Show More
@@ -0,0 +1,172 | |||
|
1 | .. _dag_dependencies: | |
|
2 | ||
|
3 | ================ | |
|
4 | DAG Dependencies | |
|
5 | ================ | |
|
6 | ||
|
7 | Often, parallel workflow is described in terms of a `Directed Acyclic Graph | |
|
8 | <http://en.wikipedia.org/wiki/Directed_acyclic_graph>`_ or DAG. A popular library | |
|
9 | for working with Graphs is NetworkX_. Here, we will walk through a demo mapping | |
|
10 | a nx DAG to task dependencies. | |
|
11 | ||
|
12 | The full script that runs this demo can be found in | |
|
13 | :file:`docs/examples/newparallel/dagdeps.py`. | |
|
14 | ||
|
15 | Why are DAGs good for task dependencies? | |
|
16 | ---------------------------------------- | |
|
17 | ||
|
18 | The 'G' in DAG is 'Graph'. A Graph is a collection of **nodes** and **edges** that connect | |
|
19 | the nodes. For our purposes, each node would be a task, and each edge would be a | |
|
20 | dependency. The 'D' in DAG stands for 'Directed'. This means that each edge has a | |
|
21 | direction associated with it. So we can interpret the edge (a,b) as meaning that b depends | |
|
22 | on a, whereas the edge (b,a) would mean a depends on b. The 'A' is 'Acyclic', meaning that | |
|
23 | there must not be any closed loops in the graph. This is important for dependencies, | |
|
24 | because if a loop were closed, then a task could ultimately depend on itself, and never be | |
|
25 | able to run. If your workflow can be described as a DAG, then it is impossible for your | |
|
26 | dependencies to cause a deadlock. | |
|
27 | ||
|
28 | A Sample DAG | |
|
29 | ------------ | |
|
30 | ||
|
31 | Here, we have a very simple 5-node DAG: | |
|
32 | ||
|
33 | .. figure:: simpledag.* | |
|
34 | ||
|
35 | With NetworkX, an arrow is just a fattened bit on the edge. Here, we can see that task 0 | |
|
36 | depends on nothing, and can run immediately. 1 and 2 depend on 0; 3 depends on | |
|
37 | 1 and 2; and 4 depends only on 1. | |
|
38 | ||
|
39 | A possible sequence of events for this workflow: | |
|
40 | ||
|
41 | 0. Task 0 can run right away | |
|
42 | 1. 0 finishes, so 1,2 can start | |
|
43 | 2. 1 finishes, 3 is still waiting on 2, but 4 can start right away | |
|
44 | 3. 2 finishes, and 3 can finally start | |
|
45 | ||
|
46 | ||
|
47 | Further, taking failures into account, assuming all dependencies are run with the default | |
|
48 | `success_only=True`, the following cases would occur for each node's failure: | |
|
49 | ||
|
50 | 0. fails: all other tasks fail as Impossible | |
|
51 | 1. 2 can still succeed, but 3,4 are unreachable | |
|
52 | 2. 3 becomes unreachable, but 4 is unaffected | |
|
53 | 3. and 4. are terminal, and can have no effect on other nodes | |
|
54 | ||
|
55 | The code to generate the simple DAG: | |
|
56 | ||
|
57 | .. sourcecode:: python | |
|
58 | ||
|
59 | import networkx as nx | |
|
60 | ||
|
61 | G = nx.DiGraph() | |
|
62 | ||
|
63 | # add 5 nodes, labeled 0-4: | |
|
64 | map(G.add_node, range(5)) | |
|
65 | # 1,2 depend on 0: | |
|
66 | G.add_edge(0,1) | |
|
67 | G.add_edge(0,2) | |
|
68 | # 3 depends on 1,2 | |
|
69 | G.add_edge(1,3) | |
|
70 | G.add_edge(2,3) | |
|
71 | # 4 depends on 1 | |
|
72 | G.add_edge(1,4) | |
|
73 | ||
|
74 | # now draw the graph: | |
|
75 | pos = { 0 : (0,0), 1 : (1,1), 2 : (-1,1), | |
|
76 | 3 : (0,2), 4 : (2,2)} | |
|
77 | nx.draw(G, pos, edge_color='r') | |
|
78 | ||
|
79 | ||
|
80 | For demonstration purposes, we have a function that generates a random DAG with a given | |
|
81 | number of nodes and edges. | |
|
82 | ||
|
83 | .. literalinclude:: ../../examples/newparallel/dagdeps.py | |
|
84 | :language: python | |
|
85 | :lines: 20-36 | |
|
86 | ||
|
87 | So first, we start with a graph of 32 nodes, with 128 edges: | |
|
88 | ||
|
89 | .. sourcecode:: ipython | |
|
90 | ||
|
91 | In [2]: G = random_dag(32,128) | |
|
92 | ||
|
93 | Now, we need to build our dict of jobs corresponding to the nodes on the graph: | |
|
94 | ||
|
95 | .. sourcecode:: ipython | |
|
96 | ||
|
97 | In [3]: jobs = {} | |
|
98 | ||
|
99 | # in reality, each job would presumably be different | |
|
100 | # randomwait is just a function that sleeps for a random interval | |
|
101 | In [4]: for node in G: | |
|
102 | ...: jobs[node] = randomwait | |
|
103 | ||
|
104 | Once we have a dict of jobs matching the nodes on the graph, we can start submitting jobs, | |
|
105 | and linking up the dependencies. Since we don't know a job's msg_id until it is submitted, | |
|
106 | which is necessary for building dependencies, it is critical that we don't submit any jobs | |
|
107 | before other jobs it may depend on. Fortunately, NetworkX provides a | |
|
108 | :meth:`topological_sort` method which ensures exactly this. It presents an iterable, that | |
|
109 | guarantees that when you arrive at a node, you have already visited all the nodes it | |
|
110 | on which it depends: | |
|
111 | ||
|
112 | .. sourcecode:: ipython | |
|
113 | ||
|
114 | In [5]: c = client.Client() | |
|
115 | ||
|
116 | In [6]: results = {} | |
|
117 | ||
|
118 | In [7]: for node in G.topological_sort(): | |
|
119 | ...: # get list of AsyncResult objects from nodes | |
|
120 | ...: # leading into this one as dependencies | |
|
121 | ...: deps = [ results[n] for n in G.predecessors(node) ] | |
|
122 | ...: # submit and store AsyncResult object | |
|
123 | ...: results[node] = client.apply(jobs[node], after=deps, block=False) | |
|
124 | ||
|
125 | Now that we have submitted all the jobs, we can wait for the results: | |
|
126 | ||
|
127 | .. sourcecode:: ipython | |
|
128 | ||
|
129 | In [8]: [ r.get() for r in results.values() ] | |
|
130 | ||
|
131 | Now, at least we know that all the jobs ran and did not fail (``r.get()`` would have | |
|
132 | raised an error if a task failed). But we don't know that the ordering was properly | |
|
133 | respected. For this, we can use the :attr:`metadata` attribute of each AsyncResult. | |
|
134 | ||
|
135 | These objects store a variety of metadata about each task, including various timestamps. | |
|
136 | We can validate that the dependencies were respected by checking that each task was | |
|
137 | started after all of its predecessors were completed: | |
|
138 | ||
|
139 | .. literalinclude:: ../../examples/newparallel/dagdeps.py | |
|
140 | :language: python | |
|
141 | :lines: 64-70 | |
|
142 | ||
|
143 | We can also validate the graph visually. By drawing the graph with each node's x-position | |
|
144 | as its start time, all arrows must be pointing to the right if the order was respected. | |
|
145 | For spreading, the y-position will be the in-degree, so tasks with lots of dependencies | |
|
146 | will be at the top, and tasks with few dependencies will be at the bottom. | |
|
147 | ||
|
148 | .. sourcecode:: ipython | |
|
149 | ||
|
150 | In [10]: from matplotlib.dates import date2num | |
|
151 | ||
|
152 | In [11]: from matplotlib.cm import gist_rainbow | |
|
153 | ||
|
154 | In [12]: pos = {}; colors = {} | |
|
155 | ||
|
156 | In [12]: for node in G: | |
|
157 | ...: md = results[node].metadata | |
|
158 | ...: start = date2num(md.started) | |
|
159 | ...: runtime = date2num(md.completed) - start | |
|
160 | ...: pos[node] = (start, runtime) | |
|
161 | ...: colors[node] = md.engine_id | |
|
162 | ||
|
163 | In [13]: nx.draw(G, pos, node_list=colors.keys(), node_color=colors.values(), | |
|
164 | ...: cmap=gist_rainbow) | |
|
165 | ||
|
166 | .. figure:: dagdeps.* | |
|
167 | ||
|
168 | Time started on x, runtime on y, and color-coded by engine-id (in this case there | |
|
169 | were four engines). | |
|
170 | ||
|
171 | ||
|
172 | .. _NetworkX: http://networkx.lanl.gov/ |
|
1 | NO CONTENT: new file 100644, binary diff hidden |
|
1 | NO CONTENT: new file 100644, binary diff hidden |
|
1 | NO CONTENT: new file 100644, binary diff hidden |
|
1 | NO CONTENT: new file 100644, binary diff hidden |
@@ -863,14 +863,9 class Client(object): | |||
|
863 | 863 | return dep.msg_ids |
|
864 | 864 | elif dep is None: |
|
865 | 865 | return [] |
|
866 | elif isinstance(dep, set): | |
|
867 | return list(dep) | |
|
868 | elif isinstance(dep, (list,dict)): | |
|
869 | return dep | |
|
870 | elif isinstance(dep, str): | |
|
871 | return [dep] | |
|
872 | 866 | else: |
|
873 | raise TypeError("Dependency may be: set,list,dict,Dependency or AsyncResult, not %r"%type(dep)) | |
|
867 | # pass to Dependency constructor | |
|
868 | return list(Dependency(dep)) | |
|
874 | 869 | |
|
875 | 870 | def apply(self, f, args=None, kwargs=None, bound=True, block=None, targets=None, |
|
876 | 871 | after=None, follow=None, timeout=None): |
@@ -921,9 +916,11 class Client(object): | |||
|
921 | 916 | This job will only be run on an engine where this dependency |
|
922 | 917 | is met. |
|
923 | 918 | |
|
924 | timeout : float or None | |
|
919 | timeout : float/int or None | |
|
925 | 920 | Only for load-balanced execution (targets=None) |
|
926 | Specify an amount of time (in seconds) | |
|
921 | Specify an amount of time (in seconds) for the scheduler to | |
|
922 | wait for dependencies to be met before failing with a | |
|
923 | DependencyTimeout. | |
|
927 | 924 | |
|
928 | 925 | Returns |
|
929 | 926 | ------- |
@@ -950,9 +947,6 class Client(object): | |||
|
950 | 947 | if not isinstance(kwargs, dict): |
|
951 | 948 | raise TypeError("kwargs must be dict, not %s"%type(kwargs)) |
|
952 | 949 | |
|
953 | after = self._build_dependency(after) | |
|
954 | follow = self._build_dependency(follow) | |
|
955 | ||
|
956 | 950 | options = dict(bound=bound, block=block) |
|
957 | 951 | |
|
958 | 952 | if targets is None: |
@@ -984,6 +978,8 class Client(object): | |||
|
984 | 978 | warnings.warn(msg, RuntimeWarning) |
|
985 | 979 | |
|
986 | 980 | |
|
981 | after = self._build_dependency(after) | |
|
982 | follow = self._build_dependency(follow) | |
|
987 | 983 | subheader = dict(after=after, follow=follow, timeout=timeout) |
|
988 | 984 | bufs = ss.pack_apply_message(f,args,kwargs) |
|
989 | 985 | content = dict(bound=bound) |
@@ -2,13 +2,7 | |||
|
2 | 2 | |
|
3 | 3 | from IPython.external.decorator import decorator |
|
4 | 4 | from error import UnmetDependency |
|
5 | ||
|
6 | ||
|
7 | # flags | |
|
8 | ALL = 1 << 0 | |
|
9 | ANY = 1 << 1 | |
|
10 | HERE = 1 << 2 | |
|
11 | ANYWHERE = 1 << 3 | |
|
5 | from asyncresult import AsyncResult | |
|
12 | 6 | |
|
13 | 7 | |
|
14 | 8 | class depend(object): |
@@ -59,53 +53,58 class Dependency(set): | |||
|
59 | 53 | |
|
60 | 54 | Subclassed from set().""" |
|
61 | 55 | |
|
62 | mode='all' | |
|
56 | all=True | |
|
63 | 57 | success_only=True |
|
64 | 58 | |
|
65 |
def __init__(self, dependencies=[], |
|
|
59 | def __init__(self, dependencies=[], all=True, success_only=True): | |
|
66 | 60 | if isinstance(dependencies, dict): |
|
67 | 61 | # load from dict |
|
68 |
|
|
|
62 | all = dependencies.get('all', True) | |
|
69 | 63 | success_only = dependencies.get('success_only', success_only) |
|
70 | 64 | dependencies = dependencies.get('dependencies', []) |
|
71 | set.__init__(self, dependencies) | |
|
72 | self.mode = mode.lower() | |
|
65 | ids = [] | |
|
66 | if isinstance(dependencies, AsyncResult): | |
|
67 | ids.extend(AsyncResult.msg_ids) | |
|
68 | else: | |
|
69 | for d in dependencies: | |
|
70 | if isinstance(d, basestring): | |
|
71 | ids.append(d) | |
|
72 | elif isinstance(d, AsyncResult): | |
|
73 | ids.extend(d.msg_ids) | |
|
74 | else: | |
|
75 | raise TypeError("invalid dependency type: %r"%type(d)) | |
|
76 | set.__init__(self, ids) | |
|
77 | self.all = all | |
|
73 | 78 | self.success_only=success_only |
|
74 | if self.mode not in ('any', 'all'): | |
|
75 | raise NotImplementedError("Only any|all supported, not %r"%mode) | |
|
76 | 79 | |
|
77 | 80 | def check(self, completed, failed=None): |
|
78 | 81 | if failed is not None and not self.success_only: |
|
79 | 82 | completed = completed.union(failed) |
|
80 | 83 | if len(self) == 0: |
|
81 | 84 | return True |
|
82 |
if self. |
|
|
85 | if self.all: | |
|
83 | 86 | return self.issubset(completed) |
|
84 | elif self.mode == 'any': | |
|
85 | return not self.isdisjoint(completed) | |
|
86 | 87 | else: |
|
87 | raise NotImplementedError("Only any|all supported, not %r"%mode) | |
|
88 | return not self.isdisjoint(completed) | |
|
88 | 89 | |
|
89 | 90 | def unreachable(self, failed): |
|
90 | 91 | if len(self) == 0 or len(failed) == 0 or not self.success_only: |
|
91 | 92 | return False |
|
92 |
print self, self.success_only, self. |
|
|
93 |
if self. |
|
|
93 | # print self, self.success_only, self.all, failed | |
|
94 | if self.all: | |
|
94 | 95 | return not self.isdisjoint(failed) |
|
95 | elif self.mode == 'any': | |
|
96 | return self.issubset(failed) | |
|
97 | 96 | else: |
|
98 | raise NotImplementedError("Only any|all supported, not %r"%mode) | |
|
97 | return self.issubset(failed) | |
|
99 | 98 | |
|
100 | 99 | |
|
101 | 100 | def as_dict(self): |
|
102 | 101 | """Represent this dependency as a dict. For json compatibility.""" |
|
103 | 102 | return dict( |
|
104 | 103 | dependencies=list(self), |
|
105 |
|
|
|
104 | all=self.all, | |
|
106 | 105 | success_only=self.success_only, |
|
107 | 106 | ) |
|
108 | 107 | |
|
109 | 108 | |
|
110 | __all__ = ['depend', 'require', 'Dependency'] | |
|
109 | __all__ = ['depend', 'require', 'dependent', 'Dependency'] | |
|
111 | 110 |
@@ -154,7 +154,10 class UnmetDependency(KernelError): | |||
|
154 | 154 | class ImpossibleDependency(UnmetDependency): |
|
155 | 155 | pass |
|
156 | 156 | |
|
157 |
class DependencyTimeout( |
|
|
157 | class DependencyTimeout(ImpossibleDependency): | |
|
158 | pass | |
|
159 | ||
|
160 | class InvalidDependency(ImpossibleDependency): | |
|
158 | 161 | pass |
|
159 | 162 | |
|
160 | 163 | class RemoteError(KernelError): |
@@ -100,7 +100,7 class HubFactory(RegistrationFactory): | |||
|
100 | 100 | """The Configurable for setting up a Hub.""" |
|
101 | 101 | |
|
102 | 102 | # name of a scheduler scheme |
|
103 |
scheme = Str('l |
|
|
103 | scheme = Str('leastload', config=True) | |
|
104 | 104 | |
|
105 | 105 | # port-pairs for monitoredqueues: |
|
106 | 106 | hb = Instance(list, config=True) |
@@ -20,7 +20,9 import logging | |||
|
20 | 20 | import os |
|
21 | 21 | import signal |
|
22 | 22 | import logging |
|
23 | import errno | |
|
23 | 24 | |
|
25 | import zmq | |
|
24 | 26 | from zmq.eventloop import ioloop |
|
25 | 27 | |
|
26 | 28 | from IPython.external.argparse import ArgumentParser, SUPPRESS |
@@ -385,7 +387,8 class IPClusterApp(ApplicationWithClusterDir): | |||
|
385 | 387 | # observing of engine stopping is inconsistent. Some launchers |
|
386 | 388 | # might trigger on a single engine stopping, other wait until |
|
387 | 389 | # all stop. TODO: think more about how to handle this. |
|
388 | ||
|
390 | else: | |
|
391 | self.controller_launcher = None | |
|
389 | 392 | |
|
390 | 393 | el_class = import_item(config.Global.engine_launcher) |
|
391 | 394 | self.engine_launcher = el_class( |
@@ -427,7 +430,7 class IPClusterApp(ApplicationWithClusterDir): | |||
|
427 | 430 | |
|
428 | 431 | def stop_controller(self, r=None): |
|
429 | 432 | # self.log.info("In stop_controller") |
|
430 | if self.controller_launcher.running: | |
|
433 | if self.controller_launcher and self.controller_launcher.running: | |
|
431 | 434 | return self.controller_launcher.stop() |
|
432 | 435 | |
|
433 | 436 | def stop_engines(self, r=None): |
@@ -516,8 +519,13 class IPClusterApp(ApplicationWithClusterDir): | |||
|
516 | 519 | self.write_pid_file() |
|
517 | 520 | try: |
|
518 | 521 | self.loop.start() |
|
519 | except: | |
|
520 | self.log.info("stopping...") | |
|
522 | except KeyboardInterrupt: | |
|
523 | pass | |
|
524 | except zmq.ZMQError as e: | |
|
525 | if e.errno == errno.EINTR: | |
|
526 | pass | |
|
527 | else: | |
|
528 | raise | |
|
521 | 529 | self.remove_pid_file() |
|
522 | 530 | |
|
523 | 531 | def start_app_engines(self): |
@@ -539,8 +547,13 class IPClusterApp(ApplicationWithClusterDir): | |||
|
539 | 547 | # self.write_pid_file() |
|
540 | 548 | try: |
|
541 | 549 | self.loop.start() |
|
542 | except: | |
|
543 | self.log.fatal("stopping...") | |
|
550 | except KeyboardInterrupt: | |
|
551 | pass | |
|
552 | except zmq.ZMQError as e: | |
|
553 | if e.errno == errno.EINTR: | |
|
554 | pass | |
|
555 | else: | |
|
556 | raise | |
|
544 | 557 | # self.remove_pid_file() |
|
545 | 558 | |
|
546 | 559 | def start_app_stop(self): |
@@ -127,7 +127,7 class TaskScheduler(SessionFactory): | |||
|
127 | 127 | mon_stream = Instance(zmqstream.ZMQStream) # hub-facing pub stream |
|
128 | 128 | |
|
129 | 129 | # internals: |
|
130 |
|
|
|
130 | graph = Dict() # dict by msg_id of [ msg_ids that depend on key ] | |
|
131 | 131 | depending = Dict() # dict by msg_id of (msg_id, raw_msg, after, follow) |
|
132 | 132 | pending = Dict() # dict by engine_uuid of submitted tasks |
|
133 | 133 | completed = Dict() # dict by engine_uuid of completed tasks |
@@ -139,6 +139,7 class TaskScheduler(SessionFactory): | |||
|
139 | 139 | all_completed = Set() # set of all completed tasks |
|
140 | 140 | all_failed = Set() # set of all failed tasks |
|
141 | 141 | all_done = Set() # set of all finished tasks=union(completed,failed) |
|
142 | all_ids = Set() # set of all submitted task IDs | |
|
142 | 143 | blacklist = Dict() # dict by msg_id of locations where a job has encountered UnmetDependency |
|
143 | 144 | auditor = Instance('zmq.eventloop.ioloop.PeriodicCallback') |
|
144 | 145 | |
@@ -239,7 +240,7 class TaskScheduler(SessionFactory): | |||
|
239 | 240 | msg = self.session.send(self.client_stream, 'apply_reply', content, |
|
240 | 241 | parent=parent, ident=idents) |
|
241 | 242 | self.session.send(self.mon_stream, msg, ident=['outtask']+idents) |
|
242 |
self.update_ |
|
|
243 | self.update_graph(msg_id) | |
|
243 | 244 | |
|
244 | 245 | |
|
245 | 246 | #----------------------------------------------------------------------- |
@@ -252,20 +253,21 class TaskScheduler(SessionFactory): | |||
|
252 | 253 | self.notifier_stream.flush() |
|
253 | 254 | try: |
|
254 | 255 | idents, msg = self.session.feed_identities(raw_msg, copy=False) |
|
255 | except Exception as e: | |
|
256 | self.log.error("task::Invaid msg: %s"%msg) | |
|
256 | msg = self.session.unpack_message(msg, content=False, copy=False) | |
|
257 | except: | |
|
258 | self.log.error("task::Invaid task: %s"%raw_msg, exc_info=True) | |
|
257 | 259 | return |
|
258 | 260 | |
|
259 | 261 | # send to monitor |
|
260 | 262 | self.mon_stream.send_multipart(['intask']+raw_msg, copy=False) |
|
261 | 263 | |
|
262 | msg = self.session.unpack_message(msg, content=False, copy=False) | |
|
263 | 264 | header = msg['header'] |
|
264 | 265 | msg_id = header['msg_id'] |
|
266 | self.all_ids.add(msg_id) | |
|
265 | 267 | |
|
266 | 268 | # time dependencies |
|
267 | 269 | after = Dependency(header.get('after', [])) |
|
268 |
if after. |
|
|
270 | if after.all: | |
|
269 | 271 | after.difference_update(self.all_completed) |
|
270 | 272 | if not after.success_only: |
|
271 | 273 | after.difference_update(self.all_failed) |
@@ -276,10 +278,16 class TaskScheduler(SessionFactory): | |||
|
276 | 278 | |
|
277 | 279 | # location dependencies |
|
278 | 280 | follow = Dependency(header.get('follow', [])) |
|
279 | # check if unreachable: | |
|
280 | if after.unreachable(self.all_failed) or follow.unreachable(self.all_failed): | |
|
281 | self.depending[msg_id] = [raw_msg,MET,MET,None] | |
|
282 | return self.fail_unreachable(msg_id) | |
|
281 | ||
|
282 | for dep in after,follow: | |
|
283 | # check valid: | |
|
284 | if msg_id in dep or dep.difference(self.all_ids): | |
|
285 | self.depending[msg_id] = [raw_msg,MET,MET,None] | |
|
286 | return self.fail_unreachable(msg_id, error.InvalidDependency) | |
|
287 | # check if unreachable: | |
|
288 | if dep.unreachable(self.all_failed): | |
|
289 | self.depending[msg_id] = [raw_msg,MET,MET,None] | |
|
290 | return self.fail_unreachable(msg_id) | |
|
283 | 291 | |
|
284 | 292 | # turn timeouts into datetime objects: |
|
285 | 293 | timeout = header.get('timeout', None) |
@@ -288,7 +296,7 class TaskScheduler(SessionFactory): | |||
|
288 | 296 | |
|
289 | 297 | if after.check(self.all_completed, self.all_failed): |
|
290 | 298 | # time deps already met, try to run |
|
291 | if not self.maybe_run(msg_id, raw_msg, follow): | |
|
299 | if not self.maybe_run(msg_id, raw_msg, follow, timeout): | |
|
292 | 300 | # can't run yet |
|
293 | 301 | self.save_unmet(msg_id, raw_msg, after, follow, timeout) |
|
294 | 302 | else: |
@@ -306,25 +314,23 class TaskScheduler(SessionFactory): | |||
|
306 | 314 | self.fail_unreachable(msg_id, timeout=True) |
|
307 | 315 | |
|
308 | 316 | @logged |
|
309 |
def fail_unreachable(self, msg_id, |
|
|
317 | def fail_unreachable(self, msg_id, why=error.ImpossibleDependency): | |
|
310 | 318 | """a message has become unreachable""" |
|
311 | 319 | if msg_id not in self.depending: |
|
312 | 320 | self.log.error("msg %r already failed!"%msg_id) |
|
313 | 321 | return |
|
314 | 322 | raw_msg, after, follow, timeout = self.depending.pop(msg_id) |
|
315 | 323 | for mid in follow.union(after): |
|
316 |
if mid in self. |
|
|
317 |
self. |
|
|
324 | if mid in self.graph: | |
|
325 | self.graph[mid].remove(msg_id) | |
|
318 | 326 | |
|
319 | 327 | # FIXME: unpacking a message I've already unpacked, but didn't save: |
|
320 | 328 | idents,msg = self.session.feed_identities(raw_msg, copy=False) |
|
321 | 329 | msg = self.session.unpack_message(msg, copy=False, content=False) |
|
322 | 330 | header = msg['header'] |
|
323 | 331 | |
|
324 | impossible = error.DependencyTimeout if timeout else error.ImpossibleDependency | |
|
325 | ||
|
326 | 332 | try: |
|
327 |
raise |
|
|
333 | raise why() | |
|
328 | 334 | except: |
|
329 | 335 | content = ss.wrap_exception() |
|
330 | 336 | |
@@ -335,10 +341,10 class TaskScheduler(SessionFactory): | |||
|
335 | 341 | parent=header, ident=idents) |
|
336 | 342 | self.session.send(self.mon_stream, msg, ident=['outtask']+idents) |
|
337 | 343 | |
|
338 |
self.update_ |
|
|
344 | self.update_graph(msg_id, success=False) | |
|
339 | 345 | |
|
340 | 346 | @logged |
|
341 | def maybe_run(self, msg_id, raw_msg, follow=None): | |
|
347 | def maybe_run(self, msg_id, raw_msg, follow=None, timeout=None): | |
|
342 | 348 | """check location dependencies, and run if they are met.""" |
|
343 | 349 | |
|
344 | 350 | if follow: |
@@ -349,8 +355,7 class TaskScheduler(SessionFactory): | |||
|
349 | 355 | |
|
350 | 356 | indices = filter(can_run, range(len(self.targets))) |
|
351 | 357 | if not indices: |
|
352 | # TODO evaluate unmeetable follow dependencies | |
|
353 | if follow.mode == 'all': | |
|
358 | if follow.all: | |
|
354 | 359 | dests = set() |
|
355 | 360 | relevant = self.all_completed if follow.success_only else self.all_done |
|
356 | 361 | for m in follow.intersection(relevant): |
@@ -363,7 +368,7 class TaskScheduler(SessionFactory): | |||
|
363 | 368 | else: |
|
364 | 369 | indices = None |
|
365 | 370 | |
|
366 | self.submit_task(msg_id, raw_msg, indices) | |
|
371 | self.submit_task(msg_id, raw_msg, follow, timeout, indices) | |
|
367 | 372 | return True |
|
368 | 373 | |
|
369 | 374 | @logged |
@@ -372,12 +377,12 class TaskScheduler(SessionFactory): | |||
|
372 | 377 | self.depending[msg_id] = [raw_msg,after,follow,timeout] |
|
373 | 378 | # track the ids in follow or after, but not those already finished |
|
374 | 379 | for dep_id in after.union(follow).difference(self.all_done): |
|
375 |
if dep_id not in self. |
|
|
376 |
self. |
|
|
377 |
self. |
|
|
380 | if dep_id not in self.graph: | |
|
381 | self.graph[dep_id] = set() | |
|
382 | self.graph[dep_id].add(msg_id) | |
|
378 | 383 | |
|
379 | 384 | @logged |
|
380 |
def submit_task(self, msg_id, raw_msg, follow |
|
|
385 | def submit_task(self, msg_id, raw_msg, follow, timeout, indices=None): | |
|
381 | 386 | """Submit a task to any of a subset of our targets.""" |
|
382 | 387 | if indices: |
|
383 | 388 | loads = [self.loads[i] for i in indices] |
@@ -391,7 +396,7 class TaskScheduler(SessionFactory): | |||
|
391 | 396 | self.engine_stream.send(target, flags=zmq.SNDMORE, copy=False) |
|
392 | 397 | self.engine_stream.send_multipart(raw_msg, copy=False) |
|
393 | 398 | self.add_job(idx) |
|
394 | self.pending[target][msg_id] = (raw_msg, follow) | |
|
399 | self.pending[target][msg_id] = (raw_msg, follow, timeout) | |
|
395 | 400 | content = dict(msg_id=msg_id, engine_id=target) |
|
396 | 401 | self.session.send(self.mon_stream, 'task_destination', content=content, |
|
397 | 402 | ident=['tracktask',self.session.session]) |
@@ -403,10 +408,11 class TaskScheduler(SessionFactory): | |||
|
403 | 408 | def dispatch_result(self, raw_msg): |
|
404 | 409 | try: |
|
405 | 410 | idents,msg = self.session.feed_identities(raw_msg, copy=False) |
|
406 | except Exception as e: | |
|
407 | self.log.error("task::Invaid result: %s"%msg) | |
|
411 | msg = self.session.unpack_message(msg, content=False, copy=False) | |
|
412 | except: | |
|
413 | self.log.error("task::Invaid result: %s"%raw_msg, exc_info=True) | |
|
408 | 414 | return |
|
409 | msg = self.session.unpack_message(msg, content=False, copy=False) | |
|
415 | ||
|
410 | 416 | header = msg['header'] |
|
411 | 417 | if header.get('dependencies_met', True): |
|
412 | 418 | success = (header['status'] == 'ok') |
@@ -438,7 +444,7 class TaskScheduler(SessionFactory): | |||
|
438 | 444 | self.all_done.add(msg_id) |
|
439 | 445 | self.destinations[msg_id] = engine |
|
440 | 446 | |
|
441 |
self.update_ |
|
|
447 | self.update_graph(msg_id, success) | |
|
442 | 448 | |
|
443 | 449 | @logged |
|
444 | 450 | def handle_unmet_dependency(self, idents, parent): |
@@ -448,30 +454,30 class TaskScheduler(SessionFactory): | |||
|
448 | 454 | self.blacklist[msg_id] = set() |
|
449 | 455 | self.blacklist[msg_id].add(engine) |
|
450 | 456 | raw_msg,follow,timeout = self.pending[engine].pop(msg_id) |
|
451 | if not self.maybe_run(msg_id, raw_msg, follow): | |
|
457 | if not self.maybe_run(msg_id, raw_msg, follow, timeout): | |
|
452 | 458 | # resubmit failed, put it back in our dependency tree |
|
453 | 459 | self.save_unmet(msg_id, raw_msg, MET, follow, timeout) |
|
454 | 460 | pass |
|
455 | 461 | |
|
456 | 462 | @logged |
|
457 |
def update_ |
|
|
463 | def update_graph(self, dep_id, success=True): | |
|
458 | 464 | """dep_id just finished. Update our dependency |
|
459 | 465 | table and submit any jobs that just became runable.""" |
|
460 | 466 | # print ("\n\n***********") |
|
461 | 467 | # pprint (dep_id) |
|
462 |
# pprint (self. |
|
|
468 | # pprint (self.graph) | |
|
463 | 469 | # pprint (self.depending) |
|
464 | 470 | # pprint (self.all_completed) |
|
465 | 471 | # pprint (self.all_failed) |
|
466 | 472 | # print ("\n\n***********\n\n") |
|
467 |
if dep_id not in self. |
|
|
473 | if dep_id not in self.graph: | |
|
468 | 474 | return |
|
469 |
jobs = self. |
|
|
475 | jobs = self.graph.pop(dep_id) | |
|
470 | 476 | |
|
471 | 477 | for msg_id in jobs: |
|
472 | 478 | raw_msg, after, follow, timeout = self.depending[msg_id] |
|
473 | 479 | # if dep_id in after: |
|
474 |
# if after. |
|
|
480 | # if after.all and (success or not after.success_only): | |
|
475 | 481 | # after.remove(dep_id) |
|
476 | 482 | |
|
477 | 483 | if after.unreachable(self.all_failed) or follow.unreachable(self.all_failed): |
@@ -479,12 +485,12 class TaskScheduler(SessionFactory): | |||
|
479 | 485 | |
|
480 | 486 | elif after.check(self.all_completed, self.all_failed): # time deps met, maybe run |
|
481 | 487 | self.depending[msg_id][1] = MET |
|
482 | if self.maybe_run(msg_id, raw_msg, follow): | |
|
488 | if self.maybe_run(msg_id, raw_msg, follow, timeout): | |
|
483 | 489 | |
|
484 | 490 | self.depending.pop(msg_id) |
|
485 | 491 | for mid in follow.union(after): |
|
486 |
if mid in self. |
|
|
487 |
self. |
|
|
492 | if mid in self.graph: | |
|
493 | self.graph[mid].remove(msg_id) | |
|
488 | 494 | |
|
489 | 495 | #---------------------------------------------------------------------- |
|
490 | 496 | # methods to be overridden by subclasses |
@@ -506,7 +512,8 class TaskScheduler(SessionFactory): | |||
|
506 | 512 | |
|
507 | 513 | |
|
508 | 514 | |
|
509 |
def launch_scheduler(in_addr, out_addr, mon_addr, not_addr, config=None,logname='ZMQ', |
|
|
515 | def launch_scheduler(in_addr, out_addr, mon_addr, not_addr, config=None,logname='ZMQ', | |
|
516 | log_addr=None, loglevel=logging.DEBUG, scheme='lru'): | |
|
510 | 517 | from zmq.eventloop import ioloop |
|
511 | 518 | from zmq.eventloop.zmqstream import ZMQStream |
|
512 | 519 |
@@ -228,7 +228,12 class DirectView(View): | |||
|
228 | 228 | >>> dv_even = client[::2] |
|
229 | 229 | >>> dv_some = client[1:3] |
|
230 | 230 | |
|
231 | This object provides dictionary access | |
|
231 | This object provides dictionary access to engine namespaces: | |
|
232 | ||
|
233 | # push a=5: | |
|
234 | >>> dv['a'] = 5 | |
|
235 | # pull 'foo': | |
|
236 | >>> db['foo'] | |
|
232 | 237 | |
|
233 | 238 | """ |
|
234 | 239 |
@@ -57,7 +57,7 def submit_jobs(client, G, jobs): | |||
|
57 | 57 | """Submit jobs via client where G describes the time dependencies.""" |
|
58 | 58 | results = {} |
|
59 | 59 | for node in nx.topological_sort(G): |
|
60 |
deps = [ results[n |
|
|
60 | deps = [ results[n] for n in G.predecessors(node) ] | |
|
61 | 61 | results[node] = client.apply(jobs[node], after=deps) |
|
62 | 62 | return results |
|
63 | 63 | |
@@ -77,30 +77,34 def main(nodes, edges): | |||
|
77 | 77 | point at least slightly to the right if the graph is valid. |
|
78 | 78 | """ |
|
79 | 79 | from matplotlib.dates import date2num |
|
80 | from matplotlib.cm import gist_rainbow | |
|
80 | 81 | print "building DAG" |
|
81 | 82 | G = random_dag(nodes, edges) |
|
82 | 83 | jobs = {} |
|
83 | 84 | pos = {} |
|
85 | colors = {} | |
|
84 | 86 | for node in G: |
|
85 | 87 | jobs[node] = randomwait |
|
86 | 88 | |
|
87 | 89 | client = cmod.Client() |
|
88 | print "submitting tasks" | |
|
90 | print "submitting %i tasks with %i dependencies"%(nodes,edges) | |
|
89 | 91 | results = submit_jobs(client, G, jobs) |
|
90 | 92 | print "waiting for results" |
|
91 | 93 | client.barrier() |
|
92 | 94 | print "done" |
|
93 | 95 | for node in G: |
|
94 |
|
|
|
95 |
t = date2num( |
|
|
96 | pos[node] = (t, G.in_degree(node)+random()) | |
|
97 | ||
|
96 | md = results[node].metadata | |
|
97 | start = date2num(md.started) | |
|
98 | runtime = date2num(md.completed) - start | |
|
99 | pos[node] = (start, runtime) | |
|
100 | colors[node] = md.engine_id | |
|
98 | 101 | validate_tree(G, results) |
|
99 | nx.draw(G, pos) | |
|
102 | nx.draw(G, pos, node_list = colors.keys(), node_color=colors.values(), cmap=gist_rainbow) | |
|
100 | 103 | return G,results |
|
101 | 104 | |
|
102 | 105 | if __name__ == '__main__': |
|
103 | 106 | import pylab |
|
104 |
|
|
|
107 | # main(5,10) | |
|
108 | main(32,96) | |
|
105 | 109 | pylab.show() |
|
106 | 110 | No newline at end of file |
@@ -15,5 +15,6 Using IPython for parallel computing (ZMQ) | |||
|
15 | 15 | parallel_security.txt |
|
16 | 16 | parallel_winhpc.txt |
|
17 | 17 | parallel_demos.txt |
|
18 | dag_dependencies.txt | |
|
18 | 19 | |
|
19 | 20 |
@@ -13,14 +13,7 Matplotlib package. IPython can be started in this mode by typing:: | |||
|
13 | 13 | |
|
14 | 14 | ipython --pylab |
|
15 | 15 | |
|
16 | at the system command line. If this prints an error message, you will | |
|
17 | need to install the default profiles from within IPython by doing, | |
|
18 | ||
|
19 | .. sourcecode:: ipython | |
|
20 | ||
|
21 | In [1]: %install_profiles | |
|
22 | ||
|
23 | and then restarting IPython. | |
|
16 | at the system command line. | |
|
24 | 17 | |
|
25 | 18 | 150 million digits of pi |
|
26 | 19 | ======================== |
@@ -132,11 +132,11 The main method for doing remote execution (in fact, all methods that | |||
|
132 | 132 | communicate with the engines are built on top of it), is :meth:`Client.apply`. |
|
133 | 133 | Ideally, :meth:`apply` would have the signature ``apply(f,*args,**kwargs)``, |
|
134 | 134 | which would call ``f(*args,**kwargs)`` remotely. However, since :class:`Clients` |
|
135 |
require some more options, they cannot |
|
|
135 | require some more options, they cannot easily provide this interface. | |
|
136 | 136 | Instead, they provide the signature:: |
|
137 | 137 | |
|
138 | c.apply(f, args=None, kwargs=None, bound=True, block=None, | |
|
139 |
|
|
|
138 | c.apply(f, args=None, kwargs=None, bound=True, block=None, targets=None, | |
|
139 | after=None, follow=None, timeout=None) | |
|
140 | 140 | |
|
141 | 141 | In order to provide the nicer interface, we have :class:`View` classes, which wrap |
|
142 | 142 | :meth:`Client.apply` by using attributes and extra :meth:`apply_x` methods to determine |
@@ -184,7 +184,7 blocks until the engines are done executing the command: | |||
|
184 | 184 | In [5]: dview['b'] = 10 |
|
185 | 185 | |
|
186 | 186 | In [6]: dview.apply_bound(lambda x: a+b+x, 27) |
|
187 | Out[6]: [42,42,42,42] | |
|
187 | Out[6]: [42, 42, 42, 42] | |
|
188 | 188 | |
|
189 | 189 | Python commands can be executed on specific engines by calling execute using |
|
190 | 190 | the ``targets`` keyword argument, or creating a :class:`DirectView` instance |
@@ -197,7 +197,7 by index-access to the client: | |||
|
197 | 197 | In [7]: rc[1::2].execute('c=a-b') # shorthand for rc.execute('c=a-b',targets=[1,3]) |
|
198 | 198 | |
|
199 | 199 | In [8]: rc[:]['c'] # shorthand for rc.pull('c',targets='all') |
|
200 | Out[8]: [15,-5,15,-5] | |
|
200 | Out[8]: [15, -5, 15, -5] | |
|
201 | 201 | |
|
202 | 202 | .. note:: |
|
203 | 203 | |
@@ -258,7 +258,7 time through its :meth:`get` method. | |||
|
258 | 258 | |
|
259 | 259 | .. Note:: |
|
260 | 260 | |
|
261 |
The :class:`AsyncResult` object provides |
|
|
261 | The :class:`AsyncResult` object provides a superset of the interface in | |
|
262 | 262 | :py:class:`multiprocessing.pool.AsyncResult`. See the |
|
263 | 263 | `official Python documentation <http://docs.python.org/library/multiprocessing#multiprocessing.pool.AsyncResult>`_ |
|
264 | 264 | for more. |
@@ -270,15 +270,12 local Python/IPython session: | |||
|
270 | 270 | .. sourcecode:: ipython |
|
271 | 271 | |
|
272 | 272 | # define our function |
|
273 |
In [ |
|
|
274 |
... |
|
|
275 |
... |
|
|
276 |
... |
|
|
277 |
... |
|
|
273 | In [6]: def wait(t): | |
|
274 | ...: import time | |
|
275 | ...: tic = time.time() | |
|
276 | ...: time.sleep(t) | |
|
277 | ...: return time.time()-tic | |
|
278 | 278 | |
|
279 | # In blocking mode | |
|
280 | In [6]: rc.apply('import time') | |
|
281 | ||
|
282 | 279 | # In non-blocking mode |
|
283 | 280 | In [7]: pr = rc[:].apply_async(wait, 2) |
|
284 | 281 | |
@@ -316,8 +313,8 local Python/IPython session: | |||
|
316 | 313 | |
|
317 | 314 | Often, it is desirable to wait until a set of :class:`AsyncResult` objects |
|
318 | 315 | are done. For this, there is a the method :meth:`barrier`. This method takes a |
|
319 |
tuple of :class:`AsyncResult` objects (or `msg_ids`) and blocks until all of the |
|
|
320 | results are ready: | |
|
316 | tuple of :class:`AsyncResult` objects (or `msg_ids`) and blocks until all of the | |
|
317 | associated results are ready: | |
|
321 | 318 | |
|
322 | 319 | .. sourcecode:: ipython |
|
323 | 320 | |
@@ -329,7 +326,7 results are ready: | |||
|
329 | 326 | # Wait until all of them are done |
|
330 | 327 | In [74]: rc.barrier(pr_list) |
|
331 | 328 | |
|
332 |
# Then, their results are ready using get |
|
|
329 | # Then, their results are ready using get() or the `.r` attribute | |
|
333 | 330 | In [75]: pr_list[0].get() |
|
334 | 331 | Out[75]: [2.9982571601867676, 2.9982588291168213, 2.9987530708312988, 2.9990990161895752] |
|
335 | 332 |
@@ -320,4 +320,5 channel is established. | |||
|
320 | 320 | |
|
321 | 321 | .. [RFC5246] <http://tools.ietf.org/html/rfc5246> |
|
322 | 322 | |
|
323 | ||
|
323 | .. [OpenSSH] <http://www.openssh.com/> | |
|
324 | .. [Paramiko] <http://www.lag.net/paramiko/> |
@@ -4,13 +4,13 | |||
|
4 | 4 | The IPython task interface |
|
5 | 5 | ========================== |
|
6 | 6 | |
|
7 |
The task interface to the c |
|
|
7 | The task interface to the cluster presents the engines as a fault tolerant, | |
|
8 | 8 | dynamic load-balanced system of workers. Unlike the multiengine interface, in |
|
9 |
the task interface |
|
|
10 |
allowing the IPython scheduler to assign work, this interface is |
|
|
11 | and more powerful. | |
|
9 | the task interface the user have no direct access to individual engines. By | |
|
10 | allowing the IPython scheduler to assign work, this interface is simultaneously | |
|
11 | simpler and more powerful. | |
|
12 | 12 | |
|
13 | Best of all the user can use both of these interfaces running at the same time | |
|
13 | Best of all, the user can use both of these interfaces running at the same time | |
|
14 | 14 | to take advantage of their respective strengths. When the user can break up |
|
15 | 15 | the user's work into segments that do not depend on previous execution, the |
|
16 | 16 | task interface is ideal. But it also has more power and flexibility, allowing |
@@ -97,11 +97,275 that turns any Python function into a parallel function: | |||
|
97 | 97 | In [10]: @lview.parallel() |
|
98 | 98 | ....: def f(x): |
|
99 | 99 | ....: return 10.0*x**4 |
|
100 |
....: |
|
|
100 | ....: | |
|
101 | 101 | |
|
102 | 102 | In [11]: f.map(range(32)) # this is done in parallel |
|
103 | 103 | Out[11]: [0.0,10.0,160.0,...] |
|
104 | 104 | |
|
105 | Dependencies | |
|
106 | ============ | |
|
107 | ||
|
108 | Often, pure atomic load-balancing is too primitive for your work. In these cases, you | |
|
109 | may want to associate some kind of `Dependency` that describes when, where, or whether | |
|
110 | a task can be run. In IPython, we provide two types of dependencies: | |
|
111 | `Functional Dependencies`_ and `Graph Dependencies`_ | |
|
112 | ||
|
113 | .. note:: | |
|
114 | ||
|
115 | It is important to note that the pure ZeroMQ scheduler does not support dependencies, | |
|
116 | and you will see errors or warnings if you try to use dependencies with the pure | |
|
117 | scheduler. | |
|
118 | ||
|
119 | Functional Dependencies | |
|
120 | ----------------------- | |
|
121 | ||
|
122 | Functional dependencies are used to determine whether a given engine is capable of running | |
|
123 | a particular task. This is implemented via a special :class:`Exception` class, | |
|
124 | :class:`UnmetDependency`, found in `IPython.zmq.parallel.error`. Its use is very simple: | |
|
125 | if a task fails with an UnmetDependency exception, then the scheduler, instead of relaying | |
|
126 | the error up to the client like any other error, catches the error, and submits the task | |
|
127 | to a different engine. This will repeat indefinitely, and a task will never be submitted | |
|
128 | to a given engine a second time. | |
|
129 | ||
|
130 | You can manually raise the :class:`UnmetDependency` yourself, but IPython has provided | |
|
131 | some decorators for facilitating this behavior. | |
|
132 | ||
|
133 | There are two decorators and a class used for functional dependencies: | |
|
134 | ||
|
135 | .. sourcecode:: ipython | |
|
136 | ||
|
137 | In [9]: from IPython.zmq.parallel.dependency import depend, require, dependent | |
|
138 | ||
|
139 | @require | |
|
140 | ******** | |
|
141 | ||
|
142 | The simplest sort of dependency is requiring that a Python module is available. The | |
|
143 | ``@require`` decorator lets you define a function that will only run on engines where names | |
|
144 | you specify are importable: | |
|
145 | ||
|
146 | .. sourcecode:: ipython | |
|
147 | ||
|
148 | In [10]: @require('numpy', 'zmq') | |
|
149 | ...: def myfunc(): | |
|
150 | ...: import numpy,zmq | |
|
151 | ...: return dostuff() | |
|
152 | ||
|
153 | Now, any time you apply :func:`myfunc`, the task will only run on a machine that has | |
|
154 | numpy and pyzmq available. | |
|
155 | ||
|
156 | @depend | |
|
157 | ******* | |
|
158 | ||
|
159 | The ``@depend`` decorator lets you decorate any function with any *other* function to | |
|
160 | evaluate the dependency. The dependency function will be called at the start of the task, | |
|
161 | and if it returns ``False``, then the dependency will be considered unmet, and the task | |
|
162 | will be assigned to another engine. If the dependency returns *anything other than | |
|
163 | ``False``*, the rest of the task will continue. | |
|
164 | ||
|
165 | .. sourcecode:: ipython | |
|
166 | ||
|
167 | In [10]: def platform_specific(plat): | |
|
168 | ...: import sys | |
|
169 | ...: return sys.platform == plat | |
|
170 | ||
|
171 | In [11]: @depend(platform_specific, 'darwin') | |
|
172 | ...: def mactask(): | |
|
173 | ...: do_mac_stuff() | |
|
174 | ||
|
175 | In [12]: @depend(platform_specific, 'nt') | |
|
176 | ...: def wintask(): | |
|
177 | ...: do_windows_stuff() | |
|
178 | ||
|
179 | In this case, any time you apply ``mytask``, it will only run on an OSX machine. | |
|
180 | ``@depend`` is just like ``apply``, in that it has a ``@depend(f,*args,**kwargs)`` | |
|
181 | signature. | |
|
182 | ||
|
183 | dependents | |
|
184 | ********** | |
|
185 | ||
|
186 | You don't have to use the decorators on your tasks, if for instance you may want | |
|
187 | to run tasks with a single function but varying dependencies, you can directly construct | |
|
188 | the :class:`dependent` object that the decorators use: | |
|
189 | ||
|
190 | .. sourcecode::ipython | |
|
191 | ||
|
192 | In [13]: def mytask(*args): | |
|
193 | ...: dostuff() | |
|
194 | ||
|
195 | In [14]: mactask = dependent(mytask, platform_specific, 'darwin') | |
|
196 | # this is the same as decorating the declaration of mytask with @depend | |
|
197 | # but you can do it again: | |
|
198 | ||
|
199 | In [15]: wintask = dependent(mytask, platform_specific, 'nt') | |
|
200 | ||
|
201 | # in general: | |
|
202 | In [16]: t = dependent(f, g, *dargs, **dkwargs) | |
|
203 | ||
|
204 | # is equivalent to: | |
|
205 | In [17]: @depend(g, *dargs, **dkwargs) | |
|
206 | ...: def t(a,b,c): | |
|
207 | ...: # contents of f | |
|
208 | ||
|
209 | Graph Dependencies | |
|
210 | ------------------ | |
|
211 | ||
|
212 | Sometimes you want to restrict the time and/or location to run a given task as a function | |
|
213 | of the time and/or location of other tasks. This is implemented via a subclass of | |
|
214 | :class:`set`, called a :class:`Dependency`. A Dependency is just a set of `msg_ids` | |
|
215 | corresponding to tasks, and a few attributes to guide how to decide when the Dependency | |
|
216 | has been met. | |
|
217 | ||
|
218 | The switches we provide for interpreting whether a given dependency set has been met: | |
|
219 | ||
|
220 | any|all | |
|
221 | Whether the dependency is considered met if *any* of the dependencies are done, or | |
|
222 | only after *all* of them have finished. This is set by a Dependency's :attr:`all` | |
|
223 | boolean attribute, which defaults to ``True``. | |
|
224 | ||
|
225 | success_only | |
|
226 | Whether to consider only tasks that did not raise an error as being fulfilled. | |
|
227 | Sometimes you want to run a task after another, but only if that task succeeded. In | |
|
228 | this case, ``success_only`` should be ``True``. However sometimes you may not care | |
|
229 | whether the task succeeds, and always want the second task to run, in which case | |
|
230 | you should use `success_only=False`. The default behavior is to only use successes. | |
|
231 | ||
|
232 | There are other switches for interpretation that are made at the *task* level. These are | |
|
233 | specified via keyword arguments to the client's :meth:`apply` method. | |
|
234 | ||
|
235 | after,follow | |
|
236 | You may want to run a task *after* a given set of dependencies have been run and/or | |
|
237 | run it *where* another set of dependencies are met. To support this, every task has an | |
|
238 | `after` dependency to restrict time, and a `follow` dependency to restrict | |
|
239 | destination. | |
|
240 | ||
|
241 | timeout | |
|
242 | You may also want to set a time-limit for how long the scheduler should wait before a | |
|
243 | task's dependencies are met. This is done via a `timeout`, which defaults to 0, which | |
|
244 | indicates that the task should never timeout. If the timeout is reached, and the | |
|
245 | scheduler still hasn't been able to assign the task to an engine, the task will fail | |
|
246 | with a :class:`DependencyTimeout`. | |
|
247 | ||
|
248 | .. note:: | |
|
249 | ||
|
250 | Dependencies only work within the task scheduler. You cannot instruct a load-balanced | |
|
251 | task to run after a job submitted via the MUX interface. | |
|
252 | ||
|
253 | The simplest form of Dependencies is with `all=True,success_only=True`. In these cases, | |
|
254 | you can skip using Dependency objects, and just pass msg_ids or AsyncResult objects as the | |
|
255 | `follow` and `after` keywords to :meth:`client.apply`: | |
|
256 | ||
|
257 | .. sourcecode:: ipython | |
|
258 | ||
|
259 | In [14]: client.block=False | |
|
260 | ||
|
261 | In [15]: ar = client.apply(f, args, kwargs, targets=None) | |
|
262 | ||
|
263 | In [16]: ar2 = client.apply(f2, targets=None) | |
|
264 | ||
|
265 | In [17]: ar3 = client.apply(f3, after=[ar,ar2]) | |
|
266 | ||
|
267 | In [17]: ar4 = client.apply(f3, follow=[ar], timeout=2.5) | |
|
268 | ||
|
269 | ||
|
270 | .. seealso:: | |
|
271 | ||
|
272 | Some parallel workloads can be described as a `Directed Acyclic Graph | |
|
273 | <http://en.wikipedia.org/wiki/Directed_acyclic_graph>`_, or DAG. See :ref:`DAG | |
|
274 | Dependencies <dag_dependencies>` for an example demonstrating how to use map a NetworkX DAG | |
|
275 | onto task dependencies. | |
|
276 | ||
|
277 | ||
|
278 | ||
|
279 | Impossible Dependencies | |
|
280 | *********************** | |
|
281 | ||
|
282 | The schedulers do perform some analysis on graph dependencies to determine whether they | |
|
283 | are not possible to be met. If the scheduler does discover that a dependency cannot be | |
|
284 | met, then the task will fail with an :class:`ImpossibleDependency` error. This way, if the | |
|
285 | scheduler realized that a task can never be run, it won't sit indefinitely in the | |
|
286 | scheduler clogging the pipeline. | |
|
287 | ||
|
288 | The basic cases that are checked: | |
|
289 | ||
|
290 | * depending on nonexistent messages | |
|
291 | * `follow` dependencies were run on more than one machine and `all=True` | |
|
292 | * any dependencies failed and `all=True,success_only=True` | |
|
293 | * all dependencies failed and `all=False,success_only=True` | |
|
294 | ||
|
295 | .. warning:: | |
|
296 | ||
|
297 | This analysis has not been proven to be rigorous, so it is likely possible for tasks | |
|
298 | to become impossible to run in obscure situations, so a timeout may be a good choice. | |
|
299 | ||
|
300 | Schedulers | |
|
301 | ========== | |
|
302 | ||
|
303 | There are a variety of valid ways to determine where jobs should be assigned in a | |
|
304 | load-balancing situation. In IPython, we support several standard schemes, and | |
|
305 | even make it easy to define your own. The scheme can be selected via the ``--scheme`` | |
|
306 | argument to :command:`ipcontrollerz`, or in the :attr:`HubFactory.scheme` attribute | |
|
307 | of a controller config object. | |
|
308 | ||
|
309 | The built-in routing schemes: | |
|
310 | ||
|
311 | lru: Least Recently Used | |
|
312 | ||
|
313 | Always assign work to the least-recently-used engine. A close relative of | |
|
314 | round-robin, it will be fair with respect to the number of tasks, agnostic | |
|
315 | with respect to runtime of each task. | |
|
316 | ||
|
317 | plainrandom: Plain Random | |
|
318 | Randomly picks an engine on which to run. | |
|
319 | ||
|
320 | twobin: Two-Bin Random | |
|
321 | ||
|
322 | **Depends on numpy** | |
|
323 | ||
|
324 | Pick two engines at random, and use the LRU of the two. This is known to be better | |
|
325 | than plain random in many cases, but requires a small amount of computation. | |
|
326 | ||
|
327 | leastload: Least Load | |
|
328 | ||
|
329 | **This is the default scheme** | |
|
330 | ||
|
331 | Always assign tasks to the engine with the fewest outstanding tasks (LRU breaks tie). | |
|
332 | ||
|
333 | weighted: Weighted Two-Bin Random | |
|
334 | ||
|
335 | **Depends on numpy** | |
|
336 | ||
|
337 | Pick two engines at random using the number of outstanding tasks as inverse weights, | |
|
338 | and use the one with the lower load. | |
|
339 | ||
|
340 | ||
|
341 | Pure ZMQ Scheduler | |
|
342 | ------------------ | |
|
343 | ||
|
344 | For maximum throughput, the 'pure' scheme is not Python at all, but a C-level | |
|
345 | :class:`MonitoredQueue` from PyZMQ, which uses a ZeroMQ ``XREQ`` socket to perform all | |
|
346 | load-balancing. This scheduler does not support any of the advanced features of the Python | |
|
347 | :class:`.Scheduler`. | |
|
348 | ||
|
349 | Disabled features when using the ZMQ Scheduler: | |
|
350 | ||
|
351 | * Engine unregistration | |
|
352 | Task farming will be disabled if an engine unregisters. | |
|
353 | Further, if an engine is unregistered during computation, the scheduler may not recover. | |
|
354 | * Dependencies | |
|
355 | Since there is no Python logic inside the Scheduler, routing decisions cannot be made | |
|
356 | based on message content. | |
|
357 | * Early destination notification | |
|
358 | The Python schedulers know which engine gets which task, and notify the Hub. This | |
|
359 | allows graceful handling of Engines coming and going. There is no way to know | |
|
360 | where ZeroMQ messages have gone, so there is no way to know what tasks are on which | |
|
361 | engine until they *finish*. This makes recovery from engine shutdown very difficult. | |
|
362 | ||
|
363 | ||
|
364 | .. note:: | |
|
365 | ||
|
366 | TODO: performance comparisons | |
|
367 | ||
|
368 | ||
|
105 | 369 | More details |
|
106 | 370 | ============ |
|
107 | 371 | |
@@ -125,8 +389,7 The following is an overview of how to use these classes together: | |||
|
125 | 389 | tasks, or use the :meth:`AsyncResult.get` method of the results to wait |
|
126 | 390 | for and then receive the results. |
|
127 | 391 | |
|
128 | We are in the process of developing more detailed information about the task | |
|
129 | interface. For now, the docstrings of the :meth:`Client.apply`, | |
|
130 | and :func:`depend` methods should be consulted. | |
|
131 | 392 | |
|
393 | .. seealso:: | |
|
132 | 394 | |
|
395 | A demo of :ref:`DAG Dependencies <dag_dependencies>` with NetworkX and IPython. |
@@ -123,7 +123,7 opening a Windows Command Prompt and typing ``ipython``. This will | |||
|
123 | 123 | start IPython's interactive shell and you should see something like the |
|
124 | 124 | following screenshot: |
|
125 | 125 | |
|
126 | .. image:: ipython_shell.* | |
|
126 | .. image:: ../parallel/ipython_shell.* | |
|
127 | 127 | |
|
128 | 128 | Starting an IPython cluster |
|
129 | 129 | =========================== |
@@ -171,7 +171,7 You should see a number of messages printed to the screen, ending with | |||
|
171 | 171 | "IPython cluster: started". The result should look something like the following |
|
172 | 172 | screenshot: |
|
173 | 173 | |
|
174 |
.. image:: ipcluster |
|
|
174 | .. image:: ../parallel/ipcluster_start.* | |
|
175 | 175 | |
|
176 | 176 | At this point, the controller and two engines are running on your local host. |
|
177 | 177 | This configuration is useful for testing and for situations where you want to |
@@ -213,7 +213,7 The output of this command is shown in the screenshot below. Notice how | |||
|
213 | 213 | :command:`ipclusterz` prints out the location of the newly created cluster |
|
214 | 214 | directory. |
|
215 | 215 | |
|
216 |
.. image:: ipcluster |
|
|
216 | .. image:: ../parallel/ipcluster_create.* | |
|
217 | 217 | |
|
218 | 218 | Configuring a cluster profile |
|
219 | 219 | ----------------------------- |
@@ -282,7 +282,7 must be run again to regenerate the XML job description files. The | |||
|
282 | 282 | following screenshot shows what the HPC Job Manager interface looks like |
|
283 | 283 | with a running IPython cluster. |
|
284 | 284 | |
|
285 | .. image:: hpc_job_manager.* | |
|
285 | .. image:: ../parallel/hpc_job_manager.* | |
|
286 | 286 | |
|
287 | 287 | Performing a simple interactive parallel computation |
|
288 | 288 | ==================================================== |
@@ -333,5 +333,5 The :meth:`map` method has the same signature as Python's builtin :func:`map` | |||
|
333 | 333 | function, but runs the calculation in parallel. More involved examples of using |
|
334 | 334 | :class:`MultiEngineClient` are provided in the examples that follow. |
|
335 | 335 | |
|
336 | .. image:: mec_simple.* | |
|
336 | .. image:: ../parallel/mec_simple.* | |
|
337 | 337 |
General Comments 0
You need to be logged in to leave comments.
Login now