Show More
Parallel Magics.ipynb
502 lines
| 10.3 KiB
| text/plain
|
TextLexer
|
r7053 | { | |
|
r18669 | "cells": [ | |
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"# Using Parallel Magics" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"IPython has a few magics for working with your engines.\n", | |||
"\n", | |||
"This assumes you have started an IPython cluster, either with the notebook interface,\n", | |||
"or the `ipcluster/controller/engine` commands." | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"from IPython import parallel\n", | |||
"rc = parallel.Client()\n", | |||
"dv = rc[:]\n", | |||
"rc.ids" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"Creating a Client registers the parallel magics `%px`, `%%px`, `%pxresult`, `pxconfig`, and `%autopx`. \n", | |||
"These magics are initially associated with a DirectView always associated with all currently registered engines." | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"Now we can execute code remotely with `%px`:" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%px a=5" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%px print(a)" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%px a" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"with dv.sync_imports():\n", | |||
" import sys" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%px from __future__ import print_function\n", | |||
"%px print(\"ERROR\", file=sys.stderr)" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"You don't have to wait for results. The `%pxconfig` magic lets you change the default blocking/targets for the `%px` magics:" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%pxconfig --noblock" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%px import time\n", | |||
"%px time.sleep(5)\n", | |||
"%px time.time()" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"But you will notice that this didn't output the result of the last command.\n", | |||
"For this, we have `%pxresult`, which displays the output of the latest request:" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%pxresult" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"Remember, an IPython engine is IPython, so you can do magics remotely as well!" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%pxconfig --block\n", | |||
"%px %matplotlib inline" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%%px\n", | |||
"import numpy as np\n", | |||
"import matplotlib.pyplot as plt" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"`%%px` can also be used as a cell magic, for submitting whole blocks.\n", | |||
"This one acceps `--block` and `--noblock` flags to specify\n", | |||
"the blocking behavior, though the default is unchanged.\n" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"dv.scatter('id', dv.targets, flatten=True)\n", | |||
"dv['stride'] = len(dv)" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%%px --noblock\n", | |||
"x = np.linspace(0,np.pi,1000)\n", | |||
"for n in range(id,12, stride):\n", | |||
" print(n)\n", | |||
" plt.plot(x,np.sin(n*x))\n", | |||
"plt.title(\"Plot %i\" % id)" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%pxresult" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"It also lets you choose some amount of the grouping of the outputs with `--group-outputs`:\n", | |||
"\n", | |||
"The choices are:\n", | |||
"\n", | |||
"* `engine` - all of an engine's output is collected together\n", | |||
"* `type` - where stdout of each engine is grouped, etc. (the default)\n", | |||
"* `order` - same as `type`, but individual displaypub outputs are interleaved.\n", | |||
" That is, it will output the first plot from each engine, then the second from each,\n", | |||
" etc." | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%%px --group-outputs=engine\n", | |||
"x = np.linspace(0,np.pi,1000)\n", | |||
"for n in range(id+1,12, stride):\n", | |||
" print(n)\n", | |||
" plt.figure()\n", | |||
" plt.plot(x,np.sin(n*x))\n", | |||
" plt.title(\"Plot %i\" % n)" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"When you specify 'order', then individual display outputs (e.g. plots) will be interleaved.\n", | |||
"\n", | |||
"`%pxresult` takes the same output-ordering arguments as `%%px`, \n", | |||
"so you can view the previous result in a variety of different ways with a few sequential calls to `%pxresult`:" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%pxresult --group-outputs=order" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"## Single-engine views" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"When a DirectView has a single target, the output is a bit simpler (no prefixes on stdout/err, etc.):" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"from __future__ import print_function\n", | |||
"\n", | |||
"def generate_output():\n", | |||
" \"\"\"function for testing output\n", | |||
" \n", | |||
" publishes two outputs of each type, and returns something\n", | |||
" \"\"\"\n", | |||
" \n", | |||
" import sys,os\n", | |||
" from IPython.display import display, HTML, Math\n", | |||
" \n", | |||
" print(\"stdout\")\n", | |||
" print(\"stderr\", file=sys.stderr)\n", | |||
" \n", | |||
" display(HTML(\"<b>HTML</b>\"))\n", | |||
" \n", | |||
" print(\"stdout2\")\n", | |||
" print(\"stderr2\", file=sys.stderr)\n", | |||
" \n", | |||
" display(Math(r\"\\alpha=\\beta\"))\n", | |||
" \n", | |||
" return os.getpid()\n", | |||
"\n", | |||
"dv['generate_output'] = generate_output" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"You can also have more than one set of parallel magics registered at a time.\n", | |||
"\n", | |||
"The `View.activate()` method takes a suffix argument, which is added to `'px'`." | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"e0 = rc[-1]\n", | |||
"e0.block = True\n", | |||
"e0.activate('0')" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%px0 generate_output()" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%px generate_output()" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"As mentioned above, we can redisplay those same results with various grouping:" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%pxresult --group-outputs order" | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%pxresult --group-outputs engine" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"## Parallel Exceptions" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"When you raise exceptions with the parallel exception,\n", | |||
"the CompositeError raised locally will display your remote traceback." | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%%px\n", | |||
"from numpy.random import random\n", | |||
"A = random((100,100,'invalid shape'))" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"## Remote Cell Magics" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"Remember, Engines are IPython too, so the cell that is run remotely by %%px can in turn use a cell magic." | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%%px\n", | |||
"%%timeit\n", | |||
"from numpy.random import random\n", | |||
"from numpy.linalg import norm\n", | |||
"A = random((100,100))\n", | |||
"norm(A, 2)" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"## Local Execution" | |||
] | |||
}, | |||
{ | |||
"cell_type": "markdown", | |||
"metadata": {}, | |||
"source": [ | |||
"As of IPython 1.0, you can instruct `%%px` to also execute the cell locally.\n", | |||
"This is useful for interactive definitions,\n", | |||
"or if you want to load a data source everywhere,\n", | |||
"not just on the engines." | |||
] | |||
}, | |||
{ | |||
"cell_type": "code", | |||
"execution_count": null, | |||
"metadata": { | |||
"collapsed": false | |||
}, | |||
"outputs": [], | |||
"source": [ | |||
"%%px --local\n", | |||
"import os\n", | |||
"thispid = os.getpid()\n", | |||
"print(thispid)" | |||
] | |||
|
r7053 | } | |
|
r18669 | ], | |
"metadata": {}, | |||
"nbformat": 4, | |||
"nbformat_minor": 0 | |||
|
r7053 | } |