##// END OF EJS Templates
Merge pull request #6380 from ellisonbg/latex-complete...
Thomas Kluyver -
r17812:3b47a9b4 merge
parent child Browse files
Show More
This diff has been collapsed as it changes many lines, (1297 lines changed) Show them Hide them
@@ -0,0 +1,1297 b''
1 # encoding: utf-8
2
3 # DO NOT EDIT THIS FILE BY HAND.
4
5 # To update this file, run the script /tools/gen_latex_symbols.py using Python 3
6
7 # This file is autogenerated from the file:
8 # https://raw.githubusercontent.com/JuliaLang/julia/master/base/latex_symbols.jl
9 # This original list is filtered to remove any unicode characters that are not valid
10 # Python identifiers.
11
12 latex_symbols = {
13
14 "\\^a" : "ᵃ",
15 "\\^b" : "ᵇ",
16 "\\^c" : "ᶜ",
17 "\\^d" : "ᵈ",
18 "\\^e" : "ᵉ",
19 "\\^f" : "ᶠ",
20 "\\^g" : "ᵍ",
21 "\\^h" : "ʰ",
22 "\\^i" : "ⁱ",
23 "\\^j" : "ʲ",
24 "\\^k" : "ᵏ",
25 "\\^l" : "ˡ",
26 "\\^m" : "ᵐ",
27 "\\^n" : "ⁿ",
28 "\\^o" : "ᵒ",
29 "\\^p" : "ᵖ",
30 "\\^r" : "ʳ",
31 "\\^s" : "ˢ",
32 "\\^t" : "ᵗ",
33 "\\^u" : "ᵘ",
34 "\\^v" : "ᵛ",
35 "\\^w" : "ʷ",
36 "\\^x" : "ˣ",
37 "\\^y" : "ʸ",
38 "\\^z" : "ᶻ",
39 "\\^A" : "ᴬ",
40 "\\^B" : "ᴮ",
41 "\\^D" : "ᴰ",
42 "\\^E" : "ᴱ",
43 "\\^G" : "ᴳ",
44 "\\^H" : "ᴴ",
45 "\\^I" : "ᴵ",
46 "\\^J" : "ᴶ",
47 "\\^K" : "ᴷ",
48 "\\^L" : "ᴸ",
49 "\\^M" : "ᴹ",
50 "\\^N" : "ᴺ",
51 "\\^O" : "ᴼ",
52 "\\^P" : "ᴾ",
53 "\\^R" : "ᴿ",
54 "\\^T" : "ᵀ",
55 "\\^U" : "ᵁ",
56 "\\^V" : "ⱽ",
57 "\\^W" : "ᵂ",
58 "\\^alpha" : "ᵅ",
59 "\\^beta" : "ᵝ",
60 "\\^gamma" : "ᵞ",
61 "\\^delta" : "ᵟ",
62 "\\^epsilon" : "ᵋ",
63 "\\^theta" : "ᶿ",
64 "\\^iota" : "ᶥ",
65 "\\^phi" : "ᵠ",
66 "\\^chi" : "ᵡ",
67 "\\^Phi" : "ᶲ",
68 "\\_a" : "ₐ",
69 "\\_e" : "ₑ",
70 "\\_h" : "ₕ",
71 "\\_i" : "ᵢ",
72 "\\_j" : "ⱼ",
73 "\\_k" : "ₖ",
74 "\\_l" : "ₗ",
75 "\\_m" : "ₘ",
76 "\\_n" : "ₙ",
77 "\\_o" : "ₒ",
78 "\\_p" : "ₚ",
79 "\\_r" : "ᵣ",
80 "\\_s" : "ₛ",
81 "\\_t" : "ₜ",
82 "\\_u" : "ᵤ",
83 "\\_v" : "ᵥ",
84 "\\_x" : "ₓ",
85 "\\_schwa" : "ₔ",
86 "\\_beta" : "ᵦ",
87 "\\_gamma" : "ᵧ",
88 "\\_rho" : "ᵨ",
89 "\\_phi" : "ᵩ",
90 "\\_chi" : "ᵪ",
91 "\\hbar" : "ħ",
92 "\\sout" : "̶",
93 "\\textordfeminine" : "ª",
94 "\\cdotp" : "·",
95 "\\textordmasculine" : "º",
96 "\\AA" : "Å",
97 "\\AE" : "Æ",
98 "\\DH" : "Ð",
99 "\\O" : "Ø",
100 "\\TH" : "Þ",
101 "\\ss" : "ß",
102 "\\aa" : "å",
103 "\\ae" : "æ",
104 "\\eth" : "ð",
105 "\\o" : "ø",
106 "\\th" : "þ",
107 "\\DJ" : "Đ",
108 "\\dj" : "đ",
109 "\\Elzxh" : "ħ",
110 "\\imath" : "ı",
111 "\\L" : "Ł",
112 "\\l" : "ł",
113 "\\NG" : "Ŋ",
114 "\\ng" : "ŋ",
115 "\\OE" : "Œ",
116 "\\oe" : "œ",
117 "\\texthvlig" : "ƕ",
118 "\\textnrleg" : "ƞ",
119 "\\textdoublepipe" : "ǂ",
120 "\\Elztrna" : "ɐ",
121 "\\Elztrnsa" : "ɒ",
122 "\\Elzopeno" : "ɔ",
123 "\\Elzrtld" : "ɖ",
124 "\\Elzschwa" : "ə",
125 "\\varepsilon" : "ɛ",
126 "\\Elzpgamma" : "ɣ",
127 "\\Elzpbgam" : "ɤ",
128 "\\Elztrnh" : "ɥ",
129 "\\Elzbtdl" : "ɬ",
130 "\\Elzrtll" : "ɭ",
131 "\\Elztrnm" : "ɯ",
132 "\\Elztrnmlr" : "ɰ",
133 "\\Elzltlmr" : "ɱ",
134 "\\Elzltln" : "ɲ",
135 "\\Elzrtln" : "ɳ",
136 "\\Elzclomeg" : "ɷ",
137 "\\textphi" : "ɸ",
138 "\\Elztrnr" : "ɹ",
139 "\\Elztrnrl" : "ɺ",
140 "\\Elzrttrnr" : "ɻ",
141 "\\Elzrl" : "ɼ",
142 "\\Elzrtlr" : "ɽ",
143 "\\Elzfhr" : "ɾ",
144 "\\Elzrtls" : "ʂ",
145 "\\Elzesh" : "ʃ",
146 "\\Elztrnt" : "ʇ",
147 "\\Elzrtlt" : "ʈ",
148 "\\Elzpupsil" : "ʊ",
149 "\\Elzpscrv" : "ʋ",
150 "\\Elzinvv" : "ʌ",
151 "\\Elzinvw" : "ʍ",
152 "\\Elztrny" : "ʎ",
153 "\\Elzrtlz" : "ʐ",
154 "\\Elzyogh" : "ʒ",
155 "\\Elzglst" : "ʔ",
156 "\\Elzreglst" : "ʕ",
157 "\\Elzinglst" : "ʖ",
158 "\\textturnk" : "ʞ",
159 "\\Elzdyogh" : "ʤ",
160 "\\Elztesh" : "ʧ",
161 "\\rasp" : "ʼ",
162 "\\textasciicaron" : "ˇ",
163 "\\Elzverts" : "ˈ",
164 "\\Elzverti" : "ˌ",
165 "\\Elzlmrk" : "ː",
166 "\\Elzhlmrk" : "ˑ",
167 "\\grave" : "̀",
168 "\\acute" : "́",
169 "\\hat" : "̂",
170 "\\tilde" : "̃",
171 "\\bar" : "̄",
172 "\\breve" : "̆",
173 "\\dot" : "̇",
174 "\\ddot" : "̈",
175 "\\ocirc" : "̊",
176 "\\H" : "̋",
177 "\\check" : "̌",
178 "\\Elzpalh" : "̡",
179 "\\Elzrh" : "̢",
180 "\\c" : "̧",
181 "\\k" : "̨",
182 "\\Elzsbbrg" : "̪",
183 "\\Elzxl" : "̵",
184 "\\Elzbar" : "̶",
185 "\\Alpha" : "Α",
186 "\\Beta" : "Β",
187 "\\Gamma" : "Γ",
188 "\\Delta" : "Δ",
189 "\\Epsilon" : "Ε",
190 "\\Zeta" : "Ζ",
191 "\\Eta" : "Η",
192 "\\Theta" : "Θ",
193 "\\Iota" : "Ι",
194 "\\Kappa" : "Κ",
195 "\\Lambda" : "Λ",
196 "\\Xi" : "Ξ",
197 "\\Pi" : "Π",
198 "\\Rho" : "Ρ",
199 "\\Sigma" : "Σ",
200 "\\Tau" : "Τ",
201 "\\Upsilon" : "Υ",
202 "\\Phi" : "Φ",
203 "\\Chi" : "Χ",
204 "\\Psi" : "Ψ",
205 "\\Omega" : "Ω",
206 "\\alpha" : "α",
207 "\\beta" : "β",
208 "\\gamma" : "γ",
209 "\\delta" : "δ",
210 "\\zeta" : "ζ",
211 "\\eta" : "η",
212 "\\theta" : "θ",
213 "\\iota" : "ι",
214 "\\kappa" : "κ",
215 "\\lambda" : "λ",
216 "\\mu" : "μ",
217 "\\nu" : "ν",
218 "\\xi" : "ξ",
219 "\\pi" : "π",
220 "\\rho" : "ρ",
221 "\\varsigma" : "ς",
222 "\\sigma" : "σ",
223 "\\tau" : "τ",
224 "\\upsilon" : "υ",
225 "\\varphi" : "φ",
226 "\\chi" : "χ",
227 "\\psi" : "ψ",
228 "\\omega" : "ω",
229 "\\vartheta" : "ϑ",
230 "\\phi" : "ϕ",
231 "\\varpi" : "ϖ",
232 "\\Stigma" : "Ϛ",
233 "\\Digamma" : "Ϝ",
234 "\\digamma" : "ϝ",
235 "\\Koppa" : "Ϟ",
236 "\\Sampi" : "Ϡ",
237 "\\varkappa" : "ϰ",
238 "\\varrho" : "ϱ",
239 "\\textTheta" : "ϴ",
240 "\\epsilon" : "ϵ",
241 "\\dddot" : "⃛",
242 "\\ddddot" : "⃜",
243 "\\hslash" : "ℏ",
244 "\\Im" : "ℑ",
245 "\\ell" : "ℓ",
246 "\\wp" : "℘",
247 "\\Re" : "ℜ",
248 "\\aleph" : "ℵ",
249 "\\beth" : "ℶ",
250 "\\gimel" : "ℷ",
251 "\\daleth" : "ℸ",
252 "\\BbbPi" : "ℿ",
253 "\\Zbar" : "Ƶ",
254 "\\overbar" : "̅",
255 "\\ovhook" : "̉",
256 "\\candra" : "̐",
257 "\\oturnedcomma" : "̒",
258 "\\ocommatopright" : "̕",
259 "\\droang" : "̚",
260 "\\wideutilde" : "̰",
261 "\\underbar" : "̱",
262 "\\not" : "̸",
263 "\\upMu" : "Μ",
264 "\\upNu" : "Ν",
265 "\\upOmicron" : "Ο",
266 "\\upepsilon" : "ε",
267 "\\upomicron" : "ο",
268 "\\upvarbeta" : "ϐ",
269 "\\upoldKoppa" : "Ϙ",
270 "\\upoldkoppa" : "ϙ",
271 "\\upstigma" : "ϛ",
272 "\\upkoppa" : "ϟ",
273 "\\upsampi" : "ϡ",
274 "\\tieconcat" : "⁀",
275 "\\leftharpoonaccent" : "⃐",
276 "\\rightharpoonaccent" : "⃑",
277 "\\vertoverlay" : "⃒",
278 "\\overleftarrow" : "⃖",
279 "\\vec" : "⃗",
280 "\\overleftrightarrow" : "⃡",
281 "\\annuity" : "⃧",
282 "\\threeunderdot" : "⃨",
283 "\\widebridgeabove" : "⃩",
284 "\\BbbC" : "ℂ",
285 "\\Eulerconst" : "ℇ",
286 "\\mscrg" : "ℊ",
287 "\\mscrH" : "ℋ",
288 "\\mfrakH" : "ℌ",
289 "\\BbbH" : "ℍ",
290 "\\Planckconst" : "ℎ",
291 "\\mscrI" : "ℐ",
292 "\\mscrL" : "ℒ",
293 "\\BbbN" : "ℕ",
294 "\\BbbP" : "ℙ",
295 "\\BbbQ" : "ℚ",
296 "\\mscrR" : "ℛ",
297 "\\BbbR" : "ℝ",
298 "\\BbbZ" : "ℤ",
299 "\\mfrakZ" : "ℨ",
300 "\\Angstrom" : "Å",
301 "\\mscrB" : "ℬ",
302 "\\mfrakC" : "ℭ",
303 "\\mscre" : "ℯ",
304 "\\mscrE" : "ℰ",
305 "\\mscrF" : "ℱ",
306 "\\Finv" : "Ⅎ",
307 "\\mscrM" : "ℳ",
308 "\\mscro" : "ℴ",
309 "\\Bbbgamma" : "ℽ",
310 "\\BbbGamma" : "ℾ",
311 "\\mitBbbD" : "ⅅ",
312 "\\mitBbbd" : "ⅆ",
313 "\\mitBbbe" : "ⅇ",
314 "\\mitBbbi" : "ⅈ",
315 "\\mitBbbj" : "ⅉ",
316 "\\mbfA" : "𝐀",
317 "\\mbfB" : "𝐁",
318 "\\mbfC" : "𝐂",
319 "\\mbfD" : "𝐃",
320 "\\mbfE" : "𝐄",
321 "\\mbfF" : "𝐅",
322 "\\mbfG" : "𝐆",
323 "\\mbfH" : "𝐇",
324 "\\mbfI" : "𝐈",
325 "\\mbfJ" : "𝐉",
326 "\\mbfK" : "𝐊",
327 "\\mbfL" : "𝐋",
328 "\\mbfM" : "𝐌",
329 "\\mbfN" : "𝐍",
330 "\\mbfO" : "𝐎",
331 "\\mbfP" : "𝐏",
332 "\\mbfQ" : "𝐐",
333 "\\mbfR" : "𝐑",
334 "\\mbfS" : "𝐒",
335 "\\mbfT" : "𝐓",
336 "\\mbfU" : "𝐔",
337 "\\mbfV" : "𝐕",
338 "\\mbfW" : "𝐖",
339 "\\mbfX" : "𝐗",
340 "\\mbfY" : "𝐘",
341 "\\mbfZ" : "𝐙",
342 "\\mbfa" : "𝐚",
343 "\\mbfb" : "𝐛",
344 "\\mbfc" : "𝐜",
345 "\\mbfd" : "𝐝",
346 "\\mbfe" : "𝐞",
347 "\\mbff" : "𝐟",
348 "\\mbfg" : "𝐠",
349 "\\mbfh" : "𝐡",
350 "\\mbfi" : "𝐢",
351 "\\mbfj" : "𝐣",
352 "\\mbfk" : "𝐤",
353 "\\mbfl" : "𝐥",
354 "\\mbfm" : "𝐦",
355 "\\mbfn" : "𝐧",
356 "\\mbfo" : "𝐨",
357 "\\mbfp" : "𝐩",
358 "\\mbfq" : "𝐪",
359 "\\mbfr" : "𝐫",
360 "\\mbfs" : "𝐬",
361 "\\mbft" : "𝐭",
362 "\\mbfu" : "𝐮",
363 "\\mbfv" : "𝐯",
364 "\\mbfw" : "𝐰",
365 "\\mbfx" : "𝐱",
366 "\\mbfy" : "𝐲",
367 "\\mbfz" : "𝐳",
368 "\\mitA" : "𝐴",
369 "\\mitB" : "𝐵",
370 "\\mitC" : "𝐶",
371 "\\mitD" : "𝐷",
372 "\\mitE" : "𝐸",
373 "\\mitF" : "𝐹",
374 "\\mitG" : "𝐺",
375 "\\mitH" : "𝐻",
376 "\\mitI" : "𝐼",
377 "\\mitJ" : "𝐽",
378 "\\mitK" : "𝐾",
379 "\\mitL" : "𝐿",
380 "\\mitM" : "𝑀",
381 "\\mitN" : "𝑁",
382 "\\mitO" : "𝑂",
383 "\\mitP" : "𝑃",
384 "\\mitQ" : "𝑄",
385 "\\mitR" : "𝑅",
386 "\\mitS" : "𝑆",
387 "\\mitT" : "𝑇",
388 "\\mitU" : "𝑈",
389 "\\mitV" : "𝑉",
390 "\\mitW" : "𝑊",
391 "\\mitX" : "𝑋",
392 "\\mitY" : "𝑌",
393 "\\mitZ" : "𝑍",
394 "\\mita" : "𝑎",
395 "\\mitb" : "𝑏",
396 "\\mitc" : "𝑐",
397 "\\mitd" : "𝑑",
398 "\\mite" : "𝑒",
399 "\\mitf" : "𝑓",
400 "\\mitg" : "𝑔",
401 "\\miti" : "𝑖",
402 "\\mitj" : "𝑗",
403 "\\mitk" : "𝑘",
404 "\\mitl" : "𝑙",
405 "\\mitm" : "𝑚",
406 "\\mitn" : "𝑛",
407 "\\mito" : "𝑜",
408 "\\mitp" : "𝑝",
409 "\\mitq" : "𝑞",
410 "\\mitr" : "𝑟",
411 "\\mits" : "𝑠",
412 "\\mitt" : "𝑡",
413 "\\mitu" : "𝑢",
414 "\\mitv" : "𝑣",
415 "\\mitw" : "𝑤",
416 "\\mitx" : "𝑥",
417 "\\mity" : "𝑦",
418 "\\mitz" : "𝑧",
419 "\\mbfitA" : "𝑨",
420 "\\mbfitB" : "𝑩",
421 "\\mbfitC" : "𝑪",
422 "\\mbfitD" : "𝑫",
423 "\\mbfitE" : "𝑬",
424 "\\mbfitF" : "𝑭",
425 "\\mbfitG" : "𝑮",
426 "\\mbfitH" : "𝑯",
427 "\\mbfitI" : "𝑰",
428 "\\mbfitJ" : "𝑱",
429 "\\mbfitK" : "𝑲",
430 "\\mbfitL" : "𝑳",
431 "\\mbfitM" : "𝑴",
432 "\\mbfitN" : "𝑵",
433 "\\mbfitO" : "𝑶",
434 "\\mbfitP" : "𝑷",
435 "\\mbfitQ" : "𝑸",
436 "\\mbfitR" : "𝑹",
437 "\\mbfitS" : "𝑺",
438 "\\mbfitT" : "𝑻",
439 "\\mbfitU" : "𝑼",
440 "\\mbfitV" : "𝑽",
441 "\\mbfitW" : "𝑾",
442 "\\mbfitX" : "𝑿",
443 "\\mbfitY" : "𝒀",
444 "\\mbfitZ" : "𝒁",
445 "\\mbfita" : "𝒂",
446 "\\mbfitb" : "𝒃",
447 "\\mbfitc" : "𝒄",
448 "\\mbfitd" : "𝒅",
449 "\\mbfite" : "𝒆",
450 "\\mbfitf" : "𝒇",
451 "\\mbfitg" : "𝒈",
452 "\\mbfith" : "𝒉",
453 "\\mbfiti" : "𝒊",
454 "\\mbfitj" : "𝒋",
455 "\\mbfitk" : "𝒌",
456 "\\mbfitl" : "𝒍",
457 "\\mbfitm" : "𝒎",
458 "\\mbfitn" : "𝒏",
459 "\\mbfito" : "𝒐",
460 "\\mbfitp" : "𝒑",
461 "\\mbfitq" : "𝒒",
462 "\\mbfitr" : "𝒓",
463 "\\mbfits" : "𝒔",
464 "\\mbfitt" : "𝒕",
465 "\\mbfitu" : "𝒖",
466 "\\mbfitv" : "𝒗",
467 "\\mbfitw" : "𝒘",
468 "\\mbfitx" : "𝒙",
469 "\\mbfity" : "𝒚",
470 "\\mbfitz" : "𝒛",
471 "\\mscrA" : "𝒜",
472 "\\mscrC" : "𝒞",
473 "\\mscrD" : "𝒟",
474 "\\mscrG" : "𝒢",
475 "\\mscrJ" : "𝒥",
476 "\\mscrK" : "𝒦",
477 "\\mscrN" : "𝒩",
478 "\\mscrO" : "𝒪",
479 "\\mscrP" : "𝒫",
480 "\\mscrQ" : "𝒬",
481 "\\mscrS" : "𝒮",
482 "\\mscrT" : "𝒯",
483 "\\mscrU" : "𝒰",
484 "\\mscrV" : "𝒱",
485 "\\mscrW" : "𝒲",
486 "\\mscrX" : "𝒳",
487 "\\mscrY" : "𝒴",
488 "\\mscrZ" : "𝒵",
489 "\\mscra" : "𝒶",
490 "\\mscrb" : "𝒷",
491 "\\mscrc" : "𝒸",
492 "\\mscrd" : "𝒹",
493 "\\mscrf" : "𝒻",
494 "\\mscrh" : "𝒽",
495 "\\mscri" : "𝒾",
496 "\\mscrj" : "𝒿",
497 "\\mscrk" : "𝓀",
498 "\\mscrm" : "𝓂",
499 "\\mscrn" : "𝓃",
500 "\\mscrp" : "𝓅",
501 "\\mscrq" : "𝓆",
502 "\\mscrr" : "𝓇",
503 "\\mscrs" : "𝓈",
504 "\\mscrt" : "𝓉",
505 "\\mscru" : "𝓊",
506 "\\mscrv" : "𝓋",
507 "\\mscrw" : "𝓌",
508 "\\mscrx" : "𝓍",
509 "\\mscry" : "𝓎",
510 "\\mscrz" : "𝓏",
511 "\\mbfscrA" : "𝓐",
512 "\\mbfscrB" : "𝓑",
513 "\\mbfscrC" : "𝓒",
514 "\\mbfscrD" : "𝓓",
515 "\\mbfscrE" : "𝓔",
516 "\\mbfscrF" : "𝓕",
517 "\\mbfscrG" : "𝓖",
518 "\\mbfscrH" : "𝓗",
519 "\\mbfscrI" : "𝓘",
520 "\\mbfscrJ" : "𝓙",
521 "\\mbfscrK" : "𝓚",
522 "\\mbfscrL" : "𝓛",
523 "\\mbfscrM" : "𝓜",
524 "\\mbfscrN" : "𝓝",
525 "\\mbfscrO" : "𝓞",
526 "\\mbfscrP" : "𝓟",
527 "\\mbfscrQ" : "𝓠",
528 "\\mbfscrR" : "𝓡",
529 "\\mbfscrS" : "𝓢",
530 "\\mbfscrT" : "𝓣",
531 "\\mbfscrU" : "𝓤",
532 "\\mbfscrV" : "𝓥",
533 "\\mbfscrW" : "𝓦",
534 "\\mbfscrX" : "𝓧",
535 "\\mbfscrY" : "𝓨",
536 "\\mbfscrZ" : "𝓩",
537 "\\mbfscra" : "𝓪",
538 "\\mbfscrb" : "𝓫",
539 "\\mbfscrc" : "𝓬",
540 "\\mbfscrd" : "𝓭",
541 "\\mbfscre" : "𝓮",
542 "\\mbfscrf" : "𝓯",
543 "\\mbfscrg" : "𝓰",
544 "\\mbfscrh" : "𝓱",
545 "\\mbfscri" : "𝓲",
546 "\\mbfscrj" : "𝓳",
547 "\\mbfscrk" : "𝓴",
548 "\\mbfscrl" : "𝓵",
549 "\\mbfscrm" : "𝓶",
550 "\\mbfscrn" : "𝓷",
551 "\\mbfscro" : "𝓸",
552 "\\mbfscrp" : "𝓹",
553 "\\mbfscrq" : "𝓺",
554 "\\mbfscrr" : "𝓻",
555 "\\mbfscrs" : "𝓼",
556 "\\mbfscrt" : "𝓽",
557 "\\mbfscru" : "𝓾",
558 "\\mbfscrv" : "𝓿",
559 "\\mbfscrw" : "𝔀",
560 "\\mbfscrx" : "𝔁",
561 "\\mbfscry" : "𝔂",
562 "\\mbfscrz" : "𝔃",
563 "\\mfrakA" : "𝔄",
564 "\\mfrakB" : "𝔅",
565 "\\mfrakD" : "𝔇",
566 "\\mfrakE" : "𝔈",
567 "\\mfrakF" : "𝔉",
568 "\\mfrakG" : "𝔊",
569 "\\mfrakJ" : "𝔍",
570 "\\mfrakK" : "𝔎",
571 "\\mfrakL" : "𝔏",
572 "\\mfrakM" : "𝔐",
573 "\\mfrakN" : "𝔑",
574 "\\mfrakO" : "𝔒",
575 "\\mfrakP" : "𝔓",
576 "\\mfrakQ" : "𝔔",
577 "\\mfrakS" : "𝔖",
578 "\\mfrakT" : "𝔗",
579 "\\mfrakU" : "𝔘",
580 "\\mfrakV" : "𝔙",
581 "\\mfrakW" : "𝔚",
582 "\\mfrakX" : "𝔛",
583 "\\mfrakY" : "𝔜",
584 "\\mfraka" : "𝔞",
585 "\\mfrakb" : "𝔟",
586 "\\mfrakc" : "𝔠",
587 "\\mfrakd" : "𝔡",
588 "\\mfrake" : "𝔢",
589 "\\mfrakf" : "𝔣",
590 "\\mfrakg" : "𝔤",
591 "\\mfrakh" : "𝔥",
592 "\\mfraki" : "𝔦",
593 "\\mfrakj" : "𝔧",
594 "\\mfrakk" : "𝔨",
595 "\\mfrakl" : "𝔩",
596 "\\mfrakm" : "𝔪",
597 "\\mfrakn" : "𝔫",
598 "\\mfrako" : "𝔬",
599 "\\mfrakp" : "𝔭",
600 "\\mfrakq" : "𝔮",
601 "\\mfrakr" : "𝔯",
602 "\\mfraks" : "𝔰",
603 "\\mfrakt" : "𝔱",
604 "\\mfraku" : "𝔲",
605 "\\mfrakv" : "𝔳",
606 "\\mfrakw" : "𝔴",
607 "\\mfrakx" : "𝔵",
608 "\\mfraky" : "𝔶",
609 "\\mfrakz" : "𝔷",
610 "\\BbbA" : "𝔸",
611 "\\BbbB" : "𝔹",
612 "\\BbbD" : "𝔻",
613 "\\BbbE" : "𝔼",
614 "\\BbbF" : "𝔽",
615 "\\BbbG" : "𝔾",
616 "\\BbbI" : "𝕀",
617 "\\BbbJ" : "𝕁",
618 "\\BbbK" : "𝕂",
619 "\\BbbL" : "𝕃",
620 "\\BbbM" : "𝕄",
621 "\\BbbO" : "𝕆",
622 "\\BbbS" : "𝕊",
623 "\\BbbT" : "𝕋",
624 "\\BbbU" : "𝕌",
625 "\\BbbV" : "𝕍",
626 "\\BbbW" : "𝕎",
627 "\\BbbX" : "𝕏",
628 "\\BbbY" : "𝕐",
629 "\\Bbba" : "𝕒",
630 "\\Bbbb" : "𝕓",
631 "\\Bbbc" : "𝕔",
632 "\\Bbbd" : "𝕕",
633 "\\Bbbe" : "𝕖",
634 "\\Bbbf" : "𝕗",
635 "\\Bbbg" : "𝕘",
636 "\\Bbbh" : "𝕙",
637 "\\Bbbi" : "𝕚",
638 "\\Bbbj" : "𝕛",
639 "\\Bbbk" : "𝕜",
640 "\\Bbbl" : "𝕝",
641 "\\Bbbm" : "𝕞",
642 "\\Bbbn" : "𝕟",
643 "\\Bbbo" : "𝕠",
644 "\\Bbbp" : "𝕡",
645 "\\Bbbq" : "𝕢",
646 "\\Bbbr" : "𝕣",
647 "\\Bbbs" : "𝕤",
648 "\\Bbbt" : "𝕥",
649 "\\Bbbu" : "𝕦",
650 "\\Bbbv" : "𝕧",
651 "\\Bbbw" : "𝕨",
652 "\\Bbbx" : "𝕩",
653 "\\Bbby" : "𝕪",
654 "\\Bbbz" : "𝕫",
655 "\\mbffrakA" : "𝕬",
656 "\\mbffrakB" : "𝕭",
657 "\\mbffrakC" : "𝕮",
658 "\\mbffrakD" : "𝕯",
659 "\\mbffrakE" : "𝕰",
660 "\\mbffrakF" : "𝕱",
661 "\\mbffrakG" : "𝕲",
662 "\\mbffrakH" : "𝕳",
663 "\\mbffrakI" : "𝕴",
664 "\\mbffrakJ" : "𝕵",
665 "\\mbffrakK" : "𝕶",
666 "\\mbffrakL" : "𝕷",
667 "\\mbffrakM" : "𝕸",
668 "\\mbffrakN" : "𝕹",
669 "\\mbffrakO" : "𝕺",
670 "\\mbffrakP" : "𝕻",
671 "\\mbffrakQ" : "𝕼",
672 "\\mbffrakR" : "𝕽",
673 "\\mbffrakS" : "𝕾",
674 "\\mbffrakT" : "𝕿",
675 "\\mbffrakU" : "𝖀",
676 "\\mbffrakV" : "𝖁",
677 "\\mbffrakW" : "𝖂",
678 "\\mbffrakX" : "𝖃",
679 "\\mbffrakY" : "𝖄",
680 "\\mbffrakZ" : "𝖅",
681 "\\mbffraka" : "𝖆",
682 "\\mbffrakb" : "𝖇",
683 "\\mbffrakc" : "𝖈",
684 "\\mbffrakd" : "𝖉",
685 "\\mbffrake" : "𝖊",
686 "\\mbffrakf" : "𝖋",
687 "\\mbffrakg" : "𝖌",
688 "\\mbffrakh" : "𝖍",
689 "\\mbffraki" : "𝖎",
690 "\\mbffrakj" : "𝖏",
691 "\\mbffrakk" : "𝖐",
692 "\\mbffrakl" : "𝖑",
693 "\\mbffrakm" : "𝖒",
694 "\\mbffrakn" : "𝖓",
695 "\\mbffrako" : "𝖔",
696 "\\mbffrakp" : "𝖕",
697 "\\mbffrakq" : "𝖖",
698 "\\mbffrakr" : "𝖗",
699 "\\mbffraks" : "𝖘",
700 "\\mbffrakt" : "𝖙",
701 "\\mbffraku" : "𝖚",
702 "\\mbffrakv" : "𝖛",
703 "\\mbffrakw" : "𝖜",
704 "\\mbffrakx" : "𝖝",
705 "\\mbffraky" : "𝖞",
706 "\\mbffrakz" : "𝖟",
707 "\\msansA" : "𝖠",
708 "\\msansB" : "𝖡",
709 "\\msansC" : "𝖢",
710 "\\msansD" : "𝖣",
711 "\\msansE" : "𝖤",
712 "\\msansF" : "𝖥",
713 "\\msansG" : "𝖦",
714 "\\msansH" : "𝖧",
715 "\\msansI" : "𝖨",
716 "\\msansJ" : "𝖩",
717 "\\msansK" : "𝖪",
718 "\\msansL" : "𝖫",
719 "\\msansM" : "𝖬",
720 "\\msansN" : "𝖭",
721 "\\msansO" : "𝖮",
722 "\\msansP" : "𝖯",
723 "\\msansQ" : "𝖰",
724 "\\msansR" : "𝖱",
725 "\\msansS" : "𝖲",
726 "\\msansT" : "𝖳",
727 "\\msansU" : "𝖴",
728 "\\msansV" : "𝖵",
729 "\\msansW" : "𝖶",
730 "\\msansX" : "𝖷",
731 "\\msansY" : "𝖸",
732 "\\msansZ" : "𝖹",
733 "\\msansa" : "𝖺",
734 "\\msansb" : "𝖻",
735 "\\msansc" : "𝖼",
736 "\\msansd" : "𝖽",
737 "\\msanse" : "𝖾",
738 "\\msansf" : "𝖿",
739 "\\msansg" : "𝗀",
740 "\\msansh" : "𝗁",
741 "\\msansi" : "𝗂",
742 "\\msansj" : "𝗃",
743 "\\msansk" : "𝗄",
744 "\\msansl" : "𝗅",
745 "\\msansm" : "𝗆",
746 "\\msansn" : "𝗇",
747 "\\msanso" : "𝗈",
748 "\\msansp" : "𝗉",
749 "\\msansq" : "𝗊",
750 "\\msansr" : "𝗋",
751 "\\msanss" : "𝗌",
752 "\\msanst" : "𝗍",
753 "\\msansu" : "𝗎",
754 "\\msansv" : "𝗏",
755 "\\msansw" : "𝗐",
756 "\\msansx" : "𝗑",
757 "\\msansy" : "𝗒",
758 "\\msansz" : "𝗓",
759 "\\mbfsansA" : "𝗔",
760 "\\mbfsansB" : "𝗕",
761 "\\mbfsansC" : "𝗖",
762 "\\mbfsansD" : "𝗗",
763 "\\mbfsansE" : "𝗘",
764 "\\mbfsansF" : "𝗙",
765 "\\mbfsansG" : "𝗚",
766 "\\mbfsansH" : "𝗛",
767 "\\mbfsansI" : "𝗜",
768 "\\mbfsansJ" : "𝗝",
769 "\\mbfsansK" : "𝗞",
770 "\\mbfsansL" : "𝗟",
771 "\\mbfsansM" : "𝗠",
772 "\\mbfsansN" : "𝗡",
773 "\\mbfsansO" : "𝗢",
774 "\\mbfsansP" : "𝗣",
775 "\\mbfsansQ" : "𝗤",
776 "\\mbfsansR" : "𝗥",
777 "\\mbfsansS" : "𝗦",
778 "\\mbfsansT" : "𝗧",
779 "\\mbfsansU" : "𝗨",
780 "\\mbfsansV" : "𝗩",
781 "\\mbfsansW" : "𝗪",
782 "\\mbfsansX" : "𝗫",
783 "\\mbfsansY" : "𝗬",
784 "\\mbfsansZ" : "𝗭",
785 "\\mbfsansa" : "𝗮",
786 "\\mbfsansb" : "𝗯",
787 "\\mbfsansc" : "𝗰",
788 "\\mbfsansd" : "𝗱",
789 "\\mbfsanse" : "𝗲",
790 "\\mbfsansf" : "𝗳",
791 "\\mbfsansg" : "𝗴",
792 "\\mbfsansh" : "𝗵",
793 "\\mbfsansi" : "𝗶",
794 "\\mbfsansj" : "𝗷",
795 "\\mbfsansk" : "𝗸",
796 "\\mbfsansl" : "𝗹",
797 "\\mbfsansm" : "𝗺",
798 "\\mbfsansn" : "𝗻",
799 "\\mbfsanso" : "𝗼",
800 "\\mbfsansp" : "𝗽",
801 "\\mbfsansq" : "𝗾",
802 "\\mbfsansr" : "𝗿",
803 "\\mbfsanss" : "𝘀",
804 "\\mbfsanst" : "𝘁",
805 "\\mbfsansu" : "𝘂",
806 "\\mbfsansv" : "𝘃",
807 "\\mbfsansw" : "𝘄",
808 "\\mbfsansx" : "𝘅",
809 "\\mbfsansy" : "𝘆",
810 "\\mbfsansz" : "𝘇",
811 "\\mitsansA" : "𝘈",
812 "\\mitsansB" : "𝘉",
813 "\\mitsansC" : "𝘊",
814 "\\mitsansD" : "𝘋",
815 "\\mitsansE" : "𝘌",
816 "\\mitsansF" : "𝘍",
817 "\\mitsansG" : "𝘎",
818 "\\mitsansH" : "𝘏",
819 "\\mitsansI" : "𝘐",
820 "\\mitsansJ" : "𝘑",
821 "\\mitsansK" : "𝘒",
822 "\\mitsansL" : "𝘓",
823 "\\mitsansM" : "𝘔",
824 "\\mitsansN" : "𝘕",
825 "\\mitsansO" : "𝘖",
826 "\\mitsansP" : "𝘗",
827 "\\mitsansQ" : "𝘘",
828 "\\mitsansR" : "𝘙",
829 "\\mitsansS" : "𝘚",
830 "\\mitsansT" : "𝘛",
831 "\\mitsansU" : "𝘜",
832 "\\mitsansV" : "𝘝",
833 "\\mitsansW" : "𝘞",
834 "\\mitsansX" : "𝘟",
835 "\\mitsansY" : "𝘠",
836 "\\mitsansZ" : "𝘡",
837 "\\mitsansa" : "𝘢",
838 "\\mitsansb" : "𝘣",
839 "\\mitsansc" : "𝘤",
840 "\\mitsansd" : "𝘥",
841 "\\mitsanse" : "𝘦",
842 "\\mitsansf" : "𝘧",
843 "\\mitsansg" : "𝘨",
844 "\\mitsansh" : "𝘩",
845 "\\mitsansi" : "𝘪",
846 "\\mitsansj" : "𝘫",
847 "\\mitsansk" : "𝘬",
848 "\\mitsansl" : "𝘭",
849 "\\mitsansm" : "𝘮",
850 "\\mitsansn" : "𝘯",
851 "\\mitsanso" : "𝘰",
852 "\\mitsansp" : "𝘱",
853 "\\mitsansq" : "𝘲",
854 "\\mitsansr" : "𝘳",
855 "\\mitsanss" : "𝘴",
856 "\\mitsanst" : "𝘵",
857 "\\mitsansu" : "𝘶",
858 "\\mitsansv" : "𝘷",
859 "\\mitsansw" : "𝘸",
860 "\\mitsansx" : "𝘹",
861 "\\mitsansy" : "𝘺",
862 "\\mitsansz" : "𝘻",
863 "\\mbfitsansA" : "𝘼",
864 "\\mbfitsansB" : "𝘽",
865 "\\mbfitsansC" : "𝘾",
866 "\\mbfitsansD" : "𝘿",
867 "\\mbfitsansE" : "𝙀",
868 "\\mbfitsansF" : "𝙁",
869 "\\mbfitsansG" : "𝙂",
870 "\\mbfitsansH" : "𝙃",
871 "\\mbfitsansI" : "𝙄",
872 "\\mbfitsansJ" : "𝙅",
873 "\\mbfitsansK" : "𝙆",
874 "\\mbfitsansL" : "𝙇",
875 "\\mbfitsansM" : "𝙈",
876 "\\mbfitsansN" : "𝙉",
877 "\\mbfitsansO" : "𝙊",
878 "\\mbfitsansP" : "𝙋",
879 "\\mbfitsansQ" : "𝙌",
880 "\\mbfitsansR" : "𝙍",
881 "\\mbfitsansS" : "𝙎",
882 "\\mbfitsansT" : "𝙏",
883 "\\mbfitsansU" : "𝙐",
884 "\\mbfitsansV" : "𝙑",
885 "\\mbfitsansW" : "𝙒",
886 "\\mbfitsansX" : "𝙓",
887 "\\mbfitsansY" : "𝙔",
888 "\\mbfitsansZ" : "𝙕",
889 "\\mbfitsansa" : "𝙖",
890 "\\mbfitsansb" : "𝙗",
891 "\\mbfitsansc" : "𝙘",
892 "\\mbfitsansd" : "𝙙",
893 "\\mbfitsanse" : "𝙚",
894 "\\mbfitsansf" : "𝙛",
895 "\\mbfitsansg" : "𝙜",
896 "\\mbfitsansh" : "𝙝",
897 "\\mbfitsansi" : "𝙞",
898 "\\mbfitsansj" : "𝙟",
899 "\\mbfitsansk" : "𝙠",
900 "\\mbfitsansl" : "𝙡",
901 "\\mbfitsansm" : "𝙢",
902 "\\mbfitsansn" : "𝙣",
903 "\\mbfitsanso" : "𝙤",
904 "\\mbfitsansp" : "𝙥",
905 "\\mbfitsansq" : "𝙦",
906 "\\mbfitsansr" : "𝙧",
907 "\\mbfitsanss" : "𝙨",
908 "\\mbfitsanst" : "𝙩",
909 "\\mbfitsansu" : "𝙪",
910 "\\mbfitsansv" : "𝙫",
911 "\\mbfitsansw" : "𝙬",
912 "\\mbfitsansx" : "𝙭",
913 "\\mbfitsansy" : "𝙮",
914 "\\mbfitsansz" : "𝙯",
915 "\\mttA" : "𝙰",
916 "\\mttB" : "𝙱",
917 "\\mttC" : "𝙲",
918 "\\mttD" : "𝙳",
919 "\\mttE" : "𝙴",
920 "\\mttF" : "𝙵",
921 "\\mttG" : "𝙶",
922 "\\mttH" : "𝙷",
923 "\\mttI" : "𝙸",
924 "\\mttJ" : "𝙹",
925 "\\mttK" : "𝙺",
926 "\\mttL" : "𝙻",
927 "\\mttM" : "𝙼",
928 "\\mttN" : "𝙽",
929 "\\mttO" : "𝙾",
930 "\\mttP" : "𝙿",
931 "\\mttQ" : "𝚀",
932 "\\mttR" : "𝚁",
933 "\\mttS" : "𝚂",
934 "\\mttT" : "𝚃",
935 "\\mttU" : "𝚄",
936 "\\mttV" : "𝚅",
937 "\\mttW" : "𝚆",
938 "\\mttX" : "𝚇",
939 "\\mttY" : "𝚈",
940 "\\mttZ" : "𝚉",
941 "\\mtta" : "𝚊",
942 "\\mttb" : "𝚋",
943 "\\mttc" : "𝚌",
944 "\\mttd" : "𝚍",
945 "\\mtte" : "𝚎",
946 "\\mttf" : "𝚏",
947 "\\mttg" : "𝚐",
948 "\\mtth" : "𝚑",
949 "\\mtti" : "𝚒",
950 "\\mttj" : "𝚓",
951 "\\mttk" : "𝚔",
952 "\\mttl" : "𝚕",
953 "\\mttm" : "𝚖",
954 "\\mttn" : "𝚗",
955 "\\mtto" : "𝚘",
956 "\\mttp" : "𝚙",
957 "\\mttq" : "𝚚",
958 "\\mttr" : "𝚛",
959 "\\mtts" : "𝚜",
960 "\\mttt" : "𝚝",
961 "\\mttu" : "𝚞",
962 "\\mttv" : "𝚟",
963 "\\mttw" : "𝚠",
964 "\\mttx" : "𝚡",
965 "\\mtty" : "𝚢",
966 "\\mttz" : "𝚣",
967 "\\mbfAlpha" : "𝚨",
968 "\\mbfBeta" : "𝚩",
969 "\\mbfGamma" : "𝚪",
970 "\\mbfDelta" : "𝚫",
971 "\\mbfEpsilon" : "𝚬",
972 "\\mbfZeta" : "𝚭",
973 "\\mbfEta" : "𝚮",
974 "\\mbfTheta" : "𝚯",
975 "\\mbfIota" : "𝚰",
976 "\\mbfKappa" : "𝚱",
977 "\\mbfLambda" : "𝚲",
978 "\\mbfMu" : "𝚳",
979 "\\mbfNu" : "𝚴",
980 "\\mbfXi" : "𝚵",
981 "\\mbfOmicron" : "𝚶",
982 "\\mbfPi" : "𝚷",
983 "\\mbfRho" : "𝚸",
984 "\\mbfvarTheta" : "𝚹",
985 "\\mbfSigma" : "𝚺",
986 "\\mbfTau" : "𝚻",
987 "\\mbfUpsilon" : "𝚼",
988 "\\mbfPhi" : "𝚽",
989 "\\mbfChi" : "𝚾",
990 "\\mbfPsi" : "𝚿",
991 "\\mbfOmega" : "𝛀",
992 "\\mbfalpha" : "𝛂",
993 "\\mbfbeta" : "𝛃",
994 "\\mbfgamma" : "𝛄",
995 "\\mbfdelta" : "𝛅",
996 "\\mbfepsilon" : "𝛆",
997 "\\mbfzeta" : "𝛇",
998 "\\mbfeta" : "𝛈",
999 "\\mbftheta" : "𝛉",
1000 "\\mbfiota" : "𝛊",
1001 "\\mbfkappa" : "𝛋",
1002 "\\mbflambda" : "𝛌",
1003 "\\mbfmu" : "𝛍",
1004 "\\mbfnu" : "𝛎",
1005 "\\mbfxi" : "𝛏",
1006 "\\mbfomicron" : "𝛐",
1007 "\\mbfpi" : "𝛑",
1008 "\\mbfrho" : "𝛒",
1009 "\\mbfvarsigma" : "𝛓",
1010 "\\mbfsigma" : "𝛔",
1011 "\\mbftau" : "𝛕",
1012 "\\mbfupsilon" : "𝛖",
1013 "\\mbfvarphi" : "𝛗",
1014 "\\mbfchi" : "𝛘",
1015 "\\mbfpsi" : "𝛙",
1016 "\\mbfomega" : "𝛚",
1017 "\\mbfvarepsilon" : "𝛜",
1018 "\\mbfvartheta" : "𝛝",
1019 "\\mbfvarkappa" : "𝛞",
1020 "\\mbfphi" : "𝛟",
1021 "\\mbfvarrho" : "𝛠",
1022 "\\mbfvarpi" : "𝛡",
1023 "\\mitAlpha" : "𝛢",
1024 "\\mitBeta" : "𝛣",
1025 "\\mitGamma" : "𝛤",
1026 "\\mitDelta" : "𝛥",
1027 "\\mitEpsilon" : "𝛦",
1028 "\\mitZeta" : "𝛧",
1029 "\\mitEta" : "𝛨",
1030 "\\mitTheta" : "𝛩",
1031 "\\mitIota" : "𝛪",
1032 "\\mitKappa" : "𝛫",
1033 "\\mitLambda" : "𝛬",
1034 "\\mitMu" : "𝛭",
1035 "\\mitNu" : "𝛮",
1036 "\\mitXi" : "𝛯",
1037 "\\mitOmicron" : "𝛰",
1038 "\\mitPi" : "𝛱",
1039 "\\mitRho" : "𝛲",
1040 "\\mitvarTheta" : "𝛳",
1041 "\\mitSigma" : "𝛴",
1042 "\\mitTau" : "𝛵",
1043 "\\mitUpsilon" : "𝛶",
1044 "\\mitPhi" : "𝛷",
1045 "\\mitChi" : "𝛸",
1046 "\\mitPsi" : "𝛹",
1047 "\\mitOmega" : "𝛺",
1048 "\\mitalpha" : "𝛼",
1049 "\\mitbeta" : "𝛽",
1050 "\\mitgamma" : "𝛾",
1051 "\\mitdelta" : "𝛿",
1052 "\\mitepsilon" : "𝜀",
1053 "\\mitzeta" : "𝜁",
1054 "\\miteta" : "𝜂",
1055 "\\mittheta" : "𝜃",
1056 "\\mitiota" : "𝜄",
1057 "\\mitkappa" : "𝜅",
1058 "\\mitlambda" : "𝜆",
1059 "\\mitmu" : "𝜇",
1060 "\\mitnu" : "𝜈",
1061 "\\mitxi" : "𝜉",
1062 "\\mitomicron" : "𝜊",
1063 "\\mitpi" : "𝜋",
1064 "\\mitrho" : "𝜌",
1065 "\\mitvarsigma" : "𝜍",
1066 "\\mitsigma" : "𝜎",
1067 "\\mittau" : "𝜏",
1068 "\\mitupsilon" : "𝜐",
1069 "\\mitphi" : "𝜑",
1070 "\\mitchi" : "𝜒",
1071 "\\mitpsi" : "𝜓",
1072 "\\mitomega" : "𝜔",
1073 "\\mitvarepsilon" : "𝜖",
1074 "\\mitvartheta" : "𝜗",
1075 "\\mitvarkappa" : "𝜘",
1076 "\\mitvarphi" : "𝜙",
1077 "\\mitvarrho" : "𝜚",
1078 "\\mitvarpi" : "𝜛",
1079 "\\mbfitAlpha" : "𝜜",
1080 "\\mbfitBeta" : "𝜝",
1081 "\\mbfitGamma" : "𝜞",
1082 "\\mbfitDelta" : "𝜟",
1083 "\\mbfitEpsilon" : "𝜠",
1084 "\\mbfitZeta" : "𝜡",
1085 "\\mbfitEta" : "𝜢",
1086 "\\mbfitTheta" : "𝜣",
1087 "\\mbfitIota" : "𝜤",
1088 "\\mbfitKappa" : "𝜥",
1089 "\\mbfitLambda" : "𝜦",
1090 "\\mbfitMu" : "𝜧",
1091 "\\mbfitNu" : "𝜨",
1092 "\\mbfitXi" : "𝜩",
1093 "\\mbfitOmicron" : "𝜪",
1094 "\\mbfitPi" : "𝜫",
1095 "\\mbfitRho" : "𝜬",
1096 "\\mbfitvarTheta" : "𝜭",
1097 "\\mbfitSigma" : "𝜮",
1098 "\\mbfitTau" : "𝜯",
1099 "\\mbfitUpsilon" : "𝜰",
1100 "\\mbfitPhi" : "𝜱",
1101 "\\mbfitChi" : "𝜲",
1102 "\\mbfitPsi" : "𝜳",
1103 "\\mbfitOmega" : "𝜴",
1104 "\\mbfitalpha" : "𝜶",
1105 "\\mbfitbeta" : "𝜷",
1106 "\\mbfitgamma" : "𝜸",
1107 "\\mbfitdelta" : "𝜹",
1108 "\\mbfitepsilon" : "𝜺",
1109 "\\mbfitzeta" : "𝜻",
1110 "\\mbfiteta" : "𝜼",
1111 "\\mbfittheta" : "𝜽",
1112 "\\mbfitiota" : "𝜾",
1113 "\\mbfitkappa" : "𝜿",
1114 "\\mbfitlambda" : "𝝀",
1115 "\\mbfitmu" : "𝝁",
1116 "\\mbfitnu" : "𝝂",
1117 "\\mbfitxi" : "𝝃",
1118 "\\mbfitomicron" : "𝝄",
1119 "\\mbfitpi" : "𝝅",
1120 "\\mbfitrho" : "𝝆",
1121 "\\mbfitvarsigma" : "𝝇",
1122 "\\mbfitsigma" : "𝝈",
1123 "\\mbfittau" : "𝝉",
1124 "\\mbfitupsilon" : "𝝊",
1125 "\\mbfitphi" : "𝝋",
1126 "\\mbfitchi" : "𝝌",
1127 "\\mbfitpsi" : "𝝍",
1128 "\\mbfitomega" : "𝝎",
1129 "\\mbfitvarepsilon" : "𝝐",
1130 "\\mbfitvartheta" : "𝝑",
1131 "\\mbfitvarkappa" : "𝝒",
1132 "\\mbfitvarphi" : "𝝓",
1133 "\\mbfitvarrho" : "𝝔",
1134 "\\mbfitvarpi" : "𝝕",
1135 "\\mbfsansAlpha" : "𝝖",
1136 "\\mbfsansBeta" : "𝝗",
1137 "\\mbfsansGamma" : "𝝘",
1138 "\\mbfsansDelta" : "𝝙",
1139 "\\mbfsansEpsilon" : "𝝚",
1140 "\\mbfsansZeta" : "𝝛",
1141 "\\mbfsansEta" : "𝝜",
1142 "\\mbfsansTheta" : "𝝝",
1143 "\\mbfsansIota" : "𝝞",
1144 "\\mbfsansKappa" : "𝝟",
1145 "\\mbfsansLambda" : "𝝠",
1146 "\\mbfsansMu" : "𝝡",
1147 "\\mbfsansNu" : "𝝢",
1148 "\\mbfsansXi" : "𝝣",
1149 "\\mbfsansOmicron" : "𝝤",
1150 "\\mbfsansPi" : "𝝥",
1151 "\\mbfsansRho" : "𝝦",
1152 "\\mbfsansvarTheta" : "𝝧",
1153 "\\mbfsansSigma" : "𝝨",
1154 "\\mbfsansTau" : "𝝩",
1155 "\\mbfsansUpsilon" : "𝝪",
1156 "\\mbfsansPhi" : "𝝫",
1157 "\\mbfsansChi" : "𝝬",
1158 "\\mbfsansPsi" : "𝝭",
1159 "\\mbfsansOmega" : "𝝮",
1160 "\\mbfsansalpha" : "𝝰",
1161 "\\mbfsansbeta" : "𝝱",
1162 "\\mbfsansgamma" : "𝝲",
1163 "\\mbfsansdelta" : "𝝳",
1164 "\\mbfsansepsilon" : "𝝴",
1165 "\\mbfsanszeta" : "𝝵",
1166 "\\mbfsanseta" : "𝝶",
1167 "\\mbfsanstheta" : "𝝷",
1168 "\\mbfsansiota" : "𝝸",
1169 "\\mbfsanskappa" : "𝝹",
1170 "\\mbfsanslambda" : "𝝺",
1171 "\\mbfsansmu" : "𝝻",
1172 "\\mbfsansnu" : "𝝼",
1173 "\\mbfsansxi" : "𝝽",
1174 "\\mbfsansomicron" : "𝝾",
1175 "\\mbfsanspi" : "𝝿",
1176 "\\mbfsansrho" : "𝞀",
1177 "\\mbfsansvarsigma" : "𝞁",
1178 "\\mbfsanssigma" : "𝞂",
1179 "\\mbfsanstau" : "𝞃",
1180 "\\mbfsansupsilon" : "𝞄",
1181 "\\mbfsansphi" : "𝞅",
1182 "\\mbfsanschi" : "𝞆",
1183 "\\mbfsanspsi" : "𝞇",
1184 "\\mbfsansomega" : "𝞈",
1185 "\\mbfsansvarepsilon" : "𝞊",
1186 "\\mbfsansvartheta" : "𝞋",
1187 "\\mbfsansvarkappa" : "𝞌",
1188 "\\mbfsansvarphi" : "𝞍",
1189 "\\mbfsansvarrho" : "𝞎",
1190 "\\mbfsansvarpi" : "𝞏",
1191 "\\mbfitsansAlpha" : "𝞐",
1192 "\\mbfitsansBeta" : "𝞑",
1193 "\\mbfitsansGamma" : "𝞒",
1194 "\\mbfitsansDelta" : "𝞓",
1195 "\\mbfitsansEpsilon" : "𝞔",
1196 "\\mbfitsansZeta" : "𝞕",
1197 "\\mbfitsansEta" : "𝞖",
1198 "\\mbfitsansTheta" : "𝞗",
1199 "\\mbfitsansIota" : "𝞘",
1200 "\\mbfitsansKappa" : "𝞙",
1201 "\\mbfitsansLambda" : "𝞚",
1202 "\\mbfitsansMu" : "𝞛",
1203 "\\mbfitsansNu" : "𝞜",
1204 "\\mbfitsansXi" : "𝞝",
1205 "\\mbfitsansOmicron" : "𝞞",
1206 "\\mbfitsansPi" : "𝞟",
1207 "\\mbfitsansRho" : "𝞠",
1208 "\\mbfitsansvarTheta" : "𝞡",
1209 "\\mbfitsansSigma" : "𝞢",
1210 "\\mbfitsansTau" : "𝞣",
1211 "\\mbfitsansUpsilon" : "𝞤",
1212 "\\mbfitsansPhi" : "𝞥",
1213 "\\mbfitsansChi" : "𝞦",
1214 "\\mbfitsansPsi" : "𝞧",
1215 "\\mbfitsansOmega" : "𝞨",
1216 "\\mbfitsansalpha" : "𝞪",
1217 "\\mbfitsansbeta" : "𝞫",
1218 "\\mbfitsansgamma" : "𝞬",
1219 "\\mbfitsansdelta" : "𝞭",
1220 "\\mbfitsansepsilon" : "𝞮",
1221 "\\mbfitsanszeta" : "𝞯",
1222 "\\mbfitsanseta" : "𝞰",
1223 "\\mbfitsanstheta" : "𝞱",
1224 "\\mbfitsansiota" : "𝞲",
1225 "\\mbfitsanskappa" : "𝞳",
1226 "\\mbfitsanslambda" : "𝞴",
1227 "\\mbfitsansmu" : "𝞵",
1228 "\\mbfitsansnu" : "𝞶",
1229 "\\mbfitsansxi" : "𝞷",
1230 "\\mbfitsansomicron" : "𝞸",
1231 "\\mbfitsanspi" : "𝞹",
1232 "\\mbfitsansrho" : "𝞺",
1233 "\\mbfitsansvarsigma" : "𝞻",
1234 "\\mbfitsanssigma" : "𝞼",
1235 "\\mbfitsanstau" : "𝞽",
1236 "\\mbfitsansupsilon" : "𝞾",
1237 "\\mbfitsansphi" : "𝞿",
1238 "\\mbfitsanschi" : "𝟀",
1239 "\\mbfitsanspsi" : "𝟁",
1240 "\\mbfitsansomega" : "𝟂",
1241 "\\mbfitsansvarepsilon" : "𝟄",
1242 "\\mbfitsansvartheta" : "𝟅",
1243 "\\mbfitsansvarkappa" : "𝟆",
1244 "\\mbfitsansvarphi" : "𝟇",
1245 "\\mbfitsansvarrho" : "𝟈",
1246 "\\mbfitsansvarpi" : "𝟉",
1247 "\\mbfzero" : "𝟎",
1248 "\\mbfone" : "𝟏",
1249 "\\mbftwo" : "𝟐",
1250 "\\mbfthree" : "𝟑",
1251 "\\mbffour" : "𝟒",
1252 "\\mbffive" : "𝟓",
1253 "\\mbfsix" : "𝟔",
1254 "\\mbfseven" : "𝟕",
1255 "\\mbfeight" : "𝟖",
1256 "\\mbfnine" : "𝟗",
1257 "\\Bbbzero" : "𝟘",
1258 "\\Bbbone" : "𝟙",
1259 "\\Bbbtwo" : "𝟚",
1260 "\\Bbbthree" : "𝟛",
1261 "\\Bbbfour" : "𝟜",
1262 "\\Bbbfive" : "𝟝",
1263 "\\Bbbsix" : "𝟞",
1264 "\\Bbbseven" : "𝟟",
1265 "\\Bbbeight" : "𝟠",
1266 "\\Bbbnine" : "𝟡",
1267 "\\msanszero" : "𝟢",
1268 "\\msansone" : "𝟣",
1269 "\\msanstwo" : "𝟤",
1270 "\\msansthree" : "𝟥",
1271 "\\msansfour" : "𝟦",
1272 "\\msansfive" : "𝟧",
1273 "\\msanssix" : "𝟨",
1274 "\\msansseven" : "𝟩",
1275 "\\msanseight" : "𝟪",
1276 "\\msansnine" : "𝟫",
1277 "\\mbfsanszero" : "𝟬",
1278 "\\mbfsansone" : "𝟭",
1279 "\\mbfsanstwo" : "𝟮",
1280 "\\mbfsansthree" : "𝟯",
1281 "\\mbfsansfour" : "𝟰",
1282 "\\mbfsansfive" : "𝟱",
1283 "\\mbfsanssix" : "𝟲",
1284 "\\mbfsansseven" : "𝟳",
1285 "\\mbfsanseight" : "𝟴",
1286 "\\mbfsansnine" : "𝟵",
1287 "\\mttzero" : "𝟶",
1288 "\\mttone" : "𝟷",
1289 "\\mtttwo" : "𝟸",
1290 "\\mttthree" : "𝟹",
1291 "\\mttfour" : "𝟺",
1292 "\\mttfive" : "𝟻",
1293 "\\mttsix" : "𝟼",
1294 "\\mttseven" : "𝟽",
1295 "\\mtteight" : "𝟾",
1296 "\\mttnine" : "𝟿",
1297 }
@@ -0,0 +1,84 b''
1 # coding: utf-8
2
3 # This script autogenerates `IPython.core.latex_symbols.py`, which contains a
4 # single dict , named `latex_symbols`. The keys in this dict are latex symbols,
5 # such as `\\alpha` and the values in the dict are the unicode equivalents for
6 # those. Most importantly, only unicode symbols that are valid identifers in
7 # Python 3 are included.
8
9 #
10 # The original mapping of latex symbols to unicode comes from the `latex_symbols.jl` files from Julia.
11
12 from __future__ import print_function
13 import os, sys
14
15 if not sys.version_info[0] == 3:
16 print("This script must be run with Python 3, exiting...")
17 sys.exit(1)
18
19 # Import the Julia LaTeX symbols
20 print('Importing latex_symbols.js from Julia...')
21 import requests
22 url = 'https://raw.githubusercontent.com/JuliaLang/julia/master/base/latex_symbols.jl'
23 r = requests.get(url)
24
25
26 # Build a list of key, value pairs
27 print('Building a list of (latex, unicode) key-vaule pairs...')
28 lines = r.text.splitlines()[60:]
29 lines = [line for line in lines if '=>' in line]
30 lines = [line.replace('=>',':') for line in lines]
31
32 def line_to_tuple(line):
33 """Convert a single line of the .jl file to a 2-tuple of strings like ("\\alpha", "α")"""
34 kv = line.split(',')[0].split(':')
35 # kv = tuple(line.strip(', ').split(':'))
36 k, v = kv[0].strip(' "'), kv[1].strip(' "')
37 # if not test_ident(v):
38 # print(line)
39 return k, v
40
41 assert line_to_tuple(' "\\sqrt" : "\u221A",') == ('\\sqrt', '\u221A')
42 lines = [line_to_tuple(line) for line in lines]
43
44
45 # Filter out non-valid identifiers
46 print('Filtering out characters that are not valid Python 3 identifiers')
47
48 def test_ident(i):
49 """Is the unicode string valid in a Python 3 identifer."""
50 # Some characters are not valid at the start of a name, but we still want to
51 # include them. So prefix with 'a', which is valid at the start.
52 return ('a' + i).isidentifier()
53
54 assert test_ident("α")
55 assert not test_ident('‴')
56
57 valid_idents = [line for line in lines if test_ident(line[1])]
58
59
60 # Write the `latex_symbols.py` module in the cwd
61
62 s = """# encoding: utf-8
63
64 # DO NOT EDIT THIS FILE BY HAND.
65
66 # To update this file, run the script /tools/gen_latex_symbols.py using Python 3
67
68 # This file is autogenerated from the file:
69 # https://raw.githubusercontent.com/JuliaLang/julia/master/base/latex_symbols.jl
70 # This original list is filtered to remove any unicode characters that are not valid
71 # Python identifiers.
72
73 latex_symbols = {\n
74 """
75 for line in valid_idents:
76 s += ' "%s" : "%s",\n' % (line[0], line[1])
77 s += "}\n"
78
79 fn = os.path.join('..','IPython','core','latex_symbols.py')
80 print("Writing the file: %s" % fn)
81 with open(fn, 'w', encoding='utf-8') as f:
82 f.write(s)
83
84
@@ -1,3 +1,4 b''
1 # encoding: utf-8
1 """Word completion for IPython.
2 """Word completion for IPython.
2
3
3 This module is a fork of the rlcompleter module in the Python standard
4 This module is a fork of the rlcompleter module in the Python standard
@@ -64,12 +65,13 b' import sys'
64 from IPython.config.configurable import Configurable
65 from IPython.config.configurable import Configurable
65 from IPython.core.error import TryNext
66 from IPython.core.error import TryNext
66 from IPython.core.inputsplitter import ESC_MAGIC
67 from IPython.core.inputsplitter import ESC_MAGIC
68 from IPython.core.latex_symbols import latex_symbols
67 from IPython.utils import generics
69 from IPython.utils import generics
68 from IPython.utils import io
70 from IPython.utils import io
69 from IPython.utils.decorators import undoc
71 from IPython.utils.decorators import undoc
70 from IPython.utils.dir2 import dir2
72 from IPython.utils.dir2 import dir2
71 from IPython.utils.process import arg_split
73 from IPython.utils.process import arg_split
72 from IPython.utils.py3compat import builtin_mod, string_types
74 from IPython.utils.py3compat import builtin_mod, string_types, PY3
73 from IPython.utils.traitlets import CBool, Enum
75 from IPython.utils.traitlets import CBool, Enum
74
76
75 #-----------------------------------------------------------------------------
77 #-----------------------------------------------------------------------------
@@ -952,6 +954,27 b' class IPCompleter(Completer):'
952
954
953 return [leading + k + suf for k in matches]
955 return [leading + k + suf for k in matches]
954
956
957 def latex_matches(self, text):
958 u"""Match Latex syntax for unicode characters.
959
960 This does both \\alp -> \\alpha and \\alpha -> α
961
962 Used on Python 3 only.
963 """
964 slashpos = text.rfind('\\')
965 if slashpos > -1:
966 s = text[slashpos:]
967 if s in latex_symbols:
968 # Try to complete a full latex symbol to unicode
969 # \\alpha -> α
970 return s, [latex_symbols[s]]
971 else:
972 # If a user has partially typed a latex symbol, give them
973 # a full list of options \al -> [\aleph, \alpha]
974 matches = [k for k in latex_symbols if k.startswith(s)]
975 return s, matches
976 return u'', []
977
955 def dispatch_custom_completer(self, text):
978 def dispatch_custom_completer(self, text):
956 #io.rprint("Custom! '%s' %s" % (text, self.custom_completers)) # dbg
979 #io.rprint("Custom! '%s' %s" % (text, self.custom_completers)) # dbg
957 line = self.line_buffer
980 line = self.line_buffer
@@ -1032,6 +1055,12 b' class IPCompleter(Completer):'
1032 if cursor_pos is None:
1055 if cursor_pos is None:
1033 cursor_pos = len(line_buffer) if text is None else len(text)
1056 cursor_pos = len(line_buffer) if text is None else len(text)
1034
1057
1058 if PY3:
1059 latex_text = text if not line_buffer else line_buffer[:cursor_pos]
1060 latex_text, latex_matches = self.latex_matches(latex_text)
1061 if latex_matches:
1062 return latex_text, latex_matches
1063
1035 # if text is either None or an empty string, rely on the line buffer
1064 # if text is either None or an empty string, rely on the line buffer
1036 if not text:
1065 if not text:
1037 text = self.splitter.split_line(line_buffer, cursor_pos)
1066 text = self.splitter.split_line(line_buffer, cursor_pos)
@@ -1,3 +1,4 b''
1 # encoding: utf-8
1 """Implementations for various useful completers.
2 """Implementations for various useful completers.
2
3
3 These are all loaded by default by IPython.
4 These are all loaded by default by IPython.
@@ -126,6 +126,27 b' def test_unicode_completions():'
126 nt.assert_true(isinstance(text, string_types))
126 nt.assert_true(isinstance(text, string_types))
127 nt.assert_true(isinstance(matches, list))
127 nt.assert_true(isinstance(matches, list))
128
128
129 @dec.onlyif(sys.version_info[0] >= 3, 'This test only applies in Py>=3')
130 def test_latex_completions():
131 from IPython.core.latex_symbols import latex_symbols
132 import random
133 ip = get_ipython()
134 # Test some random unicode symbols
135 keys = random.sample(latex_symbols.keys(), 10)
136 for k in keys:
137 text, matches = ip.complete(k)
138 nt.assert_equal(len(matches),1)
139 nt.assert_equal(text, k)
140 nt.assert_equal(matches[0], latex_symbols[k])
141 # Test a more complex line
142 text, matches = ip.complete(u'print(\\alpha')
143 nt.assert_equals(text, u'\\alpha')
144 nt.assert_equals(matches[0], latex_symbols['\\alpha'])
145 # Test multiple matching latex symbols
146 text, matches = ip.complete(u'\\al')
147 nt.assert_in('\\alpha', matches)
148 nt.assert_in('\\aleph', matches)
149
129
150
130 class CompletionSplitterTestCase(unittest.TestCase):
151 class CompletionSplitterTestCase(unittest.TestCase):
131 def setUp(self):
152 def setUp(self):
@@ -15,6 +15,11 b" CodeMirror.requireMode('python',function(){"
15 }
15 }
16 pythonConf.name = 'python';
16 pythonConf.name = 'python';
17 pythonConf.singleOperators = new RegExp("^[\\+\\-\\*/%&|\\^~<>!\\?]");
17 pythonConf.singleOperators = new RegExp("^[\\+\\-\\*/%&|\\^~<>!\\?]");
18 if (pythonConf.version === 3) {
19 pythonConf.identifiers = new RegExp("^[_A-Za-z\u00A1-\uFFFF][_A-Za-z0-9\u00A1-\uFFFF]*");
20 } else if (pythonConf.version === 2) {
21 pythonConf.identifiers = new RegExp("^[_A-Za-z][_A-Za-z0-9]*");
22 }
18 return CodeMirror.getMode(conf, pythonConf);
23 return CodeMirror.getMode(conf, pythonConf);
19 }, 'python');
24 }, 'python');
20
25
General Comments 0
You need to be logged in to leave comments. Login now