min_strike = ask_question("Min strike price", float, 90.0)
|
|
|
max_strike = ask_question("Max strike price", float, 110.0)
|
|
|
n_sigmas = ask_question("Number of volatility values", int, 5)
|
|
|
min_sigma = ask_question("Min volatility", float, 0.1)
|
|
|
max_sigma = ask_question("Max volatility", float, 0.4)
|
|
|
|
|
|
strike_vals = np.linspace(min_strike, max_strike, n_strikes)
|
|
|
sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas)
|
|
|
|
|
|
#-----------------------------------------------------------------------------
|
|
|
# Setup for parallel calculation
|
|
|
#-----------------------------------------------------------------------------
|
|
|
|
|
|
# The Client is used to setup the calculation and works with all
|
|
|
# engines.
|
|
|
c = client.Client(profile=cluster_profile)
|
|
|
|
|
|
# A LoadBalancedView is an interface to the engines that provides dynamic load
|
|
|
# balancing at the expense of not knowing which engine will execute the code.
|
|
|
view = c[None]
|
|
|
|
|
|
# Initialize the common code on the engines. This Python module has the
|
|
|
# price_options function that prices the options.
|
|
|
|
|
|
#-----------------------------------------------------------------------------
|
|
|
# Perform parallel calculation
|
|
|
#-----------------------------------------------------------------------------
|
|
|
|
|
|
print "Running parallel calculation over strike prices and volatilities..."
|
|
|
print "Strike prices: ", strike_vals
|
|
|
print "Volatilities: ", sigma_vals
|
|
|
sys.stdout.flush()
|
|
|
|
|
|
# Submit tasks to the TaskClient for each (strike, sigma) pair as a MapTask.
|
|
|
t1 = time.time()
|
|
|
async_results = []
|
|
|
for strike in strike_vals:
|
|
|
for sigma in sigma_vals:
|
|
|
ar = view.apply_async(price_options, price, strike, sigma, rate, days, paths)
|
|
|
async_results.append(ar)
|
|
|
|
|
|
print "Submitted tasks: ", len(async_results)
|
|
|
sys.stdout.flush()
|
|
|
|
|
|
# Block until all tasks are completed.
|
|
|
c.barrier(async_results)
|
|
|
t2 = time.time()
|
|
|
t = t2-t1
|
|
|
|
|
|
print "Parallel calculation completed, time = %s s" % t
|
|
|
print "Collecting results..."
|
|
|
|
|
|
# Get the results using TaskClient.get_task_result.
|
|
|
results = [ar.get() for ar in async_results]
|
|
|
|
|
|
# Assemble the result into a structured NumPy array.
|
|
|
prices = np.empty(n_strikes*n_sigmas,
|
|
|
dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)]
|
|
|
)
|
|
|
|
|
|
for i, price in enumerate(results):
|
|
|
prices[i] = tuple(price)
|
|
|
|
|
|
prices.shape = (n_strikes, n_sigmas)
|
|
|
strike_mesh, sigma_mesh = np.meshgrid(strike_vals, sigma_vals)
|
|
|
|
|
|
print "Results are available: strike_mesh, sigma_mesh, prices"
|
|
|
print "To plot results type 'plot_options(sigma_mesh, strike_mesh, prices)'"
|
|
|
|
|
|
#-----------------------------------------------------------------------------
|
|
|
# Utilities
|
|
|
#-----------------------------------------------------------------------------
|
|
|
|
|
|
def plot_options(sigma_mesh, strike_mesh, prices):
|
|
|
"""
|
|
|
Make a contour plot of the option price in (sigma, strike) space.
|
|
|
"""
|
|
|
plt.figure(1)
|
|
|
|
|
|
plt.subplot(221)
|
|
|
plt.contourf(sigma_mesh, strike_mesh, prices['ecall'])
|
|
|
plt.axis('tight')
|
|
|
plt.colorbar()
|
|
|
plt.title('European Call')
|
|
|
plt.ylabel("Strike Price")
|
|
|
|
|
|
plt.subplot(222)
|
|
|
plt.contourf(sigma_mesh, strike_mesh, prices['acall'])
|
|
|
plt.axis('tight')
|
|
|
plt.colorbar()
|
|
|
plt.title("Asian Call")
|
|
|
|
|
|
plt.subplot(223)
|
|
|
plt.contourf(sigma_mesh, strike_mesh, prices['eput'])
|
|
|
plt.axis('tight')
|
|
|
plt.colorbar()
|
|
|
plt.title("European Put")
|
|
|
plt.xlabel("Volatility")
|
|
|
plt.ylabel("Strike Price")
|
|
|
|
|
|
plt.subplot(224)
|
|
|
plt.contourf(sigma_mesh, strike_mesh, prices['aput'])
|
|
|
plt.axis('tight')
|
|
|
plt.colorbar()
|
|
|
plt.title("Asian Put")
|
|
|
plt.xlabel("Volatility")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|