##// END OF EJS Templates
Replace magic exit function with exit subclassing IPyAutocall. Credit to David Warde-Farley (@dwf) for tackling this issue.
Thomas Kluyver -
Show More
@@ -1,45 +1,56
1 1 #!/usr/bin/env python
2 2 # encoding: utf-8
3 3 """
4 4 Autocall capabilities for IPython.core.
5 5
6 6 Authors:
7 7
8 8 * Brian Granger
9 9 * Fernando Perez
10 * Thomas Kluyver
10 11
11 12 Notes
12 13 -----
13 14 """
14 15
15 16 #-----------------------------------------------------------------------------
16 17 # Copyright (C) 2008-2009 The IPython Development Team
17 18 #
18 19 # Distributed under the terms of the BSD License. The full license is in
19 20 # the file COPYING, distributed as part of this software.
20 21 #-----------------------------------------------------------------------------
21 22
22 23 #-----------------------------------------------------------------------------
23 24 # Imports
24 25 #-----------------------------------------------------------------------------
25 26
26 27
27 28 #-----------------------------------------------------------------------------
28 29 # Code
29 30 #-----------------------------------------------------------------------------
30 31
31 32 class IPyAutocall(object):
32 33 """ Instances of this class are always autocalled
33 34
34 35 This happens regardless of 'autocall' variable state. Use this to
35 36 develop macro-like mechanisms.
36 37 """
38 _ip = None
39 def __init__(self, ip=None):
40 self._ip = ip
37 41
38 def set_ip(self,ip):
42 def set_ip(self, ip):
39 43 """ Will be used to set _ip point to current ipython instance b/f call
40 44
41 45 Override this method if you don't want this to happen.
42 46
43 47 """
44 48 self._ip = ip
45 49
50
51 class ExitAutocall(IPyAutocall):
52 """An autocallable object which will be added to the user namespace so that
53 exit, exit(), quit or quit() are all valid ways to close the shell."""
54
55 def __call__(self):
56 self._ip.ask_exit()
@@ -1,2608 +1,2613
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2011 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import ast
24 24 import atexit
25 25 import codeop
26 26 import inspect
27 27 import os
28 28 import re
29 29 import sys
30 30 import tempfile
31 31 import types
32 32 from contextlib import nested
33 33
34 34 from IPython.config.configurable import Configurable
35 35 from IPython.core import debugger, oinspect
36 36 from IPython.core import history as ipcorehist
37 37 from IPython.core import page
38 38 from IPython.core import prefilter
39 39 from IPython.core import shadowns
40 40 from IPython.core import ultratb
41 41 from IPython.core.alias import AliasManager
42 from IPython.core.autocall import ExitAutocall
42 43 from IPython.core.builtin_trap import BuiltinTrap
43 44 from IPython.core.compilerop import CachingCompiler
44 45 from IPython.core.display_trap import DisplayTrap
45 46 from IPython.core.displayhook import DisplayHook
46 47 from IPython.core.displaypub import DisplayPublisher
47 48 from IPython.core.error import TryNext, UsageError
48 49 from IPython.core.extensions import ExtensionManager
49 50 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
50 51 from IPython.core.formatters import DisplayFormatter
51 52 from IPython.core.history import HistoryManager
52 53 from IPython.core.inputsplitter import IPythonInputSplitter
53 54 from IPython.core.logger import Logger
54 55 from IPython.core.macro import Macro
55 56 from IPython.core.magic import Magic
56 57 from IPython.core.payload import PayloadManager
57 58 from IPython.core.plugin import PluginManager
58 59 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
59 60 from IPython.external.Itpl import ItplNS
60 61 from IPython.utils import PyColorize
61 62 from IPython.utils import io
62 63 from IPython.utils.doctestreload import doctest_reload
63 64 from IPython.utils.io import ask_yes_no, rprint
64 65 from IPython.utils.ipstruct import Struct
65 66 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
66 67 from IPython.utils.pickleshare import PickleShareDB
67 68 from IPython.utils.process import system, getoutput
68 69 from IPython.utils.strdispatch import StrDispatch
69 70 from IPython.utils.syspathcontext import prepended_to_syspath
70 71 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
71 72 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
72 73 List, Unicode, Instance, Type)
73 74 from IPython.utils.warn import warn, error, fatal
74 75 import IPython.core.hooks
75 76
76 77 #-----------------------------------------------------------------------------
77 78 # Globals
78 79 #-----------------------------------------------------------------------------
79 80
80 81 # compiled regexps for autoindent management
81 82 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
82 83
83 84 #-----------------------------------------------------------------------------
84 85 # Utilities
85 86 #-----------------------------------------------------------------------------
86 87
87 88 # store the builtin raw_input globally, and use this always, in case user code
88 89 # overwrites it (like wx.py.PyShell does)
89 90 raw_input_original = raw_input
90 91
91 92 def softspace(file, newvalue):
92 93 """Copied from code.py, to remove the dependency"""
93 94
94 95 oldvalue = 0
95 96 try:
96 97 oldvalue = file.softspace
97 98 except AttributeError:
98 99 pass
99 100 try:
100 101 file.softspace = newvalue
101 102 except (AttributeError, TypeError):
102 103 # "attribute-less object" or "read-only attributes"
103 104 pass
104 105 return oldvalue
105 106
106 107
107 108 def no_op(*a, **kw): pass
108 109
109 110 class SpaceInInput(Exception): pass
110 111
111 112 class Bunch: pass
112 113
113 114
114 115 def get_default_colors():
115 116 if sys.platform=='darwin':
116 117 return "LightBG"
117 118 elif os.name=='nt':
118 119 return 'Linux'
119 120 else:
120 121 return 'Linux'
121 122
122 123
123 124 class SeparateStr(Str):
124 125 """A Str subclass to validate separate_in, separate_out, etc.
125 126
126 127 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
127 128 """
128 129
129 130 def validate(self, obj, value):
130 131 if value == '0': value = ''
131 132 value = value.replace('\\n','\n')
132 133 return super(SeparateStr, self).validate(obj, value)
133 134
134 135 class MultipleInstanceError(Exception):
135 136 pass
136 137
137 138 class ReadlineNoRecord(object):
138 139 """Context manager to execute some code, then reload readline history
139 140 so that interactive input to the code doesn't appear when pressing up."""
140 141 def __init__(self, shell):
141 142 self.shell = shell
142 143 self._nested_level = 0
143 144
144 145 def __enter__(self):
145 146 if self._nested_level == 0:
146 147 self.orig_length = self.current_length()
147 148 self.readline_tail = self.get_readline_tail()
148 149 self._nested_level += 1
149 150
150 151 def __exit__(self, type, value, traceback):
151 152 self._nested_level -= 1
152 153 if self._nested_level == 0:
153 154 # Try clipping the end if it's got longer
154 155 e = self.current_length() - self.orig_length
155 156 if e > 0:
156 157 for _ in range(e):
157 158 self.shell.readline.remove_history_item(self.orig_length)
158 159
159 160 # If it still doesn't match, just reload readline history.
160 161 if self.current_length() != self.orig_length \
161 162 or self.get_readline_tail() != self.readline_tail:
162 163 self.shell.refill_readline_hist()
163 164 # Returning False will cause exceptions to propagate
164 165 return False
165 166
166 167 def current_length(self):
167 168 return self.shell.readline.get_current_history_length()
168 169
169 170 def get_readline_tail(self, n=10):
170 171 """Get the last n items in readline history."""
171 172 end = self.shell.readline.get_current_history_length() + 1
172 173 start = max(end-n, 1)
173 174 ghi = self.shell.readline.get_history_item
174 175 return [ghi(x) for x in range(start, end)]
175 176
176 177
177 178 #-----------------------------------------------------------------------------
178 179 # Main IPython class
179 180 #-----------------------------------------------------------------------------
180 181
181 182 class InteractiveShell(Configurable, Magic):
182 183 """An enhanced, interactive shell for Python."""
183 184
184 185 _instance = None
185 186 autocall = Enum((0,1,2), default_value=1, config=True)
186 187 # TODO: remove all autoindent logic and put into frontends.
187 188 # We can't do this yet because even runlines uses the autoindent.
188 189 autoindent = CBool(True, config=True)
189 190 automagic = CBool(True, config=True)
190 191 cache_size = Int(1000, config=True)
191 192 color_info = CBool(True, config=True)
192 193 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
193 194 default_value=get_default_colors(), config=True)
194 195 debug = CBool(False, config=True)
195 196 deep_reload = CBool(False, config=True)
196 197 display_formatter = Instance(DisplayFormatter)
197 198 displayhook_class = Type(DisplayHook)
198 199 display_pub_class = Type(DisplayPublisher)
199 200
200 201 exit_now = CBool(False)
201 202 # Monotonically increasing execution counter
202 203 execution_count = Int(1)
203 204 filename = Unicode("<ipython console>")
204 205 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
205 206
206 207 # Input splitter, to split entire cells of input into either individual
207 208 # interactive statements or whole blocks.
208 209 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
209 210 (), {})
210 211 logstart = CBool(False, config=True)
211 212 logfile = Unicode('', config=True)
212 213 logappend = Unicode('', config=True)
213 214 object_info_string_level = Enum((0,1,2), default_value=0,
214 215 config=True)
215 216 pdb = CBool(False, config=True)
216 217
217 218 profile = Unicode('', config=True)
218 219 prompt_in1 = Str('In [\\#]: ', config=True)
219 220 prompt_in2 = Str(' .\\D.: ', config=True)
220 221 prompt_out = Str('Out[\\#]: ', config=True)
221 222 prompts_pad_left = CBool(True, config=True)
222 223 quiet = CBool(False, config=True)
223 224
224 225 history_length = Int(10000, config=True)
225 226
226 227 # The readline stuff will eventually be moved to the terminal subclass
227 228 # but for now, we can't do that as readline is welded in everywhere.
228 229 readline_use = CBool(True, config=True)
229 230 readline_merge_completions = CBool(True, config=True)
230 231 readline_omit__names = Enum((0,1,2), default_value=2, config=True)
231 232 readline_remove_delims = Str('-/~', config=True)
232 233 readline_parse_and_bind = List([
233 234 'tab: complete',
234 235 '"\C-l": clear-screen',
235 236 'set show-all-if-ambiguous on',
236 237 '"\C-o": tab-insert',
237 238 # See bug gh-58 - with \M-i enabled, chars 0x9000-0x9fff
238 239 # crash IPython.
239 240 '"\M-o": "\d\d\d\d"',
240 241 '"\M-I": "\d\d\d\d"',
241 242 '"\C-r": reverse-search-history',
242 243 '"\C-s": forward-search-history',
243 244 '"\C-p": history-search-backward',
244 245 '"\C-n": history-search-forward',
245 246 '"\e[A": history-search-backward',
246 247 '"\e[B": history-search-forward',
247 248 '"\C-k": kill-line',
248 249 '"\C-u": unix-line-discard',
249 250 ], allow_none=False, config=True)
250 251
251 252 # TODO: this part of prompt management should be moved to the frontends.
252 253 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
253 254 separate_in = SeparateStr('\n', config=True)
254 255 separate_out = SeparateStr('', config=True)
255 256 separate_out2 = SeparateStr('', config=True)
256 257 wildcards_case_sensitive = CBool(True, config=True)
257 258 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
258 259 default_value='Context', config=True)
259 260
260 261 # Subcomponents of InteractiveShell
261 262 alias_manager = Instance('IPython.core.alias.AliasManager')
262 263 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
263 264 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
264 265 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
265 266 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
266 267 plugin_manager = Instance('IPython.core.plugin.PluginManager')
267 268 payload_manager = Instance('IPython.core.payload.PayloadManager')
268 269 history_manager = Instance('IPython.core.history.HistoryManager')
269 270
270 271 # Private interface
271 272 _post_execute = set()
272 273
273 274 def __init__(self, config=None, ipython_dir=None,
274 275 user_ns=None, user_global_ns=None,
275 276 custom_exceptions=((), None)):
276 277
277 278 # This is where traits with a config_key argument are updated
278 279 # from the values on config.
279 280 super(InteractiveShell, self).__init__(config=config)
280 281
281 282 # These are relatively independent and stateless
282 283 self.init_ipython_dir(ipython_dir)
283 284 self.init_instance_attrs()
284 285 self.init_environment()
285 286
286 287 # Create namespaces (user_ns, user_global_ns, etc.)
287 288 self.init_create_namespaces(user_ns, user_global_ns)
288 289 # This has to be done after init_create_namespaces because it uses
289 290 # something in self.user_ns, but before init_sys_modules, which
290 291 # is the first thing to modify sys.
291 292 # TODO: When we override sys.stdout and sys.stderr before this class
292 293 # is created, we are saving the overridden ones here. Not sure if this
293 294 # is what we want to do.
294 295 self.save_sys_module_state()
295 296 self.init_sys_modules()
296 297
297 298 # While we're trying to have each part of the code directly access what
298 299 # it needs without keeping redundant references to objects, we have too
299 300 # much legacy code that expects ip.db to exist.
300 301 self.db = PickleShareDB(os.path.join(self.ipython_dir, 'db'))
301 302
302 303 self.init_history()
303 304 self.init_encoding()
304 305 self.init_prefilter()
305 306
306 307 Magic.__init__(self, self)
307 308
308 309 self.init_syntax_highlighting()
309 310 self.init_hooks()
310 311 self.init_pushd_popd_magic()
311 312 # self.init_traceback_handlers use to be here, but we moved it below
312 313 # because it and init_io have to come after init_readline.
313 314 self.init_user_ns()
314 315 self.init_logger()
315 316 self.init_alias()
316 317 self.init_builtins()
317 318
318 319 # pre_config_initialization
319 320
320 321 # The next section should contain everything that was in ipmaker.
321 322 self.init_logstart()
322 323
323 324 # The following was in post_config_initialization
324 325 self.init_inspector()
325 326 # init_readline() must come before init_io(), because init_io uses
326 327 # readline related things.
327 328 self.init_readline()
328 329 # init_completer must come after init_readline, because it needs to
329 330 # know whether readline is present or not system-wide to configure the
330 331 # completers, since the completion machinery can now operate
331 332 # independently of readline (e.g. over the network)
332 333 self.init_completer()
333 334 # TODO: init_io() needs to happen before init_traceback handlers
334 335 # because the traceback handlers hardcode the stdout/stderr streams.
335 336 # This logic in in debugger.Pdb and should eventually be changed.
336 337 self.init_io()
337 338 self.init_traceback_handlers(custom_exceptions)
338 339 self.init_prompts()
339 340 self.init_display_formatter()
340 341 self.init_display_pub()
341 342 self.init_displayhook()
342 343 self.init_reload_doctest()
343 344 self.init_magics()
344 345 self.init_pdb()
345 346 self.init_extension_manager()
346 347 self.init_plugin_manager()
347 348 self.init_payload()
348 349 self.hooks.late_startup_hook()
349 350 atexit.register(self.atexit_operations)
350 351
351 352 @classmethod
352 353 def instance(cls, *args, **kwargs):
353 354 """Returns a global InteractiveShell instance."""
354 355 if cls._instance is None:
355 356 inst = cls(*args, **kwargs)
356 357 # Now make sure that the instance will also be returned by
357 358 # the subclasses instance attribute.
358 359 for subclass in cls.mro():
359 360 if issubclass(cls, subclass) and \
360 361 issubclass(subclass, InteractiveShell):
361 362 subclass._instance = inst
362 363 else:
363 364 break
364 365 if isinstance(cls._instance, cls):
365 366 return cls._instance
366 367 else:
367 368 raise MultipleInstanceError(
368 369 'Multiple incompatible subclass instances of '
369 370 'InteractiveShell are being created.'
370 371 )
371 372
372 373 @classmethod
373 374 def initialized(cls):
374 375 return hasattr(cls, "_instance")
375 376
376 377 def get_ipython(self):
377 378 """Return the currently running IPython instance."""
378 379 return self
379 380
380 381 #-------------------------------------------------------------------------
381 382 # Trait changed handlers
382 383 #-------------------------------------------------------------------------
383 384
384 385 def _ipython_dir_changed(self, name, new):
385 386 if not os.path.isdir(new):
386 387 os.makedirs(new, mode = 0777)
387 388
388 389 def set_autoindent(self,value=None):
389 390 """Set the autoindent flag, checking for readline support.
390 391
391 392 If called with no arguments, it acts as a toggle."""
392 393
393 394 if not self.has_readline:
394 395 if os.name == 'posix':
395 396 warn("The auto-indent feature requires the readline library")
396 397 self.autoindent = 0
397 398 return
398 399 if value is None:
399 400 self.autoindent = not self.autoindent
400 401 else:
401 402 self.autoindent = value
402 403
403 404 #-------------------------------------------------------------------------
404 405 # init_* methods called by __init__
405 406 #-------------------------------------------------------------------------
406 407
407 408 def init_ipython_dir(self, ipython_dir):
408 409 if ipython_dir is not None:
409 410 self.ipython_dir = ipython_dir
410 411 self.config.Global.ipython_dir = self.ipython_dir
411 412 return
412 413
413 414 if hasattr(self.config.Global, 'ipython_dir'):
414 415 self.ipython_dir = self.config.Global.ipython_dir
415 416 else:
416 417 self.ipython_dir = get_ipython_dir()
417 418
418 419 # All children can just read this
419 420 self.config.Global.ipython_dir = self.ipython_dir
420 421
421 422 def init_instance_attrs(self):
422 423 self.more = False
423 424
424 425 # command compiler
425 426 self.compile = CachingCompiler()
426 427
427 428 # User input buffers
428 429 # NOTE: these variables are slated for full removal, once we are 100%
429 430 # sure that the new execution logic is solid. We will delte runlines,
430 431 # push_line and these buffers, as all input will be managed by the
431 432 # frontends via an inputsplitter instance.
432 433 self.buffer = []
433 434 self.buffer_raw = []
434 435
435 436 # Make an empty namespace, which extension writers can rely on both
436 437 # existing and NEVER being used by ipython itself. This gives them a
437 438 # convenient location for storing additional information and state
438 439 # their extensions may require, without fear of collisions with other
439 440 # ipython names that may develop later.
440 441 self.meta = Struct()
441 442
442 443 # Object variable to store code object waiting execution. This is
443 444 # used mainly by the multithreaded shells, but it can come in handy in
444 445 # other situations. No need to use a Queue here, since it's a single
445 446 # item which gets cleared once run.
446 447 self.code_to_run = None
447 448
448 449 # Temporary files used for various purposes. Deleted at exit.
449 450 self.tempfiles = []
450 451
451 452 # Keep track of readline usage (later set by init_readline)
452 453 self.has_readline = False
453 454
454 455 # keep track of where we started running (mainly for crash post-mortem)
455 456 # This is not being used anywhere currently.
456 457 self.starting_dir = os.getcwd()
457 458
458 459 # Indentation management
459 460 self.indent_current_nsp = 0
460 461
461 462 def init_environment(self):
462 463 """Any changes we need to make to the user's environment."""
463 464 pass
464 465
465 466 def init_encoding(self):
466 467 # Get system encoding at startup time. Certain terminals (like Emacs
467 468 # under Win32 have it set to None, and we need to have a known valid
468 469 # encoding to use in the raw_input() method
469 470 try:
470 471 self.stdin_encoding = sys.stdin.encoding or 'ascii'
471 472 except AttributeError:
472 473 self.stdin_encoding = 'ascii'
473 474
474 475 def init_syntax_highlighting(self):
475 476 # Python source parser/formatter for syntax highlighting
476 477 pyformat = PyColorize.Parser().format
477 478 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
478 479
479 480 def init_pushd_popd_magic(self):
480 481 # for pushd/popd management
481 482 try:
482 483 self.home_dir = get_home_dir()
483 484 except HomeDirError, msg:
484 485 fatal(msg)
485 486
486 487 self.dir_stack = []
487 488
488 489 def init_logger(self):
489 490 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
490 491 logmode='rotate')
491 492
492 493 def init_logstart(self):
493 494 """Initialize logging in case it was requested at the command line.
494 495 """
495 496 if self.logappend:
496 497 self.magic_logstart(self.logappend + ' append')
497 498 elif self.logfile:
498 499 self.magic_logstart(self.logfile)
499 500 elif self.logstart:
500 501 self.magic_logstart()
501 502
502 503 def init_builtins(self):
503 504 self.builtin_trap = BuiltinTrap(shell=self)
504 505
505 506 def init_inspector(self):
506 507 # Object inspector
507 508 self.inspector = oinspect.Inspector(oinspect.InspectColors,
508 509 PyColorize.ANSICodeColors,
509 510 'NoColor',
510 511 self.object_info_string_level)
511 512
512 513 def init_io(self):
513 514 # This will just use sys.stdout and sys.stderr. If you want to
514 515 # override sys.stdout and sys.stderr themselves, you need to do that
515 516 # *before* instantiating this class, because Term holds onto
516 517 # references to the underlying streams.
517 518 if sys.platform == 'win32' and self.has_readline:
518 519 Term = io.IOTerm(cout=self.readline._outputfile,
519 520 cerr=self.readline._outputfile)
520 521 else:
521 522 Term = io.IOTerm()
522 523 io.Term = Term
523 524
524 525 def init_prompts(self):
525 526 # TODO: This is a pass for now because the prompts are managed inside
526 527 # the DisplayHook. Once there is a separate prompt manager, this
527 528 # will initialize that object and all prompt related information.
528 529 pass
529 530
530 531 def init_display_formatter(self):
531 532 self.display_formatter = DisplayFormatter(config=self.config)
532 533
533 534 def init_display_pub(self):
534 535 self.display_pub = self.display_pub_class(config=self.config)
535 536
536 537 def init_displayhook(self):
537 538 # Initialize displayhook, set in/out prompts and printing system
538 539 self.displayhook = self.displayhook_class(
539 540 config=self.config,
540 541 shell=self,
541 542 cache_size=self.cache_size,
542 543 input_sep = self.separate_in,
543 544 output_sep = self.separate_out,
544 545 output_sep2 = self.separate_out2,
545 546 ps1 = self.prompt_in1,
546 547 ps2 = self.prompt_in2,
547 548 ps_out = self.prompt_out,
548 549 pad_left = self.prompts_pad_left
549 550 )
550 551 # This is a context manager that installs/revmoes the displayhook at
551 552 # the appropriate time.
552 553 self.display_trap = DisplayTrap(hook=self.displayhook)
553 554
554 555 def init_reload_doctest(self):
555 556 # Do a proper resetting of doctest, including the necessary displayhook
556 557 # monkeypatching
557 558 try:
558 559 doctest_reload()
559 560 except ImportError:
560 561 warn("doctest module does not exist.")
561 562
562 563 #-------------------------------------------------------------------------
563 564 # Things related to injections into the sys module
564 565 #-------------------------------------------------------------------------
565 566
566 567 def save_sys_module_state(self):
567 568 """Save the state of hooks in the sys module.
568 569
569 570 This has to be called after self.user_ns is created.
570 571 """
571 572 self._orig_sys_module_state = {}
572 573 self._orig_sys_module_state['stdin'] = sys.stdin
573 574 self._orig_sys_module_state['stdout'] = sys.stdout
574 575 self._orig_sys_module_state['stderr'] = sys.stderr
575 576 self._orig_sys_module_state['excepthook'] = sys.excepthook
576 577 try:
577 578 self._orig_sys_modules_main_name = self.user_ns['__name__']
578 579 except KeyError:
579 580 pass
580 581
581 582 def restore_sys_module_state(self):
582 583 """Restore the state of the sys module."""
583 584 try:
584 585 for k, v in self._orig_sys_module_state.iteritems():
585 586 setattr(sys, k, v)
586 587 except AttributeError:
587 588 pass
588 589 # Reset what what done in self.init_sys_modules
589 590 try:
590 591 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
591 592 except (AttributeError, KeyError):
592 593 pass
593 594
594 595 #-------------------------------------------------------------------------
595 596 # Things related to hooks
596 597 #-------------------------------------------------------------------------
597 598
598 599 def init_hooks(self):
599 600 # hooks holds pointers used for user-side customizations
600 601 self.hooks = Struct()
601 602
602 603 self.strdispatchers = {}
603 604
604 605 # Set all default hooks, defined in the IPython.hooks module.
605 606 hooks = IPython.core.hooks
606 607 for hook_name in hooks.__all__:
607 608 # default hooks have priority 100, i.e. low; user hooks should have
608 609 # 0-100 priority
609 610 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
610 611
611 612 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
612 613 """set_hook(name,hook) -> sets an internal IPython hook.
613 614
614 615 IPython exposes some of its internal API as user-modifiable hooks. By
615 616 adding your function to one of these hooks, you can modify IPython's
616 617 behavior to call at runtime your own routines."""
617 618
618 619 # At some point in the future, this should validate the hook before it
619 620 # accepts it. Probably at least check that the hook takes the number
620 621 # of args it's supposed to.
621 622
622 623 f = types.MethodType(hook,self)
623 624
624 625 # check if the hook is for strdispatcher first
625 626 if str_key is not None:
626 627 sdp = self.strdispatchers.get(name, StrDispatch())
627 628 sdp.add_s(str_key, f, priority )
628 629 self.strdispatchers[name] = sdp
629 630 return
630 631 if re_key is not None:
631 632 sdp = self.strdispatchers.get(name, StrDispatch())
632 633 sdp.add_re(re.compile(re_key), f, priority )
633 634 self.strdispatchers[name] = sdp
634 635 return
635 636
636 637 dp = getattr(self.hooks, name, None)
637 638 if name not in IPython.core.hooks.__all__:
638 639 print "Warning! Hook '%s' is not one of %s" % \
639 640 (name, IPython.core.hooks.__all__ )
640 641 if not dp:
641 642 dp = IPython.core.hooks.CommandChainDispatcher()
642 643
643 644 try:
644 645 dp.add(f,priority)
645 646 except AttributeError:
646 647 # it was not commandchain, plain old func - replace
647 648 dp = f
648 649
649 650 setattr(self.hooks,name, dp)
650 651
651 652 def register_post_execute(self, func):
652 653 """Register a function for calling after code execution.
653 654 """
654 655 if not callable(func):
655 656 raise ValueError('argument %s must be callable' % func)
656 657 self._post_execute.add(func)
657 658
658 659 #-------------------------------------------------------------------------
659 660 # Things related to the "main" module
660 661 #-------------------------------------------------------------------------
661 662
662 663 def new_main_mod(self,ns=None):
663 664 """Return a new 'main' module object for user code execution.
664 665 """
665 666 main_mod = self._user_main_module
666 667 init_fakemod_dict(main_mod,ns)
667 668 return main_mod
668 669
669 670 def cache_main_mod(self,ns,fname):
670 671 """Cache a main module's namespace.
671 672
672 673 When scripts are executed via %run, we must keep a reference to the
673 674 namespace of their __main__ module (a FakeModule instance) around so
674 675 that Python doesn't clear it, rendering objects defined therein
675 676 useless.
676 677
677 678 This method keeps said reference in a private dict, keyed by the
678 679 absolute path of the module object (which corresponds to the script
679 680 path). This way, for multiple executions of the same script we only
680 681 keep one copy of the namespace (the last one), thus preventing memory
681 682 leaks from old references while allowing the objects from the last
682 683 execution to be accessible.
683 684
684 685 Note: we can not allow the actual FakeModule instances to be deleted,
685 686 because of how Python tears down modules (it hard-sets all their
686 687 references to None without regard for reference counts). This method
687 688 must therefore make a *copy* of the given namespace, to allow the
688 689 original module's __dict__ to be cleared and reused.
689 690
690 691
691 692 Parameters
692 693 ----------
693 694 ns : a namespace (a dict, typically)
694 695
695 696 fname : str
696 697 Filename associated with the namespace.
697 698
698 699 Examples
699 700 --------
700 701
701 702 In [10]: import IPython
702 703
703 704 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
704 705
705 706 In [12]: IPython.__file__ in _ip._main_ns_cache
706 707 Out[12]: True
707 708 """
708 709 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
709 710
710 711 def clear_main_mod_cache(self):
711 712 """Clear the cache of main modules.
712 713
713 714 Mainly for use by utilities like %reset.
714 715
715 716 Examples
716 717 --------
717 718
718 719 In [15]: import IPython
719 720
720 721 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
721 722
722 723 In [17]: len(_ip._main_ns_cache) > 0
723 724 Out[17]: True
724 725
725 726 In [18]: _ip.clear_main_mod_cache()
726 727
727 728 In [19]: len(_ip._main_ns_cache) == 0
728 729 Out[19]: True
729 730 """
730 731 self._main_ns_cache.clear()
731 732
732 733 #-------------------------------------------------------------------------
733 734 # Things related to debugging
734 735 #-------------------------------------------------------------------------
735 736
736 737 def init_pdb(self):
737 738 # Set calling of pdb on exceptions
738 739 # self.call_pdb is a property
739 740 self.call_pdb = self.pdb
740 741
741 742 def _get_call_pdb(self):
742 743 return self._call_pdb
743 744
744 745 def _set_call_pdb(self,val):
745 746
746 747 if val not in (0,1,False,True):
747 748 raise ValueError,'new call_pdb value must be boolean'
748 749
749 750 # store value in instance
750 751 self._call_pdb = val
751 752
752 753 # notify the actual exception handlers
753 754 self.InteractiveTB.call_pdb = val
754 755
755 756 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
756 757 'Control auto-activation of pdb at exceptions')
757 758
758 759 def debugger(self,force=False):
759 760 """Call the pydb/pdb debugger.
760 761
761 762 Keywords:
762 763
763 764 - force(False): by default, this routine checks the instance call_pdb
764 765 flag and does not actually invoke the debugger if the flag is false.
765 766 The 'force' option forces the debugger to activate even if the flag
766 767 is false.
767 768 """
768 769
769 770 if not (force or self.call_pdb):
770 771 return
771 772
772 773 if not hasattr(sys,'last_traceback'):
773 774 error('No traceback has been produced, nothing to debug.')
774 775 return
775 776
776 777 # use pydb if available
777 778 if debugger.has_pydb:
778 779 from pydb import pm
779 780 else:
780 781 # fallback to our internal debugger
781 782 pm = lambda : self.InteractiveTB.debugger(force=True)
782 783
783 784 with self.readline_no_record:
784 785 pm()
785 786
786 787 #-------------------------------------------------------------------------
787 788 # Things related to IPython's various namespaces
788 789 #-------------------------------------------------------------------------
789 790
790 791 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
791 792 # Create the namespace where the user will operate. user_ns is
792 793 # normally the only one used, and it is passed to the exec calls as
793 794 # the locals argument. But we do carry a user_global_ns namespace
794 795 # given as the exec 'globals' argument, This is useful in embedding
795 796 # situations where the ipython shell opens in a context where the
796 797 # distinction between locals and globals is meaningful. For
797 798 # non-embedded contexts, it is just the same object as the user_ns dict.
798 799
799 800 # FIXME. For some strange reason, __builtins__ is showing up at user
800 801 # level as a dict instead of a module. This is a manual fix, but I
801 802 # should really track down where the problem is coming from. Alex
802 803 # Schmolck reported this problem first.
803 804
804 805 # A useful post by Alex Martelli on this topic:
805 806 # Re: inconsistent value from __builtins__
806 807 # Von: Alex Martelli <aleaxit@yahoo.com>
807 808 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
808 809 # Gruppen: comp.lang.python
809 810
810 811 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
811 812 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
812 813 # > <type 'dict'>
813 814 # > >>> print type(__builtins__)
814 815 # > <type 'module'>
815 816 # > Is this difference in return value intentional?
816 817
817 818 # Well, it's documented that '__builtins__' can be either a dictionary
818 819 # or a module, and it's been that way for a long time. Whether it's
819 820 # intentional (or sensible), I don't know. In any case, the idea is
820 821 # that if you need to access the built-in namespace directly, you
821 822 # should start with "import __builtin__" (note, no 's') which will
822 823 # definitely give you a module. Yeah, it's somewhat confusing:-(.
823 824
824 825 # These routines return properly built dicts as needed by the rest of
825 826 # the code, and can also be used by extension writers to generate
826 827 # properly initialized namespaces.
827 828 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
828 829 user_global_ns)
829 830
830 831 # Assign namespaces
831 832 # This is the namespace where all normal user variables live
832 833 self.user_ns = user_ns
833 834 self.user_global_ns = user_global_ns
834 835
835 836 # An auxiliary namespace that checks what parts of the user_ns were
836 837 # loaded at startup, so we can list later only variables defined in
837 838 # actual interactive use. Since it is always a subset of user_ns, it
838 839 # doesn't need to be separately tracked in the ns_table.
839 840 self.user_ns_hidden = {}
840 841
841 842 # A namespace to keep track of internal data structures to prevent
842 843 # them from cluttering user-visible stuff. Will be updated later
843 844 self.internal_ns = {}
844 845
845 846 # Now that FakeModule produces a real module, we've run into a nasty
846 847 # problem: after script execution (via %run), the module where the user
847 848 # code ran is deleted. Now that this object is a true module (needed
848 849 # so docetst and other tools work correctly), the Python module
849 850 # teardown mechanism runs over it, and sets to None every variable
850 851 # present in that module. Top-level references to objects from the
851 852 # script survive, because the user_ns is updated with them. However,
852 853 # calling functions defined in the script that use other things from
853 854 # the script will fail, because the function's closure had references
854 855 # to the original objects, which are now all None. So we must protect
855 856 # these modules from deletion by keeping a cache.
856 857 #
857 858 # To avoid keeping stale modules around (we only need the one from the
858 859 # last run), we use a dict keyed with the full path to the script, so
859 860 # only the last version of the module is held in the cache. Note,
860 861 # however, that we must cache the module *namespace contents* (their
861 862 # __dict__). Because if we try to cache the actual modules, old ones
862 863 # (uncached) could be destroyed while still holding references (such as
863 864 # those held by GUI objects that tend to be long-lived)>
864 865 #
865 866 # The %reset command will flush this cache. See the cache_main_mod()
866 867 # and clear_main_mod_cache() methods for details on use.
867 868
868 869 # This is the cache used for 'main' namespaces
869 870 self._main_ns_cache = {}
870 871 # And this is the single instance of FakeModule whose __dict__ we keep
871 872 # copying and clearing for reuse on each %run
872 873 self._user_main_module = FakeModule()
873 874
874 875 # A table holding all the namespaces IPython deals with, so that
875 876 # introspection facilities can search easily.
876 877 self.ns_table = {'user':user_ns,
877 878 'user_global':user_global_ns,
878 879 'internal':self.internal_ns,
879 880 'builtin':__builtin__.__dict__
880 881 }
881 882
882 883 # Similarly, track all namespaces where references can be held and that
883 884 # we can safely clear (so it can NOT include builtin). This one can be
884 885 # a simple list. Note that the main execution namespaces, user_ns and
885 886 # user_global_ns, can NOT be listed here, as clearing them blindly
886 887 # causes errors in object __del__ methods. Instead, the reset() method
887 888 # clears them manually and carefully.
888 889 self.ns_refs_table = [ self.user_ns_hidden,
889 890 self.internal_ns, self._main_ns_cache ]
890 891
891 892 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
892 893 """Return a valid local and global user interactive namespaces.
893 894
894 895 This builds a dict with the minimal information needed to operate as a
895 896 valid IPython user namespace, which you can pass to the various
896 897 embedding classes in ipython. The default implementation returns the
897 898 same dict for both the locals and the globals to allow functions to
898 899 refer to variables in the namespace. Customized implementations can
899 900 return different dicts. The locals dictionary can actually be anything
900 901 following the basic mapping protocol of a dict, but the globals dict
901 902 must be a true dict, not even a subclass. It is recommended that any
902 903 custom object for the locals namespace synchronize with the globals
903 904 dict somehow.
904 905
905 906 Raises TypeError if the provided globals namespace is not a true dict.
906 907
907 908 Parameters
908 909 ----------
909 910 user_ns : dict-like, optional
910 911 The current user namespace. The items in this namespace should
911 912 be included in the output. If None, an appropriate blank
912 913 namespace should be created.
913 914 user_global_ns : dict, optional
914 915 The current user global namespace. The items in this namespace
915 916 should be included in the output. If None, an appropriate
916 917 blank namespace should be created.
917 918
918 919 Returns
919 920 -------
920 921 A pair of dictionary-like object to be used as the local namespace
921 922 of the interpreter and a dict to be used as the global namespace.
922 923 """
923 924
924 925
925 926 # We must ensure that __builtin__ (without the final 's') is always
926 927 # available and pointing to the __builtin__ *module*. For more details:
927 928 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
928 929
929 930 if user_ns is None:
930 931 # Set __name__ to __main__ to better match the behavior of the
931 932 # normal interpreter.
932 933 user_ns = {'__name__' :'__main__',
933 934 '__builtin__' : __builtin__,
934 935 '__builtins__' : __builtin__,
935 936 }
936 937 else:
937 938 user_ns.setdefault('__name__','__main__')
938 939 user_ns.setdefault('__builtin__',__builtin__)
939 940 user_ns.setdefault('__builtins__',__builtin__)
940 941
941 942 if user_global_ns is None:
942 943 user_global_ns = user_ns
943 944 if type(user_global_ns) is not dict:
944 945 raise TypeError("user_global_ns must be a true dict; got %r"
945 946 % type(user_global_ns))
946 947
947 948 return user_ns, user_global_ns
948 949
949 950 def init_sys_modules(self):
950 951 # We need to insert into sys.modules something that looks like a
951 952 # module but which accesses the IPython namespace, for shelve and
952 953 # pickle to work interactively. Normally they rely on getting
953 954 # everything out of __main__, but for embedding purposes each IPython
954 955 # instance has its own private namespace, so we can't go shoving
955 956 # everything into __main__.
956 957
957 958 # note, however, that we should only do this for non-embedded
958 959 # ipythons, which really mimic the __main__.__dict__ with their own
959 960 # namespace. Embedded instances, on the other hand, should not do
960 961 # this because they need to manage the user local/global namespaces
961 962 # only, but they live within a 'normal' __main__ (meaning, they
962 963 # shouldn't overtake the execution environment of the script they're
963 964 # embedded in).
964 965
965 966 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
966 967
967 968 try:
968 969 main_name = self.user_ns['__name__']
969 970 except KeyError:
970 971 raise KeyError('user_ns dictionary MUST have a "__name__" key')
971 972 else:
972 973 sys.modules[main_name] = FakeModule(self.user_ns)
973 974
974 975 def init_user_ns(self):
975 976 """Initialize all user-visible namespaces to their minimum defaults.
976 977
977 978 Certain history lists are also initialized here, as they effectively
978 979 act as user namespaces.
979 980
980 981 Notes
981 982 -----
982 983 All data structures here are only filled in, they are NOT reset by this
983 984 method. If they were not empty before, data will simply be added to
984 985 therm.
985 986 """
986 987 # This function works in two parts: first we put a few things in
987 988 # user_ns, and we sync that contents into user_ns_hidden so that these
988 989 # initial variables aren't shown by %who. After the sync, we add the
989 990 # rest of what we *do* want the user to see with %who even on a new
990 991 # session (probably nothing, so theye really only see their own stuff)
991 992
992 993 # The user dict must *always* have a __builtin__ reference to the
993 994 # Python standard __builtin__ namespace, which must be imported.
994 995 # This is so that certain operations in prompt evaluation can be
995 996 # reliably executed with builtins. Note that we can NOT use
996 997 # __builtins__ (note the 's'), because that can either be a dict or a
997 998 # module, and can even mutate at runtime, depending on the context
998 999 # (Python makes no guarantees on it). In contrast, __builtin__ is
999 1000 # always a module object, though it must be explicitly imported.
1000 1001
1001 1002 # For more details:
1002 1003 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
1003 1004 ns = dict(__builtin__ = __builtin__)
1004 1005
1005 1006 # Put 'help' in the user namespace
1006 1007 try:
1007 1008 from site import _Helper
1008 1009 ns['help'] = _Helper()
1009 1010 except ImportError:
1010 1011 warn('help() not available - check site.py')
1011 1012
1012 1013 # make global variables for user access to the histories
1013 1014 ns['_ih'] = self.history_manager.input_hist_parsed
1014 1015 ns['_oh'] = self.history_manager.output_hist
1015 1016 ns['_dh'] = self.history_manager.dir_hist
1016 1017
1017 1018 ns['_sh'] = shadowns
1018 1019
1019 1020 # user aliases to input and output histories. These shouldn't show up
1020 1021 # in %who, as they can have very large reprs.
1021 1022 ns['In'] = self.history_manager.input_hist_parsed
1022 1023 ns['Out'] = self.history_manager.output_hist
1023 1024
1024 1025 # Store myself as the public api!!!
1025 1026 ns['get_ipython'] = self.get_ipython
1027
1028 exiter = ExitAutocall(self)
1029 for n in ['exit', 'Exit', 'quit', 'Quit']:
1030 ns[n] = exiter
1026 1031
1027 1032 # Sync what we've added so far to user_ns_hidden so these aren't seen
1028 1033 # by %who
1029 1034 self.user_ns_hidden.update(ns)
1030 1035
1031 1036 # Anything put into ns now would show up in %who. Think twice before
1032 1037 # putting anything here, as we really want %who to show the user their
1033 1038 # stuff, not our variables.
1034 1039
1035 1040 # Finally, update the real user's namespace
1036 1041 self.user_ns.update(ns)
1037 1042
1038 1043 def reset(self, new_session=True):
1039 1044 """Clear all internal namespaces.
1040 1045
1041 1046 Note that this is much more aggressive than %reset, since it clears
1042 1047 fully all namespaces, as well as all input/output lists.
1043 1048
1044 1049 If new_session is True, a new history session will be opened.
1045 1050 """
1046 1051 # Clear histories
1047 1052 self.history_manager.reset(new_session)
1048 1053 # Reset counter used to index all histories
1049 1054 if new_session:
1050 1055 self.execution_count = 1
1051 1056
1052 1057 # Flush cached output items
1053 1058 self.displayhook.flush()
1054 1059
1055 1060 # Restore the user namespaces to minimal usability
1056 1061 for ns in self.ns_refs_table:
1057 1062 ns.clear()
1058 1063
1059 1064 # The main execution namespaces must be cleared very carefully,
1060 1065 # skipping the deletion of the builtin-related keys, because doing so
1061 1066 # would cause errors in many object's __del__ methods.
1062 1067 for ns in [self.user_ns, self.user_global_ns]:
1063 1068 drop_keys = set(ns.keys())
1064 1069 drop_keys.discard('__builtin__')
1065 1070 drop_keys.discard('__builtins__')
1066 1071 for k in drop_keys:
1067 1072 del ns[k]
1068 1073
1069 1074 # Restore the user namespaces to minimal usability
1070 1075 self.init_user_ns()
1071 1076
1072 1077 # Restore the default and user aliases
1073 1078 self.alias_manager.clear_aliases()
1074 1079 self.alias_manager.init_aliases()
1075 1080
1076 1081 # Flush the private list of module references kept for script
1077 1082 # execution protection
1078 1083 self.clear_main_mod_cache()
1079 1084
1080 1085 def reset_selective(self, regex=None):
1081 1086 """Clear selective variables from internal namespaces based on a
1082 1087 specified regular expression.
1083 1088
1084 1089 Parameters
1085 1090 ----------
1086 1091 regex : string or compiled pattern, optional
1087 1092 A regular expression pattern that will be used in searching
1088 1093 variable names in the users namespaces.
1089 1094 """
1090 1095 if regex is not None:
1091 1096 try:
1092 1097 m = re.compile(regex)
1093 1098 except TypeError:
1094 1099 raise TypeError('regex must be a string or compiled pattern')
1095 1100 # Search for keys in each namespace that match the given regex
1096 1101 # If a match is found, delete the key/value pair.
1097 1102 for ns in self.ns_refs_table:
1098 1103 for var in ns:
1099 1104 if m.search(var):
1100 1105 del ns[var]
1101 1106
1102 1107 def push(self, variables, interactive=True):
1103 1108 """Inject a group of variables into the IPython user namespace.
1104 1109
1105 1110 Parameters
1106 1111 ----------
1107 1112 variables : dict, str or list/tuple of str
1108 1113 The variables to inject into the user's namespace. If a dict, a
1109 1114 simple update is done. If a str, the string is assumed to have
1110 1115 variable names separated by spaces. A list/tuple of str can also
1111 1116 be used to give the variable names. If just the variable names are
1112 1117 give (list/tuple/str) then the variable values looked up in the
1113 1118 callers frame.
1114 1119 interactive : bool
1115 1120 If True (default), the variables will be listed with the ``who``
1116 1121 magic.
1117 1122 """
1118 1123 vdict = None
1119 1124
1120 1125 # We need a dict of name/value pairs to do namespace updates.
1121 1126 if isinstance(variables, dict):
1122 1127 vdict = variables
1123 1128 elif isinstance(variables, (basestring, list, tuple)):
1124 1129 if isinstance(variables, basestring):
1125 1130 vlist = variables.split()
1126 1131 else:
1127 1132 vlist = variables
1128 1133 vdict = {}
1129 1134 cf = sys._getframe(1)
1130 1135 for name in vlist:
1131 1136 try:
1132 1137 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1133 1138 except:
1134 1139 print ('Could not get variable %s from %s' %
1135 1140 (name,cf.f_code.co_name))
1136 1141 else:
1137 1142 raise ValueError('variables must be a dict/str/list/tuple')
1138 1143
1139 1144 # Propagate variables to user namespace
1140 1145 self.user_ns.update(vdict)
1141 1146
1142 1147 # And configure interactive visibility
1143 1148 config_ns = self.user_ns_hidden
1144 1149 if interactive:
1145 1150 for name, val in vdict.iteritems():
1146 1151 config_ns.pop(name, None)
1147 1152 else:
1148 1153 for name,val in vdict.iteritems():
1149 1154 config_ns[name] = val
1150 1155
1151 1156 #-------------------------------------------------------------------------
1152 1157 # Things related to object introspection
1153 1158 #-------------------------------------------------------------------------
1154 1159
1155 1160 def _ofind(self, oname, namespaces=None):
1156 1161 """Find an object in the available namespaces.
1157 1162
1158 1163 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1159 1164
1160 1165 Has special code to detect magic functions.
1161 1166 """
1162 1167 #oname = oname.strip()
1163 1168 #print '1- oname: <%r>' % oname # dbg
1164 1169 try:
1165 1170 oname = oname.strip().encode('ascii')
1166 1171 #print '2- oname: <%r>' % oname # dbg
1167 1172 except UnicodeEncodeError:
1168 1173 print 'Python identifiers can only contain ascii characters.'
1169 1174 return dict(found=False)
1170 1175
1171 1176 alias_ns = None
1172 1177 if namespaces is None:
1173 1178 # Namespaces to search in:
1174 1179 # Put them in a list. The order is important so that we
1175 1180 # find things in the same order that Python finds them.
1176 1181 namespaces = [ ('Interactive', self.user_ns),
1177 1182 ('IPython internal', self.internal_ns),
1178 1183 ('Python builtin', __builtin__.__dict__),
1179 1184 ('Alias', self.alias_manager.alias_table),
1180 1185 ]
1181 1186 alias_ns = self.alias_manager.alias_table
1182 1187
1183 1188 # initialize results to 'null'
1184 1189 found = False; obj = None; ospace = None; ds = None;
1185 1190 ismagic = False; isalias = False; parent = None
1186 1191
1187 1192 # We need to special-case 'print', which as of python2.6 registers as a
1188 1193 # function but should only be treated as one if print_function was
1189 1194 # loaded with a future import. In this case, just bail.
1190 1195 if (oname == 'print' and not (self.compile.compiler_flags &
1191 1196 __future__.CO_FUTURE_PRINT_FUNCTION)):
1192 1197 return {'found':found, 'obj':obj, 'namespace':ospace,
1193 1198 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1194 1199
1195 1200 # Look for the given name by splitting it in parts. If the head is
1196 1201 # found, then we look for all the remaining parts as members, and only
1197 1202 # declare success if we can find them all.
1198 1203 oname_parts = oname.split('.')
1199 1204 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1200 1205 for nsname,ns in namespaces:
1201 1206 try:
1202 1207 obj = ns[oname_head]
1203 1208 except KeyError:
1204 1209 continue
1205 1210 else:
1206 1211 #print 'oname_rest:', oname_rest # dbg
1207 1212 for part in oname_rest:
1208 1213 try:
1209 1214 parent = obj
1210 1215 obj = getattr(obj,part)
1211 1216 except:
1212 1217 # Blanket except b/c some badly implemented objects
1213 1218 # allow __getattr__ to raise exceptions other than
1214 1219 # AttributeError, which then crashes IPython.
1215 1220 break
1216 1221 else:
1217 1222 # If we finish the for loop (no break), we got all members
1218 1223 found = True
1219 1224 ospace = nsname
1220 1225 if ns == alias_ns:
1221 1226 isalias = True
1222 1227 break # namespace loop
1223 1228
1224 1229 # Try to see if it's magic
1225 1230 if not found:
1226 1231 if oname.startswith(ESC_MAGIC):
1227 1232 oname = oname[1:]
1228 1233 obj = getattr(self,'magic_'+oname,None)
1229 1234 if obj is not None:
1230 1235 found = True
1231 1236 ospace = 'IPython internal'
1232 1237 ismagic = True
1233 1238
1234 1239 # Last try: special-case some literals like '', [], {}, etc:
1235 1240 if not found and oname_head in ["''",'""','[]','{}','()']:
1236 1241 obj = eval(oname_head)
1237 1242 found = True
1238 1243 ospace = 'Interactive'
1239 1244
1240 1245 return {'found':found, 'obj':obj, 'namespace':ospace,
1241 1246 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1242 1247
1243 1248 def _ofind_property(self, oname, info):
1244 1249 """Second part of object finding, to look for property details."""
1245 1250 if info.found:
1246 1251 # Get the docstring of the class property if it exists.
1247 1252 path = oname.split('.')
1248 1253 root = '.'.join(path[:-1])
1249 1254 if info.parent is not None:
1250 1255 try:
1251 1256 target = getattr(info.parent, '__class__')
1252 1257 # The object belongs to a class instance.
1253 1258 try:
1254 1259 target = getattr(target, path[-1])
1255 1260 # The class defines the object.
1256 1261 if isinstance(target, property):
1257 1262 oname = root + '.__class__.' + path[-1]
1258 1263 info = Struct(self._ofind(oname))
1259 1264 except AttributeError: pass
1260 1265 except AttributeError: pass
1261 1266
1262 1267 # We return either the new info or the unmodified input if the object
1263 1268 # hadn't been found
1264 1269 return info
1265 1270
1266 1271 def _object_find(self, oname, namespaces=None):
1267 1272 """Find an object and return a struct with info about it."""
1268 1273 inf = Struct(self._ofind(oname, namespaces))
1269 1274 return Struct(self._ofind_property(oname, inf))
1270 1275
1271 1276 def _inspect(self, meth, oname, namespaces=None, **kw):
1272 1277 """Generic interface to the inspector system.
1273 1278
1274 1279 This function is meant to be called by pdef, pdoc & friends."""
1275 1280 info = self._object_find(oname)
1276 1281 if info.found:
1277 1282 pmethod = getattr(self.inspector, meth)
1278 1283 formatter = format_screen if info.ismagic else None
1279 1284 if meth == 'pdoc':
1280 1285 pmethod(info.obj, oname, formatter)
1281 1286 elif meth == 'pinfo':
1282 1287 pmethod(info.obj, oname, formatter, info, **kw)
1283 1288 else:
1284 1289 pmethod(info.obj, oname)
1285 1290 else:
1286 1291 print 'Object `%s` not found.' % oname
1287 1292 return 'not found' # so callers can take other action
1288 1293
1289 1294 def object_inspect(self, oname):
1290 1295 with self.builtin_trap:
1291 1296 info = self._object_find(oname)
1292 1297 if info.found:
1293 1298 return self.inspector.info(info.obj, oname, info=info)
1294 1299 else:
1295 1300 return oinspect.object_info(name=oname, found=False)
1296 1301
1297 1302 #-------------------------------------------------------------------------
1298 1303 # Things related to history management
1299 1304 #-------------------------------------------------------------------------
1300 1305
1301 1306 def init_history(self):
1302 1307 """Sets up the command history, and starts regular autosaves."""
1303 1308 self.history_manager = HistoryManager(shell=self, config=self.config)
1304 1309
1305 1310 #-------------------------------------------------------------------------
1306 1311 # Things related to exception handling and tracebacks (not debugging)
1307 1312 #-------------------------------------------------------------------------
1308 1313
1309 1314 def init_traceback_handlers(self, custom_exceptions):
1310 1315 # Syntax error handler.
1311 1316 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1312 1317
1313 1318 # The interactive one is initialized with an offset, meaning we always
1314 1319 # want to remove the topmost item in the traceback, which is our own
1315 1320 # internal code. Valid modes: ['Plain','Context','Verbose']
1316 1321 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1317 1322 color_scheme='NoColor',
1318 1323 tb_offset = 1,
1319 1324 check_cache=self.compile.check_cache)
1320 1325
1321 1326 # The instance will store a pointer to the system-wide exception hook,
1322 1327 # so that runtime code (such as magics) can access it. This is because
1323 1328 # during the read-eval loop, it may get temporarily overwritten.
1324 1329 self.sys_excepthook = sys.excepthook
1325 1330
1326 1331 # and add any custom exception handlers the user may have specified
1327 1332 self.set_custom_exc(*custom_exceptions)
1328 1333
1329 1334 # Set the exception mode
1330 1335 self.InteractiveTB.set_mode(mode=self.xmode)
1331 1336
1332 1337 def set_custom_exc(self, exc_tuple, handler):
1333 1338 """set_custom_exc(exc_tuple,handler)
1334 1339
1335 1340 Set a custom exception handler, which will be called if any of the
1336 1341 exceptions in exc_tuple occur in the mainloop (specifically, in the
1337 1342 run_code() method.
1338 1343
1339 1344 Inputs:
1340 1345
1341 1346 - exc_tuple: a *tuple* of valid exceptions to call the defined
1342 1347 handler for. It is very important that you use a tuple, and NOT A
1343 1348 LIST here, because of the way Python's except statement works. If
1344 1349 you only want to trap a single exception, use a singleton tuple:
1345 1350
1346 1351 exc_tuple == (MyCustomException,)
1347 1352
1348 1353 - handler: this must be defined as a function with the following
1349 1354 basic interface::
1350 1355
1351 1356 def my_handler(self, etype, value, tb, tb_offset=None)
1352 1357 ...
1353 1358 # The return value must be
1354 1359 return structured_traceback
1355 1360
1356 1361 This will be made into an instance method (via types.MethodType)
1357 1362 of IPython itself, and it will be called if any of the exceptions
1358 1363 listed in the exc_tuple are caught. If the handler is None, an
1359 1364 internal basic one is used, which just prints basic info.
1360 1365
1361 1366 WARNING: by putting in your own exception handler into IPython's main
1362 1367 execution loop, you run a very good chance of nasty crashes. This
1363 1368 facility should only be used if you really know what you are doing."""
1364 1369
1365 1370 assert type(exc_tuple)==type(()) , \
1366 1371 "The custom exceptions must be given AS A TUPLE."
1367 1372
1368 1373 def dummy_handler(self,etype,value,tb):
1369 1374 print '*** Simple custom exception handler ***'
1370 1375 print 'Exception type :',etype
1371 1376 print 'Exception value:',value
1372 1377 print 'Traceback :',tb
1373 1378 print 'Source code :','\n'.join(self.buffer)
1374 1379
1375 1380 if handler is None: handler = dummy_handler
1376 1381
1377 1382 self.CustomTB = types.MethodType(handler,self)
1378 1383 self.custom_exceptions = exc_tuple
1379 1384
1380 1385 def excepthook(self, etype, value, tb):
1381 1386 """One more defense for GUI apps that call sys.excepthook.
1382 1387
1383 1388 GUI frameworks like wxPython trap exceptions and call
1384 1389 sys.excepthook themselves. I guess this is a feature that
1385 1390 enables them to keep running after exceptions that would
1386 1391 otherwise kill their mainloop. This is a bother for IPython
1387 1392 which excepts to catch all of the program exceptions with a try:
1388 1393 except: statement.
1389 1394
1390 1395 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1391 1396 any app directly invokes sys.excepthook, it will look to the user like
1392 1397 IPython crashed. In order to work around this, we can disable the
1393 1398 CrashHandler and replace it with this excepthook instead, which prints a
1394 1399 regular traceback using our InteractiveTB. In this fashion, apps which
1395 1400 call sys.excepthook will generate a regular-looking exception from
1396 1401 IPython, and the CrashHandler will only be triggered by real IPython
1397 1402 crashes.
1398 1403
1399 1404 This hook should be used sparingly, only in places which are not likely
1400 1405 to be true IPython errors.
1401 1406 """
1402 1407 self.showtraceback((etype,value,tb),tb_offset=0)
1403 1408
1404 1409 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1405 1410 exception_only=False):
1406 1411 """Display the exception that just occurred.
1407 1412
1408 1413 If nothing is known about the exception, this is the method which
1409 1414 should be used throughout the code for presenting user tracebacks,
1410 1415 rather than directly invoking the InteractiveTB object.
1411 1416
1412 1417 A specific showsyntaxerror() also exists, but this method can take
1413 1418 care of calling it if needed, so unless you are explicitly catching a
1414 1419 SyntaxError exception, don't try to analyze the stack manually and
1415 1420 simply call this method."""
1416 1421
1417 1422 try:
1418 1423 if exc_tuple is None:
1419 1424 etype, value, tb = sys.exc_info()
1420 1425 else:
1421 1426 etype, value, tb = exc_tuple
1422 1427
1423 1428 if etype is None:
1424 1429 if hasattr(sys, 'last_type'):
1425 1430 etype, value, tb = sys.last_type, sys.last_value, \
1426 1431 sys.last_traceback
1427 1432 else:
1428 1433 self.write_err('No traceback available to show.\n')
1429 1434 return
1430 1435
1431 1436 if etype is SyntaxError:
1432 1437 # Though this won't be called by syntax errors in the input
1433 1438 # line, there may be SyntaxError cases whith imported code.
1434 1439 self.showsyntaxerror(filename)
1435 1440 elif etype is UsageError:
1436 1441 print "UsageError:", value
1437 1442 else:
1438 1443 # WARNING: these variables are somewhat deprecated and not
1439 1444 # necessarily safe to use in a threaded environment, but tools
1440 1445 # like pdb depend on their existence, so let's set them. If we
1441 1446 # find problems in the field, we'll need to revisit their use.
1442 1447 sys.last_type = etype
1443 1448 sys.last_value = value
1444 1449 sys.last_traceback = tb
1445 1450 if etype in self.custom_exceptions:
1446 1451 # FIXME: Old custom traceback objects may just return a
1447 1452 # string, in that case we just put it into a list
1448 1453 stb = self.CustomTB(etype, value, tb, tb_offset)
1449 1454 if isinstance(ctb, basestring):
1450 1455 stb = [stb]
1451 1456 else:
1452 1457 if exception_only:
1453 1458 stb = ['An exception has occurred, use %tb to see '
1454 1459 'the full traceback.\n']
1455 1460 stb.extend(self.InteractiveTB.get_exception_only(etype,
1456 1461 value))
1457 1462 else:
1458 1463 stb = self.InteractiveTB.structured_traceback(etype,
1459 1464 value, tb, tb_offset=tb_offset)
1460 1465
1461 1466 if self.call_pdb:
1462 1467 # drop into debugger
1463 1468 self.debugger(force=True)
1464 1469
1465 1470 # Actually show the traceback
1466 1471 self._showtraceback(etype, value, stb)
1467 1472
1468 1473 except KeyboardInterrupt:
1469 1474 self.write_err("\nKeyboardInterrupt\n")
1470 1475
1471 1476 def _showtraceback(self, etype, evalue, stb):
1472 1477 """Actually show a traceback.
1473 1478
1474 1479 Subclasses may override this method to put the traceback on a different
1475 1480 place, like a side channel.
1476 1481 """
1477 1482 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1478 1483
1479 1484 def showsyntaxerror(self, filename=None):
1480 1485 """Display the syntax error that just occurred.
1481 1486
1482 1487 This doesn't display a stack trace because there isn't one.
1483 1488
1484 1489 If a filename is given, it is stuffed in the exception instead
1485 1490 of what was there before (because Python's parser always uses
1486 1491 "<string>" when reading from a string).
1487 1492 """
1488 1493 etype, value, last_traceback = sys.exc_info()
1489 1494
1490 1495 # See note about these variables in showtraceback() above
1491 1496 sys.last_type = etype
1492 1497 sys.last_value = value
1493 1498 sys.last_traceback = last_traceback
1494 1499
1495 1500 if filename and etype is SyntaxError:
1496 1501 # Work hard to stuff the correct filename in the exception
1497 1502 try:
1498 1503 msg, (dummy_filename, lineno, offset, line) = value
1499 1504 except:
1500 1505 # Not the format we expect; leave it alone
1501 1506 pass
1502 1507 else:
1503 1508 # Stuff in the right filename
1504 1509 try:
1505 1510 # Assume SyntaxError is a class exception
1506 1511 value = SyntaxError(msg, (filename, lineno, offset, line))
1507 1512 except:
1508 1513 # If that failed, assume SyntaxError is a string
1509 1514 value = msg, (filename, lineno, offset, line)
1510 1515 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1511 1516 self._showtraceback(etype, value, stb)
1512 1517
1513 1518 #-------------------------------------------------------------------------
1514 1519 # Things related to readline
1515 1520 #-------------------------------------------------------------------------
1516 1521
1517 1522 def init_readline(self):
1518 1523 """Command history completion/saving/reloading."""
1519 1524
1520 1525 if self.readline_use:
1521 1526 import IPython.utils.rlineimpl as readline
1522 1527
1523 1528 self.rl_next_input = None
1524 1529 self.rl_do_indent = False
1525 1530
1526 1531 if not self.readline_use or not readline.have_readline:
1527 1532 self.has_readline = False
1528 1533 self.readline = None
1529 1534 # Set a number of methods that depend on readline to be no-op
1530 1535 self.set_readline_completer = no_op
1531 1536 self.set_custom_completer = no_op
1532 1537 self.set_completer_frame = no_op
1533 1538 warn('Readline services not available or not loaded.')
1534 1539 else:
1535 1540 self.has_readline = True
1536 1541 self.readline = readline
1537 1542 sys.modules['readline'] = readline
1538 1543
1539 1544 # Platform-specific configuration
1540 1545 if os.name == 'nt':
1541 1546 # FIXME - check with Frederick to see if we can harmonize
1542 1547 # naming conventions with pyreadline to avoid this
1543 1548 # platform-dependent check
1544 1549 self.readline_startup_hook = readline.set_pre_input_hook
1545 1550 else:
1546 1551 self.readline_startup_hook = readline.set_startup_hook
1547 1552
1548 1553 # Load user's initrc file (readline config)
1549 1554 # Or if libedit is used, load editrc.
1550 1555 inputrc_name = os.environ.get('INPUTRC')
1551 1556 if inputrc_name is None:
1552 1557 home_dir = get_home_dir()
1553 1558 if home_dir is not None:
1554 1559 inputrc_name = '.inputrc'
1555 1560 if readline.uses_libedit:
1556 1561 inputrc_name = '.editrc'
1557 1562 inputrc_name = os.path.join(home_dir, inputrc_name)
1558 1563 if os.path.isfile(inputrc_name):
1559 1564 try:
1560 1565 readline.read_init_file(inputrc_name)
1561 1566 except:
1562 1567 warn('Problems reading readline initialization file <%s>'
1563 1568 % inputrc_name)
1564 1569
1565 1570 # Configure readline according to user's prefs
1566 1571 # This is only done if GNU readline is being used. If libedit
1567 1572 # is being used (as on Leopard) the readline config is
1568 1573 # not run as the syntax for libedit is different.
1569 1574 if not readline.uses_libedit:
1570 1575 for rlcommand in self.readline_parse_and_bind:
1571 1576 #print "loading rl:",rlcommand # dbg
1572 1577 readline.parse_and_bind(rlcommand)
1573 1578
1574 1579 # Remove some chars from the delimiters list. If we encounter
1575 1580 # unicode chars, discard them.
1576 1581 delims = readline.get_completer_delims().encode("ascii", "ignore")
1577 1582 delims = delims.translate(None, self.readline_remove_delims)
1578 1583 delims = delims.replace(ESC_MAGIC, '')
1579 1584 readline.set_completer_delims(delims)
1580 1585 # otherwise we end up with a monster history after a while:
1581 1586 readline.set_history_length(self.history_length)
1582 1587
1583 1588 self.refill_readline_hist()
1584 1589 self.readline_no_record = ReadlineNoRecord(self)
1585 1590
1586 1591 # Configure auto-indent for all platforms
1587 1592 self.set_autoindent(self.autoindent)
1588 1593
1589 1594 def refill_readline_hist(self):
1590 1595 # Load the last 1000 lines from history
1591 1596 self.readline.clear_history()
1592 1597 stdin_encoding = sys.stdin.encoding or "utf-8"
1593 1598 for _, _, cell in self.history_manager.get_tail(1000,
1594 1599 include_latest=True):
1595 1600 if cell.strip(): # Ignore blank lines
1596 1601 for line in cell.splitlines():
1597 1602 self.readline.add_history(line.encode(stdin_encoding))
1598 1603
1599 1604 def set_next_input(self, s):
1600 1605 """ Sets the 'default' input string for the next command line.
1601 1606
1602 1607 Requires readline.
1603 1608
1604 1609 Example:
1605 1610
1606 1611 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1607 1612 [D:\ipython]|2> Hello Word_ # cursor is here
1608 1613 """
1609 1614
1610 1615 self.rl_next_input = s
1611 1616
1612 1617 # Maybe move this to the terminal subclass?
1613 1618 def pre_readline(self):
1614 1619 """readline hook to be used at the start of each line.
1615 1620
1616 1621 Currently it handles auto-indent only."""
1617 1622
1618 1623 if self.rl_do_indent:
1619 1624 self.readline.insert_text(self._indent_current_str())
1620 1625 if self.rl_next_input is not None:
1621 1626 self.readline.insert_text(self.rl_next_input)
1622 1627 self.rl_next_input = None
1623 1628
1624 1629 def _indent_current_str(self):
1625 1630 """return the current level of indentation as a string"""
1626 1631 return self.input_splitter.indent_spaces * ' '
1627 1632
1628 1633 #-------------------------------------------------------------------------
1629 1634 # Things related to text completion
1630 1635 #-------------------------------------------------------------------------
1631 1636
1632 1637 def init_completer(self):
1633 1638 """Initialize the completion machinery.
1634 1639
1635 1640 This creates completion machinery that can be used by client code,
1636 1641 either interactively in-process (typically triggered by the readline
1637 1642 library), programatically (such as in test suites) or out-of-prcess
1638 1643 (typically over the network by remote frontends).
1639 1644 """
1640 1645 from IPython.core.completer import IPCompleter
1641 1646 from IPython.core.completerlib import (module_completer,
1642 1647 magic_run_completer, cd_completer)
1643 1648
1644 1649 self.Completer = IPCompleter(self,
1645 1650 self.user_ns,
1646 1651 self.user_global_ns,
1647 1652 self.readline_omit__names,
1648 1653 self.alias_manager.alias_table,
1649 1654 self.has_readline)
1650 1655
1651 1656 # Add custom completers to the basic ones built into IPCompleter
1652 1657 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1653 1658 self.strdispatchers['complete_command'] = sdisp
1654 1659 self.Completer.custom_completers = sdisp
1655 1660
1656 1661 self.set_hook('complete_command', module_completer, str_key = 'import')
1657 1662 self.set_hook('complete_command', module_completer, str_key = 'from')
1658 1663 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1659 1664 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1660 1665
1661 1666 # Only configure readline if we truly are using readline. IPython can
1662 1667 # do tab-completion over the network, in GUIs, etc, where readline
1663 1668 # itself may be absent
1664 1669 if self.has_readline:
1665 1670 self.set_readline_completer()
1666 1671
1667 1672 def complete(self, text, line=None, cursor_pos=None):
1668 1673 """Return the completed text and a list of completions.
1669 1674
1670 1675 Parameters
1671 1676 ----------
1672 1677
1673 1678 text : string
1674 1679 A string of text to be completed on. It can be given as empty and
1675 1680 instead a line/position pair are given. In this case, the
1676 1681 completer itself will split the line like readline does.
1677 1682
1678 1683 line : string, optional
1679 1684 The complete line that text is part of.
1680 1685
1681 1686 cursor_pos : int, optional
1682 1687 The position of the cursor on the input line.
1683 1688
1684 1689 Returns
1685 1690 -------
1686 1691 text : string
1687 1692 The actual text that was completed.
1688 1693
1689 1694 matches : list
1690 1695 A sorted list with all possible completions.
1691 1696
1692 1697 The optional arguments allow the completion to take more context into
1693 1698 account, and are part of the low-level completion API.
1694 1699
1695 1700 This is a wrapper around the completion mechanism, similar to what
1696 1701 readline does at the command line when the TAB key is hit. By
1697 1702 exposing it as a method, it can be used by other non-readline
1698 1703 environments (such as GUIs) for text completion.
1699 1704
1700 1705 Simple usage example:
1701 1706
1702 1707 In [1]: x = 'hello'
1703 1708
1704 1709 In [2]: _ip.complete('x.l')
1705 1710 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1706 1711 """
1707 1712
1708 1713 # Inject names into __builtin__ so we can complete on the added names.
1709 1714 with self.builtin_trap:
1710 1715 return self.Completer.complete(text, line, cursor_pos)
1711 1716
1712 1717 def set_custom_completer(self, completer, pos=0):
1713 1718 """Adds a new custom completer function.
1714 1719
1715 1720 The position argument (defaults to 0) is the index in the completers
1716 1721 list where you want the completer to be inserted."""
1717 1722
1718 1723 newcomp = types.MethodType(completer,self.Completer)
1719 1724 self.Completer.matchers.insert(pos,newcomp)
1720 1725
1721 1726 def set_readline_completer(self):
1722 1727 """Reset readline's completer to be our own."""
1723 1728 self.readline.set_completer(self.Completer.rlcomplete)
1724 1729
1725 1730 def set_completer_frame(self, frame=None):
1726 1731 """Set the frame of the completer."""
1727 1732 if frame:
1728 1733 self.Completer.namespace = frame.f_locals
1729 1734 self.Completer.global_namespace = frame.f_globals
1730 1735 else:
1731 1736 self.Completer.namespace = self.user_ns
1732 1737 self.Completer.global_namespace = self.user_global_ns
1733 1738
1734 1739 #-------------------------------------------------------------------------
1735 1740 # Things related to magics
1736 1741 #-------------------------------------------------------------------------
1737 1742
1738 1743 def init_magics(self):
1739 1744 # FIXME: Move the color initialization to the DisplayHook, which
1740 1745 # should be split into a prompt manager and displayhook. We probably
1741 1746 # even need a centralize colors management object.
1742 1747 self.magic_colors(self.colors)
1743 1748 # History was moved to a separate module
1744 1749 from . import history
1745 1750 history.init_ipython(self)
1746 1751
1747 1752 def magic(self,arg_s):
1748 1753 """Call a magic function by name.
1749 1754
1750 1755 Input: a string containing the name of the magic function to call and
1751 1756 any additional arguments to be passed to the magic.
1752 1757
1753 1758 magic('name -opt foo bar') is equivalent to typing at the ipython
1754 1759 prompt:
1755 1760
1756 1761 In[1]: %name -opt foo bar
1757 1762
1758 1763 To call a magic without arguments, simply use magic('name').
1759 1764
1760 1765 This provides a proper Python function to call IPython's magics in any
1761 1766 valid Python code you can type at the interpreter, including loops and
1762 1767 compound statements.
1763 1768 """
1764 1769 args = arg_s.split(' ',1)
1765 1770 magic_name = args[0]
1766 1771 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1767 1772
1768 1773 try:
1769 1774 magic_args = args[1]
1770 1775 except IndexError:
1771 1776 magic_args = ''
1772 1777 fn = getattr(self,'magic_'+magic_name,None)
1773 1778 if fn is None:
1774 1779 error("Magic function `%s` not found." % magic_name)
1775 1780 else:
1776 1781 magic_args = self.var_expand(magic_args,1)
1777 1782 # Grab local namespace if we need it:
1778 1783 if getattr(fn, "needs_local_scope", False):
1779 1784 self._magic_locals = sys._getframe(1).f_locals
1780 1785 with nested(self.builtin_trap,):
1781 1786 result = fn(magic_args)
1782 1787 # Ensure we're not keeping object references around:
1783 1788 self._magic_locals = {}
1784 1789 return result
1785 1790
1786 1791 def define_magic(self, magicname, func):
1787 1792 """Expose own function as magic function for ipython
1788 1793
1789 1794 def foo_impl(self,parameter_s=''):
1790 1795 'My very own magic!. (Use docstrings, IPython reads them).'
1791 1796 print 'Magic function. Passed parameter is between < >:'
1792 1797 print '<%s>' % parameter_s
1793 1798 print 'The self object is:',self
1794 1799
1795 1800 self.define_magic('foo',foo_impl)
1796 1801 """
1797 1802
1798 1803 import new
1799 1804 im = types.MethodType(func,self)
1800 1805 old = getattr(self, "magic_" + magicname, None)
1801 1806 setattr(self, "magic_" + magicname, im)
1802 1807 return old
1803 1808
1804 1809 #-------------------------------------------------------------------------
1805 1810 # Things related to macros
1806 1811 #-------------------------------------------------------------------------
1807 1812
1808 1813 def define_macro(self, name, themacro):
1809 1814 """Define a new macro
1810 1815
1811 1816 Parameters
1812 1817 ----------
1813 1818 name : str
1814 1819 The name of the macro.
1815 1820 themacro : str or Macro
1816 1821 The action to do upon invoking the macro. If a string, a new
1817 1822 Macro object is created by passing the string to it.
1818 1823 """
1819 1824
1820 1825 from IPython.core import macro
1821 1826
1822 1827 if isinstance(themacro, basestring):
1823 1828 themacro = macro.Macro(themacro)
1824 1829 if not isinstance(themacro, macro.Macro):
1825 1830 raise ValueError('A macro must be a string or a Macro instance.')
1826 1831 self.user_ns[name] = themacro
1827 1832
1828 1833 #-------------------------------------------------------------------------
1829 1834 # Things related to the running of system commands
1830 1835 #-------------------------------------------------------------------------
1831 1836
1832 1837 def system(self, cmd):
1833 1838 """Call the given cmd in a subprocess.
1834 1839
1835 1840 Parameters
1836 1841 ----------
1837 1842 cmd : str
1838 1843 Command to execute (can not end in '&', as bacground processes are
1839 1844 not supported.
1840 1845 """
1841 1846 # We do not support backgrounding processes because we either use
1842 1847 # pexpect or pipes to read from. Users can always just call
1843 1848 # os.system() if they really want a background process.
1844 1849 if cmd.endswith('&'):
1845 1850 raise OSError("Background processes not supported.")
1846 1851
1847 1852 return system(self.var_expand(cmd, depth=2))
1848 1853
1849 1854 def getoutput(self, cmd, split=True):
1850 1855 """Get output (possibly including stderr) from a subprocess.
1851 1856
1852 1857 Parameters
1853 1858 ----------
1854 1859 cmd : str
1855 1860 Command to execute (can not end in '&', as background processes are
1856 1861 not supported.
1857 1862 split : bool, optional
1858 1863
1859 1864 If True, split the output into an IPython SList. Otherwise, an
1860 1865 IPython LSString is returned. These are objects similar to normal
1861 1866 lists and strings, with a few convenience attributes for easier
1862 1867 manipulation of line-based output. You can use '?' on them for
1863 1868 details.
1864 1869 """
1865 1870 if cmd.endswith('&'):
1866 1871 raise OSError("Background processes not supported.")
1867 1872 out = getoutput(self.var_expand(cmd, depth=2))
1868 1873 if split:
1869 1874 out = SList(out.splitlines())
1870 1875 else:
1871 1876 out = LSString(out)
1872 1877 return out
1873 1878
1874 1879 #-------------------------------------------------------------------------
1875 1880 # Things related to aliases
1876 1881 #-------------------------------------------------------------------------
1877 1882
1878 1883 def init_alias(self):
1879 1884 self.alias_manager = AliasManager(shell=self, config=self.config)
1880 1885 self.ns_table['alias'] = self.alias_manager.alias_table,
1881 1886
1882 1887 #-------------------------------------------------------------------------
1883 1888 # Things related to extensions and plugins
1884 1889 #-------------------------------------------------------------------------
1885 1890
1886 1891 def init_extension_manager(self):
1887 1892 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1888 1893
1889 1894 def init_plugin_manager(self):
1890 1895 self.plugin_manager = PluginManager(config=self.config)
1891 1896
1892 1897 #-------------------------------------------------------------------------
1893 1898 # Things related to payloads
1894 1899 #-------------------------------------------------------------------------
1895 1900
1896 1901 def init_payload(self):
1897 1902 self.payload_manager = PayloadManager(config=self.config)
1898 1903
1899 1904 #-------------------------------------------------------------------------
1900 1905 # Things related to the prefilter
1901 1906 #-------------------------------------------------------------------------
1902 1907
1903 1908 def init_prefilter(self):
1904 1909 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1905 1910 # Ultimately this will be refactored in the new interpreter code, but
1906 1911 # for now, we should expose the main prefilter method (there's legacy
1907 1912 # code out there that may rely on this).
1908 1913 self.prefilter = self.prefilter_manager.prefilter_lines
1909 1914
1910 1915 def auto_rewrite_input(self, cmd):
1911 1916 """Print to the screen the rewritten form of the user's command.
1912 1917
1913 1918 This shows visual feedback by rewriting input lines that cause
1914 1919 automatic calling to kick in, like::
1915 1920
1916 1921 /f x
1917 1922
1918 1923 into::
1919 1924
1920 1925 ------> f(x)
1921 1926
1922 1927 after the user's input prompt. This helps the user understand that the
1923 1928 input line was transformed automatically by IPython.
1924 1929 """
1925 1930 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1926 1931
1927 1932 try:
1928 1933 # plain ascii works better w/ pyreadline, on some machines, so
1929 1934 # we use it and only print uncolored rewrite if we have unicode
1930 1935 rw = str(rw)
1931 1936 print >> IPython.utils.io.Term.cout, rw
1932 1937 except UnicodeEncodeError:
1933 1938 print "------> " + cmd
1934 1939
1935 1940 #-------------------------------------------------------------------------
1936 1941 # Things related to extracting values/expressions from kernel and user_ns
1937 1942 #-------------------------------------------------------------------------
1938 1943
1939 1944 def _simple_error(self):
1940 1945 etype, value = sys.exc_info()[:2]
1941 1946 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1942 1947
1943 1948 def user_variables(self, names):
1944 1949 """Get a list of variable names from the user's namespace.
1945 1950
1946 1951 Parameters
1947 1952 ----------
1948 1953 names : list of strings
1949 1954 A list of names of variables to be read from the user namespace.
1950 1955
1951 1956 Returns
1952 1957 -------
1953 1958 A dict, keyed by the input names and with the repr() of each value.
1954 1959 """
1955 1960 out = {}
1956 1961 user_ns = self.user_ns
1957 1962 for varname in names:
1958 1963 try:
1959 1964 value = repr(user_ns[varname])
1960 1965 except:
1961 1966 value = self._simple_error()
1962 1967 out[varname] = value
1963 1968 return out
1964 1969
1965 1970 def user_expressions(self, expressions):
1966 1971 """Evaluate a dict of expressions in the user's namespace.
1967 1972
1968 1973 Parameters
1969 1974 ----------
1970 1975 expressions : dict
1971 1976 A dict with string keys and string values. The expression values
1972 1977 should be valid Python expressions, each of which will be evaluated
1973 1978 in the user namespace.
1974 1979
1975 1980 Returns
1976 1981 -------
1977 1982 A dict, keyed like the input expressions dict, with the repr() of each
1978 1983 value.
1979 1984 """
1980 1985 out = {}
1981 1986 user_ns = self.user_ns
1982 1987 global_ns = self.user_global_ns
1983 1988 for key, expr in expressions.iteritems():
1984 1989 try:
1985 1990 value = repr(eval(expr, global_ns, user_ns))
1986 1991 except:
1987 1992 value = self._simple_error()
1988 1993 out[key] = value
1989 1994 return out
1990 1995
1991 1996 #-------------------------------------------------------------------------
1992 1997 # Things related to the running of code
1993 1998 #-------------------------------------------------------------------------
1994 1999
1995 2000 def ex(self, cmd):
1996 2001 """Execute a normal python statement in user namespace."""
1997 2002 with nested(self.builtin_trap,):
1998 2003 exec cmd in self.user_global_ns, self.user_ns
1999 2004
2000 2005 def ev(self, expr):
2001 2006 """Evaluate python expression expr in user namespace.
2002 2007
2003 2008 Returns the result of evaluation
2004 2009 """
2005 2010 with nested(self.builtin_trap,):
2006 2011 return eval(expr, self.user_global_ns, self.user_ns)
2007 2012
2008 2013 def safe_execfile(self, fname, *where, **kw):
2009 2014 """A safe version of the builtin execfile().
2010 2015
2011 2016 This version will never throw an exception, but instead print
2012 2017 helpful error messages to the screen. This only works on pure
2013 2018 Python files with the .py extension.
2014 2019
2015 2020 Parameters
2016 2021 ----------
2017 2022 fname : string
2018 2023 The name of the file to be executed.
2019 2024 where : tuple
2020 2025 One or two namespaces, passed to execfile() as (globals,locals).
2021 2026 If only one is given, it is passed as both.
2022 2027 exit_ignore : bool (False)
2023 2028 If True, then silence SystemExit for non-zero status (it is always
2024 2029 silenced for zero status, as it is so common).
2025 2030 """
2026 2031 kw.setdefault('exit_ignore', False)
2027 2032
2028 2033 fname = os.path.abspath(os.path.expanduser(fname))
2029 2034 # Make sure we have a .py file
2030 2035 if not fname.endswith('.py'):
2031 2036 warn('File must end with .py to be run using execfile: <%s>' % fname)
2032 2037
2033 2038 # Make sure we can open the file
2034 2039 try:
2035 2040 with open(fname) as thefile:
2036 2041 pass
2037 2042 except:
2038 2043 warn('Could not open file <%s> for safe execution.' % fname)
2039 2044 return
2040 2045
2041 2046 # Find things also in current directory. This is needed to mimic the
2042 2047 # behavior of running a script from the system command line, where
2043 2048 # Python inserts the script's directory into sys.path
2044 2049 dname = os.path.dirname(fname)
2045 2050
2046 2051 if isinstance(fname, unicode):
2047 2052 # execfile uses default encoding instead of filesystem encoding
2048 2053 # so unicode filenames will fail
2049 2054 fname = fname.encode(sys.getfilesystemencoding() or sys.getdefaultencoding())
2050 2055
2051 2056 with prepended_to_syspath(dname):
2052 2057 try:
2053 2058 execfile(fname,*where)
2054 2059 except SystemExit, status:
2055 2060 # If the call was made with 0 or None exit status (sys.exit(0)
2056 2061 # or sys.exit() ), don't bother showing a traceback, as both of
2057 2062 # these are considered normal by the OS:
2058 2063 # > python -c'import sys;sys.exit(0)'; echo $?
2059 2064 # 0
2060 2065 # > python -c'import sys;sys.exit()'; echo $?
2061 2066 # 0
2062 2067 # For other exit status, we show the exception unless
2063 2068 # explicitly silenced, but only in short form.
2064 2069 if status.code not in (0, None) and not kw['exit_ignore']:
2065 2070 self.showtraceback(exception_only=True)
2066 2071 except:
2067 2072 self.showtraceback()
2068 2073
2069 2074 def safe_execfile_ipy(self, fname):
2070 2075 """Like safe_execfile, but for .ipy files with IPython syntax.
2071 2076
2072 2077 Parameters
2073 2078 ----------
2074 2079 fname : str
2075 2080 The name of the file to execute. The filename must have a
2076 2081 .ipy extension.
2077 2082 """
2078 2083 fname = os.path.abspath(os.path.expanduser(fname))
2079 2084
2080 2085 # Make sure we have a .py file
2081 2086 if not fname.endswith('.ipy'):
2082 2087 warn('File must end with .py to be run using execfile: <%s>' % fname)
2083 2088
2084 2089 # Make sure we can open the file
2085 2090 try:
2086 2091 with open(fname) as thefile:
2087 2092 pass
2088 2093 except:
2089 2094 warn('Could not open file <%s> for safe execution.' % fname)
2090 2095 return
2091 2096
2092 2097 # Find things also in current directory. This is needed to mimic the
2093 2098 # behavior of running a script from the system command line, where
2094 2099 # Python inserts the script's directory into sys.path
2095 2100 dname = os.path.dirname(fname)
2096 2101
2097 2102 with prepended_to_syspath(dname):
2098 2103 try:
2099 2104 with open(fname) as thefile:
2100 2105 # self.run_cell currently captures all exceptions
2101 2106 # raised in user code. It would be nice if there were
2102 2107 # versions of runlines, execfile that did raise, so
2103 2108 # we could catch the errors.
2104 2109 self.run_cell(thefile.read(), store_history=False)
2105 2110 except:
2106 2111 self.showtraceback()
2107 2112 warn('Unknown failure executing file: <%s>' % fname)
2108 2113
2109 2114 def run_cell(self, raw_cell, store_history=True):
2110 2115 """Run a complete IPython cell.
2111 2116
2112 2117 Parameters
2113 2118 ----------
2114 2119 raw_cell : str
2115 2120 The code (including IPython code such as %magic functions) to run.
2116 2121 store_history : bool
2117 2122 If True, the raw and translated cell will be stored in IPython's
2118 2123 history. For user code calling back into IPython's machinery, this
2119 2124 should be set to False.
2120 2125 """
2121 2126 if (not raw_cell) or raw_cell.isspace():
2122 2127 return
2123 2128
2124 2129 for line in raw_cell.splitlines():
2125 2130 self.input_splitter.push(line)
2126 2131 cell = self.input_splitter.source_reset()
2127 2132
2128 2133 with self.builtin_trap:
2129 2134 if len(cell.splitlines()) == 1:
2130 2135 cell = self.prefilter_manager.prefilter_lines(cell)
2131 2136
2132 2137 # Store raw and processed history
2133 2138 if store_history:
2134 2139 self.history_manager.store_inputs(self.execution_count,
2135 2140 cell, raw_cell)
2136 2141
2137 2142 self.logger.log(cell, raw_cell)
2138 2143
2139 2144 cell_name = self.compile.cache(cell, self.execution_count)
2140 2145
2141 2146 with self.display_trap:
2142 2147 try:
2143 2148 code_ast = ast.parse(cell, filename=cell_name)
2144 2149 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2145 2150 # Case 1
2146 2151 self.showsyntaxerror()
2147 2152 self.execution_count += 1
2148 2153 return None
2149 2154
2150 2155 interactivity = 'last' # Last node to be run interactive
2151 2156 if len(cell.splitlines()) == 1:
2152 2157 interactivity = 'all' # Single line; run fully interactive
2153 2158
2154 2159 self.run_ast_nodes(code_ast.body, cell_name, interactivity)
2155 2160
2156 2161 if store_history:
2157 2162 # Write output to the database. Does nothing unless
2158 2163 # history output logging is enabled.
2159 2164 self.history_manager.store_output(self.execution_count)
2160 2165 # Each cell is a *single* input, regardless of how many lines it has
2161 2166 self.execution_count += 1
2162 2167
2163 2168 def run_ast_nodes(self, nodelist, cell_name, interactivity='last'):
2164 2169 """Run a sequence of AST nodes. The execution mode depends on the
2165 2170 interactivity parameter.
2166 2171
2167 2172 Parameters
2168 2173 ----------
2169 2174 nodelist : list
2170 2175 A sequence of AST nodes to run.
2171 2176 cell_name : str
2172 2177 Will be passed to the compiler as the filename of the cell. Typically
2173 2178 the value returned by ip.compile.cache(cell).
2174 2179 interactivity : str
2175 2180 'all', 'last' or 'none', specifying which nodes should be run
2176 2181 interactively (displaying output from expressions). Other values for
2177 2182 this parameter will raise a ValueError.
2178 2183 """
2179 2184 if not nodelist:
2180 2185 return
2181 2186
2182 2187 if interactivity == 'none':
2183 2188 to_run_exec, to_run_interactive = nodelist, []
2184 2189 elif interactivity == 'last':
2185 2190 to_run_exec, to_run_interactive = nodelist[:-1], nodelist[-1:]
2186 2191 elif interactivity == 'all':
2187 2192 to_run_exec, to_run_interactive = [], nodelist
2188 2193 else:
2189 2194 raise ValueError("Interactivity was %r" % interactivity)
2190 2195
2191 2196 exec_count = self.execution_count
2192 2197 if to_run_exec:
2193 2198 mod = ast.Module(to_run_exec)
2194 2199 self.code_to_run = code = self.compile(mod, cell_name, "exec")
2195 2200 if self.run_code(code) == 1:
2196 2201 return
2197 2202
2198 2203 if to_run_interactive:
2199 2204 mod = ast.Interactive(to_run_interactive)
2200 2205 self.code_to_run = code = self.compile(mod, cell_name, "single")
2201 2206 return self.run_code(code)
2202 2207
2203 2208
2204 2209 # PENDING REMOVAL: this method is slated for deletion, once our new
2205 2210 # input logic has been 100% moved to frontends and is stable.
2206 2211 def runlines(self, lines, clean=False):
2207 2212 """Run a string of one or more lines of source.
2208 2213
2209 2214 This method is capable of running a string containing multiple source
2210 2215 lines, as if they had been entered at the IPython prompt. Since it
2211 2216 exposes IPython's processing machinery, the given strings can contain
2212 2217 magic calls (%magic), special shell access (!cmd), etc.
2213 2218 """
2214 2219
2215 2220 if not isinstance(lines, (list, tuple)):
2216 2221 lines = lines.splitlines()
2217 2222
2218 2223 if clean:
2219 2224 lines = self._cleanup_ipy_script(lines)
2220 2225
2221 2226 # We must start with a clean buffer, in case this is run from an
2222 2227 # interactive IPython session (via a magic, for example).
2223 2228 self.reset_buffer()
2224 2229
2225 2230 # Since we will prefilter all lines, store the user's raw input too
2226 2231 # before we apply any transformations
2227 2232 self.buffer_raw[:] = [ l+'\n' for l in lines]
2228 2233
2229 2234 more = False
2230 2235 prefilter_lines = self.prefilter_manager.prefilter_lines
2231 2236 with nested(self.builtin_trap, self.display_trap):
2232 2237 for line in lines:
2233 2238 # skip blank lines so we don't mess up the prompt counter, but
2234 2239 # do NOT skip even a blank line if we are in a code block (more
2235 2240 # is true)
2236 2241
2237 2242 if line or more:
2238 2243 more = self.push_line(prefilter_lines(line, more))
2239 2244 # IPython's run_source returns None if there was an error
2240 2245 # compiling the code. This allows us to stop processing
2241 2246 # right away, so the user gets the error message at the
2242 2247 # right place.
2243 2248 if more is None:
2244 2249 break
2245 2250 # final newline in case the input didn't have it, so that the code
2246 2251 # actually does get executed
2247 2252 if more:
2248 2253 self.push_line('\n')
2249 2254
2250 2255 def run_source(self, source, filename=None,
2251 2256 symbol='single', post_execute=True):
2252 2257 """Compile and run some source in the interpreter.
2253 2258
2254 2259 Arguments are as for compile_command().
2255 2260
2256 2261 One several things can happen:
2257 2262
2258 2263 1) The input is incorrect; compile_command() raised an
2259 2264 exception (SyntaxError or OverflowError). A syntax traceback
2260 2265 will be printed by calling the showsyntaxerror() method.
2261 2266
2262 2267 2) The input is incomplete, and more input is required;
2263 2268 compile_command() returned None. Nothing happens.
2264 2269
2265 2270 3) The input is complete; compile_command() returned a code
2266 2271 object. The code is executed by calling self.run_code() (which
2267 2272 also handles run-time exceptions, except for SystemExit).
2268 2273
2269 2274 The return value is:
2270 2275
2271 2276 - True in case 2
2272 2277
2273 2278 - False in the other cases, unless an exception is raised, where
2274 2279 None is returned instead. This can be used by external callers to
2275 2280 know whether to continue feeding input or not.
2276 2281
2277 2282 The return value can be used to decide whether to use sys.ps1 or
2278 2283 sys.ps2 to prompt the next line."""
2279 2284
2280 2285 # We need to ensure that the source is unicode from here on.
2281 2286 if type(source)==str:
2282 2287 usource = source.decode(self.stdin_encoding)
2283 2288 else:
2284 2289 usource = source
2285 2290
2286 2291 if False: # dbg
2287 2292 print 'Source:', repr(source) # dbg
2288 2293 print 'USource:', repr(usource) # dbg
2289 2294 print 'type:', type(source) # dbg
2290 2295 print 'encoding', self.stdin_encoding # dbg
2291 2296
2292 2297 try:
2293 2298 code_name = self.compile.cache(usource, self.execution_count)
2294 2299 code = self.compile(usource, code_name, symbol)
2295 2300 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2296 2301 # Case 1
2297 2302 self.showsyntaxerror(filename)
2298 2303 return None
2299 2304
2300 2305 if code is None:
2301 2306 # Case 2
2302 2307 return True
2303 2308
2304 2309 # Case 3
2305 2310 # We store the code object so that threaded shells and
2306 2311 # custom exception handlers can access all this info if needed.
2307 2312 # The source corresponding to this can be obtained from the
2308 2313 # buffer attribute as '\n'.join(self.buffer).
2309 2314 self.code_to_run = code
2310 2315 # now actually execute the code object
2311 2316 if self.run_code(code, post_execute) == 0:
2312 2317 return False
2313 2318 else:
2314 2319 return None
2315 2320
2316 2321 # For backwards compatibility
2317 2322 runsource = run_source
2318 2323
2319 2324 def run_code(self, code_obj, post_execute=True):
2320 2325 """Execute a code object.
2321 2326
2322 2327 When an exception occurs, self.showtraceback() is called to display a
2323 2328 traceback.
2324 2329
2325 2330 Return value: a flag indicating whether the code to be run completed
2326 2331 successfully:
2327 2332
2328 2333 - 0: successful execution.
2329 2334 - 1: an error occurred.
2330 2335 """
2331 2336
2332 2337 # Set our own excepthook in case the user code tries to call it
2333 2338 # directly, so that the IPython crash handler doesn't get triggered
2334 2339 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2335 2340
2336 2341 # we save the original sys.excepthook in the instance, in case config
2337 2342 # code (such as magics) needs access to it.
2338 2343 self.sys_excepthook = old_excepthook
2339 2344 outflag = 1 # happens in more places, so it's easier as default
2340 2345 try:
2341 2346 try:
2342 2347 self.hooks.pre_run_code_hook()
2343 2348 #rprint('Running code', repr(code_obj)) # dbg
2344 2349 exec code_obj in self.user_global_ns, self.user_ns
2345 2350 finally:
2346 2351 # Reset our crash handler in place
2347 2352 sys.excepthook = old_excepthook
2348 2353 except SystemExit:
2349 2354 self.reset_buffer()
2350 2355 self.showtraceback(exception_only=True)
2351 2356 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2352 2357 except self.custom_exceptions:
2353 2358 etype,value,tb = sys.exc_info()
2354 2359 self.CustomTB(etype,value,tb)
2355 2360 except:
2356 2361 self.showtraceback()
2357 2362 else:
2358 2363 outflag = 0
2359 2364 if softspace(sys.stdout, 0):
2360 2365 print
2361 2366
2362 2367 # Execute any registered post-execution functions. Here, any errors
2363 2368 # are reported only minimally and just on the terminal, because the
2364 2369 # main exception channel may be occupied with a user traceback.
2365 2370 # FIXME: we need to think this mechanism a little more carefully.
2366 2371 if post_execute:
2367 2372 for func in self._post_execute:
2368 2373 try:
2369 2374 func()
2370 2375 except:
2371 2376 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2372 2377 func
2373 2378 print >> io.Term.cout, head
2374 2379 print >> io.Term.cout, self._simple_error()
2375 2380 print >> io.Term.cout, 'Removing from post_execute'
2376 2381 self._post_execute.remove(func)
2377 2382
2378 2383 # Flush out code object which has been run (and source)
2379 2384 self.code_to_run = None
2380 2385 return outflag
2381 2386
2382 2387 # For backwards compatibility
2383 2388 runcode = run_code
2384 2389
2385 2390 # PENDING REMOVAL: this method is slated for deletion, once our new
2386 2391 # input logic has been 100% moved to frontends and is stable.
2387 2392 def push_line(self, line):
2388 2393 """Push a line to the interpreter.
2389 2394
2390 2395 The line should not have a trailing newline; it may have
2391 2396 internal newlines. The line is appended to a buffer and the
2392 2397 interpreter's run_source() method is called with the
2393 2398 concatenated contents of the buffer as source. If this
2394 2399 indicates that the command was executed or invalid, the buffer
2395 2400 is reset; otherwise, the command is incomplete, and the buffer
2396 2401 is left as it was after the line was appended. The return
2397 2402 value is 1 if more input is required, 0 if the line was dealt
2398 2403 with in some way (this is the same as run_source()).
2399 2404 """
2400 2405
2401 2406 # autoindent management should be done here, and not in the
2402 2407 # interactive loop, since that one is only seen by keyboard input. We
2403 2408 # need this done correctly even for code run via runlines (which uses
2404 2409 # push).
2405 2410
2406 2411 #print 'push line: <%s>' % line # dbg
2407 2412 self.buffer.append(line)
2408 2413 full_source = '\n'.join(self.buffer)
2409 2414 more = self.run_source(full_source, self.filename)
2410 2415 if not more:
2411 2416 self.history_manager.store_inputs(self.execution_count,
2412 2417 '\n'.join(self.buffer_raw), full_source)
2413 2418 self.reset_buffer()
2414 2419 self.execution_count += 1
2415 2420 return more
2416 2421
2417 2422 def reset_buffer(self):
2418 2423 """Reset the input buffer."""
2419 2424 self.buffer[:] = []
2420 2425 self.buffer_raw[:] = []
2421 2426 self.input_splitter.reset()
2422 2427
2423 2428 # For backwards compatibility
2424 2429 resetbuffer = reset_buffer
2425 2430
2426 2431 def _is_secondary_block_start(self, s):
2427 2432 if not s.endswith(':'):
2428 2433 return False
2429 2434 if (s.startswith('elif') or
2430 2435 s.startswith('else') or
2431 2436 s.startswith('except') or
2432 2437 s.startswith('finally')):
2433 2438 return True
2434 2439
2435 2440 def _cleanup_ipy_script(self, script):
2436 2441 """Make a script safe for self.runlines()
2437 2442
2438 2443 Currently, IPython is lines based, with blocks being detected by
2439 2444 empty lines. This is a problem for block based scripts that may
2440 2445 not have empty lines after blocks. This script adds those empty
2441 2446 lines to make scripts safe for running in the current line based
2442 2447 IPython.
2443 2448 """
2444 2449 res = []
2445 2450 lines = script.splitlines()
2446 2451 level = 0
2447 2452
2448 2453 for l in lines:
2449 2454 lstripped = l.lstrip()
2450 2455 stripped = l.strip()
2451 2456 if not stripped:
2452 2457 continue
2453 2458 newlevel = len(l) - len(lstripped)
2454 2459 if level > 0 and newlevel == 0 and \
2455 2460 not self._is_secondary_block_start(stripped):
2456 2461 # add empty line
2457 2462 res.append('')
2458 2463 res.append(l)
2459 2464 level = newlevel
2460 2465
2461 2466 return '\n'.join(res) + '\n'
2462 2467
2463 2468 #-------------------------------------------------------------------------
2464 2469 # Things related to GUI support and pylab
2465 2470 #-------------------------------------------------------------------------
2466 2471
2467 2472 def enable_pylab(self, gui=None):
2468 2473 raise NotImplementedError('Implement enable_pylab in a subclass')
2469 2474
2470 2475 #-------------------------------------------------------------------------
2471 2476 # Utilities
2472 2477 #-------------------------------------------------------------------------
2473 2478
2474 2479 def var_expand(self,cmd,depth=0):
2475 2480 """Expand python variables in a string.
2476 2481
2477 2482 The depth argument indicates how many frames above the caller should
2478 2483 be walked to look for the local namespace where to expand variables.
2479 2484
2480 2485 The global namespace for expansion is always the user's interactive
2481 2486 namespace.
2482 2487 """
2483 2488 res = ItplNS(cmd, self.user_ns, # globals
2484 2489 # Skip our own frame in searching for locals:
2485 2490 sys._getframe(depth+1).f_locals # locals
2486 2491 )
2487 2492 return str(res).decode(res.codec)
2488 2493
2489 2494 def mktempfile(self, data=None, prefix='ipython_edit_'):
2490 2495 """Make a new tempfile and return its filename.
2491 2496
2492 2497 This makes a call to tempfile.mktemp, but it registers the created
2493 2498 filename internally so ipython cleans it up at exit time.
2494 2499
2495 2500 Optional inputs:
2496 2501
2497 2502 - data(None): if data is given, it gets written out to the temp file
2498 2503 immediately, and the file is closed again."""
2499 2504
2500 2505 filename = tempfile.mktemp('.py', prefix)
2501 2506 self.tempfiles.append(filename)
2502 2507
2503 2508 if data:
2504 2509 tmp_file = open(filename,'w')
2505 2510 tmp_file.write(data)
2506 2511 tmp_file.close()
2507 2512 return filename
2508 2513
2509 2514 # TODO: This should be removed when Term is refactored.
2510 2515 def write(self,data):
2511 2516 """Write a string to the default output"""
2512 2517 io.Term.cout.write(data)
2513 2518
2514 2519 # TODO: This should be removed when Term is refactored.
2515 2520 def write_err(self,data):
2516 2521 """Write a string to the default error output"""
2517 2522 io.Term.cerr.write(data)
2518 2523
2519 2524 def ask_yes_no(self,prompt,default=True):
2520 2525 if self.quiet:
2521 2526 return True
2522 2527 return ask_yes_no(prompt,default)
2523 2528
2524 2529 def show_usage(self):
2525 2530 """Show a usage message"""
2526 2531 page.page(IPython.core.usage.interactive_usage)
2527 2532
2528 2533 def find_user_code(self, target, raw=True):
2529 2534 """Get a code string from history, file, or a string or macro.
2530 2535
2531 2536 This is mainly used by magic functions.
2532 2537
2533 2538 Parameters
2534 2539 ----------
2535 2540 target : str
2536 2541 A string specifying code to retrieve. This will be tried respectively
2537 2542 as: ranges of input history (see %history for syntax), a filename, or
2538 2543 an expression evaluating to a string or Macro in the user namespace.
2539 2544 raw : bool
2540 2545 If true (default), retrieve raw history. Has no effect on the other
2541 2546 retrieval mechanisms.
2542 2547
2543 2548 Returns
2544 2549 -------
2545 2550 A string of code.
2546 2551
2547 2552 ValueError is raised if nothing is found, and TypeError if it evaluates
2548 2553 to an object of another type. In each case, .args[0] is a printable
2549 2554 message.
2550 2555 """
2551 2556 code = self.extract_input_lines(target, raw=raw) # Grab history
2552 2557 if code:
2553 2558 return code
2554 2559 if os.path.isfile(target): # Read file
2555 2560 return open(target, "r").read()
2556 2561
2557 2562 try: # User namespace
2558 2563 codeobj = eval(target, self.user_ns)
2559 2564 except Exception:
2560 2565 raise ValueError(("'%s' was not found in history, as a file, nor in"
2561 2566 " the user namespace.") % target)
2562 2567 if isinstance(codeobj, basestring):
2563 2568 return codeobj
2564 2569 elif isinstance(codeobj, Macro):
2565 2570 return codeobj.value
2566 2571
2567 2572 raise TypeError("%s is neither a string nor a macro." % target,
2568 2573 codeobj)
2569 2574
2570 2575 #-------------------------------------------------------------------------
2571 2576 # Things related to IPython exiting
2572 2577 #-------------------------------------------------------------------------
2573 2578 def atexit_operations(self):
2574 2579 """This will be executed at the time of exit.
2575 2580
2576 2581 Cleanup operations and saving of persistent data that is done
2577 2582 unconditionally by IPython should be performed here.
2578 2583
2579 2584 For things that may depend on startup flags or platform specifics (such
2580 2585 as having readline or not), register a separate atexit function in the
2581 2586 code that has the appropriate information, rather than trying to
2582 2587 clutter
2583 2588 """
2584 2589 # Cleanup all tempfiles left around
2585 2590 for tfile in self.tempfiles:
2586 2591 try:
2587 2592 os.unlink(tfile)
2588 2593 except OSError:
2589 2594 pass
2590 2595
2591 2596 # Close the history session (this stores the end time and line count)
2592 2597 self.history_manager.end_session()
2593 2598
2594 2599 # Clear all user namespaces to release all references cleanly.
2595 2600 self.reset(new_session=False)
2596 2601
2597 2602 # Run user hooks
2598 2603 self.hooks.shutdown_hook()
2599 2604
2600 2605 def cleanup(self):
2601 2606 self.restore_sys_module_state()
2602 2607
2603 2608
2604 2609 class InteractiveShellABC(object):
2605 2610 """An abstract base class for InteractiveShell."""
2606 2611 __metaclass__ = abc.ABCMeta
2607 2612
2608 2613 InteractiveShellABC.register(InteractiveShell)
@@ -1,3478 +1,3470
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 from cStringIO import StringIO
29 29 from getopt import getopt,GetoptError
30 30 from pprint import pformat
31 31 from xmlrpclib import ServerProxy
32 32
33 33 # cProfile was added in Python2.5
34 34 try:
35 35 import cProfile as profile
36 36 import pstats
37 37 except ImportError:
38 38 # profile isn't bundled by default in Debian for license reasons
39 39 try:
40 40 import profile,pstats
41 41 except ImportError:
42 42 profile = pstats = None
43 43
44 44 import IPython
45 45 from IPython.core import debugger, oinspect
46 46 from IPython.core.error import TryNext
47 47 from IPython.core.error import UsageError
48 48 from IPython.core.fakemodule import FakeModule
49 49 from IPython.core.macro import Macro
50 50 from IPython.core import page
51 51 from IPython.core.prefilter import ESC_MAGIC
52 52 from IPython.lib.pylabtools import mpl_runner
53 53 from IPython.external.Itpl import itpl, printpl
54 54 from IPython.testing import decorators as testdec
55 55 from IPython.utils.io import file_read, nlprint
56 56 import IPython.utils.io
57 57 from IPython.utils.path import get_py_filename
58 58 from IPython.utils.process import arg_split, abbrev_cwd
59 59 from IPython.utils.terminal import set_term_title
60 60 from IPython.utils.text import LSString, SList, format_screen
61 61 from IPython.utils.timing import clock, clock2
62 62 from IPython.utils.warn import warn, error
63 63 from IPython.utils.ipstruct import Struct
64 64 import IPython.utils.generics
65 65
66 66 #-----------------------------------------------------------------------------
67 67 # Utility functions
68 68 #-----------------------------------------------------------------------------
69 69
70 70 def on_off(tag):
71 71 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
72 72 return ['OFF','ON'][tag]
73 73
74 74 class Bunch: pass
75 75
76 76 def compress_dhist(dh):
77 77 head, tail = dh[:-10], dh[-10:]
78 78
79 79 newhead = []
80 80 done = set()
81 81 for h in head:
82 82 if h in done:
83 83 continue
84 84 newhead.append(h)
85 85 done.add(h)
86 86
87 87 return newhead + tail
88 88
89 89 def needs_local_scope(func):
90 90 """Decorator to mark magic functions which need to local scope to run."""
91 91 func.needs_local_scope = True
92 92 return func
93 93
94 94 #***************************************************************************
95 95 # Main class implementing Magic functionality
96 96
97 97 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
98 98 # on construction of the main InteractiveShell object. Something odd is going
99 99 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
100 100 # eventually this needs to be clarified.
101 101 # BG: This is because InteractiveShell inherits from this, but is itself a
102 102 # Configurable. This messes up the MRO in some way. The fix is that we need to
103 103 # make Magic a configurable that InteractiveShell does not subclass.
104 104
105 105 class Magic:
106 106 """Magic functions for InteractiveShell.
107 107
108 108 Shell functions which can be reached as %function_name. All magic
109 109 functions should accept a string, which they can parse for their own
110 110 needs. This can make some functions easier to type, eg `%cd ../`
111 111 vs. `%cd("../")`
112 112
113 113 ALL definitions MUST begin with the prefix magic_. The user won't need it
114 114 at the command line, but it is is needed in the definition. """
115 115
116 116 # class globals
117 117 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
118 118 'Automagic is ON, % prefix NOT needed for magic functions.']
119 119
120 120 #......................................................................
121 121 # some utility functions
122 122
123 123 def __init__(self,shell):
124 124
125 125 self.options_table = {}
126 126 if profile is None:
127 127 self.magic_prun = self.profile_missing_notice
128 128 self.shell = shell
129 129
130 130 # namespace for holding state we may need
131 131 self._magic_state = Bunch()
132 132
133 133 def profile_missing_notice(self, *args, **kwargs):
134 134 error("""\
135 135 The profile module could not be found. It has been removed from the standard
136 136 python packages because of its non-free license. To use profiling, install the
137 137 python-profiler package from non-free.""")
138 138
139 139 def default_option(self,fn,optstr):
140 140 """Make an entry in the options_table for fn, with value optstr"""
141 141
142 142 if fn not in self.lsmagic():
143 143 error("%s is not a magic function" % fn)
144 144 self.options_table[fn] = optstr
145 145
146 146 def lsmagic(self):
147 147 """Return a list of currently available magic functions.
148 148
149 149 Gives a list of the bare names after mangling (['ls','cd', ...], not
150 150 ['magic_ls','magic_cd',...]"""
151 151
152 152 # FIXME. This needs a cleanup, in the way the magics list is built.
153 153
154 154 # magics in class definition
155 155 class_magic = lambda fn: fn.startswith('magic_') and \
156 156 callable(Magic.__dict__[fn])
157 157 # in instance namespace (run-time user additions)
158 158 inst_magic = lambda fn: fn.startswith('magic_') and \
159 159 callable(self.__dict__[fn])
160 160 # and bound magics by user (so they can access self):
161 161 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
162 162 callable(self.__class__.__dict__[fn])
163 163 magics = filter(class_magic,Magic.__dict__.keys()) + \
164 164 filter(inst_magic,self.__dict__.keys()) + \
165 165 filter(inst_bound_magic,self.__class__.__dict__.keys())
166 166 out = []
167 167 for fn in set(magics):
168 168 out.append(fn.replace('magic_','',1))
169 169 out.sort()
170 170 return out
171 171
172 172 def extract_input_lines(self, range_str, raw=False):
173 173 """Return as a string a set of input history slices.
174 174
175 175 Inputs:
176 176
177 177 - range_str: the set of slices is given as a string, like
178 178 "~5/6-~4/2 4:8 9", since this function is for use by magic functions
179 179 which get their arguments as strings. The number before the / is the
180 180 session number: ~n goes n back from the current session.
181 181
182 182 Optional inputs:
183 183
184 184 - raw(False): by default, the processed input is used. If this is
185 185 true, the raw input history is used instead.
186 186
187 187 Note that slices can be called with two notations:
188 188
189 189 N:M -> standard python form, means including items N...(M-1).
190 190
191 191 N-M -> include items N..M (closed endpoint)."""
192 192 lines = self.shell.history_manager.\
193 193 get_range_by_str(range_str, raw=raw)
194 194 return "\n".join(x for _, _, x in lines)
195 195
196 196 def arg_err(self,func):
197 197 """Print docstring if incorrect arguments were passed"""
198 198 print 'Error in arguments:'
199 199 print oinspect.getdoc(func)
200 200
201 201 def format_latex(self,strng):
202 202 """Format a string for latex inclusion."""
203 203
204 204 # Characters that need to be escaped for latex:
205 205 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
206 206 # Magic command names as headers:
207 207 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
208 208 re.MULTILINE)
209 209 # Magic commands
210 210 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
211 211 re.MULTILINE)
212 212 # Paragraph continue
213 213 par_re = re.compile(r'\\$',re.MULTILINE)
214 214
215 215 # The "\n" symbol
216 216 newline_re = re.compile(r'\\n')
217 217
218 218 # Now build the string for output:
219 219 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
220 220 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
221 221 strng)
222 222 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
223 223 strng = par_re.sub(r'\\\\',strng)
224 224 strng = escape_re.sub(r'\\\1',strng)
225 225 strng = newline_re.sub(r'\\textbackslash{}n',strng)
226 226 return strng
227 227
228 228 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
229 229 """Parse options passed to an argument string.
230 230
231 231 The interface is similar to that of getopt(), but it returns back a
232 232 Struct with the options as keys and the stripped argument string still
233 233 as a string.
234 234
235 235 arg_str is quoted as a true sys.argv vector by using shlex.split.
236 236 This allows us to easily expand variables, glob files, quote
237 237 arguments, etc.
238 238
239 239 Options:
240 240 -mode: default 'string'. If given as 'list', the argument string is
241 241 returned as a list (split on whitespace) instead of a string.
242 242
243 243 -list_all: put all option values in lists. Normally only options
244 244 appearing more than once are put in a list.
245 245
246 246 -posix (True): whether to split the input line in POSIX mode or not,
247 247 as per the conventions outlined in the shlex module from the
248 248 standard library."""
249 249
250 250 # inject default options at the beginning of the input line
251 251 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
252 252 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
253 253
254 254 mode = kw.get('mode','string')
255 255 if mode not in ['string','list']:
256 256 raise ValueError,'incorrect mode given: %s' % mode
257 257 # Get options
258 258 list_all = kw.get('list_all',0)
259 259 posix = kw.get('posix', os.name == 'posix')
260 260
261 261 # Check if we have more than one argument to warrant extra processing:
262 262 odict = {} # Dictionary with options
263 263 args = arg_str.split()
264 264 if len(args) >= 1:
265 265 # If the list of inputs only has 0 or 1 thing in it, there's no
266 266 # need to look for options
267 267 argv = arg_split(arg_str,posix)
268 268 # Do regular option processing
269 269 try:
270 270 opts,args = getopt(argv,opt_str,*long_opts)
271 271 except GetoptError,e:
272 272 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
273 273 " ".join(long_opts)))
274 274 for o,a in opts:
275 275 if o.startswith('--'):
276 276 o = o[2:]
277 277 else:
278 278 o = o[1:]
279 279 try:
280 280 odict[o].append(a)
281 281 except AttributeError:
282 282 odict[o] = [odict[o],a]
283 283 except KeyError:
284 284 if list_all:
285 285 odict[o] = [a]
286 286 else:
287 287 odict[o] = a
288 288
289 289 # Prepare opts,args for return
290 290 opts = Struct(odict)
291 291 if mode == 'string':
292 292 args = ' '.join(args)
293 293
294 294 return opts,args
295 295
296 296 #......................................................................
297 297 # And now the actual magic functions
298 298
299 299 # Functions for IPython shell work (vars,funcs, config, etc)
300 300 def magic_lsmagic(self, parameter_s = ''):
301 301 """List currently available magic functions."""
302 302 mesc = ESC_MAGIC
303 303 print 'Available magic functions:\n'+mesc+\
304 304 (' '+mesc).join(self.lsmagic())
305 305 print '\n' + Magic.auto_status[self.shell.automagic]
306 306 return None
307 307
308 308 def magic_magic(self, parameter_s = ''):
309 309 """Print information about the magic function system.
310 310
311 311 Supported formats: -latex, -brief, -rest
312 312 """
313 313
314 314 mode = ''
315 315 try:
316 316 if parameter_s.split()[0] == '-latex':
317 317 mode = 'latex'
318 318 if parameter_s.split()[0] == '-brief':
319 319 mode = 'brief'
320 320 if parameter_s.split()[0] == '-rest':
321 321 mode = 'rest'
322 322 rest_docs = []
323 323 except:
324 324 pass
325 325
326 326 magic_docs = []
327 327 for fname in self.lsmagic():
328 328 mname = 'magic_' + fname
329 329 for space in (Magic,self,self.__class__):
330 330 try:
331 331 fn = space.__dict__[mname]
332 332 except KeyError:
333 333 pass
334 334 else:
335 335 break
336 336 if mode == 'brief':
337 337 # only first line
338 338 if fn.__doc__:
339 339 fndoc = fn.__doc__.split('\n',1)[0]
340 340 else:
341 341 fndoc = 'No documentation'
342 342 else:
343 343 if fn.__doc__:
344 344 fndoc = fn.__doc__.rstrip()
345 345 else:
346 346 fndoc = 'No documentation'
347 347
348 348
349 349 if mode == 'rest':
350 350 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
351 351 fname,fndoc))
352 352
353 353 else:
354 354 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
355 355 fname,fndoc))
356 356
357 357 magic_docs = ''.join(magic_docs)
358 358
359 359 if mode == 'rest':
360 360 return "".join(rest_docs)
361 361
362 362 if mode == 'latex':
363 363 print self.format_latex(magic_docs)
364 364 return
365 365 else:
366 366 magic_docs = format_screen(magic_docs)
367 367 if mode == 'brief':
368 368 return magic_docs
369 369
370 370 outmsg = """
371 371 IPython's 'magic' functions
372 372 ===========================
373 373
374 374 The magic function system provides a series of functions which allow you to
375 375 control the behavior of IPython itself, plus a lot of system-type
376 376 features. All these functions are prefixed with a % character, but parameters
377 377 are given without parentheses or quotes.
378 378
379 379 NOTE: If you have 'automagic' enabled (via the command line option or with the
380 380 %automagic function), you don't need to type in the % explicitly. By default,
381 381 IPython ships with automagic on, so you should only rarely need the % escape.
382 382
383 383 Example: typing '%cd mydir' (without the quotes) changes you working directory
384 384 to 'mydir', if it exists.
385 385
386 386 You can define your own magic functions to extend the system. See the supplied
387 387 ipythonrc and example-magic.py files for details (in your ipython
388 388 configuration directory, typically $HOME/.config/ipython on Linux or $HOME/.ipython elsewhere).
389 389
390 390 You can also define your own aliased names for magic functions. In your
391 391 ipythonrc file, placing a line like:
392 392
393 393 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
394 394
395 395 will define %pf as a new name for %profile.
396 396
397 397 You can also call magics in code using the magic() function, which IPython
398 398 automatically adds to the builtin namespace. Type 'magic?' for details.
399 399
400 400 For a list of the available magic functions, use %lsmagic. For a description
401 401 of any of them, type %magic_name?, e.g. '%cd?'.
402 402
403 403 Currently the magic system has the following functions:\n"""
404 404
405 405 mesc = ESC_MAGIC
406 406 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
407 407 "\n\n%s%s\n\n%s" % (outmsg,
408 408 magic_docs,mesc,mesc,
409 409 (' '+mesc).join(self.lsmagic()),
410 410 Magic.auto_status[self.shell.automagic] ) )
411 411 page.page(outmsg)
412 412
413 413 def magic_automagic(self, parameter_s = ''):
414 414 """Make magic functions callable without having to type the initial %.
415 415
416 416 Without argumentsl toggles on/off (when off, you must call it as
417 417 %automagic, of course). With arguments it sets the value, and you can
418 418 use any of (case insensitive):
419 419
420 420 - on,1,True: to activate
421 421
422 422 - off,0,False: to deactivate.
423 423
424 424 Note that magic functions have lowest priority, so if there's a
425 425 variable whose name collides with that of a magic fn, automagic won't
426 426 work for that function (you get the variable instead). However, if you
427 427 delete the variable (del var), the previously shadowed magic function
428 428 becomes visible to automagic again."""
429 429
430 430 arg = parameter_s.lower()
431 431 if parameter_s in ('on','1','true'):
432 432 self.shell.automagic = True
433 433 elif parameter_s in ('off','0','false'):
434 434 self.shell.automagic = False
435 435 else:
436 436 self.shell.automagic = not self.shell.automagic
437 437 print '\n' + Magic.auto_status[self.shell.automagic]
438 438
439 439 @testdec.skip_doctest
440 440 def magic_autocall(self, parameter_s = ''):
441 441 """Make functions callable without having to type parentheses.
442 442
443 443 Usage:
444 444
445 445 %autocall [mode]
446 446
447 447 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
448 448 value is toggled on and off (remembering the previous state).
449 449
450 450 In more detail, these values mean:
451 451
452 452 0 -> fully disabled
453 453
454 454 1 -> active, but do not apply if there are no arguments on the line.
455 455
456 456 In this mode, you get:
457 457
458 458 In [1]: callable
459 459 Out[1]: <built-in function callable>
460 460
461 461 In [2]: callable 'hello'
462 462 ------> callable('hello')
463 463 Out[2]: False
464 464
465 465 2 -> Active always. Even if no arguments are present, the callable
466 466 object is called:
467 467
468 468 In [2]: float
469 469 ------> float()
470 470 Out[2]: 0.0
471 471
472 472 Note that even with autocall off, you can still use '/' at the start of
473 473 a line to treat the first argument on the command line as a function
474 474 and add parentheses to it:
475 475
476 476 In [8]: /str 43
477 477 ------> str(43)
478 478 Out[8]: '43'
479 479
480 480 # all-random (note for auto-testing)
481 481 """
482 482
483 483 if parameter_s:
484 484 arg = int(parameter_s)
485 485 else:
486 486 arg = 'toggle'
487 487
488 488 if not arg in (0,1,2,'toggle'):
489 489 error('Valid modes: (0->Off, 1->Smart, 2->Full')
490 490 return
491 491
492 492 if arg in (0,1,2):
493 493 self.shell.autocall = arg
494 494 else: # toggle
495 495 if self.shell.autocall:
496 496 self._magic_state.autocall_save = self.shell.autocall
497 497 self.shell.autocall = 0
498 498 else:
499 499 try:
500 500 self.shell.autocall = self._magic_state.autocall_save
501 501 except AttributeError:
502 502 self.shell.autocall = self._magic_state.autocall_save = 1
503 503
504 504 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
505 505
506 506
507 507 def magic_page(self, parameter_s=''):
508 508 """Pretty print the object and display it through a pager.
509 509
510 510 %page [options] OBJECT
511 511
512 512 If no object is given, use _ (last output).
513 513
514 514 Options:
515 515
516 516 -r: page str(object), don't pretty-print it."""
517 517
518 518 # After a function contributed by Olivier Aubert, slightly modified.
519 519
520 520 # Process options/args
521 521 opts,args = self.parse_options(parameter_s,'r')
522 522 raw = 'r' in opts
523 523
524 524 oname = args and args or '_'
525 525 info = self._ofind(oname)
526 526 if info['found']:
527 527 txt = (raw and str or pformat)( info['obj'] )
528 528 page.page(txt)
529 529 else:
530 530 print 'Object `%s` not found' % oname
531 531
532 532 def magic_profile(self, parameter_s=''):
533 533 """Print your currently active IPython profile."""
534 534 if self.shell.profile:
535 535 printpl('Current IPython profile: $self.shell.profile.')
536 536 else:
537 537 print 'No profile active.'
538 538
539 539 def magic_pinfo(self, parameter_s='', namespaces=None):
540 540 """Provide detailed information about an object.
541 541
542 542 '%pinfo object' is just a synonym for object? or ?object."""
543 543
544 544 #print 'pinfo par: <%s>' % parameter_s # dbg
545 545
546 546
547 547 # detail_level: 0 -> obj? , 1 -> obj??
548 548 detail_level = 0
549 549 # We need to detect if we got called as 'pinfo pinfo foo', which can
550 550 # happen if the user types 'pinfo foo?' at the cmd line.
551 551 pinfo,qmark1,oname,qmark2 = \
552 552 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
553 553 if pinfo or qmark1 or qmark2:
554 554 detail_level = 1
555 555 if "*" in oname:
556 556 self.magic_psearch(oname)
557 557 else:
558 558 self.shell._inspect('pinfo', oname, detail_level=detail_level,
559 559 namespaces=namespaces)
560 560
561 561 def magic_pinfo2(self, parameter_s='', namespaces=None):
562 562 """Provide extra detailed information about an object.
563 563
564 564 '%pinfo2 object' is just a synonym for object?? or ??object."""
565 565 self.shell._inspect('pinfo', parameter_s, detail_level=1,
566 566 namespaces=namespaces)
567 567
568 568 @testdec.skip_doctest
569 569 def magic_pdef(self, parameter_s='', namespaces=None):
570 570 """Print the definition header for any callable object.
571 571
572 572 If the object is a class, print the constructor information.
573 573
574 574 Examples
575 575 --------
576 576 ::
577 577
578 578 In [3]: %pdef urllib.urlopen
579 579 urllib.urlopen(url, data=None, proxies=None)
580 580 """
581 581 self._inspect('pdef',parameter_s, namespaces)
582 582
583 583 def magic_pdoc(self, parameter_s='', namespaces=None):
584 584 """Print the docstring for an object.
585 585
586 586 If the given object is a class, it will print both the class and the
587 587 constructor docstrings."""
588 588 self._inspect('pdoc',parameter_s, namespaces)
589 589
590 590 def magic_psource(self, parameter_s='', namespaces=None):
591 591 """Print (or run through pager) the source code for an object."""
592 592 self._inspect('psource',parameter_s, namespaces)
593 593
594 594 def magic_pfile(self, parameter_s=''):
595 595 """Print (or run through pager) the file where an object is defined.
596 596
597 597 The file opens at the line where the object definition begins. IPython
598 598 will honor the environment variable PAGER if set, and otherwise will
599 599 do its best to print the file in a convenient form.
600 600
601 601 If the given argument is not an object currently defined, IPython will
602 602 try to interpret it as a filename (automatically adding a .py extension
603 603 if needed). You can thus use %pfile as a syntax highlighting code
604 604 viewer."""
605 605
606 606 # first interpret argument as an object name
607 607 out = self._inspect('pfile',parameter_s)
608 608 # if not, try the input as a filename
609 609 if out == 'not found':
610 610 try:
611 611 filename = get_py_filename(parameter_s)
612 612 except IOError,msg:
613 613 print msg
614 614 return
615 615 page.page(self.shell.inspector.format(file(filename).read()))
616 616
617 617 def magic_psearch(self, parameter_s=''):
618 618 """Search for object in namespaces by wildcard.
619 619
620 620 %psearch [options] PATTERN [OBJECT TYPE]
621 621
622 622 Note: ? can be used as a synonym for %psearch, at the beginning or at
623 623 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
624 624 rest of the command line must be unchanged (options come first), so
625 625 for example the following forms are equivalent
626 626
627 627 %psearch -i a* function
628 628 -i a* function?
629 629 ?-i a* function
630 630
631 631 Arguments:
632 632
633 633 PATTERN
634 634
635 635 where PATTERN is a string containing * as a wildcard similar to its
636 636 use in a shell. The pattern is matched in all namespaces on the
637 637 search path. By default objects starting with a single _ are not
638 638 matched, many IPython generated objects have a single
639 639 underscore. The default is case insensitive matching. Matching is
640 640 also done on the attributes of objects and not only on the objects
641 641 in a module.
642 642
643 643 [OBJECT TYPE]
644 644
645 645 Is the name of a python type from the types module. The name is
646 646 given in lowercase without the ending type, ex. StringType is
647 647 written string. By adding a type here only objects matching the
648 648 given type are matched. Using all here makes the pattern match all
649 649 types (this is the default).
650 650
651 651 Options:
652 652
653 653 -a: makes the pattern match even objects whose names start with a
654 654 single underscore. These names are normally ommitted from the
655 655 search.
656 656
657 657 -i/-c: make the pattern case insensitive/sensitive. If neither of
658 658 these options is given, the default is read from your ipythonrc
659 659 file. The option name which sets this value is
660 660 'wildcards_case_sensitive'. If this option is not specified in your
661 661 ipythonrc file, IPython's internal default is to do a case sensitive
662 662 search.
663 663
664 664 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
665 665 specifiy can be searched in any of the following namespaces:
666 666 'builtin', 'user', 'user_global','internal', 'alias', where
667 667 'builtin' and 'user' are the search defaults. Note that you should
668 668 not use quotes when specifying namespaces.
669 669
670 670 'Builtin' contains the python module builtin, 'user' contains all
671 671 user data, 'alias' only contain the shell aliases and no python
672 672 objects, 'internal' contains objects used by IPython. The
673 673 'user_global' namespace is only used by embedded IPython instances,
674 674 and it contains module-level globals. You can add namespaces to the
675 675 search with -s or exclude them with -e (these options can be given
676 676 more than once).
677 677
678 678 Examples:
679 679
680 680 %psearch a* -> objects beginning with an a
681 681 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
682 682 %psearch a* function -> all functions beginning with an a
683 683 %psearch re.e* -> objects beginning with an e in module re
684 684 %psearch r*.e* -> objects that start with e in modules starting in r
685 685 %psearch r*.* string -> all strings in modules beginning with r
686 686
687 687 Case sensitve search:
688 688
689 689 %psearch -c a* list all object beginning with lower case a
690 690
691 691 Show objects beginning with a single _:
692 692
693 693 %psearch -a _* list objects beginning with a single underscore"""
694 694 try:
695 695 parameter_s = parameter_s.encode('ascii')
696 696 except UnicodeEncodeError:
697 697 print 'Python identifiers can only contain ascii characters.'
698 698 return
699 699
700 700 # default namespaces to be searched
701 701 def_search = ['user','builtin']
702 702
703 703 # Process options/args
704 704 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
705 705 opt = opts.get
706 706 shell = self.shell
707 707 psearch = shell.inspector.psearch
708 708
709 709 # select case options
710 710 if opts.has_key('i'):
711 711 ignore_case = True
712 712 elif opts.has_key('c'):
713 713 ignore_case = False
714 714 else:
715 715 ignore_case = not shell.wildcards_case_sensitive
716 716
717 717 # Build list of namespaces to search from user options
718 718 def_search.extend(opt('s',[]))
719 719 ns_exclude = ns_exclude=opt('e',[])
720 720 ns_search = [nm for nm in def_search if nm not in ns_exclude]
721 721
722 722 # Call the actual search
723 723 try:
724 724 psearch(args,shell.ns_table,ns_search,
725 725 show_all=opt('a'),ignore_case=ignore_case)
726 726 except:
727 727 shell.showtraceback()
728 728
729 729 @testdec.skip_doctest
730 730 def magic_who_ls(self, parameter_s=''):
731 731 """Return a sorted list of all interactive variables.
732 732
733 733 If arguments are given, only variables of types matching these
734 734 arguments are returned.
735 735
736 736 Examples
737 737 --------
738 738
739 739 Define two variables and list them with who_ls::
740 740
741 741 In [1]: alpha = 123
742 742
743 743 In [2]: beta = 'test'
744 744
745 745 In [3]: %who_ls
746 746 Out[3]: ['alpha', 'beta']
747 747
748 748 In [4]: %who_ls int
749 749 Out[4]: ['alpha']
750 750
751 751 In [5]: %who_ls str
752 752 Out[5]: ['beta']
753 753 """
754 754
755 755 user_ns = self.shell.user_ns
756 756 internal_ns = self.shell.internal_ns
757 757 user_ns_hidden = self.shell.user_ns_hidden
758 758 out = [ i for i in user_ns
759 759 if not i.startswith('_') \
760 760 and not (i in internal_ns or i in user_ns_hidden) ]
761 761
762 762 typelist = parameter_s.split()
763 763 if typelist:
764 764 typeset = set(typelist)
765 765 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
766 766
767 767 out.sort()
768 768 return out
769 769
770 770 @testdec.skip_doctest
771 771 def magic_who(self, parameter_s=''):
772 772 """Print all interactive variables, with some minimal formatting.
773 773
774 774 If any arguments are given, only variables whose type matches one of
775 775 these are printed. For example:
776 776
777 777 %who function str
778 778
779 779 will only list functions and strings, excluding all other types of
780 780 variables. To find the proper type names, simply use type(var) at a
781 781 command line to see how python prints type names. For example:
782 782
783 783 In [1]: type('hello')\\
784 784 Out[1]: <type 'str'>
785 785
786 786 indicates that the type name for strings is 'str'.
787 787
788 788 %who always excludes executed names loaded through your configuration
789 789 file and things which are internal to IPython.
790 790
791 791 This is deliberate, as typically you may load many modules and the
792 792 purpose of %who is to show you only what you've manually defined.
793 793
794 794 Examples
795 795 --------
796 796
797 797 Define two variables and list them with who::
798 798
799 799 In [1]: alpha = 123
800 800
801 801 In [2]: beta = 'test'
802 802
803 803 In [3]: %who
804 804 alpha beta
805 805
806 806 In [4]: %who int
807 807 alpha
808 808
809 809 In [5]: %who str
810 810 beta
811 811 """
812 812
813 813 varlist = self.magic_who_ls(parameter_s)
814 814 if not varlist:
815 815 if parameter_s:
816 816 print 'No variables match your requested type.'
817 817 else:
818 818 print 'Interactive namespace is empty.'
819 819 return
820 820
821 821 # if we have variables, move on...
822 822 count = 0
823 823 for i in varlist:
824 824 print i+'\t',
825 825 count += 1
826 826 if count > 8:
827 827 count = 0
828 828 print
829 829 print
830 830
831 831 @testdec.skip_doctest
832 832 def magic_whos(self, parameter_s=''):
833 833 """Like %who, but gives some extra information about each variable.
834 834
835 835 The same type filtering of %who can be applied here.
836 836
837 837 For all variables, the type is printed. Additionally it prints:
838 838
839 839 - For {},[],(): their length.
840 840
841 841 - For numpy arrays, a summary with shape, number of
842 842 elements, typecode and size in memory.
843 843
844 844 - Everything else: a string representation, snipping their middle if
845 845 too long.
846 846
847 847 Examples
848 848 --------
849 849
850 850 Define two variables and list them with whos::
851 851
852 852 In [1]: alpha = 123
853 853
854 854 In [2]: beta = 'test'
855 855
856 856 In [3]: %whos
857 857 Variable Type Data/Info
858 858 --------------------------------
859 859 alpha int 123
860 860 beta str test
861 861 """
862 862
863 863 varnames = self.magic_who_ls(parameter_s)
864 864 if not varnames:
865 865 if parameter_s:
866 866 print 'No variables match your requested type.'
867 867 else:
868 868 print 'Interactive namespace is empty.'
869 869 return
870 870
871 871 # if we have variables, move on...
872 872
873 873 # for these types, show len() instead of data:
874 874 seq_types = ['dict', 'list', 'tuple']
875 875
876 876 # for numpy/Numeric arrays, display summary info
877 877 try:
878 878 import numpy
879 879 except ImportError:
880 880 ndarray_type = None
881 881 else:
882 882 ndarray_type = numpy.ndarray.__name__
883 883 try:
884 884 import Numeric
885 885 except ImportError:
886 886 array_type = None
887 887 else:
888 888 array_type = Numeric.ArrayType.__name__
889 889
890 890 # Find all variable names and types so we can figure out column sizes
891 891 def get_vars(i):
892 892 return self.shell.user_ns[i]
893 893
894 894 # some types are well known and can be shorter
895 895 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
896 896 def type_name(v):
897 897 tn = type(v).__name__
898 898 return abbrevs.get(tn,tn)
899 899
900 900 varlist = map(get_vars,varnames)
901 901
902 902 typelist = []
903 903 for vv in varlist:
904 904 tt = type_name(vv)
905 905
906 906 if tt=='instance':
907 907 typelist.append( abbrevs.get(str(vv.__class__),
908 908 str(vv.__class__)))
909 909 else:
910 910 typelist.append(tt)
911 911
912 912 # column labels and # of spaces as separator
913 913 varlabel = 'Variable'
914 914 typelabel = 'Type'
915 915 datalabel = 'Data/Info'
916 916 colsep = 3
917 917 # variable format strings
918 918 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
919 919 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
920 920 aformat = "%s: %s elems, type `%s`, %s bytes"
921 921 # find the size of the columns to format the output nicely
922 922 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
923 923 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
924 924 # table header
925 925 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
926 926 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
927 927 # and the table itself
928 928 kb = 1024
929 929 Mb = 1048576 # kb**2
930 930 for vname,var,vtype in zip(varnames,varlist,typelist):
931 931 print itpl(vformat),
932 932 if vtype in seq_types:
933 933 print "n="+str(len(var))
934 934 elif vtype in [array_type,ndarray_type]:
935 935 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
936 936 if vtype==ndarray_type:
937 937 # numpy
938 938 vsize = var.size
939 939 vbytes = vsize*var.itemsize
940 940 vdtype = var.dtype
941 941 else:
942 942 # Numeric
943 943 vsize = Numeric.size(var)
944 944 vbytes = vsize*var.itemsize()
945 945 vdtype = var.typecode()
946 946
947 947 if vbytes < 100000:
948 948 print aformat % (vshape,vsize,vdtype,vbytes)
949 949 else:
950 950 print aformat % (vshape,vsize,vdtype,vbytes),
951 951 if vbytes < Mb:
952 952 print '(%s kb)' % (vbytes/kb,)
953 953 else:
954 954 print '(%s Mb)' % (vbytes/Mb,)
955 955 else:
956 956 try:
957 957 vstr = str(var)
958 958 except UnicodeEncodeError:
959 959 vstr = unicode(var).encode(sys.getdefaultencoding(),
960 960 'backslashreplace')
961 961 vstr = vstr.replace('\n','\\n')
962 962 if len(vstr) < 50:
963 963 print vstr
964 964 else:
965 965 printpl(vfmt_short)
966 966
967 967 def magic_reset(self, parameter_s=''):
968 968 """Resets the namespace by removing all names defined by the user.
969 969
970 970 Parameters
971 971 ----------
972 972 -f : force reset without asking for confirmation.
973 973
974 974 -s : 'Soft' reset: Only clears your namespace, leaving history intact.
975 975 References to objects may be kept. By default (without this option),
976 976 we do a 'hard' reset, giving you a new session and removing all
977 977 references to objects from the current session.
978 978
979 979 Examples
980 980 --------
981 981 In [6]: a = 1
982 982
983 983 In [7]: a
984 984 Out[7]: 1
985 985
986 986 In [8]: 'a' in _ip.user_ns
987 987 Out[8]: True
988 988
989 989 In [9]: %reset -f
990 990
991 991 In [1]: 'a' in _ip.user_ns
992 992 Out[1]: False
993 993 """
994 994 opts, args = self.parse_options(parameter_s,'sf')
995 995 if 'f' in opts:
996 996 ans = True
997 997 else:
998 998 ans = self.shell.ask_yes_no(
999 999 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1000 1000 if not ans:
1001 1001 print 'Nothing done.'
1002 1002 return
1003 1003
1004 1004 if 's' in opts: # Soft reset
1005 1005 user_ns = self.shell.user_ns
1006 1006 for i in self.magic_who_ls():
1007 1007 del(user_ns[i])
1008 1008
1009 1009 else: # Hard reset
1010 1010 self.shell.reset(new_session = False)
1011 1011
1012 1012
1013 1013
1014 1014 def magic_reset_selective(self, parameter_s=''):
1015 1015 """Resets the namespace by removing names defined by the user.
1016 1016
1017 1017 Input/Output history are left around in case you need them.
1018 1018
1019 1019 %reset_selective [-f] regex
1020 1020
1021 1021 No action is taken if regex is not included
1022 1022
1023 1023 Options
1024 1024 -f : force reset without asking for confirmation.
1025 1025
1026 1026 Examples
1027 1027 --------
1028 1028
1029 1029 We first fully reset the namespace so your output looks identical to
1030 1030 this example for pedagogical reasons; in practice you do not need a
1031 1031 full reset.
1032 1032
1033 1033 In [1]: %reset -f
1034 1034
1035 1035 Now, with a clean namespace we can make a few variables and use
1036 1036 %reset_selective to only delete names that match our regexp:
1037 1037
1038 1038 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
1039 1039
1040 1040 In [3]: who_ls
1041 1041 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
1042 1042
1043 1043 In [4]: %reset_selective -f b[2-3]m
1044 1044
1045 1045 In [5]: who_ls
1046 1046 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1047 1047
1048 1048 In [6]: %reset_selective -f d
1049 1049
1050 1050 In [7]: who_ls
1051 1051 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1052 1052
1053 1053 In [8]: %reset_selective -f c
1054 1054
1055 1055 In [9]: who_ls
1056 1056 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
1057 1057
1058 1058 In [10]: %reset_selective -f b
1059 1059
1060 1060 In [11]: who_ls
1061 1061 Out[11]: ['a']
1062 1062 """
1063 1063
1064 1064 opts, regex = self.parse_options(parameter_s,'f')
1065 1065
1066 1066 if opts.has_key('f'):
1067 1067 ans = True
1068 1068 else:
1069 1069 ans = self.shell.ask_yes_no(
1070 1070 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1071 1071 if not ans:
1072 1072 print 'Nothing done.'
1073 1073 return
1074 1074 user_ns = self.shell.user_ns
1075 1075 if not regex:
1076 1076 print 'No regex pattern specified. Nothing done.'
1077 1077 return
1078 1078 else:
1079 1079 try:
1080 1080 m = re.compile(regex)
1081 1081 except TypeError:
1082 1082 raise TypeError('regex must be a string or compiled pattern')
1083 1083 for i in self.magic_who_ls():
1084 1084 if m.search(i):
1085 1085 del(user_ns[i])
1086 1086
1087 1087 def magic_logstart(self,parameter_s=''):
1088 1088 """Start logging anywhere in a session.
1089 1089
1090 1090 %logstart [-o|-r|-t] [log_name [log_mode]]
1091 1091
1092 1092 If no name is given, it defaults to a file named 'ipython_log.py' in your
1093 1093 current directory, in 'rotate' mode (see below).
1094 1094
1095 1095 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1096 1096 history up to that point and then continues logging.
1097 1097
1098 1098 %logstart takes a second optional parameter: logging mode. This can be one
1099 1099 of (note that the modes are given unquoted):\\
1100 1100 append: well, that says it.\\
1101 1101 backup: rename (if exists) to name~ and start name.\\
1102 1102 global: single logfile in your home dir, appended to.\\
1103 1103 over : overwrite existing log.\\
1104 1104 rotate: create rotating logs name.1~, name.2~, etc.
1105 1105
1106 1106 Options:
1107 1107
1108 1108 -o: log also IPython's output. In this mode, all commands which
1109 1109 generate an Out[NN] prompt are recorded to the logfile, right after
1110 1110 their corresponding input line. The output lines are always
1111 1111 prepended with a '#[Out]# ' marker, so that the log remains valid
1112 1112 Python code.
1113 1113
1114 1114 Since this marker is always the same, filtering only the output from
1115 1115 a log is very easy, using for example a simple awk call:
1116 1116
1117 1117 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1118 1118
1119 1119 -r: log 'raw' input. Normally, IPython's logs contain the processed
1120 1120 input, so that user lines are logged in their final form, converted
1121 1121 into valid Python. For example, %Exit is logged as
1122 1122 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1123 1123 exactly as typed, with no transformations applied.
1124 1124
1125 1125 -t: put timestamps before each input line logged (these are put in
1126 1126 comments)."""
1127 1127
1128 1128 opts,par = self.parse_options(parameter_s,'ort')
1129 1129 log_output = 'o' in opts
1130 1130 log_raw_input = 'r' in opts
1131 1131 timestamp = 't' in opts
1132 1132
1133 1133 logger = self.shell.logger
1134 1134
1135 1135 # if no args are given, the defaults set in the logger constructor by
1136 1136 # ipytohn remain valid
1137 1137 if par:
1138 1138 try:
1139 1139 logfname,logmode = par.split()
1140 1140 except:
1141 1141 logfname = par
1142 1142 logmode = 'backup'
1143 1143 else:
1144 1144 logfname = logger.logfname
1145 1145 logmode = logger.logmode
1146 1146 # put logfname into rc struct as if it had been called on the command
1147 1147 # line, so it ends up saved in the log header Save it in case we need
1148 1148 # to restore it...
1149 1149 old_logfile = self.shell.logfile
1150 1150 if logfname:
1151 1151 logfname = os.path.expanduser(logfname)
1152 1152 self.shell.logfile = logfname
1153 1153
1154 1154 loghead = '# IPython log file\n\n'
1155 1155 try:
1156 1156 started = logger.logstart(logfname,loghead,logmode,
1157 1157 log_output,timestamp,log_raw_input)
1158 1158 except:
1159 1159 self.shell.logfile = old_logfile
1160 1160 warn("Couldn't start log: %s" % sys.exc_info()[1])
1161 1161 else:
1162 1162 # log input history up to this point, optionally interleaving
1163 1163 # output if requested
1164 1164
1165 1165 if timestamp:
1166 1166 # disable timestamping for the previous history, since we've
1167 1167 # lost those already (no time machine here).
1168 1168 logger.timestamp = False
1169 1169
1170 1170 if log_raw_input:
1171 1171 input_hist = self.shell.history_manager.input_hist_raw
1172 1172 else:
1173 1173 input_hist = self.shell.history_manager.input_hist_parsed
1174 1174
1175 1175 if log_output:
1176 1176 log_write = logger.log_write
1177 1177 output_hist = self.shell.history_manager.output_hist
1178 1178 for n in range(1,len(input_hist)-1):
1179 1179 log_write(input_hist[n].rstrip())
1180 1180 if n in output_hist:
1181 1181 log_write(repr(output_hist[n]),'output')
1182 1182 else:
1183 1183 logger.log_write(''.join(input_hist[1:]))
1184 1184 if timestamp:
1185 1185 # re-enable timestamping
1186 1186 logger.timestamp = True
1187 1187
1188 1188 print ('Activating auto-logging. '
1189 1189 'Current session state plus future input saved.')
1190 1190 logger.logstate()
1191 1191
1192 1192 def magic_logstop(self,parameter_s=''):
1193 1193 """Fully stop logging and close log file.
1194 1194
1195 1195 In order to start logging again, a new %logstart call needs to be made,
1196 1196 possibly (though not necessarily) with a new filename, mode and other
1197 1197 options."""
1198 1198 self.logger.logstop()
1199 1199
1200 1200 def magic_logoff(self,parameter_s=''):
1201 1201 """Temporarily stop logging.
1202 1202
1203 1203 You must have previously started logging."""
1204 1204 self.shell.logger.switch_log(0)
1205 1205
1206 1206 def magic_logon(self,parameter_s=''):
1207 1207 """Restart logging.
1208 1208
1209 1209 This function is for restarting logging which you've temporarily
1210 1210 stopped with %logoff. For starting logging for the first time, you
1211 1211 must use the %logstart function, which allows you to specify an
1212 1212 optional log filename."""
1213 1213
1214 1214 self.shell.logger.switch_log(1)
1215 1215
1216 1216 def magic_logstate(self,parameter_s=''):
1217 1217 """Print the status of the logging system."""
1218 1218
1219 1219 self.shell.logger.logstate()
1220 1220
1221 1221 def magic_pdb(self, parameter_s=''):
1222 1222 """Control the automatic calling of the pdb interactive debugger.
1223 1223
1224 1224 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1225 1225 argument it works as a toggle.
1226 1226
1227 1227 When an exception is triggered, IPython can optionally call the
1228 1228 interactive pdb debugger after the traceback printout. %pdb toggles
1229 1229 this feature on and off.
1230 1230
1231 1231 The initial state of this feature is set in your ipythonrc
1232 1232 configuration file (the variable is called 'pdb').
1233 1233
1234 1234 If you want to just activate the debugger AFTER an exception has fired,
1235 1235 without having to type '%pdb on' and rerunning your code, you can use
1236 1236 the %debug magic."""
1237 1237
1238 1238 par = parameter_s.strip().lower()
1239 1239
1240 1240 if par:
1241 1241 try:
1242 1242 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1243 1243 except KeyError:
1244 1244 print ('Incorrect argument. Use on/1, off/0, '
1245 1245 'or nothing for a toggle.')
1246 1246 return
1247 1247 else:
1248 1248 # toggle
1249 1249 new_pdb = not self.shell.call_pdb
1250 1250
1251 1251 # set on the shell
1252 1252 self.shell.call_pdb = new_pdb
1253 1253 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1254 1254
1255 1255 def magic_debug(self, parameter_s=''):
1256 1256 """Activate the interactive debugger in post-mortem mode.
1257 1257
1258 1258 If an exception has just occurred, this lets you inspect its stack
1259 1259 frames interactively. Note that this will always work only on the last
1260 1260 traceback that occurred, so you must call this quickly after an
1261 1261 exception that you wish to inspect has fired, because if another one
1262 1262 occurs, it clobbers the previous one.
1263 1263
1264 1264 If you want IPython to automatically do this on every exception, see
1265 1265 the %pdb magic for more details.
1266 1266 """
1267 1267 self.shell.debugger(force=True)
1268 1268
1269 1269 @testdec.skip_doctest
1270 1270 def magic_prun(self, parameter_s ='',user_mode=1,
1271 1271 opts=None,arg_lst=None,prog_ns=None):
1272 1272
1273 1273 """Run a statement through the python code profiler.
1274 1274
1275 1275 Usage:
1276 1276 %prun [options] statement
1277 1277
1278 1278 The given statement (which doesn't require quote marks) is run via the
1279 1279 python profiler in a manner similar to the profile.run() function.
1280 1280 Namespaces are internally managed to work correctly; profile.run
1281 1281 cannot be used in IPython because it makes certain assumptions about
1282 1282 namespaces which do not hold under IPython.
1283 1283
1284 1284 Options:
1285 1285
1286 1286 -l <limit>: you can place restrictions on what or how much of the
1287 1287 profile gets printed. The limit value can be:
1288 1288
1289 1289 * A string: only information for function names containing this string
1290 1290 is printed.
1291 1291
1292 1292 * An integer: only these many lines are printed.
1293 1293
1294 1294 * A float (between 0 and 1): this fraction of the report is printed
1295 1295 (for example, use a limit of 0.4 to see the topmost 40% only).
1296 1296
1297 1297 You can combine several limits with repeated use of the option. For
1298 1298 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1299 1299 information about class constructors.
1300 1300
1301 1301 -r: return the pstats.Stats object generated by the profiling. This
1302 1302 object has all the information about the profile in it, and you can
1303 1303 later use it for further analysis or in other functions.
1304 1304
1305 1305 -s <key>: sort profile by given key. You can provide more than one key
1306 1306 by using the option several times: '-s key1 -s key2 -s key3...'. The
1307 1307 default sorting key is 'time'.
1308 1308
1309 1309 The following is copied verbatim from the profile documentation
1310 1310 referenced below:
1311 1311
1312 1312 When more than one key is provided, additional keys are used as
1313 1313 secondary criteria when the there is equality in all keys selected
1314 1314 before them.
1315 1315
1316 1316 Abbreviations can be used for any key names, as long as the
1317 1317 abbreviation is unambiguous. The following are the keys currently
1318 1318 defined:
1319 1319
1320 1320 Valid Arg Meaning
1321 1321 "calls" call count
1322 1322 "cumulative" cumulative time
1323 1323 "file" file name
1324 1324 "module" file name
1325 1325 "pcalls" primitive call count
1326 1326 "line" line number
1327 1327 "name" function name
1328 1328 "nfl" name/file/line
1329 1329 "stdname" standard name
1330 1330 "time" internal time
1331 1331
1332 1332 Note that all sorts on statistics are in descending order (placing
1333 1333 most time consuming items first), where as name, file, and line number
1334 1334 searches are in ascending order (i.e., alphabetical). The subtle
1335 1335 distinction between "nfl" and "stdname" is that the standard name is a
1336 1336 sort of the name as printed, which means that the embedded line
1337 1337 numbers get compared in an odd way. For example, lines 3, 20, and 40
1338 1338 would (if the file names were the same) appear in the string order
1339 1339 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1340 1340 line numbers. In fact, sort_stats("nfl") is the same as
1341 1341 sort_stats("name", "file", "line").
1342 1342
1343 1343 -T <filename>: save profile results as shown on screen to a text
1344 1344 file. The profile is still shown on screen.
1345 1345
1346 1346 -D <filename>: save (via dump_stats) profile statistics to given
1347 1347 filename. This data is in a format understod by the pstats module, and
1348 1348 is generated by a call to the dump_stats() method of profile
1349 1349 objects. The profile is still shown on screen.
1350 1350
1351 1351 If you want to run complete programs under the profiler's control, use
1352 1352 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1353 1353 contains profiler specific options as described here.
1354 1354
1355 1355 You can read the complete documentation for the profile module with::
1356 1356
1357 1357 In [1]: import profile; profile.help()
1358 1358 """
1359 1359
1360 1360 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1361 1361 # protect user quote marks
1362 1362 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1363 1363
1364 1364 if user_mode: # regular user call
1365 1365 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1366 1366 list_all=1)
1367 1367 namespace = self.shell.user_ns
1368 1368 else: # called to run a program by %run -p
1369 1369 try:
1370 1370 filename = get_py_filename(arg_lst[0])
1371 1371 except IOError,msg:
1372 1372 error(msg)
1373 1373 return
1374 1374
1375 1375 arg_str = 'execfile(filename,prog_ns)'
1376 1376 namespace = locals()
1377 1377
1378 1378 opts.merge(opts_def)
1379 1379
1380 1380 prof = profile.Profile()
1381 1381 try:
1382 1382 prof = prof.runctx(arg_str,namespace,namespace)
1383 1383 sys_exit = ''
1384 1384 except SystemExit:
1385 1385 sys_exit = """*** SystemExit exception caught in code being profiled."""
1386 1386
1387 1387 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1388 1388
1389 1389 lims = opts.l
1390 1390 if lims:
1391 1391 lims = [] # rebuild lims with ints/floats/strings
1392 1392 for lim in opts.l:
1393 1393 try:
1394 1394 lims.append(int(lim))
1395 1395 except ValueError:
1396 1396 try:
1397 1397 lims.append(float(lim))
1398 1398 except ValueError:
1399 1399 lims.append(lim)
1400 1400
1401 1401 # Trap output.
1402 1402 stdout_trap = StringIO()
1403 1403
1404 1404 if hasattr(stats,'stream'):
1405 1405 # In newer versions of python, the stats object has a 'stream'
1406 1406 # attribute to write into.
1407 1407 stats.stream = stdout_trap
1408 1408 stats.print_stats(*lims)
1409 1409 else:
1410 1410 # For older versions, we manually redirect stdout during printing
1411 1411 sys_stdout = sys.stdout
1412 1412 try:
1413 1413 sys.stdout = stdout_trap
1414 1414 stats.print_stats(*lims)
1415 1415 finally:
1416 1416 sys.stdout = sys_stdout
1417 1417
1418 1418 output = stdout_trap.getvalue()
1419 1419 output = output.rstrip()
1420 1420
1421 1421 page.page(output)
1422 1422 print sys_exit,
1423 1423
1424 1424 dump_file = opts.D[0]
1425 1425 text_file = opts.T[0]
1426 1426 if dump_file:
1427 1427 prof.dump_stats(dump_file)
1428 1428 print '\n*** Profile stats marshalled to file',\
1429 1429 `dump_file`+'.',sys_exit
1430 1430 if text_file:
1431 1431 pfile = file(text_file,'w')
1432 1432 pfile.write(output)
1433 1433 pfile.close()
1434 1434 print '\n*** Profile printout saved to text file',\
1435 1435 `text_file`+'.',sys_exit
1436 1436
1437 1437 if opts.has_key('r'):
1438 1438 return stats
1439 1439 else:
1440 1440 return None
1441 1441
1442 1442 @testdec.skip_doctest
1443 1443 def magic_run(self, parameter_s ='',runner=None,
1444 1444 file_finder=get_py_filename):
1445 1445 """Run the named file inside IPython as a program.
1446 1446
1447 1447 Usage:\\
1448 1448 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1449 1449
1450 1450 Parameters after the filename are passed as command-line arguments to
1451 1451 the program (put in sys.argv). Then, control returns to IPython's
1452 1452 prompt.
1453 1453
1454 1454 This is similar to running at a system prompt:\\
1455 1455 $ python file args\\
1456 1456 but with the advantage of giving you IPython's tracebacks, and of
1457 1457 loading all variables into your interactive namespace for further use
1458 1458 (unless -p is used, see below).
1459 1459
1460 1460 The file is executed in a namespace initially consisting only of
1461 1461 __name__=='__main__' and sys.argv constructed as indicated. It thus
1462 1462 sees its environment as if it were being run as a stand-alone program
1463 1463 (except for sharing global objects such as previously imported
1464 1464 modules). But after execution, the IPython interactive namespace gets
1465 1465 updated with all variables defined in the program (except for __name__
1466 1466 and sys.argv). This allows for very convenient loading of code for
1467 1467 interactive work, while giving each program a 'clean sheet' to run in.
1468 1468
1469 1469 Options:
1470 1470
1471 1471 -n: __name__ is NOT set to '__main__', but to the running file's name
1472 1472 without extension (as python does under import). This allows running
1473 1473 scripts and reloading the definitions in them without calling code
1474 1474 protected by an ' if __name__ == "__main__" ' clause.
1475 1475
1476 1476 -i: run the file in IPython's namespace instead of an empty one. This
1477 1477 is useful if you are experimenting with code written in a text editor
1478 1478 which depends on variables defined interactively.
1479 1479
1480 1480 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1481 1481 being run. This is particularly useful if IPython is being used to
1482 1482 run unittests, which always exit with a sys.exit() call. In such
1483 1483 cases you are interested in the output of the test results, not in
1484 1484 seeing a traceback of the unittest module.
1485 1485
1486 1486 -t: print timing information at the end of the run. IPython will give
1487 1487 you an estimated CPU time consumption for your script, which under
1488 1488 Unix uses the resource module to avoid the wraparound problems of
1489 1489 time.clock(). Under Unix, an estimate of time spent on system tasks
1490 1490 is also given (for Windows platforms this is reported as 0.0).
1491 1491
1492 1492 If -t is given, an additional -N<N> option can be given, where <N>
1493 1493 must be an integer indicating how many times you want the script to
1494 1494 run. The final timing report will include total and per run results.
1495 1495
1496 1496 For example (testing the script uniq_stable.py):
1497 1497
1498 1498 In [1]: run -t uniq_stable
1499 1499
1500 1500 IPython CPU timings (estimated):\\
1501 1501 User : 0.19597 s.\\
1502 1502 System: 0.0 s.\\
1503 1503
1504 1504 In [2]: run -t -N5 uniq_stable
1505 1505
1506 1506 IPython CPU timings (estimated):\\
1507 1507 Total runs performed: 5\\
1508 1508 Times : Total Per run\\
1509 1509 User : 0.910862 s, 0.1821724 s.\\
1510 1510 System: 0.0 s, 0.0 s.
1511 1511
1512 1512 -d: run your program under the control of pdb, the Python debugger.
1513 1513 This allows you to execute your program step by step, watch variables,
1514 1514 etc. Internally, what IPython does is similar to calling:
1515 1515
1516 1516 pdb.run('execfile("YOURFILENAME")')
1517 1517
1518 1518 with a breakpoint set on line 1 of your file. You can change the line
1519 1519 number for this automatic breakpoint to be <N> by using the -bN option
1520 1520 (where N must be an integer). For example:
1521 1521
1522 1522 %run -d -b40 myscript
1523 1523
1524 1524 will set the first breakpoint at line 40 in myscript.py. Note that
1525 1525 the first breakpoint must be set on a line which actually does
1526 1526 something (not a comment or docstring) for it to stop execution.
1527 1527
1528 1528 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1529 1529 first enter 'c' (without qoutes) to start execution up to the first
1530 1530 breakpoint.
1531 1531
1532 1532 Entering 'help' gives information about the use of the debugger. You
1533 1533 can easily see pdb's full documentation with "import pdb;pdb.help()"
1534 1534 at a prompt.
1535 1535
1536 1536 -p: run program under the control of the Python profiler module (which
1537 1537 prints a detailed report of execution times, function calls, etc).
1538 1538
1539 1539 You can pass other options after -p which affect the behavior of the
1540 1540 profiler itself. See the docs for %prun for details.
1541 1541
1542 1542 In this mode, the program's variables do NOT propagate back to the
1543 1543 IPython interactive namespace (because they remain in the namespace
1544 1544 where the profiler executes them).
1545 1545
1546 1546 Internally this triggers a call to %prun, see its documentation for
1547 1547 details on the options available specifically for profiling.
1548 1548
1549 1549 There is one special usage for which the text above doesn't apply:
1550 1550 if the filename ends with .ipy, the file is run as ipython script,
1551 1551 just as if the commands were written on IPython prompt.
1552 1552 """
1553 1553
1554 1554 # get arguments and set sys.argv for program to be run.
1555 1555 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1556 1556 mode='list',list_all=1)
1557 1557
1558 1558 try:
1559 1559 filename = file_finder(arg_lst[0])
1560 1560 except IndexError:
1561 1561 warn('you must provide at least a filename.')
1562 1562 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1563 1563 return
1564 1564 except IOError,msg:
1565 1565 error(msg)
1566 1566 return
1567 1567
1568 1568 if filename.lower().endswith('.ipy'):
1569 1569 self.shell.safe_execfile_ipy(filename)
1570 1570 return
1571 1571
1572 1572 # Control the response to exit() calls made by the script being run
1573 1573 exit_ignore = opts.has_key('e')
1574 1574
1575 1575 # Make sure that the running script gets a proper sys.argv as if it
1576 1576 # were run from a system shell.
1577 1577 save_argv = sys.argv # save it for later restoring
1578 1578 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1579 1579
1580 1580 if opts.has_key('i'):
1581 1581 # Run in user's interactive namespace
1582 1582 prog_ns = self.shell.user_ns
1583 1583 __name__save = self.shell.user_ns['__name__']
1584 1584 prog_ns['__name__'] = '__main__'
1585 1585 main_mod = self.shell.new_main_mod(prog_ns)
1586 1586 else:
1587 1587 # Run in a fresh, empty namespace
1588 1588 if opts.has_key('n'):
1589 1589 name = os.path.splitext(os.path.basename(filename))[0]
1590 1590 else:
1591 1591 name = '__main__'
1592 1592
1593 1593 main_mod = self.shell.new_main_mod()
1594 1594 prog_ns = main_mod.__dict__
1595 1595 prog_ns['__name__'] = name
1596 1596
1597 1597 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1598 1598 # set the __file__ global in the script's namespace
1599 1599 prog_ns['__file__'] = filename
1600 1600
1601 1601 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1602 1602 # that, if we overwrite __main__, we replace it at the end
1603 1603 main_mod_name = prog_ns['__name__']
1604 1604
1605 1605 if main_mod_name == '__main__':
1606 1606 restore_main = sys.modules['__main__']
1607 1607 else:
1608 1608 restore_main = False
1609 1609
1610 1610 # This needs to be undone at the end to prevent holding references to
1611 1611 # every single object ever created.
1612 1612 sys.modules[main_mod_name] = main_mod
1613 1613
1614 1614 try:
1615 1615 stats = None
1616 1616 with self.readline_no_record:
1617 1617 if opts.has_key('p'):
1618 1618 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1619 1619 else:
1620 1620 if opts.has_key('d'):
1621 1621 deb = debugger.Pdb(self.shell.colors)
1622 1622 # reset Breakpoint state, which is moronically kept
1623 1623 # in a class
1624 1624 bdb.Breakpoint.next = 1
1625 1625 bdb.Breakpoint.bplist = {}
1626 1626 bdb.Breakpoint.bpbynumber = [None]
1627 1627 # Set an initial breakpoint to stop execution
1628 1628 maxtries = 10
1629 1629 bp = int(opts.get('b',[1])[0])
1630 1630 checkline = deb.checkline(filename,bp)
1631 1631 if not checkline:
1632 1632 for bp in range(bp+1,bp+maxtries+1):
1633 1633 if deb.checkline(filename,bp):
1634 1634 break
1635 1635 else:
1636 1636 msg = ("\nI failed to find a valid line to set "
1637 1637 "a breakpoint\n"
1638 1638 "after trying up to line: %s.\n"
1639 1639 "Please set a valid breakpoint manually "
1640 1640 "with the -b option." % bp)
1641 1641 error(msg)
1642 1642 return
1643 1643 # if we find a good linenumber, set the breakpoint
1644 1644 deb.do_break('%s:%s' % (filename,bp))
1645 1645 # Start file run
1646 1646 print "NOTE: Enter 'c' at the",
1647 1647 print "%s prompt to start your script." % deb.prompt
1648 1648 try:
1649 1649 deb.run('execfile("%s")' % filename,prog_ns)
1650 1650
1651 1651 except:
1652 1652 etype, value, tb = sys.exc_info()
1653 1653 # Skip three frames in the traceback: the %run one,
1654 1654 # one inside bdb.py, and the command-line typed by the
1655 1655 # user (run by exec in pdb itself).
1656 1656 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1657 1657 else:
1658 1658 if runner is None:
1659 1659 runner = self.shell.safe_execfile
1660 1660 if opts.has_key('t'):
1661 1661 # timed execution
1662 1662 try:
1663 1663 nruns = int(opts['N'][0])
1664 1664 if nruns < 1:
1665 1665 error('Number of runs must be >=1')
1666 1666 return
1667 1667 except (KeyError):
1668 1668 nruns = 1
1669 1669 if nruns == 1:
1670 1670 t0 = clock2()
1671 1671 runner(filename,prog_ns,prog_ns,
1672 1672 exit_ignore=exit_ignore)
1673 1673 t1 = clock2()
1674 1674 t_usr = t1[0]-t0[0]
1675 1675 t_sys = t1[1]-t0[1]
1676 1676 print "\nIPython CPU timings (estimated):"
1677 1677 print " User : %10s s." % t_usr
1678 1678 print " System: %10s s." % t_sys
1679 1679 else:
1680 1680 runs = range(nruns)
1681 1681 t0 = clock2()
1682 1682 for nr in runs:
1683 1683 runner(filename,prog_ns,prog_ns,
1684 1684 exit_ignore=exit_ignore)
1685 1685 t1 = clock2()
1686 1686 t_usr = t1[0]-t0[0]
1687 1687 t_sys = t1[1]-t0[1]
1688 1688 print "\nIPython CPU timings (estimated):"
1689 1689 print "Total runs performed:",nruns
1690 1690 print " Times : %10s %10s" % ('Total','Per run')
1691 1691 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1692 1692 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1693 1693
1694 1694 else:
1695 1695 # regular execution
1696 1696 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1697 1697
1698 1698 if opts.has_key('i'):
1699 1699 self.shell.user_ns['__name__'] = __name__save
1700 1700 else:
1701 1701 # The shell MUST hold a reference to prog_ns so after %run
1702 1702 # exits, the python deletion mechanism doesn't zero it out
1703 1703 # (leaving dangling references).
1704 1704 self.shell.cache_main_mod(prog_ns,filename)
1705 1705 # update IPython interactive namespace
1706 1706
1707 1707 # Some forms of read errors on the file may mean the
1708 1708 # __name__ key was never set; using pop we don't have to
1709 1709 # worry about a possible KeyError.
1710 1710 prog_ns.pop('__name__', None)
1711 1711
1712 1712 self.shell.user_ns.update(prog_ns)
1713 1713 finally:
1714 1714 # It's a bit of a mystery why, but __builtins__ can change from
1715 1715 # being a module to becoming a dict missing some key data after
1716 1716 # %run. As best I can see, this is NOT something IPython is doing
1717 1717 # at all, and similar problems have been reported before:
1718 1718 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1719 1719 # Since this seems to be done by the interpreter itself, the best
1720 1720 # we can do is to at least restore __builtins__ for the user on
1721 1721 # exit.
1722 1722 self.shell.user_ns['__builtins__'] = __builtin__
1723 1723
1724 1724 # Ensure key global structures are restored
1725 1725 sys.argv = save_argv
1726 1726 if restore_main:
1727 1727 sys.modules['__main__'] = restore_main
1728 1728 else:
1729 1729 # Remove from sys.modules the reference to main_mod we'd
1730 1730 # added. Otherwise it will trap references to objects
1731 1731 # contained therein.
1732 1732 del sys.modules[main_mod_name]
1733 1733
1734 1734 return stats
1735 1735
1736 1736 @testdec.skip_doctest
1737 1737 def magic_timeit(self, parameter_s =''):
1738 1738 """Time execution of a Python statement or expression
1739 1739
1740 1740 Usage:\\
1741 1741 %timeit [-n<N> -r<R> [-t|-c]] statement
1742 1742
1743 1743 Time execution of a Python statement or expression using the timeit
1744 1744 module.
1745 1745
1746 1746 Options:
1747 1747 -n<N>: execute the given statement <N> times in a loop. If this value
1748 1748 is not given, a fitting value is chosen.
1749 1749
1750 1750 -r<R>: repeat the loop iteration <R> times and take the best result.
1751 1751 Default: 3
1752 1752
1753 1753 -t: use time.time to measure the time, which is the default on Unix.
1754 1754 This function measures wall time.
1755 1755
1756 1756 -c: use time.clock to measure the time, which is the default on
1757 1757 Windows and measures wall time. On Unix, resource.getrusage is used
1758 1758 instead and returns the CPU user time.
1759 1759
1760 1760 -p<P>: use a precision of <P> digits to display the timing result.
1761 1761 Default: 3
1762 1762
1763 1763
1764 1764 Examples:
1765 1765
1766 1766 In [1]: %timeit pass
1767 1767 10000000 loops, best of 3: 53.3 ns per loop
1768 1768
1769 1769 In [2]: u = None
1770 1770
1771 1771 In [3]: %timeit u is None
1772 1772 10000000 loops, best of 3: 184 ns per loop
1773 1773
1774 1774 In [4]: %timeit -r 4 u == None
1775 1775 1000000 loops, best of 4: 242 ns per loop
1776 1776
1777 1777 In [5]: import time
1778 1778
1779 1779 In [6]: %timeit -n1 time.sleep(2)
1780 1780 1 loops, best of 3: 2 s per loop
1781 1781
1782 1782
1783 1783 The times reported by %timeit will be slightly higher than those
1784 1784 reported by the timeit.py script when variables are accessed. This is
1785 1785 due to the fact that %timeit executes the statement in the namespace
1786 1786 of the shell, compared with timeit.py, which uses a single setup
1787 1787 statement to import function or create variables. Generally, the bias
1788 1788 does not matter as long as results from timeit.py are not mixed with
1789 1789 those from %timeit."""
1790 1790
1791 1791 import timeit
1792 1792 import math
1793 1793
1794 1794 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1795 1795 # certain terminals. Until we figure out a robust way of
1796 1796 # auto-detecting if the terminal can deal with it, use plain 'us' for
1797 1797 # microseconds. I am really NOT happy about disabling the proper
1798 1798 # 'micro' prefix, but crashing is worse... If anyone knows what the
1799 1799 # right solution for this is, I'm all ears...
1800 1800 #
1801 1801 # Note: using
1802 1802 #
1803 1803 # s = u'\xb5'
1804 1804 # s.encode(sys.getdefaultencoding())
1805 1805 #
1806 1806 # is not sufficient, as I've seen terminals where that fails but
1807 1807 # print s
1808 1808 #
1809 1809 # succeeds
1810 1810 #
1811 1811 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1812 1812
1813 1813 #units = [u"s", u"ms",u'\xb5',"ns"]
1814 1814 units = [u"s", u"ms",u'us',"ns"]
1815 1815
1816 1816 scaling = [1, 1e3, 1e6, 1e9]
1817 1817
1818 1818 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1819 1819 posix=False)
1820 1820 if stmt == "":
1821 1821 return
1822 1822 timefunc = timeit.default_timer
1823 1823 number = int(getattr(opts, "n", 0))
1824 1824 repeat = int(getattr(opts, "r", timeit.default_repeat))
1825 1825 precision = int(getattr(opts, "p", 3))
1826 1826 if hasattr(opts, "t"):
1827 1827 timefunc = time.time
1828 1828 if hasattr(opts, "c"):
1829 1829 timefunc = clock
1830 1830
1831 1831 timer = timeit.Timer(timer=timefunc)
1832 1832 # this code has tight coupling to the inner workings of timeit.Timer,
1833 1833 # but is there a better way to achieve that the code stmt has access
1834 1834 # to the shell namespace?
1835 1835
1836 1836 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1837 1837 'setup': "pass"}
1838 1838 # Track compilation time so it can be reported if too long
1839 1839 # Minimum time above which compilation time will be reported
1840 1840 tc_min = 0.1
1841 1841
1842 1842 t0 = clock()
1843 1843 code = compile(src, "<magic-timeit>", "exec")
1844 1844 tc = clock()-t0
1845 1845
1846 1846 ns = {}
1847 1847 exec code in self.shell.user_ns, ns
1848 1848 timer.inner = ns["inner"]
1849 1849
1850 1850 if number == 0:
1851 1851 # determine number so that 0.2 <= total time < 2.0
1852 1852 number = 1
1853 1853 for i in range(1, 10):
1854 1854 if timer.timeit(number) >= 0.2:
1855 1855 break
1856 1856 number *= 10
1857 1857
1858 1858 best = min(timer.repeat(repeat, number)) / number
1859 1859
1860 1860 if best > 0.0 and best < 1000.0:
1861 1861 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1862 1862 elif best >= 1000.0:
1863 1863 order = 0
1864 1864 else:
1865 1865 order = 3
1866 1866 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1867 1867 precision,
1868 1868 best * scaling[order],
1869 1869 units[order])
1870 1870 if tc > tc_min:
1871 1871 print "Compiler time: %.2f s" % tc
1872 1872
1873 1873 @testdec.skip_doctest
1874 1874 @needs_local_scope
1875 1875 def magic_time(self,parameter_s = ''):
1876 1876 """Time execution of a Python statement or expression.
1877 1877
1878 1878 The CPU and wall clock times are printed, and the value of the
1879 1879 expression (if any) is returned. Note that under Win32, system time
1880 1880 is always reported as 0, since it can not be measured.
1881 1881
1882 1882 This function provides very basic timing functionality. In Python
1883 1883 2.3, the timeit module offers more control and sophistication, so this
1884 1884 could be rewritten to use it (patches welcome).
1885 1885
1886 1886 Some examples:
1887 1887
1888 1888 In [1]: time 2**128
1889 1889 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1890 1890 Wall time: 0.00
1891 1891 Out[1]: 340282366920938463463374607431768211456L
1892 1892
1893 1893 In [2]: n = 1000000
1894 1894
1895 1895 In [3]: time sum(range(n))
1896 1896 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1897 1897 Wall time: 1.37
1898 1898 Out[3]: 499999500000L
1899 1899
1900 1900 In [4]: time print 'hello world'
1901 1901 hello world
1902 1902 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1903 1903 Wall time: 0.00
1904 1904
1905 1905 Note that the time needed by Python to compile the given expression
1906 1906 will be reported if it is more than 0.1s. In this example, the
1907 1907 actual exponentiation is done by Python at compilation time, so while
1908 1908 the expression can take a noticeable amount of time to compute, that
1909 1909 time is purely due to the compilation:
1910 1910
1911 1911 In [5]: time 3**9999;
1912 1912 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1913 1913 Wall time: 0.00 s
1914 1914
1915 1915 In [6]: time 3**999999;
1916 1916 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1917 1917 Wall time: 0.00 s
1918 1918 Compiler : 0.78 s
1919 1919 """
1920 1920
1921 1921 # fail immediately if the given expression can't be compiled
1922 1922
1923 1923 expr = self.shell.prefilter(parameter_s,False)
1924 1924
1925 1925 # Minimum time above which compilation time will be reported
1926 1926 tc_min = 0.1
1927 1927
1928 1928 try:
1929 1929 mode = 'eval'
1930 1930 t0 = clock()
1931 1931 code = compile(expr,'<timed eval>',mode)
1932 1932 tc = clock()-t0
1933 1933 except SyntaxError:
1934 1934 mode = 'exec'
1935 1935 t0 = clock()
1936 1936 code = compile(expr,'<timed exec>',mode)
1937 1937 tc = clock()-t0
1938 1938 # skew measurement as little as possible
1939 1939 glob = self.shell.user_ns
1940 1940 locs = self._magic_locals
1941 1941 clk = clock2
1942 1942 wtime = time.time
1943 1943 # time execution
1944 1944 wall_st = wtime()
1945 1945 if mode=='eval':
1946 1946 st = clk()
1947 1947 out = eval(code, glob, locs)
1948 1948 end = clk()
1949 1949 else:
1950 1950 st = clk()
1951 1951 exec code in glob, locs
1952 1952 end = clk()
1953 1953 out = None
1954 1954 wall_end = wtime()
1955 1955 # Compute actual times and report
1956 1956 wall_time = wall_end-wall_st
1957 1957 cpu_user = end[0]-st[0]
1958 1958 cpu_sys = end[1]-st[1]
1959 1959 cpu_tot = cpu_user+cpu_sys
1960 1960 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1961 1961 (cpu_user,cpu_sys,cpu_tot)
1962 1962 print "Wall time: %.2f s" % wall_time
1963 1963 if tc > tc_min:
1964 1964 print "Compiler : %.2f s" % tc
1965 1965 return out
1966 1966
1967 1967 @testdec.skip_doctest
1968 1968 def magic_macro(self,parameter_s = ''):
1969 1969 """Define a macro for future re-execution. It accepts ranges of history,
1970 1970 filenames or string objects.
1971 1971
1972 1972 Usage:\\
1973 1973 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1974 1974
1975 1975 Options:
1976 1976
1977 1977 -r: use 'raw' input. By default, the 'processed' history is used,
1978 1978 so that magics are loaded in their transformed version to valid
1979 1979 Python. If this option is given, the raw input as typed as the
1980 1980 command line is used instead.
1981 1981
1982 1982 This will define a global variable called `name` which is a string
1983 1983 made of joining the slices and lines you specify (n1,n2,... numbers
1984 1984 above) from your input history into a single string. This variable
1985 1985 acts like an automatic function which re-executes those lines as if
1986 1986 you had typed them. You just type 'name' at the prompt and the code
1987 1987 executes.
1988 1988
1989 1989 The syntax for indicating input ranges is described in %history.
1990 1990
1991 1991 Note: as a 'hidden' feature, you can also use traditional python slice
1992 1992 notation, where N:M means numbers N through M-1.
1993 1993
1994 1994 For example, if your history contains (%hist prints it):
1995 1995
1996 1996 44: x=1
1997 1997 45: y=3
1998 1998 46: z=x+y
1999 1999 47: print x
2000 2000 48: a=5
2001 2001 49: print 'x',x,'y',y
2002 2002
2003 2003 you can create a macro with lines 44 through 47 (included) and line 49
2004 2004 called my_macro with:
2005 2005
2006 2006 In [55]: %macro my_macro 44-47 49
2007 2007
2008 2008 Now, typing `my_macro` (without quotes) will re-execute all this code
2009 2009 in one pass.
2010 2010
2011 2011 You don't need to give the line-numbers in order, and any given line
2012 2012 number can appear multiple times. You can assemble macros with any
2013 2013 lines from your input history in any order.
2014 2014
2015 2015 The macro is a simple object which holds its value in an attribute,
2016 2016 but IPython's display system checks for macros and executes them as
2017 2017 code instead of printing them when you type their name.
2018 2018
2019 2019 You can view a macro's contents by explicitly printing it with:
2020 2020
2021 2021 'print macro_name'.
2022 2022
2023 2023 """
2024 2024
2025 2025 opts,args = self.parse_options(parameter_s,'r',mode='list')
2026 2026 if not args: # List existing macros
2027 2027 return sorted(k for k,v in self.shell.user_ns.iteritems() if\
2028 2028 isinstance(v, Macro))
2029 2029 if len(args) == 1:
2030 2030 raise UsageError(
2031 2031 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2032 2032 name, codefrom = args[0], " ".join(args[1:])
2033 2033
2034 2034 #print 'rng',ranges # dbg
2035 2035 try:
2036 2036 lines = self.shell.find_user_code(codefrom, 'r' in opts)
2037 2037 except (ValueError, TypeError) as e:
2038 2038 print e.args[0]
2039 2039 return
2040 2040 macro = Macro(lines)
2041 2041 self.shell.define_macro(name, macro)
2042 2042 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2043 2043 print '=== Macro contents: ==='
2044 2044 print macro,
2045 2045
2046 2046 def magic_save(self,parameter_s = ''):
2047 2047 """Save a set of lines or a macro to a given filename.
2048 2048
2049 2049 Usage:\\
2050 2050 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2051 2051
2052 2052 Options:
2053 2053
2054 2054 -r: use 'raw' input. By default, the 'processed' history is used,
2055 2055 so that magics are loaded in their transformed version to valid
2056 2056 Python. If this option is given, the raw input as typed as the
2057 2057 command line is used instead.
2058 2058
2059 2059 This function uses the same syntax as %history for input ranges,
2060 2060 then saves the lines to the filename you specify.
2061 2061
2062 2062 It adds a '.py' extension to the file if you don't do so yourself, and
2063 2063 it asks for confirmation before overwriting existing files."""
2064 2064
2065 2065 opts,args = self.parse_options(parameter_s,'r',mode='list')
2066 2066 fname, codefrom = args[0], " ".join(args[1:])
2067 2067 if not fname.endswith('.py'):
2068 2068 fname += '.py'
2069 2069 if os.path.isfile(fname):
2070 2070 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2071 2071 if ans.lower() not in ['y','yes']:
2072 2072 print 'Operation cancelled.'
2073 2073 return
2074 2074 try:
2075 2075 cmds = self.shell.find_user_code(codefrom, 'r' in opts)
2076 2076 except (TypeError, ValueError) as e:
2077 2077 print e.args[0]
2078 2078 return
2079 2079 if isinstance(cmds, unicode):
2080 2080 cmds = cmds.encode("utf-8")
2081 2081 with open(fname,'w') as f:
2082 2082 f.write("# coding: utf-8\n")
2083 2083 f.write(cmds)
2084 2084 print 'The following commands were written to file `%s`:' % fname
2085 2085 print cmds
2086 2086
2087 2087 def magic_pastebin(self, parameter_s = ''):
2088 2088 """Upload code to the 'Lodge it' paste bin, returning the URL."""
2089 2089 try:
2090 2090 code = self.shell.find_user_code(parameter_s)
2091 2091 except (ValueError, TypeError) as e:
2092 2092 print e.args[0]
2093 2093 return
2094 2094 pbserver = ServerProxy('http://paste.pocoo.org/xmlrpc/')
2095 2095 id = pbserver.pastes.newPaste("python", code)
2096 2096 return "http://paste.pocoo.org/show/" + id
2097 2097
2098 2098 def _edit_macro(self,mname,macro):
2099 2099 """open an editor with the macro data in a file"""
2100 2100 filename = self.shell.mktempfile(macro.value)
2101 2101 self.shell.hooks.editor(filename)
2102 2102
2103 2103 # and make a new macro object, to replace the old one
2104 2104 mfile = open(filename)
2105 2105 mvalue = mfile.read()
2106 2106 mfile.close()
2107 2107 self.shell.user_ns[mname] = Macro(mvalue)
2108 2108
2109 2109 def magic_ed(self,parameter_s=''):
2110 2110 """Alias to %edit."""
2111 2111 return self.magic_edit(parameter_s)
2112 2112
2113 2113 @testdec.skip_doctest
2114 2114 def magic_edit(self,parameter_s='',last_call=['','']):
2115 2115 """Bring up an editor and execute the resulting code.
2116 2116
2117 2117 Usage:
2118 2118 %edit [options] [args]
2119 2119
2120 2120 %edit runs IPython's editor hook. The default version of this hook is
2121 2121 set to call the __IPYTHON__.rc.editor command. This is read from your
2122 2122 environment variable $EDITOR. If this isn't found, it will default to
2123 2123 vi under Linux/Unix and to notepad under Windows. See the end of this
2124 2124 docstring for how to change the editor hook.
2125 2125
2126 2126 You can also set the value of this editor via the command line option
2127 2127 '-editor' or in your ipythonrc file. This is useful if you wish to use
2128 2128 specifically for IPython an editor different from your typical default
2129 2129 (and for Windows users who typically don't set environment variables).
2130 2130
2131 2131 This command allows you to conveniently edit multi-line code right in
2132 2132 your IPython session.
2133 2133
2134 2134 If called without arguments, %edit opens up an empty editor with a
2135 2135 temporary file and will execute the contents of this file when you
2136 2136 close it (don't forget to save it!).
2137 2137
2138 2138
2139 2139 Options:
2140 2140
2141 2141 -n <number>: open the editor at a specified line number. By default,
2142 2142 the IPython editor hook uses the unix syntax 'editor +N filename', but
2143 2143 you can configure this by providing your own modified hook if your
2144 2144 favorite editor supports line-number specifications with a different
2145 2145 syntax.
2146 2146
2147 2147 -p: this will call the editor with the same data as the previous time
2148 2148 it was used, regardless of how long ago (in your current session) it
2149 2149 was.
2150 2150
2151 2151 -r: use 'raw' input. This option only applies to input taken from the
2152 2152 user's history. By default, the 'processed' history is used, so that
2153 2153 magics are loaded in their transformed version to valid Python. If
2154 2154 this option is given, the raw input as typed as the command line is
2155 2155 used instead. When you exit the editor, it will be executed by
2156 2156 IPython's own processor.
2157 2157
2158 2158 -x: do not execute the edited code immediately upon exit. This is
2159 2159 mainly useful if you are editing programs which need to be called with
2160 2160 command line arguments, which you can then do using %run.
2161 2161
2162 2162
2163 2163 Arguments:
2164 2164
2165 2165 If arguments are given, the following possibilites exist:
2166 2166
2167 2167 - If the argument is a filename, IPython will load that into the
2168 2168 editor. It will execute its contents with execfile() when you exit,
2169 2169 loading any code in the file into your interactive namespace.
2170 2170
2171 2171 - The arguments are ranges of input history, e.g. "7 ~1/4-6".
2172 2172 The syntax is the same as in the %history magic.
2173 2173
2174 2174 - If the argument is a string variable, its contents are loaded
2175 2175 into the editor. You can thus edit any string which contains
2176 2176 python code (including the result of previous edits).
2177 2177
2178 2178 - If the argument is the name of an object (other than a string),
2179 2179 IPython will try to locate the file where it was defined and open the
2180 2180 editor at the point where it is defined. You can use `%edit function`
2181 2181 to load an editor exactly at the point where 'function' is defined,
2182 2182 edit it and have the file be executed automatically.
2183 2183
2184 2184 If the object is a macro (see %macro for details), this opens up your
2185 2185 specified editor with a temporary file containing the macro's data.
2186 2186 Upon exit, the macro is reloaded with the contents of the file.
2187 2187
2188 2188 Note: opening at an exact line is only supported under Unix, and some
2189 2189 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2190 2190 '+NUMBER' parameter necessary for this feature. Good editors like
2191 2191 (X)Emacs, vi, jed, pico and joe all do.
2192 2192
2193 2193 After executing your code, %edit will return as output the code you
2194 2194 typed in the editor (except when it was an existing file). This way
2195 2195 you can reload the code in further invocations of %edit as a variable,
2196 2196 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2197 2197 the output.
2198 2198
2199 2199 Note that %edit is also available through the alias %ed.
2200 2200
2201 2201 This is an example of creating a simple function inside the editor and
2202 2202 then modifying it. First, start up the editor:
2203 2203
2204 2204 In [1]: ed
2205 2205 Editing... done. Executing edited code...
2206 2206 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2207 2207
2208 2208 We can then call the function foo():
2209 2209
2210 2210 In [2]: foo()
2211 2211 foo() was defined in an editing session
2212 2212
2213 2213 Now we edit foo. IPython automatically loads the editor with the
2214 2214 (temporary) file where foo() was previously defined:
2215 2215
2216 2216 In [3]: ed foo
2217 2217 Editing... done. Executing edited code...
2218 2218
2219 2219 And if we call foo() again we get the modified version:
2220 2220
2221 2221 In [4]: foo()
2222 2222 foo() has now been changed!
2223 2223
2224 2224 Here is an example of how to edit a code snippet successive
2225 2225 times. First we call the editor:
2226 2226
2227 2227 In [5]: ed
2228 2228 Editing... done. Executing edited code...
2229 2229 hello
2230 2230 Out[5]: "print 'hello'n"
2231 2231
2232 2232 Now we call it again with the previous output (stored in _):
2233 2233
2234 2234 In [6]: ed _
2235 2235 Editing... done. Executing edited code...
2236 2236 hello world
2237 2237 Out[6]: "print 'hello world'n"
2238 2238
2239 2239 Now we call it with the output #8 (stored in _8, also as Out[8]):
2240 2240
2241 2241 In [7]: ed _8
2242 2242 Editing... done. Executing edited code...
2243 2243 hello again
2244 2244 Out[7]: "print 'hello again'n"
2245 2245
2246 2246
2247 2247 Changing the default editor hook:
2248 2248
2249 2249 If you wish to write your own editor hook, you can put it in a
2250 2250 configuration file which you load at startup time. The default hook
2251 2251 is defined in the IPython.core.hooks module, and you can use that as a
2252 2252 starting example for further modifications. That file also has
2253 2253 general instructions on how to set a new hook for use once you've
2254 2254 defined it."""
2255 2255
2256 2256 # FIXME: This function has become a convoluted mess. It needs a
2257 2257 # ground-up rewrite with clean, simple logic.
2258 2258
2259 2259 def make_filename(arg):
2260 2260 "Make a filename from the given args"
2261 2261 try:
2262 2262 filename = get_py_filename(arg)
2263 2263 except IOError:
2264 2264 if args.endswith('.py'):
2265 2265 filename = arg
2266 2266 else:
2267 2267 filename = None
2268 2268 return filename
2269 2269
2270 2270 # custom exceptions
2271 2271 class DataIsObject(Exception): pass
2272 2272
2273 2273 opts,args = self.parse_options(parameter_s,'prxn:')
2274 2274 # Set a few locals from the options for convenience:
2275 2275 opts_prev = 'p' in opts
2276 2276 opts_raw = 'r' in opts
2277 2277
2278 2278 # Default line number value
2279 2279 lineno = opts.get('n',None)
2280 2280
2281 2281 if opts_prev:
2282 2282 args = '_%s' % last_call[0]
2283 2283 if not self.shell.user_ns.has_key(args):
2284 2284 args = last_call[1]
2285 2285
2286 2286 # use last_call to remember the state of the previous call, but don't
2287 2287 # let it be clobbered by successive '-p' calls.
2288 2288 try:
2289 2289 last_call[0] = self.shell.displayhook.prompt_count
2290 2290 if not opts_prev:
2291 2291 last_call[1] = parameter_s
2292 2292 except:
2293 2293 pass
2294 2294
2295 2295 # by default this is done with temp files, except when the given
2296 2296 # arg is a filename
2297 2297 use_temp = True
2298 2298
2299 2299 data = ''
2300 2300 if args.endswith('.py'):
2301 2301 filename = make_filename(args)
2302 2302 use_temp = False
2303 2303 elif args:
2304 2304 # Mode where user specifies ranges of lines, like in %macro.
2305 2305 data = self.extract_input_lines(args, opts_raw)
2306 2306 if not data:
2307 2307 try:
2308 2308 # Load the parameter given as a variable. If not a string,
2309 2309 # process it as an object instead (below)
2310 2310
2311 2311 #print '*** args',args,'type',type(args) # dbg
2312 2312 data = eval(args, self.shell.user_ns)
2313 2313 if not isinstance(data, basestring):
2314 2314 raise DataIsObject
2315 2315
2316 2316 except (NameError,SyntaxError):
2317 2317 # given argument is not a variable, try as a filename
2318 2318 filename = make_filename(args)
2319 2319 if filename is None:
2320 2320 warn("Argument given (%s) can't be found as a variable "
2321 2321 "or as a filename." % args)
2322 2322 return
2323 2323 use_temp = False
2324 2324
2325 2325 except DataIsObject:
2326 2326 # macros have a special edit function
2327 2327 if isinstance(data, Macro):
2328 2328 self._edit_macro(args,data)
2329 2329 return
2330 2330
2331 2331 # For objects, try to edit the file where they are defined
2332 2332 try:
2333 2333 filename = inspect.getabsfile(data)
2334 2334 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2335 2335 # class created by %edit? Try to find source
2336 2336 # by looking for method definitions instead, the
2337 2337 # __module__ in those classes is FakeModule.
2338 2338 attrs = [getattr(data, aname) for aname in dir(data)]
2339 2339 for attr in attrs:
2340 2340 if not inspect.ismethod(attr):
2341 2341 continue
2342 2342 filename = inspect.getabsfile(attr)
2343 2343 if filename and 'fakemodule' not in filename.lower():
2344 2344 # change the attribute to be the edit target instead
2345 2345 data = attr
2346 2346 break
2347 2347
2348 2348 datafile = 1
2349 2349 except TypeError:
2350 2350 filename = make_filename(args)
2351 2351 datafile = 1
2352 2352 warn('Could not find file where `%s` is defined.\n'
2353 2353 'Opening a file named `%s`' % (args,filename))
2354 2354 # Now, make sure we can actually read the source (if it was in
2355 2355 # a temp file it's gone by now).
2356 2356 if datafile:
2357 2357 try:
2358 2358 if lineno is None:
2359 2359 lineno = inspect.getsourcelines(data)[1]
2360 2360 except IOError:
2361 2361 filename = make_filename(args)
2362 2362 if filename is None:
2363 2363 warn('The file `%s` where `%s` was defined cannot '
2364 2364 'be read.' % (filename,data))
2365 2365 return
2366 2366 use_temp = False
2367 2367
2368 2368 if use_temp:
2369 2369 filename = self.shell.mktempfile(data)
2370 2370 print 'IPython will make a temporary file named:',filename
2371 2371
2372 2372 # do actual editing here
2373 2373 print 'Editing...',
2374 2374 sys.stdout.flush()
2375 2375 try:
2376 2376 # Quote filenames that may have spaces in them
2377 2377 if ' ' in filename:
2378 2378 filename = "%s" % filename
2379 2379 self.shell.hooks.editor(filename,lineno)
2380 2380 except TryNext:
2381 2381 warn('Could not open editor')
2382 2382 return
2383 2383
2384 2384 # XXX TODO: should this be generalized for all string vars?
2385 2385 # For now, this is special-cased to blocks created by cpaste
2386 2386 if args.strip() == 'pasted_block':
2387 2387 self.shell.user_ns['pasted_block'] = file_read(filename)
2388 2388
2389 2389 if 'x' in opts: # -x prevents actual execution
2390 2390 print
2391 2391 else:
2392 2392 print 'done. Executing edited code...'
2393 2393 if opts_raw:
2394 2394 self.shell.run_cell(file_read(filename),
2395 2395 store_history=False)
2396 2396 else:
2397 2397 self.shell.safe_execfile(filename,self.shell.user_ns,
2398 2398 self.shell.user_ns)
2399 2399
2400 2400
2401 2401 if use_temp:
2402 2402 try:
2403 2403 return open(filename).read()
2404 2404 except IOError,msg:
2405 2405 if msg.filename == filename:
2406 2406 warn('File not found. Did you forget to save?')
2407 2407 return
2408 2408 else:
2409 2409 self.shell.showtraceback()
2410 2410
2411 2411 def magic_xmode(self,parameter_s = ''):
2412 2412 """Switch modes for the exception handlers.
2413 2413
2414 2414 Valid modes: Plain, Context and Verbose.
2415 2415
2416 2416 If called without arguments, acts as a toggle."""
2417 2417
2418 2418 def xmode_switch_err(name):
2419 2419 warn('Error changing %s exception modes.\n%s' %
2420 2420 (name,sys.exc_info()[1]))
2421 2421
2422 2422 shell = self.shell
2423 2423 new_mode = parameter_s.strip().capitalize()
2424 2424 try:
2425 2425 shell.InteractiveTB.set_mode(mode=new_mode)
2426 2426 print 'Exception reporting mode:',shell.InteractiveTB.mode
2427 2427 except:
2428 2428 xmode_switch_err('user')
2429 2429
2430 2430 def magic_colors(self,parameter_s = ''):
2431 2431 """Switch color scheme for prompts, info system and exception handlers.
2432 2432
2433 2433 Currently implemented schemes: NoColor, Linux, LightBG.
2434 2434
2435 2435 Color scheme names are not case-sensitive.
2436 2436
2437 2437 Examples
2438 2438 --------
2439 2439 To get a plain black and white terminal::
2440 2440
2441 2441 %colors nocolor
2442 2442 """
2443 2443
2444 2444 def color_switch_err(name):
2445 2445 warn('Error changing %s color schemes.\n%s' %
2446 2446 (name,sys.exc_info()[1]))
2447 2447
2448 2448
2449 2449 new_scheme = parameter_s.strip()
2450 2450 if not new_scheme:
2451 2451 raise UsageError(
2452 2452 "%colors: you must specify a color scheme. See '%colors?'")
2453 2453 return
2454 2454 # local shortcut
2455 2455 shell = self.shell
2456 2456
2457 2457 import IPython.utils.rlineimpl as readline
2458 2458
2459 2459 if not readline.have_readline and sys.platform == "win32":
2460 2460 msg = """\
2461 2461 Proper color support under MS Windows requires the pyreadline library.
2462 2462 You can find it at:
2463 2463 http://ipython.scipy.org/moin/PyReadline/Intro
2464 2464 Gary's readline needs the ctypes module, from:
2465 2465 http://starship.python.net/crew/theller/ctypes
2466 2466 (Note that ctypes is already part of Python versions 2.5 and newer).
2467 2467
2468 2468 Defaulting color scheme to 'NoColor'"""
2469 2469 new_scheme = 'NoColor'
2470 2470 warn(msg)
2471 2471
2472 2472 # readline option is 0
2473 2473 if not shell.has_readline:
2474 2474 new_scheme = 'NoColor'
2475 2475
2476 2476 # Set prompt colors
2477 2477 try:
2478 2478 shell.displayhook.set_colors(new_scheme)
2479 2479 except:
2480 2480 color_switch_err('prompt')
2481 2481 else:
2482 2482 shell.colors = \
2483 2483 shell.displayhook.color_table.active_scheme_name
2484 2484 # Set exception colors
2485 2485 try:
2486 2486 shell.InteractiveTB.set_colors(scheme = new_scheme)
2487 2487 shell.SyntaxTB.set_colors(scheme = new_scheme)
2488 2488 except:
2489 2489 color_switch_err('exception')
2490 2490
2491 2491 # Set info (for 'object?') colors
2492 2492 if shell.color_info:
2493 2493 try:
2494 2494 shell.inspector.set_active_scheme(new_scheme)
2495 2495 except:
2496 2496 color_switch_err('object inspector')
2497 2497 else:
2498 2498 shell.inspector.set_active_scheme('NoColor')
2499 2499
2500 2500 def magic_pprint(self, parameter_s=''):
2501 2501 """Toggle pretty printing on/off."""
2502 2502 ptformatter = self.shell.display_formatter.formatters['text/plain']
2503 2503 ptformatter.pprint = bool(1 - ptformatter.pprint)
2504 2504 print 'Pretty printing has been turned', \
2505 2505 ['OFF','ON'][ptformatter.pprint]
2506
2507 def magic_Exit(self, parameter_s=''):
2508 """Exit IPython."""
2509
2510 self.shell.ask_exit()
2511
2512 # Add aliases as magics so all common forms work: exit, quit, Exit, Quit.
2513 magic_exit = magic_quit = magic_Quit = magic_Exit
2514 2506
2515 2507 #......................................................................
2516 2508 # Functions to implement unix shell-type things
2517 2509
2518 2510 @testdec.skip_doctest
2519 2511 def magic_alias(self, parameter_s = ''):
2520 2512 """Define an alias for a system command.
2521 2513
2522 2514 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2523 2515
2524 2516 Then, typing 'alias_name params' will execute the system command 'cmd
2525 2517 params' (from your underlying operating system).
2526 2518
2527 2519 Aliases have lower precedence than magic functions and Python normal
2528 2520 variables, so if 'foo' is both a Python variable and an alias, the
2529 2521 alias can not be executed until 'del foo' removes the Python variable.
2530 2522
2531 2523 You can use the %l specifier in an alias definition to represent the
2532 2524 whole line when the alias is called. For example:
2533 2525
2534 2526 In [2]: alias bracket echo "Input in brackets: <%l>"
2535 2527 In [3]: bracket hello world
2536 2528 Input in brackets: <hello world>
2537 2529
2538 2530 You can also define aliases with parameters using %s specifiers (one
2539 2531 per parameter):
2540 2532
2541 2533 In [1]: alias parts echo first %s second %s
2542 2534 In [2]: %parts A B
2543 2535 first A second B
2544 2536 In [3]: %parts A
2545 2537 Incorrect number of arguments: 2 expected.
2546 2538 parts is an alias to: 'echo first %s second %s'
2547 2539
2548 2540 Note that %l and %s are mutually exclusive. You can only use one or
2549 2541 the other in your aliases.
2550 2542
2551 2543 Aliases expand Python variables just like system calls using ! or !!
2552 2544 do: all expressions prefixed with '$' get expanded. For details of
2553 2545 the semantic rules, see PEP-215:
2554 2546 http://www.python.org/peps/pep-0215.html. This is the library used by
2555 2547 IPython for variable expansion. If you want to access a true shell
2556 2548 variable, an extra $ is necessary to prevent its expansion by IPython:
2557 2549
2558 2550 In [6]: alias show echo
2559 2551 In [7]: PATH='A Python string'
2560 2552 In [8]: show $PATH
2561 2553 A Python string
2562 2554 In [9]: show $$PATH
2563 2555 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2564 2556
2565 2557 You can use the alias facility to acess all of $PATH. See the %rehash
2566 2558 and %rehashx functions, which automatically create aliases for the
2567 2559 contents of your $PATH.
2568 2560
2569 2561 If called with no parameters, %alias prints the current alias table."""
2570 2562
2571 2563 par = parameter_s.strip()
2572 2564 if not par:
2573 2565 stored = self.db.get('stored_aliases', {} )
2574 2566 aliases = sorted(self.shell.alias_manager.aliases)
2575 2567 # for k, v in stored:
2576 2568 # atab.append(k, v[0])
2577 2569
2578 2570 print "Total number of aliases:", len(aliases)
2579 2571 sys.stdout.flush()
2580 2572 return aliases
2581 2573
2582 2574 # Now try to define a new one
2583 2575 try:
2584 2576 alias,cmd = par.split(None, 1)
2585 2577 except:
2586 2578 print oinspect.getdoc(self.magic_alias)
2587 2579 else:
2588 2580 self.shell.alias_manager.soft_define_alias(alias, cmd)
2589 2581 # end magic_alias
2590 2582
2591 2583 def magic_unalias(self, parameter_s = ''):
2592 2584 """Remove an alias"""
2593 2585
2594 2586 aname = parameter_s.strip()
2595 2587 self.shell.alias_manager.undefine_alias(aname)
2596 2588 stored = self.db.get('stored_aliases', {} )
2597 2589 if aname in stored:
2598 2590 print "Removing %stored alias",aname
2599 2591 del stored[aname]
2600 2592 self.db['stored_aliases'] = stored
2601 2593
2602 2594 def magic_rehashx(self, parameter_s = ''):
2603 2595 """Update the alias table with all executable files in $PATH.
2604 2596
2605 2597 This version explicitly checks that every entry in $PATH is a file
2606 2598 with execute access (os.X_OK), so it is much slower than %rehash.
2607 2599
2608 2600 Under Windows, it checks executability as a match agains a
2609 2601 '|'-separated string of extensions, stored in the IPython config
2610 2602 variable win_exec_ext. This defaults to 'exe|com|bat'.
2611 2603
2612 2604 This function also resets the root module cache of module completer,
2613 2605 used on slow filesystems.
2614 2606 """
2615 2607 from IPython.core.alias import InvalidAliasError
2616 2608
2617 2609 # for the benefit of module completer in ipy_completers.py
2618 2610 del self.db['rootmodules']
2619 2611
2620 2612 path = [os.path.abspath(os.path.expanduser(p)) for p in
2621 2613 os.environ.get('PATH','').split(os.pathsep)]
2622 2614 path = filter(os.path.isdir,path)
2623 2615
2624 2616 syscmdlist = []
2625 2617 # Now define isexec in a cross platform manner.
2626 2618 if os.name == 'posix':
2627 2619 isexec = lambda fname:os.path.isfile(fname) and \
2628 2620 os.access(fname,os.X_OK)
2629 2621 else:
2630 2622 try:
2631 2623 winext = os.environ['pathext'].replace(';','|').replace('.','')
2632 2624 except KeyError:
2633 2625 winext = 'exe|com|bat|py'
2634 2626 if 'py' not in winext:
2635 2627 winext += '|py'
2636 2628 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2637 2629 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2638 2630 savedir = os.getcwd()
2639 2631
2640 2632 # Now walk the paths looking for executables to alias.
2641 2633 try:
2642 2634 # write the whole loop for posix/Windows so we don't have an if in
2643 2635 # the innermost part
2644 2636 if os.name == 'posix':
2645 2637 for pdir in path:
2646 2638 os.chdir(pdir)
2647 2639 for ff in os.listdir(pdir):
2648 2640 if isexec(ff):
2649 2641 try:
2650 2642 # Removes dots from the name since ipython
2651 2643 # will assume names with dots to be python.
2652 2644 self.shell.alias_manager.define_alias(
2653 2645 ff.replace('.',''), ff)
2654 2646 except InvalidAliasError:
2655 2647 pass
2656 2648 else:
2657 2649 syscmdlist.append(ff)
2658 2650 else:
2659 2651 no_alias = self.shell.alias_manager.no_alias
2660 2652 for pdir in path:
2661 2653 os.chdir(pdir)
2662 2654 for ff in os.listdir(pdir):
2663 2655 base, ext = os.path.splitext(ff)
2664 2656 if isexec(ff) and base.lower() not in no_alias:
2665 2657 if ext.lower() == '.exe':
2666 2658 ff = base
2667 2659 try:
2668 2660 # Removes dots from the name since ipython
2669 2661 # will assume names with dots to be python.
2670 2662 self.shell.alias_manager.define_alias(
2671 2663 base.lower().replace('.',''), ff)
2672 2664 except InvalidAliasError:
2673 2665 pass
2674 2666 syscmdlist.append(ff)
2675 2667 db = self.db
2676 2668 db['syscmdlist'] = syscmdlist
2677 2669 finally:
2678 2670 os.chdir(savedir)
2679 2671
2680 2672 @testdec.skip_doctest
2681 2673 def magic_pwd(self, parameter_s = ''):
2682 2674 """Return the current working directory path.
2683 2675
2684 2676 Examples
2685 2677 --------
2686 2678 ::
2687 2679
2688 2680 In [9]: pwd
2689 2681 Out[9]: '/home/tsuser/sprint/ipython'
2690 2682 """
2691 2683 return os.getcwd()
2692 2684
2693 2685 @testdec.skip_doctest
2694 2686 def magic_cd(self, parameter_s=''):
2695 2687 """Change the current working directory.
2696 2688
2697 2689 This command automatically maintains an internal list of directories
2698 2690 you visit during your IPython session, in the variable _dh. The
2699 2691 command %dhist shows this history nicely formatted. You can also
2700 2692 do 'cd -<tab>' to see directory history conveniently.
2701 2693
2702 2694 Usage:
2703 2695
2704 2696 cd 'dir': changes to directory 'dir'.
2705 2697
2706 2698 cd -: changes to the last visited directory.
2707 2699
2708 2700 cd -<n>: changes to the n-th directory in the directory history.
2709 2701
2710 2702 cd --foo: change to directory that matches 'foo' in history
2711 2703
2712 2704 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2713 2705 (note: cd <bookmark_name> is enough if there is no
2714 2706 directory <bookmark_name>, but a bookmark with the name exists.)
2715 2707 'cd -b <tab>' allows you to tab-complete bookmark names.
2716 2708
2717 2709 Options:
2718 2710
2719 2711 -q: quiet. Do not print the working directory after the cd command is
2720 2712 executed. By default IPython's cd command does print this directory,
2721 2713 since the default prompts do not display path information.
2722 2714
2723 2715 Note that !cd doesn't work for this purpose because the shell where
2724 2716 !command runs is immediately discarded after executing 'command'.
2725 2717
2726 2718 Examples
2727 2719 --------
2728 2720 ::
2729 2721
2730 2722 In [10]: cd parent/child
2731 2723 /home/tsuser/parent/child
2732 2724 """
2733 2725
2734 2726 parameter_s = parameter_s.strip()
2735 2727 #bkms = self.shell.persist.get("bookmarks",{})
2736 2728
2737 2729 oldcwd = os.getcwd()
2738 2730 numcd = re.match(r'(-)(\d+)$',parameter_s)
2739 2731 # jump in directory history by number
2740 2732 if numcd:
2741 2733 nn = int(numcd.group(2))
2742 2734 try:
2743 2735 ps = self.shell.user_ns['_dh'][nn]
2744 2736 except IndexError:
2745 2737 print 'The requested directory does not exist in history.'
2746 2738 return
2747 2739 else:
2748 2740 opts = {}
2749 2741 elif parameter_s.startswith('--'):
2750 2742 ps = None
2751 2743 fallback = None
2752 2744 pat = parameter_s[2:]
2753 2745 dh = self.shell.user_ns['_dh']
2754 2746 # first search only by basename (last component)
2755 2747 for ent in reversed(dh):
2756 2748 if pat in os.path.basename(ent) and os.path.isdir(ent):
2757 2749 ps = ent
2758 2750 break
2759 2751
2760 2752 if fallback is None and pat in ent and os.path.isdir(ent):
2761 2753 fallback = ent
2762 2754
2763 2755 # if we have no last part match, pick the first full path match
2764 2756 if ps is None:
2765 2757 ps = fallback
2766 2758
2767 2759 if ps is None:
2768 2760 print "No matching entry in directory history"
2769 2761 return
2770 2762 else:
2771 2763 opts = {}
2772 2764
2773 2765
2774 2766 else:
2775 2767 #turn all non-space-escaping backslashes to slashes,
2776 2768 # for c:\windows\directory\names\
2777 2769 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2778 2770 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2779 2771 # jump to previous
2780 2772 if ps == '-':
2781 2773 try:
2782 2774 ps = self.shell.user_ns['_dh'][-2]
2783 2775 except IndexError:
2784 2776 raise UsageError('%cd -: No previous directory to change to.')
2785 2777 # jump to bookmark if needed
2786 2778 else:
2787 2779 if not os.path.isdir(ps) or opts.has_key('b'):
2788 2780 bkms = self.db.get('bookmarks', {})
2789 2781
2790 2782 if bkms.has_key(ps):
2791 2783 target = bkms[ps]
2792 2784 print '(bookmark:%s) -> %s' % (ps,target)
2793 2785 ps = target
2794 2786 else:
2795 2787 if opts.has_key('b'):
2796 2788 raise UsageError("Bookmark '%s' not found. "
2797 2789 "Use '%%bookmark -l' to see your bookmarks." % ps)
2798 2790
2799 2791 # at this point ps should point to the target dir
2800 2792 if ps:
2801 2793 try:
2802 2794 os.chdir(os.path.expanduser(ps))
2803 2795 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2804 2796 set_term_title('IPython: ' + abbrev_cwd())
2805 2797 except OSError:
2806 2798 print sys.exc_info()[1]
2807 2799 else:
2808 2800 cwd = os.getcwd()
2809 2801 dhist = self.shell.user_ns['_dh']
2810 2802 if oldcwd != cwd:
2811 2803 dhist.append(cwd)
2812 2804 self.db['dhist'] = compress_dhist(dhist)[-100:]
2813 2805
2814 2806 else:
2815 2807 os.chdir(self.shell.home_dir)
2816 2808 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2817 2809 set_term_title('IPython: ' + '~')
2818 2810 cwd = os.getcwd()
2819 2811 dhist = self.shell.user_ns['_dh']
2820 2812
2821 2813 if oldcwd != cwd:
2822 2814 dhist.append(cwd)
2823 2815 self.db['dhist'] = compress_dhist(dhist)[-100:]
2824 2816 if not 'q' in opts and self.shell.user_ns['_dh']:
2825 2817 print self.shell.user_ns['_dh'][-1]
2826 2818
2827 2819
2828 2820 def magic_env(self, parameter_s=''):
2829 2821 """List environment variables."""
2830 2822
2831 2823 return os.environ.data
2832 2824
2833 2825 def magic_pushd(self, parameter_s=''):
2834 2826 """Place the current dir on stack and change directory.
2835 2827
2836 2828 Usage:\\
2837 2829 %pushd ['dirname']
2838 2830 """
2839 2831
2840 2832 dir_s = self.shell.dir_stack
2841 2833 tgt = os.path.expanduser(parameter_s)
2842 2834 cwd = os.getcwd().replace(self.home_dir,'~')
2843 2835 if tgt:
2844 2836 self.magic_cd(parameter_s)
2845 2837 dir_s.insert(0,cwd)
2846 2838 return self.magic_dirs()
2847 2839
2848 2840 def magic_popd(self, parameter_s=''):
2849 2841 """Change to directory popped off the top of the stack.
2850 2842 """
2851 2843 if not self.shell.dir_stack:
2852 2844 raise UsageError("%popd on empty stack")
2853 2845 top = self.shell.dir_stack.pop(0)
2854 2846 self.magic_cd(top)
2855 2847 print "popd ->",top
2856 2848
2857 2849 def magic_dirs(self, parameter_s=''):
2858 2850 """Return the current directory stack."""
2859 2851
2860 2852 return self.shell.dir_stack
2861 2853
2862 2854 def magic_dhist(self, parameter_s=''):
2863 2855 """Print your history of visited directories.
2864 2856
2865 2857 %dhist -> print full history\\
2866 2858 %dhist n -> print last n entries only\\
2867 2859 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2868 2860
2869 2861 This history is automatically maintained by the %cd command, and
2870 2862 always available as the global list variable _dh. You can use %cd -<n>
2871 2863 to go to directory number <n>.
2872 2864
2873 2865 Note that most of time, you should view directory history by entering
2874 2866 cd -<TAB>.
2875 2867
2876 2868 """
2877 2869
2878 2870 dh = self.shell.user_ns['_dh']
2879 2871 if parameter_s:
2880 2872 try:
2881 2873 args = map(int,parameter_s.split())
2882 2874 except:
2883 2875 self.arg_err(Magic.magic_dhist)
2884 2876 return
2885 2877 if len(args) == 1:
2886 2878 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2887 2879 elif len(args) == 2:
2888 2880 ini,fin = args
2889 2881 else:
2890 2882 self.arg_err(Magic.magic_dhist)
2891 2883 return
2892 2884 else:
2893 2885 ini,fin = 0,len(dh)
2894 2886 nlprint(dh,
2895 2887 header = 'Directory history (kept in _dh)',
2896 2888 start=ini,stop=fin)
2897 2889
2898 2890 @testdec.skip_doctest
2899 2891 def magic_sc(self, parameter_s=''):
2900 2892 """Shell capture - execute a shell command and capture its output.
2901 2893
2902 2894 DEPRECATED. Suboptimal, retained for backwards compatibility.
2903 2895
2904 2896 You should use the form 'var = !command' instead. Example:
2905 2897
2906 2898 "%sc -l myfiles = ls ~" should now be written as
2907 2899
2908 2900 "myfiles = !ls ~"
2909 2901
2910 2902 myfiles.s, myfiles.l and myfiles.n still apply as documented
2911 2903 below.
2912 2904
2913 2905 --
2914 2906 %sc [options] varname=command
2915 2907
2916 2908 IPython will run the given command using commands.getoutput(), and
2917 2909 will then update the user's interactive namespace with a variable
2918 2910 called varname, containing the value of the call. Your command can
2919 2911 contain shell wildcards, pipes, etc.
2920 2912
2921 2913 The '=' sign in the syntax is mandatory, and the variable name you
2922 2914 supply must follow Python's standard conventions for valid names.
2923 2915
2924 2916 (A special format without variable name exists for internal use)
2925 2917
2926 2918 Options:
2927 2919
2928 2920 -l: list output. Split the output on newlines into a list before
2929 2921 assigning it to the given variable. By default the output is stored
2930 2922 as a single string.
2931 2923
2932 2924 -v: verbose. Print the contents of the variable.
2933 2925
2934 2926 In most cases you should not need to split as a list, because the
2935 2927 returned value is a special type of string which can automatically
2936 2928 provide its contents either as a list (split on newlines) or as a
2937 2929 space-separated string. These are convenient, respectively, either
2938 2930 for sequential processing or to be passed to a shell command.
2939 2931
2940 2932 For example:
2941 2933
2942 2934 # all-random
2943 2935
2944 2936 # Capture into variable a
2945 2937 In [1]: sc a=ls *py
2946 2938
2947 2939 # a is a string with embedded newlines
2948 2940 In [2]: a
2949 2941 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2950 2942
2951 2943 # which can be seen as a list:
2952 2944 In [3]: a.l
2953 2945 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2954 2946
2955 2947 # or as a whitespace-separated string:
2956 2948 In [4]: a.s
2957 2949 Out[4]: 'setup.py win32_manual_post_install.py'
2958 2950
2959 2951 # a.s is useful to pass as a single command line:
2960 2952 In [5]: !wc -l $a.s
2961 2953 146 setup.py
2962 2954 130 win32_manual_post_install.py
2963 2955 276 total
2964 2956
2965 2957 # while the list form is useful to loop over:
2966 2958 In [6]: for f in a.l:
2967 2959 ...: !wc -l $f
2968 2960 ...:
2969 2961 146 setup.py
2970 2962 130 win32_manual_post_install.py
2971 2963
2972 2964 Similiarly, the lists returned by the -l option are also special, in
2973 2965 the sense that you can equally invoke the .s attribute on them to
2974 2966 automatically get a whitespace-separated string from their contents:
2975 2967
2976 2968 In [7]: sc -l b=ls *py
2977 2969
2978 2970 In [8]: b
2979 2971 Out[8]: ['setup.py', 'win32_manual_post_install.py']
2980 2972
2981 2973 In [9]: b.s
2982 2974 Out[9]: 'setup.py win32_manual_post_install.py'
2983 2975
2984 2976 In summary, both the lists and strings used for ouptut capture have
2985 2977 the following special attributes:
2986 2978
2987 2979 .l (or .list) : value as list.
2988 2980 .n (or .nlstr): value as newline-separated string.
2989 2981 .s (or .spstr): value as space-separated string.
2990 2982 """
2991 2983
2992 2984 opts,args = self.parse_options(parameter_s,'lv')
2993 2985 # Try to get a variable name and command to run
2994 2986 try:
2995 2987 # the variable name must be obtained from the parse_options
2996 2988 # output, which uses shlex.split to strip options out.
2997 2989 var,_ = args.split('=',1)
2998 2990 var = var.strip()
2999 2991 # But the the command has to be extracted from the original input
3000 2992 # parameter_s, not on what parse_options returns, to avoid the
3001 2993 # quote stripping which shlex.split performs on it.
3002 2994 _,cmd = parameter_s.split('=',1)
3003 2995 except ValueError:
3004 2996 var,cmd = '',''
3005 2997 # If all looks ok, proceed
3006 2998 split = 'l' in opts
3007 2999 out = self.shell.getoutput(cmd, split=split)
3008 3000 if opts.has_key('v'):
3009 3001 print '%s ==\n%s' % (var,pformat(out))
3010 3002 if var:
3011 3003 self.shell.user_ns.update({var:out})
3012 3004 else:
3013 3005 return out
3014 3006
3015 3007 def magic_sx(self, parameter_s=''):
3016 3008 """Shell execute - run a shell command and capture its output.
3017 3009
3018 3010 %sx command
3019 3011
3020 3012 IPython will run the given command using commands.getoutput(), and
3021 3013 return the result formatted as a list (split on '\\n'). Since the
3022 3014 output is _returned_, it will be stored in ipython's regular output
3023 3015 cache Out[N] and in the '_N' automatic variables.
3024 3016
3025 3017 Notes:
3026 3018
3027 3019 1) If an input line begins with '!!', then %sx is automatically
3028 3020 invoked. That is, while:
3029 3021 !ls
3030 3022 causes ipython to simply issue system('ls'), typing
3031 3023 !!ls
3032 3024 is a shorthand equivalent to:
3033 3025 %sx ls
3034 3026
3035 3027 2) %sx differs from %sc in that %sx automatically splits into a list,
3036 3028 like '%sc -l'. The reason for this is to make it as easy as possible
3037 3029 to process line-oriented shell output via further python commands.
3038 3030 %sc is meant to provide much finer control, but requires more
3039 3031 typing.
3040 3032
3041 3033 3) Just like %sc -l, this is a list with special attributes:
3042 3034
3043 3035 .l (or .list) : value as list.
3044 3036 .n (or .nlstr): value as newline-separated string.
3045 3037 .s (or .spstr): value as whitespace-separated string.
3046 3038
3047 3039 This is very useful when trying to use such lists as arguments to
3048 3040 system commands."""
3049 3041
3050 3042 if parameter_s:
3051 3043 return self.shell.getoutput(parameter_s)
3052 3044
3053 3045
3054 3046 def magic_bookmark(self, parameter_s=''):
3055 3047 """Manage IPython's bookmark system.
3056 3048
3057 3049 %bookmark <name> - set bookmark to current dir
3058 3050 %bookmark <name> <dir> - set bookmark to <dir>
3059 3051 %bookmark -l - list all bookmarks
3060 3052 %bookmark -d <name> - remove bookmark
3061 3053 %bookmark -r - remove all bookmarks
3062 3054
3063 3055 You can later on access a bookmarked folder with:
3064 3056 %cd -b <name>
3065 3057 or simply '%cd <name>' if there is no directory called <name> AND
3066 3058 there is such a bookmark defined.
3067 3059
3068 3060 Your bookmarks persist through IPython sessions, but they are
3069 3061 associated with each profile."""
3070 3062
3071 3063 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3072 3064 if len(args) > 2:
3073 3065 raise UsageError("%bookmark: too many arguments")
3074 3066
3075 3067 bkms = self.db.get('bookmarks',{})
3076 3068
3077 3069 if opts.has_key('d'):
3078 3070 try:
3079 3071 todel = args[0]
3080 3072 except IndexError:
3081 3073 raise UsageError(
3082 3074 "%bookmark -d: must provide a bookmark to delete")
3083 3075 else:
3084 3076 try:
3085 3077 del bkms[todel]
3086 3078 except KeyError:
3087 3079 raise UsageError(
3088 3080 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3089 3081
3090 3082 elif opts.has_key('r'):
3091 3083 bkms = {}
3092 3084 elif opts.has_key('l'):
3093 3085 bks = bkms.keys()
3094 3086 bks.sort()
3095 3087 if bks:
3096 3088 size = max(map(len,bks))
3097 3089 else:
3098 3090 size = 0
3099 3091 fmt = '%-'+str(size)+'s -> %s'
3100 3092 print 'Current bookmarks:'
3101 3093 for bk in bks:
3102 3094 print fmt % (bk,bkms[bk])
3103 3095 else:
3104 3096 if not args:
3105 3097 raise UsageError("%bookmark: You must specify the bookmark name")
3106 3098 elif len(args)==1:
3107 3099 bkms[args[0]] = os.getcwd()
3108 3100 elif len(args)==2:
3109 3101 bkms[args[0]] = args[1]
3110 3102 self.db['bookmarks'] = bkms
3111 3103
3112 3104 def magic_pycat(self, parameter_s=''):
3113 3105 """Show a syntax-highlighted file through a pager.
3114 3106
3115 3107 This magic is similar to the cat utility, but it will assume the file
3116 3108 to be Python source and will show it with syntax highlighting. """
3117 3109
3118 3110 try:
3119 3111 filename = get_py_filename(parameter_s)
3120 3112 cont = file_read(filename)
3121 3113 except IOError:
3122 3114 try:
3123 3115 cont = eval(parameter_s,self.user_ns)
3124 3116 except NameError:
3125 3117 cont = None
3126 3118 if cont is None:
3127 3119 print "Error: no such file or variable"
3128 3120 return
3129 3121
3130 3122 page.page(self.shell.pycolorize(cont))
3131 3123
3132 3124 def _rerun_pasted(self):
3133 3125 """ Rerun a previously pasted command.
3134 3126 """
3135 3127 b = self.user_ns.get('pasted_block', None)
3136 3128 if b is None:
3137 3129 raise UsageError('No previous pasted block available')
3138 3130 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3139 3131 exec b in self.user_ns
3140 3132
3141 3133 def _get_pasted_lines(self, sentinel):
3142 3134 """ Yield pasted lines until the user enters the given sentinel value.
3143 3135 """
3144 3136 from IPython.core import interactiveshell
3145 3137 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3146 3138 while True:
3147 3139 l = interactiveshell.raw_input_original(':')
3148 3140 if l == sentinel:
3149 3141 return
3150 3142 else:
3151 3143 yield l
3152 3144
3153 3145 def _strip_pasted_lines_for_code(self, raw_lines):
3154 3146 """ Strip non-code parts of a sequence of lines to return a block of
3155 3147 code.
3156 3148 """
3157 3149 # Regular expressions that declare text we strip from the input:
3158 3150 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3159 3151 r'^\s*(\s?>)+', # Python input prompt
3160 3152 r'^\s*\.{3,}', # Continuation prompts
3161 3153 r'^\++',
3162 3154 ]
3163 3155
3164 3156 strip_from_start = map(re.compile,strip_re)
3165 3157
3166 3158 lines = []
3167 3159 for l in raw_lines:
3168 3160 for pat in strip_from_start:
3169 3161 l = pat.sub('',l)
3170 3162 lines.append(l)
3171 3163
3172 3164 block = "\n".join(lines) + '\n'
3173 3165 #print "block:\n",block
3174 3166 return block
3175 3167
3176 3168 def _execute_block(self, block, par):
3177 3169 """ Execute a block, or store it in a variable, per the user's request.
3178 3170 """
3179 3171 if not par:
3180 3172 b = textwrap.dedent(block)
3181 3173 self.user_ns['pasted_block'] = b
3182 3174 exec b in self.user_ns
3183 3175 else:
3184 3176 self.user_ns[par] = SList(block.splitlines())
3185 3177 print "Block assigned to '%s'" % par
3186 3178
3187 3179 def magic_quickref(self,arg):
3188 3180 """ Show a quick reference sheet """
3189 3181 import IPython.core.usage
3190 3182 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3191 3183
3192 3184 page.page(qr)
3193 3185
3194 3186 def magic_doctest_mode(self,parameter_s=''):
3195 3187 """Toggle doctest mode on and off.
3196 3188
3197 3189 This mode is intended to make IPython behave as much as possible like a
3198 3190 plain Python shell, from the perspective of how its prompts, exceptions
3199 3191 and output look. This makes it easy to copy and paste parts of a
3200 3192 session into doctests. It does so by:
3201 3193
3202 3194 - Changing the prompts to the classic ``>>>`` ones.
3203 3195 - Changing the exception reporting mode to 'Plain'.
3204 3196 - Disabling pretty-printing of output.
3205 3197
3206 3198 Note that IPython also supports the pasting of code snippets that have
3207 3199 leading '>>>' and '...' prompts in them. This means that you can paste
3208 3200 doctests from files or docstrings (even if they have leading
3209 3201 whitespace), and the code will execute correctly. You can then use
3210 3202 '%history -t' to see the translated history; this will give you the
3211 3203 input after removal of all the leading prompts and whitespace, which
3212 3204 can be pasted back into an editor.
3213 3205
3214 3206 With these features, you can switch into this mode easily whenever you
3215 3207 need to do testing and changes to doctests, without having to leave
3216 3208 your existing IPython session.
3217 3209 """
3218 3210
3219 3211 from IPython.utils.ipstruct import Struct
3220 3212
3221 3213 # Shorthands
3222 3214 shell = self.shell
3223 3215 oc = shell.displayhook
3224 3216 meta = shell.meta
3225 3217 disp_formatter = self.shell.display_formatter
3226 3218 ptformatter = disp_formatter.formatters['text/plain']
3227 3219 # dstore is a data store kept in the instance metadata bag to track any
3228 3220 # changes we make, so we can undo them later.
3229 3221 dstore = meta.setdefault('doctest_mode',Struct())
3230 3222 save_dstore = dstore.setdefault
3231 3223
3232 3224 # save a few values we'll need to recover later
3233 3225 mode = save_dstore('mode',False)
3234 3226 save_dstore('rc_pprint',ptformatter.pprint)
3235 3227 save_dstore('xmode',shell.InteractiveTB.mode)
3236 3228 save_dstore('rc_separate_out',shell.separate_out)
3237 3229 save_dstore('rc_separate_out2',shell.separate_out2)
3238 3230 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3239 3231 save_dstore('rc_separate_in',shell.separate_in)
3240 3232 save_dstore('rc_plain_text_only',disp_formatter.plain_text_only)
3241 3233
3242 3234 if mode == False:
3243 3235 # turn on
3244 3236 oc.prompt1.p_template = '>>> '
3245 3237 oc.prompt2.p_template = '... '
3246 3238 oc.prompt_out.p_template = ''
3247 3239
3248 3240 # Prompt separators like plain python
3249 3241 oc.input_sep = oc.prompt1.sep = ''
3250 3242 oc.output_sep = ''
3251 3243 oc.output_sep2 = ''
3252 3244
3253 3245 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3254 3246 oc.prompt_out.pad_left = False
3255 3247
3256 3248 ptformatter.pprint = False
3257 3249 disp_formatter.plain_text_only = True
3258 3250
3259 3251 shell.magic_xmode('Plain')
3260 3252 else:
3261 3253 # turn off
3262 3254 oc.prompt1.p_template = shell.prompt_in1
3263 3255 oc.prompt2.p_template = shell.prompt_in2
3264 3256 oc.prompt_out.p_template = shell.prompt_out
3265 3257
3266 3258 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3267 3259
3268 3260 oc.output_sep = dstore.rc_separate_out
3269 3261 oc.output_sep2 = dstore.rc_separate_out2
3270 3262
3271 3263 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3272 3264 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3273 3265
3274 3266 ptformatter.pprint = dstore.rc_pprint
3275 3267 disp_formatter.plain_text_only = dstore.rc_plain_text_only
3276 3268
3277 3269 shell.magic_xmode(dstore.xmode)
3278 3270
3279 3271 # Store new mode and inform
3280 3272 dstore.mode = bool(1-int(mode))
3281 3273 mode_label = ['OFF','ON'][dstore.mode]
3282 3274 print 'Doctest mode is:', mode_label
3283 3275
3284 3276 def magic_gui(self, parameter_s=''):
3285 3277 """Enable or disable IPython GUI event loop integration.
3286 3278
3287 3279 %gui [GUINAME]
3288 3280
3289 3281 This magic replaces IPython's threaded shells that were activated
3290 3282 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3291 3283 can now be enabled, disabled and swtiched at runtime and keyboard
3292 3284 interrupts should work without any problems. The following toolkits
3293 3285 are supported: wxPython, PyQt4, PyGTK, and Tk::
3294 3286
3295 3287 %gui wx # enable wxPython event loop integration
3296 3288 %gui qt4|qt # enable PyQt4 event loop integration
3297 3289 %gui gtk # enable PyGTK event loop integration
3298 3290 %gui tk # enable Tk event loop integration
3299 3291 %gui # disable all event loop integration
3300 3292
3301 3293 WARNING: after any of these has been called you can simply create
3302 3294 an application object, but DO NOT start the event loop yourself, as
3303 3295 we have already handled that.
3304 3296 """
3305 3297 from IPython.lib.inputhook import enable_gui
3306 3298 opts, arg = self.parse_options(parameter_s, '')
3307 3299 if arg=='': arg = None
3308 3300 return enable_gui(arg)
3309 3301
3310 3302 def magic_load_ext(self, module_str):
3311 3303 """Load an IPython extension by its module name."""
3312 3304 return self.extension_manager.load_extension(module_str)
3313 3305
3314 3306 def magic_unload_ext(self, module_str):
3315 3307 """Unload an IPython extension by its module name."""
3316 3308 self.extension_manager.unload_extension(module_str)
3317 3309
3318 3310 def magic_reload_ext(self, module_str):
3319 3311 """Reload an IPython extension by its module name."""
3320 3312 self.extension_manager.reload_extension(module_str)
3321 3313
3322 3314 @testdec.skip_doctest
3323 3315 def magic_install_profiles(self, s):
3324 3316 """Install the default IPython profiles into the .ipython dir.
3325 3317
3326 3318 If the default profiles have already been installed, they will not
3327 3319 be overwritten. You can force overwriting them by using the ``-o``
3328 3320 option::
3329 3321
3330 3322 In [1]: %install_profiles -o
3331 3323 """
3332 3324 if '-o' in s:
3333 3325 overwrite = True
3334 3326 else:
3335 3327 overwrite = False
3336 3328 from IPython.config import profile
3337 3329 profile_dir = os.path.split(profile.__file__)[0]
3338 3330 ipython_dir = self.ipython_dir
3339 3331 files = os.listdir(profile_dir)
3340 3332
3341 3333 to_install = []
3342 3334 for f in files:
3343 3335 if f.startswith('ipython_config'):
3344 3336 src = os.path.join(profile_dir, f)
3345 3337 dst = os.path.join(ipython_dir, f)
3346 3338 if (not os.path.isfile(dst)) or overwrite:
3347 3339 to_install.append((f, src, dst))
3348 3340 if len(to_install)>0:
3349 3341 print "Installing profiles to: ", ipython_dir
3350 3342 for (f, src, dst) in to_install:
3351 3343 shutil.copy(src, dst)
3352 3344 print " %s" % f
3353 3345
3354 3346 def magic_install_default_config(self, s):
3355 3347 """Install IPython's default config file into the .ipython dir.
3356 3348
3357 3349 If the default config file (:file:`ipython_config.py`) is already
3358 3350 installed, it will not be overwritten. You can force overwriting
3359 3351 by using the ``-o`` option::
3360 3352
3361 3353 In [1]: %install_default_config
3362 3354 """
3363 3355 if '-o' in s:
3364 3356 overwrite = True
3365 3357 else:
3366 3358 overwrite = False
3367 3359 from IPython.config import default
3368 3360 config_dir = os.path.split(default.__file__)[0]
3369 3361 ipython_dir = self.ipython_dir
3370 3362 default_config_file_name = 'ipython_config.py'
3371 3363 src = os.path.join(config_dir, default_config_file_name)
3372 3364 dst = os.path.join(ipython_dir, default_config_file_name)
3373 3365 if (not os.path.isfile(dst)) or overwrite:
3374 3366 shutil.copy(src, dst)
3375 3367 print "Installing default config file: %s" % dst
3376 3368
3377 3369 # Pylab support: simple wrappers that activate pylab, load gui input
3378 3370 # handling and modify slightly %run
3379 3371
3380 3372 @testdec.skip_doctest
3381 3373 def _pylab_magic_run(self, parameter_s=''):
3382 3374 Magic.magic_run(self, parameter_s,
3383 3375 runner=mpl_runner(self.shell.safe_execfile))
3384 3376
3385 3377 _pylab_magic_run.__doc__ = magic_run.__doc__
3386 3378
3387 3379 @testdec.skip_doctest
3388 3380 def magic_pylab(self, s):
3389 3381 """Load numpy and matplotlib to work interactively.
3390 3382
3391 3383 %pylab [GUINAME]
3392 3384
3393 3385 This function lets you activate pylab (matplotlib, numpy and
3394 3386 interactive support) at any point during an IPython session.
3395 3387
3396 3388 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3397 3389 pylab and mlab, as well as all names from numpy and pylab.
3398 3390
3399 3391 Parameters
3400 3392 ----------
3401 3393 guiname : optional
3402 3394 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk', 'osx' or
3403 3395 'tk'). If given, the corresponding Matplotlib backend is used,
3404 3396 otherwise matplotlib's default (which you can override in your
3405 3397 matplotlib config file) is used.
3406 3398
3407 3399 Examples
3408 3400 --------
3409 3401 In this case, where the MPL default is TkAgg:
3410 3402 In [2]: %pylab
3411 3403
3412 3404 Welcome to pylab, a matplotlib-based Python environment.
3413 3405 Backend in use: TkAgg
3414 3406 For more information, type 'help(pylab)'.
3415 3407
3416 3408 But you can explicitly request a different backend:
3417 3409 In [3]: %pylab qt
3418 3410
3419 3411 Welcome to pylab, a matplotlib-based Python environment.
3420 3412 Backend in use: Qt4Agg
3421 3413 For more information, type 'help(pylab)'.
3422 3414 """
3423 3415 self.shell.enable_pylab(s)
3424 3416
3425 3417 def magic_tb(self, s):
3426 3418 """Print the last traceback with the currently active exception mode.
3427 3419
3428 3420 See %xmode for changing exception reporting modes."""
3429 3421 self.shell.showtraceback()
3430 3422
3431 3423 @testdec.skip_doctest
3432 3424 def magic_precision(self, s=''):
3433 3425 """Set floating point precision for pretty printing.
3434 3426
3435 3427 Can set either integer precision or a format string.
3436 3428
3437 3429 If numpy has been imported and precision is an int,
3438 3430 numpy display precision will also be set, via ``numpy.set_printoptions``.
3439 3431
3440 3432 If no argument is given, defaults will be restored.
3441 3433
3442 3434 Examples
3443 3435 --------
3444 3436 ::
3445 3437
3446 3438 In [1]: from math import pi
3447 3439
3448 3440 In [2]: %precision 3
3449 3441 Out[2]: '%.3f'
3450 3442
3451 3443 In [3]: pi
3452 3444 Out[3]: 3.142
3453 3445
3454 3446 In [4]: %precision %i
3455 3447 Out[4]: '%i'
3456 3448
3457 3449 In [5]: pi
3458 3450 Out[5]: 3
3459 3451
3460 3452 In [6]: %precision %e
3461 3453 Out[6]: '%e'
3462 3454
3463 3455 In [7]: pi**10
3464 3456 Out[7]: 9.364805e+04
3465 3457
3466 3458 In [8]: %precision
3467 3459 Out[8]: '%r'
3468 3460
3469 3461 In [9]: pi**10
3470 3462 Out[9]: 93648.047476082982
3471 3463
3472 3464 """
3473 3465
3474 3466 ptformatter = self.shell.display_formatter.formatters['text/plain']
3475 3467 ptformatter.float_precision = s
3476 3468 return ptformatter.float_format
3477 3469
3478 3470 # end Magic
General Comments 0
You need to be logged in to leave comments. Login now