Show More
@@ -12,6 +12,7 b' pretty.' | |||||
12 | from __future__ import print_function |
|
12 | from __future__ import print_function | |
13 |
|
13 | |||
14 | import codecs |
|
14 | import codecs | |
|
15 | import logging | |||
15 | import os |
|
16 | import os | |
16 | import pprint |
|
17 | import pprint | |
17 | import re |
|
18 | import re | |
@@ -89,6 +90,7 b' class Converter(object):' | |||||
89 | with_preamble = True |
|
90 | with_preamble = True | |
90 | user_preamble = None |
|
91 | user_preamble = None | |
91 | output = str() |
|
92 | output = str() | |
|
93 | raw_as_verbatim = False | |||
92 |
|
94 | |||
93 | def __init__(self, infile): |
|
95 | def __init__(self, infile): | |
94 | self.infile = infile |
|
96 | self.infile = infile | |
@@ -110,6 +112,7 b' class Converter(object):' | |||||
110 | lines.extend(self.optional_header()) |
|
112 | lines.extend(self.optional_header()) | |
111 | for worksheet in self.nb.worksheets: |
|
113 | for worksheet in self.nb.worksheets: | |
112 | for cell in worksheet.cells: |
|
114 | for cell in worksheet.cells: | |
|
115 | #print(cell.cell_type) # dbg | |||
113 | conv_fn = self.dispatch(cell.cell_type) |
|
116 | conv_fn = self.dispatch(cell.cell_type) | |
114 | lines.extend(conv_fn(cell)) |
|
117 | lines.extend(conv_fn(cell)) | |
115 | lines.append('') |
|
118 | lines.append('') | |
@@ -227,8 +230,8 b' class Converter(object):' | |||||
227 | Returns list.""" |
|
230 | Returns list.""" | |
228 | raise NotImplementedError |
|
231 | raise NotImplementedError | |
229 |
|
232 | |||
230 |
def render_ |
|
233 | def render_raw(self, cell): | |
231 |
"""convert |
|
234 | """convert a cell with raw text | |
232 |
|
235 | |||
233 | Returns list.""" |
|
236 | Returns list.""" | |
234 | raise NotImplementedError |
|
237 | raise NotImplementedError | |
@@ -237,6 +240,18 b' class Converter(object):' | |||||
237 | """Render cells of unkown type |
|
240 | """Render cells of unkown type | |
238 |
|
241 | |||
239 | Returns list.""" |
|
242 | Returns list.""" | |
|
243 | data = pprint.pformat(cell) | |||
|
244 | logging.warning('Unknown cell:\n%s' % data) | |||
|
245 | return self._unknown_lines(data) | |||
|
246 | ||||
|
247 | def _unknown_lines(self, data): | |||
|
248 | """Return list of lines for an unknown cell. | |||
|
249 | ||||
|
250 | Parameters | |||
|
251 | ---------- | |||
|
252 | data : str | |||
|
253 | The content of the unknown data as a single string. | |||
|
254 | """ | |||
240 | raise NotImplementedError |
|
255 | raise NotImplementedError | |
241 |
|
256 | |||
242 |
|
257 | |||
@@ -268,8 +283,11 b' class ConverterRST(Converter):' | |||||
268 | return [cell.source] |
|
283 | return [cell.source] | |
269 |
|
284 | |||
270 | @DocInherit |
|
285 | @DocInherit | |
271 |
def render_ |
|
286 | def render_raw(self, cell): | |
272 | return [cell.source] |
|
287 | if self.raw_as_verbatim: | |
|
288 | return ['::', '', indent(cell.source), ''] | |||
|
289 | else: | |||
|
290 | return [cell.source] | |||
273 |
|
291 | |||
274 | @DocInherit |
|
292 | @DocInherit | |
275 | def render_pyout(self, output): |
|
293 | def render_pyout(self, output): | |
@@ -285,6 +303,11 b' class ConverterRST(Converter):' | |||||
285 | return lines |
|
303 | return lines | |
286 |
|
304 | |||
287 | @DocInherit |
|
305 | @DocInherit | |
|
306 | def render_pyerr(self, output): | |||
|
307 | # Note: a traceback is a *list* of frames. | |||
|
308 | return ['::', '', indent(remove_ansi('\n'.join(output.traceback))), ''] | |||
|
309 | ||||
|
310 | @DocInherit | |||
288 | def _img_lines(self, img_file): |
|
311 | def _img_lines(self, img_file): | |
289 | return ['.. image:: %s' % img_file, ''] |
|
312 | return ['.. image:: %s' % img_file, ''] | |
290 |
|
313 | |||
@@ -298,13 +321,17 b' class ConverterRST(Converter):' | |||||
298 | return lines |
|
321 | return lines | |
299 |
|
322 | |||
300 | @DocInherit |
|
323 | @DocInherit | |
301 |
def |
|
324 | def _unknown_lines(self, data): | |
302 |
return rst_directive('.. warning:: Unknown cell') + [ |
|
325 | return rst_directive('.. warning:: Unknown cell') + [data] | |
303 |
|
326 | |||
304 |
|
327 | |||
305 | class ConverterQuickHTML(Converter): |
|
328 | class ConverterQuickHTML(Converter): | |
306 | extension = 'html' |
|
329 | extension = 'html' | |
307 |
|
330 | |||
|
331 | def in_tag(self, tag, src): | |||
|
332 | """Return a list of elements bracketed by the given tag""" | |||
|
333 | return ['<%s>' % tag, src, '</%s>' % tag] | |||
|
334 | ||||
308 | def optional_header(self): |
|
335 | def optional_header(self): | |
309 | # XXX: inject the IPython standard CSS into here |
|
336 | # XXX: inject the IPython standard CSS into here | |
310 | s = """<html> |
|
337 | s = """<html> | |
@@ -347,30 +374,33 b' class ConverterQuickHTML(Converter):' | |||||
347 |
|
374 | |||
348 | @DocInherit |
|
375 | @DocInherit | |
349 | def render_markdown(self, cell): |
|
376 | def render_markdown(self, cell): | |
350 |
return |
|
377 | return self.in_tag('pre', cell.source) | |
351 |
|
378 | |||
352 | @DocInherit |
|
379 | @DocInherit | |
353 |
def render_ |
|
380 | def render_raw(self, cell): | |
354 | return ["<pre>"+cell.source+"</pre>"] |
|
381 | if self.raw_as_verbatim: | |
|
382 | return self.in_tag('pre', cell.source) | |||
|
383 | else: | |||
|
384 | return [cell.source] | |||
355 |
|
385 | |||
356 | @DocInherit |
|
386 | @DocInherit | |
357 | def render_pyout(self, output): |
|
387 | def render_pyout(self, output): | |
358 |
lines = ['<tr><td><tt>Out[<b>%s</b>]:</tt></td></tr>' % |
|
388 | lines = ['<tr><td><tt>Out[<b>%s</b>]:</tt></td></tr>' % | |
|
389 | output.prompt_number, '<td>'] | |||
359 |
|
390 | |||
360 | # output is a dictionary like object with type as a key |
|
391 | # output is a dictionary like object with type as a key | |
361 | if 'latex' in output: |
|
392 | for out_type in ('text', 'latex'): | |
362 | lines.append("<pre>") |
|
393 | if out_type in output: | |
363 |
lines.extend(indent(output |
|
394 | lines.extend(self.in_tag('pre', indent(output[out_type]))) | |
364 | lines.append("</pre>") |
|
|||
365 |
|
||||
366 | if 'text' in output: |
|
|||
367 | lines.append("<pre>") |
|
|||
368 | lines.extend(indent(output.text)) |
|
|||
369 | lines.append("</pre>") |
|
|||
370 |
|
395 | |||
371 | return lines |
|
396 | return lines | |
372 |
|
397 | |||
373 | @DocInherit |
|
398 | @DocInherit | |
|
399 | def render_pyerr(self, output): | |||
|
400 | # Note: a traceback is a *list* of frames. | |||
|
401 | return self.in_tag('pre', remove_ansi('\n'.join(output.traceback))) | |||
|
402 | ||||
|
403 | @DocInherit | |||
374 | def _img_lines(self, img_file): |
|
404 | def _img_lines(self, img_file): | |
375 | return ['<img src="%s">' % img_file, ''] |
|
405 | return ['<img src="%s">' % img_file, ''] | |
376 |
|
406 | |||
@@ -383,6 +413,10 b' class ConverterQuickHTML(Converter):' | |||||
383 |
|
413 | |||
384 | return lines |
|
414 | return lines | |
385 |
|
415 | |||
|
416 | @DocInherit | |||
|
417 | def _unknown_lines(self, data): | |||
|
418 | return ['<h2>Warning:: Unknown cell</h2>'] + self.in_tag('pre', data) | |||
|
419 | ||||
386 |
|
420 | |||
387 | class ConverterLaTeX(Converter): |
|
421 | class ConverterLaTeX(Converter): | |
388 | """Converts a notebook to a .tex file suitable for pdflatex. |
|
422 | """Converts a notebook to a .tex file suitable for pdflatex. | |
@@ -413,7 +447,7 b' class ConverterLaTeX(Converter):' | |||||
413 | 5: r'\subparagraph', |
|
447 | 5: r'\subparagraph', | |
414 | 6: r'\subparagraph'} |
|
448 | 6: r'\subparagraph'} | |
415 |
|
449 | |||
416 | def env(self, environment, lines): |
|
450 | def in_env(self, environment, lines): | |
417 | """Return list of environment lines for input lines |
|
451 | """Return list of environment lines for input lines | |
418 |
|
452 | |||
419 | Parameters |
|
453 | Parameters | |
@@ -482,8 +516,8 b' class ConverterLaTeX(Converter):' | |||||
482 | # Cell codes first carry input code, we use lstlisting for that |
|
516 | # Cell codes first carry input code, we use lstlisting for that | |
483 | lines = [r'\begin{codecell}'] |
|
517 | lines = [r'\begin{codecell}'] | |
484 |
|
518 | |||
485 | lines.extend(self.env('codeinput', |
|
519 | lines.extend(self.in_env('codeinput', | |
486 | self.env('lstlisting', cell.input))) |
|
520 | self.in_env('lstlisting', cell.input))) | |
487 |
|
521 | |||
488 | outlines = [] |
|
522 | outlines = [] | |
489 | for output in cell.outputs: |
|
523 | for output in cell.outputs: | |
@@ -492,7 +526,7 b' class ConverterLaTeX(Converter):' | |||||
492 |
|
526 | |||
493 | # And then output of many possible types; use a frame for all of it. |
|
527 | # And then output of many possible types; use a frame for all of it. | |
494 | if outlines: |
|
528 | if outlines: | |
495 | lines.extend(self.env('codeoutput', outlines)) |
|
529 | lines.extend(self.in_env('codeoutput', outlines)) | |
496 |
|
530 | |||
497 | lines.append(r'\end{codecell}') |
|
531 | lines.append(r'\end{codecell}') | |
498 |
|
532 | |||
@@ -501,7 +535,7 b' class ConverterLaTeX(Converter):' | |||||
501 |
|
535 | |||
502 | @DocInherit |
|
536 | @DocInherit | |
503 | def _img_lines(self, img_file): |
|
537 | def _img_lines(self, img_file): | |
504 | return self.env('center', |
|
538 | return self.in_env('center', | |
505 | [r'\includegraphics[width=3in]{%s}' % img_file, r'\par']) |
|
539 | [r'\includegraphics[width=3in]{%s}' % img_file, r'\par']) | |
506 |
|
540 | |||
507 | def _svg_lines(self, img_file): |
|
541 | def _svg_lines(self, img_file): | |
@@ -516,7 +550,7 b' class ConverterLaTeX(Converter):' | |||||
516 | lines = [] |
|
550 | lines = [] | |
517 |
|
551 | |||
518 | if 'text' in output: |
|
552 | if 'text' in output: | |
519 | lines.extend(self.env('verbatim', output.text.strip())) |
|
553 | lines.extend(self.in_env('verbatim', output.text.strip())) | |
520 |
|
554 | |||
521 | return lines |
|
555 | return lines | |
522 |
|
556 | |||
@@ -533,20 +567,28 b' class ConverterLaTeX(Converter):' | |||||
533 | lines.extend(output.latex) |
|
567 | lines.extend(output.latex) | |
534 |
|
568 | |||
535 | if 'text' in output: |
|
569 | if 'text' in output: | |
536 | lines.extend(self.env('verbatim', output.text)) |
|
570 | lines.extend(self.in_env('verbatim', output.text)) | |
537 |
|
571 | |||
538 | return lines |
|
572 | return lines | |
539 |
|
573 | |||
540 | @DocInherit |
|
574 | @DocInherit | |
541 | def render_pyerr(self, output): |
|
575 | def render_pyerr(self, output): | |
542 | # Note: a traceback is a *list* of frames. |
|
576 | # Note: a traceback is a *list* of frames. | |
543 | return self.env('traceback', |
|
577 | return self.in_env('traceback', | |
544 | self.env('verbatim', |
|
578 | self.in_env('verbatim', | |
545 | remove_ansi('\n'.join(output.traceback)))) |
|
579 | remove_ansi('\n'.join(output.traceback)))) | |
546 |
|
580 | |||
547 | @DocInherit |
|
581 | @DocInherit | |
548 |
def render_ |
|
582 | def render_raw(self, cell): | |
549 | return self.env('verbatim', pprint.pformat(cell)) |
|
583 | if self.raw_as_verbatim: | |
|
584 | return self.in_env('verbatim', cell.source) | |||
|
585 | else: | |||
|
586 | return [cell.source] | |||
|
587 | ||||
|
588 | @DocInherit | |||
|
589 | def _unknown_lines(self, data): | |||
|
590 | return [r'{\vspace{5mm}\bf WARNING:: unknown cell:}'] + \ | |||
|
591 | self.in_env('verbatim', data) | |||
550 |
|
592 | |||
551 |
|
593 | |||
552 | def rst2simplehtml(infile): |
|
594 | def rst2simplehtml(infile): |
@@ -51,15 +51,12 b'' | |||||
51 | { |
|
51 | { | |
52 | "cell_type": "markdown", |
|
52 | "cell_type": "markdown", | |
53 | "source": [ |
|
53 | "source": [ | |
54 | "A section heading", |
|
|||
55 | "=================", |
|
|||
56 | "", |
|
|||
57 | "A bit of text, with *important things*:", |
|
54 | "A bit of text, with *important things*:", | |
58 | "", |
|
55 | "", | |
59 | "* and", |
|
56 | "* and", | |
60 | "* more", |
|
57 | "* more that **are boldface**, as well as `verbatim`.", | |
61 | "", |
|
58 | "", | |
62 |
"Using |
|
59 | "Using markdown hyperlinks for [ipython](http://ipython.org)." | |
63 | ] |
|
60 | ] | |
64 | }, |
|
61 | }, | |
65 | { |
|
62 | { | |
@@ -67,21 +64,21 b'' | |||||
67 | "collapsed": false, |
|
64 | "collapsed": false, | |
68 | "input": [ |
|
65 | "input": [ | |
69 | "f = figure()", |
|
66 | "f = figure()", | |
70 | "plot([1])", |
|
67 | "plot([1,2,3])", | |
71 | "display(f)" |
|
68 | "display(f)" | |
72 | ], |
|
69 | ], | |
73 | "language": "python", |
|
70 | "language": "python", | |
74 | "outputs": [ |
|
71 | "outputs": [ | |
75 | { |
|
72 | { | |
76 | "output_type": "display_data", |
|
73 | "output_type": "display_data", | |
77 | "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD3CAYAAAAUl4NyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFyVJREFUeJzt3H9M1Pcdx/HXGTK1XWNloG7xN1Lh1Baq46RDPRv8kTL2\no2qUJbX+Si5mKlqJm6aLsqQah/NHiamki0ushcbEP+b8OYg5YIveSaqTCc6IkMkyO8GJWqGe+tkf\nppdS9BDvTpTP85GY3Pc+3x/vd77t93X3+d4XhzHGCABgnV7dXQAAoHsQAABgKQIAACxFAACApQgA\nALAUAQAAlgoZAIsWLdLAgQM1bty4R66zdu1ajRw5UuPHj9f58+eD73/55Zd699139corr8jpdOrk\nyZORqxoAELaQAbBw4UIdPXr0keN+v1+VlZWqqqpSXl6e8vLygmPr16/X0KFDdfbsWZ09e1bJycmR\nqxoAEDZHZw+CNTQ0KDs7W9XV1R3GCgsLde/ePa1cuVKSlJCQoLq6OklSSkqKTpw4ob59+0ahbABA\nuGLC2djv9+udd94JLsfHx+vSpUv6zne+o7a2Ni1dulS1tbV6++23lZubqz59+nTYh8PhCKcEALBW\nuH/IIaybwMaYhxbQ1tamCxcuaNasWfJ6vTp37pz27dvX6X564r/169d3ew30R3829teTezMmMn/B\nJ6wAcLlcqqmpCS5fvXpVI0eO1KhRozR69GhlZ2erb9++ysnJ0ZEjR8IuFgAQOWEHwP79+9Xc3Kzi\n4uJ2N3oTExPl8/l0//59HTp0SJmZmWEXCwCInJD3AHJyclReXq6mpiYNGTJE+fn5CgQCkiSPx6O0\ntDRlZGRowoQJio2N1d69e4PbbtmyRfPnz1dbW5syMzM1b9686HbyjHK73d1dQlTR3/OtJ/fXk3uL\nlE5/BRT1AhyOiM1nAYAtInHt5ElgALAUAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUI\nAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABYigAA\nAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSIQNg0aJFGjhwoMaNG/fIddauXauRI0dq/Pjx\nOn/+fLuxe/fuKTU1VdnZ2ZGpFgAQMSEDYOHChTp69Ogjx/1+vyorK1VVVaW8vDzl5eW1G9+xY4ec\nTqccDkdkqgUAREzIAJg0aZL69+//yHGfz6fZs2crNjZWOTk5qq2tDY41Njbq8OHDWrJkiYwxkasY\nABARYd0D8Pv9cjqdweX4+HhdunRJkrRq1SoVFBSoVy9uMwDAsygmnI2NMQ/9dH/w4EENGDBAqamp\n8nq9ne5nw4YNwddut1tutzucsgCgx/F6vY91Pe0Kh+lkfqahoUHZ2dmqrq7uMFZYWKi7d+9q1apV\nkqSEhATV1dVp3bp1+uSTTxQTE6O2tjbduHFDs2bN0p49ezoW4HAwRQQAXRSJa2dY8zMul0v79+9X\nc3OziouLlZycLEnauHGjLl++rPr6en322Wd68803H3rxBwB0n5BTQDk5OSovL1dTU5OGDBmi/Px8\nBQIBSZLH41FaWpoyMjI0YcIExcbGau/evQ/dD78CAoBnT6dTQFEvgCkgAOiybp8CAgA8vwgAALAU\nAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEA\nAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABYigAAAEsRAABgKQIAACxFAACApQgAALAUAQAA\nluo0ABYtWqSBAwdq3Lhxj1xn7dq1GjlypMaPH6/z589Lki5fvqypU6dqzJgxcrvdKi4ujlzVAICw\nOYwxJtQKlZWV+u53v6v58+erurq6w7jf79d7772nAwcO6NixY/r000918OBBXblyRVeuXFFKSoqa\nmpqUlpamv//973rppZfaF+BwqJMSAADfEolrZ6ffACZNmqT+/fs/ctzn82n27NmKjY1VTk6Oamtr\nJUmDBg1SSkqKJCkuLk5jxoxRVVVVWMUCACIn7HsAfr9fTqczuBwfH6+6urp261y8eFHnzp1TWlpa\nuIcDAERITLg7MMZ0+BricDiCr2/evKm5c+dq27ZtevHFFx+6jw0bNgRfu91uud3ucMsCgB7F6/XK\n6/VGdJ+d3gOQpIaGBmVnZz/0HkBhYaHu3r2rVatWSZISEhKC3wACgYCysrL01ltvaeXKlQ8vgHsA\nANBlT+UeQGdcLpf279+v5uZmFRcXKzk5WdKDbwaLFy/W2LFjH3nxBwB0n06ngHJyclReXq6mpiYN\nGTJE+fn5CgQCkiSPx6O0tDRlZGRowoQJio2N1d69eyVJf/vb37R37169+uqrSk1NlSRt2rRJM2fO\njGI7AIDH9VhTQFEtgCkgAOiyZ2IKCADwfCIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUIAACw\nFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABYigAAAEsR\nAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWCpkACxatEgDBw7UuHHjHrnO2rVrNXLkSI0f\nP17nz58Pvl9RUaHk5GQlJiaqsLAwchUDACIiZAAsXLhQR48efeS43+9XZWWlqqqqlJeXp7y8vOBY\nbm6uioqKVFZWpp07d6qpqSlyVQMAwhYyACZNmqT+/fs/ctzn82n27NmKjY1VTk6OamtrJUktLS2S\npMmTJ2vYsGGaPn26fD5fBMsGAIQrrHsAfr9fTqczuBwfH6+6ujqdOnVKSUlJwfedTqdOnjwZzqEA\nABEWE87GxhgZY9q953A4uryfDRs2BF+73W653e5wygKAHsfr9crr9UZ0nw7z7Sv4tzQ0NCg7O1vV\n1dUdxgoLC3X37l2tWrVKkpSQkKC6ujpdv35dU6dO1enTpyVJy5cv18yZM5WVldWxAIejQ4gAAEKL\nxLUzrCkgl8ul/fv3q7m5WcXFxUpOTpYkvfzyy5Ie/BKooaFBpaWlcrlcYRUKAIiskFNAOTk5Ki8v\nV1NTk4YMGaL8/HwFAgFJksfjUVpamjIyMjRhwgTFxsZq7969wW23b98uj8ejQCCgFStWKC4uLrqd\nAAC6pNMpoKgXwBQQAHRZt08BAQCeXwQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAA\nwFIEAABYigAAAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAs\nRQAAgKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGCpTgOgoqJCycnJSkxMVGFhYYfxmzdvavXq\n1UpJSVF6errq6uqCYx9//LHeeOMNjR8/XitXroxs5QCAsHQaALm5uSoqKlJZWZl27typpqamduMl\nJSUKBAI6c+aMtm7dqjVr1kiSrl27po0bN6q0tFSnTp3ShQsXdOzYseh0AQDospAB0NLSIkmaPHmy\nhg0bpunTp8vn87Vb5/jx48rKypIkpaen6+LFi5Kkvn37yhijlpYWtba26vbt2+rfv380egAAPIGY\nUIOnTp1SUlJScNnpdOrkyZPBC74kzZgxQyUlJZo8ebJKS0tVXV2t+vp6jRgxQh999JGGDx+u3r17\na8WKFUpLS3vocTZs2BB87Xa75Xa7w+sKAHoYr9crr9cb0X2GDIDHMXfuXDU2NmrKlCkaPXq0EhMT\n1bt3b129elVLly5VTU2N+vfvrzlz5ujQoUPtwuNr3wwAAEBH3/5wnJ+fH/Y+Q04B/fCHP9T58+eD\ny+fOndPEiRPbrfPCCy/oN7/5jfx+vz766CP17dtXP/jBD+T3+zVx4kSNGjVK3/ve9zRnzhxVVFSE\nXTAAIDJCBkC/fv0kPfglUENDg0pLS+Vyudqt09LSojt37uj27dvatGmTpk2bJknKyMhQVVWVrl27\npq+++kpHjhzR9OnTo9QGAKCrOp0C2r59uzwejwKBgFasWKG4uDgVFRVJkjwej2pqarRgwQLdv39f\n6enp2rVrl6QH4fH+++/r5z//uW7fvq2ZM2dq6tSp0e0GAPDYHMYY060FOBzq5hIA4LkTiWsnTwID\ngKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABY\nigAAAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUI\nAACwFAEAAJbqNAAqKiqUnJysxMREFRYWdhi/efOmVq9erZSUFKWnp6uuri449uWXX+rdd9/VK6+8\nIqfTqZMnT0a2egDAE+s0AHJzc1VUVKSysjLt3LlTTU1N7cZLSkoUCAR05swZbd26VWvWrAmOrV+/\nXkOHDtXZs2d19uxZJScnR74DAMATiQk12NLSIkmaPHmyJGn69Ony+XzKysoKrnP8+HEtXLhQkpSe\nnq6LFy8Gx8rKynTixAn16dNHktSvX7/IVg8AeGIhvwGcOnVKSUlJweWHTePMmDFDJSUlam1t1YED\nB1RdXa36+no1Njaqra1NS5culcvl0ubNm9XW1hadLgAAXRbyG8DjmDt3rhobGzVlyhSNHj1aiYmJ\n6t27t27fvq0LFy6ooKBAmZmZ8ng82rdvn+bPn99hHxs2bAi+drvdcrvd4ZYFAD2K1+uV1+uN6D4d\nxhjzqMGWlha53W6dPn1akrR8+XLNnDmz3RTQN926dUsZGRk6c+aMJCk5OVm1tbWSpCNHjmjPnj0q\nKSlpX4DDoRAlAAAeIhLXzpBTQF/P2VdUVKihoUGlpaVyuVzt1mlpadGdO3d0+/Ztbdq0SdOmTQuO\nJSYmyufz6f79+zp06JAyMzPDKhYAEDmdTgFt375dHo9HgUBAK1asUFxcnIqKiiRJHo9HNTU1WrBg\nge7fv6/09HTt2rUruO2WLVs0f/58tbW1KTMzU/PmzYteJwCALgk5BfRUCmAKCAC6LOpTQACAnosA\nAABLEQAAYCkCAAAsRQAAgKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAA\nsBQBAACWIgAAwFIEAABYigAAAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWIoAAABL\nEQAAYKlOA6CiokLJyclKTExUYWFhh/GbN29q9erVSklJUXp6uurq6tqN37t3T6mpqcrOzo5c1c8R\nr9fb3SVEFf0933pyfz25t0jpNAByc3NVVFSksrIy7dy5U01NTe3GS0pKFAgEdObMGW3dulVr1qxp\nN75jxw45nU45HI7IVv6c6On/EdLf860n99eTe4uUkAHQ0tIiSZo8ebKGDRum6dOny+fztVvn+PHj\nysrKkiSlp6fr4sWLwbHGxkYdPnxYS5YskTEm0rUDAMIQMgBOnTqlpKSk4LLT6dTJkyfbrTNjxgyV\nlJSotbVVBw4cUHV1terr6yVJq1atUkFBgXr14lYDADxrYsLdwdy5c9XY2KgpU6Zo9OjRSkxMVO/e\nvXXw4EENGDBAqampnX4V6+nTQ/n5+d1dQlTR3/OtJ/fXk3uLBIcJMTfT0tIit9ut06dPS5KWL1+u\nmTNnBqd8vu3WrVvKyMjQmTNntG7dOn3yySeKiYlRW1ubbty4oVmzZmnPnj3R6QQA0CUhA0CSUlNT\ntWPHDg0dOlQzZ87UX//6V8XFxQXHW1pa1LdvX929e1cffPCB7ty5o4KCgnb7KC8v15YtW/TnP/85\nOl0AALqs0ymg7du3y+PxKBAIaMWKFYqLi1NRUZEkyePxqKamRgsWLND9+/eVnp6uXbt2PXQ/PX2a\nBwCeOybKbty4YX7yk5+YIUOGmJ/+9Kfm5s2bD12vvLzcJCUlmVGjRpkPP/yw3dju3btNUlKScTqd\nZs2aNdEuuUsi0Z8xxmzZssU4HA7T3Nwc7ZK7JNz+8vLyTFJSkklNTTW5ubnm9u3bT6v0kDo7H8YY\n8+tf/9qMGDHCvP7666a2trZL23a3J+3vX//6l3G73cbpdJopU6aYTz/99GmW/VjCOXfGGHP37l2T\nkpJifvzjHz+NcrssnP5u3bpl5s+fbxITE01ycrI5ceJEyGNFPQA2b95sli1bZtra2swvf/lLU1BQ\n8ND1UlJSTHl5uWloaDCjR482V69eNcYYU11dbSZOnGguXLhgjDHmv//9b7RL7pJw+zPmwf90M2bM\nMMOHD3/mAuBJ+2tqajLGGPOXv/zF3Lt3z9y7d88sWbLE/OEPf3ia5T9SqPNhjDE+n8/86Ec/Ms3N\nzaa4uNhkZWU99rbPgift7z//+Y85ffq0McaYq1evmhEjRpgbN2489fpDCefcGWPM73//e/OLX/zC\nZGdnP82yH1s4/a1evdq8//77prW11QQCAXP9+vWQx4r67zP9fr8WL16s3r17a9GiRR2eI5BCP29w\n5MgRLV68WImJiZKk+Pj4aJfcJeH2J0nvvfeefve73z21mrviSfv7+ufC06ZNU69evdSrVy/NmDFD\n5eXlT7X+h3mc51t8Pp9mz56t2NhY5eTkqLa29rG37W7h9Ddo0CClpKRIkuLi4jRmzBhVVVU93QZC\nCKc36dl/Ninc/srKyrRu3Tr16dNHMTEx6tevX8jjRT0AvvksQVJSkvx+f8h1pPbPGxw7dkz/+Mc/\nNGHCBC1ZskQ1NTXRLrlLwu3vT3/6kwYPHqxXX3316RTcReH2900ff/zxM/EnQR6nXr/fL6fTGVyO\nj49XXV3dY/fancLp75suXryoc+fOKS0tLboFd8GT9nbp0iVJz/6zSeH019jYqLa2Ni1dulQul0ub\nN29WW1tbyOOF/RyA9OBT3pUrVzq8/8EHHzxxyn590/irr77StWvXVFlZqbKyMi1btkzHjx8Pq96u\nilZ/ra2t2rhxo0pLS4Pvd8enkmj0922//e1v9dJLL2nOnDkR2V+0mQfTo+3e60k/ZOisv5s3b2ru\n3Lnatm2bXnzxxaddXlge1pukLj2b9Cx7VH9tbW26cOGCCgoKlJmZKY/Ho3379mn+/PkhdxZVb7/9\ntvn888+NMcZUVVWZWbNmdVjn+vXrJiUlJbi8bNkyc/DgQWPMg5uIX782xpjvf//7prW1NcpVP75w\n+quurjYDBgwww4cPN8OHDzcxMTFm2LBh5osvvnhq9Xcm3PNnjDF//OMfzRtvvPHMnLfO6jXGmA8/\n/NBs3bo1uDxy5EhjjDH/+9//Ot22u4XTnzHG3Llzx0ybNs1s27Yt+sV2UTi9rV271gwePNgMHz7c\nDBo0yLzwwgvmnXfeeTqFP6Zwz11SUlLw9eHDh828efNCHi/q34NcLpd2796t1tZW7d69WxMnTuyw\nztfzVBUVFWpoaFBpaalcLpekB39f6MiRIzLGyOfzKSEhQX369Il22Y8tnP7Gjh2rL774QvX19aqv\nr9fgwYP1+eefa8CAAU+7jUcK9/wdPXpUBQUFOnDgwDNz3kLV+zWXy6X9+/erublZxcXFSk5OliS9\n/PLLnW7b3cLpzxijxYsXa+zYsVq5cuVTr70z4fS2ceNGXb58WfX19frss8/05ptvPnMPpobTnyQl\nJibK5/Pp/v37OnTokDIzM0MfMLy86tyjfkb473//27z11lvB9bxer0lKSjIJCQlmx44dwffv3r1r\nPB6PSUpKMj/72c+M3++PdsldEm5/3zRixIhn7ldA4fY3atQoM3ToUJOSkmJSUlLM0qVLn3oPD/Ow\nenft2mV27doVXOdXv/qVGT58uHn99ddNTU1NyG2fNU/aX2VlpXE4HOa1114LnrMjR450Sw+PEs65\n++Y+ntVfAYXT3z//+U/jcrnMa6+9ZlavXm1u3boV8lidPgkMAOiZns1b4QCAqCMAAMBSBAAAWIoA\nAABLEQAAYCkCAAAs9X/vh7DYicSaVQAAAABJRU5ErkJggg==\n", |
|
74 | "png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD3CAYAAAAJxX+sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG9JJREFUeJzt3Xt0VeWZx/FvEIoDA1QuEkQEEsotIZ5ATKCACZRChaK2\noMi4GBdETBXlJlXwUmCwzKy2CEUFsWMrGuINlBIQAZETMIFcJCCEwJgwmcQaMAnlZiSEZM8fr9JG\n4OR2Tva5/D5rZQmcvc5+1l7bhx/v2ed5gyzLshAREb/RzO4CRETEvdTYRUT8jBq7iIifUWMXEfEz\nauwiIn5GjV1ExM+4bOwXLlwgJiYGh8PB4MGDWb58+VWPW7BgASEhIQwaNIijR496pFAREamboNqe\nYy8vL6dVq1ZUVFQwaNAgNm7cSK9evS6/npGRwdy5c9m0aRPbtm1j3bp1bN682eOFi4jI1dW6FNOq\nVSsAzp8/z6VLl2jZsmWN19PT05k4cSLt27dn8uTJ5ObmeqZSERGpk+a1HVBdXU1kZCQ5OTmsWLGC\nbt261Xg9IyODKVOmXP59p06dyM/PJzQ0tMZxQUFBbipZRCSw1HdAQK2JvVmzZhw8eJC8vDxWrVpF\ndnb2FSf8/kmv1cS/O1Y/jftZuHCh7TX404+up66nN/188IHFLbdYTJtmcepUwya+1PmpmB49ejB2\n7FjS09Nr/HlMTAxHjhy5/PuSkhJCQkIaVIyISKAqK4N//3d45BF49VXzc8MNDXsvl429tLSU06dP\nf3vSMrZv385dd91V45iYmBg2bNhAWVkZSUlJ9OvXr2GViIgEIMuCd9+FAQOgQwc4dAhGjWrce7pc\nYy8uLuaBBx6gqqqK4OBg5s2bR5cuXVizZg0ACQkJREdHM2zYMKKiomjfvj2JiYmNq0hqFRcXZ3cJ\nfkXX0710PeuuuNgk9GPHYMMGGDLEPe9b6+OO7hIUFEQTnUpExKtZFvzlLzB/PvzqV/D00/C9Bw4v\na0jvrPWpGBERcZ/jx+Ghh+D0adixA2691f3n0EgBEZEmUFUFK1ZAdDSMGQP79nmmqYMSu4iIxx05\nAvHx8IMfQFoa9O7t2fMpsYuIeMjFi7BkCcTGwgMPwK5dnm/qoMQuIuIRWVkmpd98M+zfD9/70r5H\nKbGLiLhReTk88QSMG2f+u3lz0zZ1UGMXEXGblBTzgWhRkfmi0f33gx1jsrQUIyLSSGfPwpNPQnIy\nrFoFd95pbz1K7CIijbBlC4SHm8cZDx+2v6mDEruISIOUlsLs2bB3L7z2GowcaXdF/6DELiJSD5YF\nb71lUnrnzmYt3ZuaOiixi4jU2d/+ZoZ25efDX/8KMTF2V3R1SuwiIrWwLPjTn8DhgMhI81y6tzZ1\nUGIXEXEpPx+mT4fz5+Hjj83cdG+nxC4ichVVVfD88yaZjxtnPiT1haYOSuwiIlc4fNiMA2jVykxh\n7NXL7orqR4ldRORbFy/C4sUwYgQ8+CDs3Ol7TR2U2EVEAMjIMCm9Z084cAC6drW7ooZTYxeRgFZe\nDs8+C+vWmY0wJk2yZ76LO2kpRkQC1q5d5gPREyfMuvp99/l+UwcldhEJQGfOwK9/DVu3wurV8POf\n212Reymxi0hASU424wCaNTMp3d+aOiixi0iAKCmBmTPNzkZvvAFxcXZX5DlK7CLi1yzLfDA6YIDZ\nyejgQf9u6qDELiJ+rKgIHn4YCgvNFnVRUXZX1DSU2EXE71RXw8svw8CBZiRAVlbgNHVQYhcRP/P5\n52Zo14UL4HRCWJjdFTU9JXYR8QuXLsHvfw9DhsDdd0NqamA2dVBiFxE/8NlnZhxAu3ZmNEBIiN0V\n2UuJXUR8VkUF/OY3MGqU+ZB0xw41dVBiFxEftXevSem9e5uhXTfdZHdF3kONXUR8ytdfw9NPw9tv\nw8qVMHGif8x3cSctxYiIz/joI/NFo1OnzDiAe+5RU78aJXYR8XqnT8Pjj5vG/vLLcMcddlfk3ZTY\nRcSrbdxoHlu8/no4dEhNvS6U2EXEK508CY89Zma7vPkm3H673RX5DiV2EfEqlgWvvw4RERAaap54\nUVOvHyV2EfEahYWQkADFxfDBBzBokN0V+SYldhGxXXU1vPSSGdo1fDhkZqqpN4YSu4jY6tgxePBB\nqKqCPXugXz+7K/J9SuwiYotLl+C//guGDoV771VTdycldhFpcgcOmHEAHTqYWek9ethdkX9RYheR\nJnPhghkHMHq0eZRx2zY1dU9QYheRJpGaalJ6WJgZsxscbHdF/kuNXUQ86vx5eOopWL8eXngBJkyw\nuyL/53IppqioiBEjRhAWFkZcXBxJSUlXHON0OmnXrh2RkZFERkby3HPPeaxYEfEt27dDeDicPWuG\ndqmpNw2Xib1FixYsX74ch8NBaWkp0dHRjB8/njZt2tQ4LjY2lk2bNnm0UBHxHadOmaFdu3bBmjUw\nZozdFQUWl4k9ODgYh8MBQMeOHQkLCyMrK+uK4yzL8kx1IuJzNmwwKb1NGzO0S0296dV5jT0vL4+c\nnByio6Nr/HlQUBBpaWk4HA5GjhzJjBkzCA0NdXuhIuLdiovh0UchJwfefdc8ny72qFNjP3fuHJMm\nTWL58uW0bt26xmsDBw6kqKiIFi1asHbtWmbNmsXmzZuv+j6LFi26/Ou4uDji4uIaXLiIeAfLgrVr\n4YknYPp0WLfOjNiVhnE6nTidzka9R5BVyzpKZWUl48aNY+zYscyePdvlm1mWRXBwMIWFhbRs2bLm\niYKCtGQj4mcKCuChh6C0FP78Z/h25VbcqCG90+Uau2VZxMfHEx4efs2mfvLkycsnTU5OJiIi4oqm\nLiL+pbraPLoYFQUjR0J6upq6N3G5FJOamkpiYiIRERFERkYCsHTpUgoLCwFISEhg/fr1rF69mubN\nmxMREcGyZcs8X7WI2CY31wztatbMfOmoTx+7K5Lvq3Upxm0n0lKMiE+rrITf/x6efx4WL4aHHzbN\nXTyrIb1T3zwVkVrt3w/TpkGXLvDpp9C9u90ViSv6+1ZErumbb2D+fLOB9OOPm12N1NS9nxK7iFzV\nnj1mLf3WW83Qrs6d7a5I6kqNXURqOHfOpPSNG+HFF+EXv7C7IqkvLcWIyGVbt5pxABcumKFdauq+\nSYldRCgrgzlzzPLLq6/CqFF2VySNocQuEsAsC955x6T0Dh3M0C41dd+nxC4SoL78EmbMgGPH4L33\nYMgQuysSd1FiFwkwlmWWWxwOGDAAsrPV1P2NErtIADl+3AztOn0aduwwjzKK/1FiFwkAVVWwYgVE\nR5uNL/btU1P3Z0rsIn7uyBGIj4cf/ADS0qB3b7srEk9TYhfxUxcvwpIlEBsLDzxg9h9VUw8MSuwi\nfigz06T0bt3MAK9u3eyuSJqSEruIHykvN1vU/fzn8OSTsHmzmnogUmMX8RMpKeYD0aIi80Wj+++H\noCC7qxI7aClGxMedPWvSeXIyrFoFd95pd0ViNyV2ER+2ZYsZB1BVZYZ2qakLKLGL+KSSEpg92zyP\n/tprZkNpke8osYv4EMuCt94yowCCg80GGGrq8n1K7CI+4m9/MxtIHz8Of/0rxMTYXZF4KyV2ES9n\nWfCnP5mhXQMHmufS1dTFFSV2ES+Wnw/Tp8P58/Dxx2YJRqQ2SuwiXqiqCpYtM8l83DjYu1dNXepO\niV3Eyxw+DNOmQevW5qmXXr3srkh8jRK7iJe4eBEWLYIRI8zyy86daurSMErsIl4gI8Ok9JAQOHAA\nuna1uyLxZWrsIjYqL4dnn4V168xGGJMmab6LNJ6WYkRssmuX+UD0xAmzrn7ffWrq4h5K7CJN7PRp\nM1p361ZYvdqM2BVxJyV2kSa0aZMZ2tWsmUnpauriCUrsIk3gq69g5kzIyoLERIiLs7si8WdK7CIe\nZFnmg9EBA+CWW8zQLjV18TQldhEPKSoyQ7sKC83c9KgouyuSQKHELuJm1dXw8stmYFdMjFl+UVOX\npqTELuJGn38ODz4IFRXgdEJYmN0VSSBSYhdxg0uX4He/gyFD4Be/gNRUNXWxjxK7SCMdPAjx8fDD\nH5rRACEhdlckgU6JXaSBKirMOICf/hQeeQR27FBTF++gxC7SAHv3mpTeu7cZ2nXTTXZXJPIPauwi\n9fD11/D00/D227ByJUycqPku4n20FCNSRx99ZL5odOqUGQdwzz1q6uKdlNhFavH3v8O8eaaxv/wy\n3HGH3RWJuKbELuLC+++boV3/8i8mpaupiy9QYhe5ipMn4bHHzAejb70Fw4fbXZFI3blM7EVFRYwY\nMYKwsDDi4uJISkq66nELFiwgJCSEQYMGcfToUY8UKtIULAtefx0iIiA01DyjrqYuvibIsizrWi+e\nOHGCEydO4HA4KC0tJTo6moMHD9KmTZvLx2RkZDB37lw2bdrEtm3bWLduHZs3b77yREFBuDiViO0K\nCyEhAYqL4dVXYdAguysSaVjvdJnYg4ODcTgcAHTs2JGwsDCysrJqHJOens7EiRNp3749kydPJjc3\nt55li9iruhpeeskM7Ro+HDIz1dTFt9V5jT0vL4+cnByio6Nr/HlGRgZTpky5/PtOnTqRn59PaGio\n+6oU8ZBjx8zQrupq2LMH+vWzuyKRxqtTYz937hyTJk1i+fLltG7dusZrlmVd8c+EoGs83Lto0aLL\nv46LiyNOOw6ITSorYdky+MMfYOFCmDHDbFcnYjen04nT6WzUe7hcYweorKxk3LhxjB07ltmzZ1/x\n+gsvvMClS5eYM2cOAKGhoeTn5195Iq2xi5fIzjbjADp2hFdegR497K5I5NrcvsZuWRbx8fGEh4df\ntakDxMTEsGHDBsrKykhKSqKf/i0rXurCBTMOYMwYs//otm1q6uKfXC7FpKamkpiYSEREBJGRkQAs\nXbqUwsJCABISEoiOjmbYsGFERUXRvn17EhMTPV+1SD2lppqUHhZm9h0NDra7IhHPqXUpxm0n0lKM\n2OD8eXjqKVi/Hl54ASZMsLsikfpx+1KMiC/bts2MAzh3zowDUFOXQKGRAuJ3Tp2CuXPNnqOvvAKj\nR9tdkUjTUmIXv7Jhg0npbdualK6mLoFIiV38QnExPPoo5OTAu+/C0KF2VyRiHyV28WmWBa+9Brfe\nCn37mmmMauoS6JTYxWcVFMBDD0FpKWzfDt+ONRIJeErs4nOqqsx+o1FR8JOfQEaGmrrIP1NiF5+S\nm2uGdjVrZr501KeP3RWJeB8ldvEJlZXw29+asbr33w8pKWrqIteixC5eb/9+mDYNunSBTz+F7t3t\nrkjEuymxi9f65huYP99sIP344/DBB2rqInWhxC5eafdus5YeGWmGdnXubHdFIr5DjV28ytmzsGAB\nbNxotqu7+267KxLxPVqKEa+xdSsMGAAVFWYcgJq6SMMosYvtyspgzhz45BN49VUYNcruikR8mxK7\n2May4J13zNCuDh3g0CE1dRF3UGIXW3z5JTzyCHz+Obz3HgwZYndFIv5DiV2alGWZ5RaHAyIizDPq\nauoi7qXELk3m+HGYPh3OnIGPPjKNXUTcT4ldPK6qClasgOho+NnPYN8+NXURT1JiF4/KyYH4eGjZ\nEvbuhR/9yO6KRPyfErt4xMWLsGQJxMXB1Kmwa5eaukhTUWIXt8vMNCn9llsgOxtuvtnuikQCixK7\nuE15Ofz61zB+vBnelZyspi5iBzV2cQun0+w7+sUX5otG//ZvEBRkd1UigUlLMdIoZ87Ak0/C5s2w\nahXceafdFYmIErs02JYtZhxAdbV5+kVNXcQ7KLFLvZWUwOzZ5nn0tWth5Ei7KxKRf6bELnVmWfDm\nm2a0bpcuZi1dTV3E+yixS5188QU8/DAUFMCmTeZbpCLinZTYxaXqanjlFbNFXVSU2UxaTV3Euymx\nyzXl5ZmhXeXl5puj4eF2VyQidaHELleoqoJly2DwYPNlo7Q0NXURX6LELjUcOmTGAfzrv0J6OoSG\n2l2RiNSXErsAZgPphQvNUy4PPQQ7d6qpi/gqJXYhPd2k9JAQOHAAuna1uyIRaQw19gD29dfw7LOQ\nlAR//CPce6/mu4j4Ay3FBKiPPza7GH31FRw+DJMmqamL+Asl9gBz+rQZrbttG6xeDePG2V2RiLib\nEnsA2bTJPLbYooVJ6WrqIv5JiT0AfPUVzJxpvjW6bh3ExtpdkYh4khK7H7MsSEw0Q7u6d4fPPlNT\nFwkESux+qqgIfvUr898tW8ycFxEJDErsfqa62nwoOnAgDBkCWVlq6iKBRondj/zP/5ihXRcvQkoK\n9O9vd0UiYgcldj9w6RL87nfw4x/DL38Jn3yipi4SyFw29mnTptG5c2cGDBhw1dedTift2rUjMjKS\nyMhInnvuOY8UKdd28CDExMCOHZCZCbNmwXXX2V2ViNjJZWOfOnUqH374ocs3iI2NJTs7m+zsbJ55\n5hm3FifXVlFhxgH89KcwYwZs3w49e9pdlYh4A5dr7MOHD6egoMDlG1iW5c56pA727jVDu/r0MUO7\nbrrJ7opExJs06sPToKAg0tLScDgcjBw5khkzZhDqYtbrokWLLv86Li6OuLi4xpw+4Jw/D888A++8\nAytXwoQJmu8i4m+cTidOp7NR7xFk1RK5CwoKGD9+PIcOHbritXPnznHdddfRokUL1q5dy8aNG9m8\nefPVTxQUpHTfCDt2mDnpt98Ozz8PHTrYXZGINIWG9M5GNfZ/ZlkWwcHBFBYW0rJlS7cUJ/D3v8Pj\nj5uNL9asgZ/9zO6KRKQpNaR3Nupxx5MnT14+YXJyMhEREVdt6tIw779vhna1amWGdqmpi0hduFxj\nnzx5MikpKZSWltKtWzcWL15MZWUlAAkJCaxfv57Vq1fTvHlzIiIiWLZsWZMU7e9OnIDHHjOzXd56\nC4YPt7siEfEltS7FuO1EWoqplWXBG2+Yeenx8fCb38D119tdlYjYqSG9UyMFvMT//R8kJMDJk7B1\nq5n1IiLSEBopYLPqanjpJTOoKzYWMjLU1EWkcZTYbXTsmFlysSzYswf69rW7IhHxB0rsNqishP/8\nTxg6FO67T01dRNxLib2JZWeblN6pk5mV3qOH3RWJiL9RYm8iFy7AU0/BmDFmAuOHH6qpi4hnKLE3\ngU8+gQcfNHuPfvYZBAfbXZGI+DM1dg86dw4WLID33oMXXzSbYIiIeJqWYjxk2zaT0MvLISdHTV1E\nmo4Su5udOgVz5pg9R195BUaPtrsiEQk0SuxutH69Gdr1wx+aoV1q6iJiByV2NyguhkcfhSNHTHP/\n8Y/trkhEApkSeyNYFvzlL3DrrdCvn3lGXU1dROymxN5A//u/ZkejU6fMRtIOh90ViYgYSuz1VFVl\n9hu97TYYNQrS09XURcS7KLHXQ26uGQfQvDmkpUHv3nZXJCJyJSX2OqishN/+1mwkPWUKOJ1q6iLi\nvZTYa/HppzBtGnTtan59yy12VyQi4poS+zV88w08+SSMHWu2qtuyRU1dRHyDEvtV7N5thnZFRsKh\nQ3DjjXZXJCJSd2rs/+TsWZg/HzZtMkO77r7b7opEROpPSzHf+uADM7SrstKMA1BTFxFfFfCJvbTU\nDO1KS4M//xl+8hO7KxIRaZyATeyWBW+/bVJ6p05mAww1dRHxBwGZ2L/8Eh5+GPLy4P33YfBguysS\nEXGfgErslgX//d9maJfDAfv3q6mLiP8JmMR+/DhMn26efNm5EyIi7K5IRMQz/D6xV1XB8uUQHQ13\n3AF796qpi4h/8+vEnpNjhnZdfz3s2we9etldkYiI5/llYr94Ef7jPyAuzsx5+fhjNXURCRx+l9gz\nM00z797d7Gh08812VyQi0rT8JrGXl8O8eTB+PDz1FCQnq6mLSGDyi8budJoPRIuLzdCuyZMhKMju\nqkRE7OHTSzFnzsATT5g5L6tWmbQuIhLofDaxJydDeLhJ5ocPq6mLiHzH5xJ7SQnMmgUZGfD66zBi\nhN0ViYh4F59J7JYFSUlmaFfXrmZol5q6iMiVfCKxf/GFGdpVUGA2wYiOtrsiERHv5dWJvboa1qwx\nW9TddpvZTFpNXUTENa9N7Hl5ZmjXN9+YxxnDwuyuSETEN3hdYr90Cf7wBzNO9847ITVVTV1EpD68\nKrF/9pkZ2tW2rXnqJSTE7opERHyPVyT2igpYuNBsTZeQAB99pKYuItJQtif2fftMSu/VCw4cMI8y\niohIw9nW2L/+Gp59Ft58E/74R7jnHs13ERFxB5dLMdOmTaNz584MGDDgmscsWLCAkJAQBg0axNGj\nR+t00p07zReNSkrMOIB771VTrw+n02l3CX5F19O9dD3t57KxT506lQ8//PCar2dkZLBnzx6ysrKY\nN28e8+bNc3my06fNI4xTp8KLL8Ibb0CHDg0rPJDpfxz30vV0L11P+7ls7MOHD+eGG2645uvp6elM\nnDiR9u3bM3nyZHJzc12eLDwcWrQwKX3s2IYVLCIirjXqqZiMjAz69+9/+fedOnUiPz//mscnJZnx\num3bNuasIiLiSqM+PLUsC8uyavxZkIvF8thYLaS7y+LFi+0uwa/oerqXrqe9GtXYY2JiOHLkCGPG\njAGgpKSEkGs8gP79vwBERMQzGrUUExMTw4YNGygrKyMpKYl+/fq5qy4REWkgl4l98uTJpKSkUFpa\nSrdu3Vi8eDGVlZUAJCQkEB0dzbBhw4iKiqJ9+/YkJiY2SdEiIuKC5UYpKSlW3759rV69elkrV668\n6jHz58+3evbsaQ0cONDKzc115+n9Tm3Xc9euXVbbtm0th8NhORwOa8mSJTZU6RumTp1q3XjjjVZ4\nePg1j9G9WTe1XUvdl/VTWFhoxcXFWf3797diY2OtdevWXfW4+tyfbm3sDofDSklJsQoKCqw+ffpY\nJSUlNV5PT0+3hg4dapWVlVlJSUnWuHHj3Hl6v1Pb9dy1a5c1fvx4m6rzLbt377b2799/zWake7Pu\naruWui/rp7i42MrOzrYsy7JKSkqsnj17WmfPnq1xTH3vT7cNATtz5gwAt99+O927d2f06NGkp6fX\nOKa+z70HsrpcT9CH0nXl7u9kBLLariXovqyP4OBgHA4HAB07diQsLIysrKwax9T3/nRbY8/MzKRv\n376Xf9+/f3/27dtX45j6PvceyOpyPYOCgkhLS8PhcDB37lxdy0bQvek+ui8bLi8vj5ycHKK/t1Vc\nfe/PJh3ba9XzuXdxbeDAgRQVFZGZmUn//v2ZNWuW3SX5LN2b7qP7smHOnTvHpEmTWL58Oa1bt67x\nWn3vT7c19ttuu63GELCcnBwGDx5c45jvnnv/jqvn3gNdXa5nmzZtaNWqFS1atCA+Pp7MzEwqKiqa\nulS/oHvTfXRf1l9lZSUTJkxgypQp3HXXXVe8Xt/7022NvV27dgDs3r2bgoICduzYQUxMzBXF6bn3\nuqnL9Tx58uTlv8WTk5OJiIigZcuWTV6rP9C96T66L+vHsizi4+MJDw9n9uzZVz2mvvenW+exr1ix\ngoSEBCorK5k5cyYdO3ZkzZo1gJ57b4jaruf69etZvXo1zZs3JyIigmXLltlcsffSdzLcp7Zrqfuy\nflJTU0lMTCQiIoLIyEgAli5dSmFhIdCw+zPI0sfXIiJ+xSv2PBUREfdRYxcR8TNq7CIifkaNXUTE\nz6ixi4j4GTV2ERE/8/9mUozJaDh2nQAAAABJRU5ErkJggg==\n", | |
78 | "text": [ |
|
75 | "text": [ | |
79 |
"<matplotlib.figure.Figure at 0x |
|
76 | "<matplotlib.figure.Figure at 0x981bccc>" | |
80 | ] |
|
77 | ] | |
81 | }, |
|
78 | }, | |
82 | { |
|
79 | { | |
83 | "output_type": "display_data", |
|
80 | "output_type": "display_data", | |
84 | "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD3CAYAAAAUl4NyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFyVJREFUeJzt3H9M1Pcdx/HXGTK1XWNloG7xN1Lh1Baq46RDPRv8kTL2\no2qUJbX+Si5mKlqJm6aLsqQah/NHiamki0ushcbEP+b8OYg5YIveSaqTCc6IkMkyO8GJWqGe+tkf\nppdS9BDvTpTP85GY3Pc+3x/vd77t93X3+d4XhzHGCABgnV7dXQAAoHsQAABgKQIAACxFAACApQgA\nALAUAQAAlgoZAIsWLdLAgQM1bty4R66zdu1ajRw5UuPHj9f58+eD73/55Zd699139corr8jpdOrk\nyZORqxoAELaQAbBw4UIdPXr0keN+v1+VlZWqqqpSXl6e8vLygmPr16/X0KFDdfbsWZ09e1bJycmR\nqxoAEDZHZw+CNTQ0KDs7W9XV1R3GCgsLde/ePa1cuVKSlJCQoLq6OklSSkqKTpw4ob59+0ahbABA\nuGLC2djv9+udd94JLsfHx+vSpUv6zne+o7a2Ni1dulS1tbV6++23lZubqz59+nTYh8PhCKcEALBW\nuH/IIaybwMaYhxbQ1tamCxcuaNasWfJ6vTp37pz27dvX6X564r/169d3ew30R3829teTezMmMn/B\nJ6wAcLlcqqmpCS5fvXpVI0eO1KhRozR69GhlZ2erb9++ysnJ0ZEjR8IuFgAQOWEHwP79+9Xc3Kzi\n4uJ2N3oTExPl8/l0//59HTp0SJmZmWEXCwCInJD3AHJyclReXq6mpiYNGTJE+fn5CgQCkiSPx6O0\ntDRlZGRowoQJio2N1d69e4PbbtmyRfPnz1dbW5syMzM1b9686HbyjHK73d1dQlTR3/OtJ/fXk3uL\nlE5/BRT1AhyOiM1nAYAtInHt5ElgALAUAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUI\nAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABYigAA\nAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSIQNg0aJFGjhwoMaNG/fIddauXauRI0dq/Pjx\nOn/+fLuxe/fuKTU1VdnZ2ZGpFgAQMSEDYOHChTp69Ogjx/1+vyorK1VVVaW8vDzl5eW1G9+xY4ec\nTqccDkdkqgUAREzIAJg0aZL69+//yHGfz6fZs2crNjZWOTk5qq2tDY41Njbq8OHDWrJkiYwxkasY\nABARYd0D8Pv9cjqdweX4+HhdunRJkrRq1SoVFBSoVy9uMwDAsygmnI2NMQ/9dH/w4EENGDBAqamp\n8nq9ne5nw4YNwddut1tutzucsgCgx/F6vY91Pe0Kh+lkfqahoUHZ2dmqrq7uMFZYWKi7d+9q1apV\nkqSEhATV1dVp3bp1+uSTTxQTE6O2tjbduHFDs2bN0p49ezoW4HAwRQQAXRSJa2dY8zMul0v79+9X\nc3OziouLlZycLEnauHGjLl++rPr6en322Wd68803H3rxBwB0n5BTQDk5OSovL1dTU5OGDBmi/Px8\nBQIBSZLH41FaWpoyMjI0YcIExcbGau/evQ/dD78CAoBnT6dTQFEvgCkgAOiybp8CAgA8vwgAALAU\nAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEA\nAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABYigAAAEsRAABgKQIAACxFAACApQgAALAUAQAA\nluo0ABYtWqSBAwdq3Lhxj1xn7dq1GjlypMaPH6/z589Lki5fvqypU6dqzJgxcrvdKi4ujlzVAICw\nOYwxJtQKlZWV+u53v6v58+erurq6w7jf79d7772nAwcO6NixY/r000918OBBXblyRVeuXFFKSoqa\nmpqUlpamv//973rppZfaF+BwqJMSAADfEolrZ6ffACZNmqT+/fs/ctzn82n27NmKjY1VTk6Oamtr\nJUmDBg1SSkqKJCkuLk5jxoxRVVVVWMUCACIn7HsAfr9fTqczuBwfH6+6urp261y8eFHnzp1TWlpa\nuIcDAERITLg7MMZ0+BricDiCr2/evKm5c+dq27ZtevHFFx+6jw0bNgRfu91uud3ucMsCgB7F6/XK\n6/VGdJ+d3gOQpIaGBmVnZz/0HkBhYaHu3r2rVatWSZISEhKC3wACgYCysrL01ltvaeXKlQ8vgHsA\nANBlT+UeQGdcLpf279+v5uZmFRcXKzk5WdKDbwaLFy/W2LFjH3nxBwB0n06ngHJyclReXq6mpiYN\nGTJE+fn5CgQCkiSPx6O0tDRlZGRowoQJio2N1d69eyVJf/vb37R37169+uqrSk1NlSRt2rRJM2fO\njGI7AIDH9VhTQFEtgCkgAOiyZ2IKCADwfCIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUIAACw\nFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABYigAAAEsR\nAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWCpkACxatEgDBw7UuHHjHrnO2rVrNXLkSI0f\nP17nz58Pvl9RUaHk5GQlJiaqsLAwchUDACIiZAAsXLhQR48efeS43+9XZWWlqqqqlJeXp7y8vOBY\nbm6uioqKVFZWpp07d6qpqSlyVQMAwhYyACZNmqT+/fs/ctzn82n27NmKjY1VTk6OamtrJUktLS2S\npMmTJ2vYsGGaPn26fD5fBMsGAIQrrHsAfr9fTqczuBwfH6+6ujqdOnVKSUlJwfedTqdOnjwZzqEA\nABEWE87GxhgZY9q953A4uryfDRs2BF+73W653e5wygKAHsfr9crr9UZ0nw7z7Sv4tzQ0NCg7O1vV\n1dUdxgoLC3X37l2tWrVKkpSQkKC6ujpdv35dU6dO1enTpyVJy5cv18yZM5WVldWxAIejQ4gAAEKL\nxLUzrCkgl8ul/fv3q7m5WcXFxUpOTpYkvfzyy5Ie/BKooaFBpaWlcrlcYRUKAIiskFNAOTk5Ki8v\nV1NTk4YMGaL8/HwFAgFJksfjUVpamjIyMjRhwgTFxsZq7969wW23b98uj8ejQCCgFStWKC4uLrqd\nAAC6pNMpoKgXwBQQAHRZt08BAQCeXwQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAA\nwFIEAABYigAAAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAs\nRQAAgKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGCpTgOgoqJCycnJSkxMVGFhYYfxmzdvavXq\n1UpJSVF6errq6uqCYx9//LHeeOMNjR8/XitXroxs5QCAsHQaALm5uSoqKlJZWZl27typpqamduMl\nJSUKBAI6c+aMtm7dqjVr1kiSrl27po0bN6q0tFSnTp3ShQsXdOzYseh0AQDospAB0NLSIkmaPHmy\nhg0bpunTp8vn87Vb5/jx48rKypIkpaen6+LFi5Kkvn37yhijlpYWtba26vbt2+rfv380egAAPIGY\nUIOnTp1SUlJScNnpdOrkyZPBC74kzZgxQyUlJZo8ebJKS0tVXV2t+vp6jRgxQh999JGGDx+u3r17\na8WKFUpLS3vocTZs2BB87Xa75Xa7w+sKAHoYr9crr9cb0X2GDIDHMXfuXDU2NmrKlCkaPXq0EhMT\n1bt3b129elVLly5VTU2N+vfvrzlz5ujQoUPtwuNr3wwAAEBH3/5wnJ+fH/Y+Q04B/fCHP9T58+eD\ny+fOndPEiRPbrfPCCy/oN7/5jfx+vz766CP17dtXP/jBD+T3+zVx4kSNGjVK3/ve9zRnzhxVVFSE\nXTAAIDJCBkC/fv0kPfglUENDg0pLS+Vyudqt09LSojt37uj27dvatGmTpk2bJknKyMhQVVWVrl27\npq+++kpHjhzR9OnTo9QGAKCrOp0C2r59uzwejwKBgFasWKG4uDgVFRVJkjwej2pqarRgwQLdv39f\n6enp2rVrl6QH4fH+++/r5z//uW7fvq2ZM2dq6tSp0e0GAPDYHMYY060FOBzq5hIA4LkTiWsnTwID\ngKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABY\nigAAAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUI\nAACwFAEAAJbqNAAqKiqUnJysxMREFRYWdhi/efOmVq9erZSUFKWnp6uuri449uWXX+rdd9/VK6+8\nIqfTqZMnT0a2egDAE+s0AHJzc1VUVKSysjLt3LlTTU1N7cZLSkoUCAR05swZbd26VWvWrAmOrV+/\nXkOHDtXZs2d19uxZJScnR74DAMATiQk12NLSIkmaPHmyJGn69Ony+XzKysoKrnP8+HEtXLhQkpSe\nnq6LFy8Gx8rKynTixAn16dNHktSvX7/IVg8AeGIhvwGcOnVKSUlJweWHTePMmDFDJSUlam1t1YED\nB1RdXa36+no1Njaqra1NS5culcvl0ubNm9XW1hadLgAAXRbyG8DjmDt3rhobGzVlyhSNHj1aiYmJ\n6t27t27fvq0LFy6ooKBAmZmZ8ng82rdvn+bPn99hHxs2bAi+drvdcrvd4ZYFAD2K1+uV1+uN6D4d\nxhjzqMGWlha53W6dPn1akrR8+XLNnDmz3RTQN926dUsZGRk6c+aMJCk5OVm1tbWSpCNHjmjPnj0q\nKSlpX4DDoRAlAAAeIhLXzpBTQF/P2VdUVKihoUGlpaVyuVzt1mlpadGdO3d0+/Ztbdq0SdOmTQuO\nJSYmyufz6f79+zp06JAyMzPDKhYAEDmdTgFt375dHo9HgUBAK1asUFxcnIqKiiRJHo9HNTU1WrBg\nge7fv6/09HTt2rUruO2WLVs0f/58tbW1KTMzU/PmzYteJwCALgk5BfRUCmAKCAC6LOpTQACAnosA\nAABLEQAAYCkCAAAsRQAAgKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAA\nsBQBAACWIgAAwFIEAABYigAAAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWIoAAABL\nEQAAYKlOA6CiokLJyclKTExUYWFhh/GbN29q9erVSklJUXp6uurq6tqN37t3T6mpqcrOzo5c1c8R\nr9fb3SVEFf0933pyfz25t0jpNAByc3NVVFSksrIy7dy5U01NTe3GS0pKFAgEdObMGW3dulVr1qxp\nN75jxw45nU45HI7IVv6c6On/EdLf860n99eTe4uUkAHQ0tIiSZo8ebKGDRum6dOny+fztVvn+PHj\nysrKkiSlp6fr4sWLwbHGxkYdPnxYS5YskTEm0rUDAMIQMgBOnTqlpKSk4LLT6dTJkyfbrTNjxgyV\nlJSotbVVBw4cUHV1terr6yVJq1atUkFBgXr14lYDADxrYsLdwdy5c9XY2KgpU6Zo9OjRSkxMVO/e\nvXXw4EENGDBAqampnX4V6+nTQ/n5+d1dQlTR3/OtJ/fXk3uLBIcJMTfT0tIit9ut06dPS5KWL1+u\nmTNnBqd8vu3WrVvKyMjQmTNntG7dOn3yySeKiYlRW1ubbty4oVmzZmnPnj3R6QQA0CUhA0CSUlNT\ntWPHDg0dOlQzZ87UX//6V8XFxQXHW1pa1LdvX929e1cffPCB7ty5o4KCgnb7KC8v15YtW/TnP/85\nOl0AALqs0ymg7du3y+PxKBAIaMWKFYqLi1NRUZEkyePxqKamRgsWLND9+/eVnp6uXbt2PXQ/PX2a\nBwCeOybKbty4YX7yk5+YIUOGmJ/+9Kfm5s2bD12vvLzcJCUlmVGjRpkPP/yw3dju3btNUlKScTqd\nZs2aNdEuuUsi0Z8xxmzZssU4HA7T3Nwc7ZK7JNz+8vLyTFJSkklNTTW5ubnm9u3bT6v0kDo7H8YY\n8+tf/9qMGDHCvP7666a2trZL23a3J+3vX//6l3G73cbpdJopU6aYTz/99GmW/VjCOXfGGHP37l2T\nkpJifvzjHz+NcrssnP5u3bpl5s+fbxITE01ycrI5ceJEyGNFPQA2b95sli1bZtra2swvf/lLU1BQ\n8ND1UlJSTHl5uWloaDCjR482V69eNcYYU11dbSZOnGguXLhgjDHmv//9b7RL7pJw+zPmwf90M2bM\nMMOHD3/mAuBJ+2tqajLGGPOXv/zF3Lt3z9y7d88sWbLE/OEPf3ia5T9SqPNhjDE+n8/86Ec/Ms3N\nzaa4uNhkZWU99rbPgift7z//+Y85ffq0McaYq1evmhEjRpgbN2489fpDCefcGWPM73//e/OLX/zC\nZGdnP82yH1s4/a1evdq8//77prW11QQCAXP9+vWQx4r67zP9fr8WL16s3r17a9GiRR2eI5BCP29w\n5MgRLV68WImJiZKk+Pj4aJfcJeH2J0nvvfeefve73z21mrviSfv7+ufC06ZNU69evdSrVy/NmDFD\n5eXlT7X+h3mc51t8Pp9mz56t2NhY5eTkqLa29rG37W7h9Ddo0CClpKRIkuLi4jRmzBhVVVU93QZC\nCKc36dl/Ninc/srKyrRu3Tr16dNHMTEx6tevX8jjRT0AvvksQVJSkvx+f8h1pPbPGxw7dkz/+Mc/\nNGHCBC1ZskQ1NTXRLrlLwu3vT3/6kwYPHqxXX3316RTcReH2900ff/zxM/EnQR6nXr/fL6fTGVyO\nj49XXV3dY/fancLp75suXryoc+fOKS0tLboFd8GT9nbp0iVJz/6zSeH019jYqLa2Ni1dulQul0ub\nN29WW1tbyOOF/RyA9OBT3pUrVzq8/8EHHzxxyn590/irr77StWvXVFlZqbKyMi1btkzHjx8Pq96u\nilZ/ra2t2rhxo0pLS4Pvd8enkmj0922//e1v9dJLL2nOnDkR2V+0mQfTo+3e60k/ZOisv5s3b2ru\n3Lnatm2bXnzxxaddXlge1pukLj2b9Cx7VH9tbW26cOGCCgoKlJmZKY/Ho3379mn+/PkhdxZVb7/9\ntvn888+NMcZUVVWZWbNmdVjn+vXrJiUlJbi8bNkyc/DgQWPMg5uIX782xpjvf//7prW1NcpVP75w\n+quurjYDBgwww4cPN8OHDzcxMTFm2LBh5osvvnhq9Xcm3PNnjDF//OMfzRtvvPHMnLfO6jXGmA8/\n/NBs3bo1uDxy5EhjjDH/+9//Ot22u4XTnzHG3Llzx0ybNs1s27Yt+sV2UTi9rV271gwePNgMHz7c\nDBo0yLzwwgvmnXfeeTqFP6Zwz11SUlLw9eHDh828efNCHi/q34NcLpd2796t1tZW7d69WxMnTuyw\nztfzVBUVFWpoaFBpaalcLpekB39f6MiRIzLGyOfzKSEhQX369Il22Y8tnP7Gjh2rL774QvX19aqv\nr9fgwYP1+eefa8CAAU+7jUcK9/wdPXpUBQUFOnDgwDNz3kLV+zWXy6X9+/erublZxcXFSk5OliS9\n/PLLnW7b3cLpzxijxYsXa+zYsVq5cuVTr70z4fS2ceNGXb58WfX19frss8/05ptvPnMPpobTnyQl\nJibK5/Pp/v37OnTokDIzM0MfMLy86tyjfkb473//27z11lvB9bxer0lKSjIJCQlmx44dwffv3r1r\nPB6PSUpKMj/72c+M3++PdsldEm5/3zRixIhn7ldA4fY3atQoM3ToUJOSkmJSUlLM0qVLn3oPD/Ow\nenft2mV27doVXOdXv/qVGT58uHn99ddNTU1NyG2fNU/aX2VlpXE4HOa1114LnrMjR450Sw+PEs65\n++Y+ntVfAYXT3z//+U/jcrnMa6+9ZlavXm1u3boV8lidPgkMAOiZns1b4QCAqCMAAMBSBAAAWIoA\nAABLEQAAYCkCAAAs9X/vh7DYicSaVQAAAABJRU5ErkJggg==\n" |
|
81 | "png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD3CAYAAAAJxX+sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG9JJREFUeJzt3Xt0VeWZx/FvEIoDA1QuEkQEEsotIZ5ATKCACZRChaK2\noMi4GBdETBXlJlXwUmCwzKy2CEUFsWMrGuINlBIQAZETMIFcJCCEwJgwmcQaMAnlZiSEZM8fr9JG\n4OR2Tva5/D5rZQmcvc5+1l7bhx/v2ed5gyzLshAREb/RzO4CRETEvdTYRUT8jBq7iIifUWMXEfEz\nauwiIn5GjV1ExM+4bOwXLlwgJiYGh8PB4MGDWb58+VWPW7BgASEhIQwaNIijR496pFAREamboNqe\nYy8vL6dVq1ZUVFQwaNAgNm7cSK9evS6/npGRwdy5c9m0aRPbtm1j3bp1bN682eOFi4jI1dW6FNOq\nVSsAzp8/z6VLl2jZsmWN19PT05k4cSLt27dn8uTJ5ObmeqZSERGpk+a1HVBdXU1kZCQ5OTmsWLGC\nbt261Xg9IyODKVOmXP59p06dyM/PJzQ0tMZxQUFBbipZRCSw1HdAQK2JvVmzZhw8eJC8vDxWrVpF\ndnb2FSf8/kmv1cS/O1Y/jftZuHCh7TX404+up66nN/188IHFLbdYTJtmcepUwya+1PmpmB49ejB2\n7FjS09Nr/HlMTAxHjhy5/PuSkhJCQkIaVIyISKAqK4N//3d45BF49VXzc8MNDXsvl429tLSU06dP\nf3vSMrZv385dd91V45iYmBg2bNhAWVkZSUlJ9OvXr2GViIgEIMuCd9+FAQOgQwc4dAhGjWrce7pc\nYy8uLuaBBx6gqqqK4OBg5s2bR5cuXVizZg0ACQkJREdHM2zYMKKiomjfvj2JiYmNq0hqFRcXZ3cJ\nfkXX0710PeuuuNgk9GPHYMMGGDLEPe9b6+OO7hIUFEQTnUpExKtZFvzlLzB/PvzqV/D00/C9Bw4v\na0jvrPWpGBERcZ/jx+Ghh+D0adixA2691f3n0EgBEZEmUFUFK1ZAdDSMGQP79nmmqYMSu4iIxx05\nAvHx8IMfQFoa9O7t2fMpsYuIeMjFi7BkCcTGwgMPwK5dnm/qoMQuIuIRWVkmpd98M+zfD9/70r5H\nKbGLiLhReTk88QSMG2f+u3lz0zZ1UGMXEXGblBTzgWhRkfmi0f33gx1jsrQUIyLSSGfPwpNPQnIy\nrFoFd95pbz1K7CIijbBlC4SHm8cZDx+2v6mDEruISIOUlsLs2bB3L7z2GowcaXdF/6DELiJSD5YF\nb71lUnrnzmYt3ZuaOiixi4jU2d/+ZoZ25efDX/8KMTF2V3R1SuwiIrWwLPjTn8DhgMhI81y6tzZ1\nUGIXEXEpPx+mT4fz5+Hjj83cdG+nxC4ichVVVfD88yaZjxtnPiT1haYOSuwiIlc4fNiMA2jVykxh\n7NXL7orqR4ldRORbFy/C4sUwYgQ8+CDs3Ol7TR2U2EVEAMjIMCm9Z084cAC6drW7ooZTYxeRgFZe\nDs8+C+vWmY0wJk2yZ76LO2kpRkQC1q5d5gPREyfMuvp99/l+UwcldhEJQGfOwK9/DVu3wurV8POf\n212Reymxi0hASU424wCaNTMp3d+aOiixi0iAKCmBmTPNzkZvvAFxcXZX5DlK7CLi1yzLfDA6YIDZ\nyejgQf9u6qDELiJ+rKgIHn4YCgvNFnVRUXZX1DSU2EXE71RXw8svw8CBZiRAVlbgNHVQYhcRP/P5\n52Zo14UL4HRCWJjdFTU9JXYR8QuXLsHvfw9DhsDdd0NqamA2dVBiFxE/8NlnZhxAu3ZmNEBIiN0V\n2UuJXUR8VkUF/OY3MGqU+ZB0xw41dVBiFxEftXevSem9e5uhXTfdZHdF3kONXUR8ytdfw9NPw9tv\nw8qVMHGif8x3cSctxYiIz/joI/NFo1OnzDiAe+5RU78aJXYR8XqnT8Pjj5vG/vLLcMcddlfk3ZTY\nRcSrbdxoHlu8/no4dEhNvS6U2EXEK508CY89Zma7vPkm3H673RX5DiV2EfEqlgWvvw4RERAaap54\nUVOvHyV2EfEahYWQkADFxfDBBzBokN0V+SYldhGxXXU1vPSSGdo1fDhkZqqpN4YSu4jY6tgxePBB\nqKqCPXugXz+7K/J9SuwiYotLl+C//guGDoV771VTdycldhFpcgcOmHEAHTqYWek9ethdkX9RYheR\nJnPhghkHMHq0eZRx2zY1dU9QYheRJpGaalJ6WJgZsxscbHdF/kuNXUQ86vx5eOopWL8eXngBJkyw\nuyL/53IppqioiBEjRhAWFkZcXBxJSUlXHON0OmnXrh2RkZFERkby3HPPeaxYEfEt27dDeDicPWuG\ndqmpNw2Xib1FixYsX74ch8NBaWkp0dHRjB8/njZt2tQ4LjY2lk2bNnm0UBHxHadOmaFdu3bBmjUw\nZozdFQUWl4k9ODgYh8MBQMeOHQkLCyMrK+uK4yzL8kx1IuJzNmwwKb1NGzO0S0296dV5jT0vL4+c\nnByio6Nr/HlQUBBpaWk4HA5GjhzJjBkzCA0NdXuhIuLdiovh0UchJwfefdc8ny72qFNjP3fuHJMm\nTWL58uW0bt26xmsDBw6kqKiIFi1asHbtWmbNmsXmzZuv+j6LFi26/Ou4uDji4uIaXLiIeAfLgrVr\n4YknYPp0WLfOjNiVhnE6nTidzka9R5BVyzpKZWUl48aNY+zYscyePdvlm1mWRXBwMIWFhbRs2bLm\niYKCtGQj4mcKCuChh6C0FP78Z/h25VbcqCG90+Uau2VZxMfHEx4efs2mfvLkycsnTU5OJiIi4oqm\nLiL+pbraPLoYFQUjR0J6upq6N3G5FJOamkpiYiIRERFERkYCsHTpUgoLCwFISEhg/fr1rF69mubN\nmxMREcGyZcs8X7WI2CY31wztatbMfOmoTx+7K5Lvq3Upxm0n0lKMiE+rrITf/x6efx4WL4aHHzbN\nXTyrIb1T3zwVkVrt3w/TpkGXLvDpp9C9u90ViSv6+1ZErumbb2D+fLOB9OOPm12N1NS9nxK7iFzV\nnj1mLf3WW83Qrs6d7a5I6kqNXURqOHfOpPSNG+HFF+EXv7C7IqkvLcWIyGVbt5pxABcumKFdauq+\nSYldRCgrgzlzzPLLq6/CqFF2VySNocQuEsAsC955x6T0Dh3M0C41dd+nxC4SoL78EmbMgGPH4L33\nYMgQuysSd1FiFwkwlmWWWxwOGDAAsrPV1P2NErtIADl+3AztOn0aduwwjzKK/1FiFwkAVVWwYgVE\nR5uNL/btU1P3Z0rsIn7uyBGIj4cf/ADS0qB3b7srEk9TYhfxUxcvwpIlEBsLDzxg9h9VUw8MSuwi\nfigz06T0bt3MAK9u3eyuSJqSEruIHykvN1vU/fzn8OSTsHmzmnogUmMX8RMpKeYD0aIi80Wj+++H\noCC7qxI7aClGxMedPWvSeXIyrFoFd95pd0ViNyV2ER+2ZYsZB1BVZYZ2qakLKLGL+KSSEpg92zyP\n/tprZkNpke8osYv4EMuCt94yowCCg80GGGrq8n1K7CI+4m9/MxtIHz8Of/0rxMTYXZF4KyV2ES9n\nWfCnP5mhXQMHmufS1dTFFSV2ES+Wnw/Tp8P58/Dxx2YJRqQ2SuwiXqiqCpYtM8l83DjYu1dNXepO\niV3Eyxw+DNOmQevW5qmXXr3srkh8jRK7iJe4eBEWLYIRI8zyy86daurSMErsIl4gI8Ok9JAQOHAA\nuna1uyLxZWrsIjYqL4dnn4V168xGGJMmab6LNJ6WYkRssmuX+UD0xAmzrn7ffWrq4h5K7CJN7PRp\nM1p361ZYvdqM2BVxJyV2kSa0aZMZ2tWsmUnpauriCUrsIk3gq69g5kzIyoLERIiLs7si8WdK7CIe\nZFnmg9EBA+CWW8zQLjV18TQldhEPKSoyQ7sKC83c9KgouyuSQKHELuJm1dXw8stmYFdMjFl+UVOX\npqTELuJGn38ODz4IFRXgdEJYmN0VSSBSYhdxg0uX4He/gyFD4Be/gNRUNXWxjxK7SCMdPAjx8fDD\nH5rRACEhdlckgU6JXaSBKirMOICf/hQeeQR27FBTF++gxC7SAHv3mpTeu7cZ2nXTTXZXJPIPauwi\n9fD11/D00/D227ByJUycqPku4n20FCNSRx99ZL5odOqUGQdwzz1q6uKdlNhFavH3v8O8eaaxv/wy\n3HGH3RWJuKbELuLC+++boV3/8i8mpaupiy9QYhe5ipMn4bHHzAejb70Fw4fbXZFI3blM7EVFRYwY\nMYKwsDDi4uJISkq66nELFiwgJCSEQYMGcfToUY8UKtIULAtefx0iIiA01DyjrqYuvibIsizrWi+e\nOHGCEydO4HA4KC0tJTo6moMHD9KmTZvLx2RkZDB37lw2bdrEtm3bWLduHZs3b77yREFBuDiViO0K\nCyEhAYqL4dVXYdAguysSaVjvdJnYg4ODcTgcAHTs2JGwsDCysrJqHJOens7EiRNp3749kydPJjc3\nt55li9iruhpeeskM7Ro+HDIz1dTFt9V5jT0vL4+cnByio6Nr/HlGRgZTpky5/PtOnTqRn59PaGio\n+6oU8ZBjx8zQrupq2LMH+vWzuyKRxqtTYz937hyTJk1i+fLltG7dusZrlmVd8c+EoGs83Lto0aLL\nv46LiyNOOw6ITSorYdky+MMfYOFCmDHDbFcnYjen04nT6WzUe7hcYweorKxk3LhxjB07ltmzZ1/x\n+gsvvMClS5eYM2cOAKGhoeTn5195Iq2xi5fIzjbjADp2hFdegR497K5I5NrcvsZuWRbx8fGEh4df\ntakDxMTEsGHDBsrKykhKSqKf/i0rXurCBTMOYMwYs//otm1q6uKfXC7FpKamkpiYSEREBJGRkQAs\nXbqUwsJCABISEoiOjmbYsGFERUXRvn17EhMTPV+1SD2lppqUHhZm9h0NDra7IhHPqXUpxm0n0lKM\n2OD8eXjqKVi/Hl54ASZMsLsikfpx+1KMiC/bts2MAzh3zowDUFOXQKGRAuJ3Tp2CuXPNnqOvvAKj\nR9tdkUjTUmIXv7Jhg0npbdualK6mLoFIiV38QnExPPoo5OTAu+/C0KF2VyRiHyV28WmWBa+9Brfe\nCn37mmmMauoS6JTYxWcVFMBDD0FpKWzfDt+ONRIJeErs4nOqqsx+o1FR8JOfQEaGmrrIP1NiF5+S\nm2uGdjVrZr501KeP3RWJeB8ldvEJlZXw29+asbr33w8pKWrqIteixC5eb/9+mDYNunSBTz+F7t3t\nrkjEuymxi9f65huYP99sIP344/DBB2rqInWhxC5eafdus5YeGWmGdnXubHdFIr5DjV28ytmzsGAB\nbNxotqu7+267KxLxPVqKEa+xdSsMGAAVFWYcgJq6SMMosYvtyspgzhz45BN49VUYNcruikR8mxK7\n2May4J13zNCuDh3g0CE1dRF3UGIXW3z5JTzyCHz+Obz3HgwZYndFIv5DiV2alGWZ5RaHAyIizDPq\nauoi7qXELk3m+HGYPh3OnIGPPjKNXUTcT4ldPK6qClasgOho+NnPYN8+NXURT1JiF4/KyYH4eGjZ\nEvbuhR/9yO6KRPyfErt4xMWLsGQJxMXB1Kmwa5eaukhTUWIXt8vMNCn9llsgOxtuvtnuikQCixK7\nuE15Ofz61zB+vBnelZyspi5iBzV2cQun0+w7+sUX5otG//ZvEBRkd1UigUlLMdIoZ87Ak0/C5s2w\nahXceafdFYmIErs02JYtZhxAdbV5+kVNXcQ7KLFLvZWUwOzZ5nn0tWth5Ei7KxKRf6bELnVmWfDm\nm2a0bpcuZi1dTV3E+yixS5188QU8/DAUFMCmTeZbpCLinZTYxaXqanjlFbNFXVSU2UxaTV3Euymx\nyzXl5ZmhXeXl5puj4eF2VyQidaHELleoqoJly2DwYPNlo7Q0NXURX6LELjUcOmTGAfzrv0J6OoSG\n2l2RiNSXErsAZgPphQvNUy4PPQQ7d6qpi/gqJXYhPd2k9JAQOHAAuna1uyIRaQw19gD29dfw7LOQ\nlAR//CPce6/mu4j4Ay3FBKiPPza7GH31FRw+DJMmqamL+Asl9gBz+rQZrbttG6xeDePG2V2RiLib\nEnsA2bTJPLbYooVJ6WrqIv5JiT0AfPUVzJxpvjW6bh3ExtpdkYh4khK7H7MsSEw0Q7u6d4fPPlNT\nFwkESux+qqgIfvUr898tW8ycFxEJDErsfqa62nwoOnAgDBkCWVlq6iKBRondj/zP/5ihXRcvQkoK\n9O9vd0UiYgcldj9w6RL87nfw4x/DL38Jn3yipi4SyFw29mnTptG5c2cGDBhw1dedTift2rUjMjKS\nyMhInnvuOY8UKdd28CDExMCOHZCZCbNmwXXX2V2ViNjJZWOfOnUqH374ocs3iI2NJTs7m+zsbJ55\n5hm3FifXVlFhxgH89KcwYwZs3w49e9pdlYh4A5dr7MOHD6egoMDlG1iW5c56pA727jVDu/r0MUO7\nbrrJ7opExJs06sPToKAg0tLScDgcjBw5khkzZhDqYtbrokWLLv86Li6OuLi4xpw+4Jw/D888A++8\nAytXwoQJmu8i4m+cTidOp7NR7xFk1RK5CwoKGD9+PIcOHbritXPnznHdddfRokUL1q5dy8aNG9m8\nefPVTxQUpHTfCDt2mDnpt98Ozz8PHTrYXZGINIWG9M5GNfZ/ZlkWwcHBFBYW0rJlS7cUJ/D3v8Pj\nj5uNL9asgZ/9zO6KRKQpNaR3Nupxx5MnT14+YXJyMhEREVdt6tIw779vhna1amWGdqmpi0hduFxj\nnzx5MikpKZSWltKtWzcWL15MZWUlAAkJCaxfv57Vq1fTvHlzIiIiWLZsWZMU7e9OnIDHHjOzXd56\nC4YPt7siEfEltS7FuO1EWoqplWXBG2+Yeenx8fCb38D119tdlYjYqSG9UyMFvMT//R8kJMDJk7B1\nq5n1IiLSEBopYLPqanjpJTOoKzYWMjLU1EWkcZTYbXTsmFlysSzYswf69rW7IhHxB0rsNqishP/8\nTxg6FO67T01dRNxLib2JZWeblN6pk5mV3qOH3RWJiL9RYm8iFy7AU0/BmDFmAuOHH6qpi4hnKLE3\ngU8+gQcfNHuPfvYZBAfbXZGI+DM1dg86dw4WLID33oMXXzSbYIiIeJqWYjxk2zaT0MvLISdHTV1E\nmo4Su5udOgVz5pg9R195BUaPtrsiEQk0SuxutH69Gdr1wx+aoV1q6iJiByV2NyguhkcfhSNHTHP/\n8Y/trkhEApkSeyNYFvzlL3DrrdCvn3lGXU1dROymxN5A//u/ZkejU6fMRtIOh90ViYgYSuz1VFVl\n9hu97TYYNQrS09XURcS7KLHXQ26uGQfQvDmkpUHv3nZXJCJyJSX2OqishN/+1mwkPWUKOJ1q6iLi\nvZTYa/HppzBtGnTtan59yy12VyQi4poS+zV88w08+SSMHWu2qtuyRU1dRHyDEvtV7N5thnZFRsKh\nQ3DjjXZXJCJSd2rs/+TsWZg/HzZtMkO77r7b7opEROpPSzHf+uADM7SrstKMA1BTFxFfFfCJvbTU\nDO1KS4M//xl+8hO7KxIRaZyATeyWBW+/bVJ6p05mAww1dRHxBwGZ2L/8Eh5+GPLy4P33YfBguysS\nEXGfgErslgX//d9maJfDAfv3q6mLiP8JmMR+/DhMn26efNm5EyIi7K5IRMQz/D6xV1XB8uUQHQ13\n3AF796qpi4h/8+vEnpNjhnZdfz3s2we9etldkYiI5/llYr94Ef7jPyAuzsx5+fhjNXURCRx+l9gz\nM00z797d7Gh08812VyQi0rT8JrGXl8O8eTB+PDz1FCQnq6mLSGDyi8budJoPRIuLzdCuyZMhKMju\nqkRE7OHTSzFnzsATT5g5L6tWmbQuIhLofDaxJydDeLhJ5ocPq6mLiHzH5xJ7SQnMmgUZGfD66zBi\nhN0ViYh4F59J7JYFSUlmaFfXrmZol5q6iMiVfCKxf/GFGdpVUGA2wYiOtrsiERHv5dWJvboa1qwx\nW9TddpvZTFpNXUTENa9N7Hl5ZmjXN9+YxxnDwuyuSETEN3hdYr90Cf7wBzNO9847ITVVTV1EpD68\nKrF/9pkZ2tW2rXnqJSTE7opERHyPVyT2igpYuNBsTZeQAB99pKYuItJQtif2fftMSu/VCw4cMI8y\niohIw9nW2L/+Gp59Ft58E/74R7jnHs13ERFxB5dLMdOmTaNz584MGDDgmscsWLCAkJAQBg0axNGj\nR+t00p07zReNSkrMOIB771VTrw+n02l3CX5F19O9dD3t57KxT506lQ8//PCar2dkZLBnzx6ysrKY\nN28e8+bNc3my06fNI4xTp8KLL8Ibb0CHDg0rPJDpfxz30vV0L11P+7ls7MOHD+eGG2645uvp6elM\nnDiR9u3bM3nyZHJzc12eLDwcWrQwKX3s2IYVLCIirjXqqZiMjAz69+9/+fedOnUiPz//mscnJZnx\num3bNuasIiLiSqM+PLUsC8uyavxZkIvF8thYLaS7y+LFi+0uwa/oerqXrqe9GtXYY2JiOHLkCGPG\njAGgpKSEkGs8gP79vwBERMQzGrUUExMTw4YNGygrKyMpKYl+/fq5qy4REWkgl4l98uTJpKSkUFpa\nSrdu3Vi8eDGVlZUAJCQkEB0dzbBhw4iKiqJ9+/YkJiY2SdEiIuKC5UYpKSlW3759rV69elkrV668\n6jHz58+3evbsaQ0cONDKzc115+n9Tm3Xc9euXVbbtm0th8NhORwOa8mSJTZU6RumTp1q3XjjjVZ4\nePg1j9G9WTe1XUvdl/VTWFhoxcXFWf3797diY2OtdevWXfW4+tyfbm3sDofDSklJsQoKCqw+ffpY\nJSUlNV5PT0+3hg4dapWVlVlJSUnWuHHj3Hl6v1Pb9dy1a5c1fvx4m6rzLbt377b2799/zWake7Pu\naruWui/rp7i42MrOzrYsy7JKSkqsnj17WmfPnq1xTH3vT7cNATtz5gwAt99+O927d2f06NGkp6fX\nOKa+z70HsrpcT9CH0nXl7u9kBLLariXovqyP4OBgHA4HAB07diQsLIysrKwax9T3/nRbY8/MzKRv\n376Xf9+/f3/27dtX45j6PvceyOpyPYOCgkhLS8PhcDB37lxdy0bQvek+ui8bLi8vj5ycHKK/t1Vc\nfe/PJh3ba9XzuXdxbeDAgRQVFZGZmUn//v2ZNWuW3SX5LN2b7qP7smHOnTvHpEmTWL58Oa1bt67x\nWn3vT7c19ttuu63GELCcnBwGDx5c45jvnnv/jqvn3gNdXa5nmzZtaNWqFS1atCA+Pp7MzEwqKiqa\nulS/oHvTfXRf1l9lZSUTJkxgypQp3HXXXVe8Xt/7022NvV27dgDs3r2bgoICduzYQUxMzBXF6bn3\nuqnL9Tx58uTlv8WTk5OJiIigZcuWTV6rP9C96T66L+vHsizi4+MJDw9n9uzZVz2mvvenW+exr1ix\ngoSEBCorK5k5cyYdO3ZkzZo1gJ57b4jaruf69etZvXo1zZs3JyIigmXLltlcsffSdzLcp7Zrqfuy\nflJTU0lMTCQiIoLIyEgAli5dSmFhIdCw+zPI0sfXIiJ+xSv2PBUREfdRYxcR8TNq7CIifkaNXUTE\nz6ixi4j4GTV2ERE/8/9mUozJaDh2nQAAAABJRU5ErkJggg==\n" | |
85 | } |
|
82 | } | |
86 | ], |
|
83 | ], | |
87 | "prompt_number": 1 |
|
84 | "prompt_number": 1 | |
@@ -128,7 +125,8 b'' | |||||
128 | "output_type": "stream", |
|
125 | "output_type": "stream", | |
129 | "stream": "stdout", |
|
126 | "stream": "stdout", | |
130 | "text": [ |
|
127 | "text": [ | |
131 | "hello world" |
|
128 | "hello world", | |
|
129 | "" | |||
132 | ] |
|
130 | ] | |
133 | } |
|
131 | } | |
134 | ], |
|
132 | ], | |
@@ -141,17 +139,70 b'' | |||||
141 | ] |
|
139 | ] | |
142 | }, |
|
140 | }, | |
143 | { |
|
141 | { | |
144 |
"cell_type": " |
|
142 | "cell_type": "raw", | |
145 | "source": [ |
|
143 | "source": [ | |
146 | "plain text" |
|
144 | "plain text" | |
147 | ] |
|
145 | ] | |
148 | }, |
|
146 | }, | |
149 | { |
|
147 | { | |
150 | "cell_type": "code", |
|
148 | "cell_type": "code", | |
151 |
"collapsed": |
|
149 | "collapsed": false, | |
152 |
"input": [ |
|
150 | "input": [ | |
|
151 | "import sys", | |||
|
152 | "m = 'A message'", | |||
|
153 | "print m, 'to stdout'", | |||
|
154 | "print >> sys.stderr, m, 'to stderr'", | |||
|
155 | "m" | |||
|
156 | ], | |||
153 | "language": "python", |
|
157 | "language": "python", | |
154 |
"outputs": [ |
|
158 | "outputs": [ | |
|
159 | { | |||
|
160 | "output_type": "stream", | |||
|
161 | "stream": "stdout", | |||
|
162 | "text": [ | |||
|
163 | "A message to stdout", | |||
|
164 | "" | |||
|
165 | ] | |||
|
166 | }, | |||
|
167 | { | |||
|
168 | "output_type": "stream", | |||
|
169 | "stream": "stderr", | |||
|
170 | "text": [ | |||
|
171 | "A message to stderr", | |||
|
172 | "" | |||
|
173 | ] | |||
|
174 | }, | |||
|
175 | { | |||
|
176 | "output_type": "pyout", | |||
|
177 | "prompt_number": 5, | |||
|
178 | "text": [ | |||
|
179 | "'A message'" | |||
|
180 | ] | |||
|
181 | } | |||
|
182 | ], | |||
|
183 | "prompt_number": 5 | |||
|
184 | }, | |||
|
185 | { | |||
|
186 | "cell_type": "code", | |||
|
187 | "collapsed": false, | |||
|
188 | "input": [ | |||
|
189 | "# a traceback", | |||
|
190 | "1/0" | |||
|
191 | ], | |||
|
192 | "language": "python", | |||
|
193 | "outputs": [ | |||
|
194 | { | |||
|
195 | "ename": "ZeroDivisionError", | |||
|
196 | "evalue": "integer division or modulo by zero", | |||
|
197 | "output_type": "pyerr", | |||
|
198 | "traceback": [ | |||
|
199 | "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", | |||
|
200 | "\u001b[1;32m/home/fperez/ipython/nbconvert/tests/<ipython-input-6-03412a6702b7>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m# a traceback\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[1;36m1\u001b[0m\u001b[1;33m/\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", | |||
|
201 | "\u001b[1;31mZeroDivisionError\u001b[0m: integer division or modulo by zero" | |||
|
202 | ] | |||
|
203 | } | |||
|
204 | ], | |||
|
205 | "prompt_number": 6 | |||
155 | } |
|
206 | } | |
156 | ] |
|
207 | ] | |
157 | } |
|
208 | } |
General Comments 0
You need to be logged in to leave comments.
Login now