##// END OF EJS Templates
Merged from my trunk-dev:...
Ville M. Vainio -
r1783:1b690a90 merge
parent child Browse files
Show More

The requested changes are too big and content was truncated. Show full diff

@@ -1,84 +1,85 b''
1 1 """ 'editor' hooks for common editors that work well with ipython
2 2
3 3 They should honor the line number argument, at least.
4 4
5 5 Contributions are *very* welcome.
6 6 """
7 7
8 8 import IPython.ipapi
9 9 ip = IPython.ipapi.get()
10 10
11 11 from IPython.Itpl import itplns
12 12 import os
13 13
14 14 def install_editor(run_template, wait = False):
15 15 """ Gets a template in format "myeditor bah bah $file bah bah $line"
16 16
17 17 $file will be replaced by file name, $line by line number (or 0).
18 18 Installs the editor that is called by IPython, instead of the default
19 19 notepad or vi.
20 20
21 21 If wait is true, wait until the user presses enter before returning,
22 22 to facilitate non-blocking editors that exit immediately after
23 23 the call.
24 24 """
25 25
26 26 def call_editor(self, file, line=0):
27 27 if line is None:
28 28 line = 0
29 29 cmd = itplns(run_template, locals())
30 30 print ">",cmd
31 os.system(cmd)
31 if os.system(cmd) != 0:
32 raise IPython.ipapi.TryNext()
32 33 if wait:
33 34 raw_input("Press Enter when done editing:")
34 35
35 36 ip.set_hook('editor',call_editor)
36 37
37 38
38 39 # in these, exe is always the path/name of the executable. Useful
39 40 # if you don't have the editor directory in your path
40 41
41 42 def komodo(exe = 'komodo'):
42 43 """ Activestate Komodo [Edit] """
43 44 install_editor(exe + ' -l $line "$file"', wait = True)
44 45
45 46 def scite(exe = "scite"):
46 47 """ SciTE or Sc1 """
47 48 install_editor(exe + ' "$file" -goto:$line')
48 49
49 50 def notepadplusplus(exe = 'notepad++'):
50 51 """ Notepad++ http://notepad-plus.sourceforge.net """
51 52 install_editor(exe + ' -n$line "$file"')
52 53
53 54 def jed(exe = 'jed'):
54 55 """ JED, the lightweight emacsish editor """
55 56 install_editor(exe + ' +$line "$file"')
56 57
57 58 def idle(exe = None):
58 59 """ Idle, the editor bundled with python
59 60
60 61 Should be pretty smart about finding the executable.
61 62 """
62 63 if exe is None:
63 64 import idlelib
64 65 p = os.path.dirname(idlelib.__file__)
65 66 exe = p + '/idle.py'
66 67 install_editor(exe + ' "$file"')
67 68
68 69
69 70 # these are untested, report any problems
70 71
71 72 def emacs(exe = 'emacs'):
72 73 install_editor(exe + ' +$line "$file"')
73 74
74 75 def gnuclient(exe= 'gnuclient'):
75 76 install_editor(exe + ' -nw +$line "$file"')
76 77
77 78 def crimson_editor(exe = 'cedt.exe'):
78 79 install_editor(exe + ' /L:$line "$file"')
79 80
80 81 def kate(exe = 'kate'):
81 82 install_editor(exe + ' -u -l $line "$file"')
82 83
83 84
84 85 No newline at end of file
@@ -1,270 +1,270 b''
1 1 """Shell mode for IPython.
2 2
3 3 Start ipython in shell mode by invoking "ipython -p sh"
4 4
5 5 (the old version, "ipython -p pysh" still works but this is the more "modern"
6 6 shell mode and is recommended for users who don't care about pysh-mode
7 7 compatibility)
8 8 """
9 9
10 10 from IPython import ipapi
11 import os,textwrap
11 import os,re,textwrap
12 12
13 13 # The import below effectively obsoletes your old-style ipythonrc[.ini],
14 14 # so consider yourself warned!
15 15
16 16 import ipy_defaults
17 17
18 18 def main():
19 19 ip = ipapi.get()
20 20 o = ip.options
21 21 # autocall to "full" mode (smart mode is default, I like full mode)
22 22
23 23 o.autocall = 2
24 24
25 25 # Jason Orendorff's path class is handy to have in user namespace
26 26 # if you are doing shell-like stuff
27 27 try:
28 28 ip.ex("from IPython.external.path import path" )
29 29 except ImportError:
30 30 pass
31 31
32 32 # beefed up %env is handy in shell mode
33 33 import envpersist
34 34
35 35 # To see where mycmd resides (in path/aliases), do %which mycmd
36 36 import ipy_which
37 37
38 38 # tab completers for hg, svn, ...
39 39 import ipy_app_completers
40 40
41 41 # To make executables foo and bar in mybin usable without PATH change, do:
42 42 # %rehashdir c:/mybin
43 43 # %store foo
44 44 # %store bar
45 45 import ipy_rehashdir
46 46
47 47 # does not work without subprocess module!
48 48 #import ipy_signals
49 49
50 50 ip.ex('import os')
51 51 ip.ex("def up(): os.chdir('..')")
52 52 ip.user_ns['LA'] = LastArgFinder()
53 53
54 54 # You can assign to _prompt_title variable
55 55 # to provide some extra information for prompt
56 56 # (e.g. the current mode, host/username...)
57 57
58 58 ip.user_ns['_prompt_title'] = ''
59 59
60 60 # Nice prompt
61 61 o.prompt_in1= r'\C_Green${_prompt_title}\C_LightBlue[\C_LightCyan\Y2\C_LightBlue]\C_Green|\#> '
62 62 o.prompt_in2= r'\C_Green|\C_LightGreen\D\C_Green> '
63 63 o.prompt_out= '<\#> '
64 64
65 65 from IPython import Release
66 66
67 67 import sys
68 68 # Non-chatty banner
69 69 o.banner = "IPython %s [on Py %s]\n" % (Release.version,sys.version.split(None,1)[0])
70 70
71 71
72 72 ip.IP.default_option('cd','-q')
73 73 ip.IP.default_option('macro', '-r')
74 74 # If you only rarely want to execute the things you %edit...
75 75 #ip.IP.default_option('edit','-x')
76 76
77 77
78 78 o.prompts_pad_left="1"
79 79 # Remove all blank lines in between prompts, like a normal shell.
80 80 o.separate_in="0"
81 81 o.separate_out="0"
82 82 o.separate_out2="0"
83 83
84 84 # now alias all syscommands
85 85
86 86 db = ip.db
87 87
88 88 syscmds = db.get("syscmdlist",[] )
89 89 if not syscmds:
90 90 print textwrap.dedent("""
91 91 System command list not initialized, probably the first run...
92 92 running %rehashx to refresh the command list. Run %rehashx
93 93 again to refresh command list (after installing new software etc.)
94 94 """)
95 95 ip.magic('rehashx')
96 96 syscmds = db.get("syscmdlist")
97 97
98 98 # lowcase aliases on win32 only
99 99 if os.name == 'posix':
100 100 mapper = lambda s:s
101 101 else:
102 102 def mapper(s): return s.lower()
103 103
104 104 for cmd in syscmds:
105 105 # print "sys",cmd #dbg
106 106 noext, ext = os.path.splitext(cmd)
107 107 if ext.lower() == '.exe':
108 108 cmd = noext
109 109
110 110 key = mapper(cmd)
111 111 if key not in ip.IP.alias_table:
112 112 # Dots will be removed from alias names, since ipython
113 113 # assumes names with dots to be python code
114 114
115 115 ip.defalias(key.replace('.',''), cmd)
116 116
117 117 # mglob combines 'find', recursion, exclusion... '%mglob?' to learn more
118 118 ip.load("IPython.external.mglob")
119 119
120 120 # win32 is crippled w/o cygwin, try to help it a little bit
121 121 if sys.platform == 'win32':
122 122 if 'cygwin' in os.environ['PATH'].lower():
123 123 # use the colors of cygwin ls (recommended)
124 124 ip.defalias('d', 'ls -F --color=auto')
125 125 else:
126 126 # get icp, imv, imkdir, igrep, irm,...
127 127 ip.load('ipy_fsops')
128 128
129 129 # and the next best thing to real 'ls -F'
130 130 ip.defalias('d','dir /w /og /on')
131 131
132 ip.set_hook('input_prefilter', dotslash_prefilter_f)
132 ip.set_hook('input_prefilter', slash_prefilter_f)
133 133 extend_shell_behavior(ip)
134 134
135 135 class LastArgFinder:
136 136 """ Allow $LA to work as "last argument of previous command", like $! in bash
137 137
138 138 To call this in normal IPython code, do LA()
139 139 """
140 140 def __call__(self, hist_idx = None):
141 141 ip = ipapi.get()
142 142 if hist_idx is None:
143 143 return str(self)
144 144 return ip.IP.input_hist_raw[hist_idx].strip().split()[-1]
145 145 def __str__(self):
146 146 ip = ipapi.get()
147 147 for cmd in reversed(ip.IP.input_hist_raw):
148 148 parts = cmd.strip().split()
149 149 if len(parts) < 2 or parts[-1] in ['$LA', 'LA()']:
150 150 continue
151 151 return parts[-1]
152 152 return ""
153 153
154 def dotslash_prefilter_f(self,line):
155 """ ./foo now runs foo as system command
154 def slash_prefilter_f(self,line):
155 """ ./foo, ~/foo and /bin/foo now run foo as system command
156 156
157 Removes the need for doing !./foo
157 Removes the need for doing !./foo, !~/foo or !/bin/foo
158 158 """
159 159 import IPython.genutils
160 if line.startswith("./"):
160 if re.match('(?:[.~]|/[a-zA-Z_0-9]+)/', line):
161 161 return "_ip.system(" + IPython.genutils.make_quoted_expr(line)+")"
162 162 raise ipapi.TryNext
163 163
164 164 # XXX You do not need to understand the next function!
165 165 # This should probably be moved out of profile
166 166
167 167 def extend_shell_behavior(ip):
168 168
169 169 # Instead of making signature a global variable tie it to IPSHELL.
170 170 # In future if it is required to distinguish between different
171 171 # shells we can assign a signature per shell basis
172 172 ip.IP.__sig__ = 0xa005
173 173 # mark the IPSHELL with this signature
174 174 ip.IP.user_ns['__builtins__'].__dict__['__sig__'] = ip.IP.__sig__
175 175
176 176 from IPython.Itpl import ItplNS
177 177 from IPython.genutils import shell
178 178 # utility to expand user variables via Itpl
179 179 # xxx do something sensible with depth?
180 180 ip.IP.var_expand = lambda cmd, lvars=None, depth=2: \
181 181 str(ItplNS(cmd, ip.IP.user_ns, get_locals()))
182 182
183 183 def get_locals():
184 184 """ Substituting a variable through Itpl deep inside the IPSHELL stack
185 185 requires the knowledge of all the variables in scope upto the last
186 186 IPSHELL frame. This routine simply merges all the local variables
187 187 on the IPSHELL stack without worrying about their scope rules
188 188 """
189 189 import sys
190 190 # note lambda expression constitues a function call
191 191 # hence fno should be incremented by one
192 192 getsig = lambda fno: sys._getframe(fno+1).f_globals \
193 193 ['__builtins__'].__dict__['__sig__']
194 194 getlvars = lambda fno: sys._getframe(fno+1).f_locals
195 195 # trackback until we enter the IPSHELL
196 196 frame_no = 1
197 197 sig = ip.IP.__sig__
198 198 fsig = ~sig
199 199 while fsig != sig :
200 200 try:
201 201 fsig = getsig(frame_no)
202 202 except (AttributeError, KeyError):
203 203 frame_no += 1
204 204 except ValueError:
205 205 # stack is depleted
206 206 # call did not originate from IPSHELL
207 207 return {}
208 208 first_frame = frame_no
209 209 # walk further back until we exit from IPSHELL or deplete stack
210 210 try:
211 211 while(sig == getsig(frame_no+1)):
212 212 frame_no += 1
213 213 except (AttributeError, KeyError, ValueError):
214 214 pass
215 215 # merge the locals from top down hence overriding
216 216 # any re-definitions of variables, functions etc.
217 217 lvars = {}
218 218 for fno in range(frame_no, first_frame-1, -1):
219 219 lvars.update(getlvars(fno))
220 220 #print '\n'*5, first_frame, frame_no, '\n', lvars, '\n'*5 #dbg
221 221 return lvars
222 222
223 223 def _runlines(lines):
224 224 """Run a string of one or more lines of source.
225 225
226 226 This method is capable of running a string containing multiple source
227 227 lines, as if they had been entered at the IPython prompt. Since it
228 228 exposes IPython's processing machinery, the given strings can contain
229 229 magic calls (%magic), special shell access (!cmd), etc."""
230 230
231 231 # We must start with a clean buffer, in case this is run from an
232 232 # interactive IPython session (via a magic, for example).
233 233 ip.IP.resetbuffer()
234 234 lines = lines.split('\n')
235 235 more = 0
236 236 command = ''
237 237 for line in lines:
238 238 # skip blank lines so we don't mess up the prompt counter, but do
239 239 # NOT skip even a blank line if we are in a code block (more is
240 240 # true)
241 241 # if command is not empty trim the line
242 242 if command != '' :
243 243 line = line.strip()
244 244 # add the broken line to the command
245 245 if line and line[-1] == '\\' :
246 246 command += line[0:-1] + ' '
247 247 more = True
248 248 continue
249 249 else :
250 250 # add the last (current) line to the command
251 251 command += line
252 252 if command or more:
253 253 # push to raw history, so hist line numbers stay in sync
254 254 ip.IP.input_hist_raw.append("# " + command + "\n")
255 255
256 256 more = ip.IP.push(ip.IP.prefilter(command,more))
257 257 command = ''
258 258 # IPython's runsource returns None if there was an error
259 259 # compiling the code. This allows us to stop processing right
260 260 # away, so the user gets the error message at the right place.
261 261 if more is None:
262 262 break
263 263 # final newline in case the input didn't have it, so that the code
264 264 # actually does get executed
265 265 if more:
266 266 ip.IP.push('\n')
267 267
268 268 ip.IP.runlines = _runlines
269 269
270 270 main()
1 NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
@@ -1,1238 +1,1249 b''
1 1 # -*- coding: utf-8 -*-
2 2 """IPython Shell classes.
3 3
4 4 All the matplotlib support code was co-developed with John Hunter,
5 5 matplotlib's author.
6 6
7 7 $Id: Shell.py 3024 2008-02-07 15:34:42Z darren.dale $"""
8 8
9 9 #*****************************************************************************
10 10 # Copyright (C) 2001-2006 Fernando Perez <fperez@colorado.edu>
11 11 #
12 12 # Distributed under the terms of the BSD License. The full license is in
13 13 # the file COPYING, distributed as part of this software.
14 14 #*****************************************************************************
15 15
16 16 from IPython import Release
17 17 __author__ = '%s <%s>' % Release.authors['Fernando']
18 18 __license__ = Release.license
19 19
20 20 # Code begins
21 21 # Stdlib imports
22 22 import __builtin__
23 23 import __main__
24 24 import Queue
25 25 import inspect
26 26 import os
27 27 import sys
28 28 import thread
29 29 import threading
30 30 import time
31 31
32 32 from signal import signal, SIGINT
33 33
34 34 try:
35 35 import ctypes
36 36 HAS_CTYPES = True
37 37 except ImportError:
38 38 HAS_CTYPES = False
39 39
40 40 # IPython imports
41 41 import IPython
42 42 from IPython import ultraTB, ipapi
43 43 from IPython.Magic import Magic
44 44 from IPython.genutils import Term,warn,error,flag_calls, ask_yes_no
45 45 from IPython.iplib import InteractiveShell
46 46 from IPython.ipmaker import make_IPython
47 47 from IPython.ipstruct import Struct
48 48 from IPython.testing import decorators as testdec
49 49
50 50 # Globals
51 51 # global flag to pass around information about Ctrl-C without exceptions
52 52 KBINT = False
53 53
54 54 # global flag to turn on/off Tk support.
55 55 USE_TK = False
56 56
57 57 # ID for the main thread, used for cross-thread exceptions
58 58 MAIN_THREAD_ID = thread.get_ident()
59 59
60 60 # Tag when runcode() is active, for exception handling
61 61 CODE_RUN = None
62 62
63 63 # Default timeout for waiting for multithreaded shells (in seconds)
64 64 GUI_TIMEOUT = 10
65 65
66 66 #-----------------------------------------------------------------------------
67 67 # This class is trivial now, but I want to have it in to publish a clean
68 68 # interface. Later when the internals are reorganized, code that uses this
69 69 # shouldn't have to change.
70 70
71 71 class IPShell:
72 72 """Create an IPython instance."""
73 73
74 74 def __init__(self,argv=None,user_ns=None,user_global_ns=None,
75 75 debug=1,shell_class=InteractiveShell):
76 76 self.IP = make_IPython(argv,user_ns=user_ns,
77 77 user_global_ns=user_global_ns,
78 78 debug=debug,shell_class=shell_class)
79 79
80 80 def mainloop(self,sys_exit=0,banner=None):
81 81 self.IP.mainloop(banner)
82 82 if sys_exit:
83 83 sys.exit()
84 84
85 85 #-----------------------------------------------------------------------------
86 86 def kill_embedded(self,parameter_s=''):
87 87 """%kill_embedded : deactivate for good the current embedded IPython.
88 88
89 89 This function (after asking for confirmation) sets an internal flag so that
90 90 an embedded IPython will never activate again. This is useful to
91 91 permanently disable a shell that is being called inside a loop: once you've
92 92 figured out what you needed from it, you may then kill it and the program
93 93 will then continue to run without the interactive shell interfering again.
94 94 """
95 95
96 96 kill = ask_yes_no("Are you sure you want to kill this embedded instance "
97 97 "(y/n)? [y/N] ",'n')
98 98 if kill:
99 99 self.shell.embedded_active = False
100 100 print "This embedded IPython will not reactivate anymore once you exit."
101 101
102 102 class IPShellEmbed:
103 103 """Allow embedding an IPython shell into a running program.
104 104
105 105 Instances of this class are callable, with the __call__ method being an
106 106 alias to the embed() method of an InteractiveShell instance.
107 107
108 108 Usage (see also the example-embed.py file for a running example):
109 109
110 110 ipshell = IPShellEmbed([argv,banner,exit_msg,rc_override])
111 111
112 112 - argv: list containing valid command-line options for IPython, as they
113 113 would appear in sys.argv[1:].
114 114
115 115 For example, the following command-line options:
116 116
117 117 $ ipython -prompt_in1 'Input <\\#>' -colors LightBG
118 118
119 119 would be passed in the argv list as:
120 120
121 121 ['-prompt_in1','Input <\\#>','-colors','LightBG']
122 122
123 123 - banner: string which gets printed every time the interpreter starts.
124 124
125 125 - exit_msg: string which gets printed every time the interpreter exits.
126 126
127 127 - rc_override: a dict or Struct of configuration options such as those
128 128 used by IPython. These options are read from your ~/.ipython/ipythonrc
129 129 file when the Shell object is created. Passing an explicit rc_override
130 130 dict with any options you want allows you to override those values at
131 131 creation time without having to modify the file. This way you can create
132 132 embeddable instances configured in any way you want without editing any
133 133 global files (thus keeping your interactive IPython configuration
134 134 unchanged).
135 135
136 136 Then the ipshell instance can be called anywhere inside your code:
137 137
138 138 ipshell(header='') -> Opens up an IPython shell.
139 139
140 140 - header: string printed by the IPython shell upon startup. This can let
141 141 you know where in your code you are when dropping into the shell. Note
142 142 that 'banner' gets prepended to all calls, so header is used for
143 143 location-specific information.
144 144
145 145 For more details, see the __call__ method below.
146 146
147 147 When the IPython shell is exited with Ctrl-D, normal program execution
148 148 resumes.
149 149
150 150 This functionality was inspired by a posting on comp.lang.python by cmkl
151 151 <cmkleffner@gmx.de> on Dec. 06/01 concerning similar uses of pyrepl, and
152 152 by the IDL stop/continue commands."""
153 153
154 154 def __init__(self,argv=None,banner='',exit_msg=None,rc_override=None,
155 155 user_ns=None):
156 156 """Note that argv here is a string, NOT a list."""
157 157 self.set_banner(banner)
158 158 self.set_exit_msg(exit_msg)
159 159 self.set_dummy_mode(0)
160 160
161 161 # sys.displayhook is a global, we need to save the user's original
162 162 # Don't rely on __displayhook__, as the user may have changed that.
163 163 self.sys_displayhook_ori = sys.displayhook
164 164
165 165 # save readline completer status
166 166 try:
167 167 #print 'Save completer',sys.ipcompleter # dbg
168 168 self.sys_ipcompleter_ori = sys.ipcompleter
169 169 except:
170 170 pass # not nested with IPython
171 171
172 172 self.IP = make_IPython(argv,rc_override=rc_override,
173 173 embedded=True,
174 174 user_ns=user_ns)
175 175
176 176 ip = ipapi.IPApi(self.IP)
177 177 ip.expose_magic("kill_embedded",kill_embedded)
178 178
179 179 # copy our own displayhook also
180 180 self.sys_displayhook_embed = sys.displayhook
181 181 # and leave the system's display hook clean
182 182 sys.displayhook = self.sys_displayhook_ori
183 183 # don't use the ipython crash handler so that user exceptions aren't
184 184 # trapped
185 185 sys.excepthook = ultraTB.FormattedTB(color_scheme = self.IP.rc.colors,
186 186 mode = self.IP.rc.xmode,
187 187 call_pdb = self.IP.rc.pdb)
188 188 self.restore_system_completer()
189 189
190 190 def restore_system_completer(self):
191 191 """Restores the readline completer which was in place.
192 192
193 193 This allows embedded IPython within IPython not to disrupt the
194 194 parent's completion.
195 195 """
196 196
197 197 try:
198 198 self.IP.readline.set_completer(self.sys_ipcompleter_ori)
199 199 sys.ipcompleter = self.sys_ipcompleter_ori
200 200 except:
201 201 pass
202 202
203 203 def __call__(self,header='',local_ns=None,global_ns=None,dummy=None):
204 204 """Activate the interactive interpreter.
205 205
206 206 __call__(self,header='',local_ns=None,global_ns,dummy=None) -> Start
207 207 the interpreter shell with the given local and global namespaces, and
208 208 optionally print a header string at startup.
209 209
210 210 The shell can be globally activated/deactivated using the
211 211 set/get_dummy_mode methods. This allows you to turn off a shell used
212 212 for debugging globally.
213 213
214 214 However, *each* time you call the shell you can override the current
215 215 state of dummy_mode with the optional keyword parameter 'dummy'. For
216 216 example, if you set dummy mode on with IPShell.set_dummy_mode(1), you
217 217 can still have a specific call work by making it as IPShell(dummy=0).
218 218
219 219 The optional keyword parameter dummy controls whether the call
220 220 actually does anything. """
221 221
222 222 # If the user has turned it off, go away
223 223 if not self.IP.embedded_active:
224 224 return
225 225
226 226 # Normal exits from interactive mode set this flag, so the shell can't
227 227 # re-enter (it checks this variable at the start of interactive mode).
228 228 self.IP.exit_now = False
229 229
230 230 # Allow the dummy parameter to override the global __dummy_mode
231 231 if dummy or (dummy != 0 and self.__dummy_mode):
232 232 return
233 233
234 234 # Set global subsystems (display,completions) to our values
235 235 sys.displayhook = self.sys_displayhook_embed
236 236 if self.IP.has_readline:
237 237 self.IP.set_completer()
238 238
239 239 if self.banner and header:
240 240 format = '%s\n%s\n'
241 241 else:
242 242 format = '%s%s\n'
243 243 banner = format % (self.banner,header)
244 244
245 245 # Call the embedding code with a stack depth of 1 so it can skip over
246 246 # our call and get the original caller's namespaces.
247 247 self.IP.embed_mainloop(banner,local_ns,global_ns,stack_depth=1)
248 248
249 249 if self.exit_msg:
250 250 print self.exit_msg
251 251
252 252 # Restore global systems (display, completion)
253 253 sys.displayhook = self.sys_displayhook_ori
254 254 self.restore_system_completer()
255 255
256 256 def set_dummy_mode(self,dummy):
257 257 """Sets the embeddable shell's dummy mode parameter.
258 258
259 259 set_dummy_mode(dummy): dummy = 0 or 1.
260 260
261 261 This parameter is persistent and makes calls to the embeddable shell
262 262 silently return without performing any action. This allows you to
263 263 globally activate or deactivate a shell you're using with a single call.
264 264
265 265 If you need to manually"""
266 266
267 267 if dummy not in [0,1,False,True]:
268 268 raise ValueError,'dummy parameter must be boolean'
269 269 self.__dummy_mode = dummy
270 270
271 271 def get_dummy_mode(self):
272 272 """Return the current value of the dummy mode parameter.
273 273 """
274 274 return self.__dummy_mode
275 275
276 276 def set_banner(self,banner):
277 277 """Sets the global banner.
278 278
279 279 This banner gets prepended to every header printed when the shell
280 280 instance is called."""
281 281
282 282 self.banner = banner
283 283
284 284 def set_exit_msg(self,exit_msg):
285 285 """Sets the global exit_msg.
286 286
287 287 This exit message gets printed upon exiting every time the embedded
288 288 shell is called. It is None by default. """
289 289
290 290 self.exit_msg = exit_msg
291 291
292 292 #-----------------------------------------------------------------------------
293 293 if HAS_CTYPES:
294 294 # Add async exception support. Trick taken from:
295 295 # http://sebulba.wikispaces.com/recipe+thread2
296 296 def _async_raise(tid, exctype):
297 297 """raises the exception, performs cleanup if needed"""
298 298 if not inspect.isclass(exctype):
299 299 raise TypeError("Only types can be raised (not instances)")
300 300 res = ctypes.pythonapi.PyThreadState_SetAsyncExc(tid,
301 301 ctypes.py_object(exctype))
302 302 if res == 0:
303 303 raise ValueError("invalid thread id")
304 304 elif res != 1:
305 305 # """if it returns a number greater than one, you're in trouble,
306 306 # and you should call it again with exc=NULL to revert the effect"""
307 307 ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, 0)
308 308 raise SystemError("PyThreadState_SetAsyncExc failed")
309 309
310 310 def sigint_handler (signum,stack_frame):
311 311 """Sigint handler for threaded apps.
312 312
313 313 This is a horrible hack to pass information about SIGINT _without_
314 314 using exceptions, since I haven't been able to properly manage
315 315 cross-thread exceptions in GTK/WX. In fact, I don't think it can be
316 316 done (or at least that's my understanding from a c.l.py thread where
317 317 this was discussed)."""
318 318
319 319 global KBINT
320 320
321 321 if CODE_RUN:
322 322 _async_raise(MAIN_THREAD_ID,KeyboardInterrupt)
323 323 else:
324 324 KBINT = True
325 325 print '\nKeyboardInterrupt - Press <Enter> to continue.',
326 326 Term.cout.flush()
327 327
328 328 else:
329 329 def sigint_handler (signum,stack_frame):
330 330 """Sigint handler for threaded apps.
331 331
332 332 This is a horrible hack to pass information about SIGINT _without_
333 333 using exceptions, since I haven't been able to properly manage
334 334 cross-thread exceptions in GTK/WX. In fact, I don't think it can be
335 335 done (or at least that's my understanding from a c.l.py thread where
336 336 this was discussed)."""
337 337
338 338 global KBINT
339 339
340 340 print '\nKeyboardInterrupt - Press <Enter> to continue.',
341 341 Term.cout.flush()
342 342 # Set global flag so that runsource can know that Ctrl-C was hit
343 343 KBINT = True
344 344
345 345
346 346 class MTInteractiveShell(InteractiveShell):
347 347 """Simple multi-threaded shell."""
348 348
349 349 # Threading strategy taken from:
350 350 # http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/65109, by Brian
351 351 # McErlean and John Finlay. Modified with corrections by Antoon Pardon,
352 352 # from the pygtk mailing list, to avoid lockups with system calls.
353 353
354 354 # class attribute to indicate whether the class supports threads or not.
355 355 # Subclasses with thread support should override this as needed.
356 356 isthreaded = True
357 357
358 358 def __init__(self,name,usage=None,rc=Struct(opts=None,args=None),
359 359 user_ns=None,user_global_ns=None,banner2='',
360 360 gui_timeout=GUI_TIMEOUT,**kw):
361 361 """Similar to the normal InteractiveShell, but with threading control"""
362 362
363 363 InteractiveShell.__init__(self,name,usage,rc,user_ns,
364 364 user_global_ns,banner2)
365 365
366 366 # Timeout we wait for GUI thread
367 367 self.gui_timeout = gui_timeout
368 368
369 369 # A queue to hold the code to be executed.
370 370 self.code_queue = Queue.Queue()
371 371
372 372 # Stuff to do at closing time
373 373 self._kill = None
374 374 on_kill = kw.get('on_kill', [])
375 375 # Check that all things to kill are callable:
376 376 for t in on_kill:
377 377 if not callable(t):
378 378 raise TypeError,'on_kill must be a list of callables'
379 379 self.on_kill = on_kill
380 380 # thread identity of the "worker thread" (that may execute code directly)
381 381 self.worker_ident = None
382 382
383 383 def runsource(self, source, filename="<input>", symbol="single"):
384 384 """Compile and run some source in the interpreter.
385 385
386 386 Modified version of code.py's runsource(), to handle threading issues.
387 387 See the original for full docstring details."""
388
388
389 389 global KBINT
390 390
391 391 # If Ctrl-C was typed, we reset the flag and return right away
392 392 if KBINT:
393 393 KBINT = False
394 394 return False
395 395
396 396 if self._kill:
397 397 # can't queue new code if we are being killed
398 398 return True
399 399
400 400 try:
401 401 code = self.compile(source, filename, symbol)
402 402 except (OverflowError, SyntaxError, ValueError):
403 403 # Case 1
404 404 self.showsyntaxerror(filename)
405 405 return False
406 406
407 407 if code is None:
408 408 # Case 2
409 409 return True
410 410
411 411 # shortcut - if we are in worker thread, or the worker thread is not
412 412 # running, execute directly (to allow recursion and prevent deadlock if
413 413 # code is run early in IPython construction)
414 414
415 415 if (self.worker_ident is None
416 416 or self.worker_ident == thread.get_ident() ):
417 417 InteractiveShell.runcode(self,code)
418 return
418 return False
419 419
420 420 # Case 3
421 421 # Store code in queue, so the execution thread can handle it.
422 422
423 423 completed_ev, received_ev = threading.Event(), threading.Event()
424 424
425 425 self.code_queue.put((code,completed_ev, received_ev))
426 426 # first make sure the message was received, with timeout
427 427 received_ev.wait(self.gui_timeout)
428 428 if not received_ev.isSet():
429 429 # the mainloop is dead, start executing code directly
430 430 print "Warning: Timeout for mainloop thread exceeded"
431 431 print "switching to nonthreaded mode (until mainloop wakes up again)"
432 432 self.worker_ident = None
433 433 else:
434 434 completed_ev.wait()
435 435 return False
436 436
437 437 def runcode(self):
438 438 """Execute a code object.
439 439
440 440 Multithreaded wrapper around IPython's runcode()."""
441 441
442 442 global CODE_RUN
443 443
444 444 # we are in worker thread, stash out the id for runsource()
445 445 self.worker_ident = thread.get_ident()
446 446
447 447 if self._kill:
448 448 print >>Term.cout, 'Closing threads...',
449 449 Term.cout.flush()
450 450 for tokill in self.on_kill:
451 451 tokill()
452 452 print >>Term.cout, 'Done.'
453 453 # allow kill() to return
454 454 self._kill.set()
455 455 return True
456 456
457 457 # Install sigint handler. We do it every time to ensure that if user
458 458 # code modifies it, we restore our own handling.
459 459 try:
460 460 signal(SIGINT,sigint_handler)
461 461 except SystemError:
462 462 # This happens under Windows, which seems to have all sorts
463 463 # of problems with signal handling. Oh well...
464 464 pass
465 465
466 466 # Flush queue of pending code by calling the run methood of the parent
467 467 # class with all items which may be in the queue.
468 468 code_to_run = None
469 469 while 1:
470 470 try:
471 471 code_to_run, completed_ev, received_ev = self.code_queue.get_nowait()
472 472 except Queue.Empty:
473 473 break
474 474 received_ev.set()
475 475
476 476 # Exceptions need to be raised differently depending on which
477 477 # thread is active. This convoluted try/except is only there to
478 478 # protect against asynchronous exceptions, to ensure that a KBINT
479 479 # at the wrong time doesn't deadlock everything. The global
480 480 # CODE_TO_RUN is set to true/false as close as possible to the
481 481 # runcode() call, so that the KBINT handler is correctly informed.
482 482 try:
483 483 try:
484 484 CODE_RUN = True
485 485 InteractiveShell.runcode(self,code_to_run)
486 486 except KeyboardInterrupt:
487 487 print "Keyboard interrupted in mainloop"
488 488 while not self.code_queue.empty():
489 489 code, ev1,ev2 = self.code_queue.get_nowait()
490 490 ev1.set()
491 491 ev2.set()
492 492 break
493 493 finally:
494 494 CODE_RUN = False
495 495 # allow runsource() return from wait
496 496 completed_ev.set()
497 497
498 498
499 499 # This MUST return true for gtk threading to work
500 500 return True
501 501
502 502 def kill(self):
503 503 """Kill the thread, returning when it has been shut down."""
504 504 self._kill = threading.Event()
505 505 self._kill.wait()
506 506
507 507 class MatplotlibShellBase:
508 508 """Mixin class to provide the necessary modifications to regular IPython
509 509 shell classes for matplotlib support.
510 510
511 511 Given Python's MRO, this should be used as the FIRST class in the
512 512 inheritance hierarchy, so that it overrides the relevant methods."""
513 513
514 514 def _matplotlib_config(self,name,user_ns,user_global_ns=None):
515 515 """Return items needed to setup the user's shell with matplotlib"""
516 516
517 517 # Initialize matplotlib to interactive mode always
518 518 import matplotlib
519 519 from matplotlib import backends
520 520 matplotlib.interactive(True)
521 521
522 522 def use(arg):
523 523 """IPython wrapper for matplotlib's backend switcher.
524 524
525 525 In interactive use, we can not allow switching to a different
526 526 interactive backend, since thread conflicts will most likely crash
527 527 the python interpreter. This routine does a safety check first,
528 528 and refuses to perform a dangerous switch. It still allows
529 529 switching to non-interactive backends."""
530 530
531 531 if arg in backends.interactive_bk and arg != self.mpl_backend:
532 532 m=('invalid matplotlib backend switch.\n'
533 533 'This script attempted to switch to the interactive '
534 534 'backend: `%s`\n'
535 535 'Your current choice of interactive backend is: `%s`\n\n'
536 536 'Switching interactive matplotlib backends at runtime\n'
537 537 'would crash the python interpreter, '
538 538 'and IPython has blocked it.\n\n'
539 539 'You need to either change your choice of matplotlib backend\n'
540 540 'by editing your .matplotlibrc file, or run this script as a \n'
541 541 'standalone file from the command line, not using IPython.\n' %
542 542 (arg,self.mpl_backend) )
543 543 raise RuntimeError, m
544 544 else:
545 545 self.mpl_use(arg)
546 546 self.mpl_use._called = True
547 547
548 548 self.matplotlib = matplotlib
549 549 self.mpl_backend = matplotlib.rcParams['backend']
550 550
551 551 # we also need to block switching of interactive backends by use()
552 552 self.mpl_use = matplotlib.use
553 553 self.mpl_use._called = False
554 554 # overwrite the original matplotlib.use with our wrapper
555 555 matplotlib.use = use
556 556
557 557 # This must be imported last in the matplotlib series, after
558 558 # backend/interactivity choices have been made
559 559 import matplotlib.pylab as pylab
560 560 self.pylab = pylab
561 561
562 562 self.pylab.show._needmain = False
563 563 # We need to detect at runtime whether show() is called by the user.
564 564 # For this, we wrap it into a decorator which adds a 'called' flag.
565 565 self.pylab.draw_if_interactive = flag_calls(self.pylab.draw_if_interactive)
566 566
567 567 # Build a user namespace initialized with matplotlib/matlab features.
568 568 user_ns, user_global_ns = IPython.ipapi.make_user_namespaces(user_ns,
569 569 user_global_ns)
570 570
571 571 # Import numpy as np/pyplot as plt are conventions we're trying to
572 572 # somewhat standardize on. Making them available to users by default
573 573 # will greatly help this.
574 574 exec ("import numpy\n"
575 575 "import numpy as np\n"
576 576 "import matplotlib\n"
577 577 "import matplotlib.pylab as pylab\n"
578 578 "try:\n"
579 579 " import matplotlib.pyplot as plt\n"
580 580 "except ImportError:\n"
581 581 " pass\n"
582 582 ) in user_ns
583 583
584 584 # Build matplotlib info banner
585 585 b="""
586 586 Welcome to pylab, a matplotlib-based Python environment.
587 587 For more information, type 'help(pylab)'.
588 588 """
589 589 return user_ns,user_global_ns,b
590 590
591 591 def mplot_exec(self,fname,*where,**kw):
592 592 """Execute a matplotlib script.
593 593
594 594 This is a call to execfile(), but wrapped in safeties to properly
595 595 handle interactive rendering and backend switching."""
596 596
597 597 #print '*** Matplotlib runner ***' # dbg
598 598 # turn off rendering until end of script
599 599 isInteractive = self.matplotlib.rcParams['interactive']
600 600 self.matplotlib.interactive(False)
601 601 self.safe_execfile(fname,*where,**kw)
602 602 self.matplotlib.interactive(isInteractive)
603 603 # make rendering call now, if the user tried to do it
604 604 if self.pylab.draw_if_interactive.called:
605 605 self.pylab.draw()
606 606 self.pylab.draw_if_interactive.called = False
607 607
608 608 # if a backend switch was performed, reverse it now
609 609 if self.mpl_use._called:
610 610 self.matplotlib.rcParams['backend'] = self.mpl_backend
611 611
612 612 @testdec.skip_doctest
613 613 def magic_run(self,parameter_s=''):
614 614 Magic.magic_run(self,parameter_s,runner=self.mplot_exec)
615 615
616 616 # Fix the docstring so users see the original as well
617 617 magic_run.__doc__ = "%s\n%s" % (Magic.magic_run.__doc__,
618 618 "\n *** Modified %run for Matplotlib,"
619 619 " with proper interactive handling ***")
620 620
621 621 # Now we provide 2 versions of a matplotlib-aware IPython base shells, single
622 622 # and multithreaded. Note that these are meant for internal use, the IPShell*
623 623 # classes below are the ones meant for public consumption.
624 624
625 625 class MatplotlibShell(MatplotlibShellBase,InteractiveShell):
626 626 """Single-threaded shell with matplotlib support."""
627 627
628 628 def __init__(self,name,usage=None,rc=Struct(opts=None,args=None),
629 629 user_ns=None,user_global_ns=None,**kw):
630 630 user_ns,user_global_ns,b2 = self._matplotlib_config(name,user_ns,user_global_ns)
631 631 InteractiveShell.__init__(self,name,usage,rc,user_ns,user_global_ns,
632 632 banner2=b2,**kw)
633 633
634 634 class MatplotlibMTShell(MatplotlibShellBase,MTInteractiveShell):
635 635 """Multi-threaded shell with matplotlib support."""
636 636
637 637 def __init__(self,name,usage=None,rc=Struct(opts=None,args=None),
638 638 user_ns=None,user_global_ns=None, **kw):
639 639 user_ns,user_global_ns,b2 = self._matplotlib_config(name,user_ns,user_global_ns)
640 640 MTInteractiveShell.__init__(self,name,usage,rc,user_ns,user_global_ns,
641 641 banner2=b2,**kw)
642 642
643 643 #-----------------------------------------------------------------------------
644 644 # Utility functions for the different GUI enabled IPShell* classes.
645 645
646 646 def get_tk():
647 647 """Tries to import Tkinter and returns a withdrawn Tkinter root
648 648 window. If Tkinter is already imported or not available, this
649 649 returns None. This function calls `hijack_tk` underneath.
650 650 """
651 651 if not USE_TK or sys.modules.has_key('Tkinter'):
652 652 return None
653 653 else:
654 654 try:
655 655 import Tkinter
656 656 except ImportError:
657 657 return None
658 658 else:
659 659 hijack_tk()
660 660 r = Tkinter.Tk()
661 661 r.withdraw()
662 662 return r
663 663
664 664 def hijack_tk():
665 665 """Modifies Tkinter's mainloop with a dummy so when a module calls
666 666 mainloop, it does not block.
667 667
668 668 """
669 669 def misc_mainloop(self, n=0):
670 670 pass
671 671 def tkinter_mainloop(n=0):
672 672 pass
673 673
674 674 import Tkinter
675 675 Tkinter.Misc.mainloop = misc_mainloop
676 676 Tkinter.mainloop = tkinter_mainloop
677 677
678 678 def update_tk(tk):
679 679 """Updates the Tkinter event loop. This is typically called from
680 680 the respective WX or GTK mainloops.
681 681 """
682 682 if tk:
683 683 tk.update()
684 684
685 685 def hijack_wx():
686 686 """Modifies wxPython's MainLoop with a dummy so user code does not
687 687 block IPython. The hijacked mainloop function is returned.
688 688 """
689 689 def dummy_mainloop(*args, **kw):
690 690 pass
691 691
692 692 try:
693 693 import wx
694 694 except ImportError:
695 695 # For very old versions of WX
696 696 import wxPython as wx
697 697
698 698 ver = wx.__version__
699 699 orig_mainloop = None
700 700 if ver[:3] >= '2.5':
701 701 import wx
702 702 if hasattr(wx, '_core_'): core = getattr(wx, '_core_')
703 703 elif hasattr(wx, '_core'): core = getattr(wx, '_core')
704 704 else: raise AttributeError('Could not find wx core module')
705 705 orig_mainloop = core.PyApp_MainLoop
706 706 core.PyApp_MainLoop = dummy_mainloop
707 707 elif ver[:3] == '2.4':
708 708 orig_mainloop = wx.wxc.wxPyApp_MainLoop
709 709 wx.wxc.wxPyApp_MainLoop = dummy_mainloop
710 710 else:
711 711 warn("Unable to find either wxPython version 2.4 or >= 2.5.")
712 712 return orig_mainloop
713 713
714 714 def hijack_gtk():
715 715 """Modifies pyGTK's mainloop with a dummy so user code does not
716 716 block IPython. This function returns the original `gtk.mainloop`
717 717 function that has been hijacked.
718 718 """
719 719 def dummy_mainloop(*args, **kw):
720 720 pass
721 721 import gtk
722 722 if gtk.pygtk_version >= (2,4,0): orig_mainloop = gtk.main
723 723 else: orig_mainloop = gtk.mainloop
724 724 gtk.mainloop = dummy_mainloop
725 725 gtk.main = dummy_mainloop
726 726 return orig_mainloop
727 727
728 728 def hijack_qt():
729 729 """Modifies PyQt's mainloop with a dummy so user code does not
730 730 block IPython. This function returns the original
731 731 `qt.qApp.exec_loop` function that has been hijacked.
732 732 """
733 733 def dummy_mainloop(*args, **kw):
734 734 pass
735 735 import qt
736 736 orig_mainloop = qt.qApp.exec_loop
737 737 qt.qApp.exec_loop = dummy_mainloop
738 738 qt.QApplication.exec_loop = dummy_mainloop
739 739 return orig_mainloop
740 740
741 741 def hijack_qt4():
742 742 """Modifies PyQt4's mainloop with a dummy so user code does not
743 743 block IPython. This function returns the original
744 744 `QtGui.qApp.exec_` function that has been hijacked.
745 745 """
746 746 def dummy_mainloop(*args, **kw):
747 747 pass
748 748 from PyQt4 import QtGui, QtCore
749 749 orig_mainloop = QtGui.qApp.exec_
750 750 QtGui.qApp.exec_ = dummy_mainloop
751 751 QtGui.QApplication.exec_ = dummy_mainloop
752 752 QtCore.QCoreApplication.exec_ = dummy_mainloop
753 753 return orig_mainloop
754 754
755 755 #-----------------------------------------------------------------------------
756 756 # The IPShell* classes below are the ones meant to be run by external code as
757 757 # IPython instances. Note that unless a specific threading strategy is
758 758 # desired, the factory function start() below should be used instead (it
759 759 # selects the proper threaded class).
760 760
761 761 class IPThread(threading.Thread):
762 762 def run(self):
763 763 self.IP.mainloop(self._banner)
764 764 self.IP.kill()
765 765
766 766 class IPShellGTK(IPThread):
767 767 """Run a gtk mainloop() in a separate thread.
768 768
769 769 Python commands can be passed to the thread where they will be executed.
770 770 This is implemented by periodically checking for passed code using a
771 771 GTK timeout callback."""
772 772
773 773 TIMEOUT = 100 # Millisecond interval between timeouts.
774 774
775 775 def __init__(self,argv=None,user_ns=None,user_global_ns=None,
776 776 debug=1,shell_class=MTInteractiveShell):
777 777
778 778 import gtk
779 # Check for set_interactive, coming up in new pygtk.
780 # Disable it so that this code works, but notify
781 # the user that he has a better option as well.
782 # XXX TODO better support when set_interactive is released
783 try:
784 gtk.set_interactive(False)
785 print "Your PyGtk has set_interactive(), so you can use the"
786 print "more stable single-threaded Gtk mode."
787 print "See https://bugs.launchpad.net/ipython/+bug/270856"
788 except AttributeError:
789 pass
779 790
780 791 self.gtk = gtk
781 792 self.gtk_mainloop = hijack_gtk()
782 793
783 794 # Allows us to use both Tk and GTK.
784 795 self.tk = get_tk()
785 796
786 797 if gtk.pygtk_version >= (2,4,0): mainquit = self.gtk.main_quit
787 798 else: mainquit = self.gtk.mainquit
788 799
789 800 self.IP = make_IPython(argv,user_ns=user_ns,
790 801 user_global_ns=user_global_ns,
791 802 debug=debug,
792 803 shell_class=shell_class,
793 804 on_kill=[mainquit])
794 805
795 806 # HACK: slot for banner in self; it will be passed to the mainloop
796 807 # method only and .run() needs it. The actual value will be set by
797 808 # .mainloop().
798 809 self._banner = None
799 810
800 811 threading.Thread.__init__(self)
801 812
802 813 def mainloop(self,sys_exit=0,banner=None):
803 814
804 815 self._banner = banner
805 816
806 817 if self.gtk.pygtk_version >= (2,4,0):
807 818 import gobject
808 819 gobject.idle_add(self.on_timer)
809 820 else:
810 821 self.gtk.idle_add(self.on_timer)
811 822
812 823 if sys.platform != 'win32':
813 824 try:
814 825 if self.gtk.gtk_version[0] >= 2:
815 826 self.gtk.gdk.threads_init()
816 827 except AttributeError:
817 828 pass
818 829 except RuntimeError:
819 830 error('Your pyGTK likely has not been compiled with '
820 831 'threading support.\n'
821 832 'The exception printout is below.\n'
822 833 'You can either rebuild pyGTK with threads, or '
823 834 'try using \n'
824 835 'matplotlib with a different backend (like Tk or WX).\n'
825 836 'Note that matplotlib will most likely not work in its '
826 837 'current state!')
827 838 self.IP.InteractiveTB()
828 839
829 840 self.start()
830 841 self.gtk.gdk.threads_enter()
831 842 self.gtk_mainloop()
832 843 self.gtk.gdk.threads_leave()
833 844 self.join()
834 845
835 846 def on_timer(self):
836 847 """Called when GTK is idle.
837 848
838 849 Must return True always, otherwise GTK stops calling it"""
839 850
840 851 update_tk(self.tk)
841 852 self.IP.runcode()
842 853 time.sleep(0.01)
843 854 return True
844 855
845 856
846 857 class IPShellWX(IPThread):
847 858 """Run a wx mainloop() in a separate thread.
848 859
849 860 Python commands can be passed to the thread where they will be executed.
850 861 This is implemented by periodically checking for passed code using a
851 862 GTK timeout callback."""
852 863
853 864 TIMEOUT = 100 # Millisecond interval between timeouts.
854 865
855 866 def __init__(self,argv=None,user_ns=None,user_global_ns=None,
856 867 debug=1,shell_class=MTInteractiveShell):
857 868
858 869 self.IP = make_IPython(argv,user_ns=user_ns,
859 870 user_global_ns=user_global_ns,
860 871 debug=debug,
861 872 shell_class=shell_class,
862 873 on_kill=[self.wxexit])
863 874
864 875 wantedwxversion=self.IP.rc.wxversion
865 876 if wantedwxversion!="0":
866 877 try:
867 878 import wxversion
868 879 except ImportError:
869 880 error('The wxversion module is needed for WX version selection')
870 881 else:
871 882 try:
872 883 wxversion.select(wantedwxversion)
873 884 except:
874 885 self.IP.InteractiveTB()
875 886 error('Requested wxPython version %s could not be loaded' %
876 887 wantedwxversion)
877 888
878 889 import wx
879 890
880 891 threading.Thread.__init__(self)
881 892 self.wx = wx
882 893 self.wx_mainloop = hijack_wx()
883 894
884 895 # Allows us to use both Tk and GTK.
885 896 self.tk = get_tk()
886 897
887 898 # HACK: slot for banner in self; it will be passed to the mainloop
888 899 # method only and .run() needs it. The actual value will be set by
889 900 # .mainloop().
890 901 self._banner = None
891 902
892 903 self.app = None
893 904
894 905 def wxexit(self, *args):
895 906 if self.app is not None:
896 907 self.app.agent.timer.Stop()
897 908 self.app.ExitMainLoop()
898 909
899 910 def mainloop(self,sys_exit=0,banner=None):
900 911
901 912 self._banner = banner
902 913
903 914 self.start()
904 915
905 916 class TimerAgent(self.wx.MiniFrame):
906 917 wx = self.wx
907 918 IP = self.IP
908 919 tk = self.tk
909 920 def __init__(self, parent, interval):
910 921 style = self.wx.DEFAULT_FRAME_STYLE | self.wx.TINY_CAPTION_HORIZ
911 922 self.wx.MiniFrame.__init__(self, parent, -1, ' ', pos=(200, 200),
912 923 size=(100, 100),style=style)
913 924 self.Show(False)
914 925 self.interval = interval
915 926 self.timerId = self.wx.NewId()
916 927
917 928 def StartWork(self):
918 929 self.timer = self.wx.Timer(self, self.timerId)
919 930 self.wx.EVT_TIMER(self, self.timerId, self.OnTimer)
920 931 self.timer.Start(self.interval)
921 932
922 933 def OnTimer(self, event):
923 934 update_tk(self.tk)
924 935 self.IP.runcode()
925 936
926 937 class App(self.wx.App):
927 938 wx = self.wx
928 939 TIMEOUT = self.TIMEOUT
929 940 def OnInit(self):
930 941 'Create the main window and insert the custom frame'
931 942 self.agent = TimerAgent(None, self.TIMEOUT)
932 943 self.agent.Show(False)
933 944 self.agent.StartWork()
934 945 return True
935 946
936 947 self.app = App(redirect=False)
937 948 self.wx_mainloop(self.app)
938 949 self.join()
939 950
940 951
941 952 class IPShellQt(IPThread):
942 953 """Run a Qt event loop in a separate thread.
943 954
944 955 Python commands can be passed to the thread where they will be executed.
945 956 This is implemented by periodically checking for passed code using a
946 957 Qt timer / slot."""
947 958
948 959 TIMEOUT = 100 # Millisecond interval between timeouts.
949 960
950 961 def __init__(self, argv=None, user_ns=None, user_global_ns=None,
951 962 debug=0, shell_class=MTInteractiveShell):
952 963
953 964 import qt
954 965
955 966 self.exec_loop = hijack_qt()
956 967
957 968 # Allows us to use both Tk and QT.
958 969 self.tk = get_tk()
959 970
960 971 self.IP = make_IPython(argv,
961 972 user_ns=user_ns,
962 973 user_global_ns=user_global_ns,
963 974 debug=debug,
964 975 shell_class=shell_class,
965 976 on_kill=[qt.qApp.exit])
966 977
967 978 # HACK: slot for banner in self; it will be passed to the mainloop
968 979 # method only and .run() needs it. The actual value will be set by
969 980 # .mainloop().
970 981 self._banner = None
971 982
972 983 threading.Thread.__init__(self)
973 984
974 985 def mainloop(self, sys_exit=0, banner=None):
975 986
976 987 import qt
977 988
978 989 self._banner = banner
979 990
980 991 if qt.QApplication.startingUp():
981 992 a = qt.QApplication(sys.argv)
982 993
983 994 self.timer = qt.QTimer()
984 995 qt.QObject.connect(self.timer,
985 996 qt.SIGNAL('timeout()'),
986 997 self.on_timer)
987 998
988 999 self.start()
989 1000 self.timer.start(self.TIMEOUT, True)
990 1001 while True:
991 1002 if self.IP._kill: break
992 1003 self.exec_loop()
993 1004 self.join()
994 1005
995 1006 def on_timer(self):
996 1007 update_tk(self.tk)
997 1008 result = self.IP.runcode()
998 1009 self.timer.start(self.TIMEOUT, True)
999 1010 return result
1000 1011
1001 1012
1002 1013 class IPShellQt4(IPThread):
1003 1014 """Run a Qt event loop in a separate thread.
1004 1015
1005 1016 Python commands can be passed to the thread where they will be executed.
1006 1017 This is implemented by periodically checking for passed code using a
1007 1018 Qt timer / slot."""
1008 1019
1009 1020 TIMEOUT = 100 # Millisecond interval between timeouts.
1010 1021
1011 1022 def __init__(self, argv=None, user_ns=None, user_global_ns=None,
1012 1023 debug=0, shell_class=MTInteractiveShell):
1013 1024
1014 1025 from PyQt4 import QtCore, QtGui
1015 1026
1016 1027 try:
1017 1028 # present in PyQt4-4.2.1 or later
1018 1029 QtCore.pyqtRemoveInputHook()
1019 1030 except AttributeError:
1020 1031 pass
1021 1032
1022 1033 if QtCore.PYQT_VERSION_STR == '4.3':
1023 1034 warn('''PyQt4 version 4.3 detected.
1024 1035 If you experience repeated threading warnings, please update PyQt4.
1025 1036 ''')
1026 1037
1027 1038 self.exec_ = hijack_qt4()
1028 1039
1029 1040 # Allows us to use both Tk and QT.
1030 1041 self.tk = get_tk()
1031 1042
1032 1043 self.IP = make_IPython(argv,
1033 1044 user_ns=user_ns,
1034 1045 user_global_ns=user_global_ns,
1035 1046 debug=debug,
1036 1047 shell_class=shell_class,
1037 1048 on_kill=[QtGui.qApp.exit])
1038 1049
1039 1050 # HACK: slot for banner in self; it will be passed to the mainloop
1040 1051 # method only and .run() needs it. The actual value will be set by
1041 1052 # .mainloop().
1042 1053 self._banner = None
1043 1054
1044 1055 threading.Thread.__init__(self)
1045 1056
1046 1057 def mainloop(self, sys_exit=0, banner=None):
1047 1058
1048 1059 from PyQt4 import QtCore, QtGui
1049 1060
1050 1061 self._banner = banner
1051 1062
1052 1063 if QtGui.QApplication.startingUp():
1053 1064 a = QtGui.QApplication(sys.argv)
1054 1065
1055 1066 self.timer = QtCore.QTimer()
1056 1067 QtCore.QObject.connect(self.timer,
1057 1068 QtCore.SIGNAL('timeout()'),
1058 1069 self.on_timer)
1059 1070
1060 1071 self.start()
1061 1072 self.timer.start(self.TIMEOUT)
1062 1073 while True:
1063 1074 if self.IP._kill: break
1064 1075 self.exec_()
1065 1076 self.join()
1066 1077
1067 1078 def on_timer(self):
1068 1079 update_tk(self.tk)
1069 1080 result = self.IP.runcode()
1070 1081 self.timer.start(self.TIMEOUT)
1071 1082 return result
1072 1083
1073 1084
1074 1085 # A set of matplotlib public IPython shell classes, for single-threaded (Tk*
1075 1086 # and FLTK*) and multithreaded (GTK*, WX* and Qt*) backends to use.
1076 1087 def _load_pylab(user_ns):
1077 1088 """Allow users to disable pulling all of pylab into the top-level
1078 1089 namespace.
1079 1090
1080 1091 This little utility must be called AFTER the actual ipython instance is
1081 1092 running, since only then will the options file have been fully parsed."""
1082 1093
1083 1094 ip = IPython.ipapi.get()
1084 1095 if ip.options.pylab_import_all:
1085 1096 ip.ex("from matplotlib.pylab import *")
1086 1097 ip.IP.user_config_ns.update(ip.user_ns)
1087 1098
1088 1099
1089 1100 class IPShellMatplotlib(IPShell):
1090 1101 """Subclass IPShell with MatplotlibShell as the internal shell.
1091 1102
1092 1103 Single-threaded class, meant for the Tk* and FLTK* backends.
1093 1104
1094 1105 Having this on a separate class simplifies the external driver code."""
1095 1106
1096 1107 def __init__(self,argv=None,user_ns=None,user_global_ns=None,debug=1):
1097 1108 IPShell.__init__(self,argv,user_ns,user_global_ns,debug,
1098 1109 shell_class=MatplotlibShell)
1099 1110 _load_pylab(self.IP.user_ns)
1100 1111
1101 1112 class IPShellMatplotlibGTK(IPShellGTK):
1102 1113 """Subclass IPShellGTK with MatplotlibMTShell as the internal shell.
1103 1114
1104 1115 Multi-threaded class, meant for the GTK* backends."""
1105 1116
1106 1117 def __init__(self,argv=None,user_ns=None,user_global_ns=None,debug=1):
1107 1118 IPShellGTK.__init__(self,argv,user_ns,user_global_ns,debug,
1108 1119 shell_class=MatplotlibMTShell)
1109 1120 _load_pylab(self.IP.user_ns)
1110 1121
1111 1122 class IPShellMatplotlibWX(IPShellWX):
1112 1123 """Subclass IPShellWX with MatplotlibMTShell as the internal shell.
1113 1124
1114 1125 Multi-threaded class, meant for the WX* backends."""
1115 1126
1116 1127 def __init__(self,argv=None,user_ns=None,user_global_ns=None,debug=1):
1117 1128 IPShellWX.__init__(self,argv,user_ns,user_global_ns,debug,
1118 1129 shell_class=MatplotlibMTShell)
1119 1130 _load_pylab(self.IP.user_ns)
1120 1131
1121 1132 class IPShellMatplotlibQt(IPShellQt):
1122 1133 """Subclass IPShellQt with MatplotlibMTShell as the internal shell.
1123 1134
1124 1135 Multi-threaded class, meant for the Qt* backends."""
1125 1136
1126 1137 def __init__(self,argv=None,user_ns=None,user_global_ns=None,debug=1):
1127 1138 IPShellQt.__init__(self,argv,user_ns,user_global_ns,debug,
1128 1139 shell_class=MatplotlibMTShell)
1129 1140 _load_pylab(self.IP.user_ns)
1130 1141
1131 1142 class IPShellMatplotlibQt4(IPShellQt4):
1132 1143 """Subclass IPShellQt4 with MatplotlibMTShell as the internal shell.
1133 1144
1134 1145 Multi-threaded class, meant for the Qt4* backends."""
1135 1146
1136 1147 def __init__(self,argv=None,user_ns=None,user_global_ns=None,debug=1):
1137 1148 IPShellQt4.__init__(self,argv,user_ns,user_global_ns,debug,
1138 1149 shell_class=MatplotlibMTShell)
1139 1150 _load_pylab(self.IP.user_ns)
1140 1151
1141 1152 #-----------------------------------------------------------------------------
1142 1153 # Factory functions to actually start the proper thread-aware shell
1143 1154
1144 1155 def _select_shell(argv):
1145 1156 """Select a shell from the given argv vector.
1146 1157
1147 1158 This function implements the threading selection policy, allowing runtime
1148 1159 control of the threading mode, both for general users and for matplotlib.
1149 1160
1150 1161 Return:
1151 1162 Shell class to be instantiated for runtime operation.
1152 1163 """
1153 1164
1154 1165 global USE_TK
1155 1166
1156 1167 mpl_shell = {'gthread' : IPShellMatplotlibGTK,
1157 1168 'wthread' : IPShellMatplotlibWX,
1158 1169 'qthread' : IPShellMatplotlibQt,
1159 1170 'q4thread' : IPShellMatplotlibQt4,
1160 1171 'tkthread' : IPShellMatplotlib, # Tk is built-in
1161 1172 }
1162 1173
1163 1174 th_shell = {'gthread' : IPShellGTK,
1164 1175 'wthread' : IPShellWX,
1165 1176 'qthread' : IPShellQt,
1166 1177 'q4thread' : IPShellQt4,
1167 1178 'tkthread' : IPShell, # Tk is built-in
1168 1179 }
1169 1180
1170 1181 backends = {'gthread' : 'GTKAgg',
1171 1182 'wthread' : 'WXAgg',
1172 1183 'qthread' : 'QtAgg',
1173 1184 'q4thread' :'Qt4Agg',
1174 1185 'tkthread' :'TkAgg',
1175 1186 }
1176 1187
1177 1188 all_opts = set(['tk','pylab','gthread','qthread','q4thread','wthread',
1178 1189 'tkthread'])
1179 1190 user_opts = set([s.replace('-','') for s in argv[:3]])
1180 1191 special_opts = user_opts & all_opts
1181 1192
1182 1193 if 'tk' in special_opts:
1183 1194 USE_TK = True
1184 1195 special_opts.remove('tk')
1185 1196
1186 1197 if 'pylab' in special_opts:
1187 1198
1188 1199 try:
1189 1200 import matplotlib
1190 1201 except ImportError:
1191 1202 error('matplotlib could NOT be imported! Starting normal IPython.')
1192 1203 return IPShell
1193 1204
1194 1205 special_opts.remove('pylab')
1195 1206 # If there's any option left, it means the user wants to force the
1196 1207 # threading backend, else it's auto-selected from the rc file
1197 1208 if special_opts:
1198 1209 th_mode = special_opts.pop()
1199 1210 matplotlib.rcParams['backend'] = backends[th_mode]
1200 1211 else:
1201 1212 backend = matplotlib.rcParams['backend']
1202 1213 if backend.startswith('GTK'):
1203 1214 th_mode = 'gthread'
1204 1215 elif backend.startswith('WX'):
1205 1216 th_mode = 'wthread'
1206 1217 elif backend.startswith('Qt4'):
1207 1218 th_mode = 'q4thread'
1208 1219 elif backend.startswith('Qt'):
1209 1220 th_mode = 'qthread'
1210 1221 else:
1211 1222 # Any other backend, use plain Tk
1212 1223 th_mode = 'tkthread'
1213 1224
1214 1225 return mpl_shell[th_mode]
1215 1226 else:
1216 1227 # No pylab requested, just plain threads
1217 1228 try:
1218 1229 th_mode = special_opts.pop()
1219 1230 except KeyError:
1220 1231 th_mode = 'tkthread'
1221 1232 return th_shell[th_mode]
1222 1233
1223 1234
1224 1235 # This is the one which should be called by external code.
1225 1236 def start(user_ns = None):
1226 1237 """Return a running shell instance, dealing with threading options.
1227 1238
1228 1239 This is a factory function which will instantiate the proper IPython shell
1229 1240 based on the user's threading choice. Such a selector is needed because
1230 1241 different GUI toolkits require different thread handling details."""
1231 1242
1232 1243 shell = _select_shell(sys.argv)
1233 1244 return shell(user_ns = user_ns)
1234 1245
1235 1246 # Some aliases for backwards compatibility
1236 1247 IPythonShell = IPShell
1237 1248 IPythonShellEmbed = IPShellEmbed
1238 1249 #************************ End of file <Shell.py> ***************************
@@ -1,526 +1,526 b''
1 1 """Module for interactive demos using IPython.
2 2
3 3 This module implements a few classes for running Python scripts interactively
4 4 in IPython for demonstrations. With very simple markup (a few tags in
5 5 comments), you can control points where the script stops executing and returns
6 6 control to IPython.
7 7
8 8
9 9 Provided classes
10 10 ================
11 11
12 12 The classes are (see their docstrings for further details):
13 13
14 14 - Demo: pure python demos
15 15
16 16 - IPythonDemo: demos with input to be processed by IPython as if it had been
17 17 typed interactively (so magics work, as well as any other special syntax you
18 18 may have added via input prefilters).
19 19
20 20 - LineDemo: single-line version of the Demo class. These demos are executed
21 21 one line at a time, and require no markup.
22 22
23 23 - IPythonLineDemo: IPython version of the LineDemo class (the demo is
24 24 executed a line at a time, but processed via IPython).
25 25
26 26 - ClearMixin: mixin to make Demo classes with less visual clutter. It
27 27 declares an empty marquee and a pre_cmd that clears the screen before each
28 28 block (see Subclassing below).
29 29
30 30 - ClearDemo, ClearIPDemo: mixin-enabled versions of the Demo and IPythonDemo
31 31 classes.
32 32
33 33
34 34 Subclassing
35 35 ===========
36 36
37 37 The classes here all include a few methods meant to make customization by
38 38 subclassing more convenient. Their docstrings below have some more details:
39 39
40 40 - marquee(): generates a marquee to provide visible on-screen markers at each
41 41 block start and end.
42 42
43 43 - pre_cmd(): run right before the execution of each block.
44 44
45 45 - post_cmd(): run right after the execution of each block. If the block
46 46 raises an exception, this is NOT called.
47 47
48 48
49 49 Operation
50 50 =========
51 51
52 52 The file is run in its own empty namespace (though you can pass it a string of
53 53 arguments as if in a command line environment, and it will see those as
54 54 sys.argv). But at each stop, the global IPython namespace is updated with the
55 55 current internal demo namespace, so you can work interactively with the data
56 56 accumulated so far.
57 57
58 58 By default, each block of code is printed (with syntax highlighting) before
59 59 executing it and you have to confirm execution. This is intended to show the
60 60 code to an audience first so you can discuss it, and only proceed with
61 61 execution once you agree. There are a few tags which allow you to modify this
62 62 behavior.
63 63
64 64 The supported tags are:
65 65
66 66 # <demo> stop
67 67
68 68 Defines block boundaries, the points where IPython stops execution of the
69 69 file and returns to the interactive prompt.
70 70
71 71 You can optionally mark the stop tag with extra dashes before and after the
72 72 word 'stop', to help visually distinguish the blocks in a text editor:
73 73
74 74 # <demo> --- stop ---
75 75
76 76
77 77 # <demo> silent
78 78
79 79 Make a block execute silently (and hence automatically). Typically used in
80 80 cases where you have some boilerplate or initialization code which you need
81 81 executed but do not want to be seen in the demo.
82 82
83 83 # <demo> auto
84 84
85 85 Make a block execute automatically, but still being printed. Useful for
86 86 simple code which does not warrant discussion, since it avoids the extra
87 87 manual confirmation.
88 88
89 89 # <demo> auto_all
90 90
91 91 This tag can _only_ be in the first block, and if given it overrides the
92 92 individual auto tags to make the whole demo fully automatic (no block asks
93 93 for confirmation). It can also be given at creation time (or the attribute
94 94 set later) to override what's in the file.
95 95
96 96 While _any_ python file can be run as a Demo instance, if there are no stop
97 97 tags the whole file will run in a single block (no different that calling
98 98 first %pycat and then %run). The minimal markup to make this useful is to
99 99 place a set of stop tags; the other tags are only there to let you fine-tune
100 100 the execution.
101 101
102 102 This is probably best explained with the simple example file below. You can
103 103 copy this into a file named ex_demo.py, and try running it via:
104 104
105 105 from IPython.demo import Demo
106 106 d = Demo('ex_demo.py')
107 107 d() <--- Call the d object (omit the parens if you have autocall set to 2).
108 108
109 109 Each time you call the demo object, it runs the next block. The demo object
110 110 has a few useful methods for navigation, like again(), edit(), jump(), seek()
111 111 and back(). It can be reset for a new run via reset() or reloaded from disk
112 112 (in case you've edited the source) via reload(). See their docstrings below.
113 113
114 114
115 115 Example
116 116 =======
117 117
118 118 The following is a very simple example of a valid demo file.
119 119
120 120 #################### EXAMPLE DEMO <ex_demo.py> ###############################
121 121 '''A simple interactive demo to illustrate the use of IPython's Demo class.'''
122 122
123 123 print 'Hello, welcome to an interactive IPython demo.'
124 124
125 125 # The mark below defines a block boundary, which is a point where IPython will
126 126 # stop execution and return to the interactive prompt. The dashes are actually
127 127 # optional and used only as a visual aid to clearly separate blocks while
128 128 editing the demo code.
129 129 # <demo> stop
130 130
131 131 x = 1
132 132 y = 2
133 133
134 134 # <demo> stop
135 135
136 136 # the mark below makes this block as silent
137 137 # <demo> silent
138 138
139 139 print 'This is a silent block, which gets executed but not printed.'
140 140
141 141 # <demo> stop
142 142 # <demo> auto
143 143 print 'This is an automatic block.'
144 144 print 'It is executed without asking for confirmation, but printed.'
145 145 z = x+y
146 146
147 147 print 'z=',x
148 148
149 149 # <demo> stop
150 150 # This is just another normal block.
151 151 print 'z is now:', z
152 152
153 153 print 'bye!'
154 154 ################### END EXAMPLE DEMO <ex_demo.py> ############################
155 155 """
156 156
157 157 #*****************************************************************************
158 158 # Copyright (C) 2005-2006 Fernando Perez. <Fernando.Perez@colorado.edu>
159 159 #
160 160 # Distributed under the terms of the BSD License. The full license is in
161 161 # the file COPYING, distributed as part of this software.
162 162 #
163 163 #*****************************************************************************
164 164
165 165 import exceptions
166 166 import os
167 167 import re
168 168 import shlex
169 169 import sys
170 170
171 171 from IPython.PyColorize import Parser
172 172 from IPython.genutils import marquee, file_read, file_readlines
173 173
174 174 __all__ = ['Demo','IPythonDemo','LineDemo','IPythonLineDemo','DemoError']
175 175
176 176 class DemoError(exceptions.Exception): pass
177 177
178 178 def re_mark(mark):
179 179 return re.compile(r'^\s*#\s+<demo>\s+%s\s*$' % mark,re.MULTILINE)
180 180
181 181 class Demo(object):
182 182
183 re_stop = re_mark('-?\s?stop\s?-?')
183 re_stop = re_mark('-*\s?stop\s?-*')
184 184 re_silent = re_mark('silent')
185 185 re_auto = re_mark('auto')
186 186 re_auto_all = re_mark('auto_all')
187 187
188 188 def __init__(self,fname,arg_str='',auto_all=None):
189 189 """Make a new demo object. To run the demo, simply call the object.
190 190
191 191 See the module docstring for full details and an example (you can use
192 192 IPython.Demo? in IPython to see it).
193 193
194 194 Inputs:
195 195
196 196 - fname = filename.
197 197
198 198 Optional inputs:
199 199
200 200 - arg_str(''): a string of arguments, internally converted to a list
201 201 just like sys.argv, so the demo script can see a similar
202 202 environment.
203 203
204 204 - auto_all(None): global flag to run all blocks automatically without
205 205 confirmation. This attribute overrides the block-level tags and
206 206 applies to the whole demo. It is an attribute of the object, and
207 207 can be changed at runtime simply by reassigning it to a boolean
208 208 value.
209 209 """
210 210
211 211 self.fname = fname
212 212 self.sys_argv = [fname] + shlex.split(arg_str)
213 213 self.auto_all = auto_all
214 214
215 215 # get a few things from ipython. While it's a bit ugly design-wise,
216 216 # it ensures that things like color scheme and the like are always in
217 217 # sync with the ipython mode being used. This class is only meant to
218 218 # be used inside ipython anyways, so it's OK.
219 219 self.ip_ns = __IPYTHON__.user_ns
220 220 self.ip_colorize = __IPYTHON__.pycolorize
221 221 self.ip_showtb = __IPYTHON__.showtraceback
222 222 self.ip_runlines = __IPYTHON__.runlines
223 223 self.shell = __IPYTHON__
224 224
225 225 # load user data and initialize data structures
226 226 self.reload()
227 227
228 228 def reload(self):
229 229 """Reload source from disk and initialize state."""
230 230 # read data and parse into blocks
231 231 self.src = file_read(self.fname)
232 232 src_b = [b.strip() for b in self.re_stop.split(self.src) if b]
233 233 self._silent = [bool(self.re_silent.findall(b)) for b in src_b]
234 234 self._auto = [bool(self.re_auto.findall(b)) for b in src_b]
235 235
236 236 # if auto_all is not given (def. None), we read it from the file
237 237 if self.auto_all is None:
238 238 self.auto_all = bool(self.re_auto_all.findall(src_b[0]))
239 239 else:
240 240 self.auto_all = bool(self.auto_all)
241 241
242 242 # Clean the sources from all markup so it doesn't get displayed when
243 243 # running the demo
244 244 src_blocks = []
245 245 auto_strip = lambda s: self.re_auto.sub('',s)
246 246 for i,b in enumerate(src_b):
247 247 if self._auto[i]:
248 248 src_blocks.append(auto_strip(b))
249 249 else:
250 250 src_blocks.append(b)
251 251 # remove the auto_all marker
252 252 src_blocks[0] = self.re_auto_all.sub('',src_blocks[0])
253 253
254 254 self.nblocks = len(src_blocks)
255 255 self.src_blocks = src_blocks
256 256
257 257 # also build syntax-highlighted source
258 258 self.src_blocks_colored = map(self.ip_colorize,self.src_blocks)
259 259
260 260 # ensure clean namespace and seek offset
261 261 self.reset()
262 262
263 263 def reset(self):
264 264 """Reset the namespace and seek pointer to restart the demo"""
265 265 self.user_ns = {}
266 266 self.finished = False
267 267 self.block_index = 0
268 268
269 269 def _validate_index(self,index):
270 270 if index<0 or index>=self.nblocks:
271 271 raise ValueError('invalid block index %s' % index)
272 272
273 273 def _get_index(self,index):
274 274 """Get the current block index, validating and checking status.
275 275
276 276 Returns None if the demo is finished"""
277 277
278 278 if index is None:
279 279 if self.finished:
280 280 print 'Demo finished. Use reset() if you want to rerun it.'
281 281 return None
282 282 index = self.block_index
283 283 else:
284 284 self._validate_index(index)
285 285 return index
286 286
287 287 def seek(self,index):
288 288 """Move the current seek pointer to the given block.
289 289
290 290 You can use negative indices to seek from the end, with identical
291 291 semantics to those of Python lists."""
292 292 if index<0:
293 293 index = self.nblocks + index
294 294 self._validate_index(index)
295 295 self.block_index = index
296 296 self.finished = False
297 297
298 298 def back(self,num=1):
299 299 """Move the seek pointer back num blocks (default is 1)."""
300 300 self.seek(self.block_index-num)
301 301
302 302 def jump(self,num=1):
303 303 """Jump a given number of blocks relative to the current one.
304 304
305 305 The offset can be positive or negative, defaults to 1."""
306 306 self.seek(self.block_index+num)
307 307
308 308 def again(self):
309 309 """Move the seek pointer back one block and re-execute."""
310 310 self.back(1)
311 311 self()
312 312
313 313 def edit(self,index=None):
314 314 """Edit a block.
315 315
316 316 If no number is given, use the last block executed.
317 317
318 318 This edits the in-memory copy of the demo, it does NOT modify the
319 319 original source file. If you want to do that, simply open the file in
320 320 an editor and use reload() when you make changes to the file. This
321 321 method is meant to let you change a block during a demonstration for
322 322 explanatory purposes, without damaging your original script."""
323 323
324 324 index = self._get_index(index)
325 325 if index is None:
326 326 return
327 327 # decrease the index by one (unless we're at the very beginning), so
328 328 # that the default demo.edit() call opens up the sblock we've last run
329 329 if index>0:
330 330 index -= 1
331 331
332 332 filename = self.shell.mktempfile(self.src_blocks[index])
333 333 self.shell.hooks.editor(filename,1)
334 334 new_block = file_read(filename)
335 335 # update the source and colored block
336 336 self.src_blocks[index] = new_block
337 337 self.src_blocks_colored[index] = self.ip_colorize(new_block)
338 338 self.block_index = index
339 339 # call to run with the newly edited index
340 340 self()
341 341
342 342 def show(self,index=None):
343 343 """Show a single block on screen"""
344 344
345 345 index = self._get_index(index)
346 346 if index is None:
347 347 return
348 348
349 349 print self.marquee('<%s> block # %s (%s remaining)' %
350 350 (self.fname,index,self.nblocks-index-1))
351 351 sys.stdout.write(self.src_blocks_colored[index])
352 352 sys.stdout.flush()
353 353
354 354 def show_all(self):
355 355 """Show entire demo on screen, block by block"""
356 356
357 357 fname = self.fname
358 358 nblocks = self.nblocks
359 359 silent = self._silent
360 360 marquee = self.marquee
361 361 for index,block in enumerate(self.src_blocks_colored):
362 362 if silent[index]:
363 363 print marquee('<%s> SILENT block # %s (%s remaining)' %
364 364 (fname,index,nblocks-index-1))
365 365 else:
366 366 print marquee('<%s> block # %s (%s remaining)' %
367 367 (fname,index,nblocks-index-1))
368 368 print block,
369 369 sys.stdout.flush()
370 370
371 371 def runlines(self,source):
372 372 """Execute a string with one or more lines of code"""
373 373
374 374 exec source in self.user_ns
375 375
376 376 def __call__(self,index=None):
377 377 """run a block of the demo.
378 378
379 379 If index is given, it should be an integer >=1 and <= nblocks. This
380 380 means that the calling convention is one off from typical Python
381 381 lists. The reason for the inconsistency is that the demo always
382 382 prints 'Block n/N, and N is the total, so it would be very odd to use
383 383 zero-indexing here."""
384 384
385 385 index = self._get_index(index)
386 386 if index is None:
387 387 return
388 388 try:
389 389 marquee = self.marquee
390 390 next_block = self.src_blocks[index]
391 391 self.block_index += 1
392 392 if self._silent[index]:
393 393 print marquee('Executing silent block # %s (%s remaining)' %
394 394 (index,self.nblocks-index-1))
395 395 else:
396 396 self.pre_cmd()
397 397 self.show(index)
398 398 if self.auto_all or self._auto[index]:
399 399 print marquee('output:')
400 400 else:
401 401 print marquee('Press <q> to quit, <Enter> to execute...'),
402 402 ans = raw_input().strip()
403 403 if ans:
404 404 print marquee('Block NOT executed')
405 405 return
406 406 try:
407 407 save_argv = sys.argv
408 408 sys.argv = self.sys_argv
409 409 self.runlines(next_block)
410 410 self.post_cmd()
411 411 finally:
412 412 sys.argv = save_argv
413 413
414 414 except:
415 415 self.ip_showtb(filename=self.fname)
416 416 else:
417 417 self.ip_ns.update(self.user_ns)
418 418
419 419 if self.block_index == self.nblocks:
420 420 mq1 = self.marquee('END OF DEMO')
421 421 if mq1:
422 422 # avoid spurious prints if empty marquees are used
423 423 print
424 424 print mq1
425 425 print self.marquee('Use reset() if you want to rerun it.')
426 426 self.finished = True
427 427
428 428 # These methods are meant to be overridden by subclasses who may wish to
429 429 # customize the behavior of of their demos.
430 430 def marquee(self,txt='',width=78,mark='*'):
431 431 """Return the input string centered in a 'marquee'."""
432 432 return marquee(txt,width,mark)
433 433
434 434 def pre_cmd(self):
435 435 """Method called before executing each block."""
436 436 pass
437 437
438 438 def post_cmd(self):
439 439 """Method called after executing each block."""
440 440 pass
441 441
442 442
443 443 class IPythonDemo(Demo):
444 444 """Class for interactive demos with IPython's input processing applied.
445 445
446 446 This subclasses Demo, but instead of executing each block by the Python
447 447 interpreter (via exec), it actually calls IPython on it, so that any input
448 448 filters which may be in place are applied to the input block.
449 449
450 450 If you have an interactive environment which exposes special input
451 451 processing, you can use this class instead to write demo scripts which
452 452 operate exactly as if you had typed them interactively. The default Demo
453 453 class requires the input to be valid, pure Python code.
454 454 """
455 455
456 456 def runlines(self,source):
457 457 """Execute a string with one or more lines of code"""
458 458
459 459 self.shell.runlines(source)
460 460
461 461 class LineDemo(Demo):
462 462 """Demo where each line is executed as a separate block.
463 463
464 464 The input script should be valid Python code.
465 465
466 466 This class doesn't require any markup at all, and it's meant for simple
467 467 scripts (with no nesting or any kind of indentation) which consist of
468 468 multiple lines of input to be executed, one at a time, as if they had been
469 469 typed in the interactive prompt."""
470 470
471 471 def reload(self):
472 472 """Reload source from disk and initialize state."""
473 473 # read data and parse into blocks
474 474 src_b = [l for l in file_readlines(self.fname) if l.strip()]
475 475 nblocks = len(src_b)
476 476 self.src = os.linesep.join(file_readlines(self.fname))
477 477 self._silent = [False]*nblocks
478 478 self._auto = [True]*nblocks
479 479 self.auto_all = True
480 480 self.nblocks = nblocks
481 481 self.src_blocks = src_b
482 482
483 483 # also build syntax-highlighted source
484 484 self.src_blocks_colored = map(self.ip_colorize,self.src_blocks)
485 485
486 486 # ensure clean namespace and seek offset
487 487 self.reset()
488 488
489 489
490 490 class IPythonLineDemo(IPythonDemo,LineDemo):
491 491 """Variant of the LineDemo class whose input is processed by IPython."""
492 492 pass
493 493
494 494
495 495 class ClearMixin(object):
496 496 """Use this mixin to make Demo classes with less visual clutter.
497 497
498 498 Demos using this mixin will clear the screen before every block and use
499 499 blank marquees.
500 500
501 501 Note that in order for the methods defined here to actually override those
502 502 of the classes it's mixed with, it must go /first/ in the inheritance
503 503 tree. For example:
504 504
505 505 class ClearIPDemo(ClearMixin,IPythonDemo): pass
506 506
507 507 will provide an IPythonDemo class with the mixin's features.
508 508 """
509 509
510 510 def marquee(self,txt='',width=78,mark='*'):
511 511 """Blank marquee that returns '' no matter what the input."""
512 512 return ''
513 513
514 514 def pre_cmd(self):
515 515 """Method called before executing each block.
516 516
517 517 This one simply clears the screen."""
518 518 os.system('clear')
519 519
520 520
521 521 class ClearDemo(ClearMixin,Demo):
522 522 pass
523 523
524 524
525 525 class ClearIPDemo(ClearMixin,IPythonDemo):
526 526 pass
@@ -1,249 +1,252 b''
1 1 """hooks for IPython.
2 2
3 3 In Python, it is possible to overwrite any method of any object if you really
4 4 want to. But IPython exposes a few 'hooks', methods which are _designed_ to
5 5 be overwritten by users for customization purposes. This module defines the
6 6 default versions of all such hooks, which get used by IPython if not
7 7 overridden by the user.
8 8
9 9 hooks are simple functions, but they should be declared with 'self' as their
10 10 first argument, because when activated they are registered into IPython as
11 11 instance methods. The self argument will be the IPython running instance
12 12 itself, so hooks have full access to the entire IPython object.
13 13
14 14 If you wish to define a new hook and activate it, you need to put the
15 15 necessary code into a python file which can be either imported or execfile()'d
16 16 from within your ipythonrc configuration.
17 17
18 18 For example, suppose that you have a module called 'myiphooks' in your
19 19 PYTHONPATH, which contains the following definition:
20 20
21 21 import os
22 22 import IPython.ipapi
23 23 ip = IPython.ipapi.get()
24 24
25 25 def calljed(self,filename, linenum):
26 26 "My editor hook calls the jed editor directly."
27 27 print "Calling my own editor, jed ..."
28 os.system('jed +%d %s' % (linenum,filename))
28 if os.system('jed +%d %s' % (linenum,filename)) != 0:
29 raise ipapi.TryNext()
29 30
30 31 ip.set_hook('editor', calljed)
31 32
32 33 You can then enable the functionality by doing 'import myiphooks'
33 34 somewhere in your configuration files or ipython command line.
34 35
35 36 $Id: hooks.py 2998 2008-01-31 10:06:04Z vivainio $"""
36 37
37 38 #*****************************************************************************
38 39 # Copyright (C) 2005 Fernando Perez. <fperez@colorado.edu>
39 40 #
40 41 # Distributed under the terms of the BSD License. The full license is in
41 42 # the file COPYING, distributed as part of this software.
42 43 #*****************************************************************************
43 44
44 45 from IPython import Release
45 46 from IPython import ipapi
46 47 __author__ = '%s <%s>' % Release.authors['Fernando']
47 48 __license__ = Release.license
48 49 __version__ = Release.version
49 50
50 51 import os,bisect
51 52 from genutils import Term,shell
52 53 from pprint import PrettyPrinter
53 54
54 55 # List here all the default hooks. For now it's just the editor functions
55 56 # but over time we'll move here all the public API for user-accessible things.
56 57 # vds: >>
57 58 __all__ = ['editor', 'fix_error_editor', 'synchronize_with_editor', 'result_display',
58 59 'input_prefilter', 'shutdown_hook', 'late_startup_hook',
59 60 'generate_prompt', 'generate_output_prompt','shell_hook',
60 61 'show_in_pager','pre_prompt_hook', 'pre_runcode_hook']
61 62 # vds: <<
62 63
63 64 pformat = PrettyPrinter().pformat
64 65
65 66 def editor(self,filename, linenum=None):
66 67 """Open the default editor at the given filename and linenumber.
67 68
68 69 This is IPython's default editor hook, you can use it as an example to
69 70 write your own modified one. To set your own editor function as the
70 71 new editor hook, call ip.set_hook('editor',yourfunc)."""
71 72
72 73 # IPython configures a default editor at startup by reading $EDITOR from
73 74 # the environment, and falling back on vi (unix) or notepad (win32).
74 75 editor = self.rc.editor
75 76
76 77 # marker for at which line to open the file (for existing objects)
77 78 if linenum is None or editor=='notepad':
78 79 linemark = ''
79 80 else:
80 81 linemark = '+%d' % int(linenum)
81 82
82 83 # Enclose in quotes if necessary and legal
83 84 if ' ' in editor and os.path.isfile(editor) and editor[0] != '"':
84 85 editor = '"%s"' % editor
85 86
86 87 # Call the actual editor
87 os.system('%s %s %s' % (editor,linemark,filename))
88 if os.system('%s %s %s' % (editor,linemark,filename)) != 0:
89 raise ipapi.TryNext()
88 90
89 91 import tempfile
90 92 def fix_error_editor(self,filename,linenum,column,msg):
91 93 """Open the editor at the given filename, linenumber, column and
92 94 show an error message. This is used for correcting syntax errors.
93 95 The current implementation only has special support for the VIM editor,
94 96 and falls back on the 'editor' hook if VIM is not used.
95 97
96 98 Call ip.set_hook('fix_error_editor',youfunc) to use your own function,
97 99 """
98 100 def vim_quickfix_file():
99 101 t = tempfile.NamedTemporaryFile()
100 102 t.write('%s:%d:%d:%s\n' % (filename,linenum,column,msg))
101 103 t.flush()
102 104 return t
103 105 if os.path.basename(self.rc.editor) != 'vim':
104 106 self.hooks.editor(filename,linenum)
105 107 return
106 108 t = vim_quickfix_file()
107 109 try:
108 os.system('vim --cmd "set errorformat=%f:%l:%c:%m" -q ' + t.name)
110 if os.system('vim --cmd "set errorformat=%f:%l:%c:%m" -q ' + t.name):
111 raise ipapi.TryNext()
109 112 finally:
110 113 t.close()
111 114
112 115 # vds: >>
113 116 def synchronize_with_editor(self, filename, linenum, column):
114 117 pass
115 118 # vds: <<
116 119
117 120 class CommandChainDispatcher:
118 121 """ Dispatch calls to a chain of commands until some func can handle it
119 122
120 123 Usage: instantiate, execute "add" to add commands (with optional
121 124 priority), execute normally via f() calling mechanism.
122 125
123 126 """
124 127 def __init__(self,commands=None):
125 128 if commands is None:
126 129 self.chain = []
127 130 else:
128 131 self.chain = commands
129 132
130 133
131 134 def __call__(self,*args, **kw):
132 135 """ Command chain is called just like normal func.
133 136
134 137 This will call all funcs in chain with the same args as were given to this
135 138 function, and return the result of first func that didn't raise
136 139 TryNext """
137 140
138 141 for prio,cmd in self.chain:
139 142 #print "prio",prio,"cmd",cmd #dbg
140 143 try:
141 144 ret = cmd(*args, **kw)
142 145 return ret
143 146 except ipapi.TryNext, exc:
144 147 if exc.args or exc.kwargs:
145 148 args = exc.args
146 149 kw = exc.kwargs
147 150 # if no function will accept it, raise TryNext up to the caller
148 151 raise ipapi.TryNext
149 152
150 153 def __str__(self):
151 154 return str(self.chain)
152 155
153 156 def add(self, func, priority=0):
154 157 """ Add a func to the cmd chain with given priority """
155 158 bisect.insort(self.chain,(priority,func))
156 159
157 160 def __iter__(self):
158 161 """ Return all objects in chain.
159 162
160 163 Handy if the objects are not callable.
161 164 """
162 165 return iter(self.chain)
163 166
164 167 def result_display(self,arg):
165 168 """ Default display hook.
166 169
167 170 Called for displaying the result to the user.
168 171 """
169 172
170 173 if self.rc.pprint:
171 174 out = pformat(arg)
172 175 if '\n' in out:
173 176 # So that multi-line strings line up with the left column of
174 177 # the screen, instead of having the output prompt mess up
175 178 # their first line.
176 179 Term.cout.write('\n')
177 180 print >>Term.cout, out
178 181 else:
179 182 # By default, the interactive prompt uses repr() to display results,
180 183 # so we should honor this. Users who'd rather use a different
181 184 # mechanism can easily override this hook.
182 185 print >>Term.cout, repr(arg)
183 186 # the default display hook doesn't manipulate the value to put in history
184 187 return None
185 188
186 189 def input_prefilter(self,line):
187 190 """ Default input prefilter
188 191
189 192 This returns the line as unchanged, so that the interpreter
190 193 knows that nothing was done and proceeds with "classic" prefiltering
191 194 (%magics, !shell commands etc.).
192 195
193 196 Note that leading whitespace is not passed to this hook. Prefilter
194 197 can't alter indentation.
195 198
196 199 """
197 200 #print "attempt to rewrite",line #dbg
198 201 return line
199 202
200 203 def shutdown_hook(self):
201 204 """ default shutdown hook
202 205
203 206 Typically, shotdown hooks should raise TryNext so all shutdown ops are done
204 207 """
205 208
206 209 #print "default shutdown hook ok" # dbg
207 210 return
208 211
209 212 def late_startup_hook(self):
210 213 """ Executed after ipython has been constructed and configured
211 214
212 215 """
213 216 #print "default startup hook ok" # dbg
214 217
215 218 def generate_prompt(self, is_continuation):
216 219 """ calculate and return a string with the prompt to display """
217 220 ip = self.api
218 221 if is_continuation:
219 222 return str(ip.IP.outputcache.prompt2)
220 223 return str(ip.IP.outputcache.prompt1)
221 224
222 225 def generate_output_prompt(self):
223 226 ip = self.api
224 227 return str(ip.IP.outputcache.prompt_out)
225 228
226 229 def shell_hook(self,cmd):
227 230 """ Run system/shell command a'la os.system() """
228 231
229 232 shell(cmd, header=self.rc.system_header, verbose=self.rc.system_verbose)
230 233
231 234 def show_in_pager(self,s):
232 235 """ Run a string through pager """
233 236 # raising TryNext here will use the default paging functionality
234 237 raise ipapi.TryNext
235 238
236 239 def pre_prompt_hook(self):
237 240 """ Run before displaying the next prompt
238 241
239 242 Use this e.g. to display output from asynchronous operations (in order
240 243 to not mess up text entry)
241 244 """
242 245
243 246 return None
244 247
245 248 def pre_runcode_hook(self):
246 249 """ Executed before running the (prefiltered) code in IPython """
247 250 return None
248 251
249 252
@@ -1,2686 +1,2695 b''
1 1 # -*- coding: utf-8 -*-
2 2 """
3 3 IPython -- An enhanced Interactive Python
4 4
5 5 Requires Python 2.3 or newer.
6 6
7 7 This file contains all the classes and helper functions specific to IPython.
8 8
9 9 """
10 10
11 11 #*****************************************************************************
12 12 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
13 13 # Copyright (C) 2001-2006 Fernando Perez. <fperez@colorado.edu>
14 14 #
15 15 # Distributed under the terms of the BSD License. The full license is in
16 16 # the file COPYING, distributed as part of this software.
17 17 #
18 18 # Note: this code originally subclassed code.InteractiveConsole from the
19 19 # Python standard library. Over time, all of that class has been copied
20 20 # verbatim here for modifications which could not be accomplished by
21 21 # subclassing. At this point, there are no dependencies at all on the code
22 22 # module anymore (it is not even imported). The Python License (sec. 2)
23 23 # allows for this, but it's always nice to acknowledge credit where credit is
24 24 # due.
25 25 #*****************************************************************************
26 26
27 27 #****************************************************************************
28 28 # Modules and globals
29 29
30 30 from IPython import Release
31 31 __author__ = '%s <%s>\n%s <%s>' % \
32 32 ( Release.authors['Janko'] + Release.authors['Fernando'] )
33 33 __license__ = Release.license
34 34 __version__ = Release.version
35 35
36 36 # Python standard modules
37 37 import __main__
38 38 import __builtin__
39 39 import StringIO
40 40 import bdb
41 41 import cPickle as pickle
42 42 import codeop
43 43 import exceptions
44 44 import glob
45 45 import inspect
46 46 import keyword
47 47 import new
48 48 import os
49 49 import pydoc
50 50 import re
51 51 import shutil
52 52 import string
53 53 import sys
54 54 import tempfile
55 55 import traceback
56 56 import types
57 57 import warnings
58 58 warnings.filterwarnings('ignore', r'.*sets module*')
59 59 from sets import Set
60 60 from pprint import pprint, pformat
61 61
62 62 # IPython's own modules
63 63 #import IPython
64 64 from IPython import Debugger,OInspect,PyColorize,ultraTB
65 65 from IPython.ColorANSI import ColorScheme,ColorSchemeTable # too long names
66 66 from IPython.Extensions import pickleshare
67 67 from IPython.FakeModule import FakeModule
68 68 from IPython.Itpl import Itpl,itpl,printpl,ItplNS,itplns
69 69 from IPython.Logger import Logger
70 70 from IPython.Magic import Magic
71 71 from IPython.Prompts import CachedOutput
72 72 from IPython.ipstruct import Struct
73 73 from IPython.background_jobs import BackgroundJobManager
74 74 from IPython.usage import cmd_line_usage,interactive_usage
75 75 from IPython.genutils import *
76 76 from IPython.strdispatch import StrDispatch
77 77 import IPython.ipapi
78 78 import IPython.history
79 79 import IPython.prefilter as prefilter
80 80 import IPython.shadowns
81 81 # Globals
82 82
83 83 # store the builtin raw_input globally, and use this always, in case user code
84 84 # overwrites it (like wx.py.PyShell does)
85 85 raw_input_original = raw_input
86 86
87 87 # compiled regexps for autoindent management
88 88 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
89 89
90 90
91 91 #****************************************************************************
92 92 # Some utility function definitions
93 93
94 94 ini_spaces_re = re.compile(r'^(\s+)')
95 95
96 96 def num_ini_spaces(strng):
97 97 """Return the number of initial spaces in a string"""
98 98
99 99 ini_spaces = ini_spaces_re.match(strng)
100 100 if ini_spaces:
101 101 return ini_spaces.end()
102 102 else:
103 103 return 0
104 104
105 105 def softspace(file, newvalue):
106 106 """Copied from code.py, to remove the dependency"""
107 107
108 108 oldvalue = 0
109 109 try:
110 110 oldvalue = file.softspace
111 111 except AttributeError:
112 112 pass
113 113 try:
114 114 file.softspace = newvalue
115 115 except (AttributeError, TypeError):
116 116 # "attribute-less object" or "read-only attributes"
117 117 pass
118 118 return oldvalue
119 119
120 120
121 121 #****************************************************************************
122 122 # Local use exceptions
123 123 class SpaceInInput(exceptions.Exception): pass
124 124
125 125
126 126 #****************************************************************************
127 127 # Local use classes
128 128 class Bunch: pass
129 129
130 130 class Undefined: pass
131 131
132 132 class Quitter(object):
133 133 """Simple class to handle exit, similar to Python 2.5's.
134 134
135 135 It handles exiting in an ipython-safe manner, which the one in Python 2.5
136 136 doesn't do (obviously, since it doesn't know about ipython)."""
137 137
138 138 def __init__(self,shell,name):
139 139 self.shell = shell
140 140 self.name = name
141 141
142 142 def __repr__(self):
143 143 return 'Type %s() to exit.' % self.name
144 144 __str__ = __repr__
145 145
146 146 def __call__(self):
147 147 self.shell.exit()
148 148
149 149 class InputList(list):
150 150 """Class to store user input.
151 151
152 152 It's basically a list, but slices return a string instead of a list, thus
153 153 allowing things like (assuming 'In' is an instance):
154 154
155 155 exec In[4:7]
156 156
157 157 or
158 158
159 159 exec In[5:9] + In[14] + In[21:25]"""
160 160
161 161 def __getslice__(self,i,j):
162 162 return ''.join(list.__getslice__(self,i,j))
163 163
164 164 class SyntaxTB(ultraTB.ListTB):
165 165 """Extension which holds some state: the last exception value"""
166 166
167 167 def __init__(self,color_scheme = 'NoColor'):
168 168 ultraTB.ListTB.__init__(self,color_scheme)
169 169 self.last_syntax_error = None
170 170
171 171 def __call__(self, etype, value, elist):
172 172 self.last_syntax_error = value
173 173 ultraTB.ListTB.__call__(self,etype,value,elist)
174 174
175 175 def clear_err_state(self):
176 176 """Return the current error state and clear it"""
177 177 e = self.last_syntax_error
178 178 self.last_syntax_error = None
179 179 return e
180 180
181 181 #****************************************************************************
182 182 # Main IPython class
183 183
184 184 # FIXME: the Magic class is a mixin for now, and will unfortunately remain so
185 185 # until a full rewrite is made. I've cleaned all cross-class uses of
186 186 # attributes and methods, but too much user code out there relies on the
187 187 # equlity %foo == __IP.magic_foo, so I can't actually remove the mixin usage.
188 188 #
189 189 # But at least now, all the pieces have been separated and we could, in
190 190 # principle, stop using the mixin. This will ease the transition to the
191 191 # chainsaw branch.
192 192
193 193 # For reference, the following is the list of 'self.foo' uses in the Magic
194 194 # class as of 2005-12-28. These are names we CAN'T use in the main ipython
195 195 # class, to prevent clashes.
196 196
197 197 # ['self.__class__', 'self.__dict__', 'self._inspect', 'self._ofind',
198 198 # 'self.arg_err', 'self.extract_input', 'self.format_', 'self.lsmagic',
199 199 # 'self.magic_', 'self.options_table', 'self.parse', 'self.shell',
200 200 # 'self.value']
201 201
202 202 class InteractiveShell(object,Magic):
203 203 """An enhanced console for Python."""
204 204
205 205 # class attribute to indicate whether the class supports threads or not.
206 206 # Subclasses with thread support should override this as needed.
207 207 isthreaded = False
208 208
209 209 def __init__(self,name,usage=None,rc=Struct(opts=None,args=None),
210 210 user_ns=None,user_global_ns=None,banner2='',
211 211 custom_exceptions=((),None),embedded=False):
212 212
213 213 # log system
214 214 self.logger = Logger(self,logfname='ipython_log.py',logmode='rotate')
215 215
216 216 # Job manager (for jobs run as background threads)
217 217 self.jobs = BackgroundJobManager()
218 218
219 219 # Store the actual shell's name
220 220 self.name = name
221 221 self.more = False
222 222
223 223 # We need to know whether the instance is meant for embedding, since
224 224 # global/local namespaces need to be handled differently in that case
225 225 self.embedded = embedded
226 226 if embedded:
227 227 # Control variable so users can, from within the embedded instance,
228 228 # permanently deactivate it.
229 229 self.embedded_active = True
230 230
231 231 # command compiler
232 232 self.compile = codeop.CommandCompiler()
233 233
234 234 # User input buffer
235 235 self.buffer = []
236 236
237 237 # Default name given in compilation of code
238 238 self.filename = '<ipython console>'
239 239
240 240 # Install our own quitter instead of the builtins. For python2.3-2.4,
241 241 # this brings in behavior like 2.5, and for 2.5 it's identical.
242 242 __builtin__.exit = Quitter(self,'exit')
243 243 __builtin__.quit = Quitter(self,'quit')
244 244
245 245 # Make an empty namespace, which extension writers can rely on both
246 246 # existing and NEVER being used by ipython itself. This gives them a
247 247 # convenient location for storing additional information and state
248 248 # their extensions may require, without fear of collisions with other
249 249 # ipython names that may develop later.
250 250 self.meta = Struct()
251 251
252 252 # Create the namespace where the user will operate. user_ns is
253 253 # normally the only one used, and it is passed to the exec calls as
254 254 # the locals argument. But we do carry a user_global_ns namespace
255 255 # given as the exec 'globals' argument, This is useful in embedding
256 256 # situations where the ipython shell opens in a context where the
257 257 # distinction between locals and globals is meaningful. For
258 258 # non-embedded contexts, it is just the same object as the user_ns dict.
259 259
260 260 # FIXME. For some strange reason, __builtins__ is showing up at user
261 261 # level as a dict instead of a module. This is a manual fix, but I
262 262 # should really track down where the problem is coming from. Alex
263 263 # Schmolck reported this problem first.
264 264
265 265 # A useful post by Alex Martelli on this topic:
266 266 # Re: inconsistent value from __builtins__
267 267 # Von: Alex Martelli <aleaxit@yahoo.com>
268 268 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
269 269 # Gruppen: comp.lang.python
270 270
271 271 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
272 272 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
273 273 # > <type 'dict'>
274 274 # > >>> print type(__builtins__)
275 275 # > <type 'module'>
276 276 # > Is this difference in return value intentional?
277 277
278 278 # Well, it's documented that '__builtins__' can be either a dictionary
279 279 # or a module, and it's been that way for a long time. Whether it's
280 280 # intentional (or sensible), I don't know. In any case, the idea is
281 281 # that if you need to access the built-in namespace directly, you
282 282 # should start with "import __builtin__" (note, no 's') which will
283 283 # definitely give you a module. Yeah, it's somewhat confusing:-(.
284 284
285 285 # These routines return properly built dicts as needed by the rest of
286 286 # the code, and can also be used by extension writers to generate
287 287 # properly initialized namespaces.
288 288 user_ns, user_global_ns = IPython.ipapi.make_user_namespaces(user_ns,
289 289 user_global_ns)
290 290
291 291 # Assign namespaces
292 292 # This is the namespace where all normal user variables live
293 293 self.user_ns = user_ns
294 294 self.user_global_ns = user_global_ns
295 295 # A namespace to keep track of internal data structures to prevent
296 296 # them from cluttering user-visible stuff. Will be updated later
297 297 self.internal_ns = {}
298 298
299 299 # Namespace of system aliases. Each entry in the alias
300 300 # table must be a 2-tuple of the form (N,name), where N is the number
301 301 # of positional arguments of the alias.
302 302 self.alias_table = {}
303 303
304 304 # A table holding all the namespaces IPython deals with, so that
305 305 # introspection facilities can search easily.
306 306 self.ns_table = {'user':user_ns,
307 307 'user_global':user_global_ns,
308 308 'alias':self.alias_table,
309 309 'internal':self.internal_ns,
310 310 'builtin':__builtin__.__dict__
311 311 }
312 312 # The user namespace MUST have a pointer to the shell itself.
313 313 self.user_ns[name] = self
314 314
315 315 # We need to insert into sys.modules something that looks like a
316 316 # module but which accesses the IPython namespace, for shelve and
317 317 # pickle to work interactively. Normally they rely on getting
318 318 # everything out of __main__, but for embedding purposes each IPython
319 319 # instance has its own private namespace, so we can't go shoving
320 320 # everything into __main__.
321 321
322 322 # note, however, that we should only do this for non-embedded
323 323 # ipythons, which really mimic the __main__.__dict__ with their own
324 324 # namespace. Embedded instances, on the other hand, should not do
325 325 # this because they need to manage the user local/global namespaces
326 326 # only, but they live within a 'normal' __main__ (meaning, they
327 327 # shouldn't overtake the execution environment of the script they're
328 328 # embedded in).
329 329
330 330 if not embedded:
331 331 try:
332 332 main_name = self.user_ns['__name__']
333 333 except KeyError:
334 334 raise KeyError,'user_ns dictionary MUST have a "__name__" key'
335 335 else:
336 336 #print "pickle hack in place" # dbg
337 337 #print 'main_name:',main_name # dbg
338 338 sys.modules[main_name] = FakeModule(self.user_ns)
339 339
340 340 # Now that FakeModule produces a real module, we've run into a nasty
341 341 # problem: after script execution (via %run), the module where the user
342 342 # code ran is deleted. Now that this object is a true module (needed
343 343 # so docetst and other tools work correctly), the Python module
344 344 # teardown mechanism runs over it, and sets to None every variable
345 345 # present in that module. This means that later calls to functions
346 346 # defined in the script (which have become interactively visible after
347 347 # script exit) fail, because they hold references to objects that have
348 348 # become overwritten into None. The only solution I see right now is
349 349 # to protect every FakeModule used by %run by holding an internal
350 350 # reference to it. This private list will be used for that. The
351 351 # %reset command will flush it as well.
352 352 self._user_main_modules = []
353 353
354 354 # List of input with multi-line handling.
355 355 # Fill its zero entry, user counter starts at 1
356 356 self.input_hist = InputList(['\n'])
357 357 # This one will hold the 'raw' input history, without any
358 358 # pre-processing. This will allow users to retrieve the input just as
359 359 # it was exactly typed in by the user, with %hist -r.
360 360 self.input_hist_raw = InputList(['\n'])
361 361
362 362 # list of visited directories
363 363 try:
364 364 self.dir_hist = [os.getcwd()]
365 365 except OSError:
366 366 self.dir_hist = []
367 367
368 368 # dict of output history
369 369 self.output_hist = {}
370 370
371 371 # Get system encoding at startup time. Certain terminals (like Emacs
372 372 # under Win32 have it set to None, and we need to have a known valid
373 373 # encoding to use in the raw_input() method
374 374 try:
375 375 self.stdin_encoding = sys.stdin.encoding or 'ascii'
376 376 except AttributeError:
377 377 self.stdin_encoding = 'ascii'
378 378
379 379 # dict of things NOT to alias (keywords, builtins and some magics)
380 380 no_alias = {}
381 381 no_alias_magics = ['cd','popd','pushd','dhist','alias','unalias']
382 382 for key in keyword.kwlist + no_alias_magics:
383 383 no_alias[key] = 1
384 384 no_alias.update(__builtin__.__dict__)
385 385 self.no_alias = no_alias
386 386
387 387 # make global variables for user access to these
388 388 self.user_ns['_ih'] = self.input_hist
389 389 self.user_ns['_oh'] = self.output_hist
390 390 self.user_ns['_dh'] = self.dir_hist
391 391
392 392 # user aliases to input and output histories
393 393 self.user_ns['In'] = self.input_hist
394 394 self.user_ns['Out'] = self.output_hist
395 395
396 396 self.user_ns['_sh'] = IPython.shadowns
397 397 # Object variable to store code object waiting execution. This is
398 398 # used mainly by the multithreaded shells, but it can come in handy in
399 399 # other situations. No need to use a Queue here, since it's a single
400 400 # item which gets cleared once run.
401 401 self.code_to_run = None
402 402
403 403 # escapes for automatic behavior on the command line
404 404 self.ESC_SHELL = '!'
405 405 self.ESC_SH_CAP = '!!'
406 406 self.ESC_HELP = '?'
407 407 self.ESC_MAGIC = '%'
408 408 self.ESC_QUOTE = ','
409 409 self.ESC_QUOTE2 = ';'
410 410 self.ESC_PAREN = '/'
411 411
412 412 # And their associated handlers
413 413 self.esc_handlers = {self.ESC_PAREN : self.handle_auto,
414 414 self.ESC_QUOTE : self.handle_auto,
415 415 self.ESC_QUOTE2 : self.handle_auto,
416 416 self.ESC_MAGIC : self.handle_magic,
417 417 self.ESC_HELP : self.handle_help,
418 418 self.ESC_SHELL : self.handle_shell_escape,
419 419 self.ESC_SH_CAP : self.handle_shell_escape,
420 420 }
421 421
422 422 # class initializations
423 423 Magic.__init__(self,self)
424 424
425 425 # Python source parser/formatter for syntax highlighting
426 426 pyformat = PyColorize.Parser().format
427 427 self.pycolorize = lambda src: pyformat(src,'str',self.rc['colors'])
428 428
429 429 # hooks holds pointers used for user-side customizations
430 430 self.hooks = Struct()
431 431
432 432 self.strdispatchers = {}
433 433
434 434 # Set all default hooks, defined in the IPython.hooks module.
435 435 hooks = IPython.hooks
436 436 for hook_name in hooks.__all__:
437 437 # default hooks have priority 100, i.e. low; user hooks should have
438 438 # 0-100 priority
439 439 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
440 440 #print "bound hook",hook_name
441 441
442 442 # Flag to mark unconditional exit
443 443 self.exit_now = False
444 444
445 445 self.usage_min = """\
446 446 An enhanced console for Python.
447 447 Some of its features are:
448 448 - Readline support if the readline library is present.
449 449 - Tab completion in the local namespace.
450 450 - Logging of input, see command-line options.
451 451 - System shell escape via ! , eg !ls.
452 452 - Magic commands, starting with a % (like %ls, %pwd, %cd, etc.)
453 453 - Keeps track of locally defined variables via %who, %whos.
454 454 - Show object information with a ? eg ?x or x? (use ?? for more info).
455 455 """
456 456 if usage: self.usage = usage
457 457 else: self.usage = self.usage_min
458 458
459 459 # Storage
460 460 self.rc = rc # This will hold all configuration information
461 461 self.pager = 'less'
462 462 # temporary files used for various purposes. Deleted at exit.
463 463 self.tempfiles = []
464 464
465 465 # Keep track of readline usage (later set by init_readline)
466 466 self.has_readline = False
467 467
468 468 # template for logfile headers. It gets resolved at runtime by the
469 469 # logstart method.
470 470 self.loghead_tpl = \
471 471 """#log# Automatic Logger file. *** THIS MUST BE THE FIRST LINE ***
472 472 #log# DO NOT CHANGE THIS LINE OR THE TWO BELOW
473 473 #log# opts = %s
474 474 #log# args = %s
475 475 #log# It is safe to make manual edits below here.
476 476 #log#-----------------------------------------------------------------------
477 477 """
478 478 # for pushd/popd management
479 479 try:
480 480 self.home_dir = get_home_dir()
481 481 except HomeDirError,msg:
482 482 fatal(msg)
483 483
484 484 self.dir_stack = []
485 485
486 486 # Functions to call the underlying shell.
487 487
488 488 # The first is similar to os.system, but it doesn't return a value,
489 489 # and it allows interpolation of variables in the user's namespace.
490 490 self.system = lambda cmd: \
491 491 self.hooks.shell_hook(self.var_expand(cmd,depth=2))
492 492
493 493 # These are for getoutput and getoutputerror:
494 494 self.getoutput = lambda cmd: \
495 495 getoutput(self.var_expand(cmd,depth=2),
496 496 header=self.rc.system_header,
497 497 verbose=self.rc.system_verbose)
498 498
499 499 self.getoutputerror = lambda cmd: \
500 500 getoutputerror(self.var_expand(cmd,depth=2),
501 501 header=self.rc.system_header,
502 502 verbose=self.rc.system_verbose)
503 503
504 504
505 505 # keep track of where we started running (mainly for crash post-mortem)
506 506 self.starting_dir = os.getcwd()
507 507
508 508 # Various switches which can be set
509 509 self.CACHELENGTH = 5000 # this is cheap, it's just text
510 510 self.BANNER = "Python %(version)s on %(platform)s\n" % sys.__dict__
511 511 self.banner2 = banner2
512 512
513 513 # TraceBack handlers:
514 514
515 515 # Syntax error handler.
516 516 self.SyntaxTB = SyntaxTB(color_scheme='NoColor')
517 517
518 518 # The interactive one is initialized with an offset, meaning we always
519 519 # want to remove the topmost item in the traceback, which is our own
520 520 # internal code. Valid modes: ['Plain','Context','Verbose']
521 521 self.InteractiveTB = ultraTB.AutoFormattedTB(mode = 'Plain',
522 522 color_scheme='NoColor',
523 523 tb_offset = 1)
524 524
525 525 # IPython itself shouldn't crash. This will produce a detailed
526 526 # post-mortem if it does. But we only install the crash handler for
527 527 # non-threaded shells, the threaded ones use a normal verbose reporter
528 528 # and lose the crash handler. This is because exceptions in the main
529 529 # thread (such as in GUI code) propagate directly to sys.excepthook,
530 530 # and there's no point in printing crash dumps for every user exception.
531 531 if self.isthreaded:
532 532 ipCrashHandler = ultraTB.FormattedTB()
533 533 else:
534 534 from IPython import CrashHandler
535 535 ipCrashHandler = CrashHandler.IPythonCrashHandler(self)
536 536 self.set_crash_handler(ipCrashHandler)
537 537
538 538 # and add any custom exception handlers the user may have specified
539 539 self.set_custom_exc(*custom_exceptions)
540 540
541 541 # indentation management
542 542 self.autoindent = False
543 543 self.indent_current_nsp = 0
544 544
545 545 # Make some aliases automatically
546 546 # Prepare list of shell aliases to auto-define
547 547 if os.name == 'posix':
548 548 auto_alias = ('mkdir mkdir', 'rmdir rmdir',
549 549 'mv mv -i','rm rm -i','cp cp -i',
550 550 'cat cat','less less','clear clear',
551 551 # a better ls
552 552 'ls ls -F',
553 553 # long ls
554 554 'll ls -lF')
555 555 # Extra ls aliases with color, which need special treatment on BSD
556 556 # variants
557 557 ls_extra = ( # color ls
558 558 'lc ls -F -o --color',
559 559 # ls normal files only
560 560 'lf ls -F -o --color %l | grep ^-',
561 561 # ls symbolic links
562 562 'lk ls -F -o --color %l | grep ^l',
563 563 # directories or links to directories,
564 564 'ldir ls -F -o --color %l | grep /$',
565 565 # things which are executable
566 566 'lx ls -F -o --color %l | grep ^-..x',
567 567 )
568 568 # The BSDs don't ship GNU ls, so they don't understand the
569 569 # --color switch out of the box
570 570 if 'bsd' in sys.platform:
571 571 ls_extra = ( # ls normal files only
572 572 'lf ls -lF | grep ^-',
573 573 # ls symbolic links
574 574 'lk ls -lF | grep ^l',
575 575 # directories or links to directories,
576 576 'ldir ls -lF | grep /$',
577 577 # things which are executable
578 578 'lx ls -lF | grep ^-..x',
579 579 )
580 580 auto_alias = auto_alias + ls_extra
581 581 elif os.name in ['nt','dos']:
582 582 auto_alias = ('ls dir /on',
583 583 'ddir dir /ad /on', 'ldir dir /ad /on',
584 584 'mkdir mkdir','rmdir rmdir','echo echo',
585 585 'ren ren','cls cls','copy copy')
586 586 else:
587 587 auto_alias = ()
588 588 self.auto_alias = [s.split(None,1) for s in auto_alias]
589 589
590 590
591 591 # Produce a public API instance
592 592 self.api = IPython.ipapi.IPApi(self)
593 593
594 594 # Call the actual (public) initializer
595 595 self.init_auto_alias()
596 596
597 597 # track which builtins we add, so we can clean up later
598 598 self.builtins_added = {}
599 599 # This method will add the necessary builtins for operation, but
600 600 # tracking what it did via the builtins_added dict.
601 601
602 602 #TODO: remove this, redundant
603 603 self.add_builtins()
604 604
605 605
606 606
607 607
608 608 # end __init__
609 609
610 610 def var_expand(self,cmd,depth=0):
611 611 """Expand python variables in a string.
612 612
613 613 The depth argument indicates how many frames above the caller should
614 614 be walked to look for the local namespace where to expand variables.
615 615
616 616 The global namespace for expansion is always the user's interactive
617 617 namespace.
618 618 """
619 619
620 620 return str(ItplNS(cmd,
621 621 self.user_ns, # globals
622 622 # Skip our own frame in searching for locals:
623 623 sys._getframe(depth+1).f_locals # locals
624 624 ))
625 625
626 626 def pre_config_initialization(self):
627 627 """Pre-configuration init method
628 628
629 629 This is called before the configuration files are processed to
630 630 prepare the services the config files might need.
631 631
632 632 self.rc already has reasonable default values at this point.
633 633 """
634 634 rc = self.rc
635 635 try:
636 636 self.db = pickleshare.PickleShareDB(rc.ipythondir + "/db")
637 637 except exceptions.UnicodeDecodeError:
638 638 print "Your ipythondir can't be decoded to unicode!"
639 639 print "Please set HOME environment variable to something that"
640 640 print r"only has ASCII characters, e.g. c:\home"
641 641 print "Now it is",rc.ipythondir
642 642 sys.exit()
643 643 self.shadowhist = IPython.history.ShadowHist(self.db)
644 644
645 645
646 646 def post_config_initialization(self):
647 647 """Post configuration init method
648 648
649 649 This is called after the configuration files have been processed to
650 650 'finalize' the initialization."""
651 651
652 652 rc = self.rc
653 653
654 654 # Object inspector
655 655 self.inspector = OInspect.Inspector(OInspect.InspectColors,
656 656 PyColorize.ANSICodeColors,
657 657 'NoColor',
658 658 rc.object_info_string_level)
659 659
660 660 self.rl_next_input = None
661 661 self.rl_do_indent = False
662 662 # Load readline proper
663 663 if rc.readline:
664 664 self.init_readline()
665 665
666 666
667 667 # local shortcut, this is used a LOT
668 668 self.log = self.logger.log
669 669
670 670 # Initialize cache, set in/out prompts and printing system
671 671 self.outputcache = CachedOutput(self,
672 672 rc.cache_size,
673 673 rc.pprint,
674 674 input_sep = rc.separate_in,
675 675 output_sep = rc.separate_out,
676 676 output_sep2 = rc.separate_out2,
677 677 ps1 = rc.prompt_in1,
678 678 ps2 = rc.prompt_in2,
679 679 ps_out = rc.prompt_out,
680 680 pad_left = rc.prompts_pad_left)
681 681
682 682 # user may have over-ridden the default print hook:
683 683 try:
684 684 self.outputcache.__class__.display = self.hooks.display
685 685 except AttributeError:
686 686 pass
687 687
688 688 # I don't like assigning globally to sys, because it means when
689 689 # embedding instances, each embedded instance overrides the previous
690 690 # choice. But sys.displayhook seems to be called internally by exec,
691 691 # so I don't see a way around it. We first save the original and then
692 692 # overwrite it.
693 693 self.sys_displayhook = sys.displayhook
694 694 sys.displayhook = self.outputcache
695 695
696 696 # Do a proper resetting of doctest, including the necessary displayhook
697 697 # monkeypatching
698 698 try:
699 699 doctest_reload()
700 700 except ImportError:
701 701 warn("doctest module does not exist.")
702 702
703 703 # Set user colors (don't do it in the constructor above so that it
704 704 # doesn't crash if colors option is invalid)
705 705 self.magic_colors(rc.colors)
706 706
707 707 # Set calling of pdb on exceptions
708 708 self.call_pdb = rc.pdb
709 709
710 710 # Load user aliases
711 711 for alias in rc.alias:
712 712 self.magic_alias(alias)
713 713
714 714 self.hooks.late_startup_hook()
715 715
716 716 for cmd in self.rc.autoexec:
717 717 #print "autoexec>",cmd #dbg
718 718 self.api.runlines(cmd)
719 719
720 720 batchrun = False
721 721 for batchfile in [path(arg) for arg in self.rc.args
722 722 if arg.lower().endswith('.ipy')]:
723 723 if not batchfile.isfile():
724 724 print "No such batch file:", batchfile
725 725 continue
726 726 self.api.runlines(batchfile.text())
727 727 batchrun = True
728 728 # without -i option, exit after running the batch file
729 729 if batchrun and not self.rc.interact:
730 730 self.ask_exit()
731 731
732 732 def add_builtins(self):
733 733 """Store ipython references into the builtin namespace.
734 734
735 735 Some parts of ipython operate via builtins injected here, which hold a
736 736 reference to IPython itself."""
737 737
738 738 # TODO: deprecate all of these, they are unsafe
739 739 builtins_new = dict(__IPYTHON__ = self,
740 740 ip_set_hook = self.set_hook,
741 741 jobs = self.jobs,
742 742 ipmagic = wrap_deprecated(self.ipmagic,'_ip.magic()'),
743 743 ipalias = wrap_deprecated(self.ipalias),
744 744 ipsystem = wrap_deprecated(self.ipsystem,'_ip.system()'),
745 745 #_ip = self.api
746 746 )
747 747 for biname,bival in builtins_new.items():
748 748 try:
749 749 # store the orignal value so we can restore it
750 750 self.builtins_added[biname] = __builtin__.__dict__[biname]
751 751 except KeyError:
752 752 # or mark that it wasn't defined, and we'll just delete it at
753 753 # cleanup
754 754 self.builtins_added[biname] = Undefined
755 755 __builtin__.__dict__[biname] = bival
756 756
757 757 # Keep in the builtins a flag for when IPython is active. We set it
758 758 # with setdefault so that multiple nested IPythons don't clobber one
759 759 # another. Each will increase its value by one upon being activated,
760 760 # which also gives us a way to determine the nesting level.
761 761 __builtin__.__dict__.setdefault('__IPYTHON__active',0)
762 762
763 763 def clean_builtins(self):
764 764 """Remove any builtins which might have been added by add_builtins, or
765 765 restore overwritten ones to their previous values."""
766 766 for biname,bival in self.builtins_added.items():
767 767 if bival is Undefined:
768 768 del __builtin__.__dict__[biname]
769 769 else:
770 770 __builtin__.__dict__[biname] = bival
771 771 self.builtins_added.clear()
772 772
773 773 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
774 774 """set_hook(name,hook) -> sets an internal IPython hook.
775 775
776 776 IPython exposes some of its internal API as user-modifiable hooks. By
777 777 adding your function to one of these hooks, you can modify IPython's
778 778 behavior to call at runtime your own routines."""
779 779
780 780 # At some point in the future, this should validate the hook before it
781 781 # accepts it. Probably at least check that the hook takes the number
782 782 # of args it's supposed to.
783 783
784 784 f = new.instancemethod(hook,self,self.__class__)
785 785
786 786 # check if the hook is for strdispatcher first
787 787 if str_key is not None:
788 788 sdp = self.strdispatchers.get(name, StrDispatch())
789 789 sdp.add_s(str_key, f, priority )
790 790 self.strdispatchers[name] = sdp
791 791 return
792 792 if re_key is not None:
793 793 sdp = self.strdispatchers.get(name, StrDispatch())
794 794 sdp.add_re(re.compile(re_key), f, priority )
795 795 self.strdispatchers[name] = sdp
796 796 return
797 797
798 798 dp = getattr(self.hooks, name, None)
799 799 if name not in IPython.hooks.__all__:
800 800 print "Warning! Hook '%s' is not one of %s" % (name, IPython.hooks.__all__ )
801 801 if not dp:
802 802 dp = IPython.hooks.CommandChainDispatcher()
803 803
804 804 try:
805 805 dp.add(f,priority)
806 806 except AttributeError:
807 807 # it was not commandchain, plain old func - replace
808 808 dp = f
809 809
810 810 setattr(self.hooks,name, dp)
811 811
812 812
813 813 #setattr(self.hooks,name,new.instancemethod(hook,self,self.__class__))
814 814
815 815 def set_crash_handler(self,crashHandler):
816 816 """Set the IPython crash handler.
817 817
818 818 This must be a callable with a signature suitable for use as
819 819 sys.excepthook."""
820 820
821 821 # Install the given crash handler as the Python exception hook
822 822 sys.excepthook = crashHandler
823 823
824 824 # The instance will store a pointer to this, so that runtime code
825 825 # (such as magics) can access it. This is because during the
826 826 # read-eval loop, it gets temporarily overwritten (to deal with GUI
827 827 # frameworks).
828 828 self.sys_excepthook = sys.excepthook
829 829
830 830
831 831 def set_custom_exc(self,exc_tuple,handler):
832 832 """set_custom_exc(exc_tuple,handler)
833 833
834 834 Set a custom exception handler, which will be called if any of the
835 835 exceptions in exc_tuple occur in the mainloop (specifically, in the
836 836 runcode() method.
837 837
838 838 Inputs:
839 839
840 840 - exc_tuple: a *tuple* of valid exceptions to call the defined
841 841 handler for. It is very important that you use a tuple, and NOT A
842 842 LIST here, because of the way Python's except statement works. If
843 843 you only want to trap a single exception, use a singleton tuple:
844 844
845 845 exc_tuple == (MyCustomException,)
846 846
847 847 - handler: this must be defined as a function with the following
848 848 basic interface: def my_handler(self,etype,value,tb).
849 849
850 850 This will be made into an instance method (via new.instancemethod)
851 851 of IPython itself, and it will be called if any of the exceptions
852 852 listed in the exc_tuple are caught. If the handler is None, an
853 853 internal basic one is used, which just prints basic info.
854 854
855 855 WARNING: by putting in your own exception handler into IPython's main
856 856 execution loop, you run a very good chance of nasty crashes. This
857 857 facility should only be used if you really know what you are doing."""
858 858
859 859 assert type(exc_tuple)==type(()) , \
860 860 "The custom exceptions must be given AS A TUPLE."
861 861
862 862 def dummy_handler(self,etype,value,tb):
863 863 print '*** Simple custom exception handler ***'
864 864 print 'Exception type :',etype
865 865 print 'Exception value:',value
866 866 print 'Traceback :',tb
867 867 print 'Source code :','\n'.join(self.buffer)
868 868
869 869 if handler is None: handler = dummy_handler
870 870
871 871 self.CustomTB = new.instancemethod(handler,self,self.__class__)
872 872 self.custom_exceptions = exc_tuple
873 873
874 874 def set_custom_completer(self,completer,pos=0):
875 875 """set_custom_completer(completer,pos=0)
876 876
877 877 Adds a new custom completer function.
878 878
879 879 The position argument (defaults to 0) is the index in the completers
880 880 list where you want the completer to be inserted."""
881 881
882 882 newcomp = new.instancemethod(completer,self.Completer,
883 883 self.Completer.__class__)
884 884 self.Completer.matchers.insert(pos,newcomp)
885 885
886 886 def set_completer(self):
887 887 """reset readline's completer to be our own."""
888 888 self.readline.set_completer(self.Completer.complete)
889 889
890 890 def _get_call_pdb(self):
891 891 return self._call_pdb
892 892
893 893 def _set_call_pdb(self,val):
894 894
895 895 if val not in (0,1,False,True):
896 896 raise ValueError,'new call_pdb value must be boolean'
897 897
898 898 # store value in instance
899 899 self._call_pdb = val
900 900
901 901 # notify the actual exception handlers
902 902 self.InteractiveTB.call_pdb = val
903 903 if self.isthreaded:
904 904 try:
905 905 self.sys_excepthook.call_pdb = val
906 906 except:
907 907 warn('Failed to activate pdb for threaded exception handler')
908 908
909 909 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
910 910 'Control auto-activation of pdb at exceptions')
911 911
912 912
913 913 # These special functions get installed in the builtin namespace, to
914 914 # provide programmatic (pure python) access to magics, aliases and system
915 915 # calls. This is important for logging, user scripting, and more.
916 916
917 917 # We are basically exposing, via normal python functions, the three
918 918 # mechanisms in which ipython offers special call modes (magics for
919 919 # internal control, aliases for direct system access via pre-selected
920 920 # names, and !cmd for calling arbitrary system commands).
921 921
922 922 def ipmagic(self,arg_s):
923 923 """Call a magic function by name.
924 924
925 925 Input: a string containing the name of the magic function to call and any
926 926 additional arguments to be passed to the magic.
927 927
928 928 ipmagic('name -opt foo bar') is equivalent to typing at the ipython
929 929 prompt:
930 930
931 931 In[1]: %name -opt foo bar
932 932
933 933 To call a magic without arguments, simply use ipmagic('name').
934 934
935 935 This provides a proper Python function to call IPython's magics in any
936 936 valid Python code you can type at the interpreter, including loops and
937 937 compound statements. It is added by IPython to the Python builtin
938 938 namespace upon initialization."""
939 939
940 940 args = arg_s.split(' ',1)
941 941 magic_name = args[0]
942 942 magic_name = magic_name.lstrip(self.ESC_MAGIC)
943 943
944 944 try:
945 945 magic_args = args[1]
946 946 except IndexError:
947 947 magic_args = ''
948 948 fn = getattr(self,'magic_'+magic_name,None)
949 949 if fn is None:
950 950 error("Magic function `%s` not found." % magic_name)
951 951 else:
952 952 magic_args = self.var_expand(magic_args,1)
953 953 return fn(magic_args)
954 954
955 955 def ipalias(self,arg_s):
956 956 """Call an alias by name.
957 957
958 958 Input: a string containing the name of the alias to call and any
959 959 additional arguments to be passed to the magic.
960 960
961 961 ipalias('name -opt foo bar') is equivalent to typing at the ipython
962 962 prompt:
963 963
964 964 In[1]: name -opt foo bar
965 965
966 966 To call an alias without arguments, simply use ipalias('name').
967 967
968 968 This provides a proper Python function to call IPython's aliases in any
969 969 valid Python code you can type at the interpreter, including loops and
970 970 compound statements. It is added by IPython to the Python builtin
971 971 namespace upon initialization."""
972 972
973 973 args = arg_s.split(' ',1)
974 974 alias_name = args[0]
975 975 try:
976 976 alias_args = args[1]
977 977 except IndexError:
978 978 alias_args = ''
979 979 if alias_name in self.alias_table:
980 980 self.call_alias(alias_name,alias_args)
981 981 else:
982 982 error("Alias `%s` not found." % alias_name)
983 983
984 984 def ipsystem(self,arg_s):
985 985 """Make a system call, using IPython."""
986 986
987 987 self.system(arg_s)
988 988
989 989 def complete(self,text):
990 990 """Return a sorted list of all possible completions on text.
991 991
992 992 Inputs:
993 993
994 994 - text: a string of text to be completed on.
995 995
996 996 This is a wrapper around the completion mechanism, similar to what
997 997 readline does at the command line when the TAB key is hit. By
998 998 exposing it as a method, it can be used by other non-readline
999 999 environments (such as GUIs) for text completion.
1000 1000
1001 1001 Simple usage example:
1002 1002
1003 1003 In [7]: x = 'hello'
1004 1004
1005 1005 In [8]: x
1006 1006 Out[8]: 'hello'
1007 1007
1008 1008 In [9]: print x
1009 1009 hello
1010 1010
1011 1011 In [10]: _ip.IP.complete('x.l')
1012 1012 Out[10]: ['x.ljust', 'x.lower', 'x.lstrip']
1013 1013 """
1014 1014
1015 1015 complete = self.Completer.complete
1016 1016 state = 0
1017 1017 # use a dict so we get unique keys, since ipyhton's multiple
1018 1018 # completers can return duplicates. When we make 2.4 a requirement,
1019 1019 # start using sets instead, which are faster.
1020 1020 comps = {}
1021 1021 while True:
1022 1022 newcomp = complete(text,state,line_buffer=text)
1023 1023 if newcomp is None:
1024 1024 break
1025 1025 comps[newcomp] = 1
1026 1026 state += 1
1027 1027 outcomps = comps.keys()
1028 1028 outcomps.sort()
1029 1029 #print "T:",text,"OC:",outcomps # dbg
1030 1030 #print "vars:",self.user_ns.keys()
1031 1031 return outcomps
1032 1032
1033 1033 def set_completer_frame(self, frame=None):
1034 1034 if frame:
1035 1035 self.Completer.namespace = frame.f_locals
1036 1036 self.Completer.global_namespace = frame.f_globals
1037 1037 else:
1038 1038 self.Completer.namespace = self.user_ns
1039 1039 self.Completer.global_namespace = self.user_global_ns
1040 1040
1041 1041 def init_auto_alias(self):
1042 1042 """Define some aliases automatically.
1043 1043
1044 1044 These are ALL parameter-less aliases"""
1045 1045
1046 1046 for alias,cmd in self.auto_alias:
1047 1047 self.getapi().defalias(alias,cmd)
1048 1048
1049 1049
1050 1050 def alias_table_validate(self,verbose=0):
1051 1051 """Update information about the alias table.
1052 1052
1053 1053 In particular, make sure no Python keywords/builtins are in it."""
1054 1054
1055 1055 no_alias = self.no_alias
1056 1056 for k in self.alias_table.keys():
1057 1057 if k in no_alias:
1058 1058 del self.alias_table[k]
1059 1059 if verbose:
1060 1060 print ("Deleting alias <%s>, it's a Python "
1061 1061 "keyword or builtin." % k)
1062 1062
1063 1063 def set_autoindent(self,value=None):
1064 1064 """Set the autoindent flag, checking for readline support.
1065 1065
1066 1066 If called with no arguments, it acts as a toggle."""
1067 1067
1068 1068 if not self.has_readline:
1069 1069 if os.name == 'posix':
1070 1070 warn("The auto-indent feature requires the readline library")
1071 1071 self.autoindent = 0
1072 1072 return
1073 1073 if value is None:
1074 1074 self.autoindent = not self.autoindent
1075 1075 else:
1076 1076 self.autoindent = value
1077 1077
1078 1078 def rc_set_toggle(self,rc_field,value=None):
1079 1079 """Set or toggle a field in IPython's rc config. structure.
1080 1080
1081 1081 If called with no arguments, it acts as a toggle.
1082 1082
1083 1083 If called with a non-existent field, the resulting AttributeError
1084 1084 exception will propagate out."""
1085 1085
1086 1086 rc_val = getattr(self.rc,rc_field)
1087 1087 if value is None:
1088 1088 value = not rc_val
1089 1089 setattr(self.rc,rc_field,value)
1090 1090
1091 1091 def user_setup(self,ipythondir,rc_suffix,mode='install'):
1092 1092 """Install the user configuration directory.
1093 1093
1094 1094 Can be called when running for the first time or to upgrade the user's
1095 1095 .ipython/ directory with the mode parameter. Valid modes are 'install'
1096 1096 and 'upgrade'."""
1097 1097
1098 1098 def wait():
1099 1099 try:
1100 1100 raw_input("Please press <RETURN> to start IPython.")
1101 1101 except EOFError:
1102 1102 print >> Term.cout
1103 1103 print '*'*70
1104 1104
1105 1105 cwd = os.getcwd() # remember where we started
1106 1106 glb = glob.glob
1107 1107 print '*'*70
1108 1108 if mode == 'install':
1109 1109 print \
1110 1110 """Welcome to IPython. I will try to create a personal configuration directory
1111 1111 where you can customize many aspects of IPython's functionality in:\n"""
1112 1112 else:
1113 1113 print 'I am going to upgrade your configuration in:'
1114 1114
1115 1115 print ipythondir
1116 1116
1117 1117 rcdirend = os.path.join('IPython','UserConfig')
1118 1118 cfg = lambda d: os.path.join(d,rcdirend)
1119 1119 try:
1120 1120 rcdir = filter(os.path.isdir,map(cfg,sys.path))[0]
1121 1121 print "Initializing from configuration",rcdir
1122 1122 except IndexError:
1123 1123 warning = """
1124 1124 Installation error. IPython's directory was not found.
1125 1125
1126 1126 Check the following:
1127 1127
1128 1128 The ipython/IPython directory should be in a directory belonging to your
1129 1129 PYTHONPATH environment variable (that is, it should be in a directory
1130 1130 belonging to sys.path). You can copy it explicitly there or just link to it.
1131 1131
1132 1132 IPython will create a minimal default configuration for you.
1133 1133
1134 1134 """
1135 1135 warn(warning)
1136 1136 wait()
1137 1137
1138 1138 if sys.platform =='win32':
1139 1139 inif = 'ipythonrc.ini'
1140 1140 else:
1141 1141 inif = 'ipythonrc'
1142 1142 minimal_setup = {'ipy_user_conf.py' : 'import ipy_defaults', inif : '# intentionally left blank' }
1143 1143 os.makedirs(ipythondir, mode = 0777)
1144 1144 for f, cont in minimal_setup.items():
1145 1145 open(ipythondir + '/' + f,'w').write(cont)
1146 1146
1147 1147 return
1148 1148
1149 1149 if mode == 'install':
1150 1150 try:
1151 1151 shutil.copytree(rcdir,ipythondir)
1152 1152 os.chdir(ipythondir)
1153 1153 rc_files = glb("ipythonrc*")
1154 1154 for rc_file in rc_files:
1155 1155 os.rename(rc_file,rc_file+rc_suffix)
1156 1156 except:
1157 1157 warning = """
1158 1158
1159 1159 There was a problem with the installation:
1160 1160 %s
1161 1161 Try to correct it or contact the developers if you think it's a bug.
1162 1162 IPython will proceed with builtin defaults.""" % sys.exc_info()[1]
1163 1163 warn(warning)
1164 1164 wait()
1165 1165 return
1166 1166
1167 1167 elif mode == 'upgrade':
1168 1168 try:
1169 1169 os.chdir(ipythondir)
1170 1170 except:
1171 1171 print """
1172 1172 Can not upgrade: changing to directory %s failed. Details:
1173 1173 %s
1174 1174 """ % (ipythondir,sys.exc_info()[1])
1175 1175 wait()
1176 1176 return
1177 1177 else:
1178 1178 sources = glb(os.path.join(rcdir,'[A-Za-z]*'))
1179 1179 for new_full_path in sources:
1180 1180 new_filename = os.path.basename(new_full_path)
1181 1181 if new_filename.startswith('ipythonrc'):
1182 1182 new_filename = new_filename + rc_suffix
1183 1183 # The config directory should only contain files, skip any
1184 1184 # directories which may be there (like CVS)
1185 1185 if os.path.isdir(new_full_path):
1186 1186 continue
1187 1187 if os.path.exists(new_filename):
1188 1188 old_file = new_filename+'.old'
1189 1189 if os.path.exists(old_file):
1190 1190 os.remove(old_file)
1191 1191 os.rename(new_filename,old_file)
1192 1192 shutil.copy(new_full_path,new_filename)
1193 1193 else:
1194 1194 raise ValueError,'unrecognized mode for install:',`mode`
1195 1195
1196 1196 # Fix line-endings to those native to each platform in the config
1197 1197 # directory.
1198 1198 try:
1199 1199 os.chdir(ipythondir)
1200 1200 except:
1201 1201 print """
1202 1202 Problem: changing to directory %s failed.
1203 1203 Details:
1204 1204 %s
1205 1205
1206 1206 Some configuration files may have incorrect line endings. This should not
1207 1207 cause any problems during execution. """ % (ipythondir,sys.exc_info()[1])
1208 1208 wait()
1209 1209 else:
1210 1210 for fname in glb('ipythonrc*'):
1211 1211 try:
1212 1212 native_line_ends(fname,backup=0)
1213 1213 except IOError:
1214 1214 pass
1215 1215
1216 1216 if mode == 'install':
1217 1217 print """
1218 1218 Successful installation!
1219 1219
1220 1220 Please read the sections 'Initial Configuration' and 'Quick Tips' in the
1221 1221 IPython manual (there are both HTML and PDF versions supplied with the
1222 1222 distribution) to make sure that your system environment is properly configured
1223 1223 to take advantage of IPython's features.
1224 1224
1225 1225 Important note: the configuration system has changed! The old system is
1226 1226 still in place, but its setting may be partly overridden by the settings in
1227 1227 "~/.ipython/ipy_user_conf.py" config file. Please take a look at the file
1228 1228 if some of the new settings bother you.
1229 1229
1230 1230 """
1231 1231 else:
1232 1232 print """
1233 1233 Successful upgrade!
1234 1234
1235 1235 All files in your directory:
1236 1236 %(ipythondir)s
1237 1237 which would have been overwritten by the upgrade were backed up with a .old
1238 1238 extension. If you had made particular customizations in those files you may
1239 1239 want to merge them back into the new files.""" % locals()
1240 1240 wait()
1241 1241 os.chdir(cwd)
1242 1242 # end user_setup()
1243 1243
1244 1244 def atexit_operations(self):
1245 1245 """This will be executed at the time of exit.
1246 1246
1247 1247 Saving of persistent data should be performed here. """
1248 1248
1249 1249 #print '*** IPython exit cleanup ***' # dbg
1250 1250 # input history
1251 1251 self.savehist()
1252 1252
1253 1253 # Cleanup all tempfiles left around
1254 1254 for tfile in self.tempfiles:
1255 1255 try:
1256 1256 os.unlink(tfile)
1257 1257 except OSError:
1258 1258 pass
1259 1259
1260 1260 self.hooks.shutdown_hook()
1261 1261
1262 1262 def savehist(self):
1263 1263 """Save input history to a file (via readline library)."""
1264 1264
1265 1265 if not self.has_readline:
1266 1266 return
1267 1267
1268 1268 try:
1269 1269 self.readline.write_history_file(self.histfile)
1270 1270 except:
1271 1271 print 'Unable to save IPython command history to file: ' + \
1272 1272 `self.histfile`
1273 1273
1274 1274 def reloadhist(self):
1275 1275 """Reload the input history from disk file."""
1276 1276
1277 1277 if self.has_readline:
1278 1278 try:
1279 1279 self.readline.clear_history()
1280 1280 self.readline.read_history_file(self.shell.histfile)
1281 1281 except AttributeError:
1282 1282 pass
1283 1283
1284 1284
1285 1285 def history_saving_wrapper(self, func):
1286 1286 """ Wrap func for readline history saving
1287 1287
1288 1288 Convert func into callable that saves & restores
1289 1289 history around the call """
1290 1290
1291 1291 if not self.has_readline:
1292 1292 return func
1293 1293
1294 1294 def wrapper():
1295 1295 self.savehist()
1296 1296 try:
1297 1297 func()
1298 1298 finally:
1299 1299 readline.read_history_file(self.histfile)
1300 1300 return wrapper
1301 1301
1302 1302
1303 1303 def pre_readline(self):
1304 1304 """readline hook to be used at the start of each line.
1305 1305
1306 1306 Currently it handles auto-indent only."""
1307 1307
1308 1308 #debugx('self.indent_current_nsp','pre_readline:')
1309 1309
1310 1310 if self.rl_do_indent:
1311 1311 self.readline.insert_text(self.indent_current_str())
1312 1312 if self.rl_next_input is not None:
1313 1313 self.readline.insert_text(self.rl_next_input)
1314 1314 self.rl_next_input = None
1315 1315
1316 1316 def init_readline(self):
1317 1317 """Command history completion/saving/reloading."""
1318 1318
1319 1319
1320 1320 import IPython.rlineimpl as readline
1321 1321
1322 1322 if not readline.have_readline:
1323 1323 self.has_readline = 0
1324 1324 self.readline = None
1325 1325 # no point in bugging windows users with this every time:
1326 1326 warn('Readline services not available on this platform.')
1327 1327 else:
1328 1328 sys.modules['readline'] = readline
1329 1329 import atexit
1330 1330 from IPython.completer import IPCompleter
1331 1331 self.Completer = IPCompleter(self,
1332 1332 self.user_ns,
1333 1333 self.user_global_ns,
1334 1334 self.rc.readline_omit__names,
1335 1335 self.alias_table)
1336 1336 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1337 1337 self.strdispatchers['complete_command'] = sdisp
1338 1338 self.Completer.custom_completers = sdisp
1339 1339 # Platform-specific configuration
1340 1340 if os.name == 'nt':
1341 1341 self.readline_startup_hook = readline.set_pre_input_hook
1342 1342 else:
1343 1343 self.readline_startup_hook = readline.set_startup_hook
1344 1344
1345 1345 # Load user's initrc file (readline config)
1346 1346 # Or if libedit is used, load editrc.
1347 1347 inputrc_name = os.environ.get('INPUTRC')
1348 1348 if inputrc_name is None:
1349 1349 home_dir = get_home_dir()
1350 1350 if home_dir is not None:
1351 1351 inputrc_name = '.inputrc'
1352 1352 if readline.uses_libedit:
1353 1353 inputrc_name = '.editrc'
1354 1354 inputrc_name = os.path.join(home_dir, inputrc_name)
1355 1355 if os.path.isfile(inputrc_name):
1356 1356 try:
1357 1357 readline.read_init_file(inputrc_name)
1358 1358 except:
1359 1359 warn('Problems reading readline initialization file <%s>'
1360 1360 % inputrc_name)
1361 1361
1362 1362 self.has_readline = 1
1363 1363 self.readline = readline
1364 1364 # save this in sys so embedded copies can restore it properly
1365 1365 sys.ipcompleter = self.Completer.complete
1366 1366 self.set_completer()
1367 1367
1368 1368 # Configure readline according to user's prefs
1369 1369 # This is only done if GNU readline is being used. If libedit
1370 1370 # is being used (as on Leopard) the readline config is
1371 1371 # not run as the syntax for libedit is different.
1372 1372 if not readline.uses_libedit:
1373 1373 for rlcommand in self.rc.readline_parse_and_bind:
1374 1374 readline.parse_and_bind(rlcommand)
1375 1375
1376 1376 # remove some chars from the delimiters list
1377 1377 delims = readline.get_completer_delims()
1378 1378 delims = delims.translate(string._idmap,
1379 1379 self.rc.readline_remove_delims)
1380 1380 readline.set_completer_delims(delims)
1381 1381 # otherwise we end up with a monster history after a while:
1382 1382 readline.set_history_length(1000)
1383 1383 try:
1384 1384 #print '*** Reading readline history' # dbg
1385 1385 readline.read_history_file(self.histfile)
1386 1386 except IOError:
1387 1387 pass # It doesn't exist yet.
1388 1388
1389 1389 atexit.register(self.atexit_operations)
1390 1390 del atexit
1391 1391
1392 1392 # Configure auto-indent for all platforms
1393 1393 self.set_autoindent(self.rc.autoindent)
1394 1394
1395 1395 def ask_yes_no(self,prompt,default=True):
1396 1396 if self.rc.quiet:
1397 1397 return True
1398 1398 return ask_yes_no(prompt,default)
1399 1399
1400 1400 def _should_recompile(self,e):
1401 1401 """Utility routine for edit_syntax_error"""
1402 1402
1403 1403 if e.filename in ('<ipython console>','<input>','<string>',
1404 1404 '<console>','<BackgroundJob compilation>',
1405 1405 None):
1406 1406
1407 1407 return False
1408 1408 try:
1409 1409 if (self.rc.autoedit_syntax and
1410 1410 not self.ask_yes_no('Return to editor to correct syntax error? '
1411 1411 '[Y/n] ','y')):
1412 1412 return False
1413 1413 except EOFError:
1414 1414 return False
1415 1415
1416 1416 def int0(x):
1417 1417 try:
1418 1418 return int(x)
1419 1419 except TypeError:
1420 1420 return 0
1421 1421 # always pass integer line and offset values to editor hook
1422 self.hooks.fix_error_editor(e.filename,
1423 int0(e.lineno),int0(e.offset),e.msg)
1422 try:
1423 self.hooks.fix_error_editor(e.filename,
1424 int0(e.lineno),int0(e.offset),e.msg)
1425 except IPython.ipapi.TryNext:
1426 warn('Could not open editor')
1427 return False
1424 1428 return True
1425 1429
1426 1430 def edit_syntax_error(self):
1427 1431 """The bottom half of the syntax error handler called in the main loop.
1428 1432
1429 1433 Loop until syntax error is fixed or user cancels.
1430 1434 """
1431 1435
1432 1436 while self.SyntaxTB.last_syntax_error:
1433 1437 # copy and clear last_syntax_error
1434 1438 err = self.SyntaxTB.clear_err_state()
1435 1439 if not self._should_recompile(err):
1436 1440 return
1437 1441 try:
1438 1442 # may set last_syntax_error again if a SyntaxError is raised
1439 1443 self.safe_execfile(err.filename,self.user_ns)
1440 1444 except:
1441 1445 self.showtraceback()
1442 1446 else:
1443 1447 try:
1444 1448 f = file(err.filename)
1445 1449 try:
1446 1450 sys.displayhook(f.read())
1447 1451 finally:
1448 1452 f.close()
1449 1453 except:
1450 1454 self.showtraceback()
1451 1455
1452 1456 def showsyntaxerror(self, filename=None):
1453 1457 """Display the syntax error that just occurred.
1454 1458
1455 1459 This doesn't display a stack trace because there isn't one.
1456 1460
1457 1461 If a filename is given, it is stuffed in the exception instead
1458 1462 of what was there before (because Python's parser always uses
1459 1463 "<string>" when reading from a string).
1460 1464 """
1461 1465 etype, value, last_traceback = sys.exc_info()
1462 1466
1463 1467 # See note about these variables in showtraceback() below
1464 1468 sys.last_type = etype
1465 1469 sys.last_value = value
1466 1470 sys.last_traceback = last_traceback
1467 1471
1468 1472 if filename and etype is SyntaxError:
1469 1473 # Work hard to stuff the correct filename in the exception
1470 1474 try:
1471 1475 msg, (dummy_filename, lineno, offset, line) = value
1472 1476 except:
1473 1477 # Not the format we expect; leave it alone
1474 1478 pass
1475 1479 else:
1476 1480 # Stuff in the right filename
1477 1481 try:
1478 1482 # Assume SyntaxError is a class exception
1479 1483 value = SyntaxError(msg, (filename, lineno, offset, line))
1480 1484 except:
1481 1485 # If that failed, assume SyntaxError is a string
1482 1486 value = msg, (filename, lineno, offset, line)
1483 1487 self.SyntaxTB(etype,value,[])
1484 1488
1485 1489 def debugger(self,force=False):
1486 1490 """Call the pydb/pdb debugger.
1487 1491
1488 1492 Keywords:
1489 1493
1490 1494 - force(False): by default, this routine checks the instance call_pdb
1491 1495 flag and does not actually invoke the debugger if the flag is false.
1492 1496 The 'force' option forces the debugger to activate even if the flag
1493 1497 is false.
1494 1498 """
1495 1499
1496 1500 if not (force or self.call_pdb):
1497 1501 return
1498 1502
1499 1503 if not hasattr(sys,'last_traceback'):
1500 1504 error('No traceback has been produced, nothing to debug.')
1501 1505 return
1502 1506
1503 1507 # use pydb if available
1504 1508 if Debugger.has_pydb:
1505 1509 from pydb import pm
1506 1510 else:
1507 1511 # fallback to our internal debugger
1508 1512 pm = lambda : self.InteractiveTB.debugger(force=True)
1509 1513 self.history_saving_wrapper(pm)()
1510 1514
1511 1515 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None):
1512 1516 """Display the exception that just occurred.
1513 1517
1514 1518 If nothing is known about the exception, this is the method which
1515 1519 should be used throughout the code for presenting user tracebacks,
1516 1520 rather than directly invoking the InteractiveTB object.
1517 1521
1518 1522 A specific showsyntaxerror() also exists, but this method can take
1519 1523 care of calling it if needed, so unless you are explicitly catching a
1520 1524 SyntaxError exception, don't try to analyze the stack manually and
1521 1525 simply call this method."""
1522 1526
1523 1527
1524 1528 # Though this won't be called by syntax errors in the input line,
1525 1529 # there may be SyntaxError cases whith imported code.
1526 1530
1527 1531 try:
1528 1532 if exc_tuple is None:
1529 1533 etype, value, tb = sys.exc_info()
1530 1534 else:
1531 1535 etype, value, tb = exc_tuple
1532 1536
1533 1537 if etype is SyntaxError:
1534 1538 self.showsyntaxerror(filename)
1535 1539 elif etype is IPython.ipapi.UsageError:
1536 1540 print "UsageError:", value
1537 1541 else:
1538 1542 # WARNING: these variables are somewhat deprecated and not
1539 1543 # necessarily safe to use in a threaded environment, but tools
1540 1544 # like pdb depend on their existence, so let's set them. If we
1541 1545 # find problems in the field, we'll need to revisit their use.
1542 1546 sys.last_type = etype
1543 1547 sys.last_value = value
1544 1548 sys.last_traceback = tb
1545 1549
1546 1550 if etype in self.custom_exceptions:
1547 1551 self.CustomTB(etype,value,tb)
1548 1552 else:
1549 1553 self.InteractiveTB(etype,value,tb,tb_offset=tb_offset)
1550 1554 if self.InteractiveTB.call_pdb and self.has_readline:
1551 1555 # pdb mucks up readline, fix it back
1552 1556 self.set_completer()
1553 1557 except KeyboardInterrupt:
1554 1558 self.write("\nKeyboardInterrupt\n")
1555 1559
1556 1560
1557 1561
1558 1562 def mainloop(self,banner=None):
1559 1563 """Creates the local namespace and starts the mainloop.
1560 1564
1561 1565 If an optional banner argument is given, it will override the
1562 1566 internally created default banner."""
1563 1567
1564 1568 if self.rc.c: # Emulate Python's -c option
1565 1569 self.exec_init_cmd()
1566 1570 if banner is None:
1567 1571 if not self.rc.banner:
1568 1572 banner = ''
1569 1573 # banner is string? Use it directly!
1570 1574 elif isinstance(self.rc.banner,basestring):
1571 1575 banner = self.rc.banner
1572 1576 else:
1573 1577 banner = self.BANNER+self.banner2
1574 1578
1579 # if you run stuff with -c <cmd>, raw hist is not updated
1580 # ensure that it's in sync
1581 if len(self.input_hist) != len (self.input_hist_raw):
1582 self.input_hist_raw = InputList(self.input_hist)
1583
1575 1584 while 1:
1576 1585 try:
1577 1586 self.interact(banner)
1578 1587 #self.interact_with_readline()
1579 1588 # XXX for testing of a readline-decoupled repl loop, call interact_with_readline above
1580 1589
1581 1590 break
1582 1591 except KeyboardInterrupt:
1583 1592 # this should not be necessary, but KeyboardInterrupt
1584 1593 # handling seems rather unpredictable...
1585 1594 self.write("\nKeyboardInterrupt in interact()\n")
1586 1595
1587 1596 def exec_init_cmd(self):
1588 1597 """Execute a command given at the command line.
1589 1598
1590 1599 This emulates Python's -c option."""
1591 1600
1592 1601 #sys.argv = ['-c']
1593 1602 self.push(self.prefilter(self.rc.c, False))
1594 1603 if not self.rc.interact:
1595 1604 self.ask_exit()
1596 1605
1597 1606 def embed_mainloop(self,header='',local_ns=None,global_ns=None,stack_depth=0):
1598 1607 """Embeds IPython into a running python program.
1599 1608
1600 1609 Input:
1601 1610
1602 1611 - header: An optional header message can be specified.
1603 1612
1604 1613 - local_ns, global_ns: working namespaces. If given as None, the
1605 1614 IPython-initialized one is updated with __main__.__dict__, so that
1606 1615 program variables become visible but user-specific configuration
1607 1616 remains possible.
1608 1617
1609 1618 - stack_depth: specifies how many levels in the stack to go to
1610 1619 looking for namespaces (when local_ns and global_ns are None). This
1611 1620 allows an intermediate caller to make sure that this function gets
1612 1621 the namespace from the intended level in the stack. By default (0)
1613 1622 it will get its locals and globals from the immediate caller.
1614 1623
1615 1624 Warning: it's possible to use this in a program which is being run by
1616 1625 IPython itself (via %run), but some funny things will happen (a few
1617 1626 globals get overwritten). In the future this will be cleaned up, as
1618 1627 there is no fundamental reason why it can't work perfectly."""
1619 1628
1620 1629 # Get locals and globals from caller
1621 1630 if local_ns is None or global_ns is None:
1622 1631 call_frame = sys._getframe(stack_depth).f_back
1623 1632
1624 1633 if local_ns is None:
1625 1634 local_ns = call_frame.f_locals
1626 1635 if global_ns is None:
1627 1636 global_ns = call_frame.f_globals
1628 1637
1629 1638 # Update namespaces and fire up interpreter
1630 1639
1631 1640 # The global one is easy, we can just throw it in
1632 1641 self.user_global_ns = global_ns
1633 1642
1634 1643 # but the user/local one is tricky: ipython needs it to store internal
1635 1644 # data, but we also need the locals. We'll copy locals in the user
1636 1645 # one, but will track what got copied so we can delete them at exit.
1637 1646 # This is so that a later embedded call doesn't see locals from a
1638 1647 # previous call (which most likely existed in a separate scope).
1639 1648 local_varnames = local_ns.keys()
1640 1649 self.user_ns.update(local_ns)
1641 1650 #self.user_ns['local_ns'] = local_ns # dbg
1642 1651
1643 1652 # Patch for global embedding to make sure that things don't overwrite
1644 1653 # user globals accidentally. Thanks to Richard <rxe@renre-europe.com>
1645 1654 # FIXME. Test this a bit more carefully (the if.. is new)
1646 1655 if local_ns is None and global_ns is None:
1647 1656 self.user_global_ns.update(__main__.__dict__)
1648 1657
1649 1658 # make sure the tab-completer has the correct frame information, so it
1650 1659 # actually completes using the frame's locals/globals
1651 1660 self.set_completer_frame()
1652 1661
1653 1662 # before activating the interactive mode, we need to make sure that
1654 1663 # all names in the builtin namespace needed by ipython point to
1655 1664 # ourselves, and not to other instances.
1656 1665 self.add_builtins()
1657 1666
1658 1667 self.interact(header)
1659 1668
1660 1669 # now, purge out the user namespace from anything we might have added
1661 1670 # from the caller's local namespace
1662 1671 delvar = self.user_ns.pop
1663 1672 for var in local_varnames:
1664 1673 delvar(var,None)
1665 1674 # and clean builtins we may have overridden
1666 1675 self.clean_builtins()
1667 1676
1668 1677 def interact_prompt(self):
1669 1678 """ Print the prompt (in read-eval-print loop)
1670 1679
1671 1680 Provided for those who want to implement their own read-eval-print loop (e.g. GUIs), not
1672 1681 used in standard IPython flow.
1673 1682 """
1674 1683 if self.more:
1675 1684 try:
1676 1685 prompt = self.hooks.generate_prompt(True)
1677 1686 except:
1678 1687 self.showtraceback()
1679 1688 if self.autoindent:
1680 1689 self.rl_do_indent = True
1681 1690
1682 1691 else:
1683 1692 try:
1684 1693 prompt = self.hooks.generate_prompt(False)
1685 1694 except:
1686 1695 self.showtraceback()
1687 1696 self.write(prompt)
1688 1697
1689 1698 def interact_handle_input(self,line):
1690 1699 """ Handle the input line (in read-eval-print loop)
1691 1700
1692 1701 Provided for those who want to implement their own read-eval-print loop (e.g. GUIs), not
1693 1702 used in standard IPython flow.
1694 1703 """
1695 1704 if line.lstrip() == line:
1696 1705 self.shadowhist.add(line.strip())
1697 1706 lineout = self.prefilter(line,self.more)
1698 1707
1699 1708 if line.strip():
1700 1709 if self.more:
1701 1710 self.input_hist_raw[-1] += '%s\n' % line
1702 1711 else:
1703 1712 self.input_hist_raw.append('%s\n' % line)
1704 1713
1705 1714
1706 1715 self.more = self.push(lineout)
1707 1716 if (self.SyntaxTB.last_syntax_error and
1708 1717 self.rc.autoedit_syntax):
1709 1718 self.edit_syntax_error()
1710 1719
1711 1720 def interact_with_readline(self):
1712 1721 """ Demo of using interact_handle_input, interact_prompt
1713 1722
1714 1723 This is the main read-eval-print loop. If you need to implement your own (e.g. for GUI),
1715 1724 it should work like this.
1716 1725 """
1717 1726 self.readline_startup_hook(self.pre_readline)
1718 1727 while not self.exit_now:
1719 1728 self.interact_prompt()
1720 1729 if self.more:
1721 1730 self.rl_do_indent = True
1722 1731 else:
1723 1732 self.rl_do_indent = False
1724 1733 line = raw_input_original().decode(self.stdin_encoding)
1725 1734 self.interact_handle_input(line)
1726 1735
1727 1736
1728 1737 def interact(self, banner=None):
1729 1738 """Closely emulate the interactive Python console.
1730 1739
1731 1740 The optional banner argument specify the banner to print
1732 1741 before the first interaction; by default it prints a banner
1733 1742 similar to the one printed by the real Python interpreter,
1734 1743 followed by the current class name in parentheses (so as not
1735 1744 to confuse this with the real interpreter -- since it's so
1736 1745 close!).
1737 1746
1738 1747 """
1739 1748
1740 1749 if self.exit_now:
1741 1750 # batch run -> do not interact
1742 1751 return
1743 1752 cprt = 'Type "copyright", "credits" or "license" for more information.'
1744 1753 if banner is None:
1745 1754 self.write("Python %s on %s\n%s\n(%s)\n" %
1746 1755 (sys.version, sys.platform, cprt,
1747 1756 self.__class__.__name__))
1748 1757 else:
1749 1758 self.write(banner)
1750 1759
1751 1760 more = 0
1752 1761
1753 1762 # Mark activity in the builtins
1754 1763 __builtin__.__dict__['__IPYTHON__active'] += 1
1755 1764
1756 1765 if self.has_readline:
1757 1766 self.readline_startup_hook(self.pre_readline)
1758 1767 # exit_now is set by a call to %Exit or %Quit, through the
1759 1768 # ask_exit callback.
1760 1769
1761 1770 while not self.exit_now:
1762 1771 self.hooks.pre_prompt_hook()
1763 1772 if more:
1764 1773 try:
1765 1774 prompt = self.hooks.generate_prompt(True)
1766 1775 except:
1767 1776 self.showtraceback()
1768 1777 if self.autoindent:
1769 1778 self.rl_do_indent = True
1770 1779
1771 1780 else:
1772 1781 try:
1773 1782 prompt = self.hooks.generate_prompt(False)
1774 1783 except:
1775 1784 self.showtraceback()
1776 1785 try:
1777 1786 line = self.raw_input(prompt,more)
1778 1787 if self.exit_now:
1779 1788 # quick exit on sys.std[in|out] close
1780 1789 break
1781 1790 if self.autoindent:
1782 1791 self.rl_do_indent = False
1783 1792
1784 1793 except KeyboardInterrupt:
1785 1794 #double-guard against keyboardinterrupts during kbdint handling
1786 1795 try:
1787 1796 self.write('\nKeyboardInterrupt\n')
1788 1797 self.resetbuffer()
1789 1798 # keep cache in sync with the prompt counter:
1790 1799 self.outputcache.prompt_count -= 1
1791 1800
1792 1801 if self.autoindent:
1793 1802 self.indent_current_nsp = 0
1794 1803 more = 0
1795 1804 except KeyboardInterrupt:
1796 1805 pass
1797 1806 except EOFError:
1798 1807 if self.autoindent:
1799 1808 self.rl_do_indent = False
1800 1809 self.readline_startup_hook(None)
1801 1810 self.write('\n')
1802 1811 self.exit()
1803 1812 except bdb.BdbQuit:
1804 1813 warn('The Python debugger has exited with a BdbQuit exception.\n'
1805 1814 'Because of how pdb handles the stack, it is impossible\n'
1806 1815 'for IPython to properly format this particular exception.\n'
1807 1816 'IPython will resume normal operation.')
1808 1817 except:
1809 1818 # exceptions here are VERY RARE, but they can be triggered
1810 1819 # asynchronously by signal handlers, for example.
1811 1820 self.showtraceback()
1812 1821 else:
1813 1822 more = self.push(line)
1814 1823 if (self.SyntaxTB.last_syntax_error and
1815 1824 self.rc.autoedit_syntax):
1816 1825 self.edit_syntax_error()
1817 1826
1818 1827 # We are off again...
1819 1828 __builtin__.__dict__['__IPYTHON__active'] -= 1
1820 1829
1821 1830 def excepthook(self, etype, value, tb):
1822 1831 """One more defense for GUI apps that call sys.excepthook.
1823 1832
1824 1833 GUI frameworks like wxPython trap exceptions and call
1825 1834 sys.excepthook themselves. I guess this is a feature that
1826 1835 enables them to keep running after exceptions that would
1827 1836 otherwise kill their mainloop. This is a bother for IPython
1828 1837 which excepts to catch all of the program exceptions with a try:
1829 1838 except: statement.
1830 1839
1831 1840 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1832 1841 any app directly invokes sys.excepthook, it will look to the user like
1833 1842 IPython crashed. In order to work around this, we can disable the
1834 1843 CrashHandler and replace it with this excepthook instead, which prints a
1835 1844 regular traceback using our InteractiveTB. In this fashion, apps which
1836 1845 call sys.excepthook will generate a regular-looking exception from
1837 1846 IPython, and the CrashHandler will only be triggered by real IPython
1838 1847 crashes.
1839 1848
1840 1849 This hook should be used sparingly, only in places which are not likely
1841 1850 to be true IPython errors.
1842 1851 """
1843 1852 self.showtraceback((etype,value,tb),tb_offset=0)
1844 1853
1845 1854 def expand_aliases(self,fn,rest):
1846 1855 """ Expand multiple levels of aliases:
1847 1856
1848 1857 if:
1849 1858
1850 1859 alias foo bar /tmp
1851 1860 alias baz foo
1852 1861
1853 1862 then:
1854 1863
1855 1864 baz huhhahhei -> bar /tmp huhhahhei
1856 1865
1857 1866 """
1858 1867 line = fn + " " + rest
1859 1868
1860 1869 done = Set()
1861 1870 while 1:
1862 1871 pre,fn,rest = prefilter.splitUserInput(line,
1863 1872 prefilter.shell_line_split)
1864 1873 if fn in self.alias_table:
1865 1874 if fn in done:
1866 1875 warn("Cyclic alias definition, repeated '%s'" % fn)
1867 1876 return ""
1868 1877 done.add(fn)
1869 1878
1870 1879 l2 = self.transform_alias(fn,rest)
1871 1880 # dir -> dir
1872 1881 # print "alias",line, "->",l2 #dbg
1873 1882 if l2 == line:
1874 1883 break
1875 1884 # ls -> ls -F should not recurse forever
1876 1885 if l2.split(None,1)[0] == line.split(None,1)[0]:
1877 1886 line = l2
1878 1887 break
1879 1888
1880 1889 line=l2
1881 1890
1882 1891
1883 1892 # print "al expand to",line #dbg
1884 1893 else:
1885 1894 break
1886 1895
1887 1896 return line
1888 1897
1889 1898 def transform_alias(self, alias,rest=''):
1890 1899 """ Transform alias to system command string.
1891 1900 """
1892 1901 trg = self.alias_table[alias]
1893 1902
1894 1903 nargs,cmd = trg
1895 1904 # print trg #dbg
1896 1905 if ' ' in cmd and os.path.isfile(cmd):
1897 1906 cmd = '"%s"' % cmd
1898 1907
1899 1908 # Expand the %l special to be the user's input line
1900 1909 if cmd.find('%l') >= 0:
1901 1910 cmd = cmd.replace('%l',rest)
1902 1911 rest = ''
1903 1912 if nargs==0:
1904 1913 # Simple, argument-less aliases
1905 1914 cmd = '%s %s' % (cmd,rest)
1906 1915 else:
1907 1916 # Handle aliases with positional arguments
1908 1917 args = rest.split(None,nargs)
1909 1918 if len(args)< nargs:
1910 1919 error('Alias <%s> requires %s arguments, %s given.' %
1911 1920 (alias,nargs,len(args)))
1912 1921 return None
1913 1922 cmd = '%s %s' % (cmd % tuple(args[:nargs]),' '.join(args[nargs:]))
1914 1923 # Now call the macro, evaluating in the user's namespace
1915 1924 #print 'new command: <%r>' % cmd # dbg
1916 1925 return cmd
1917 1926
1918 1927 def call_alias(self,alias,rest=''):
1919 1928 """Call an alias given its name and the rest of the line.
1920 1929
1921 1930 This is only used to provide backwards compatibility for users of
1922 1931 ipalias(), use of which is not recommended for anymore."""
1923 1932
1924 1933 # Now call the macro, evaluating in the user's namespace
1925 1934 cmd = self.transform_alias(alias, rest)
1926 1935 try:
1927 1936 self.system(cmd)
1928 1937 except:
1929 1938 self.showtraceback()
1930 1939
1931 1940 def indent_current_str(self):
1932 1941 """return the current level of indentation as a string"""
1933 1942 return self.indent_current_nsp * ' '
1934 1943
1935 1944 def autoindent_update(self,line):
1936 1945 """Keep track of the indent level."""
1937 1946
1938 1947 #debugx('line')
1939 1948 #debugx('self.indent_current_nsp')
1940 1949 if self.autoindent:
1941 1950 if line:
1942 1951 inisp = num_ini_spaces(line)
1943 1952 if inisp < self.indent_current_nsp:
1944 1953 self.indent_current_nsp = inisp
1945 1954
1946 1955 if line[-1] == ':':
1947 1956 self.indent_current_nsp += 4
1948 1957 elif dedent_re.match(line):
1949 1958 self.indent_current_nsp -= 4
1950 1959 else:
1951 1960 self.indent_current_nsp = 0
1952 1961
1953 1962 def runlines(self,lines):
1954 1963 """Run a string of one or more lines of source.
1955 1964
1956 1965 This method is capable of running a string containing multiple source
1957 1966 lines, as if they had been entered at the IPython prompt. Since it
1958 1967 exposes IPython's processing machinery, the given strings can contain
1959 1968 magic calls (%magic), special shell access (!cmd), etc."""
1960 1969
1961 1970 # We must start with a clean buffer, in case this is run from an
1962 1971 # interactive IPython session (via a magic, for example).
1963 1972 self.resetbuffer()
1964 1973 lines = lines.split('\n')
1965 1974 more = 0
1966 1975
1967 1976 for line in lines:
1968 1977 # skip blank lines so we don't mess up the prompt counter, but do
1969 1978 # NOT skip even a blank line if we are in a code block (more is
1970 1979 # true)
1971 1980
1972 1981
1973 1982 if line or more:
1974 1983 # push to raw history, so hist line numbers stay in sync
1975 1984 self.input_hist_raw.append("# " + line + "\n")
1976 1985 more = self.push(self.prefilter(line,more))
1977 1986 # IPython's runsource returns None if there was an error
1978 1987 # compiling the code. This allows us to stop processing right
1979 1988 # away, so the user gets the error message at the right place.
1980 1989 if more is None:
1981 1990 break
1982 1991 else:
1983 1992 self.input_hist_raw.append("\n")
1984 1993 # final newline in case the input didn't have it, so that the code
1985 1994 # actually does get executed
1986 1995 if more:
1987 1996 self.push('\n')
1988 1997
1989 1998 def runsource(self, source, filename='<input>', symbol='single'):
1990 1999 """Compile and run some source in the interpreter.
1991 2000
1992 2001 Arguments are as for compile_command().
1993 2002
1994 2003 One several things can happen:
1995 2004
1996 2005 1) The input is incorrect; compile_command() raised an
1997 2006 exception (SyntaxError or OverflowError). A syntax traceback
1998 2007 will be printed by calling the showsyntaxerror() method.
1999 2008
2000 2009 2) The input is incomplete, and more input is required;
2001 2010 compile_command() returned None. Nothing happens.
2002 2011
2003 2012 3) The input is complete; compile_command() returned a code
2004 2013 object. The code is executed by calling self.runcode() (which
2005 2014 also handles run-time exceptions, except for SystemExit).
2006 2015
2007 2016 The return value is:
2008 2017
2009 2018 - True in case 2
2010 2019
2011 2020 - False in the other cases, unless an exception is raised, where
2012 2021 None is returned instead. This can be used by external callers to
2013 2022 know whether to continue feeding input or not.
2014 2023
2015 2024 The return value can be used to decide whether to use sys.ps1 or
2016 2025 sys.ps2 to prompt the next line."""
2017 2026
2018 2027 # if the source code has leading blanks, add 'if 1:\n' to it
2019 2028 # this allows execution of indented pasted code. It is tempting
2020 2029 # to add '\n' at the end of source to run commands like ' a=1'
2021 2030 # directly, but this fails for more complicated scenarios
2022 2031 source=source.encode(self.stdin_encoding)
2023 2032 if source[:1] in [' ', '\t']:
2024 2033 source = 'if 1:\n%s' % source
2025 2034
2026 2035 try:
2027 2036 code = self.compile(source,filename,symbol)
2028 2037 except (OverflowError, SyntaxError, ValueError, TypeError):
2029 2038 # Case 1
2030 2039 self.showsyntaxerror(filename)
2031 2040 return None
2032 2041
2033 2042 if code is None:
2034 2043 # Case 2
2035 2044 return True
2036 2045
2037 2046 # Case 3
2038 2047 # We store the code object so that threaded shells and
2039 2048 # custom exception handlers can access all this info if needed.
2040 2049 # The source corresponding to this can be obtained from the
2041 2050 # buffer attribute as '\n'.join(self.buffer).
2042 2051 self.code_to_run = code
2043 2052 # now actually execute the code object
2044 2053 if self.runcode(code) == 0:
2045 2054 return False
2046 2055 else:
2047 2056 return None
2048 2057
2049 2058 def runcode(self,code_obj):
2050 2059 """Execute a code object.
2051 2060
2052 2061 When an exception occurs, self.showtraceback() is called to display a
2053 2062 traceback.
2054 2063
2055 2064 Return value: a flag indicating whether the code to be run completed
2056 2065 successfully:
2057 2066
2058 2067 - 0: successful execution.
2059 2068 - 1: an error occurred.
2060 2069 """
2061 2070
2062 2071 # Set our own excepthook in case the user code tries to call it
2063 2072 # directly, so that the IPython crash handler doesn't get triggered
2064 2073 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2065 2074
2066 2075 # we save the original sys.excepthook in the instance, in case config
2067 2076 # code (such as magics) needs access to it.
2068 2077 self.sys_excepthook = old_excepthook
2069 2078 outflag = 1 # happens in more places, so it's easier as default
2070 2079 try:
2071 2080 try:
2072 2081 self.hooks.pre_runcode_hook()
2073 2082 exec code_obj in self.user_global_ns, self.user_ns
2074 2083 finally:
2075 2084 # Reset our crash handler in place
2076 2085 sys.excepthook = old_excepthook
2077 2086 except SystemExit:
2078 2087 self.resetbuffer()
2079 2088 self.showtraceback()
2080 2089 warn("Type %exit or %quit to exit IPython "
2081 2090 "(%Exit or %Quit do so unconditionally).",level=1)
2082 2091 except self.custom_exceptions:
2083 2092 etype,value,tb = sys.exc_info()
2084 2093 self.CustomTB(etype,value,tb)
2085 2094 except:
2086 2095 self.showtraceback()
2087 2096 else:
2088 2097 outflag = 0
2089 2098 if softspace(sys.stdout, 0):
2090 2099 print
2091 2100 # Flush out code object which has been run (and source)
2092 2101 self.code_to_run = None
2093 2102 return outflag
2094 2103
2095 2104 def push(self, line):
2096 2105 """Push a line to the interpreter.
2097 2106
2098 2107 The line should not have a trailing newline; it may have
2099 2108 internal newlines. The line is appended to a buffer and the
2100 2109 interpreter's runsource() method is called with the
2101 2110 concatenated contents of the buffer as source. If this
2102 2111 indicates that the command was executed or invalid, the buffer
2103 2112 is reset; otherwise, the command is incomplete, and the buffer
2104 2113 is left as it was after the line was appended. The return
2105 2114 value is 1 if more input is required, 0 if the line was dealt
2106 2115 with in some way (this is the same as runsource()).
2107 2116 """
2108 2117
2109 2118 # autoindent management should be done here, and not in the
2110 2119 # interactive loop, since that one is only seen by keyboard input. We
2111 2120 # need this done correctly even for code run via runlines (which uses
2112 2121 # push).
2113 2122
2114 2123 #print 'push line: <%s>' % line # dbg
2115 2124 for subline in line.splitlines():
2116 2125 self.autoindent_update(subline)
2117 2126 self.buffer.append(line)
2118 2127 more = self.runsource('\n'.join(self.buffer), self.filename)
2119 2128 if not more:
2120 2129 self.resetbuffer()
2121 2130 return more
2122 2131
2123 2132 def split_user_input(self, line):
2124 2133 # This is really a hold-over to support ipapi and some extensions
2125 2134 return prefilter.splitUserInput(line)
2126 2135
2127 2136 def resetbuffer(self):
2128 2137 """Reset the input buffer."""
2129 2138 self.buffer[:] = []
2130 2139
2131 2140 def raw_input(self,prompt='',continue_prompt=False):
2132 2141 """Write a prompt and read a line.
2133 2142
2134 2143 The returned line does not include the trailing newline.
2135 2144 When the user enters the EOF key sequence, EOFError is raised.
2136 2145
2137 2146 Optional inputs:
2138 2147
2139 2148 - prompt(''): a string to be printed to prompt the user.
2140 2149
2141 2150 - continue_prompt(False): whether this line is the first one or a
2142 2151 continuation in a sequence of inputs.
2143 2152 """
2144 2153
2145 2154 # Code run by the user may have modified the readline completer state.
2146 2155 # We must ensure that our completer is back in place.
2147 2156 if self.has_readline:
2148 2157 self.set_completer()
2149 2158
2150 2159 try:
2151 2160 line = raw_input_original(prompt).decode(self.stdin_encoding)
2152 2161 except ValueError:
2153 2162 warn("\n********\nYou or a %run:ed script called sys.stdin.close()"
2154 2163 " or sys.stdout.close()!\nExiting IPython!")
2155 2164 self.ask_exit()
2156 2165 return ""
2157 2166
2158 2167 # Try to be reasonably smart about not re-indenting pasted input more
2159 2168 # than necessary. We do this by trimming out the auto-indent initial
2160 2169 # spaces, if the user's actual input started itself with whitespace.
2161 2170 #debugx('self.buffer[-1]')
2162 2171
2163 2172 if self.autoindent:
2164 2173 if num_ini_spaces(line) > self.indent_current_nsp:
2165 2174 line = line[self.indent_current_nsp:]
2166 2175 self.indent_current_nsp = 0
2167 2176
2168 2177 # store the unfiltered input before the user has any chance to modify
2169 2178 # it.
2170 2179 if line.strip():
2171 2180 if continue_prompt:
2172 2181 self.input_hist_raw[-1] += '%s\n' % line
2173 2182 if self.has_readline: # and some config option is set?
2174 2183 try:
2175 2184 histlen = self.readline.get_current_history_length()
2176 2185 if histlen > 1:
2177 2186 newhist = self.input_hist_raw[-1].rstrip()
2178 2187 self.readline.remove_history_item(histlen-1)
2179 2188 self.readline.replace_history_item(histlen-2,
2180 2189 newhist.encode(self.stdin_encoding))
2181 2190 except AttributeError:
2182 2191 pass # re{move,place}_history_item are new in 2.4.
2183 2192 else:
2184 2193 self.input_hist_raw.append('%s\n' % line)
2185 2194 # only entries starting at first column go to shadow history
2186 2195 if line.lstrip() == line:
2187 2196 self.shadowhist.add(line.strip())
2188 2197 elif not continue_prompt:
2189 2198 self.input_hist_raw.append('\n')
2190 2199 try:
2191 2200 lineout = self.prefilter(line,continue_prompt)
2192 2201 except:
2193 2202 # blanket except, in case a user-defined prefilter crashes, so it
2194 2203 # can't take all of ipython with it.
2195 2204 self.showtraceback()
2196 2205 return ''
2197 2206 else:
2198 2207 return lineout
2199 2208
2200 2209 def _prefilter(self, line, continue_prompt):
2201 2210 """Calls different preprocessors, depending on the form of line."""
2202 2211
2203 2212 # All handlers *must* return a value, even if it's blank ('').
2204 2213
2205 2214 # Lines are NOT logged here. Handlers should process the line as
2206 2215 # needed, update the cache AND log it (so that the input cache array
2207 2216 # stays synced).
2208 2217
2209 2218 #.....................................................................
2210 2219 # Code begins
2211 2220
2212 2221 #if line.startswith('%crash'): raise RuntimeError,'Crash now!' # dbg
2213 2222
2214 2223 # save the line away in case we crash, so the post-mortem handler can
2215 2224 # record it
2216 2225 self._last_input_line = line
2217 2226
2218 2227 #print '***line: <%s>' % line # dbg
2219 2228
2220 2229 if not line:
2221 2230 # Return immediately on purely empty lines, so that if the user
2222 2231 # previously typed some whitespace that started a continuation
2223 2232 # prompt, he can break out of that loop with just an empty line.
2224 2233 # This is how the default python prompt works.
2225 2234
2226 2235 # Only return if the accumulated input buffer was just whitespace!
2227 2236 if ''.join(self.buffer).isspace():
2228 2237 self.buffer[:] = []
2229 2238 return ''
2230 2239
2231 2240 line_info = prefilter.LineInfo(line, continue_prompt)
2232 2241
2233 2242 # the input history needs to track even empty lines
2234 2243 stripped = line.strip()
2235 2244
2236 2245 if not stripped:
2237 2246 if not continue_prompt:
2238 2247 self.outputcache.prompt_count -= 1
2239 2248 return self.handle_normal(line_info)
2240 2249
2241 2250 # print '***cont',continue_prompt # dbg
2242 2251 # special handlers are only allowed for single line statements
2243 2252 if continue_prompt and not self.rc.multi_line_specials:
2244 2253 return self.handle_normal(line_info)
2245 2254
2246 2255
2247 2256 # See whether any pre-existing handler can take care of it
2248 2257 rewritten = self.hooks.input_prefilter(stripped)
2249 2258 if rewritten != stripped: # ok, some prefilter did something
2250 2259 rewritten = line_info.pre + rewritten # add indentation
2251 2260 return self.handle_normal(prefilter.LineInfo(rewritten,
2252 2261 continue_prompt))
2253 2262
2254 2263 #print 'pre <%s> iFun <%s> rest <%s>' % (pre,iFun,theRest) # dbg
2255 2264
2256 2265 return prefilter.prefilter(line_info, self)
2257 2266
2258 2267
2259 2268 def _prefilter_dumb(self, line, continue_prompt):
2260 2269 """simple prefilter function, for debugging"""
2261 2270 return self.handle_normal(line,continue_prompt)
2262 2271
2263 2272
2264 2273 def multiline_prefilter(self, line, continue_prompt):
2265 2274 """ Run _prefilter for each line of input
2266 2275
2267 2276 Covers cases where there are multiple lines in the user entry,
2268 2277 which is the case when the user goes back to a multiline history
2269 2278 entry and presses enter.
2270 2279
2271 2280 """
2272 2281 out = []
2273 2282 for l in line.rstrip('\n').split('\n'):
2274 2283 out.append(self._prefilter(l, continue_prompt))
2275 2284 return '\n'.join(out)
2276 2285
2277 2286 # Set the default prefilter() function (this can be user-overridden)
2278 2287 prefilter = multiline_prefilter
2279 2288
2280 2289 def handle_normal(self,line_info):
2281 2290 """Handle normal input lines. Use as a template for handlers."""
2282 2291
2283 2292 # With autoindent on, we need some way to exit the input loop, and I
2284 2293 # don't want to force the user to have to backspace all the way to
2285 2294 # clear the line. The rule will be in this case, that either two
2286 2295 # lines of pure whitespace in a row, or a line of pure whitespace but
2287 2296 # of a size different to the indent level, will exit the input loop.
2288 2297 line = line_info.line
2289 2298 continue_prompt = line_info.continue_prompt
2290 2299
2291 2300 if (continue_prompt and self.autoindent and line.isspace() and
2292 2301 (0 < abs(len(line) - self.indent_current_nsp) <= 2 or
2293 2302 (self.buffer[-1]).isspace() )):
2294 2303 line = ''
2295 2304
2296 2305 self.log(line,line,continue_prompt)
2297 2306 return line
2298 2307
2299 2308 def handle_alias(self,line_info):
2300 2309 """Handle alias input lines. """
2301 2310 tgt = self.alias_table[line_info.iFun]
2302 2311 # print "=>",tgt #dbg
2303 2312 if callable(tgt):
2304 2313 if '$' in line_info.line:
2305 2314 call_meth = '(_ip, _ip.itpl(%s))'
2306 2315 else:
2307 2316 call_meth = '(_ip,%s)'
2308 2317 line_out = ("%s_sh.%s" + call_meth) % (line_info.preWhitespace,
2309 2318 line_info.iFun,
2310 2319 make_quoted_expr(line_info.line))
2311 2320 else:
2312 2321 transformed = self.expand_aliases(line_info.iFun,line_info.theRest)
2313 2322
2314 2323 # pre is needed, because it carries the leading whitespace. Otherwise
2315 2324 # aliases won't work in indented sections.
2316 2325 line_out = '%s_ip.system(%s)' % (line_info.preWhitespace,
2317 2326 make_quoted_expr( transformed ))
2318 2327
2319 2328 self.log(line_info.line,line_out,line_info.continue_prompt)
2320 2329 #print 'line out:',line_out # dbg
2321 2330 return line_out
2322 2331
2323 2332 def handle_shell_escape(self, line_info):
2324 2333 """Execute the line in a shell, empty return value"""
2325 2334 #print 'line in :', `line` # dbg
2326 2335 line = line_info.line
2327 2336 if line.lstrip().startswith('!!'):
2328 2337 # rewrite LineInfo's line, iFun and theRest to properly hold the
2329 2338 # call to %sx and the actual command to be executed, so
2330 2339 # handle_magic can work correctly. Note that this works even if
2331 2340 # the line is indented, so it handles multi_line_specials
2332 2341 # properly.
2333 2342 new_rest = line.lstrip()[2:]
2334 2343 line_info.line = '%ssx %s' % (self.ESC_MAGIC,new_rest)
2335 2344 line_info.iFun = 'sx'
2336 2345 line_info.theRest = new_rest
2337 2346 return self.handle_magic(line_info)
2338 2347 else:
2339 2348 cmd = line.lstrip().lstrip('!')
2340 2349 line_out = '%s_ip.system(%s)' % (line_info.preWhitespace,
2341 2350 make_quoted_expr(cmd))
2342 2351 # update cache/log and return
2343 2352 self.log(line,line_out,line_info.continue_prompt)
2344 2353 return line_out
2345 2354
2346 2355 def handle_magic(self, line_info):
2347 2356 """Execute magic functions."""
2348 2357 iFun = line_info.iFun
2349 2358 theRest = line_info.theRest
2350 2359 cmd = '%s_ip.magic(%s)' % (line_info.preWhitespace,
2351 2360 make_quoted_expr(iFun + " " + theRest))
2352 2361 self.log(line_info.line,cmd,line_info.continue_prompt)
2353 2362 #print 'in handle_magic, cmd=<%s>' % cmd # dbg
2354 2363 return cmd
2355 2364
2356 2365 def handle_auto(self, line_info):
2357 2366 """Hande lines which can be auto-executed, quoting if requested."""
2358 2367
2359 2368 line = line_info.line
2360 2369 iFun = line_info.iFun
2361 2370 theRest = line_info.theRest
2362 2371 pre = line_info.pre
2363 2372 continue_prompt = line_info.continue_prompt
2364 2373 obj = line_info.ofind(self)['obj']
2365 2374
2366 2375 #print 'pre <%s> iFun <%s> rest <%s>' % (pre,iFun,theRest) # dbg
2367 2376
2368 2377 # This should only be active for single-line input!
2369 2378 if continue_prompt:
2370 2379 self.log(line,line,continue_prompt)
2371 2380 return line
2372 2381
2373 2382 force_auto = isinstance(obj, IPython.ipapi.IPyAutocall)
2374 2383 auto_rewrite = True
2375 2384
2376 2385 if pre == self.ESC_QUOTE:
2377 2386 # Auto-quote splitting on whitespace
2378 2387 newcmd = '%s("%s")' % (iFun,'", "'.join(theRest.split()) )
2379 2388 elif pre == self.ESC_QUOTE2:
2380 2389 # Auto-quote whole string
2381 2390 newcmd = '%s("%s")' % (iFun,theRest)
2382 2391 elif pre == self.ESC_PAREN:
2383 2392 newcmd = '%s(%s)' % (iFun,",".join(theRest.split()))
2384 2393 else:
2385 2394 # Auto-paren.
2386 2395 # We only apply it to argument-less calls if the autocall
2387 2396 # parameter is set to 2. We only need to check that autocall is <
2388 2397 # 2, since this function isn't called unless it's at least 1.
2389 2398 if not theRest and (self.rc.autocall < 2) and not force_auto:
2390 2399 newcmd = '%s %s' % (iFun,theRest)
2391 2400 auto_rewrite = False
2392 2401 else:
2393 2402 if not force_auto and theRest.startswith('['):
2394 2403 if hasattr(obj,'__getitem__'):
2395 2404 # Don't autocall in this case: item access for an object
2396 2405 # which is BOTH callable and implements __getitem__.
2397 2406 newcmd = '%s %s' % (iFun,theRest)
2398 2407 auto_rewrite = False
2399 2408 else:
2400 2409 # if the object doesn't support [] access, go ahead and
2401 2410 # autocall
2402 2411 newcmd = '%s(%s)' % (iFun.rstrip(),theRest)
2403 2412 elif theRest.endswith(';'):
2404 2413 newcmd = '%s(%s);' % (iFun.rstrip(),theRest[:-1])
2405 2414 else:
2406 2415 newcmd = '%s(%s)' % (iFun.rstrip(), theRest)
2407 2416
2408 2417 if auto_rewrite:
2409 2418 rw = self.outputcache.prompt1.auto_rewrite() + newcmd
2410 2419
2411 2420 try:
2412 2421 # plain ascii works better w/ pyreadline, on some machines, so
2413 2422 # we use it and only print uncolored rewrite if we have unicode
2414 2423 rw = str(rw)
2415 2424 print >>Term.cout, rw
2416 2425 except UnicodeEncodeError:
2417 2426 print "-------------->" + newcmd
2418 2427
2419 2428 # log what is now valid Python, not the actual user input (without the
2420 2429 # final newline)
2421 2430 self.log(line,newcmd,continue_prompt)
2422 2431 return newcmd
2423 2432
2424 2433 def handle_help(self, line_info):
2425 2434 """Try to get some help for the object.
2426 2435
2427 2436 obj? or ?obj -> basic information.
2428 2437 obj?? or ??obj -> more details.
2429 2438 """
2430 2439
2431 2440 line = line_info.line
2432 2441 # We need to make sure that we don't process lines which would be
2433 2442 # otherwise valid python, such as "x=1 # what?"
2434 2443 try:
2435 2444 codeop.compile_command(line)
2436 2445 except SyntaxError:
2437 2446 # We should only handle as help stuff which is NOT valid syntax
2438 2447 if line[0]==self.ESC_HELP:
2439 2448 line = line[1:]
2440 2449 elif line[-1]==self.ESC_HELP:
2441 2450 line = line[:-1]
2442 2451 self.log(line,'#?'+line,line_info.continue_prompt)
2443 2452 if line:
2444 2453 #print 'line:<%r>' % line # dbg
2445 2454 self.magic_pinfo(line)
2446 2455 else:
2447 2456 page(self.usage,screen_lines=self.rc.screen_length)
2448 2457 return '' # Empty string is needed here!
2449 2458 except:
2450 2459 # Pass any other exceptions through to the normal handler
2451 2460 return self.handle_normal(line_info)
2452 2461 else:
2453 2462 # If the code compiles ok, we should handle it normally
2454 2463 return self.handle_normal(line_info)
2455 2464
2456 2465 def getapi(self):
2457 2466 """ Get an IPApi object for this shell instance
2458 2467
2459 2468 Getting an IPApi object is always preferable to accessing the shell
2460 2469 directly, but this holds true especially for extensions.
2461 2470
2462 2471 It should always be possible to implement an extension with IPApi
2463 2472 alone. If not, contact maintainer to request an addition.
2464 2473
2465 2474 """
2466 2475 return self.api
2467 2476
2468 2477 def handle_emacs(self, line_info):
2469 2478 """Handle input lines marked by python-mode."""
2470 2479
2471 2480 # Currently, nothing is done. Later more functionality can be added
2472 2481 # here if needed.
2473 2482
2474 2483 # The input cache shouldn't be updated
2475 2484 return line_info.line
2476 2485
2477 2486
2478 2487 def mktempfile(self,data=None):
2479 2488 """Make a new tempfile and return its filename.
2480 2489
2481 2490 This makes a call to tempfile.mktemp, but it registers the created
2482 2491 filename internally so ipython cleans it up at exit time.
2483 2492
2484 2493 Optional inputs:
2485 2494
2486 2495 - data(None): if data is given, it gets written out to the temp file
2487 2496 immediately, and the file is closed again."""
2488 2497
2489 2498 filename = tempfile.mktemp('.py','ipython_edit_')
2490 2499 self.tempfiles.append(filename)
2491 2500
2492 2501 if data:
2493 2502 tmp_file = open(filename,'w')
2494 2503 tmp_file.write(data)
2495 2504 tmp_file.close()
2496 2505 return filename
2497 2506
2498 2507 def write(self,data):
2499 2508 """Write a string to the default output"""
2500 2509 Term.cout.write(data)
2501 2510
2502 2511 def write_err(self,data):
2503 2512 """Write a string to the default error output"""
2504 2513 Term.cerr.write(data)
2505 2514
2506 2515 def ask_exit(self):
2507 2516 """ Call for exiting. Can be overiden and used as a callback. """
2508 2517 self.exit_now = True
2509 2518
2510 2519 def exit(self):
2511 2520 """Handle interactive exit.
2512 2521
2513 2522 This method calls the ask_exit callback."""
2514 2523
2515 2524 if self.rc.confirm_exit:
2516 2525 if self.ask_yes_no('Do you really want to exit ([y]/n)?','y'):
2517 2526 self.ask_exit()
2518 2527 else:
2519 2528 self.ask_exit()
2520 2529
2521 2530 def safe_execfile(self,fname,*where,**kw):
2522 2531 """A safe version of the builtin execfile().
2523 2532
2524 2533 This version will never throw an exception, and knows how to handle
2525 2534 ipython logs as well.
2526 2535
2527 2536 :Parameters:
2528 2537 fname : string
2529 2538 Name of the file to be executed.
2530 2539
2531 2540 where : tuple
2532 2541 One or two namespaces, passed to execfile() as (globals,locals).
2533 2542 If only one is given, it is passed as both.
2534 2543
2535 2544 :Keywords:
2536 2545 islog : boolean (False)
2537 2546
2538 2547 quiet : boolean (True)
2539 2548
2540 2549 exit_ignore : boolean (False)
2541 2550 """
2542 2551
2543 2552 def syspath_cleanup():
2544 2553 """Internal cleanup routine for sys.path."""
2545 2554 if add_dname:
2546 2555 try:
2547 2556 sys.path.remove(dname)
2548 2557 except ValueError:
2549 2558 # For some reason the user has already removed it, ignore.
2550 2559 pass
2551 2560
2552 2561 fname = os.path.expanduser(fname)
2553 2562
2554 2563 # Find things also in current directory. This is needed to mimic the
2555 2564 # behavior of running a script from the system command line, where
2556 2565 # Python inserts the script's directory into sys.path
2557 2566 dname = os.path.dirname(os.path.abspath(fname))
2558 2567 add_dname = False
2559 2568 if dname not in sys.path:
2560 2569 sys.path.insert(0,dname)
2561 2570 add_dname = True
2562 2571
2563 2572 try:
2564 2573 xfile = open(fname)
2565 2574 except:
2566 2575 print >> Term.cerr, \
2567 2576 'Could not open file <%s> for safe execution.' % fname
2568 2577 syspath_cleanup()
2569 2578 return None
2570 2579
2571 2580 kw.setdefault('islog',0)
2572 2581 kw.setdefault('quiet',1)
2573 2582 kw.setdefault('exit_ignore',0)
2574 2583
2575 2584 first = xfile.readline()
2576 2585 loghead = str(self.loghead_tpl).split('\n',1)[0].strip()
2577 2586 xfile.close()
2578 2587 # line by line execution
2579 2588 if first.startswith(loghead) or kw['islog']:
2580 2589 print 'Loading log file <%s> one line at a time...' % fname
2581 2590 if kw['quiet']:
2582 2591 stdout_save = sys.stdout
2583 2592 sys.stdout = StringIO.StringIO()
2584 2593 try:
2585 2594 globs,locs = where[0:2]
2586 2595 except:
2587 2596 try:
2588 2597 globs = locs = where[0]
2589 2598 except:
2590 2599 globs = locs = globals()
2591 2600 badblocks = []
2592 2601
2593 2602 # we also need to identify indented blocks of code when replaying
2594 2603 # logs and put them together before passing them to an exec
2595 2604 # statement. This takes a bit of regexp and look-ahead work in the
2596 2605 # file. It's easiest if we swallow the whole thing in memory
2597 2606 # first, and manually walk through the lines list moving the
2598 2607 # counter ourselves.
2599 2608 indent_re = re.compile('\s+\S')
2600 2609 xfile = open(fname)
2601 2610 filelines = xfile.readlines()
2602 2611 xfile.close()
2603 2612 nlines = len(filelines)
2604 2613 lnum = 0
2605 2614 while lnum < nlines:
2606 2615 line = filelines[lnum]
2607 2616 lnum += 1
2608 2617 # don't re-insert logger status info into cache
2609 2618 if line.startswith('#log#'):
2610 2619 continue
2611 2620 else:
2612 2621 # build a block of code (maybe a single line) for execution
2613 2622 block = line
2614 2623 try:
2615 2624 next = filelines[lnum] # lnum has already incremented
2616 2625 except:
2617 2626 next = None
2618 2627 while next and indent_re.match(next):
2619 2628 block += next
2620 2629 lnum += 1
2621 2630 try:
2622 2631 next = filelines[lnum]
2623 2632 except:
2624 2633 next = None
2625 2634 # now execute the block of one or more lines
2626 2635 try:
2627 2636 exec block in globs,locs
2628 2637 except SystemExit:
2629 2638 pass
2630 2639 except:
2631 2640 badblocks.append(block.rstrip())
2632 2641 if kw['quiet']: # restore stdout
2633 2642 sys.stdout.close()
2634 2643 sys.stdout = stdout_save
2635 2644 print 'Finished replaying log file <%s>' % fname
2636 2645 if badblocks:
2637 2646 print >> sys.stderr, ('\nThe following lines/blocks in file '
2638 2647 '<%s> reported errors:' % fname)
2639 2648
2640 2649 for badline in badblocks:
2641 2650 print >> sys.stderr, badline
2642 2651 else: # regular file execution
2643 2652 try:
2644 2653 if sys.platform == 'win32' and sys.version_info < (2,5,1):
2645 2654 # Work around a bug in Python for Windows. The bug was
2646 2655 # fixed in in Python 2.5 r54159 and 54158, but that's still
2647 2656 # SVN Python as of March/07. For details, see:
2648 2657 # http://projects.scipy.org/ipython/ipython/ticket/123
2649 2658 try:
2650 2659 globs,locs = where[0:2]
2651 2660 except:
2652 2661 try:
2653 2662 globs = locs = where[0]
2654 2663 except:
2655 2664 globs = locs = globals()
2656 2665 exec file(fname) in globs,locs
2657 2666 else:
2658 2667 execfile(fname,*where)
2659 2668 except SyntaxError:
2660 2669 self.showsyntaxerror()
2661 2670 warn('Failure executing file: <%s>' % fname)
2662 2671 except SystemExit,status:
2663 2672 # Code that correctly sets the exit status flag to success (0)
2664 2673 # shouldn't be bothered with a traceback. Note that a plain
2665 2674 # sys.exit() does NOT set the message to 0 (it's empty) so that
2666 2675 # will still get a traceback. Note that the structure of the
2667 2676 # SystemExit exception changed between Python 2.4 and 2.5, so
2668 2677 # the checks must be done in a version-dependent way.
2669 2678 show = False
2670 2679
2671 2680 if sys.version_info[:2] > (2,5):
2672 2681 if status.message!=0 and not kw['exit_ignore']:
2673 2682 show = True
2674 2683 else:
2675 2684 if status.code and not kw['exit_ignore']:
2676 2685 show = True
2677 2686 if show:
2678 2687 self.showtraceback()
2679 2688 warn('Failure executing file: <%s>' % fname)
2680 2689 except:
2681 2690 self.showtraceback()
2682 2691 warn('Failure executing file: <%s>' % fname)
2683 2692
2684 2693 syspath_cleanup()
2685 2694
2686 2695 #************************* end of file <iplib.py> *****************************
@@ -1,3162 +1,3200 b''
1 1 .. IPython documentation master file, created by sphinx-quickstart.py on Mon Mar 24 17:01:34 2008.
2 2 You can adapt this file completely to your liking, but it should at least
3 3 contain the root 'toctree' directive.
4 4
5 5 =================
6 6 IPython reference
7 7 =================
8 8
9 9 .. contents::
10 10
11 11 .. _command_line_options:
12 12
13 13 Command-line usage
14 14 ==================
15 15
16 16 You start IPython with the command::
17 17
18 18 $ ipython [options] files
19 19
20 20 If invoked with no options, it executes all the files listed in sequence
21 21 and drops you into the interpreter while still acknowledging any options
22 22 you may have set in your ipythonrc file. This behavior is different from
23 23 standard Python, which when called as python -i will only execute one
24 24 file and ignore your configuration setup.
25 25
26 26 Please note that some of the configuration options are not available at
27 27 the command line, simply because they are not practical here. Look into
28 28 your ipythonrc configuration file for details on those. This file
29 29 typically installed in the $HOME/.ipython directory. For Windows users,
30 30 $HOME resolves to C:\\Documents and Settings\\YourUserName in most
31 31 instances. In the rest of this text, we will refer to this directory as
32 32 IPYTHONDIR.
33 33
34 34 .. _Threading options:
35 35
36 36
37 37 Special Threading Options
38 38 -------------------------
39 39
40 40 The following special options are ONLY valid at the beginning of the
41 41 command line, and not later. This is because they control the initial-
42 42 ization of ipython itself, before the normal option-handling mechanism
43 43 is active.
44 44
45 45 -gthread, -qthread, -q4thread, -wthread, -pylab:
46 46 Only one of these can be given, and it can only be given as
47 47 the first option passed to IPython (it will have no effect in
48 48 any other position). They provide threading support for the
49 49 GTK, Qt (versions 3 and 4) and WXPython toolkits, and for the
50 50 matplotlib library.
51 51
52 52 With any of the first four options, IPython starts running a
53 53 separate thread for the graphical toolkit's operation, so that
54 54 you can open and control graphical elements from within an
55 55 IPython command line, without blocking. All four provide
56 56 essentially the same functionality, respectively for GTK, Qt3,
57 57 Qt4 and WXWidgets (via their Python interfaces).
58 58
59 59 Note that with -wthread, you can additionally use the
60 60 -wxversion option to request a specific version of wx to be
61 61 used. This requires that you have the wxversion Python module
62 62 installed, which is part of recent wxPython distributions.
63 63
64 64 If -pylab is given, IPython loads special support for the mat
65 65 plotlib library (http://matplotlib.sourceforge.net), allowing
66 66 interactive usage of any of its backends as defined in the
67 67 user's ~/.matplotlib/matplotlibrc file. It automatically
68 68 activates GTK, Qt or WX threading for IPyhton if the choice of
69 69 matplotlib backend requires it. It also modifies the %run
70 70 command to correctly execute (without blocking) any
71 71 matplotlib-based script which calls show() at the end.
72 72
73 73 -tk
74 74 The -g/q/q4/wthread options, and -pylab (if matplotlib is
75 75 configured to use GTK, Qt3, Qt4 or WX), will normally block Tk
76 76 graphical interfaces. This means that when either GTK, Qt or WX
77 77 threading is active, any attempt to open a Tk GUI will result in a
78 78 dead window, and possibly cause the Python interpreter to crash.
79 79 An extra option, -tk, is available to address this issue. It can
80 80 only be given as a second option after any of the above (-gthread,
81 81 -wthread or -pylab).
82 82
83 83 If -tk is given, IPython will try to coordinate Tk threading
84 84 with GTK, Qt or WX. This is however potentially unreliable, and
85 85 you will have to test on your platform and Python configuration to
86 86 determine whether it works for you. Debian users have reported
87 87 success, apparently due to the fact that Debian builds all of Tcl,
88 88 Tk, Tkinter and Python with pthreads support. Under other Linux
89 89 environments (such as Fedora Core 2/3), this option has caused
90 90 random crashes and lockups of the Python interpreter. Under other
91 91 operating systems (Mac OSX and Windows), you'll need to try it to
92 92 find out, since currently no user reports are available.
93 93
94 94 There is unfortunately no way for IPython to determine at run time
95 95 whether -tk will work reliably or not, so you will need to do some
96 96 experiments before relying on it for regular work.
97 97
98 98
99 99
100 100 Regular Options
101 101 ---------------
102 102
103 103 After the above threading options have been given, regular options can
104 104 follow in any order. All options can be abbreviated to their shortest
105 105 non-ambiguous form and are case-sensitive. One or two dashes can be
106 106 used. Some options have an alternate short form, indicated after a ``|``.
107 107
108 108 Most options can also be set from your ipythonrc configuration file. See
109 109 the provided example for more details on what the options do. Options
110 110 given at the command line override the values set in the ipythonrc file.
111 111
112 112 All options with a [no] prepended can be specified in negated form
113 113 (-nooption instead of -option) to turn the feature off.
114 114
115 115 -help print a help message and exit.
116 116
117 117 -pylab
118 118 this can only be given as the first option passed to IPython
119 119 (it will have no effect in any other position). It adds
120 120 special support for the matplotlib library
121 121 (http://matplotlib.sourceforge.ne), allowing interactive usage
122 122 of any of its backends as defined in the user's .matplotlibrc
123 123 file. It automatically activates GTK or WX threading for
124 124 IPyhton if the choice of matplotlib backend requires it. It
125 125 also modifies the %run command to correctly execute (without
126 126 blocking) any matplotlib-based script which calls show() at
127 127 the end. See `Matplotlib support`_ for more details.
128 128
129 129 -autocall <val>
130 130 Make IPython automatically call any callable object even if you
131 131 didn't type explicit parentheses. For example, 'str 43' becomes
132 132 'str(43)' automatically. The value can be '0' to disable the feature,
133 133 '1' for smart autocall, where it is not applied if there are no more
134 134 arguments on the line, and '2' for full autocall, where all callable
135 135 objects are automatically called (even if no arguments are
136 136 present). The default is '1'.
137 137
138 138 -[no]autoindent
139 139 Turn automatic indentation on/off.
140 140
141 141 -[no]automagic
142 142 make magic commands automatic (without needing their first character
143 143 to be %). Type %magic at the IPython prompt for more information.
144 144
145 145 -[no]autoedit_syntax
146 146 When a syntax error occurs after editing a file, automatically
147 147 open the file to the trouble causing line for convenient
148 148 fixing.
149 149
150 150 -[no]banner Print the initial information banner (default on).
151 151
152 152 -c <command>
153 153 execute the given command string. This is similar to the -c
154 154 option in the normal Python interpreter.
155 155
156 156 -cache_size, cs <n>
157 157 size of the output cache (maximum number of entries to hold in
158 158 memory). The default is 1000, you can change it permanently in your
159 159 config file. Setting it to 0 completely disables the caching system,
160 160 and the minimum value accepted is 20 (if you provide a value less than
161 161 20, it is reset to 0 and a warning is issued) This limit is defined
162 162 because otherwise you'll spend more time re-flushing a too small cache
163 163 than working.
164 164
165 165 -classic, cl
166 166 Gives IPython a similar feel to the classic Python
167 167 prompt.
168 168
169 169 -colors <scheme>
170 170 Color scheme for prompts and exception reporting. Currently
171 171 implemented: NoColor, Linux and LightBG.
172 172
173 173 -[no]color_info
174 174 IPython can display information about objects via a set of functions,
175 175 and optionally can use colors for this, syntax highlighting source
176 176 code and various other elements. However, because this information is
177 177 passed through a pager (like 'less') and many pagers get confused with
178 178 color codes, this option is off by default. You can test it and turn
179 179 it on permanently in your ipythonrc file if it works for you. As a
180 180 reference, the 'less' pager supplied with Mandrake 8.2 works ok, but
181 181 that in RedHat 7.2 doesn't.
182 182
183 183 Test it and turn it on permanently if it works with your
184 184 system. The magic function %color_info allows you to toggle this
185 185 interactively for testing.
186 186
187 187 -[no]debug
188 188 Show information about the loading process. Very useful to pin down
189 189 problems with your configuration files or to get details about
190 190 session restores.
191 191
192 192 -[no]deep_reload:
193 193 IPython can use the deep_reload module which reloads changes in
194 194 modules recursively (it replaces the reload() function, so you don't
195 195 need to change anything to use it). deep_reload() forces a full
196 196 reload of modules whose code may have changed, which the default
197 197 reload() function does not.
198 198
199 199 When deep_reload is off, IPython will use the normal reload(),
200 200 but deep_reload will still be available as dreload(). This
201 201 feature is off by default [which means that you have both
202 202 normal reload() and dreload()].
203 203
204 204 -editor <name>
205 205 Which editor to use with the %edit command. By default,
206 206 IPython will honor your EDITOR environment variable (if not
207 207 set, vi is the Unix default and notepad the Windows one).
208 208 Since this editor is invoked on the fly by IPython and is
209 209 meant for editing small code snippets, you may want to use a
210 210 small, lightweight editor here (in case your default EDITOR is
211 211 something like Emacs).
212 212
213 213 -ipythondir <name>
214 214 name of your IPython configuration directory IPYTHONDIR. This
215 215 can also be specified through the environment variable
216 216 IPYTHONDIR.
217 217
218 218 -log, l
219 219 generate a log file of all input. The file is named
220 220 ipython_log.py in your current directory (which prevents logs
221 221 from multiple IPython sessions from trampling each other). You
222 222 can use this to later restore a session by loading your
223 223 logfile as a file to be executed with option -logplay (see
224 224 below).
225 225
226 226 -logfile, lf <name> specify the name of your logfile.
227 227
228 228 -logplay, lp <name>
229 229
230 230 you can replay a previous log. For restoring a session as close as
231 231 possible to the state you left it in, use this option (don't just run
232 232 the logfile). With -logplay, IPython will try to reconstruct the
233 233 previous working environment in full, not just execute the commands in
234 234 the logfile.
235 235
236 236 When a session is restored, logging is automatically turned on
237 237 again with the name of the logfile it was invoked with (it is
238 238 read from the log header). So once you've turned logging on for
239 239 a session, you can quit IPython and reload it as many times as
240 240 you want and it will continue to log its history and restore
241 241 from the beginning every time.
242 242
243 243 Caveats: there are limitations in this option. The history
244 244 variables _i*,_* and _dh don't get restored properly. In the
245 245 future we will try to implement full session saving by writing
246 246 and retrieving a 'snapshot' of the memory state of IPython. But
247 247 our first attempts failed because of inherent limitations of
248 248 Python's Pickle module, so this may have to wait.
249 249
250 250 -[no]messages
251 251 Print messages which IPython collects about its startup
252 252 process (default on).
253 253
254 254 -[no]pdb
255 255 Automatically call the pdb debugger after every uncaught
256 256 exception. If you are used to debugging using pdb, this puts
257 257 you automatically inside of it after any call (either in
258 258 IPython or in code called by it) which triggers an exception
259 259 which goes uncaught.
260 260
261 261 -pydb
262 262 Makes IPython use the third party "pydb" package as debugger,
263 263 instead of pdb. Requires that pydb is installed.
264 264
265 265 -[no]pprint
266 266 ipython can optionally use the pprint (pretty printer) module
267 267 for displaying results. pprint tends to give a nicer display
268 268 of nested data structures. If you like it, you can turn it on
269 269 permanently in your config file (default off).
270 270
271 271 -profile, p <name>
272 272
273 273 assume that your config file is ipythonrc-<name> or
274 274 ipy_profile_<name>.py (looks in current dir first, then in
275 275 IPYTHONDIR). This is a quick way to keep and load multiple
276 276 config files for different tasks, especially if you use the
277 277 include option of config files. You can keep a basic
278 278 IPYTHONDIR/ipythonrc file and then have other 'profiles' which
279 279 include this one and load extra things for particular
280 280 tasks. For example:
281 281
282 282 1. $HOME/.ipython/ipythonrc : load basic things you always want.
283 283 2. $HOME/.ipython/ipythonrc-math : load (1) and basic math-related modules.
284 284 3. $HOME/.ipython/ipythonrc-numeric : load (1) and Numeric and plotting modules.
285 285
286 286 Since it is possible to create an endless loop by having
287 287 circular file inclusions, IPython will stop if it reaches 15
288 288 recursive inclusions.
289 289
290 290 -prompt_in1, pi1 <string>
291 291
292 292 Specify the string used for input prompts. Note that if you are using
293 293 numbered prompts, the number is represented with a '\#' in the
294 294 string. Don't forget to quote strings with spaces embedded in
295 295 them. Default: 'In [\#]:'. The :ref:`prompts section <prompts>`
296 296 discusses in detail all the available escapes to customize your
297 297 prompts.
298 298
299 299 -prompt_in2, pi2 <string>
300 300 Similar to the previous option, but used for the continuation
301 301 prompts. The special sequence '\D' is similar to '\#', but
302 302 with all digits replaced dots (so you can have your
303 303 continuation prompt aligned with your input prompt). Default:
304 304 ' .\D.:' (note three spaces at the start for alignment with
305 305 'In [\#]').
306 306
307 307 -prompt_out,po <string>
308 308 String used for output prompts, also uses numbers like
309 309 prompt_in1. Default: 'Out[\#]:'
310 310
311 311 -quick start in bare bones mode (no config file loaded).
312 312
313 313 -rcfile <name>
314 314 name of your IPython resource configuration file. Normally
315 315 IPython loads ipythonrc (from current directory) or
316 316 IPYTHONDIR/ipythonrc.
317 317
318 318 If the loading of your config file fails, IPython starts with
319 319 a bare bones configuration (no modules loaded at all).
320 320
321 321 -[no]readline
322 322 use the readline library, which is needed to support name
323 323 completion and command history, among other things. It is
324 324 enabled by default, but may cause problems for users of
325 325 X/Emacs in Python comint or shell buffers.
326 326
327 327 Note that X/Emacs 'eterm' buffers (opened with M-x term) support
328 328 IPython's readline and syntax coloring fine, only 'emacs' (M-x
329 329 shell and C-c !) buffers do not.
330 330
331 331 -screen_length, sl <n>
332 332 number of lines of your screen. This is used to control
333 333 printing of very long strings. Strings longer than this number
334 334 of lines will be sent through a pager instead of directly
335 335 printed.
336 336
337 337 The default value for this is 0, which means IPython will
338 338 auto-detect your screen size every time it needs to print certain
339 339 potentially long strings (this doesn't change the behavior of the
340 340 'print' keyword, it's only triggered internally). If for some
341 341 reason this isn't working well (it needs curses support), specify
342 342 it yourself. Otherwise don't change the default.
343 343
344 344 -separate_in, si <string>
345 345
346 346 separator before input prompts.
347 347 Default: '\n'
348 348
349 349 -separate_out, so <string>
350 350 separator before output prompts.
351 351 Default: nothing.
352 352
353 353 -separate_out2, so2
354 354 separator after output prompts.
355 355 Default: nothing.
356 356 For these three options, use the value 0 to specify no separator.
357 357
358 358 -nosep
359 359 shorthand for '-SeparateIn 0 -SeparateOut 0 -SeparateOut2
360 360 0'. Simply removes all input/output separators.
361 361
362 362 -upgrade
363 363 allows you to upgrade your IPYTHONDIR configuration when you
364 364 install a new version of IPython. Since new versions may
365 365 include new command line options or example files, this copies
366 366 updated ipythonrc-type files. However, it backs up (with a
367 367 .old extension) all files which it overwrites so that you can
368 368 merge back any customizations you might have in your personal
369 369 files. Note that you should probably use %upgrade instead,
370 370 it's a safer alternative.
371 371
372 372
373 373 -Version print version information and exit.
374 374
375 375 -wxversion <string>
376 376 Select a specific version of wxPython (used in conjunction
377 377 with -wthread). Requires the wxversion module, part of recent
378 378 wxPython distributions
379 379
380 380 -xmode <modename>
381 381
382 382 Mode for exception reporting.
383 383
384 384 Valid modes: Plain, Context and Verbose.
385 385
386 386 * Plain: similar to python's normal traceback printing.
387 387 * Context: prints 5 lines of context source code around each
388 388 line in the traceback.
389 389 * Verbose: similar to Context, but additionally prints the
390 390 variables currently visible where the exception happened
391 391 (shortening their strings if too long). This can potentially be
392 392 very slow, if you happen to have a huge data structure whose
393 393 string representation is complex to compute. Your computer may
394 394 appear to freeze for a while with cpu usage at 100%. If this
395 395 occurs, you can cancel the traceback with Ctrl-C (maybe hitting it
396 396 more than once).
397 397
398 398 Interactive use
399 399 ===============
400 400
401 401 Warning: IPython relies on the existence of a global variable called
402 402 _ip which controls the shell itself. If you redefine _ip to anything,
403 403 bizarre behavior will quickly occur.
404 404
405 405 Other than the above warning, IPython is meant to work as a drop-in
406 406 replacement for the standard interactive interpreter. As such, any code
407 407 which is valid python should execute normally under IPython (cases where
408 408 this is not true should be reported as bugs). It does, however, offer
409 409 many features which are not available at a standard python prompt. What
410 410 follows is a list of these.
411 411
412 412
413 413 Caution for Windows users
414 414 -------------------------
415 415
416 416 Windows, unfortunately, uses the '\' character as a path
417 417 separator. This is a terrible choice, because '\' also represents the
418 418 escape character in most modern programming languages, including
419 419 Python. For this reason, using '/' character is recommended if you
420 420 have problems with ``\``. However, in Windows commands '/' flags
421 421 options, so you can not use it for the root directory. This means that
422 422 paths beginning at the root must be typed in a contrived manner like:
423 423 ``%copy \opt/foo/bar.txt \tmp``
424 424
425 425 .. _magic:
426 426
427 427 Magic command system
428 428 --------------------
429 429
430 430 IPython will treat any line whose first character is a % as a special
431 431 call to a 'magic' function. These allow you to control the behavior of
432 432 IPython itself, plus a lot of system-type features. They are all
433 433 prefixed with a % character, but parameters are given without
434 434 parentheses or quotes.
435 435
436 436 Example: typing '%cd mydir' (without the quotes) changes you working
437 437 directory to 'mydir', if it exists.
438 438
439 439 If you have 'automagic' enabled (in your ipythonrc file, via the command
440 440 line option -automagic or with the %automagic function), you don't need
441 441 to type in the % explicitly. IPython will scan its internal list of
442 442 magic functions and call one if it exists. With automagic on you can
443 443 then just type 'cd mydir' to go to directory 'mydir'. The automagic
444 444 system has the lowest possible precedence in name searches, so defining
445 445 an identifier with the same name as an existing magic function will
446 446 shadow it for automagic use. You can still access the shadowed magic
447 447 function by explicitly using the % character at the beginning of the line.
448 448
449 449 An example (with automagic on) should clarify all this::
450 450
451 451 In [1]: cd ipython # %cd is called by automagic
452 452
453 453 /home/fperez/ipython
454 454
455 455 In [2]: cd=1 # now cd is just a variable
456 456
457 457 In [3]: cd .. # and doesn't work as a function anymore
458 458
459 459 ------------------------------
460 460
461 461 File "<console>", line 1
462 462
463 463 cd ..
464 464
465 465 ^
466 466
467 467 SyntaxError: invalid syntax
468 468
469 469 In [4]: %cd .. # but %cd always works
470 470
471 471 /home/fperez
472 472
473 473 In [5]: del cd # if you remove the cd variable
474 474
475 475 In [6]: cd ipython # automagic can work again
476 476
477 477 /home/fperez/ipython
478 478
479 479 You can define your own magic functions to extend the system. The
480 480 following example defines a new magic command, %impall::
481 481
482 482 import IPython.ipapi
483 483
484 484 ip = IPython.ipapi.get()
485 485
486 486 def doimp(self, arg):
487 487
488 488 ip = self.api
489 489
490 490 ip.ex("import %s; reload(%s); from %s import *" % (
491 491
492 492 arg,arg,arg)
493 493
494 494 )
495 495
496 496 ip.expose_magic('impall', doimp)
497 497
498 498 You can also define your own aliased names for magic functions. In your
499 499 ipythonrc file, placing a line like:
500 500
501 501 execute __IP.magic_cl = __IP.magic_clear
502 502
503 503 will define %cl as a new name for %clear.
504 504
505 505 Type %magic for more information, including a list of all available
506 506 magic functions at any time and their docstrings. You can also type
507 507 %magic_function_name? (see sec. 6.4 <#sec:dyn-object-info> for
508 508 information on the '?' system) to get information about any particular
509 509 magic function you are interested in.
510 510
511 511
512 512 Magic commands
513 513 --------------
514 514
515 515 The rest of this section is automatically generated for each release
516 516 from the docstrings in the IPython code. Therefore the formatting is
517 517 somewhat minimal, but this method has the advantage of having
518 518 information always in sync with the code.
519 519
520 520 A list of all the magic commands available in IPython's default
521 521 installation follows. This is similar to what you'll see by simply
522 522 typing %magic at the prompt, but that will also give you information
523 523 about magic commands you may have added as part of your personal
524 524 customizations.
525 525
526 526 .. magic_start
527 527
528 528 **%Exit**::
529 529
530 530 Exit IPython without confirmation.
531 531
532 532 **%Pprint**::
533 533
534 534 Toggle pretty printing on/off.
535 535
536 536 **%alias**::
537 537
538 538 Define an alias for a system command.
539 539
540 540 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
541 541
542 542 Then, typing 'alias_name params' will execute the system command 'cmd
543 543 params' (from your underlying operating system).
544 544
545 545 Aliases have lower precedence than magic functions and Python normal
546 546 variables, so if 'foo' is both a Python variable and an alias, the
547 547 alias can not be executed until 'del foo' removes the Python variable.
548 548
549 549 You can use the %l specifier in an alias definition to represent the
550 550 whole line when the alias is called. For example:
551 551
552 552 In [2]: alias all echo "Input in brackets: <%l>"\
553 553 In [3]: all hello world\
554 554 Input in brackets: <hello world>
555 555
556 556 You can also define aliases with parameters using %s specifiers (one
557 557 per parameter):
558 558
559 559 In [1]: alias parts echo first %s second %s\
560 560 In [2]: %parts A B\
561 561 first A second B\
562 562 In [3]: %parts A\
563 563 Incorrect number of arguments: 2 expected.\
564 564 parts is an alias to: 'echo first %s second %s'
565 565
566 566 Note that %l and %s are mutually exclusive. You can only use one or
567 567 the other in your aliases.
568 568
569 569 Aliases expand Python variables just like system calls using ! or !!
570 570 do: all expressions prefixed with '$' get expanded. For details of
571 571 the semantic rules, see PEP-215:
572 572 http://www.python.org/peps/pep-0215.html. This is the library used by
573 573 IPython for variable expansion. If you want to access a true shell
574 574 variable, an extra $ is necessary to prevent its expansion by IPython:
575 575
576 576 In [6]: alias show echo\
577 577 In [7]: PATH='A Python string'\
578 578 In [8]: show $PATH\
579 579 A Python string\
580 580 In [9]: show $$PATH\
581 581 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
582 582
583 583 You can use the alias facility to acess all of $PATH. See the %rehash
584 584 and %rehashx functions, which automatically create aliases for the
585 585 contents of your $PATH.
586 586
587 587 If called with no parameters, %alias prints the current alias table.
588 588
589 589 **%autocall**::
590 590
591 591 Make functions callable without having to type parentheses.
592 592
593 593 Usage:
594 594
595 595 %autocall [mode]
596 596
597 597 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
598 598 value is toggled on and off (remembering the previous state).
599 599
600 600 In more detail, these values mean:
601 601
602 602 0 -> fully disabled
603 603
604 604 1 -> active, but do not apply if there are no arguments on the line.
605 605
606 606 In this mode, you get:
607 607
608 608 In [1]: callable
609 609 Out[1]: <built-in function callable>
610 610
611 611 In [2]: callable 'hello'
612 612 ------> callable('hello')
613 613 Out[2]: False
614 614
615 615 2 -> Active always. Even if no arguments are present, the callable
616 616 object is called:
617 617
618 618 In [4]: callable
619 619 ------> callable()
620 620
621 621 Note that even with autocall off, you can still use '/' at the start of
622 622 a line to treat the first argument on the command line as a function
623 623 and add parentheses to it:
624 624
625 625 In [8]: /str 43
626 626 ------> str(43)
627 627 Out[8]: '43'
628 628
629 629 **%autoindent**::
630 630
631 631 Toggle autoindent on/off (if available).
632 632
633 633 **%automagic**::
634 634
635 635 Make magic functions callable without having to type the initial %.
636 636
637 637 Without argumentsl toggles on/off (when off, you must call it as
638 638 %automagic, of course). With arguments it sets the value, and you can
639 639 use any of (case insensitive):
640 640
641 641 - on,1,True: to activate
642 642
643 643 - off,0,False: to deactivate.
644 644
645 645 Note that magic functions have lowest priority, so if there's a
646 646 variable whose name collides with that of a magic fn, automagic won't
647 647 work for that function (you get the variable instead). However, if you
648 648 delete the variable (del var), the previously shadowed magic function
649 649 becomes visible to automagic again.
650 650
651 651 **%bg**::
652 652
653 653 Run a job in the background, in a separate thread.
654 654
655 655 For example,
656 656
657 657 %bg myfunc(x,y,z=1)
658 658
659 659 will execute 'myfunc(x,y,z=1)' in a background thread. As soon as the
660 660 execution starts, a message will be printed indicating the job
661 661 number. If your job number is 5, you can use
662 662
663 663 myvar = jobs.result(5) or myvar = jobs[5].result
664 664
665 665 to assign this result to variable 'myvar'.
666 666
667 667 IPython has a job manager, accessible via the 'jobs' object. You can
668 668 type jobs? to get more information about it, and use jobs.<TAB> to see
669 669 its attributes. All attributes not starting with an underscore are
670 670 meant for public use.
671 671
672 672 In particular, look at the jobs.new() method, which is used to create
673 673 new jobs. This magic %bg function is just a convenience wrapper
674 674 around jobs.new(), for expression-based jobs. If you want to create a
675 675 new job with an explicit function object and arguments, you must call
676 676 jobs.new() directly.
677 677
678 678 The jobs.new docstring also describes in detail several important
679 679 caveats associated with a thread-based model for background job
680 680 execution. Type jobs.new? for details.
681 681
682 682 You can check the status of all jobs with jobs.status().
683 683
684 684 The jobs variable is set by IPython into the Python builtin namespace.
685 685 If you ever declare a variable named 'jobs', you will shadow this
686 686 name. You can either delete your global jobs variable to regain
687 687 access to the job manager, or make a new name and assign it manually
688 688 to the manager (stored in IPython's namespace). For example, to
689 689 assign the job manager to the Jobs name, use:
690 690
691 691 Jobs = __builtins__.jobs
692 692
693 693 **%bookmark**::
694 694
695 695 Manage IPython's bookmark system.
696 696
697 697 %bookmark <name> - set bookmark to current dir
698 698 %bookmark <name> <dir> - set bookmark to <dir>
699 699 %bookmark -l - list all bookmarks
700 700 %bookmark -d <name> - remove bookmark
701 701 %bookmark -r - remove all bookmarks
702 702
703 703 You can later on access a bookmarked folder with:
704 704 %cd -b <name>
705 705 or simply '%cd <name>' if there is no directory called <name> AND
706 706 there is such a bookmark defined.
707 707
708 708 Your bookmarks persist through IPython sessions, but they are
709 709 associated with each profile.
710 710
711 711 **%cd**::
712 712
713 713 Change the current working directory.
714 714
715 715 This command automatically maintains an internal list of directories
716 716 you visit during your IPython session, in the variable _dh. The
717 717 command %dhist shows this history nicely formatted. You can also
718 718 do 'cd -<tab>' to see directory history conveniently.
719 719
720 720 Usage:
721 721
722 722 cd 'dir': changes to directory 'dir'.
723 723
724 724 cd -: changes to the last visited directory.
725 725
726 726 cd -<n>: changes to the n-th directory in the directory history.
727 727
728 728 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
729 729 (note: cd <bookmark_name> is enough if there is no
730 730 directory <bookmark_name>, but a bookmark with the name exists.)
731 731 'cd -b <tab>' allows you to tab-complete bookmark names.
732 732
733 733 Options:
734 734
735 735 -q: quiet. Do not print the working directory after the cd command is
736 736 executed. By default IPython's cd command does print this directory,
737 737 since the default prompts do not display path information.
738 738
739 739 Note that !cd doesn't work for this purpose because the shell where
740 740 !command runs is immediately discarded after executing 'command'.
741 741
742 742 **%clear**::
743 743
744 744 Clear various data (e.g. stored history data)
745 745
746 746 %clear out - clear output history
747 747 %clear in - clear input history
748 748 %clear shadow_compress - Compresses shadow history (to speed up ipython)
749 749 %clear shadow_nuke - permanently erase all entries in shadow history
750 750 %clear dhist - clear dir history
751 751
752 752 **%color_info**::
753 753
754 754 Toggle color_info.
755 755
756 756 The color_info configuration parameter controls whether colors are
757 757 used for displaying object details (by things like %psource, %pfile or
758 758 the '?' system). This function toggles this value with each call.
759 759
760 760 Note that unless you have a fairly recent pager (less works better
761 761 than more) in your system, using colored object information displays
762 762 will not work properly. Test it and see.
763 763
764 764 **%colors**::
765 765
766 766 Switch color scheme for prompts, info system and exception handlers.
767 767
768 768 Currently implemented schemes: NoColor, Linux, LightBG.
769 769
770 770 Color scheme names are not case-sensitive.
771 771
772 772 **%cpaste**::
773 773
774 774 Allows you to paste & execute a pre-formatted code block from clipboard
775 775
776 776 You must terminate the block with '--' (two minus-signs) alone on the
777 777 line. You can also provide your own sentinel with '%paste -s %%' ('%%'
778 778 is the new sentinel for this operation)
779 779
780 780 The block is dedented prior to execution to enable execution of method
781 781 definitions. '>' and '+' characters at the beginning of a line are
782 782 ignored, to allow pasting directly from e-mails or diff files. The
783 783 executed block is also assigned to variable named 'pasted_block' for
784 784 later editing with '%edit pasted_block'.
785 785
786 786 You can also pass a variable name as an argument, e.g. '%cpaste foo'.
787 787 This assigns the pasted block to variable 'foo' as string, without
788 788 dedenting or executing it.
789 789
790 790 Do not be alarmed by garbled output on Windows (it's a readline bug).
791 791 Just press enter and type -- (and press enter again) and the block
792 792 will be what was just pasted.
793 793
794 794 IPython statements (magics, shell escapes) are not supported (yet).
795 795
796 796 **%debug**::
797 797
798 798 Activate the interactive debugger in post-mortem mode.
799 799
800 800 If an exception has just occurred, this lets you inspect its stack
801 801 frames interactively. Note that this will always work only on the last
802 802 traceback that occurred, so you must call this quickly after an
803 803 exception that you wish to inspect has fired, because if another one
804 804 occurs, it clobbers the previous one.
805 805
806 806 If you want IPython to automatically do this on every exception, see
807 807 the %pdb magic for more details.
808 808
809 809 **%dhist**::
810 810
811 811 Print your history of visited directories.
812 812
813 813 %dhist -> print full history\
814 814 %dhist n -> print last n entries only\
815 815 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\
816 816
817 817 This history is automatically maintained by the %cd command, and
818 818 always available as the global list variable _dh. You can use %cd -<n>
819 819 to go to directory number <n>.
820 820
821 821 Note that most of time, you should view directory history by entering
822 822 cd -<TAB>.
823 823
824 824 **%dirs**::
825 825
826 826 Return the current directory stack.
827 827
828 828 **%doctest_mode**::
829 829
830 830 Toggle doctest mode on and off.
831 831
832 832 This mode allows you to toggle the prompt behavior between normal
833 833 IPython prompts and ones that are as similar to the default IPython
834 834 interpreter as possible.
835 835
836 836 It also supports the pasting of code snippets that have leading '>>>'
837 837 and '...' prompts in them. This means that you can paste doctests from
838 838 files or docstrings (even if they have leading whitespace), and the
839 839 code will execute correctly. You can then use '%history -tn' to see
840 840 the translated history without line numbers; this will give you the
841 841 input after removal of all the leading prompts and whitespace, which
842 842 can be pasted back into an editor.
843 843
844 844 With these features, you can switch into this mode easily whenever you
845 845 need to do testing and changes to doctests, without having to leave
846 846 your existing IPython session.
847 847
848 848 **%ed**::
849 849
850 850 Alias to %edit.
851 851
852 852 **%edit**::
853 853
854 854 Bring up an editor and execute the resulting code.
855 855
856 856 Usage:
857 857 %edit [options] [args]
858 858
859 859 %edit runs IPython's editor hook. The default version of this hook is
860 860 set to call the __IPYTHON__.rc.editor command. This is read from your
861 861 environment variable $EDITOR. If this isn't found, it will default to
862 862 vi under Linux/Unix and to notepad under Windows. See the end of this
863 863 docstring for how to change the editor hook.
864 864
865 865 You can also set the value of this editor via the command line option
866 866 '-editor' or in your ipythonrc file. This is useful if you wish to use
867 867 specifically for IPython an editor different from your typical default
868 868 (and for Windows users who typically don't set environment variables).
869 869
870 870 This command allows you to conveniently edit multi-line code right in
871 871 your IPython session.
872 872
873 873 If called without arguments, %edit opens up an empty editor with a
874 874 temporary file and will execute the contents of this file when you
875 875 close it (don't forget to save it!).
876 876
877 877
878 878 Options:
879 879
880 880 -n <number>: open the editor at a specified line number. By default,
881 881 the IPython editor hook uses the unix syntax 'editor +N filename', but
882 882 you can configure this by providing your own modified hook if your
883 883 favorite editor supports line-number specifications with a different
884 884 syntax.
885 885
886 886 -p: this will call the editor with the same data as the previous time
887 887 it was used, regardless of how long ago (in your current session) it
888 888 was.
889 889
890 890 -r: use 'raw' input. This option only applies to input taken from the
891 891 user's history. By default, the 'processed' history is used, so that
892 892 magics are loaded in their transformed version to valid Python. If
893 893 this option is given, the raw input as typed as the command line is
894 894 used instead. When you exit the editor, it will be executed by
895 895 IPython's own processor.
896 896
897 897 -x: do not execute the edited code immediately upon exit. This is
898 898 mainly useful if you are editing programs which need to be called with
899 899 command line arguments, which you can then do using %run.
900 900
901 901
902 902 Arguments:
903 903
904 904 If arguments are given, the following possibilites exist:
905 905
906 906 - The arguments are numbers or pairs of colon-separated numbers (like
907 907 1 4:8 9). These are interpreted as lines of previous input to be
908 908 loaded into the editor. The syntax is the same of the %macro command.
909 909
910 910 - If the argument doesn't start with a number, it is evaluated as a
911 911 variable and its contents loaded into the editor. You can thus edit
912 912 any string which contains python code (including the result of
913 913 previous edits).
914 914
915 915 - If the argument is the name of an object (other than a string),
916 916 IPython will try to locate the file where it was defined and open the
917 917 editor at the point where it is defined. You can use `%edit function`
918 918 to load an editor exactly at the point where 'function' is defined,
919 919 edit it and have the file be executed automatically.
920 920
921 921 If the object is a macro (see %macro for details), this opens up your
922 922 specified editor with a temporary file containing the macro's data.
923 923 Upon exit, the macro is reloaded with the contents of the file.
924 924
925 925 Note: opening at an exact line is only supported under Unix, and some
926 926 editors (like kedit and gedit up to Gnome 2.8) do not understand the
927 927 '+NUMBER' parameter necessary for this feature. Good editors like
928 928 (X)Emacs, vi, jed, pico and joe all do.
929 929
930 930 - If the argument is not found as a variable, IPython will look for a
931 931 file with that name (adding .py if necessary) and load it into the
932 932 editor. It will execute its contents with execfile() when you exit,
933 933 loading any code in the file into your interactive namespace.
934 934
935 935 After executing your code, %edit will return as output the code you
936 936 typed in the editor (except when it was an existing file). This way
937 937 you can reload the code in further invocations of %edit as a variable,
938 938 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
939 939 the output.
940 940
941 941 Note that %edit is also available through the alias %ed.
942 942
943 943 This is an example of creating a simple function inside the editor and
944 944 then modifying it. First, start up the editor:
945 945
946 946 In [1]: ed\
947 947 Editing... done. Executing edited code...\
948 948 Out[1]: 'def foo():\n print "foo() was defined in an editing session"\n'
949 949
950 950 We can then call the function foo():
951 951
952 952 In [2]: foo()\
953 953 foo() was defined in an editing session
954 954
955 955 Now we edit foo. IPython automatically loads the editor with the
956 956 (temporary) file where foo() was previously defined:
957 957
958 958 In [3]: ed foo\
959 959 Editing... done. Executing edited code...
960 960
961 961 And if we call foo() again we get the modified version:
962 962
963 963 In [4]: foo()\
964 964 foo() has now been changed!
965 965
966 966 Here is an example of how to edit a code snippet successive
967 967 times. First we call the editor:
968 968
969 969 In [8]: ed\
970 970 Editing... done. Executing edited code...\
971 971 hello\
972 972 Out[8]: "print 'hello'\n"
973 973
974 974 Now we call it again with the previous output (stored in _):
975 975
976 976 In [9]: ed _\
977 977 Editing... done. Executing edited code...\
978 978 hello world\
979 979 Out[9]: "print 'hello world'\n"
980 980
981 981 Now we call it with the output #8 (stored in _8, also as Out[8]):
982 982
983 983 In [10]: ed _8\
984 984 Editing... done. Executing edited code...\
985 985 hello again\
986 986 Out[10]: "print 'hello again'\n"
987 987
988 988
989 989 Changing the default editor hook:
990 990
991 991 If you wish to write your own editor hook, you can put it in a
992 992 configuration file which you load at startup time. The default hook
993 993 is defined in the IPython.hooks module, and you can use that as a
994 994 starting example for further modifications. That file also has
995 995 general instructions on how to set a new hook for use once you've
996 996 defined it.
997 997
998 998 **%env**::
999 999
1000 1000 List environment variables.
1001 1001
1002 1002 **%exit**::
1003 1003
1004 1004 Exit IPython, confirming if configured to do so.
1005 1005
1006 1006 You can configure whether IPython asks for confirmation upon exit by
1007 1007 setting the confirm_exit flag in the ipythonrc file.
1008 1008
1009 1009 **%hist**::
1010 1010
1011 1011 Alternate name for %history.
1012 1012
1013 1013 **%history**::
1014 1014
1015 1015 Print input history (_i<n> variables), with most recent last.
1016 1016
1017 1017 %history -> print at most 40 inputs (some may be multi-line)\
1018 1018 %history n -> print at most n inputs\
1019 1019 %history n1 n2 -> print inputs between n1 and n2 (n2 not included)\
1020 1020
1021 1021 Each input's number <n> is shown, and is accessible as the
1022 1022 automatically generated variable _i<n>. Multi-line statements are
1023 1023 printed starting at a new line for easy copy/paste.
1024 1024
1025 1025
1026 1026 Options:
1027 1027
1028 1028 -n: do NOT print line numbers. This is useful if you want to get a
1029 1029 printout of many lines which can be directly pasted into a text
1030 1030 editor.
1031 1031
1032 1032 This feature is only available if numbered prompts are in use.
1033 1033
1034 1034 -t: (default) print the 'translated' history, as IPython understands it.
1035 1035 IPython filters your input and converts it all into valid Python source
1036 1036 before executing it (things like magics or aliases are turned into
1037 1037 function calls, for example). With this option, you'll see the native
1038 1038 history instead of the user-entered version: '%cd /' will be seen as
1039 1039 '_ip.magic("%cd /")' instead of '%cd /'.
1040 1040
1041 1041 -r: print the 'raw' history, i.e. the actual commands you typed.
1042 1042
1043 1043 -g: treat the arg as a pattern to grep for in (full) history.
1044 1044 This includes the "shadow history" (almost all commands ever written).
1045 1045 Use '%hist -g' to show full shadow history (may be very long).
1046 1046 In shadow history, every index nuwber starts with 0.
1047 1047
1048 1048 -f FILENAME: instead of printing the output to the screen, redirect it to
1049 1049 the given file. The file is always overwritten, though IPython asks for
1050 1050 confirmation first if it already exists.
1051 1051
1052 1052 **%logoff**::
1053 1053
1054 1054 Temporarily stop logging.
1055 1055
1056 1056 You must have previously started logging.
1057 1057
1058 1058 **%logon**::
1059 1059
1060 1060 Restart logging.
1061 1061
1062 1062 This function is for restarting logging which you've temporarily
1063 1063 stopped with %logoff. For starting logging for the first time, you
1064 1064 must use the %logstart function, which allows you to specify an
1065 1065 optional log filename.
1066 1066
1067 1067 **%logstart**::
1068 1068
1069 1069 Start logging anywhere in a session.
1070 1070
1071 1071 %logstart [-o|-r|-t] [log_name [log_mode]]
1072 1072
1073 1073 If no name is given, it defaults to a file named 'ipython_log.py' in your
1074 1074 current directory, in 'rotate' mode (see below).
1075 1075
1076 1076 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1077 1077 history up to that point and then continues logging.
1078 1078
1079 1079 %logstart takes a second optional parameter: logging mode. This can be one
1080 1080 of (note that the modes are given unquoted):\
1081 1081 append: well, that says it.\
1082 1082 backup: rename (if exists) to name~ and start name.\
1083 1083 global: single logfile in your home dir, appended to.\
1084 1084 over : overwrite existing log.\
1085 1085 rotate: create rotating logs name.1~, name.2~, etc.
1086 1086
1087 1087 Options:
1088 1088
1089 1089 -o: log also IPython's output. In this mode, all commands which
1090 1090 generate an Out[NN] prompt are recorded to the logfile, right after
1091 1091 their corresponding input line. The output lines are always
1092 1092 prepended with a '#[Out]# ' marker, so that the log remains valid
1093 1093 Python code.
1094 1094
1095 1095 Since this marker is always the same, filtering only the output from
1096 1096 a log is very easy, using for example a simple awk call:
1097 1097
1098 1098 awk -F'#\[Out\]# ' '{if($2) {print $2}}' ipython_log.py
1099 1099
1100 1100 -r: log 'raw' input. Normally, IPython's logs contain the processed
1101 1101 input, so that user lines are logged in their final form, converted
1102 1102 into valid Python. For example, %Exit is logged as
1103 1103 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1104 1104 exactly as typed, with no transformations applied.
1105 1105
1106 1106 -t: put timestamps before each input line logged (these are put in
1107 1107 comments).
1108 1108
1109 1109 **%logstate**::
1110 1110
1111 1111 Print the status of the logging system.
1112 1112
1113 1113 **%logstop**::
1114 1114
1115 1115 Fully stop logging and close log file.
1116 1116
1117 1117 In order to start logging again, a new %logstart call needs to be made,
1118 1118 possibly (though not necessarily) with a new filename, mode and other
1119 1119 options.
1120 1120
1121 1121 **%lsmagic**::
1122 1122
1123 1123 List currently available magic functions.
1124 1124
1125 1125 **%macro**::
1126 1126
1127 1127 Define a set of input lines as a macro for future re-execution.
1128 1128
1129 1129 Usage:\
1130 1130 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1131 1131
1132 1132 Options:
1133 1133
1134 1134 -r: use 'raw' input. By default, the 'processed' history is used,
1135 1135 so that magics are loaded in their transformed version to valid
1136 1136 Python. If this option is given, the raw input as typed as the
1137 1137 command line is used instead.
1138 1138
1139 1139 This will define a global variable called `name` which is a string
1140 1140 made of joining the slices and lines you specify (n1,n2,... numbers
1141 1141 above) from your input history into a single string. This variable
1142 1142 acts like an automatic function which re-executes those lines as if
1143 1143 you had typed them. You just type 'name' at the prompt and the code
1144 1144 executes.
1145 1145
1146 1146 The notation for indicating number ranges is: n1-n2 means 'use line
1147 1147 numbers n1,...n2' (the endpoint is included). That is, '5-7' means
1148 1148 using the lines numbered 5,6 and 7.
1149 1149
1150 1150 Note: as a 'hidden' feature, you can also use traditional python slice
1151 1151 notation, where N:M means numbers N through M-1.
1152 1152
1153 1153 For example, if your history contains (%hist prints it):
1154 1154
1155 1155 44: x=1\
1156 1156 45: y=3\
1157 1157 46: z=x+y\
1158 1158 47: print x\
1159 1159 48: a=5\
1160 1160 49: print 'x',x,'y',y\
1161 1161
1162 1162 you can create a macro with lines 44 through 47 (included) and line 49
1163 1163 called my_macro with:
1164 1164
1165 1165 In [51]: %macro my_macro 44-47 49
1166 1166
1167 1167 Now, typing `my_macro` (without quotes) will re-execute all this code
1168 1168 in one pass.
1169 1169
1170 1170 You don't need to give the line-numbers in order, and any given line
1171 1171 number can appear multiple times. You can assemble macros with any
1172 1172 lines from your input history in any order.
1173 1173
1174 1174 The macro is a simple object which holds its value in an attribute,
1175 1175 but IPython's display system checks for macros and executes them as
1176 1176 code instead of printing them when you type their name.
1177 1177
1178 1178 You can view a macro's contents by explicitly printing it with:
1179 1179
1180 1180 'print macro_name'.
1181 1181
1182 1182 For one-off cases which DON'T contain magic function calls in them you
1183 1183 can obtain similar results by explicitly executing slices from your
1184 1184 input history with:
1185 1185
1186 1186 In [60]: exec In[44:48]+In[49]
1187 1187
1188 1188 **%magic**::
1189 1189
1190 1190 Print information about the magic function system.
1191 1191
1192 1192 **%mglob**::
1193 1193
1194 1194 This program allows specifying filenames with "mglob" mechanism.
1195 1195 Supported syntax in globs (wilcard matching patterns)::
1196 1196
1197 1197 *.cpp ?ellowo*
1198 1198 - obvious. Differs from normal glob in that dirs are not included.
1199 1199 Unix users might want to write this as: "*.cpp" "?ellowo*"
1200 1200 rec:/usr/share=*.txt,*.doc
1201 1201 - get all *.txt and *.doc under /usr/share,
1202 1202 recursively
1203 1203 rec:/usr/share
1204 1204 - All files under /usr/share, recursively
1205 1205 rec:*.py
1206 1206 - All .py files under current working dir, recursively
1207 1207 foo
1208 1208 - File or dir foo
1209 1209 !*.bak readme*
1210 1210 - readme*, exclude files ending with .bak
1211 1211 !.svn/ !.hg/ !*_Data/ rec:.
1212 1212 - Skip .svn, .hg, foo_Data dirs (and their subdirs) in recurse.
1213 1213 Trailing / is the key, \ does not work!
1214 1214 dir:foo
1215 1215 - the directory foo if it exists (not files in foo)
1216 1216 dir:*
1217 1217 - all directories in current folder
1218 1218 foo.py bar.* !h* rec:*.py
1219 1219 - Obvious. !h* exclusion only applies for rec:*.py.
1220 1220 foo.py is *not* included twice.
1221 1221 @filelist.txt
1222 1222 - All files listed in 'filelist.txt' file, on separate lines.
1223 1223
1224 1224 **%page**::
1225 1225
1226 1226 Pretty print the object and display it through a pager.
1227 1227
1228 1228 %page [options] OBJECT
1229 1229
1230 1230 If no object is given, use _ (last output).
1231 1231
1232 1232 Options:
1233 1233
1234 1234 -r: page str(object), don't pretty-print it.
1235 1235
1236 1236 **%pdb**::
1237 1237
1238 1238 Control the automatic calling of the pdb interactive debugger.
1239 1239
1240 1240 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1241 1241 argument it works as a toggle.
1242 1242
1243 1243 When an exception is triggered, IPython can optionally call the
1244 1244 interactive pdb debugger after the traceback printout. %pdb toggles
1245 1245 this feature on and off.
1246 1246
1247 1247 The initial state of this feature is set in your ipythonrc
1248 1248 configuration file (the variable is called 'pdb').
1249 1249
1250 1250 If you want to just activate the debugger AFTER an exception has fired,
1251 1251 without having to type '%pdb on' and rerunning your code, you can use
1252 1252 the %debug magic.
1253 1253
1254 1254 **%pdef**::
1255 1255
1256 1256 Print the definition header for any callable object.
1257 1257
1258 1258 If the object is a class, print the constructor information.
1259 1259
1260 1260 **%pdoc**::
1261 1261
1262 1262 Print the docstring for an object.
1263 1263
1264 1264 If the given object is a class, it will print both the class and the
1265 1265 constructor docstrings.
1266 1266
1267 1267 **%pfile**::
1268 1268
1269 1269 Print (or run through pager) the file where an object is defined.
1270 1270
1271 1271 The file opens at the line where the object definition begins. IPython
1272 1272 will honor the environment variable PAGER if set, and otherwise will
1273 1273 do its best to print the file in a convenient form.
1274 1274
1275 1275 If the given argument is not an object currently defined, IPython will
1276 1276 try to interpret it as a filename (automatically adding a .py extension
1277 1277 if needed). You can thus use %pfile as a syntax highlighting code
1278 1278 viewer.
1279 1279
1280 1280 **%pinfo**::
1281 1281
1282 1282 Provide detailed information about an object.
1283 1283
1284 1284 '%pinfo object' is just a synonym for object? or ?object.
1285 1285
1286 1286 **%popd**::
1287 1287
1288 1288 Change to directory popped off the top of the stack.
1289 1289
1290 1290 **%profile**::
1291 1291
1292 1292 Print your currently active IPyhton profile.
1293 1293
1294 1294 **%prun**::
1295 1295
1296 1296 Run a statement through the python code profiler.
1297 1297
1298 1298 Usage:\
1299 1299 %prun [options] statement
1300 1300
1301 1301 The given statement (which doesn't require quote marks) is run via the
1302 1302 python profiler in a manner similar to the profile.run() function.
1303 1303 Namespaces are internally managed to work correctly; profile.run
1304 1304 cannot be used in IPython because it makes certain assumptions about
1305 1305 namespaces which do not hold under IPython.
1306 1306
1307 1307 Options:
1308 1308
1309 1309 -l <limit>: you can place restrictions on what or how much of the
1310 1310 profile gets printed. The limit value can be:
1311 1311
1312 1312 * A string: only information for function names containing this string
1313 1313 is printed.
1314 1314
1315 1315 * An integer: only these many lines are printed.
1316 1316
1317 1317 * A float (between 0 and 1): this fraction of the report is printed
1318 1318 (for example, use a limit of 0.4 to see the topmost 40% only).
1319 1319
1320 1320 You can combine several limits with repeated use of the option. For
1321 1321 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1322 1322 information about class constructors.
1323 1323
1324 1324 -r: return the pstats.Stats object generated by the profiling. This
1325 1325 object has all the information about the profile in it, and you can
1326 1326 later use it for further analysis or in other functions.
1327 1327
1328 1328 -s <key>: sort profile by given key. You can provide more than one key
1329 1329 by using the option several times: '-s key1 -s key2 -s key3...'. The
1330 1330 default sorting key is 'time'.
1331 1331
1332 1332 The following is copied verbatim from the profile documentation
1333 1333 referenced below:
1334 1334
1335 1335 When more than one key is provided, additional keys are used as
1336 1336 secondary criteria when the there is equality in all keys selected
1337 1337 before them.
1338 1338
1339 1339 Abbreviations can be used for any key names, as long as the
1340 1340 abbreviation is unambiguous. The following are the keys currently
1341 1341 defined:
1342 1342
1343 1343 Valid Arg Meaning\
1344 1344 "calls" call count\
1345 1345 "cumulative" cumulative time\
1346 1346 "file" file name\
1347 1347 "module" file name\
1348 1348 "pcalls" primitive call count\
1349 1349 "line" line number\
1350 1350 "name" function name\
1351 1351 "nfl" name/file/line\
1352 1352 "stdname" standard name\
1353 1353 "time" internal time
1354 1354
1355 1355 Note that all sorts on statistics are in descending order (placing
1356 1356 most time consuming items first), where as name, file, and line number
1357 1357 searches are in ascending order (i.e., alphabetical). The subtle
1358 1358 distinction between "nfl" and "stdname" is that the standard name is a
1359 1359 sort of the name as printed, which means that the embedded line
1360 1360 numbers get compared in an odd way. For example, lines 3, 20, and 40
1361 1361 would (if the file names were the same) appear in the string order
1362 1362 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1363 1363 line numbers. In fact, sort_stats("nfl") is the same as
1364 1364 sort_stats("name", "file", "line").
1365 1365
1366 1366 -T <filename>: save profile results as shown on screen to a text
1367 1367 file. The profile is still shown on screen.
1368 1368
1369 1369 -D <filename>: save (via dump_stats) profile statistics to given
1370 1370 filename. This data is in a format understod by the pstats module, and
1371 1371 is generated by a call to the dump_stats() method of profile
1372 1372 objects. The profile is still shown on screen.
1373 1373
1374 1374 If you want to run complete programs under the profiler's control, use
1375 1375 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1376 1376 contains profiler specific options as described here.
1377 1377
1378 1378 You can read the complete documentation for the profile module with:\
1379 1379 In [1]: import profile; profile.help()
1380 1380
1381 1381 **%psearch**::
1382 1382
1383 1383 Search for object in namespaces by wildcard.
1384 1384
1385 1385 %psearch [options] PATTERN [OBJECT TYPE]
1386 1386
1387 1387 Note: ? can be used as a synonym for %psearch, at the beginning or at
1388 1388 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
1389 1389 rest of the command line must be unchanged (options come first), so
1390 1390 for example the following forms are equivalent
1391 1391
1392 1392 %psearch -i a* function
1393 1393 -i a* function?
1394 1394 ?-i a* function
1395 1395
1396 1396 Arguments:
1397 1397
1398 1398 PATTERN
1399 1399
1400 1400 where PATTERN is a string containing * as a wildcard similar to its
1401 1401 use in a shell. The pattern is matched in all namespaces on the
1402 1402 search path. By default objects starting with a single _ are not
1403 1403 matched, many IPython generated objects have a single
1404 1404 underscore. The default is case insensitive matching. Matching is
1405 1405 also done on the attributes of objects and not only on the objects
1406 1406 in a module.
1407 1407
1408 1408 [OBJECT TYPE]
1409 1409
1410 1410 Is the name of a python type from the types module. The name is
1411 1411 given in lowercase without the ending type, ex. StringType is
1412 1412 written string. By adding a type here only objects matching the
1413 1413 given type are matched. Using all here makes the pattern match all
1414 1414 types (this is the default).
1415 1415
1416 1416 Options:
1417 1417
1418 1418 -a: makes the pattern match even objects whose names start with a
1419 1419 single underscore. These names are normally ommitted from the
1420 1420 search.
1421 1421
1422 1422 -i/-c: make the pattern case insensitive/sensitive. If neither of
1423 1423 these options is given, the default is read from your ipythonrc
1424 1424 file. The option name which sets this value is
1425 1425 'wildcards_case_sensitive'. If this option is not specified in your
1426 1426 ipythonrc file, IPython's internal default is to do a case sensitive
1427 1427 search.
1428 1428
1429 1429 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
1430 1430 specifiy can be searched in any of the following namespaces:
1431 1431 'builtin', 'user', 'user_global','internal', 'alias', where
1432 1432 'builtin' and 'user' are the search defaults. Note that you should
1433 1433 not use quotes when specifying namespaces.
1434 1434
1435 1435 'Builtin' contains the python module builtin, 'user' contains all
1436 1436 user data, 'alias' only contain the shell aliases and no python
1437 1437 objects, 'internal' contains objects used by IPython. The
1438 1438 'user_global' namespace is only used by embedded IPython instances,
1439 1439 and it contains module-level globals. You can add namespaces to the
1440 1440 search with -s or exclude them with -e (these options can be given
1441 1441 more than once).
1442 1442
1443 1443 Examples:
1444 1444
1445 1445 %psearch a* -> objects beginning with an a
1446 1446 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
1447 1447 %psearch a* function -> all functions beginning with an a
1448 1448 %psearch re.e* -> objects beginning with an e in module re
1449 1449 %psearch r*.e* -> objects that start with e in modules starting in r
1450 1450 %psearch r*.* string -> all strings in modules beginning with r
1451 1451
1452 1452 Case sensitve search:
1453 1453
1454 1454 %psearch -c a* list all object beginning with lower case a
1455 1455
1456 1456 Show objects beginning with a single _:
1457 1457
1458 1458 %psearch -a _* list objects beginning with a single underscore
1459 1459
1460 1460 **%psource**::
1461 1461
1462 1462 Print (or run through pager) the source code for an object.
1463 1463
1464 1464 **%pushd**::
1465 1465
1466 1466 Place the current dir on stack and change directory.
1467 1467
1468 1468 Usage:\
1469 1469 %pushd ['dirname']
1470 1470
1471 1471 **%pwd**::
1472 1472
1473 1473 Return the current working directory path.
1474 1474
1475 1475 **%pycat**::
1476 1476
1477 1477 Show a syntax-highlighted file through a pager.
1478 1478
1479 1479 This magic is similar to the cat utility, but it will assume the file
1480 1480 to be Python source and will show it with syntax highlighting.
1481 1481
1482 1482 **%quickref**::
1483 1483
1484 1484 Show a quick reference sheet
1485 1485
1486 1486 **%quit**::
1487 1487
1488 1488 Exit IPython, confirming if configured to do so (like %exit)
1489 1489
1490 1490 **%r**::
1491 1491
1492 1492 Repeat previous input.
1493 1493
1494 1494 Note: Consider using the more powerfull %rep instead!
1495 1495
1496 1496 If given an argument, repeats the previous command which starts with
1497 1497 the same string, otherwise it just repeats the previous input.
1498 1498
1499 1499 Shell escaped commands (with ! as first character) are not recognized
1500 1500 by this system, only pure python code and magic commands.
1501 1501
1502 1502 **%rehashdir**::
1503 1503
1504 1504 Add executables in all specified dirs to alias table
1505 1505
1506 1506 Usage:
1507 1507
1508 1508 %rehashdir c:/bin;c:/tools
1509 1509 - Add all executables under c:/bin and c:/tools to alias table, in
1510 1510 order to make them directly executable from any directory.
1511 1511
1512 1512 Without arguments, add all executables in current directory.
1513 1513
1514 1514 **%rehashx**::
1515 1515
1516 1516 Update the alias table with all executable files in $PATH.
1517 1517
1518 1518 This version explicitly checks that every entry in $PATH is a file
1519 1519 with execute access (os.X_OK), so it is much slower than %rehash.
1520 1520
1521 1521 Under Windows, it checks executability as a match agains a
1522 1522 '|'-separated string of extensions, stored in the IPython config
1523 1523 variable win_exec_ext. This defaults to 'exe|com|bat'.
1524 1524
1525 1525 This function also resets the root module cache of module completer,
1526 1526 used on slow filesystems.
1527 1527
1528 1528 **%rep**::
1529 1529
1530 1530 Repeat a command, or get command to input line for editing
1531 1531
1532 1532 - %rep (no arguments):
1533 1533
1534 1534 Place a string version of last computation result (stored in the special '_'
1535 1535 variable) to the next input prompt. Allows you to create elaborate command
1536 1536 lines without using copy-paste::
1537 1537
1538 1538 $ l = ["hei", "vaan"]
1539 1539 $ "".join(l)
1540 1540 ==> heivaan
1541 1541 $ %rep
1542 1542 $ heivaan_ <== cursor blinking
1543 1543
1544 1544 %rep 45
1545 1545
1546 1546 Place history line 45 to next input prompt. Use %hist to find out the
1547 1547 number.
1548 1548
1549 1549 %rep 1-4 6-7 3
1550 1550
1551 1551 Repeat the specified lines immediately. Input slice syntax is the same as
1552 1552 in %macro and %save.
1553 1553
1554 1554 %rep foo
1555 1555
1556 1556 Place the most recent line that has the substring "foo" to next input.
1557 1557 (e.g. 'svn ci -m foobar').
1558 1558
1559 1559 **%reset**::
1560 1560
1561 1561 Resets the namespace by removing all names defined by the user.
1562 1562
1563 1563 Input/Output history are left around in case you need them.
1564 1564
1565 1565 **%run**::
1566 1566
1567 1567 Run the named file inside IPython as a program.
1568 1568
1569 1569 Usage:\
1570 1570 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1571 1571
1572 1572 Parameters after the filename are passed as command-line arguments to
1573 1573 the program (put in sys.argv). Then, control returns to IPython's
1574 1574 prompt.
1575 1575
1576 1576 This is similar to running at a system prompt:\
1577 1577 $ python file args\
1578 1578 but with the advantage of giving you IPython's tracebacks, and of
1579 1579 loading all variables into your interactive namespace for further use
1580 1580 (unless -p is used, see below).
1581 1581
1582 1582 The file is executed in a namespace initially consisting only of
1583 1583 __name__=='__main__' and sys.argv constructed as indicated. It thus
1584 1584 sees its environment as if it were being run as a stand-alone program
1585 1585 (except for sharing global objects such as previously imported
1586 1586 modules). But after execution, the IPython interactive namespace gets
1587 1587 updated with all variables defined in the program (except for __name__
1588 1588 and sys.argv). This allows for very convenient loading of code for
1589 1589 interactive work, while giving each program a 'clean sheet' to run in.
1590 1590
1591 1591 Options:
1592 1592
1593 1593 -n: __name__ is NOT set to '__main__', but to the running file's name
1594 1594 without extension (as python does under import). This allows running
1595 1595 scripts and reloading the definitions in them without calling code
1596 1596 protected by an ' if __name__ == "__main__" ' clause.
1597 1597
1598 1598 -i: run the file in IPython's namespace instead of an empty one. This
1599 1599 is useful if you are experimenting with code written in a text editor
1600 1600 which depends on variables defined interactively.
1601 1601
1602 1602 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1603 1603 being run. This is particularly useful if IPython is being used to
1604 1604 run unittests, which always exit with a sys.exit() call. In such
1605 1605 cases you are interested in the output of the test results, not in
1606 1606 seeing a traceback of the unittest module.
1607 1607
1608 1608 -t: print timing information at the end of the run. IPython will give
1609 1609 you an estimated CPU time consumption for your script, which under
1610 1610 Unix uses the resource module to avoid the wraparound problems of
1611 1611 time.clock(). Under Unix, an estimate of time spent on system tasks
1612 1612 is also given (for Windows platforms this is reported as 0.0).
1613 1613
1614 1614 If -t is given, an additional -N<N> option can be given, where <N>
1615 1615 must be an integer indicating how many times you want the script to
1616 1616 run. The final timing report will include total and per run results.
1617 1617
1618 1618 For example (testing the script uniq_stable.py):
1619 1619
1620 1620 In [1]: run -t uniq_stable
1621 1621
1622 1622 IPython CPU timings (estimated):\
1623 1623 User : 0.19597 s.\
1624 1624 System: 0.0 s.\
1625 1625
1626 1626 In [2]: run -t -N5 uniq_stable
1627 1627
1628 1628 IPython CPU timings (estimated):\
1629 1629 Total runs performed: 5\
1630 1630 Times : Total Per run\
1631 1631 User : 0.910862 s, 0.1821724 s.\
1632 1632 System: 0.0 s, 0.0 s.
1633 1633
1634 1634 -d: run your program under the control of pdb, the Python debugger.
1635 1635 This allows you to execute your program step by step, watch variables,
1636 1636 etc. Internally, what IPython does is similar to calling:
1637 1637
1638 1638 pdb.run('execfile("YOURFILENAME")')
1639 1639
1640 1640 with a breakpoint set on line 1 of your file. You can change the line
1641 1641 number for this automatic breakpoint to be <N> by using the -bN option
1642 1642 (where N must be an integer). For example:
1643 1643
1644 1644 %run -d -b40 myscript
1645 1645
1646 1646 will set the first breakpoint at line 40 in myscript.py. Note that
1647 1647 the first breakpoint must be set on a line which actually does
1648 1648 something (not a comment or docstring) for it to stop execution.
1649 1649
1650 1650 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1651 1651 first enter 'c' (without qoutes) to start execution up to the first
1652 1652 breakpoint.
1653 1653
1654 1654 Entering 'help' gives information about the use of the debugger. You
1655 1655 can easily see pdb's full documentation with "import pdb;pdb.help()"
1656 1656 at a prompt.
1657 1657
1658 1658 -p: run program under the control of the Python profiler module (which
1659 1659 prints a detailed report of execution times, function calls, etc).
1660 1660
1661 1661 You can pass other options after -p which affect the behavior of the
1662 1662 profiler itself. See the docs for %prun for details.
1663 1663
1664 1664 In this mode, the program's variables do NOT propagate back to the
1665 1665 IPython interactive namespace (because they remain in the namespace
1666 1666 where the profiler executes them).
1667 1667
1668 1668 Internally this triggers a call to %prun, see its documentation for
1669 1669 details on the options available specifically for profiling.
1670 1670
1671 1671 There is one special usage for which the text above doesn't apply:
1672 1672 if the filename ends with .ipy, the file is run as ipython script,
1673 1673 just as if the commands were written on IPython prompt.
1674 1674
1675 1675 **%runlog**::
1676 1676
1677 1677 Run files as logs.
1678 1678
1679 1679 Usage:\
1680 1680 %runlog file1 file2 ...
1681 1681
1682 1682 Run the named files (treating them as log files) in sequence inside
1683 1683 the interpreter, and return to the prompt. This is much slower than
1684 1684 %run because each line is executed in a try/except block, but it
1685 1685 allows running files with syntax errors in them.
1686 1686
1687 1687 Normally IPython will guess when a file is one of its own logfiles, so
1688 1688 you can typically use %run even for logs. This shorthand allows you to
1689 1689 force any file to be treated as a log file.
1690 1690
1691 1691 **%save**::
1692 1692
1693 1693 Save a set of lines to a given filename.
1694 1694
1695 1695 Usage:\
1696 1696 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
1697 1697
1698 1698 Options:
1699 1699
1700 1700 -r: use 'raw' input. By default, the 'processed' history is used,
1701 1701 so that magics are loaded in their transformed version to valid
1702 1702 Python. If this option is given, the raw input as typed as the
1703 1703 command line is used instead.
1704 1704
1705 1705 This function uses the same syntax as %macro for line extraction, but
1706 1706 instead of creating a macro it saves the resulting string to the
1707 1707 filename you specify.
1708 1708
1709 1709 It adds a '.py' extension to the file if you don't do so yourself, and
1710 1710 it asks for confirmation before overwriting existing files.
1711 1711
1712 1712 **%sc**::
1713 1713
1714 1714 Shell capture - execute a shell command and capture its output.
1715 1715
1716 1716 DEPRECATED. Suboptimal, retained for backwards compatibility.
1717 1717
1718 1718 You should use the form 'var = !command' instead. Example:
1719 1719
1720 1720 "%sc -l myfiles = ls ~" should now be written as
1721 1721
1722 1722 "myfiles = !ls ~"
1723 1723
1724 1724 myfiles.s, myfiles.l and myfiles.n still apply as documented
1725 1725 below.
1726 1726
1727 1727 --
1728 1728 %sc [options] varname=command
1729 1729
1730 1730 IPython will run the given command using commands.getoutput(), and
1731 1731 will then update the user's interactive namespace with a variable
1732 1732 called varname, containing the value of the call. Your command can
1733 1733 contain shell wildcards, pipes, etc.
1734 1734
1735 1735 The '=' sign in the syntax is mandatory, and the variable name you
1736 1736 supply must follow Python's standard conventions for valid names.
1737 1737
1738 1738 (A special format without variable name exists for internal use)
1739 1739
1740 1740 Options:
1741 1741
1742 1742 -l: list output. Split the output on newlines into a list before
1743 1743 assigning it to the given variable. By default the output is stored
1744 1744 as a single string.
1745 1745
1746 1746 -v: verbose. Print the contents of the variable.
1747 1747
1748 1748 In most cases you should not need to split as a list, because the
1749 1749 returned value is a special type of string which can automatically
1750 1750 provide its contents either as a list (split on newlines) or as a
1751 1751 space-separated string. These are convenient, respectively, either
1752 1752 for sequential processing or to be passed to a shell command.
1753 1753
1754 1754 For example:
1755 1755
1756 1756 # Capture into variable a
1757 1757 In [9]: sc a=ls *py
1758 1758
1759 1759 # a is a string with embedded newlines
1760 1760 In [10]: a
1761 1761 Out[10]: 'setup.py win32_manual_post_install.py'
1762 1762
1763 1763 # which can be seen as a list:
1764 1764 In [11]: a.l
1765 1765 Out[11]: ['setup.py', 'win32_manual_post_install.py']
1766 1766
1767 1767 # or as a whitespace-separated string:
1768 1768 In [12]: a.s
1769 1769 Out[12]: 'setup.py win32_manual_post_install.py'
1770 1770
1771 1771 # a.s is useful to pass as a single command line:
1772 1772 In [13]: !wc -l $a.s
1773 1773 146 setup.py
1774 1774 130 win32_manual_post_install.py
1775 1775 276 total
1776 1776
1777 1777 # while the list form is useful to loop over:
1778 1778 In [14]: for f in a.l:
1779 1779 ....: !wc -l $f
1780 1780 ....:
1781 1781 146 setup.py
1782 1782 130 win32_manual_post_install.py
1783 1783
1784 1784 Similiarly, the lists returned by the -l option are also special, in
1785 1785 the sense that you can equally invoke the .s attribute on them to
1786 1786 automatically get a whitespace-separated string from their contents:
1787 1787
1788 1788 In [1]: sc -l b=ls *py
1789 1789
1790 1790 In [2]: b
1791 1791 Out[2]: ['setup.py', 'win32_manual_post_install.py']
1792 1792
1793 1793 In [3]: b.s
1794 1794 Out[3]: 'setup.py win32_manual_post_install.py'
1795 1795
1796 1796 In summary, both the lists and strings used for ouptut capture have
1797 1797 the following special attributes:
1798 1798
1799 1799 .l (or .list) : value as list.
1800 1800 .n (or .nlstr): value as newline-separated string.
1801 1801 .s (or .spstr): value as space-separated string.
1802 1802
1803 1803 **%store**::
1804 1804
1805 1805 Lightweight persistence for python variables.
1806 1806
1807 1807 Example:
1808 1808
1809 1809 ville@badger[~]|1> A = ['hello',10,'world']\
1810 1810 ville@badger[~]|2> %store A\
1811 1811 ville@badger[~]|3> Exit
1812 1812
1813 1813 (IPython session is closed and started again...)
1814 1814
1815 1815 ville@badger:~$ ipython -p pysh\
1816 1816 ville@badger[~]|1> print A
1817 1817
1818 1818 ['hello', 10, 'world']
1819 1819
1820 1820 Usage:
1821 1821
1822 1822 %store - Show list of all variables and their current values\
1823 1823 %store <var> - Store the *current* value of the variable to disk\
1824 1824 %store -d <var> - Remove the variable and its value from storage\
1825 1825 %store -z - Remove all variables from storage\
1826 1826 %store -r - Refresh all variables from store (delete current vals)\
1827 1827 %store foo >a.txt - Store value of foo to new file a.txt\
1828 1828 %store foo >>a.txt - Append value of foo to file a.txt\
1829 1829
1830 1830 It should be noted that if you change the value of a variable, you
1831 1831 need to %store it again if you want to persist the new value.
1832 1832
1833 1833 Note also that the variables will need to be pickleable; most basic
1834 1834 python types can be safely %stored.
1835 1835
1836 1836 Also aliases can be %store'd across sessions.
1837 1837
1838 1838 **%sx**::
1839 1839
1840 1840 Shell execute - run a shell command and capture its output.
1841 1841
1842 1842 %sx command
1843 1843
1844 1844 IPython will run the given command using commands.getoutput(), and
1845 1845 return the result formatted as a list (split on '\n'). Since the
1846 1846 output is _returned_, it will be stored in ipython's regular output
1847 1847 cache Out[N] and in the '_N' automatic variables.
1848 1848
1849 1849 Notes:
1850 1850
1851 1851 1) If an input line begins with '!!', then %sx is automatically
1852 1852 invoked. That is, while:
1853 1853 !ls
1854 1854 causes ipython to simply issue system('ls'), typing
1855 1855 !!ls
1856 1856 is a shorthand equivalent to:
1857 1857 %sx ls
1858 1858
1859 1859 2) %sx differs from %sc in that %sx automatically splits into a list,
1860 1860 like '%sc -l'. The reason for this is to make it as easy as possible
1861 1861 to process line-oriented shell output via further python commands.
1862 1862 %sc is meant to provide much finer control, but requires more
1863 1863 typing.
1864 1864
1865 1865 3) Just like %sc -l, this is a list with special attributes:
1866 1866
1867 1867 .l (or .list) : value as list.
1868 1868 .n (or .nlstr): value as newline-separated string.
1869 1869 .s (or .spstr): value as whitespace-separated string.
1870 1870
1871 1871 This is very useful when trying to use such lists as arguments to
1872 1872 system commands.
1873 1873
1874 1874 **%system_verbose**::
1875 1875
1876 1876 Set verbose printing of system calls.
1877 1877
1878 1878 If called without an argument, act as a toggle
1879 1879
1880 1880 **%time**::
1881 1881
1882 1882 Time execution of a Python statement or expression.
1883 1883
1884 1884 The CPU and wall clock times are printed, and the value of the
1885 1885 expression (if any) is returned. Note that under Win32, system time
1886 1886 is always reported as 0, since it can not be measured.
1887 1887
1888 1888 This function provides very basic timing functionality. In Python
1889 1889 2.3, the timeit module offers more control and sophistication, so this
1890 1890 could be rewritten to use it (patches welcome).
1891 1891
1892 1892 Some examples:
1893 1893
1894 1894 In [1]: time 2**128
1895 1895 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1896 1896 Wall time: 0.00
1897 1897 Out[1]: 340282366920938463463374607431768211456L
1898 1898
1899 1899 In [2]: n = 1000000
1900 1900
1901 1901 In [3]: time sum(range(n))
1902 1902 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1903 1903 Wall time: 1.37
1904 1904 Out[3]: 499999500000L
1905 1905
1906 1906 In [4]: time print 'hello world'
1907 1907 hello world
1908 1908 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1909 1909 Wall time: 0.00
1910 1910
1911 1911 Note that the time needed by Python to compile the given expression
1912 1912 will be reported if it is more than 0.1s. In this example, the
1913 1913 actual exponentiation is done by Python at compilation time, so while
1914 1914 the expression can take a noticeable amount of time to compute, that
1915 1915 time is purely due to the compilation:
1916 1916
1917 1917 In [5]: time 3**9999;
1918 1918 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1919 1919 Wall time: 0.00 s
1920 1920
1921 1921 In [6]: time 3**999999;
1922 1922 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1923 1923 Wall time: 0.00 s
1924 1924 Compiler : 0.78 s
1925 1925
1926 1926 **%timeit**::
1927 1927
1928 1928 Time execution of a Python statement or expression
1929 1929
1930 1930 Usage:\
1931 1931 %timeit [-n<N> -r<R> [-t|-c]] statement
1932 1932
1933 1933 Time execution of a Python statement or expression using the timeit
1934 1934 module.
1935 1935
1936 1936 Options:
1937 1937 -n<N>: execute the given statement <N> times in a loop. If this value
1938 1938 is not given, a fitting value is chosen.
1939 1939
1940 1940 -r<R>: repeat the loop iteration <R> times and take the best result.
1941 1941 Default: 3
1942 1942
1943 1943 -t: use time.time to measure the time, which is the default on Unix.
1944 1944 This function measures wall time.
1945 1945
1946 1946 -c: use time.clock to measure the time, which is the default on
1947 1947 Windows and measures wall time. On Unix, resource.getrusage is used
1948 1948 instead and returns the CPU user time.
1949 1949
1950 1950 -p<P>: use a precision of <P> digits to display the timing result.
1951 1951 Default: 3
1952 1952
1953 1953
1954 1954 Examples:\
1955 1955 In [1]: %timeit pass
1956 1956 10000000 loops, best of 3: 53.3 ns per loop
1957 1957
1958 1958 In [2]: u = None
1959 1959
1960 1960 In [3]: %timeit u is None
1961 1961 10000000 loops, best of 3: 184 ns per loop
1962 1962
1963 1963 In [4]: %timeit -r 4 u == None
1964 1964 1000000 loops, best of 4: 242 ns per loop
1965 1965
1966 1966 In [5]: import time
1967 1967
1968 1968 In [6]: %timeit -n1 time.sleep(2)
1969 1969 1 loops, best of 3: 2 s per loop
1970 1970
1971 1971
1972 1972 The times reported by %timeit will be slightly higher than those
1973 1973 reported by the timeit.py script when variables are accessed. This is
1974 1974 due to the fact that %timeit executes the statement in the namespace
1975 1975 of the shell, compared with timeit.py, which uses a single setup
1976 1976 statement to import function or create variables. Generally, the bias
1977 1977 does not matter as long as results from timeit.py are not mixed with
1978 1978 those from %timeit.
1979 1979
1980 1980 **%unalias**::
1981 1981
1982 1982 Remove an alias
1983 1983
1984 1984 **%upgrade**::
1985 1985
1986 1986 Upgrade your IPython installation
1987 1987
1988 1988 This will copy the config files that don't yet exist in your
1989 1989 ipython dir from the system config dir. Use this after upgrading
1990 1990 IPython if you don't wish to delete your .ipython dir.
1991 1991
1992 1992 Call with -nolegacy to get rid of ipythonrc* files (recommended for
1993 1993 new users)
1994 1994
1995 1995 **%which**::
1996 1996
1997 1997 %which <cmd> => search PATH for files matching cmd. Also scans aliases.
1998 1998
1999 1999 Traverses PATH and prints all files (not just executables!) that match the
2000 2000 pattern on command line. Probably more useful in finding stuff
2001 2001 interactively than 'which', which only prints the first matching item.
2002 2002
2003 2003 Also discovers and expands aliases, so you'll see what will be executed
2004 2004 when you call an alias.
2005 2005
2006 2006 Example:
2007 2007
2008 2008 [~]|62> %which d
2009 2009 d -> ls -F --color=auto
2010 2010 == c:\cygwin\bin\ls.exe
2011 2011 c:\cygwin\bin\d.exe
2012 2012
2013 2013 [~]|64> %which diff*
2014 2014 diff3 -> diff3
2015 2015 == c:\cygwin\bin\diff3.exe
2016 2016 diff -> diff
2017 2017 == c:\cygwin\bin\diff.exe
2018 2018 c:\cygwin\bin\diff.exe
2019 2019 c:\cygwin\bin\diff3.exe
2020 2020
2021 2021 **%who**::
2022 2022
2023 2023 Print all interactive variables, with some minimal formatting.
2024 2024
2025 2025 If any arguments are given, only variables whose type matches one of
2026 2026 these are printed. For example:
2027 2027
2028 2028 %who function str
2029 2029
2030 2030 will only list functions and strings, excluding all other types of
2031 2031 variables. To find the proper type names, simply use type(var) at a
2032 2032 command line to see how python prints type names. For example:
2033 2033
2034 2034 In [1]: type('hello')\
2035 2035 Out[1]: <type 'str'>
2036 2036
2037 2037 indicates that the type name for strings is 'str'.
2038 2038
2039 2039 %who always excludes executed names loaded through your configuration
2040 2040 file and things which are internal to IPython.
2041 2041
2042 2042 This is deliberate, as typically you may load many modules and the
2043 2043 purpose of %who is to show you only what you've manually defined.
2044 2044
2045 2045 **%who_ls**::
2046 2046
2047 2047 Return a sorted list of all interactive variables.
2048 2048
2049 2049 If arguments are given, only variables of types matching these
2050 2050 arguments are returned.
2051 2051
2052 2052 **%whos**::
2053 2053
2054 2054 Like %who, but gives some extra information about each variable.
2055 2055
2056 2056 The same type filtering of %who can be applied here.
2057 2057
2058 2058 For all variables, the type is printed. Additionally it prints:
2059 2059
2060 2060 - For {},[],(): their length.
2061 2061
2062 2062 - For numpy and Numeric arrays, a summary with shape, number of
2063 2063 elements, typecode and size in memory.
2064 2064
2065 2065 - Everything else: a string representation, snipping their middle if
2066 2066 too long.
2067 2067
2068 2068 **%xmode**::
2069 2069
2070 2070 Switch modes for the exception handlers.
2071 2071
2072 2072 Valid modes: Plain, Context and Verbose.
2073 2073
2074 2074 If called without arguments, acts as a toggle.
2075 2075
2076 2076 .. magic_end
2077 2077
2078 2078 Access to the standard Python help
2079 2079 ----------------------------------
2080 2080
2081 2081 As of Python 2.1, a help system is available with access to object docstrings
2082 2082 and the Python manuals. Simply type 'help' (no quotes) to access it. You can
2083 2083 also type help(object) to obtain information about a given object, and
2084 2084 help('keyword') for information on a keyword. As noted :ref:`here
2085 2085 <accessing_help>`, you need to properly configure your environment variable
2086 2086 PYTHONDOCS for this feature to work correctly.
2087 2087
2088 2088 .. _dynamic_object_info:
2089 2089
2090 2090 Dynamic object information
2091 2091 --------------------------
2092 2092
2093 2093 Typing ?word or word? prints detailed information about an object. If
2094 2094 certain strings in the object are too long (docstrings, code, etc.) they
2095 2095 get snipped in the center for brevity. This system gives access variable
2096 2096 types and values, full source code for any object (if available),
2097 2097 function prototypes and other useful information.
2098 2098
2099 2099 Typing ??word or word?? gives access to the full information without
2100 2100 snipping long strings. Long strings are sent to the screen through the
2101 2101 less pager if longer than the screen and printed otherwise. On systems
2102 2102 lacking the less command, IPython uses a very basic internal pager.
2103 2103
2104 2104 The following magic functions are particularly useful for gathering
2105 2105 information about your working environment. You can get more details by
2106 2106 typing %magic or querying them individually (use %function_name? with or
2107 2107 without the %), this is just a summary:
2108 2108
2109 2109 * **%pdoc <object>**: Print (or run through a pager if too long) the
2110 2110 docstring for an object. If the given object is a class, it will
2111 2111 print both the class and the constructor docstrings.
2112 2112 * **%pdef <object>**: Print the definition header for any callable
2113 2113 object. If the object is a class, print the constructor information.
2114 2114 * **%psource <object>**: Print (or run through a pager if too long)
2115 2115 the source code for an object.
2116 2116 * **%pfile <object>**: Show the entire source file where an object was
2117 2117 defined via a pager, opening it at the line where the object
2118 2118 definition begins.
2119 2119 * **%who/%whos**: These functions give information about identifiers
2120 2120 you have defined interactively (not things you loaded or defined
2121 2121 in your configuration files). %who just prints a list of
2122 2122 identifiers and %whos prints a table with some basic details about
2123 2123 each identifier.
2124 2124
2125 2125 Note that the dynamic object information functions (?/??, %pdoc, %pfile,
2126 2126 %pdef, %psource) give you access to documentation even on things which
2127 2127 are not really defined as separate identifiers. Try for example typing
2128 2128 {}.get? or after doing import os, type os.path.abspath??.
2129 2129
2130 2130
2131 2131 .. _readline:
2132 2132
2133 2133 Readline-based features
2134 2134 -----------------------
2135 2135
2136 2136 These features require the GNU readline library, so they won't work if
2137 2137 your Python installation lacks readline support. We will first describe
2138 2138 the default behavior IPython uses, and then how to change it to suit
2139 2139 your preferences.
2140 2140
2141 2141
2142 2142 Command line completion
2143 2143 +++++++++++++++++++++++
2144 2144
2145 2145 At any time, hitting TAB will complete any available python commands or
2146 2146 variable names, and show you a list of the possible completions if
2147 2147 there's no unambiguous one. It will also complete filenames in the
2148 2148 current directory if no python names match what you've typed so far.
2149 2149
2150 2150
2151 2151 Search command history
2152 2152 ++++++++++++++++++++++
2153 2153
2154 2154 IPython provides two ways for searching through previous input and thus
2155 2155 reduce the need for repetitive typing:
2156 2156
2157 2157 1. Start typing, and then use Ctrl-p (previous,up) and Ctrl-n
2158 2158 (next,down) to search through only the history items that match
2159 2159 what you've typed so far. If you use Ctrl-p/Ctrl-n at a blank
2160 2160 prompt, they just behave like normal arrow keys.
2161 2161 2. Hit Ctrl-r: opens a search prompt. Begin typing and the system
2162 2162 searches your history for lines that contain what you've typed so
2163 2163 far, completing as much as it can.
2164 2164
2165 2165
2166 2166 Persistent command history across sessions
2167 2167 ++++++++++++++++++++++++++++++++++++++++++
2168 2168
2169 2169 IPython will save your input history when it leaves and reload it next
2170 2170 time you restart it. By default, the history file is named
2171 2171 $IPYTHONDIR/history, but if you've loaded a named profile,
2172 2172 '-PROFILE_NAME' is appended to the name. This allows you to keep
2173 2173 separate histories related to various tasks: commands related to
2174 2174 numerical work will not be clobbered by a system shell history, for
2175 2175 example.
2176 2176
2177 2177
2178 2178 Autoindent
2179 2179 ++++++++++
2180 2180
2181 2181 IPython can recognize lines ending in ':' and indent the next line,
2182 2182 while also un-indenting automatically after 'raise' or 'return'.
2183 2183
2184 2184 This feature uses the readline library, so it will honor your ~/.inputrc
2185 2185 configuration (or whatever file your INPUTRC variable points to). Adding
2186 2186 the following lines to your .inputrc file can make indenting/unindenting
2187 2187 more convenient (M-i indents, M-u unindents)::
2188 2188
2189 2189 $if Python
2190 2190 "\M-i": " "
2191 2191 "\M-u": "\d\d\d\d"
2192 2192 $endif
2193 2193
2194 2194 Note that there are 4 spaces between the quote marks after "M-i" above.
2195 2195
2196 2196 Warning: this feature is ON by default, but it can cause problems with
2197 2197 the pasting of multi-line indented code (the pasted code gets
2198 2198 re-indented on each line). A magic function %autoindent allows you to
2199 2199 toggle it on/off at runtime. You can also disable it permanently on in
2200 2200 your ipythonrc file (set autoindent 0).
2201 2201
2202 2202
2203 2203 Customizing readline behavior
2204 2204 +++++++++++++++++++++++++++++
2205 2205
2206 2206 All these features are based on the GNU readline library, which has an
2207 2207 extremely customizable interface. Normally, readline is configured via a
2208 2208 file which defines the behavior of the library; the details of the
2209 2209 syntax for this can be found in the readline documentation available
2210 2210 with your system or on the Internet. IPython doesn't read this file (if
2211 2211 it exists) directly, but it does support passing to readline valid
2212 2212 options via a simple interface. In brief, you can customize readline by
2213 2213 setting the following options in your ipythonrc configuration file (note
2214 2214 that these options can not be specified at the command line):
2215 2215
2216 2216 * **readline_parse_and_bind**: this option can appear as many times as
2217 2217 you want, each time defining a string to be executed via a
2218 2218 readline.parse_and_bind() command. The syntax for valid commands
2219 2219 of this kind can be found by reading the documentation for the GNU
2220 2220 readline library, as these commands are of the kind which readline
2221 2221 accepts in its configuration file.
2222 2222 * **readline_remove_delims**: a string of characters to be removed
2223 2223 from the default word-delimiters list used by readline, so that
2224 2224 completions may be performed on strings which contain them. Do not
2225 2225 change the default value unless you know what you're doing.
2226 2226 * **readline_omit__names**: when tab-completion is enabled, hitting
2227 2227 <tab> after a '.' in a name will complete all attributes of an
2228 2228 object, including all the special methods whose names include
2229 2229 double underscores (like __getitem__ or __class__). If you'd
2230 2230 rather not see these names by default, you can set this option to
2231 2231 1. Note that even when this option is set, you can still see those
2232 2232 names by explicitly typing a _ after the period and hitting <tab>:
2233 2233 'name._<tab>' will always complete attribute names starting with '_'.
2234 2234
2235 2235 This option is off by default so that new users see all
2236 2236 attributes of any objects they are dealing with.
2237 2237
2238 2238 You will find the default values along with a corresponding detailed
2239 2239 explanation in your ipythonrc file.
2240 2240
2241 2241
2242 2242 Session logging and restoring
2243 2243 -----------------------------
2244 2244
2245 2245 You can log all input from a session either by starting IPython with the
2246 2246 command line switches -log or -logfile (see :ref:`here <command_line_options>`)
2247 2247 or by activating the logging at any moment with the magic function %logstart.
2248 2248
2249 2249 Log files can later be reloaded with the -logplay option and IPython
2250 2250 will attempt to 'replay' the log by executing all the lines in it, thus
2251 2251 restoring the state of a previous session. This feature is not quite
2252 2252 perfect, but can still be useful in many cases.
2253 2253
2254 2254 The log files can also be used as a way to have a permanent record of
2255 2255 any code you wrote while experimenting. Log files are regular text files
2256 2256 which you can later open in your favorite text editor to extract code or
2257 2257 to 'clean them up' before using them to replay a session.
2258 2258
2259 2259 The %logstart function for activating logging in mid-session is used as
2260 2260 follows:
2261 2261
2262 2262 %logstart [log_name [log_mode]]
2263 2263
2264 2264 If no name is given, it defaults to a file named 'log' in your
2265 2265 IPYTHONDIR directory, in 'rotate' mode (see below).
2266 2266
2267 2267 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
2268 2268 history up to that point and then continues logging.
2269 2269
2270 2270 %logstart takes a second optional parameter: logging mode. This can be
2271 2271 one of (note that the modes are given unquoted):
2272 2272
2273 2273 * [over:] overwrite existing log_name.
2274 2274 * [backup:] rename (if exists) to log_name~ and start log_name.
2275 2275 * [append:] well, that says it.
2276 2276 * [rotate:] create rotating logs log_name.1~, log_name.2~, etc.
2277 2277
2278 2278 The %logoff and %logon functions allow you to temporarily stop and
2279 2279 resume logging to a file which had previously been started with
2280 2280 %logstart. They will fail (with an explanation) if you try to use them
2281 2281 before logging has been started.
2282 2282
2283 2283 .. _system_shell_access:
2284 2284
2285 2285 System shell access
2286 2286 -------------------
2287 2287
2288 2288 Any input line beginning with a ! character is passed verbatim (minus
2289 2289 the !, of course) to the underlying operating system. For example,
2290 2290 typing !ls will run 'ls' in the current directory.
2291 2291
2292 2292 Manual capture of command output
2293 2293 --------------------------------
2294 2294
2295 2295 If the input line begins with two exclamation marks, !!, the command is
2296 2296 executed but its output is captured and returned as a python list, split
2297 2297 on newlines. Any output sent by the subprocess to standard error is
2298 2298 printed separately, so that the resulting list only captures standard
2299 2299 output. The !! syntax is a shorthand for the %sx magic command.
2300 2300
2301 2301 Finally, the %sc magic (short for 'shell capture') is similar to %sx,
2302 2302 but allowing more fine-grained control of the capture details, and
2303 2303 storing the result directly into a named variable. The direct use of
2304 2304 %sc is now deprecated, and you should ise the ``var = !cmd`` syntax
2305 2305 instead.
2306 2306
2307 2307 IPython also allows you to expand the value of python variables when
2308 2308 making system calls. Any python variable or expression which you prepend
2309 2309 with $ will get expanded before the system call is made::
2310 2310
2311 2311 In [1]: pyvar='Hello world'
2312 2312 In [2]: !echo "A python variable: $pyvar"
2313 2313 A python variable: Hello world
2314 2314
2315 2315 If you want the shell to actually see a literal $, you need to type it
2316 2316 twice::
2317 2317
2318 2318 In [3]: !echo "A system variable: $$HOME"
2319 2319 A system variable: /home/fperez
2320 2320
2321 2321 You can pass arbitrary expressions, though you'll need to delimit them
2322 2322 with {} if there is ambiguity as to the extent of the expression::
2323 2323
2324 2324 In [5]: x=10
2325 2325 In [6]: y=20
2326 2326 In [13]: !echo $x+y
2327 2327 10+y
2328 2328 In [7]: !echo ${x+y}
2329 2329 30
2330 2330
2331 2331 Even object attributes can be expanded::
2332 2332
2333 2333 In [12]: !echo $sys.argv
2334 2334 [/home/fperez/usr/bin/ipython]
2335 2335
2336 2336
2337 2337 System command aliases
2338 2338 ----------------------
2339 2339
2340 2340 The %alias magic function and the alias option in the ipythonrc
2341 2341 configuration file allow you to define magic functions which are in fact
2342 2342 system shell commands. These aliases can have parameters.
2343 2343
2344 2344 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2345 2345
2346 2346 Then, typing '%alias_name params' will execute the system command 'cmd
2347 2347 params' (from your underlying operating system).
2348 2348
2349 2349 You can also define aliases with parameters using %s specifiers (one per
2350 2350 parameter). The following example defines the %parts function as an
2351 2351 alias to the command 'echo first %s second %s' where each %s will be
2352 2352 replaced by a positional parameter to the call to %parts::
2353 2353
2354 2354 In [1]: alias parts echo first %s second %s
2355 2355 In [2]: %parts A B
2356 2356 first A second B
2357 2357 In [3]: %parts A
2358 2358 Incorrect number of arguments: 2 expected.
2359 2359 parts is an alias to: 'echo first %s second %s'
2360 2360
2361 2361 If called with no parameters, %alias prints the table of currently
2362 2362 defined aliases.
2363 2363
2364 2364 The %rehash/rehashx magics allow you to load your entire $PATH as
2365 2365 ipython aliases. See their respective docstrings (or sec. 6.2
2366 2366 <#sec:magic> for further details).
2367 2367
2368 2368
2369 2369 .. _dreload:
2370 2370
2371 2371 Recursive reload
2372 2372 ----------------
2373 2373
2374 2374 The dreload function does a recursive reload of a module: changes made
2375 2375 to the module since you imported will actually be available without
2376 2376 having to exit.
2377 2377
2378 2378
2379 2379 Verbose and colored exception traceback printouts
2380 2380 -------------------------------------------------
2381 2381
2382 2382 IPython provides the option to see very detailed exception tracebacks,
2383 2383 which can be especially useful when debugging large programs. You can
2384 2384 run any Python file with the %run function to benefit from these
2385 2385 detailed tracebacks. Furthermore, both normal and verbose tracebacks can
2386 2386 be colored (if your terminal supports it) which makes them much easier
2387 2387 to parse visually.
2388 2388
2389 2389 See the magic xmode and colors functions for details (just type %magic).
2390 2390
2391 2391 These features are basically a terminal version of Ka-Ping Yee's cgitb
2392 2392 module, now part of the standard Python library.
2393 2393
2394 2394
2395 2395 .. _input_caching:
2396 2396
2397 2397 Input caching system
2398 2398 --------------------
2399 2399
2400 IPython offers numbered prompts (In/Out) with input and output caching.
2401 All input is saved and can be retrieved as variables (besides the usual
2402 arrow key recall).
2400 IPython offers numbered prompts (In/Out) with input and output caching
2401 (also referred to as 'input history'). All input is saved and can be
2402 retrieved as variables (besides the usual arrow key recall), in
2403 addition to the %rep magic command that brings a history entry
2404 up for editing on the next command line.
2403 2405
2404 2406 The following GLOBAL variables always exist (so don't overwrite them!):
2405 2407 _i: stores previous input. _ii: next previous. _iii: next-next previous.
2406 2408 _ih : a list of all input _ih[n] is the input from line n and this list
2407 2409 is aliased to the global variable In. If you overwrite In with a
2408 2410 variable of your own, you can remake the assignment to the internal list
2409 2411 with a simple 'In=_ih'.
2410 2412
2411 2413 Additionally, global variables named _i<n> are dynamically created (<n>
2412 2414 being the prompt counter), such that
2413 2415 _i<n> == _ih[<n>] == In[<n>].
2414 2416
2415 2417 For example, what you typed at prompt 14 is available as _i14, _ih[14]
2416 2418 and In[14].
2417 2419
2418 2420 This allows you to easily cut and paste multi line interactive prompts
2419 2421 by printing them out: they print like a clean string, without prompt
2420 2422 characters. You can also manipulate them like regular variables (they
2421 2423 are strings), modify or exec them (typing 'exec _i9' will re-execute the
2422 2424 contents of input prompt 9, 'exec In[9:14]+In[18]' will re-execute lines
2423 2425 9 through 13 and line 18).
2424 2426
2425 2427 You can also re-execute multiple lines of input easily by using the
2426 2428 magic %macro function (which automates the process and allows
2427 2429 re-execution without having to type 'exec' every time). The macro system
2428 2430 also allows you to re-execute previous lines which include magic
2429 2431 function calls (which require special processing). Type %macro? or see
2430 2432 sec. 6.2 <#sec:magic> for more details on the macro system.
2431 2433
2432 2434 A history function %hist allows you to see any part of your input
2433 2435 history by printing a range of the _i variables.
2434 2436
2437 You can also search ('grep') through your history by typing
2438 '%hist -g somestring'. This also searches through the so called *shadow history*,
2439 which remembers all the commands (apart from multiline code blocks)
2440 you have ever entered. Handy for searching for svn/bzr URL's, IP adrresses
2441 etc. You can bring shadow history entries listed by '%hist -g' up for editing
2442 (or re-execution by just pressing ENTER) with %rep command. Shadow history
2443 entries are not available as _iNUMBER variables, and they are identified by
2444 the '0' prefix in %hist -g output. That is, history entry 12 is a normal
2445 history entry, but 0231 is a shadow history entry.
2446
2447 Shadow history was added because the readline history is inherently very
2448 unsafe - if you have multiple IPython sessions open, the last session
2449 to close will overwrite the history of previountly closed session. Likewise,
2450 if a crash occurs, history is never saved, whereas shadow history entries
2451 are added after entering every command (so a command executed
2452 in another IPython session is immediately available in other IPython
2453 sessions that are open).
2454
2455 To conserve space, a command can exist in shadow history only once - it doesn't
2456 make sense to store a common line like "cd .." a thousand times. The idea is
2457 mainly to provide a reliable place where valuable, hard-to-remember commands can
2458 always be retrieved, as opposed to providing an exact sequence of commands
2459 you have entered in actual order.
2460
2461 Because shadow history has all the commands you have ever executed,
2462 time taken by %hist -g will increase oven time. If it ever starts to take
2463 too long (or it ends up containing sensitive information like passwords),
2464 clear the shadow history by `%clear shadow_nuke`.
2465
2466 Time taken to add entries to shadow history should be negligible, but
2467 in any case, if you start noticing performance degradation after using
2468 IPython for a long time (or running a script that floods the shadow history!),
2469 you can 'compress' the shadow history by executing
2470 `%clear shadow_compress`. In practice, this should never be necessary
2471 in normal use.
2472
2435 2473 .. _output_caching:
2436 2474
2437 2475 Output caching system
2438 2476 ---------------------
2439 2477
2440 2478 For output that is returned from actions, a system similar to the input
2441 2479 cache exists but using _ instead of _i. Only actions that produce a
2442 2480 result (NOT assignments, for example) are cached. If you are familiar
2443 2481 with Mathematica, IPython's _ variables behave exactly like
2444 2482 Mathematica's % variables.
2445 2483
2446 2484 The following GLOBAL variables always exist (so don't overwrite them!):
2447 2485
2448 2486 * [_] (a single underscore) : stores previous output, like Python's
2449 2487 default interpreter.
2450 2488 * [__] (two underscores): next previous.
2451 2489 * [___] (three underscores): next-next previous.
2452 2490
2453 2491 Additionally, global variables named _<n> are dynamically created (<n>
2454 2492 being the prompt counter), such that the result of output <n> is always
2455 2493 available as _<n> (don't use the angle brackets, just the number, e.g.
2456 2494 _21).
2457 2495
2458 2496 These global variables are all stored in a global dictionary (not a
2459 2497 list, since it only has entries for lines which returned a result)
2460 2498 available under the names _oh and Out (similar to _ih and In). So the
2461 2499 output from line 12 can be obtained as _12, Out[12] or _oh[12]. If you
2462 2500 accidentally overwrite the Out variable you can recover it by typing
2463 2501 'Out=_oh' at the prompt.
2464 2502
2465 2503 This system obviously can potentially put heavy memory demands on your
2466 2504 system, since it prevents Python's garbage collector from removing any
2467 2505 previously computed results. You can control how many results are kept
2468 2506 in memory with the option (at the command line or in your ipythonrc
2469 2507 file) cache_size. If you set it to 0, the whole system is completely
2470 2508 disabled and the prompts revert to the classic '>>>' of normal Python.
2471 2509
2472 2510
2473 2511 Directory history
2474 2512 -----------------
2475 2513
2476 2514 Your history of visited directories is kept in the global list _dh, and
2477 2515 the magic %cd command can be used to go to any entry in that list. The
2478 %dhist command allows you to view this history. do ``cd -<TAB`` to
2516 %dhist command allows you to view this history. Do ``cd -<TAB`` to
2479 2517 conventiently view the directory history.
2480 2518
2481 2519
2482 2520 Automatic parentheses and quotes
2483 2521 --------------------------------
2484 2522
2485 2523 These features were adapted from Nathan Gray's LazyPython. They are
2486 2524 meant to allow less typing for common situations.
2487 2525
2488 2526
2489 2527 Automatic parentheses
2490 2528 ---------------------
2491 2529
2492 2530 Callable objects (i.e. functions, methods, etc) can be invoked like this
2493 2531 (notice the commas between the arguments)::
2494 2532
2495 2533 >>> callable_ob arg1, arg2, arg3
2496 2534
2497 2535 and the input will be translated to this::
2498 2536
2499 2537 -> callable_ob(arg1, arg2, arg3)
2500 2538
2501 2539 You can force automatic parentheses by using '/' as the first character
2502 2540 of a line. For example::
2503 2541
2504 2542 >>> /globals # becomes 'globals()'
2505 2543
2506 2544 Note that the '/' MUST be the first character on the line! This won't work::
2507 2545
2508 2546 >>> print /globals # syntax error
2509 2547
2510 2548 In most cases the automatic algorithm should work, so you should rarely
2511 2549 need to explicitly invoke /. One notable exception is if you are trying
2512 2550 to call a function with a list of tuples as arguments (the parenthesis
2513 2551 will confuse IPython)::
2514 2552
2515 2553 In [1]: zip (1,2,3),(4,5,6) # won't work
2516 2554
2517 2555 but this will work::
2518 2556
2519 2557 In [2]: /zip (1,2,3),(4,5,6)
2520 2558 ---> zip ((1,2,3),(4,5,6))
2521 2559 Out[2]= [(1, 4), (2, 5), (3, 6)]
2522 2560
2523 2561 IPython tells you that it has altered your command line by displaying
2524 2562 the new command line preceded by ->. e.g.::
2525 2563
2526 2564 In [18]: callable list
2527 2565 ----> callable (list)
2528 2566
2529 2567
2530 2568 Automatic quoting
2531 2569 -----------------
2532 2570
2533 2571 You can force automatic quoting of a function's arguments by using ','
2534 2572 or ';' as the first character of a line. For example::
2535 2573
2536 2574 >>> ,my_function /home/me # becomes my_function("/home/me")
2537 2575
2538 2576 If you use ';' instead, the whole argument is quoted as a single string
2539 2577 (while ',' splits on whitespace)::
2540 2578
2541 2579 >>> ,my_function a b c # becomes my_function("a","b","c")
2542 2580
2543 2581 >>> ;my_function a b c # becomes my_function("a b c")
2544 2582
2545 2583 Note that the ',' or ';' MUST be the first character on the line! This
2546 2584 won't work::
2547 2585
2548 2586 >>> x = ,my_function /home/me # syntax error
2549 2587
2550 2588 IPython as your default Python environment
2551 2589 ==========================================
2552 2590
2553 2591 Python honors the environment variable PYTHONSTARTUP and will execute at
2554 2592 startup the file referenced by this variable. If you put at the end of
2555 2593 this file the following two lines of code::
2556 2594
2557 2595 import IPython
2558 2596 IPython.Shell.IPShell().mainloop(sys_exit=1)
2559 2597
2560 2598 then IPython will be your working environment anytime you start Python.
2561 2599 The sys_exit=1 is needed to have IPython issue a call to sys.exit() when
2562 2600 it finishes, otherwise you'll be back at the normal Python '>>>'
2563 2601 prompt.
2564 2602
2565 2603 This is probably useful to developers who manage multiple Python
2566 2604 versions and don't want to have correspondingly multiple IPython
2567 2605 versions. Note that in this mode, there is no way to pass IPython any
2568 2606 command-line options, as those are trapped first by Python itself.
2569 2607
2570 2608 .. _Embedding:
2571 2609
2572 2610 Embedding IPython
2573 2611 =================
2574 2612
2575 2613 It is possible to start an IPython instance inside your own Python
2576 2614 programs. This allows you to evaluate dynamically the state of your
2577 2615 code, operate with your variables, analyze them, etc. Note however that
2578 2616 any changes you make to values while in the shell do not propagate back
2579 2617 to the running code, so it is safe to modify your values because you
2580 2618 won't break your code in bizarre ways by doing so.
2581 2619
2582 2620 This feature allows you to easily have a fully functional python
2583 2621 environment for doing object introspection anywhere in your code with a
2584 2622 simple function call. In some cases a simple print statement is enough,
2585 2623 but if you need to do more detailed analysis of a code fragment this
2586 2624 feature can be very valuable.
2587 2625
2588 2626 It can also be useful in scientific computing situations where it is
2589 2627 common to need to do some automatic, computationally intensive part and
2590 2628 then stop to look at data, plots, etc.
2591 2629 Opening an IPython instance will give you full access to your data and
2592 2630 functions, and you can resume program execution once you are done with
2593 2631 the interactive part (perhaps to stop again later, as many times as
2594 2632 needed).
2595 2633
2596 2634 The following code snippet is the bare minimum you need to include in
2597 2635 your Python programs for this to work (detailed examples follow later)::
2598 2636
2599 2637 from IPython.Shell import IPShellEmbed
2600 2638
2601 2639 ipshell = IPShellEmbed()
2602 2640
2603 2641 ipshell() # this call anywhere in your program will start IPython
2604 2642
2605 2643 You can run embedded instances even in code which is itself being run at
2606 2644 the IPython interactive prompt with '%run <filename>'. Since it's easy
2607 2645 to get lost as to where you are (in your top-level IPython or in your
2608 2646 embedded one), it's a good idea in such cases to set the in/out prompts
2609 2647 to something different for the embedded instances. The code examples
2610 2648 below illustrate this.
2611 2649
2612 2650 You can also have multiple IPython instances in your program and open
2613 2651 them separately, for example with different options for data
2614 2652 presentation. If you close and open the same instance multiple times,
2615 2653 its prompt counters simply continue from each execution to the next.
2616 2654
2617 2655 Please look at the docstrings in the Shell.py module for more details on
2618 2656 the use of this system.
2619 2657
2620 2658 The following sample file illustrating how to use the embedding
2621 2659 functionality is provided in the examples directory as example-embed.py.
2622 2660 It should be fairly self-explanatory::
2623 2661
2624 2662
2625 2663 #!/usr/bin/env python
2626 2664
2627 2665 """An example of how to embed an IPython shell into a running program.
2628 2666
2629 2667 Please see the documentation in the IPython.Shell module for more details.
2630 2668
2631 2669 The accompanying file example-embed-short.py has quick code fragments for
2632 2670 embedding which you can cut and paste in your code once you understand how
2633 2671 things work.
2634 2672
2635 2673 The code in this file is deliberately extra-verbose, meant for learning."""
2636 2674
2637 2675 # The basics to get you going:
2638 2676
2639 2677 # IPython sets the __IPYTHON__ variable so you can know if you have nested
2640 2678 # copies running.
2641 2679
2642 2680 # Try running this code both at the command line and from inside IPython (with
2643 2681 # %run example-embed.py)
2644 2682 try:
2645 2683 __IPYTHON__
2646 2684 except NameError:
2647 2685 nested = 0
2648 2686 args = ['']
2649 2687 else:
2650 2688 print "Running nested copies of IPython."
2651 2689 print "The prompts for the nested copy have been modified"
2652 2690 nested = 1
2653 2691 # what the embedded instance will see as sys.argv:
2654 2692 args = ['-pi1','In <\\#>: ','-pi2',' .\\D.: ',
2655 2693 '-po','Out<\\#>: ','-nosep']
2656 2694
2657 2695 # First import the embeddable shell class
2658 2696 from IPython.Shell import IPShellEmbed
2659 2697
2660 2698 # Now create an instance of the embeddable shell. The first argument is a
2661 2699 # string with options exactly as you would type them if you were starting
2662 2700 # IPython at the system command line. Any parameters you want to define for
2663 2701 # configuration can thus be specified here.
2664 2702 ipshell = IPShellEmbed(args,
2665 2703 banner = 'Dropping into IPython',
2666 2704 exit_msg = 'Leaving Interpreter, back to program.')
2667 2705
2668 2706 # Make a second instance, you can have as many as you want.
2669 2707 if nested:
2670 2708 args[1] = 'In2<\\#>'
2671 2709 else:
2672 2710 args = ['-pi1','In2<\\#>: ','-pi2',' .\\D.: ',
2673 2711 '-po','Out<\\#>: ','-nosep']
2674 2712 ipshell2 = IPShellEmbed(args,banner = 'Second IPython instance.')
2675 2713
2676 2714 print '\nHello. This is printed from the main controller program.\n'
2677 2715
2678 2716 # You can then call ipshell() anywhere you need it (with an optional
2679 2717 # message):
2680 2718 ipshell('***Called from top level. '
2681 2719 'Hit Ctrl-D to exit interpreter and continue program.\n'
2682 2720 'Note that if you use %kill_embedded, you can fully deactivate\n'
2683 2721 'This embedded instance so it will never turn on again')
2684 2722
2685 2723 print '\nBack in caller program, moving along...\n'
2686 2724
2687 2725 #---------------------------------------------------------------------------
2688 2726 # More details:
2689 2727
2690 2728 # IPShellEmbed instances don't print the standard system banner and
2691 2729 # messages. The IPython banner (which actually may contain initialization
2692 2730 # messages) is available as <instance>.IP.BANNER in case you want it.
2693 2731
2694 2732 # IPShellEmbed instances print the following information everytime they
2695 2733 # start:
2696 2734
2697 2735 # - A global startup banner.
2698 2736
2699 2737 # - A call-specific header string, which you can use to indicate where in the
2700 2738 # execution flow the shell is starting.
2701 2739
2702 2740 # They also print an exit message every time they exit.
2703 2741
2704 2742 # Both the startup banner and the exit message default to None, and can be set
2705 2743 # either at the instance constructor or at any other time with the
2706 2744 # set_banner() and set_exit_msg() methods.
2707 2745
2708 2746 # The shell instance can be also put in 'dummy' mode globally or on a per-call
2709 2747 # basis. This gives you fine control for debugging without having to change
2710 2748 # code all over the place.
2711 2749
2712 2750 # The code below illustrates all this.
2713 2751
2714 2752
2715 2753 # This is how the global banner and exit_msg can be reset at any point
2716 2754 ipshell.set_banner('Entering interpreter - New Banner')
2717 2755 ipshell.set_exit_msg('Leaving interpreter - New exit_msg')
2718 2756
2719 2757 def foo(m):
2720 2758 s = 'spam'
2721 2759 ipshell('***In foo(). Try @whos, or print s or m:')
2722 2760 print 'foo says m = ',m
2723 2761
2724 2762 def bar(n):
2725 2763 s = 'eggs'
2726 2764 ipshell('***In bar(). Try @whos, or print s or n:')
2727 2765 print 'bar says n = ',n
2728 2766
2729 2767 # Some calls to the above functions which will trigger IPython:
2730 2768 print 'Main program calling foo("eggs")\n'
2731 2769 foo('eggs')
2732 2770
2733 2771 # The shell can be put in 'dummy' mode where calls to it silently return. This
2734 2772 # allows you, for example, to globally turn off debugging for a program with a
2735 2773 # single call.
2736 2774 ipshell.set_dummy_mode(1)
2737 2775 print '\nTrying to call IPython which is now "dummy":'
2738 2776 ipshell()
2739 2777 print 'Nothing happened...'
2740 2778 # The global 'dummy' mode can still be overridden for a single call
2741 2779 print '\nOverriding dummy mode manually:'
2742 2780 ipshell(dummy=0)
2743 2781
2744 2782 # Reactivate the IPython shell
2745 2783 ipshell.set_dummy_mode(0)
2746 2784
2747 2785 print 'You can even have multiple embedded instances:'
2748 2786 ipshell2()
2749 2787
2750 2788 print '\nMain program calling bar("spam")\n'
2751 2789 bar('spam')
2752 2790
2753 2791 print 'Main program finished. Bye!'
2754 2792
2755 2793 #********************** End of file <example-embed.py> ***********************
2756 2794
2757 2795 Once you understand how the system functions, you can use the following
2758 2796 code fragments in your programs which are ready for cut and paste::
2759 2797
2760 2798
2761 2799 """Quick code snippets for embedding IPython into other programs.
2762 2800
2763 2801 See example-embed.py for full details, this file has the bare minimum code for
2764 2802 cut and paste use once you understand how to use the system."""
2765 2803
2766 2804 #---------------------------------------------------------------------------
2767 2805 # This code loads IPython but modifies a few things if it detects it's running
2768 2806 # embedded in another IPython session (helps avoid confusion)
2769 2807
2770 2808 try:
2771 2809 __IPYTHON__
2772 2810 except NameError:
2773 2811 argv = ['']
2774 2812 banner = exit_msg = ''
2775 2813 else:
2776 2814 # Command-line options for IPython (a list like sys.argv)
2777 2815 argv = ['-pi1','In <\\#>:','-pi2',' .\\D.:','-po','Out<\\#>:']
2778 2816 banner = '*** Nested interpreter ***'
2779 2817 exit_msg = '*** Back in main IPython ***'
2780 2818
2781 2819 # First import the embeddable shell class
2782 2820 from IPython.Shell import IPShellEmbed
2783 2821 # Now create the IPython shell instance. Put ipshell() anywhere in your code
2784 2822 # where you want it to open.
2785 2823 ipshell = IPShellEmbed(argv,banner=banner,exit_msg=exit_msg)
2786 2824
2787 2825 #---------------------------------------------------------------------------
2788 2826 # This code will load an embeddable IPython shell always with no changes for
2789 2827 # nested embededings.
2790 2828
2791 2829 from IPython.Shell import IPShellEmbed
2792 2830 ipshell = IPShellEmbed()
2793 2831 # Now ipshell() will open IPython anywhere in the code.
2794 2832
2795 2833 #---------------------------------------------------------------------------
2796 2834 # This code loads an embeddable shell only if NOT running inside
2797 2835 # IPython. Inside IPython, the embeddable shell variable ipshell is just a
2798 2836 # dummy function.
2799 2837
2800 2838 try:
2801 2839 __IPYTHON__
2802 2840 except NameError:
2803 2841 from IPython.Shell import IPShellEmbed
2804 2842 ipshell = IPShellEmbed()
2805 2843 # Now ipshell() will open IPython anywhere in the code
2806 2844 else:
2807 2845 # Define a dummy ipshell() so the same code doesn't crash inside an
2808 2846 # interactive IPython
2809 2847 def ipshell(): pass
2810 2848
2811 2849 #******************* End of file <example-embed-short.py> ********************
2812 2850
2813 2851 Using the Python debugger (pdb)
2814 2852 ===============================
2815 2853
2816 2854 Running entire programs via pdb
2817 2855 -------------------------------
2818 2856
2819 2857 pdb, the Python debugger, is a powerful interactive debugger which
2820 2858 allows you to step through code, set breakpoints, watch variables,
2821 2859 etc. IPython makes it very easy to start any script under the control
2822 2860 of pdb, regardless of whether you have wrapped it into a 'main()'
2823 2861 function or not. For this, simply type '%run -d myscript' at an
2824 2862 IPython prompt. See the %run command's documentation (via '%run?' or
2825 2863 in Sec. magic_ for more details, including how to control where pdb
2826 2864 will stop execution first.
2827 2865
2828 2866 For more information on the use of the pdb debugger, read the included
2829 2867 pdb.doc file (part of the standard Python distribution). On a stock
2830 2868 Linux system it is located at /usr/lib/python2.3/pdb.doc, but the
2831 2869 easiest way to read it is by using the help() function of the pdb module
2832 2870 as follows (in an IPython prompt):
2833 2871
2834 2872 In [1]: import pdb
2835 2873 In [2]: pdb.help()
2836 2874
2837 2875 This will load the pdb.doc document in a file viewer for you automatically.
2838 2876
2839 2877
2840 2878 Automatic invocation of pdb on exceptions
2841 2879 -----------------------------------------
2842 2880
2843 2881 IPython, if started with the -pdb option (or if the option is set in
2844 2882 your rc file) can call the Python pdb debugger every time your code
2845 2883 triggers an uncaught exception. This feature
2846 2884 can also be toggled at any time with the %pdb magic command. This can be
2847 2885 extremely useful in order to find the origin of subtle bugs, because pdb
2848 2886 opens up at the point in your code which triggered the exception, and
2849 2887 while your program is at this point 'dead', all the data is still
2850 2888 available and you can walk up and down the stack frame and understand
2851 2889 the origin of the problem.
2852 2890
2853 2891 Furthermore, you can use these debugging facilities both with the
2854 2892 embedded IPython mode and without IPython at all. For an embedded shell
2855 2893 (see sec. Embedding_), simply call the constructor with
2856 2894 '-pdb' in the argument string and automatically pdb will be called if an
2857 2895 uncaught exception is triggered by your code.
2858 2896
2859 2897 For stand-alone use of the feature in your programs which do not use
2860 2898 IPython at all, put the following lines toward the top of your 'main'
2861 2899 routine::
2862 2900
2863 2901 import sys,IPython.ultraTB
2864 2902 sys.excepthook = IPython.ultraTB.FormattedTB(mode='Verbose',
2865 2903 color_scheme='Linux', call_pdb=1)
2866 2904
2867 2905 The mode keyword can be either 'Verbose' or 'Plain', giving either very
2868 2906 detailed or normal tracebacks respectively. The color_scheme keyword can
2869 2907 be one of 'NoColor', 'Linux' (default) or 'LightBG'. These are the same
2870 2908 options which can be set in IPython with -colors and -xmode.
2871 2909
2872 2910 This will give any of your programs detailed, colored tracebacks with
2873 2911 automatic invocation of pdb.
2874 2912
2875 2913
2876 2914 Extensions for syntax processing
2877 2915 ================================
2878 2916
2879 2917 This isn't for the faint of heart, because the potential for breaking
2880 2918 things is quite high. But it can be a very powerful and useful feature.
2881 2919 In a nutshell, you can redefine the way IPython processes the user input
2882 2920 line to accept new, special extensions to the syntax without needing to
2883 2921 change any of IPython's own code.
2884 2922
2885 2923 In the IPython/Extensions directory you will find some examples
2886 2924 supplied, which we will briefly describe now. These can be used 'as is'
2887 2925 (and both provide very useful functionality), or you can use them as a
2888 2926 starting point for writing your own extensions.
2889 2927
2890 2928
2891 2929 Pasting of code starting with '>>> ' or '... '
2892 2930 ----------------------------------------------
2893 2931
2894 2932 In the python tutorial it is common to find code examples which have
2895 2933 been taken from real python sessions. The problem with those is that all
2896 2934 the lines begin with either '>>> ' or '... ', which makes it impossible
2897 2935 to paste them all at once. One must instead do a line by line manual
2898 2936 copying, carefully removing the leading extraneous characters.
2899 2937
2900 2938 This extension identifies those starting characters and removes them
2901 2939 from the input automatically, so that one can paste multi-line examples
2902 2940 directly into IPython, saving a lot of time. Please look at the file
2903 2941 InterpreterPasteInput.py in the IPython/Extensions directory for details
2904 2942 on how this is done.
2905 2943
2906 2944 IPython comes with a special profile enabling this feature, called
2907 2945 tutorial. Simply start IPython via 'ipython -p tutorial' and the feature
2908 2946 will be available. In a normal IPython session you can activate the
2909 2947 feature by importing the corresponding module with:
2910 2948 In [1]: import IPython.Extensions.InterpreterPasteInput
2911 2949
2912 2950 The following is a 'screenshot' of how things work when this extension
2913 2951 is on, copying an example from the standard tutorial::
2914 2952
2915 2953 IPython profile: tutorial
2916 2954
2917 2955 *** Pasting of code with ">>>" or "..." has been enabled.
2918 2956
2919 2957 In [1]: >>> def fib2(n): # return Fibonacci series up to n
2920 2958 ...: ... """Return a list containing the Fibonacci series up to
2921 2959 n."""
2922 2960 ...: ... result = []
2923 2961 ...: ... a, b = 0, 1
2924 2962 ...: ... while b < n:
2925 2963 ...: ... result.append(b) # see below
2926 2964 ...: ... a, b = b, a+b
2927 2965 ...: ... return result
2928 2966 ...:
2929 2967
2930 2968 In [2]: fib2(10)
2931 2969 Out[2]: [1, 1, 2, 3, 5, 8]
2932 2970
2933 2971 Note that as currently written, this extension does not recognize
2934 2972 IPython's prompts for pasting. Those are more complicated, since the
2935 2973 user can change them very easily, they involve numbers and can vary in
2936 2974 length. One could however extract all the relevant information from the
2937 2975 IPython instance and build an appropriate regular expression. This is
2938 2976 left as an exercise for the reader.
2939 2977
2940 2978
2941 2979 Input of physical quantities with units
2942 2980 ---------------------------------------
2943 2981
2944 2982 The module PhysicalQInput allows a simplified form of input for physical
2945 2983 quantities with units. This file is meant to be used in conjunction with
2946 2984 the PhysicalQInteractive module (in the same directory) and
2947 2985 Physics.PhysicalQuantities from Konrad Hinsen's ScientificPython
2948 2986 (http://dirac.cnrs-orleans.fr/ScientificPython/).
2949 2987
2950 2988 The Physics.PhysicalQuantities module defines PhysicalQuantity objects,
2951 2989 but these must be declared as instances of a class. For example, to
2952 2990 define v as a velocity of 3 m/s, normally you would write::
2953 2991
2954 2992 In [1]: v = PhysicalQuantity(3,'m/s')
2955 2993
2956 2994 Using the PhysicalQ_Input extension this can be input instead as:
2957 2995 In [1]: v = 3 m/s
2958 2996 which is much more convenient for interactive use (even though it is
2959 2997 blatantly invalid Python syntax).
2960 2998
2961 2999 The physics profile supplied with IPython (enabled via 'ipython -p
2962 3000 physics') uses these extensions, which you can also activate with:
2963 3001
2964 3002 from math import * # math MUST be imported BEFORE PhysicalQInteractive
2965 3003 from IPython.Extensions.PhysicalQInteractive import *
2966 3004 import IPython.Extensions.PhysicalQInput
2967 3005
2968 3006
2969 3007 Threading support
2970 3008 =================
2971 3009
2972 3010 WARNING: The threading support is still somewhat experimental, and it
2973 3011 has only seen reasonable testing under Linux. Threaded code is
2974 3012 particularly tricky to debug, and it tends to show extremely
2975 3013 platform-dependent behavior. Since I only have access to Linux machines,
2976 3014 I will have to rely on user's experiences and assistance for this area
2977 3015 of IPython to improve under other platforms.
2978 3016
2979 3017 IPython, via the -gthread , -qthread, -q4thread and -wthread options
2980 3018 (described in Sec. `Threading options`_), can run in
2981 3019 multithreaded mode to support pyGTK, Qt3, Qt4 and WXPython applications
2982 3020 respectively. These GUI toolkits need to control the python main loop of
2983 3021 execution, so under a normal Python interpreter, starting a pyGTK, Qt3,
2984 3022 Qt4 or WXPython application will immediately freeze the shell.
2985 3023
2986 3024 IPython, with one of these options (you can only use one at a time),
2987 3025 separates the graphical loop and IPython's code execution run into
2988 3026 different threads. This allows you to test interactively (with %run, for
2989 3027 example) your GUI code without blocking.
2990 3028
2991 3029 A nice mini-tutorial on using IPython along with the Qt Designer
2992 3030 application is available at the SciPy wiki:
2993 3031 http://www.scipy.org/Cookbook/Matplotlib/Qt_with_IPython_and_Designer.
2994 3032
2995 3033
2996 3034 Tk issues
2997 3035 ---------
2998 3036
2999 3037 As indicated in Sec. `Threading options`_, a special -tk option is
3000 3038 provided to try and allow Tk graphical applications to coexist
3001 3039 interactively with WX, Qt or GTK ones. Whether this works at all,
3002 3040 however, is very platform and configuration dependent. Please
3003 3041 experiment with simple test cases before committing to using this
3004 3042 combination of Tk and GTK/Qt/WX threading in a production environment.
3005 3043
3006 3044
3007 3045 I/O pitfalls
3008 3046 ------------
3009 3047
3010 3048 Be mindful that the Python interpreter switches between threads every
3011 3049 $N$ bytecodes, where the default value as of Python 2.3 is $N=100.$ This
3012 3050 value can be read by using the sys.getcheckinterval() function, and it
3013 3051 can be reset via sys.setcheckinterval(N). This switching of threads can
3014 3052 cause subtly confusing effects if one of your threads is doing file I/O.
3015 3053 In text mode, most systems only flush file buffers when they encounter a
3016 3054 '\n'. An instruction as simple as::
3017 3055
3018 3056 print >> filehandle, ''hello world''
3019 3057
3020 3058 actually consists of several bytecodes, so it is possible that the
3021 3059 newline does not reach your file before the next thread switch.
3022 3060 Similarly, if you are writing to a file in binary mode, the file won't
3023 3061 be flushed until the buffer fills, and your other thread may see
3024 3062 apparently truncated files.
3025 3063
3026 3064 For this reason, if you are using IPython's thread support and have (for
3027 3065 example) a GUI application which will read data generated by files
3028 3066 written to from the IPython thread, the safest approach is to open all
3029 3067 of your files in unbuffered mode (the third argument to the file/open
3030 3068 function is the buffering value)::
3031 3069
3032 3070 filehandle = open(filename,mode,0)
3033 3071
3034 3072 This is obviously a brute force way of avoiding race conditions with the
3035 3073 file buffering. If you want to do it cleanly, and you have a resource
3036 3074 which is being shared by the interactive IPython loop and your GUI
3037 3075 thread, you should really handle it with thread locking and
3038 3076 syncrhonization properties. The Python documentation discusses these.
3039 3077
3040 3078 .. _interactive_demos:
3041 3079
3042 3080 Interactive demos with IPython
3043 3081 ==============================
3044 3082
3045 3083 IPython ships with a basic system for running scripts interactively in
3046 3084 sections, useful when presenting code to audiences. A few tags embedded
3047 3085 in comments (so that the script remains valid Python code) divide a file
3048 3086 into separate blocks, and the demo can be run one block at a time, with
3049 3087 IPython printing (with syntax highlighting) the block before executing
3050 3088 it, and returning to the interactive prompt after each block. The
3051 3089 interactive namespace is updated after each block is run with the
3052 3090 contents of the demo's namespace.
3053 3091
3054 3092 This allows you to show a piece of code, run it and then execute
3055 3093 interactively commands based on the variables just created. Once you
3056 3094 want to continue, you simply execute the next block of the demo. The
3057 3095 following listing shows the markup necessary for dividing a script into
3058 3096 sections for execution as a demo::
3059 3097
3060 3098
3061 3099 """A simple interactive demo to illustrate the use of IPython's Demo class.
3062 3100
3063 3101 Any python script can be run as a demo, but that does little more than showing
3064 3102 it on-screen, syntax-highlighted in one shot. If you add a little simple
3065 3103 markup, you can stop at specified intervals and return to the ipython prompt,
3066 3104 resuming execution later.
3067 3105 """
3068 3106
3069 3107 print 'Hello, welcome to an interactive IPython demo.'
3070 3108 print 'Executing this block should require confirmation before proceeding,'
3071 3109 print 'unless auto_all has been set to true in the demo object'
3072 3110
3073 3111 # The mark below defines a block boundary, which is a point where IPython will
3074 3112 # stop execution and return to the interactive prompt.
3075 3113 # Note that in actual interactive execution,
3076 3114 # <demo> --- stop ---
3077 3115
3078 3116 x = 1
3079 3117 y = 2
3080 3118
3081 3119 # <demo> --- stop ---
3082 3120
3083 3121 # the mark below makes this block as silent
3084 3122 # <demo> silent
3085 3123
3086 3124 print 'This is a silent block, which gets executed but not printed.'
3087 3125
3088 3126 # <demo> --- stop ---
3089 3127 # <demo> auto
3090 3128 print 'This is an automatic block.'
3091 3129 print 'It is executed without asking for confirmation, but printed.'
3092 3130 z = x+y
3093 3131
3094 3132 print 'z=',x
3095 3133
3096 3134 # <demo> --- stop ---
3097 3135 # This is just another normal block.
3098 3136 print 'z is now:', z
3099 3137
3100 3138 print 'bye!'
3101 3139
3102 3140 In order to run a file as a demo, you must first make a Demo object out
3103 3141 of it. If the file is named myscript.py, the following code will make a
3104 3142 demo::
3105 3143
3106 3144 from IPython.demo import Demo
3107 3145
3108 3146 mydemo = Demo('myscript.py')
3109 3147
3110 3148 This creates the mydemo object, whose blocks you run one at a time by
3111 3149 simply calling the object with no arguments. If you have autocall active
3112 3150 in IPython (the default), all you need to do is type::
3113 3151
3114 3152 mydemo
3115 3153
3116 3154 and IPython will call it, executing each block. Demo objects can be
3117 3155 restarted, you can move forward or back skipping blocks, re-execute the
3118 3156 last block, etc. Simply use the Tab key on a demo object to see its
3119 3157 methods, and call '?' on them to see their docstrings for more usage
3120 3158 details. In addition, the demo module itself contains a comprehensive
3121 3159 docstring, which you can access via::
3122 3160
3123 3161 from IPython import demo
3124 3162
3125 3163 demo?
3126 3164
3127 3165 Limitations: It is important to note that these demos are limited to
3128 3166 fairly simple uses. In particular, you can not put division marks in
3129 3167 indented code (loops, if statements, function definitions, etc.)
3130 3168 Supporting something like this would basically require tracking the
3131 3169 internal execution state of the Python interpreter, so only top-level
3132 3170 divisions are allowed. If you want to be able to open an IPython
3133 3171 instance at an arbitrary point in a program, you can use IPython's
3134 3172 embedding facilities, described in detail in Sec. 9
3135 3173
3136 3174
3137 3175 .. _Matplotlib support:
3138 3176
3139 3177 Plotting with matplotlib
3140 3178 ========================
3141 3179
3142 3180 The matplotlib library (http://matplotlib.sourceforge.net
3143 3181 http://matplotlib.sourceforge.net) provides high quality 2D plotting for
3144 3182 Python. Matplotlib can produce plots on screen using a variety of GUI
3145 3183 toolkits, including Tk, GTK and WXPython. It also provides a number of
3146 3184 commands useful for scientific computing, all with a syntax compatible
3147 3185 with that of the popular Matlab program.
3148 3186
3149 3187 IPython accepts the special option -pylab (see :ref:`here
3150 3188 <command_line_options>`). This configures it to support matplotlib, honoring
3151 3189 the settings in the .matplotlibrc file. IPython will detect the user's choice
3152 3190 of matplotlib GUI backend, and automatically select the proper threading model
3153 3191 to prevent blocking. It also sets matplotlib in interactive mode and modifies
3154 3192 %run slightly, so that any matplotlib-based script can be executed using %run
3155 3193 and the final show() command does not block the interactive shell.
3156 3194
3157 3195 The -pylab option must be given first in order for IPython to configure its
3158 3196 threading mode. However, you can still issue other options afterwards. This
3159 3197 allows you to have a matplotlib-based environment customized with additional
3160 3198 modules using the standard IPython profile mechanism (see :ref:`here
3161 3199 <profiles>`): ``ipython -pylab -p myprofile`` will load the profile defined in
3162 3200 ipythonrc-myprofile after configuring matplotlib.
General Comments 0
You need to be logged in to leave comments. Login now