Show More
@@ -23,8 +23,7 b'' | |||||
23 | ], |
|
23 | ], | |
24 | "language": "python", |
|
24 | "language": "python", | |
25 | "metadata": {}, |
|
25 | "metadata": {}, | |
26 |
"outputs": [] |
|
26 | "outputs": [] | |
27 | "prompt_number": 11 |
|
|||
28 | }, |
|
27 | }, | |
29 | { |
|
28 | { | |
30 | "cell_type": "code", |
|
29 | "cell_type": "code", | |
@@ -34,16 +33,7 b'' | |||||
34 | ], |
|
33 | ], | |
35 | "language": "python", |
|
34 | "language": "python", | |
36 | "metadata": {}, |
|
35 | "metadata": {}, | |
37 | "outputs": [ |
|
36 | "outputs": [] | |
38 | { |
|
|||
39 | "output_type": "stream", |
|
|||
40 | "stream": "stdout", |
|
|||
41 | "text": [ |
|
|||
42 | "hi\n" |
|
|||
43 | ] |
|
|||
44 | } |
|
|||
45 | ], |
|
|||
46 | "prompt_number": 12 |
|
|||
47 | }, |
|
37 | }, | |
48 | { |
|
38 | { | |
49 | "cell_type": "code", |
|
39 | "cell_type": "code", | |
@@ -53,16 +43,7 b'' | |||||
53 | ], |
|
43 | ], | |
54 | "language": "python", |
|
44 | "language": "python", | |
55 | "metadata": {}, |
|
45 | "metadata": {}, | |
56 | "outputs": [ |
|
46 | "outputs": [] | |
57 | { |
|
|||
58 | "metadata": {}, |
|
|||
59 | "output_type": "display_data", |
|
|||
60 | "text": [ |
|
|||
61 | "'hi'" |
|
|||
62 | ] |
|
|||
63 | } |
|
|||
64 | ], |
|
|||
65 | "prompt_number": 13 |
|
|||
66 | }, |
|
47 | }, | |
67 | { |
|
48 | { | |
68 | "cell_type": "code", |
|
49 | "cell_type": "code", | |
@@ -72,17 +53,7 b'' | |||||
72 | ], |
|
53 | ], | |
73 | "language": "python", |
|
54 | "language": "python", | |
74 | "metadata": {}, |
|
55 | "metadata": {}, | |
75 | "outputs": [ |
|
56 | "outputs": [] | |
76 | { |
|
|||
77 | "metadata": {}, |
|
|||
78 | "output_type": "pyout", |
|
|||
79 | "prompt_number": 14, |
|
|||
80 | "text": [ |
|
|||
81 | "1" |
|
|||
82 | ] |
|
|||
83 | } |
|
|||
84 | ], |
|
|||
85 | "prompt_number": 14 |
|
|||
86 | }, |
|
57 | }, | |
87 | { |
|
58 | { | |
88 | "cell_type": "code", |
|
59 | "cell_type": "code", | |
@@ -94,25 +65,7 b'' | |||||
94 | ], |
|
65 | ], | |
95 | "language": "python", |
|
66 | "language": "python", | |
96 | "metadata": {}, |
|
67 | "metadata": {}, | |
97 | "outputs": [ |
|
68 | "outputs": [] | |
98 | { |
|
|||
99 | "metadata": {}, |
|
|||
100 | "output_type": "pyout", |
|
|||
101 | "prompt_number": 5, |
|
|||
102 | "text": [ |
|
|||
103 | "[<matplotlib.lines.Line2D at 0x10a1da150>]" |
|
|||
104 | ] |
|
|||
105 | }, |
|
|||
106 | { |
|
|||
107 | "metadata": {}, |
|
|||
108 | "output_type": "display_data", |
|
|||
109 | "png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAF8CAYAAAAXRhVcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VHW+//H3TJJJ7yGEJKQQCIkgIqJSREFQFxVU4O51\ny3UboMCyFtbCKgro2hFRUQS23L3+1lsAFVZBEpoKFiCCAgkBkpBGCOmFhJQ5vz92l4cuLYFMzpTX\n8y9NZiZv5OTM2+98zvlaDMMwBAAAgC5nNTsAAACAu6JoAQAAOAhFCwAAwEEoWgAAAA5C0QIAAHAQ\nihYAAICDeF/oAW+99ZZycnJksVjk4+Ojn/3sZxo4cOAZjyspKdFbb72l+vp6hYSEaMaMGYqNjXVI\naAAAAFdgudB9tL799lsNGDBAVqtVWVlZeuedd/TKK6+c8bgHH3xQv/jFLzRo0CBlZWVp1apVevbZ\nZx0WHAAAwNld8KPDyy+/XFarVYZhqLS0VMnJyWc85sSJE2pqatKgQYMkSUOGDFFFRYVqamq6PjEA\nAICL6NCMVk5OjqZPn65t27bpJz/5yRnfr6qqUnBw8Pe+Fhoaqqqqqq5JCQAA4II6VLTS0tK0YsUK\n/eQnP9GCBQvO/kLWM1+qra3t0tIBAAC4sAsOw3/X4MGDVVlZqYaGBgUFBZ3+enh4+BkfE9bU1Cgi\nIuKcr7VlyxbZ7fZOxgUAAOh+Pj4+uv766zv9vPMWrYaGBuXk5Oiqq66SxWLRjh07FBUVpaCgIFVX\nV8tisSgsLEzR0dEKDAzUnj17NHjwYO3atUshISGKioo652vb7XYNGTKk04HhedatW6cJEyaYHQNO\nbOuRav1hZ6neuLO/1q3fqAP+qTrR2Kr7R/bWwJigC78APBLnFnRGVlbWRT3vgitaGzZs0B//+Ef5\n+voqIiJCv/3tbyVJ7777riRp5syZkqQ5c+Zo2bJl+tOf/qSQkBDNmTPnogIBQGccqTyppZ8X6/nx\nKQr181aod7t+f0uKPs2v0bObCzQ0PkRTr4lViF+nFvABoEuc98wTFBSkJ5544qzf+2fB+qe4uDg9\n/fTTXZcMAC6gpqlV8zPyNWt4vFIiA05/3WKx6Po+4boqPkR/3nVM01Zn61dXx+qmfhGyWCwmJgbg\nabgzPACX1GY39PvNBRqdEq7RKeFnfUygzUuzRsTr6ZtT9MGBE3r4w8MqrG7u5qQAPBlFC4BLevuL\nEtm8rPr5Vb0u+NjUHgF6bWJ/jUoO05wPD+lPO0vV3MbFOAAcj6IFp5eammp2BDiZj3MrtbukTnPH\nJMrL+v2PAs91vHhZLbpjQA8tuytNpfWndO/qbO0squuOuHBSnFvQHZgOhdPr37+/2RHgRLLLG7Xy\nq1Ituq2fgnzPPIVd6HiJDPTR4zcma2dRnd7YUaR+UQGaMSxekYE+jooMJ8W5Bd2BFS0ALqOysVVP\nZ+broVEJSgj3u6TXurp3iJZPTld8qK/uey9H7+8/oXb7ebd+BYBOo2gBcAktbXYtyMzT7elRGp4Y\n2iWv6ett1c+HxmrRbf20vaBGv1l7ULknTnbJawOARNEC4AIMw9DrO4rUI8imHw3u2eWvnxDupxdv\n7as7B/TQvI1HtHRHkRpb2rv85wDwPBQtAE7vgwMVyj1xUr+9PsFh98GyWCy6qV+kVkxOV0u7oamr\nsrX1SLUMg48TAVw8huEBOLU9pfV6d0+ZXp2YKn8fL4f/vBA/bz04KkH7yxq0ZHuRNh6q1K9H9FZs\niK/DfzYA98OKFgCnVVZ/Ss9tKdBjo5PUK7h7i86AmCC9eVeaBscG6zcfHNT/+7pMLe3cewtA51C0\nADilptZ2zc/I179f0VNXxgWbksHbatEPB/XU0jvTdPBEo+5bk6M9pfWmZAHgmvjoEIDTMQxDr3xa\nqJRIf901oIfZcdQz2KaFN6dox9EavbTtqK6IDda0a2IV7s+9twCcHytaAJzO/3xzXGX1Lbp/ZG+n\n2gR6RGKYVk5JV5ift6avztFHORWyMywP4DwoWgCcyldFtfpgf4WeGpcsm7fznaL8fbw0/do4PT8+\nRR/nVuqhdYeUX9VkdiwATsr5zmIAPFZRTbNe2laoJ8YmKSrQZnac80qJDNDiCaka1y9Cj3x0WCu+\nLFFTK/feAvB9FC0ATqGxpV1PZeTpl0N7aUDPILPjdIjVYtHt6VFaPilNVU2tmrY6W58frTU7FgAn\nwjA8ANPZDUPPbynQlbHBGp8WZXacTgsP8NGjo5P0dWm9Xt9epA25lZo1PF7RQc69KgfA8VjRAmC6\n/9x9TCdb7ZoxPN7sKJfkythgLZuUpn6R/pr5Xo5WfXNcbWxUDXg0ihYAU32SX61Nh6v0xNgkeVud\n5wrDi2XzsuqnQ3ppycRU7Syu16/fz1F2eaPZsQCYhKIFwDR5lU16fXuxnhrXx+3uSRUX6qfnx6fo\n36+I0YLMPC35rFD1p9rMjgWgm1G0AJiirrlN8zPzNHN4nPpFBZgdxyEsFovGpIRr5eR0WS0WTVuV\nrcxDVWxUDXgQihaAbtduN/TM5nyNSgrTmJQIs+M4XJCvt2aP7K35N/XR6n3leuSjwyqqaTY7FoBu\nQNEC0O2Wf1Uib6tFv7w61uwo3SotOlBv3NFfwxND9eC6XP1l9zG1tLFRNeDOKFoAutXG3Ep9VVin\nuWOS5OUGw++d5WW1aNLAaL01KU0F1c2aviZHu4rrzI4FwEG4jxaAbpNT3qgVX5Xq5dv6KtjXs08/\nPQJtenJcsr4srNWSz4qUHh2ge4fFKzLAvS4KADwdK1oAukXlyVYt3JSvB0f1VmK4v9lxnMa1CaFa\nMSVdMcG+um9NjtYeOKF27r0FuA2KFgCHa2m36+nMfN3aP1IjEsPMjuN0/Lyt+uXVsXrptr7aeqRa\nD6zL1aGKk2bHAtAFKFoAHMowDC3dUaxwf2/9+MoYs+M4taRwf718ez/dnh6lxzcc0VtfFOtkCxtV\nA66MogXAodZlV+hAeaMeviFRVovnDb93ltVi0S2pkVoxJV0nW9o1dXW2Ps2v4d5bgIvy7GlUAA71\nzbEGvZNVplcnpirA5mV2HJcS6uetOdcn6ptjDXp9e5E+zq3UrBHx6hXsa3Y0AJ3AihYAhyhvaNGz\nm/P16OhExYZQDi7WoF5BevOu/hoYE6jZ7x/Uu3vK1NrOvbcAV0HRAtDlmtvsmp+RpymXR+uq+BCz\n47g8Hy+r7r4iRq/f2V/7yho1872D+raswexYADqAogWgSxmGocWfFiox3E+TL482O45b6RXsq2du\n6aN7ruql5zYXaNEnR1XbzEbVgDOjaAHoUv/3TblKak/pgesSZGH4vctZLBaNSg7TiinpCrB5adqq\nbG04WCk7w/KAU6JoAegyO4vqtGZ/uZ4clyxfb04vjhRo89KMYfF69gcp+jCnQr/98JAKqpvMjgXg\nX3AmBNAlSmqb9eK2o3rixmRFB9nMjuMx+kYF6NUJqRrdJ1wPf3hYf9hZqmY2qgacBkULwCVrbGnX\nUxn5+tlVvTQwJsjsOB7Hy2rRxMt6aNmkNB2vP6Vpq7L1VVGt2bEAiPtoAbhEdsPQi1uP6vKYQN2e\nHmV2HI8WGeCj392YrF3FdXpjR5E2HKzSjOFx6hHICiNgFla0AFySd7LKVH+qTTOHx5sdBf8wND5E\nb09KV1K4n2asydGafeVsVA2YhKIF4KJ9ll+jj3MrNW9ssny8OJ04E19vq+65qpcWT0jVF4W1mv3B\nQeWUN5odC/A4nBkBXJT8qiYt2V6kp8b1UXiAj9lxcA69w/z0wvi+mjQwWvMz8vT69iI1nOLeW0B3\noWgB6LS65jYtyMzTvdfGKbVHgNlxcAEWi0Xj+kVoxZR02Q1DU1dna8uRajaqBroBRQtAp7TbDf1+\nc4FGJIZpXL8Is+OgE4J9vXX/dQl6cmwf/c/eMs3dcEQltc1mxwLcGkULQKes/KpEFov0q6tjzY6C\ni3RZz0AtvTNNQ+OCdf/aXL2TdUwtbFQNOARFC0CHZR6q0ueFtfrdmCR5Wdlex5V5WS2aMqin3rwr\nTYcrm3Tfmhx9XVpvdizA7XAfLQAdknvipN7+skQv3tpXIX6cOtxFdJBN82/qo8+P1mrRJ0d1eUyQ\npl8TxwUOQBdhRQvABVWfbNWCzDzdf11vJUf4mx0HDjA8MVQrJqcrwt9H09fk6G/ZFWxUDXQBihaA\n82ptt2vhpnzdkhqp65LCzI4DB/L38dK0a+P0wvi+yjxUpQfX5epI5UmzYwEujaIF4Lze/LxYIX7e\n+umQGLOjoJv0ifTXKxP66QepkXps/REt/7JETa3tZscCXBJFC8A5/S27Qt+WNeqRGxJltTD87kms\nFovGp0Vp+eQ01TS3aeqqbG0vqDE7FuBymGgFcFbfljXoL7uPafGEfgq0eZkdByYJ9/fRIzckak9p\nvV7bXqSNuVWaOTxePYPZqBroCFa0AJyhvKFFv9+cr0dGJyou1M/sOHACg2ODtWxSmlJ7BGjW+zn6\n32+Oq42NqoELomgB+J5TbXbNz8jTpIHRGhofYnYcOBGbl1U/uTJGSyb219cl9Zr5Xo72lzWYHQtw\nahQtAKcZhqHFnxaqd5if/u3yaLPjwEnFhfrq2R+k6CdXxuiZzQVa/Gmh6prZqBo4G4oWgNNWf1uu\nwppmPTgqQRaG33EeFotFN/QJ18op6bJ5WTRtdbYyDlWyUTXwLyhaACRJu4rrtOrbcs2/qY/8vDk1\noGMCbV6aNaK3nr45Re/tO6FHPjqswho2qgb+ibMpAJXWndKLW4/qdzcmKzqIq8nQeak9AvT6Hf01\nIjFUD63L1Z93lepUGxtVAxQtwMOdbGnXUxl5+umQGA3qFWR2HLgwL6tFdw2M1rJJaSquPaXpq7O1\nq7jO7FiAqbiPFuDB7Iahl7Yd1WXRgZqQHmV2HLiJqECbnhibrK+KavXa9iL1jwrQfcPiFRnIRtXw\nPKxoAR7sr1+XqbqpTbNGxDP8ji53Te9QLZ+crtgQX933Xo4+2H9C7dx7Cx6GogV4qB1Ha7T+YKWe\nHJcsmxenAjiGn7dVv7g6Vi/f1lef5NfoN2sPKreCjarhOTi7Ah6ooLpJiz8t0pPjkhURwMc5cLzE\ncH+9fFtf3XFZD837+IiW7ihWYwsbVcP9UbQAD1N/qk3zM/I1/dpY9e8RaHYceBCLxaKbUyO1YnK6\nWtrtmrYqW5/kVXPvLbg1huEBD9JuN/Ts5gJdmxCim/pFmh0HHirEz1sPjkrQvrIGLdlepA25lZo9\nord6hfiaHQ3ocqxoAR7kjztLZTcMTb8mzuwogAbGBOmtu9I0uFewZn9wUO/uKVNrO/fegnuhaAEe\nYvPhKn1aUKPHb0yWl5UrDOEcvK0W/fCKnnrjzv46cLxRM947qG+O1ZsdC+gyfHQIeIBDFSf11hcl\nemF8X4X48WsP5xMT7KuFN/fR9qO1en7rUV0ZG6xp18QqzJ+LNeDaWNEC3Fx1U6sWZOZp9sh49Yn0\nNzsOcE4Wi0XXJYVp5eR0hfh6adrqHK3PqZCdYXm4MIoW4Mba7Iae2VSgcX0jdH1yuNlxgA4JsHnp\n3mHxen58ij46WKk5fzuk/Koms2MBF4WiBbixtz4vVqDNqnuu6mV2FKDTUiID9OqEVI3tG6FHPjqs\nlV+VqKmVe2/BtVC0ADf1UU6F9pTW69HRSbKyvQ5clJfVotvTo/T2pDSdaGzV9NU5+vxordmxgA5j\nKhZwQ/vLGvSnXce0eEI/Bdq8zI4DXLKIAB/NHZOkrJI6vb69WBtzKzVjeLyig2xmRwPOixUtwM2c\naGzRM5sL9PANCYoP9TM7DtClhsSF6O1JaeoT6a+Z7+Vo1bflbFQNp0bRAtxIS5tdCzPzdceAKF3T\nO9TsOIBD2Lyt+o8hvfTqxFTtLKrVrPcPKru80exYwFlRtAA3YRiGXt1epJhgm/59UE+z4wAOFx/q\np+fH99UPB0VrQUaeXvusSPWn2syOBXwPRQtwE+/tP6G8yiY9NCpBFobf4SEsFotu7BuhFVPSJYs0\nbVW2Nh2uYqNqOA2KFuAGvi6p1//uPa75NyXL34fhd3ieYF9v/WZkbz11Ux+t+rZcj60/rOLaZrNj\nARe+6nDJkiU6fPiwvL29FRISomnTpik+Pv6Mxy1dulR79+5VYGDg6a/NmTPnrI8F0HWO1Z3S81sL\n9LsxSYoJ9jU7DmCq9OhAvXFHf72//4QeWJuriZf10N1X9JTNm3UFmOOCRWvkyJGaPXu2rFartmzZ\nouXLl2vhwoVnPM5isWjy5Mm65ZZbHBIUwJmaWts1PyNPPx4coytig82OAzgFL6tFky+P1qjkMC37\nolj3rsnR7JHxGhIXYnY0eKALVvyhQ4fKav37w5KTk1VdXX3Ox/KZONB9DMPQS9sKldojQBMvizI7\nDuB0ooNsenJcH907LE6LPy3Sc1sKVHWy1exY8DCdumFpZmamhgwZcs7vr1mzRuvXr1d4eLimTJmi\ngQMHXnJAAGf31z3HVXmyRY+N6cfwO3AewxJCdUWvIP316zLduyZH9wyJ0a1pUfKy8nsDx+tw0dq4\ncaMOHTqkBQsWnPX7U6dOlc329zv07tu3T4sWLdLSpUsVEBDQNUkBnPb50Vp9mF2h1+/oL5sXsyfA\nhfj7eOlX18Tpxr4Rem17kTYeqtL9I3urbxTvUXCsDp2h165dq23btmnevHny8zv7nab/WbIkaeDA\ngQoLC1N5eXnXpARwWmF1s175tFDzxiUrMtDH7DiAS0mO8Nei2/vp1rQo/W7DES37olgnW9ioGo5z\n3qJlt9u1cuVK7du3T/PmzVNQUNDp71VXV6umpub0v2dlZclut0uSDhw4oKamJsXGxjooNuCZGk61\naX5mnqZeE6v06MALPwHAGawWi8b3j9TyyWlqONWuqauz9Vl+DXPGcIjzfnRYUVGhjIwMxcTEaO7c\nuae/PmvWLG3cuFGSNHPmTEnS1q1btXLlStlsNgUHB2vOnDnfW+UCcGna7Yae23JUV8WF6JbUSLPj\nAC4vzN9Hv70hUd8cq9dr24v1cW6lZo2I5zYp6FIWw6QKv2nTpvMO1gP4vj/sLFVOeaOeG99X3gzx\nAl2qtd2uVd+Wa/W35fq3QT01+fJofs/wPVlZWRo7dmynn8cULeACth6p1tYj1XpibDInf8ABfLys\n+tHgGL1+R3/tPVavGe/laF9Zg9mx4AYoWoCTO1J5Uks/L9b8m5IV6tepO7IA6KReIb76/S0p+o8h\nMXp2c4Fe+aRQdc1sVI2LR9ECnFhNU6vmZ+Tr1yPilRLJZehAd7BYLLo+OVwrpqTLz8eqaauztTG3\nkmF5XBSKFuCk2uyGntlUoDEp4bqhT7jZcQCPE2jz0szh8Xr6lhStPVCh3354WEerm8yOBRdD0QKc\n1NtfFMvPx6qfXdXL7CiAR0uNCtCSiam6oU+YfvvhYf1xZ6ma2+xmx4KLoGgBTmjDwUrtLqnX3DFJ\nbBMCOAEvq0UTL+uhZXel6Vj9KU1fna2vimrNjgUXwGQt4GSyyxv1h52lWnR7PwXavMyOA+A7IgN9\n9PiNydpVXKc3dhTp49wqzRgWp6hA7huJs2NFC3AilY2tejozX3OuT1BC2Nm3uwJgvqHxIXp7Urp6\nh/rqvjU5em9fudrtDMvjTBQtwEm0tNm1IDNPt6dHaVhCqNlxAFyAr7dVPx8aq1cmpGrH0VrN/uCg\nDp5oNDsWnAxFC3AChmHo9R1Fig6y6UeDe5odB0AnJIT56cVb+2rSwGg9uTFPb+woUiMbVeMfKFqA\nE/jgQIUOVZzUnOsTZLEw/A64GovFonH9IrRicrpa2w1NXZWtrUequfcWGIYHzPZ1ab3e3VOmVyem\nyt+H4XfAlYX4eevBUQnaf7xBr31WpI9zK/XrEb0VF8pG1Z6KFS3ARMfqT+n5LQV6bEySegVzIgbc\nxYCeQVp6V5qujAvW/WsP6p2vy9TSzr23PBFFCzBJU2u7FmTk6e4reurK2GCz4wDoYt5Wi344qKeW\n3pmmQydO6r41OdpTWm92LHQzPjoETGAYhhZ9UqiUyADdOaCH2XEAOFDPYJsW3NxHO47W6KVtR3VF\nryBNuzZO4f4+ZkdDN2BFCzDBf+89ruMNLbp/ZG+G3wEPMSIxTCunpCvM30fTV+foo5wK2RmWd3sU\nLaCbfVlYq7UHKvTUuGTZvPkVBDyJv4+Xpl8bp+fHp+jj3Eo9tO6Q8irZqNqdcZYHulFRTbNe/qRQ\nT4xNYssOwIOlRAZo8YRU3ZQaoUfXH9byL0vU1Mq9t9wRRQvoJo0t7XoqI0+/vDpWA3oGmR0HgMms\nFotuS4vS8klpqmlq1bTV2dpxtMbsWOhiDMMD3aDdbuj5LQUaEhes8f0jzY4DwImEB/jokdFJ+rq0\nXq9v//tG1bOGxys6iFVvd8CKFtAN/rL7mJpa7bpvWLzZUQA4qStjg7VsUpr6RQVo5ns5+r9vjquN\njapdHkULcLBP8qq1+Ui1nhibJG8rVxgCODebl1U/vTJGSyb21+6Ses16L0f7jzeYHQuXgKIFONCR\nypN6fUexnhqXrDDumQOgg+JCffXcD1J09+AYPb0pX69+Vqi65jazY+EiULQAB6ltbtOCzHzNHB6n\nvlEBZscB4GIsFovGpIRr5eR0eVstmr46W5mHqtio2sVQtAAHaLcb+v3mfF2fHKYxKRFmxwHgwoJ8\nvfXrEb214OY+WrOvXI98dFhFNc1mx0IHUbQAB1j+ZYm8rRb9Ymis2VEAuIn+PQL1+h39NSIxVA+u\ny9V/7j6mU21sVO3sKFpAF9uYW6mviuo0d0ySvBh+B9CFvKwW3TUwWssmpelodbPuXZOtXcV1ZsfC\neXAfLaAL5ZQ3asVXpXr5tr4K9uXXC4BjRAXa9OS4ZH1VVKvXthepf48A3TcsXpEBXHTjbFjRArpI\n5clWLdyUr4dGJSgx3N/sOAA8wDW9Q7V8crp6BfvqvjU5WnvghNq595ZToWgBXaCl3a6FmXm6NS1K\nwxNDzY4DwIP4eVv1y6tj9dJtfbU1r1oPrMvVoYqTZsfCP1C0gEtkGIbe2F6syAAf/XhwT7PjAPBQ\nSeH+WnRbP92eHqXHNxzRW58Xq7GFjarNRtECLtG67ArlnGjUwzckymph+B2AeSwWi25JjdSKKek6\n2dquaauy9Ul+NffeMhHTusAl+OZYvd7JKtOrE1Pl7+NldhwAkCSF+nlrzvWJ+rasQa99VqSPD1bp\n1yPi1SvE1+xoHocVLeAiHa9v0bObC/TYmETFcvIC4IQujwnSm3f11+W9AjX7g4N6d0+ZWtu591Z3\nomgBF6G5za4FmXmaMqinhsSFmB0HAM7Jx8uqu6+I0et39tf+442a8d5BfXOMjaq7Cx8dAp1kGIZe\n+eSoEsP9NHlgD7PjAECH9Ar21dM399FnBbV6fkuBhsQFa9q1cQr1owo4EitaQCf93zflKq1r0QPX\nJcjC8DsAF2KxWDQqOUwrp6Qr0NdL01Zla8PBStkZlncYihbQCTuL6vTe/hN66qZk+Xrz6wPANQXY\nvDRjWLye/UGKPsyp0G//dkgF1U1mx3JLvFMAHVRc26yXth3VEzcmqUegzew4AHDJ+kYF6NUJqRqT\nEq6HPzysP+wsVTMbVXcpihbQAY0t7Zqfka+fDe2lATFBZscBgC7jZbVowmU99PakNJU3tGjaqmx9\nWVhrdiy3wQQccAF2w9ALWws0KCZIt6VFmR0HABwiIsBHc8ckaXdxnV7fUayPcys1Y3g8K/iXiBUt\n4AL+K6tMDafaNWN4nNlRAMDhrooP0fJJaUoK99eMNTla/W05G1VfAooWcB6f5dco41Cl5o1Nlo8X\nvy4APIPN26p7ruqlxRNS9WVRrX79wUHllDeaHcsl8c4BnEN+VZOWbC/Sk+P6KDzAx+w4ANDteof5\n6YXxfTXl8mjNz8jTa9uL1HCqzexYLoWiBZxFXXOb5mfk6b5hcUqNCjA7DgCYxmKxaGzfCK2Yki7D\nMDR1dba2HKlio+oOomgB/6Ldbuj3mws0MilMY/tGmB0HAJxCsK+37r8uQU+O7aP/2Xtcj60/opLa\nZrNjOT2KFvAvVn5VIqtF+tXVsWZHAQCnc1nPQC29M01X9w7R/Wtz9V9Zx9TCRtXnRNECviPzUJU+\nL6zT725MkpeV7XUA4Gy8rBZNuTxab96VpiOVTbpvTY6+Lqk3O5ZT4j5awD8cPNGot78s0Uu39VWw\nL78aAHAh0UE2zb+pjz4/WqtXPi3UgJ6BuvfaOC4g+g5WtABJVSdbtTAzXw9c11tJ4f5mxwEAlzI8\nMVTLJ6cpMsBH09fk6G/ZFWxU/Q8ULXi81na7nt6Ur1tSIzUyKczsOADgkvx9vDTt2ji9eGtfZR6q\n0gNrc3Wk8qTZsUxH0YLHW/p5sUL9vPXTITFmRwEAl5cc4a9XJvTT+P6Remz9Eb39RbGaWtvNjmUa\nihY82t+yK7S/rFGP3JAoq4XhdwDoClaLRePTorRicprqTrVr6qpsbS+o8ch7bzHxC4/1bVmD/rL7\nmBZPSFWAzcvsOADgdsL8ffTwDYnaW1qvJduL9HFupWYN762ewZ6zUTUrWvBI5Q0t+v3mfD0yOlFx\nob5mxwEAt3ZFbLCWTUpTWo9AzXo/R/+797jaPGSjaooWPM6pNrvmZ+Rp8sBoDY0PMTsOAHgEm5dV\nP74yRq/d0V97jtVr5ns52l/WYHYsh6NowaMYhqHFnxYqIcxPUy6PNjsOAHic2BBf/f6WFP3kyhg9\ns7lAiz8tVF2z+25UTdGCR1n1bbkKa5r14KgEWRh+BwBTWCwW3dAnXCunpMvmZdW01dnamFvplsPy\nFC14jF3FdVr9bbnm39RHvt4c+gBgtkCbl2aNiNfTN6fo/f0n9PCHh1VY7V4bVfNuA49QUntKL249\nqsfHJis6yHOudgEAV5DaI0Cv39Ff1yWH6aG/5epPu0p1qs09NqqmaMHtnWxp1/yMPP3HkBhdHhNk\ndhwAwFl4WS26c0APvT0pXaW1pzR9dbZ2FtWZHeuScR8tuDW7YejFbUd1Wc9A3Z4eZXYcAMAFRAb6\n6PGxydprDNYNAAAZ0ElEQVRZVKc3dhQpNSpA9w2LV2Sga25UzYoW3Nr/+7pMNU1t+vWIeIbfAcCF\nXN07RMsnpys21Ff3vZej9/efULsL3nuLogW3tb2gRusPVurJccny8eJQBwBX4+tt1S+GxmrRbf30\nWX6NfrP2oHJPuNZG1bz7wC0VVDfp1c+K9NS4ZEUEuOZyMwDg7xLC/fTSbX11x2U9NG/jES3dUaTG\nFtfYqJqiBbdT19ym+Rn5uvfaOPXvEWh2HABAF7BYLLo5NVIrJqerpd3Q1FXZ2pZX7fT33mIYHm6l\n3W7ouS0FGpYQonH9IsyOAwDoYiF+3npwVIL2lzWc3qj61yN6KzbEOfetZUULbuUPO0tlN6Rp18SZ\nHQUA4EADYoL05l1pGtwrWL/54KD++nWZWtqd795bFC24jU2Hq7S9oEaP35gkLytXGAKAu/O2WvTD\nK3rqjTv7K7u8UTPW5Ghvab3Zsb6Hjw7hFnIrTmrZFyV68da+CvHjsAYATxIT7KuFN/fR9qO1emHb\nUQ2ODdb0a2IV5m/+xVCsaMHlVTe1amFmnn4zsreSI/zNjgMAMIHFYtF1SWFaOTldob5emrY6R+tz\nKmQ3eVieogWX1tpu19Ob8jWub4RGJYeZHQcAYLIAm5fuHRav58enaP3BSj207pDyq5pMy0PRgkt7\n64sSBdm8dM9VvcyOAgBwIimRAXp1YqrG9YvQIx8d1oovS9TU2v333qJowWV9lFOhb4416NHRSbKy\nvQ4A4F9YLRbdnh6l5ZPSVHmyVdNX5+jzo7XdmoGpYbik/WUN+vOuY3plQj8F2rzMjgMAcGLhAT56\nbEySvi6p12v/uPfWzOHxig6yOfxns6IFl3OisUVPb87XwzckKj7Uz+w4AAAXcWVcsN6elKa+kf6a\n+V6OVn1b7vCNqilacCmn2uxakJGvuwZE6+reIWbHAQC4GJu3VT8d0ktLJqZqZ1GdZr1/UNnljQ77\neRQtuAzDMLTks0LFhtj0w0HRZscBALiwuFA/PT8+Rf9+RbQWZOZpyWeFqj/V1uU/54IzWkuWLNHh\nw4fl7e2tkJAQTZs2TfHx8Wc8rqSkRG+99Zbq6+sVEhKiGTNmKDY2tssDw3Ot2XdC+dXNWjwhVRaG\n3wEAl8hisWhMSoSujg/RH3cd07RV2Zp6TZzG9g3vsveZC65ojRw5UkuWLNHixYs1evRoLV++/KyP\ne/nll/XDH/5QS5Ys0V133aU33nijSwICkpRVUqf/++a45o/rIz9vFmIBAF0nyNdbvxnZW0/d1Eer\n95Xr0fWHVVTT3CWvfcF3rKFDh8pq/fvDkpOTVV1dfcZjTpw4oaamJg0aNEiSNGTIEFVUVKimpqZL\nQsKzHas7pRe2HtXcMUnqGez4K0QAAJ4pPTpQb9zRX8MSQvXgulz9ZfcxtbRd2kbVnVoayMzM1JAh\nQ874elVVlYKDg7/3tdDQUFVVVV1SOKCptV1PZeTpx4NjdEVs8IWfAADAJfCyWjRpYLTempSmguom\nTV+To93FdRf9eh0uWhs3btShQ4f0ox/96OwvZD3zpdraun6oDJ7DMAy9tK1QaT0CNfGyKLPjAAA8\nSI9Am54c10f3DYvTsi9KLvp1OlS01q5dq23btmnevHny8zvzvkXh4eFnfExYU1OjiIiIiw4G/HXP\ncVWdbNWvR8Yz/A4AMMWwhFAtn5x20c8/b9Gy2+1auXKl9u3bp3nz5ikoKOj096qrq0+Xq+joaAUG\nBmrPnj2SpF27dikkJERRUaxC4OJ8frRWH+ZUaN64ZNm8GH4HAJjnUv5n/7y3d6ioqFBGRoZiYmI0\nd+7c01+fNWuWNm7cKEmaOXOmJGnOnDlatmyZ/vSnPykkJERz5sy56FDwbIXVzXrl00ItvLmPIgN8\nzI4DAMBFsxiG4dh7z5/Dpk2bzjpYD8/WcKpNsz/I1Y8G99TNqZFmxwEAQJKUlZWlsWPHdvp5fCYD\np9FuN/TslgJd3TuEkgUAcAsULTiNP+8qVWu7oenXxpkdBQCALkHRglPYcqRaW/Nq9MTYZHlbucIQ\nAOAeLrjXIeBohytO6s3Pi/X8+BSF+nFIAgDcBytaMFVNU6sWZOZr9oh4pUQGmB0HAIAuRdGCadrs\nhp7ZVKAbU8J1fZ9ws+MAANDlKFowzbIviuXvY9XPhvYyOwoAAA5B0YIp1h+sVFZJvR4bkyQr2+sA\nANwUk8fodgeON+qPO0v1yu39FGjzMjsOAAAOw4oWulVFY4ue3pSv316foN5hZ25QDgCAO6Foodu0\ntNm1IDNfEy+L0rUJoWbHAQDA4Sha6BaGYei17UXqGWTT3Vf0NDsOAADdgqKFbvH+/hM6XHlSc65P\nkIXhdwCAh2AYHg73dWm9/nvvcb06MVX+Pgy/AwA8BytacKhj9af0/JYCzR2TpF7BvmbHAQCgW1G0\n4DBNre1akJGnu6/oqcGxwWbHAQCg21G04BCGYWjRJ4XqGxmgOwf0MDsOAACmoGjBIf5773Edb2jR\nb0b2ZvgdAOCxGIZHl/uysFbrDlTo9Tv6y+ZNlwcAeC7eBdGlCmua9fInhXpibLIiA33MjgMAgKko\nWugyjS3tmp+Rp19eHavLegaaHQcAANNRtNAl2u2Gnt9SoCFxwRrfP9LsOAAAOAWKFrrEX3YfU1Or\nXfcNizc7CgAAToOihUv2SV61Nh+p1hNjk+Rt5QpDAAD+iasOcUmOVJ7U6zuK9fz4FIX5M/wOAMB3\nsaKFi1bb3Kb5GfmaNTxeKZEBZscBAMDpULRwUdrshp7ZlK/RfcI0OiXc7DgAADglihYuyvIvS2Tz\nsurnQ2PNjgIAgNOiaKHTPs6t1M6iOs0dkygvht8BADgnhuHRKdnljVr5VakW3dZPQb4cPgAAnA8r\nWuiwypOtenpTvh4alaCEcD+z4wAA4PQoWuiQlna7Fmbm6ba0KA1PDDU7DgAALoGihQsyDENvbC9W\nZIBNPx7c0+w4AAC4DIoWLmhddoUOnmjUwzckyGJh+B0AgI5imhnntbe0Xv/v6zK9OiFV/j5eZscB\nAMClsKKFczpe36LnthTo0dGJ6hXia3YcAABcDkULZ9XcZtf8zDz926CeGhIXYnYcAABcEkULZzAM\nQ4s+OarkcD9NGtjD7DgAALgsihbO8L/flOtYXYvuv47hdwAALgXD8Pier4pq9f7+E3rtjlT5etPD\nAQC4FLyT4rTi2ma9vK1QT9yYpB6BNrPjAADg8ihakCQ1trRrfka+fj60lwbEBJkdBwAAt0DRguyG\noRe2FmhQryDdmhZldhwAANwGRQv6y+5jamhp14xhcWZHAQDArVC0PNyn+TXKPFyleWOT5ePF4QAA\nQFfindWD5Vc16bXtRXpyXB+F+/uYHQcAALdD0fJQdc1tmp+RpxnD4pQaFWB2HAAA3BJFywO12w39\nfnO+RiaF6ca+EWbHAQDAbVG0PNCKr0pktVj0q6tjzY4CAIBbo2h5mIxDlfqisE6/uzFJXla21wEA\nwJHYgseDHDzRqOVfluql2/oq2Je/egAAHI0VLQ9RdbJVCzPz9eCo3koK9zc7DgAAHoGi5QFa2u1a\nmJmvH/SP1IjEMLPjAADgMShabs4wDC3dUawwf2/95MoYs+MAAOBRKFpu7m/ZFTpQ3qhHbkiU1cLw\nOwAA3YmJaDf2zbEG/VdWmRZPSFWAzcvsOAAAeBxWtNxUeUOLnt2cr0dGJyou1NfsOAAAeCSKlhtq\nbrNrfkaeJl8eraHxIWbHAQDAY1G03IxhGFr8aaESwvw05fJos+MAAODRKFpuZtW35SqubdaDoxJk\nYfgdAABTMQzvRnYV12n1vnK9NrG/fL3p0AAAmI13YzdRUntKL249qsdvTFZ0kM3sOAAAQBQtt3Cy\npV3zM/J0z1W9dHlMkNlxAADAP1C0XJzdMPTCtqMaEBOo29OjzI4DAAC+g6Ll4t7JKlNdc5tmDY83\nOwoAAPgXFC0X9llBjT7OrdS8scny8eKvEgAAZ8O7s4sqqG7Sks+K9NS4PooI8DE7DgAAOAuKlguq\na27T/Iw83XttnFJ7BJgdBwAAnANFy8W02w09t6VAwxNCNa5fhNlxAADAeVC0XMwfdpbKkDT1mjiz\nowAAgAugaLmQTYertL2gRr8bkyQvK9vrAADg7NiCx0XkVpzUsi9K9OKtfRXix18bAACugBUtF1B9\nslULM/N0/8jeSo7wNzsOAADoIIqWk2ttt+vpTfm6qV+krksOMzsOAADoBIqWk3vr8xIF+3rrP4bE\nmB0FAAB0EkXLiX2YU6Fvyhr0yOhEWS0MvwMA4GqYqnZS+8sa9Oddx7R4Qj8F2rzMjgMAAC5Ch4pW\nXV2dHn/8cT366KOKjz/75sVLly7V3r17FRgYePprc+bMOefjcW4nGlv0zOYCPXJDouJD/cyOAwAA\nLtIFi9batWu1bt06NTQ0nPdxFotFkydP1i233NJl4TzRqTa7FmTk664BPXR17xCz4wAAgEtwwRmt\niRMnasWKFYqIuPB2L4ZhdEkoT2UYhl79rFBxob76t0HRZscBAACXqEtntNasWaP169crPDxcU6ZM\n0cCBA7vy5d3e6n0ndLS6Wa9MSJWF4XcAAFxelxWtqVOnymazSZL27dunRYsWaenSpQoICOiqH+HW\ndhfXadU3x7VkYn/5eXMxKAAA7qDL3tH/WbIkaeDAgQoLC1N5eXlXvbxbK607pRe2HtXvbkxSz2Db\nhZ8AAABcQqeK1ndnsKqrq1VTU3P637OysmS32yVJBw4cUFNTk2JjY7sopvtqam3X/Iw8/XRIjAb1\nCjY7DgAA6EIX/Ohww4YN2rZtm2pqavTqq6+qT58+mjVrlt59911J0syZMyVJW7du1cqVK2Wz2RQc\nHKw5c+Z8b5ULZ7Ibhl7adlRpPQI1IT3K7DgAAKCLWQyTLhXctGmThgwZYsaPdhrvfF2mXUV1evG2\nvrJ5MZcFAICzysrK0tixYzv9PN7dTfL50Vp9lFOheeOSKVkAALgp3uFNUFjdrFc+LdSTY5MVGeBj\ndhwAAOAgFK1uVn+qTU9l5GnaNbFKiw688BMAAIDLomh1o3a7oee2FOia3iG6OTXS7DgAAMDBKFrd\n6E+7StVmNzT92jizowAAgG5A0eomW45U6ZP8Gj1+Y7K8rGyvAwCAJ+jSvQ5xdocrTurNz0v0wvi+\nCvXjPzkAAJ6CFS0Hq25q1YLMfM0eEa8+kf5mxwEAAN2IouVAbXZDz2wq0I0p4bq+T7jZcQAAQDej\naDnQsi+KFeBj1c+G9jI7CgAAMAFFy0HWH6xUVkm9HhuTJKuF4XcAADwRk9kOsP94g/64s1Sv3N5P\ngTYvs+MAAACTsKLVxSoaW/TMpgI9fEOCeof5mR0HAACYiKLVhVra7FqQma+Jl0Xpmt6hZscBAAAm\no2h1EcMwtGR7kWKCbLr7ip5mxwEAAE6AotVF3t9/Qkcqm/TQ9QmyMPwOAADEMHyX+LqkXv+997iW\nTEyVvw/D7wAA4O9Y0bpEx+pP6fmtBZo7Jkkxwb5mxwEAAE6EonUJmlrbtSAjTz8aHKPBscFmxwEA\nAE6GonWRDMPQok8K1S8qQHdcFmV2HAAA4IQoWhfpv/ceV3lDi2aP7M3wOwAAOCuG4S/CF4W1Wneg\nQq/f0V82L7oqAAA4O1pCJxXWNGvRJ4WaNy5ZkYE+ZscBAABOjKLVCQ2n2jQ/I0+/ujpW6dGBZscB\nAABOjqLVQe12Q89vPaqr4oL1g/6RZscBAAAugKLVQf+5+5hOtdl177B4s6MAAAAXQdHqgG151dpy\npFqP35gkbytXGAIAgI7hqsMLOFJ5Um/sKNbz41MU5s/wOwAA6DhWtM6jtrlN8zPyNWt4vFIiA8yO\nAwAAXAxF6xza7Iae2ZSv0SnhGp0SbnYcAADggiha5/D2FyWyeVn186t6mR0FAAC4KIrWWXycW6nd\nJXWaOyZRXgy/AwCAi8Qw/L/ILm/Uyq9Ktei2fgry5T8PAAC4eKxofUdlY6uezszXQ6MSlBDuZ3Yc\nAADg4iha/9DSbtfCTXm6LT1KwxNDzY4DAADcAEVLkmEYen17kSIDbPrx4J5mxwEAAG6CoiVp7YEK\n5Z44qYdvSJDFwvA7AADoGh4/7b23tF5/3VOmVyemyt/Hy+w4AADAjXj0ilZZ/Sk9t6VAj41OUq9g\nX7PjAAAAN+OxRauptV3zM/L1wyt66sq4YLPjAAAAN+SRRcswDL3yaaFSIv1114AeZscBAABuyiOL\n1v98c1xl9S26f2Rvht8BAIDDeFzR+qqoVh/sr9CT45Jl8/a4Pz4AAOhGHtU0imub9dK2Qj0xNkk9\nAm1mxwEAAG7OY4pWY0u7ntqYp18M7aUBPYPMjgMAADyARxQtu2Hoha0FGhwbrFvTosyOAwAAPIRH\nFK2/7D6mxha7ZgyPNzsKAADwIG5ftD7Nr9Gmw9V6YmySvK1cYQgAALqPWxetvMomvba9SE+OS1a4\nv4/ZcQAAgIdx26JV19ym+Zl5mjk8Tv2iAsyOAwAAPJBbFq12u6FnNudrVFKYxqREmB0HAAB4KLcs\nWsu/KpG31aJfXh1rdhQAAODB3K5oZRyq1JeFdZo7JkleDL8DAAATeZsdoCvllDdq+Zeleum2vgr2\ndas/GgAAcEFus6JVdbJVCzfl68FRvZUU7m92HAAAAPcoWi3tdi3MzNet/SM1IjHM7DgAAACS3KBo\nGYahpTuKFe7vrR9fGWN2HAAAgNNcvmj9LbtCB8ob9fANibJaGH4HAADOw6Unxr851qD/yirTqxNT\nFWDzMjsOAADA97jsilZ5Q4ue3ZyvR0cnKjbE1+w4AAAAZ3DJotXcZtf8jDxNuTxaV8WHmB0HAADg\nrFyuaBmGocWfFiox3E+TL482Ow4AAMA5uVzR+r9vy1Vc26wHrkuQheF3AADgxFxqGH5XcZ3W7CvX\naxP7y9fb5ToiAADwMC7TVkpqT+nFrUf1xI3Jig6ymR0HAADgglyiaJ1sadf8jDzdc1UvDYwJMjsO\nAABAhzh90bIbhl7YdlQDYwJ1e3qU2XEAAAA6zOmL1jtZZapvbtPM4fFmRwEAAOgUpy5an+XX6OPc\nSs0bmywfL6eOCgAAcAanbS/5VU1asr1IT43ro/AAH7PjAAAAdJpTFq265jYtyMzTvdfGKbVHgNlx\nAAAALorTFa12u6FntxRoeEKoxvWLMDsOAADARXO6ovWHnaWSpKnXxJmcBAAA4NI4VdHadLhKO47W\n6HdjkuRlZXsdAADg2pxmC57cipNa9kWJXry1r0L8nCYWAADARXOKFa3qk61akJGn+6/rreQIf7Pj\nAAAAdAnTi1Zru10LN+XrltRIXZcUZnYcOKGDBw+aHQEuhOMFHcWxgu7QoaJVV1en2bNnq7i4+JyP\nKSkp0RNPPKH7779f8+bNU2lpaYcCvPl5sUL8vPXTITEdSwyPk5uba3YEuBCOF3QUxwq6wwWHodau\nXat169apoaHhvI97+eWX9Ytf/EKDBg1SVlaW3njjDT377LPnfc7fsiv0bVmjlkxMldXC8DsAAHAv\nF1zRmjhxolasWKGIiHPf0+rEiRNqamrSoEGDJElDhgxRRUWFampqzvvaf9l9TAtuSlagzauTsQEA\nAJxfl8xoVVVVKTg4+HtfCw0NVVVV1Xmf9/ANiYoL9euKCAAAAE6ny4bhrdYzX6qtre28z7m6d0hX\n/XgAAACn0yU3rAoPDz/jY8Kamprzftzo4+OjrKysrvjxcHNxcXEcK+gwjhd0FMcKOsPHx+eintep\nomUYxul/rq6ulsViUVhYmKKjoxUYGKg9e/Zo8ODB2rVrl0JCQhQVFXXO17r++usvKjAAAICrsBjf\nbU9nsWHDBm3btk2FhYWKiYlRnz59NGvWLL355puSpJkzZ0r6++0dli1bprq6OoWEhGjGjBmKjY11\n/J8AAADASV2waAEAAODimH5neAAAAHdF0QIAAHCQLrnq8GxKSkr01ltvqb6+/rwzWx19HNxbR4+D\npUuXau/evQoMDDz9tTlz5ig+Pr4748JkdXV1evzxx/Xoo4+e8++ecwukjh0rnFcgSUuWLNHhw4fl\n7e2tkJAQTZs27azHQKfPLYaDPPDAA8bevXsNwzCM3bt3G3Pnzr2kx8G9dfQ4WLp0qbFhw4bujAYn\n88EHHxhTp0417r77bqOoqOicj+Pcgo4eK5xXYBiGsXPnTqO9vd0wDMPYvHmzMW/evLM+rrPnFod8\ndNjRLXkuduseuJfOHgcG1294NEduCwb30pFj5Z84r2Do0KGnb76enJys6urqMx5zMecWh3x0eL4t\necLCwjr9OLi3zh4Ha9as0fr16xUeHq4pU6Zo4MCB3RUVLoJzCzqL8wq+KzMzU0OGDDnj6xdzbnHY\njFZHt+S5mK174H46ehxMnTpVNptNkrRv3z4tWrRIS5cuVUBAgMMzwrVwbkFHcV7Bd23cuFGHDh3S\nggULzvr9zp5bHPLRYUe35LmYrXvgfjpzHPzzZChJAwcOVFhYmMrLyx2eEa6Fcws6g/MK/mnt2rXa\ntm2b5s2bJz8/vzO+fzHnFocUre9uySPpe1vyVFdXnw55vsfBc3T0eJGkrKws2e12SdKBAwfU1NTE\nlWQezPiXbcE4t+BcznWsSJxXINntdq1cuVL79u3TvHnzFBQUdPp7l3pucdid4c+1JQ9b9+BsOnq8\nvPLKKzp8+LBsNpuCg4N1zz33qF+/fmZGRzdjWzB0VEePFc4rKC8v1+zZsxUTE/O9jwZnzZqljRs3\nSrr4cwtb8AAAADgId4YHAABwEIoWAACAg1C0AAAAHISiBQAA4CAULQAAAAehaAEAADgIRQsAAMBB\nKFoAAAAO8v8BvGxDv1+F5xsAAAAASUVORK5CYII=\n", |
|
|||
110 | "text": [ |
|
|||
111 | "<matplotlib.figure.Figure at 0x10a2b5790>" |
|
|||
112 | ] |
|
|||
113 | } |
|
|||
114 | ], |
|
|||
115 | "prompt_number": 5 |
|
|||
116 | }, |
|
69 | }, | |
117 | { |
|
70 | { | |
118 | "cell_type": "code", |
|
71 | "cell_type": "code", | |
@@ -123,19 +76,7 b'' | |||||
123 | ], |
|
76 | ], | |
124 | "language": "python", |
|
77 | "language": "python", | |
125 | "metadata": {}, |
|
78 | "metadata": {}, | |
126 | "outputs": [ |
|
79 | "outputs": [] | |
127 | { |
|
|||
128 | "javascript": [ |
|
|||
129 | "console.log(\"I ran!\");" |
|
|||
130 | ], |
|
|||
131 | "metadata": {}, |
|
|||
132 | "output_type": "display_data", |
|
|||
133 | "text": [ |
|
|||
134 | "<IPython.core.display.Javascript at 0x10aae8310>" |
|
|||
135 | ] |
|
|||
136 | } |
|
|||
137 | ], |
|
|||
138 | "prompt_number": 20 |
|
|||
139 | }, |
|
80 | }, | |
140 | { |
|
81 | { | |
141 | "cell_type": "code", |
|
82 | "cell_type": "code", | |
@@ -146,19 +87,7 b'' | |||||
146 | ], |
|
87 | ], | |
147 | "language": "python", |
|
88 | "language": "python", | |
148 | "metadata": {}, |
|
89 | "metadata": {}, | |
149 | "outputs": [ |
|
90 | "outputs": [] | |
150 | { |
|
|||
151 | "html": [ |
|
|||
152 | "<b>bold</b>" |
|
|||
153 | ], |
|
|||
154 | "metadata": {}, |
|
|||
155 | "output_type": "display_data", |
|
|||
156 | "text": [ |
|
|||
157 | "<IPython.core.display.HTML at 0x10aae80d0>" |
|
|||
158 | ] |
|
|||
159 | } |
|
|||
160 | ], |
|
|||
161 | "prompt_number": 21 |
|
|||
162 | }, |
|
91 | }, | |
163 | { |
|
92 | { | |
164 | "cell_type": "code", |
|
93 | "cell_type": "code", | |
@@ -171,21 +100,7 b'' | |||||
171 | ], |
|
100 | ], | |
172 | "language": "python", |
|
101 | "language": "python", | |
173 | "metadata": {}, |
|
102 | "metadata": {}, | |
174 | "outputs": [ |
|
103 | "outputs": [] | |
175 | { |
|
|||
176 | "latex": [ |
|
|||
177 | "$$\n", |
|
|||
178 | "a = 5\n", |
|
|||
179 | "$$" |
|
|||
180 | ], |
|
|||
181 | "metadata": {}, |
|
|||
182 | "output_type": "display_data", |
|
|||
183 | "text": [ |
|
|||
184 | "<IPython.core.display.Latex at 0x10aae8310>" |
|
|||
185 | ] |
|
|||
186 | } |
|
|||
187 | ], |
|
|||
188 | "prompt_number": 22 |
|
|||
189 | }, |
|
104 | }, | |
190 | { |
|
105 | { | |
191 | "cell_type": "heading", |
|
106 | "cell_type": "heading", | |
@@ -203,25 +118,7 b'' | |||||
203 | ], |
|
118 | ], | |
204 | "language": "python", |
|
119 | "language": "python", | |
205 | "metadata": {}, |
|
120 | "metadata": {}, | |
206 | "outputs": [ |
|
121 | "outputs": [] | |
207 | { |
|
|||
208 | "name": "stdout", |
|
|||
209 | "output_type": "stream", |
|
|||
210 | "stream": "stdout", |
|
|||
211 | "text": [ |
|
|||
212 | "prompt > 1\n" |
|
|||
213 | ] |
|
|||
214 | }, |
|
|||
215 | { |
|
|||
216 | "metadata": {}, |
|
|||
217 | "output_type": "pyout", |
|
|||
218 | "prompt_number": 1, |
|
|||
219 | "text": [ |
|
|||
220 | "'1'" |
|
|||
221 | ] |
|
|||
222 | } |
|
|||
223 | ], |
|
|||
224 | "prompt_number": 1 |
|
|||
225 | }, |
|
122 | }, | |
226 | { |
|
123 | { | |
227 | "cell_type": "heading", |
|
124 | "cell_type": "heading", | |
@@ -241,16 +138,7 b'' | |||||
241 | ], |
|
138 | ], | |
242 | "language": "python", |
|
139 | "language": "python", | |
243 | "metadata": {}, |
|
140 | "metadata": {}, | |
244 | "outputs": [ |
|
141 | "outputs": [] | |
245 | { |
|
|||
246 | "output_type": "stream", |
|
|||
247 | "stream": "stdout", |
|
|||
248 | "text": [ |
|
|||
249 | "Overwriting tst.py\n" |
|
|||
250 | ] |
|
|||
251 | } |
|
|||
252 | ], |
|
|||
253 | "prompt_number": 2 |
|
|||
254 | }, |
|
142 | }, | |
255 | { |
|
143 | { | |
256 | "cell_type": "code", |
|
144 | "cell_type": "code", | |
@@ -260,8 +148,7 b'' | |||||
260 | ], |
|
148 | ], | |
261 | "language": "python", |
|
149 | "language": "python", | |
262 | "metadata": {}, |
|
150 | "metadata": {}, | |
263 |
"outputs": [] |
|
151 | "outputs": [] | |
264 | "prompt_number": 3 |
|
|||
265 | }, |
|
152 | }, | |
266 | { |
|
153 | { | |
267 | "cell_type": "heading", |
|
154 | "cell_type": "heading", | |
@@ -279,8 +166,7 b'' | |||||
279 | ], |
|
166 | ], | |
280 | "language": "python", |
|
167 | "language": "python", | |
281 | "metadata": {}, |
|
168 | "metadata": {}, | |
282 |
"outputs": [] |
|
169 | "outputs": [] | |
283 | "prompt_number": 9 |
|
|||
284 | }, |
|
170 | }, | |
285 | { |
|
171 | { | |
286 | "cell_type": "heading", |
|
172 | "cell_type": "heading", | |
@@ -319,6 +205,62 b'' | |||||
319 | "language": "python", |
|
205 | "language": "python", | |
320 | "metadata": {}, |
|
206 | "metadata": {}, | |
321 | "outputs": [] |
|
207 | "outputs": [] | |
|
208 | }, | |||
|
209 | { | |||
|
210 | "cell_type": "heading", | |||
|
211 | "level": 1, | |||
|
212 | "metadata": {}, | |||
|
213 | "source": [ | |||
|
214 | "clear_output" | |||
|
215 | ] | |||
|
216 | }, | |||
|
217 | { | |||
|
218 | "cell_type": "code", | |||
|
219 | "collapsed": false, | |||
|
220 | "input": [ | |||
|
221 | "import sys\n", | |||
|
222 | "from IPython.display import clear_output" | |||
|
223 | ], | |||
|
224 | "language": "python", | |||
|
225 | "metadata": {}, | |||
|
226 | "outputs": [] | |||
|
227 | }, | |||
|
228 | { | |||
|
229 | "cell_type": "code", | |||
|
230 | "collapsed": false, | |||
|
231 | "input": [ | |||
|
232 | "for i in range(10):\n", | |||
|
233 | " clear_output()\n", | |||
|
234 | " time.sleep(0.25)\n", | |||
|
235 | " print i\n", | |||
|
236 | " sys.stdout.flush()\n", | |||
|
237 | " time.sleep(0.25)\n" | |||
|
238 | ], | |||
|
239 | "language": "python", | |||
|
240 | "metadata": {}, | |||
|
241 | "outputs": [] | |||
|
242 | }, | |||
|
243 | { | |||
|
244 | "cell_type": "code", | |||
|
245 | "collapsed": false, | |||
|
246 | "input": [ | |||
|
247 | "for i in range(10):\n", | |||
|
248 | " clear_output(wait=True)\n", | |||
|
249 | " time.sleep(0.25)\n", | |||
|
250 | " print i\n", | |||
|
251 | " sys.stdout.flush()\n" | |||
|
252 | ], | |||
|
253 | "language": "python", | |||
|
254 | "metadata": {}, | |||
|
255 | "outputs": [] | |||
|
256 | }, | |||
|
257 | { | |||
|
258 | "cell_type": "code", | |||
|
259 | "collapsed": false, | |||
|
260 | "input": [], | |||
|
261 | "language": "python", | |||
|
262 | "metadata": {}, | |||
|
263 | "outputs": [] | |||
322 | } |
|
264 | } | |
323 | ], |
|
265 | ], | |
324 | "metadata": {} |
|
266 | "metadata": {} |
General Comments 0
You need to be logged in to leave comments.
Login now