##// END OF EJS Templates
Docs: replace 'definition header' with 'call signature'
Bradley M. Froehle -
Show More
@@ -1,557 +1,557 b''
1 1 # -*- coding: utf-8 -*-
2 2 """
3 3 Pdb debugger class.
4 4
5 5 Modified from the standard pdb.Pdb class to avoid including readline, so that
6 6 the command line completion of other programs which include this isn't
7 7 damaged.
8 8
9 9 In the future, this class will be expanded with improvements over the standard
10 10 pdb.
11 11
12 12 The code in this file is mainly lifted out of cmd.py in Python 2.2, with minor
13 13 changes. Licensing should therefore be under the standard Python terms. For
14 14 details on the PSF (Python Software Foundation) standard license, see:
15 15
16 16 http://www.python.org/2.2.3/license.html"""
17 17
18 18 #*****************************************************************************
19 19 #
20 20 # This file is licensed under the PSF license.
21 21 #
22 22 # Copyright (C) 2001 Python Software Foundation, www.python.org
23 23 # Copyright (C) 2005-2006 Fernando Perez. <fperez@colorado.edu>
24 24 #
25 25 #
26 26 #*****************************************************************************
27 27 from __future__ import print_function
28 28
29 29 import bdb
30 30 import linecache
31 31 import sys
32 32
33 33 from IPython.utils import PyColorize, ulinecache
34 34 from IPython.core import ipapi
35 35 from IPython.utils import coloransi, io, openpy, py3compat
36 36 from IPython.core.excolors import exception_colors
37 37
38 38 # See if we can use pydb.
39 39 has_pydb = False
40 40 prompt = 'ipdb> '
41 41 #We have to check this directly from sys.argv, config struct not yet available
42 42 if '--pydb' in sys.argv:
43 43 try:
44 44 import pydb
45 45 if hasattr(pydb.pydb, "runl") and pydb.version>'1.17':
46 46 # Version 1.17 is broken, and that's what ships with Ubuntu Edgy, so we
47 47 # better protect against it.
48 48 has_pydb = True
49 49 except ImportError:
50 50 print("Pydb (http://bashdb.sourceforge.net/pydb/) does not seem to be available")
51 51
52 52 if has_pydb:
53 53 from pydb import Pdb as OldPdb
54 54 #print "Using pydb for %run -d and post-mortem" #dbg
55 55 prompt = 'ipydb> '
56 56 else:
57 57 from pdb import Pdb as OldPdb
58 58
59 59 # Allow the set_trace code to operate outside of an ipython instance, even if
60 60 # it does so with some limitations. The rest of this support is implemented in
61 61 # the Tracer constructor.
62 62 def BdbQuit_excepthook(et,ev,tb):
63 63 if et==bdb.BdbQuit:
64 64 print('Exiting Debugger.')
65 65 else:
66 66 BdbQuit_excepthook.excepthook_ori(et,ev,tb)
67 67
68 68 def BdbQuit_IPython_excepthook(self,et,ev,tb,tb_offset=None):
69 69 print('Exiting Debugger.')
70 70
71 71
72 72 class Tracer(object):
73 73 """Class for local debugging, similar to pdb.set_trace.
74 74
75 75 Instances of this class, when called, behave like pdb.set_trace, but
76 76 providing IPython's enhanced capabilities.
77 77
78 78 This is implemented as a class which must be initialized in your own code
79 79 and not as a standalone function because we need to detect at runtime
80 80 whether IPython is already active or not. That detection is done in the
81 81 constructor, ensuring that this code plays nicely with a running IPython,
82 82 while functioning acceptably (though with limitations) if outside of it.
83 83 """
84 84
85 85 def __init__(self,colors=None):
86 86 """Create a local debugger instance.
87 87
88 88 :Parameters:
89 89
90 90 - `colors` (None): a string containing the name of the color scheme to
91 91 use, it must be one of IPython's valid color schemes. If not given, the
92 92 function will default to the current IPython scheme when running inside
93 93 IPython, and to 'NoColor' otherwise.
94 94
95 95 Usage example:
96 96
97 97 from IPython.core.debugger import Tracer; debug_here = Tracer()
98 98
99 99 ... later in your code
100 100 debug_here() # -> will open up the debugger at that point.
101 101
102 102 Once the debugger activates, you can use all of its regular commands to
103 103 step through code, set breakpoints, etc. See the pdb documentation
104 104 from the Python standard library for usage details.
105 105 """
106 106
107 107 try:
108 108 ip = get_ipython()
109 109 except NameError:
110 110 # Outside of ipython, we set our own exception hook manually
111 111 BdbQuit_excepthook.excepthook_ori = sys.excepthook
112 112 sys.excepthook = BdbQuit_excepthook
113 113 def_colors = 'NoColor'
114 114 try:
115 115 # Limited tab completion support
116 116 import readline
117 117 readline.parse_and_bind('tab: complete')
118 118 except ImportError:
119 119 pass
120 120 else:
121 121 # In ipython, we use its custom exception handler mechanism
122 122 def_colors = ip.colors
123 123 ip.set_custom_exc((bdb.BdbQuit,), BdbQuit_IPython_excepthook)
124 124
125 125 if colors is None:
126 126 colors = def_colors
127 127
128 128 # The stdlib debugger internally uses a modified repr from the `repr`
129 129 # module, that limits the length of printed strings to a hardcoded
130 130 # limit of 30 characters. That much trimming is too aggressive, let's
131 131 # at least raise that limit to 80 chars, which should be enough for
132 132 # most interactive uses.
133 133 try:
134 134 from repr import aRepr
135 135 aRepr.maxstring = 80
136 136 except:
137 137 # This is only a user-facing convenience, so any error we encounter
138 138 # here can be warned about but can be otherwise ignored. These
139 139 # printouts will tell us about problems if this API changes
140 140 import traceback
141 141 traceback.print_exc()
142 142
143 143 self.debugger = Pdb(colors)
144 144
145 145 def __call__(self):
146 146 """Starts an interactive debugger at the point where called.
147 147
148 148 This is similar to the pdb.set_trace() function from the std lib, but
149 149 using IPython's enhanced debugger."""
150 150
151 151 self.debugger.set_trace(sys._getframe().f_back)
152 152
153 153
154 154 def decorate_fn_with_doc(new_fn, old_fn, additional_text=""):
155 155 """Make new_fn have old_fn's doc string. This is particularly useful
156 156 for the do_... commands that hook into the help system.
157 157 Adapted from from a comp.lang.python posting
158 158 by Duncan Booth."""
159 159 def wrapper(*args, **kw):
160 160 return new_fn(*args, **kw)
161 161 if old_fn.__doc__:
162 162 wrapper.__doc__ = old_fn.__doc__ + additional_text
163 163 return wrapper
164 164
165 165
166 166 def _file_lines(fname):
167 167 """Return the contents of a named file as a list of lines.
168 168
169 169 This function never raises an IOError exception: if the file can't be
170 170 read, it simply returns an empty list."""
171 171
172 172 try:
173 173 outfile = open(fname)
174 174 except IOError:
175 175 return []
176 176 else:
177 177 out = outfile.readlines()
178 178 outfile.close()
179 179 return out
180 180
181 181
182 182 class Pdb(OldPdb):
183 183 """Modified Pdb class, does not load readline."""
184 184
185 185 def __init__(self,color_scheme='NoColor',completekey=None,
186 186 stdin=None, stdout=None):
187 187
188 188 # Parent constructor:
189 189 if has_pydb and completekey is None:
190 190 OldPdb.__init__(self,stdin=stdin,stdout=io.stdout)
191 191 else:
192 192 OldPdb.__init__(self,completekey,stdin,stdout)
193 193
194 194 self.prompt = prompt # The default prompt is '(Pdb)'
195 195
196 196 # IPython changes...
197 197 self.is_pydb = has_pydb
198 198
199 199 self.shell = ipapi.get()
200 200
201 201 if self.is_pydb:
202 202
203 203 # interactiveshell.py's ipalias seems to want pdb's checkline
204 204 # which located in pydb.fn
205 205 import pydb.fns
206 206 self.checkline = lambda filename, lineno: \
207 207 pydb.fns.checkline(self, filename, lineno)
208 208
209 209 self.curframe = None
210 210 self.do_restart = self.new_do_restart
211 211
212 212 self.old_all_completions = self.shell.Completer.all_completions
213 213 self.shell.Completer.all_completions=self.all_completions
214 214
215 215 self.do_list = decorate_fn_with_doc(self.list_command_pydb,
216 216 OldPdb.do_list)
217 217 self.do_l = self.do_list
218 218 self.do_frame = decorate_fn_with_doc(self.new_do_frame,
219 219 OldPdb.do_frame)
220 220
221 221 self.aliases = {}
222 222
223 223 # Create color table: we copy the default one from the traceback
224 224 # module and add a few attributes needed for debugging
225 225 self.color_scheme_table = exception_colors()
226 226
227 227 # shorthands
228 228 C = coloransi.TermColors
229 229 cst = self.color_scheme_table
230 230
231 231 cst['NoColor'].colors.breakpoint_enabled = C.NoColor
232 232 cst['NoColor'].colors.breakpoint_disabled = C.NoColor
233 233
234 234 cst['Linux'].colors.breakpoint_enabled = C.LightRed
235 235 cst['Linux'].colors.breakpoint_disabled = C.Red
236 236
237 237 cst['LightBG'].colors.breakpoint_enabled = C.LightRed
238 238 cst['LightBG'].colors.breakpoint_disabled = C.Red
239 239
240 240 self.set_colors(color_scheme)
241 241
242 242 # Add a python parser so we can syntax highlight source while
243 243 # debugging.
244 244 self.parser = PyColorize.Parser()
245 245
246 246 def set_colors(self, scheme):
247 247 """Shorthand access to the color table scheme selector method."""
248 248 self.color_scheme_table.set_active_scheme(scheme)
249 249
250 250 def interaction(self, frame, traceback):
251 251 self.shell.set_completer_frame(frame)
252 252 OldPdb.interaction(self, frame, traceback)
253 253
254 254 def new_do_up(self, arg):
255 255 OldPdb.do_up(self, arg)
256 256 self.shell.set_completer_frame(self.curframe)
257 257 do_u = do_up = decorate_fn_with_doc(new_do_up, OldPdb.do_up)
258 258
259 259 def new_do_down(self, arg):
260 260 OldPdb.do_down(self, arg)
261 261 self.shell.set_completer_frame(self.curframe)
262 262
263 263 do_d = do_down = decorate_fn_with_doc(new_do_down, OldPdb.do_down)
264 264
265 265 def new_do_frame(self, arg):
266 266 OldPdb.do_frame(self, arg)
267 267 self.shell.set_completer_frame(self.curframe)
268 268
269 269 def new_do_quit(self, arg):
270 270
271 271 if hasattr(self, 'old_all_completions'):
272 272 self.shell.Completer.all_completions=self.old_all_completions
273 273
274 274
275 275 return OldPdb.do_quit(self, arg)
276 276
277 277 do_q = do_quit = decorate_fn_with_doc(new_do_quit, OldPdb.do_quit)
278 278
279 279 def new_do_restart(self, arg):
280 280 """Restart command. In the context of ipython this is exactly the same
281 281 thing as 'quit'."""
282 282 self.msg("Restart doesn't make sense here. Using 'quit' instead.")
283 283 return self.do_quit(arg)
284 284
285 285 def postloop(self):
286 286 self.shell.set_completer_frame(None)
287 287
288 288 def print_stack_trace(self):
289 289 try:
290 290 for frame_lineno in self.stack:
291 291 self.print_stack_entry(frame_lineno, context = 5)
292 292 except KeyboardInterrupt:
293 293 pass
294 294
295 295 def print_stack_entry(self,frame_lineno,prompt_prefix='\n-> ',
296 296 context = 3):
297 297 #frame, lineno = frame_lineno
298 298 print(self.format_stack_entry(frame_lineno, '', context), file=io.stdout)
299 299
300 300 # vds: >>
301 301 frame, lineno = frame_lineno
302 302 filename = frame.f_code.co_filename
303 303 self.shell.hooks.synchronize_with_editor(filename, lineno, 0)
304 304 # vds: <<
305 305
306 306 def format_stack_entry(self, frame_lineno, lprefix=': ', context = 3):
307 307 import repr
308 308
309 309 ret = []
310 310
311 311 Colors = self.color_scheme_table.active_colors
312 312 ColorsNormal = Colors.Normal
313 313 tpl_link = u'%s%%s%s' % (Colors.filenameEm, ColorsNormal)
314 314 tpl_call = u'%s%%s%s%%s%s' % (Colors.vName, Colors.valEm, ColorsNormal)
315 315 tpl_line = u'%%s%s%%s %s%%s' % (Colors.lineno, ColorsNormal)
316 316 tpl_line_em = u'%%s%s%%s %s%%s%s' % (Colors.linenoEm, Colors.line,
317 317 ColorsNormal)
318 318
319 319 frame, lineno = frame_lineno
320 320
321 321 return_value = ''
322 322 if '__return__' in frame.f_locals:
323 323 rv = frame.f_locals['__return__']
324 324 #return_value += '->'
325 325 return_value += repr.repr(rv) + '\n'
326 326 ret.append(return_value)
327 327
328 328 #s = filename + '(' + `lineno` + ')'
329 329 filename = self.canonic(frame.f_code.co_filename)
330 330 link = tpl_link % py3compat.cast_unicode(filename)
331 331
332 332 if frame.f_code.co_name:
333 333 func = frame.f_code.co_name
334 334 else:
335 335 func = "<lambda>"
336 336
337 337 call = ''
338 338 if func != '?':
339 339 if '__args__' in frame.f_locals:
340 340 args = repr.repr(frame.f_locals['__args__'])
341 341 else:
342 342 args = '()'
343 343 call = tpl_call % (func, args)
344 344
345 345 # The level info should be generated in the same format pdb uses, to
346 346 # avoid breaking the pdbtrack functionality of python-mode in *emacs.
347 347 if frame is self.curframe:
348 348 ret.append('> ')
349 349 else:
350 350 ret.append(' ')
351 351 ret.append(u'%s(%s)%s\n' % (link,lineno,call))
352 352
353 353 start = lineno - 1 - context//2
354 354 lines = ulinecache.getlines(filename)
355 355 start = max(start, 0)
356 356 start = min(start, len(lines) - context)
357 357 lines = lines[start : start + context]
358 358
359 359 for i,line in enumerate(lines):
360 360 show_arrow = (start + 1 + i == lineno)
361 361 linetpl = (frame is self.curframe or show_arrow) \
362 362 and tpl_line_em \
363 363 or tpl_line
364 364 ret.append(self.__format_line(linetpl, filename,
365 365 start + 1 + i, line,
366 366 arrow = show_arrow) )
367 367 return ''.join(ret)
368 368
369 369 def __format_line(self, tpl_line, filename, lineno, line, arrow = False):
370 370 bp_mark = ""
371 371 bp_mark_color = ""
372 372
373 373 scheme = self.color_scheme_table.active_scheme_name
374 374 new_line, err = self.parser.format2(line, 'str', scheme)
375 375 if not err: line = new_line
376 376
377 377 bp = None
378 378 if lineno in self.get_file_breaks(filename):
379 379 bps = self.get_breaks(filename, lineno)
380 380 bp = bps[-1]
381 381
382 382 if bp:
383 383 Colors = self.color_scheme_table.active_colors
384 384 bp_mark = str(bp.number)
385 385 bp_mark_color = Colors.breakpoint_enabled
386 386 if not bp.enabled:
387 387 bp_mark_color = Colors.breakpoint_disabled
388 388
389 389 numbers_width = 7
390 390 if arrow:
391 391 # This is the line with the error
392 392 pad = numbers_width - len(str(lineno)) - len(bp_mark)
393 393 if pad >= 3:
394 394 marker = '-'*(pad-3) + '-> '
395 395 elif pad == 2:
396 396 marker = '> '
397 397 elif pad == 1:
398 398 marker = '>'
399 399 else:
400 400 marker = ''
401 401 num = '%s%s' % (marker, str(lineno))
402 402 line = tpl_line % (bp_mark_color + bp_mark, num, line)
403 403 else:
404 404 num = '%*s' % (numbers_width - len(bp_mark), str(lineno))
405 405 line = tpl_line % (bp_mark_color + bp_mark, num, line)
406 406
407 407 return line
408 408
409 409 def list_command_pydb(self, arg):
410 410 """List command to use if we have a newer pydb installed"""
411 411 filename, first, last = OldPdb.parse_list_cmd(self, arg)
412 412 if filename is not None:
413 413 self.print_list_lines(filename, first, last)
414 414
415 415 def print_list_lines(self, filename, first, last):
416 416 """The printing (as opposed to the parsing part of a 'list'
417 417 command."""
418 418 try:
419 419 Colors = self.color_scheme_table.active_colors
420 420 ColorsNormal = Colors.Normal
421 421 tpl_line = '%%s%s%%s %s%%s' % (Colors.lineno, ColorsNormal)
422 422 tpl_line_em = '%%s%s%%s %s%%s%s' % (Colors.linenoEm, Colors.line, ColorsNormal)
423 423 src = []
424 424 if filename == "<string>" and hasattr(self, "_exec_filename"):
425 425 filename = self._exec_filename
426 426
427 427 for lineno in range(first, last+1):
428 428 line = ulinecache.getline(filename, lineno)
429 429 if not line:
430 430 break
431 431
432 432 if lineno == self.curframe.f_lineno:
433 433 line = self.__format_line(tpl_line_em, filename, lineno, line, arrow = True)
434 434 else:
435 435 line = self.__format_line(tpl_line, filename, lineno, line, arrow = False)
436 436
437 437 src.append(line)
438 438 self.lineno = lineno
439 439
440 440 print(''.join(src), file=io.stdout)
441 441
442 442 except KeyboardInterrupt:
443 443 pass
444 444
445 445 def do_list(self, arg):
446 446 self.lastcmd = 'list'
447 447 last = None
448 448 if arg:
449 449 try:
450 450 x = eval(arg, {}, {})
451 451 if type(x) == type(()):
452 452 first, last = x
453 453 first = int(first)
454 454 last = int(last)
455 455 if last < first:
456 456 # Assume it's a count
457 457 last = first + last
458 458 else:
459 459 first = max(1, int(x) - 5)
460 460 except:
461 461 print('*** Error in argument:', repr(arg))
462 462 return
463 463 elif self.lineno is None:
464 464 first = max(1, self.curframe.f_lineno - 5)
465 465 else:
466 466 first = self.lineno + 1
467 467 if last is None:
468 468 last = first + 10
469 469 self.print_list_lines(self.curframe.f_code.co_filename, first, last)
470 470
471 471 # vds: >>
472 472 lineno = first
473 473 filename = self.curframe.f_code.co_filename
474 474 self.shell.hooks.synchronize_with_editor(filename, lineno, 0)
475 475 # vds: <<
476 476
477 477 do_l = do_list
478 478
479 479 def do_pdef(self, arg):
480 """Print the definition header for any callable object.
480 """Print the call signature for any callable object.
481 481
482 482 The debugger interface to %pdef"""
483 483 namespaces = [('Locals', self.curframe.f_locals),
484 484 ('Globals', self.curframe.f_globals)]
485 485 self.shell.find_line_magic('pdef')(arg, namespaces=namespaces)
486 486
487 487 def do_pdoc(self, arg):
488 488 """Print the docstring for an object.
489 489
490 490 The debugger interface to %pdoc."""
491 491 namespaces = [('Locals', self.curframe.f_locals),
492 492 ('Globals', self.curframe.f_globals)]
493 493 self.shell.find_line_magic('pdoc')(arg, namespaces=namespaces)
494 494
495 495 def do_pfile(self, arg):
496 496 """Print (or run through pager) the file where an object is defined.
497 497
498 498 The debugger interface to %pfile.
499 499 """
500 500 namespaces = [('Locals', self.curframe.f_locals),
501 501 ('Globals', self.curframe.f_globals)]
502 502 self.shell.find_line_magic('pfile')(arg, namespaces=namespaces)
503 503
504 504 def do_pinfo(self, arg):
505 505 """Provide detailed information about an object.
506 506
507 507 The debugger interface to %pinfo, i.e., obj?."""
508 508 namespaces = [('Locals', self.curframe.f_locals),
509 509 ('Globals', self.curframe.f_globals)]
510 510 self.shell.find_line_magic('pinfo')(arg, namespaces=namespaces)
511 511
512 512 def do_pinfo2(self, arg):
513 513 """Provide extra detailed information about an object.
514 514
515 515 The debugger interface to %pinfo2, i.e., obj??."""
516 516 namespaces = [('Locals', self.curframe.f_locals),
517 517 ('Globals', self.curframe.f_globals)]
518 518 self.shell.find_line_magic('pinfo2')(arg, namespaces=namespaces)
519 519
520 520 def do_psource(self, arg):
521 521 """Print (or run through pager) the source code for an object."""
522 522 namespaces = [('Locals', self.curframe.f_locals),
523 523 ('Globals', self.curframe.f_globals)]
524 524 self.shell.find_line_magic('psource')(arg, namespaces=namespaces)
525 525
526 526 def checkline(self, filename, lineno):
527 527 """Check whether specified line seems to be executable.
528 528
529 529 Return `lineno` if it is, 0 if not (e.g. a docstring, comment, blank
530 530 line or EOF). Warning: testing is not comprehensive.
531 531 """
532 532 #######################################################################
533 533 # XXX Hack! Use python-2.5 compatible code for this call, because with
534 534 # all of our changes, we've drifted from the pdb api in 2.6. For now,
535 535 # changing:
536 536 #
537 537 #line = linecache.getline(filename, lineno, self.curframe.f_globals)
538 538 # to:
539 539 #
540 540 line = linecache.getline(filename, lineno)
541 541 #
542 542 # does the trick. But in reality, we need to fix this by reconciling
543 543 # our updates with the new Pdb APIs in Python 2.6.
544 544 #
545 545 # End hack. The rest of this method is copied verbatim from 2.6 pdb.py
546 546 #######################################################################
547 547
548 548 if not line:
549 549 print('End of file', file=self.stdout)
550 550 return 0
551 551 line = line.strip()
552 552 # Don't allow setting breakpoint at a blank line
553 553 if (not line or (line[0] == '#') or
554 554 (line[:3] == '"""') or line[:3] == "'''"):
555 555 print('*** Blank or comment', file=self.stdout)
556 556 return 0
557 557 return lineno
@@ -1,703 +1,703 b''
1 1 """Implementation of namespace-related magic functions.
2 2 """
3 3 #-----------------------------------------------------------------------------
4 4 # Copyright (c) 2012 The IPython Development Team.
5 5 #
6 6 # Distributed under the terms of the Modified BSD License.
7 7 #
8 8 # The full license is in the file COPYING.txt, distributed with this software.
9 9 #-----------------------------------------------------------------------------
10 10
11 11 #-----------------------------------------------------------------------------
12 12 # Imports
13 13 #-----------------------------------------------------------------------------
14 14
15 15 # Stdlib
16 16 import gc
17 17 import re
18 18 import sys
19 19
20 20 # Our own packages
21 21 from IPython.core import page
22 22 from IPython.core.error import StdinNotImplementedError, UsageError
23 23 from IPython.core.magic import Magics, magics_class, line_magic
24 24 from IPython.testing.skipdoctest import skip_doctest
25 25 from IPython.utils.encoding import DEFAULT_ENCODING
26 26 from IPython.utils.openpy import read_py_file
27 27 from IPython.utils.path import get_py_filename
28 28
29 29 #-----------------------------------------------------------------------------
30 30 # Magic implementation classes
31 31 #-----------------------------------------------------------------------------
32 32
33 33 @magics_class
34 34 class NamespaceMagics(Magics):
35 35 """Magics to manage various aspects of the user's namespace.
36 36
37 37 These include listing variables, introspecting into them, etc.
38 38 """
39 39
40 40 @line_magic
41 41 def pinfo(self, parameter_s='', namespaces=None):
42 42 """Provide detailed information about an object.
43 43
44 44 '%pinfo object' is just a synonym for object? or ?object."""
45 45
46 46 #print 'pinfo par: <%s>' % parameter_s # dbg
47 47 # detail_level: 0 -> obj? , 1 -> obj??
48 48 detail_level = 0
49 49 # We need to detect if we got called as 'pinfo pinfo foo', which can
50 50 # happen if the user types 'pinfo foo?' at the cmd line.
51 51 pinfo,qmark1,oname,qmark2 = \
52 52 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
53 53 if pinfo or qmark1 or qmark2:
54 54 detail_level = 1
55 55 if "*" in oname:
56 56 self.psearch(oname)
57 57 else:
58 58 self.shell._inspect('pinfo', oname, detail_level=detail_level,
59 59 namespaces=namespaces)
60 60
61 61 @line_magic
62 62 def pinfo2(self, parameter_s='', namespaces=None):
63 63 """Provide extra detailed information about an object.
64 64
65 65 '%pinfo2 object' is just a synonym for object?? or ??object."""
66 66 self.shell._inspect('pinfo', parameter_s, detail_level=1,
67 67 namespaces=namespaces)
68 68
69 69 @skip_doctest
70 70 @line_magic
71 71 def pdef(self, parameter_s='', namespaces=None):
72 """Print the definition header for any callable object.
72 """Print the call signature for any callable object.
73 73
74 74 If the object is a class, print the constructor information.
75 75
76 76 Examples
77 77 --------
78 78 ::
79 79
80 80 In [3]: %pdef urllib.urlopen
81 81 urllib.urlopen(url, data=None, proxies=None)
82 82 """
83 83 self.shell._inspect('pdef',parameter_s, namespaces)
84 84
85 85 @line_magic
86 86 def pdoc(self, parameter_s='', namespaces=None):
87 87 """Print the docstring for an object.
88 88
89 89 If the given object is a class, it will print both the class and the
90 90 constructor docstrings."""
91 91 self.shell._inspect('pdoc',parameter_s, namespaces)
92 92
93 93 @line_magic
94 94 def psource(self, parameter_s='', namespaces=None):
95 95 """Print (or run through pager) the source code for an object."""
96 96 if not parameter_s:
97 97 raise UsageError('Missing object name.')
98 98 self.shell._inspect('psource',parameter_s, namespaces)
99 99
100 100 @line_magic
101 101 def pfile(self, parameter_s='', namespaces=None):
102 102 """Print (or run through pager) the file where an object is defined.
103 103
104 104 The file opens at the line where the object definition begins. IPython
105 105 will honor the environment variable PAGER if set, and otherwise will
106 106 do its best to print the file in a convenient form.
107 107
108 108 If the given argument is not an object currently defined, IPython will
109 109 try to interpret it as a filename (automatically adding a .py extension
110 110 if needed). You can thus use %pfile as a syntax highlighting code
111 111 viewer."""
112 112
113 113 # first interpret argument as an object name
114 114 out = self.shell._inspect('pfile',parameter_s, namespaces)
115 115 # if not, try the input as a filename
116 116 if out == 'not found':
117 117 try:
118 118 filename = get_py_filename(parameter_s)
119 119 except IOError as msg:
120 120 print msg
121 121 return
122 122 page.page(self.shell.pycolorize(read_py_file(filename, skip_encoding_cookie=False)))
123 123
124 124 @line_magic
125 125 def psearch(self, parameter_s=''):
126 126 """Search for object in namespaces by wildcard.
127 127
128 128 %psearch [options] PATTERN [OBJECT TYPE]
129 129
130 130 Note: ? can be used as a synonym for %psearch, at the beginning or at
131 131 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
132 132 rest of the command line must be unchanged (options come first), so
133 133 for example the following forms are equivalent
134 134
135 135 %psearch -i a* function
136 136 -i a* function?
137 137 ?-i a* function
138 138
139 139 Arguments:
140 140
141 141 PATTERN
142 142
143 143 where PATTERN is a string containing * as a wildcard similar to its
144 144 use in a shell. The pattern is matched in all namespaces on the
145 145 search path. By default objects starting with a single _ are not
146 146 matched, many IPython generated objects have a single
147 147 underscore. The default is case insensitive matching. Matching is
148 148 also done on the attributes of objects and not only on the objects
149 149 in a module.
150 150
151 151 [OBJECT TYPE]
152 152
153 153 Is the name of a python type from the types module. The name is
154 154 given in lowercase without the ending type, ex. StringType is
155 155 written string. By adding a type here only objects matching the
156 156 given type are matched. Using all here makes the pattern match all
157 157 types (this is the default).
158 158
159 159 Options:
160 160
161 161 -a: makes the pattern match even objects whose names start with a
162 162 single underscore. These names are normally omitted from the
163 163 search.
164 164
165 165 -i/-c: make the pattern case insensitive/sensitive. If neither of
166 166 these options are given, the default is read from your configuration
167 167 file, with the option ``InteractiveShell.wildcards_case_sensitive``.
168 168 If this option is not specified in your configuration file, IPython's
169 169 internal default is to do a case sensitive search.
170 170
171 171 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
172 172 specify can be searched in any of the following namespaces:
173 173 'builtin', 'user', 'user_global','internal', 'alias', where
174 174 'builtin' and 'user' are the search defaults. Note that you should
175 175 not use quotes when specifying namespaces.
176 176
177 177 'Builtin' contains the python module builtin, 'user' contains all
178 178 user data, 'alias' only contain the shell aliases and no python
179 179 objects, 'internal' contains objects used by IPython. The
180 180 'user_global' namespace is only used by embedded IPython instances,
181 181 and it contains module-level globals. You can add namespaces to the
182 182 search with -s or exclude them with -e (these options can be given
183 183 more than once).
184 184
185 185 Examples
186 186 --------
187 187 ::
188 188
189 189 %psearch a* -> objects beginning with an a
190 190 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
191 191 %psearch a* function -> all functions beginning with an a
192 192 %psearch re.e* -> objects beginning with an e in module re
193 193 %psearch r*.e* -> objects that start with e in modules starting in r
194 194 %psearch r*.* string -> all strings in modules beginning with r
195 195
196 196 Case sensitive search::
197 197
198 198 %psearch -c a* list all object beginning with lower case a
199 199
200 200 Show objects beginning with a single _::
201 201
202 202 %psearch -a _* list objects beginning with a single underscore
203 203 """
204 204 try:
205 205 parameter_s.encode('ascii')
206 206 except UnicodeEncodeError:
207 207 print 'Python identifiers can only contain ascii characters.'
208 208 return
209 209
210 210 # default namespaces to be searched
211 211 def_search = ['user_local', 'user_global', 'builtin']
212 212
213 213 # Process options/args
214 214 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
215 215 opt = opts.get
216 216 shell = self.shell
217 217 psearch = shell.inspector.psearch
218 218
219 219 # select case options
220 220 if 'i' in opts:
221 221 ignore_case = True
222 222 elif 'c' in opts:
223 223 ignore_case = False
224 224 else:
225 225 ignore_case = not shell.wildcards_case_sensitive
226 226
227 227 # Build list of namespaces to search from user options
228 228 def_search.extend(opt('s',[]))
229 229 ns_exclude = ns_exclude=opt('e',[])
230 230 ns_search = [nm for nm in def_search if nm not in ns_exclude]
231 231
232 232 # Call the actual search
233 233 try:
234 234 psearch(args,shell.ns_table,ns_search,
235 235 show_all=opt('a'),ignore_case=ignore_case)
236 236 except:
237 237 shell.showtraceback()
238 238
239 239 @skip_doctest
240 240 @line_magic
241 241 def who_ls(self, parameter_s=''):
242 242 """Return a sorted list of all interactive variables.
243 243
244 244 If arguments are given, only variables of types matching these
245 245 arguments are returned.
246 246
247 247 Examples
248 248 --------
249 249
250 250 Define two variables and list them with who_ls::
251 251
252 252 In [1]: alpha = 123
253 253
254 254 In [2]: beta = 'test'
255 255
256 256 In [3]: %who_ls
257 257 Out[3]: ['alpha', 'beta']
258 258
259 259 In [4]: %who_ls int
260 260 Out[4]: ['alpha']
261 261
262 262 In [5]: %who_ls str
263 263 Out[5]: ['beta']
264 264 """
265 265
266 266 user_ns = self.shell.user_ns
267 267 user_ns_hidden = self.shell.user_ns_hidden
268 268 out = [ i for i in user_ns
269 269 if not i.startswith('_') \
270 270 and not i in user_ns_hidden ]
271 271
272 272 typelist = parameter_s.split()
273 273 if typelist:
274 274 typeset = set(typelist)
275 275 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
276 276
277 277 out.sort()
278 278 return out
279 279
280 280 @skip_doctest
281 281 @line_magic
282 282 def who(self, parameter_s=''):
283 283 """Print all interactive variables, with some minimal formatting.
284 284
285 285 If any arguments are given, only variables whose type matches one of
286 286 these are printed. For example::
287 287
288 288 %who function str
289 289
290 290 will only list functions and strings, excluding all other types of
291 291 variables. To find the proper type names, simply use type(var) at a
292 292 command line to see how python prints type names. For example:
293 293
294 294 ::
295 295
296 296 In [1]: type('hello')\\
297 297 Out[1]: <type 'str'>
298 298
299 299 indicates that the type name for strings is 'str'.
300 300
301 301 ``%who`` always excludes executed names loaded through your configuration
302 302 file and things which are internal to IPython.
303 303
304 304 This is deliberate, as typically you may load many modules and the
305 305 purpose of %who is to show you only what you've manually defined.
306 306
307 307 Examples
308 308 --------
309 309
310 310 Define two variables and list them with who::
311 311
312 312 In [1]: alpha = 123
313 313
314 314 In [2]: beta = 'test'
315 315
316 316 In [3]: %who
317 317 alpha beta
318 318
319 319 In [4]: %who int
320 320 alpha
321 321
322 322 In [5]: %who str
323 323 beta
324 324 """
325 325
326 326 varlist = self.who_ls(parameter_s)
327 327 if not varlist:
328 328 if parameter_s:
329 329 print 'No variables match your requested type.'
330 330 else:
331 331 print 'Interactive namespace is empty.'
332 332 return
333 333
334 334 # if we have variables, move on...
335 335 count = 0
336 336 for i in varlist:
337 337 print i+'\t',
338 338 count += 1
339 339 if count > 8:
340 340 count = 0
341 341 print
342 342 print
343 343
344 344 @skip_doctest
345 345 @line_magic
346 346 def whos(self, parameter_s=''):
347 347 """Like %who, but gives some extra information about each variable.
348 348
349 349 The same type filtering of %who can be applied here.
350 350
351 351 For all variables, the type is printed. Additionally it prints:
352 352
353 353 - For {},[],(): their length.
354 354
355 355 - For numpy arrays, a summary with shape, number of
356 356 elements, typecode and size in memory.
357 357
358 358 - Everything else: a string representation, snipping their middle if
359 359 too long.
360 360
361 361 Examples
362 362 --------
363 363
364 364 Define two variables and list them with whos::
365 365
366 366 In [1]: alpha = 123
367 367
368 368 In [2]: beta = 'test'
369 369
370 370 In [3]: %whos
371 371 Variable Type Data/Info
372 372 --------------------------------
373 373 alpha int 123
374 374 beta str test
375 375 """
376 376
377 377 varnames = self.who_ls(parameter_s)
378 378 if not varnames:
379 379 if parameter_s:
380 380 print 'No variables match your requested type.'
381 381 else:
382 382 print 'Interactive namespace is empty.'
383 383 return
384 384
385 385 # if we have variables, move on...
386 386
387 387 # for these types, show len() instead of data:
388 388 seq_types = ['dict', 'list', 'tuple']
389 389
390 390 # for numpy arrays, display summary info
391 391 ndarray_type = None
392 392 if 'numpy' in sys.modules:
393 393 try:
394 394 from numpy import ndarray
395 395 except ImportError:
396 396 pass
397 397 else:
398 398 ndarray_type = ndarray.__name__
399 399
400 400 # Find all variable names and types so we can figure out column sizes
401 401 def get_vars(i):
402 402 return self.shell.user_ns[i]
403 403
404 404 # some types are well known and can be shorter
405 405 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
406 406 def type_name(v):
407 407 tn = type(v).__name__
408 408 return abbrevs.get(tn,tn)
409 409
410 410 varlist = map(get_vars,varnames)
411 411
412 412 typelist = []
413 413 for vv in varlist:
414 414 tt = type_name(vv)
415 415
416 416 if tt=='instance':
417 417 typelist.append( abbrevs.get(str(vv.__class__),
418 418 str(vv.__class__)))
419 419 else:
420 420 typelist.append(tt)
421 421
422 422 # column labels and # of spaces as separator
423 423 varlabel = 'Variable'
424 424 typelabel = 'Type'
425 425 datalabel = 'Data/Info'
426 426 colsep = 3
427 427 # variable format strings
428 428 vformat = "{0:<{varwidth}}{1:<{typewidth}}"
429 429 aformat = "%s: %s elems, type `%s`, %s bytes"
430 430 # find the size of the columns to format the output nicely
431 431 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
432 432 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
433 433 # table header
434 434 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
435 435 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
436 436 # and the table itself
437 437 kb = 1024
438 438 Mb = 1048576 # kb**2
439 439 for vname,var,vtype in zip(varnames,varlist,typelist):
440 440 print vformat.format(vname, vtype, varwidth=varwidth, typewidth=typewidth),
441 441 if vtype in seq_types:
442 442 print "n="+str(len(var))
443 443 elif vtype == ndarray_type:
444 444 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
445 445 if vtype==ndarray_type:
446 446 # numpy
447 447 vsize = var.size
448 448 vbytes = vsize*var.itemsize
449 449 vdtype = var.dtype
450 450
451 451 if vbytes < 100000:
452 452 print aformat % (vshape, vsize, vdtype, vbytes)
453 453 else:
454 454 print aformat % (vshape, vsize, vdtype, vbytes),
455 455 if vbytes < Mb:
456 456 print '(%s kb)' % (vbytes/kb,)
457 457 else:
458 458 print '(%s Mb)' % (vbytes/Mb,)
459 459 else:
460 460 try:
461 461 vstr = str(var)
462 462 except UnicodeEncodeError:
463 463 vstr = unicode(var).encode(DEFAULT_ENCODING,
464 464 'backslashreplace')
465 465 except:
466 466 vstr = "<object with id %d (str() failed)>" % id(var)
467 467 vstr = vstr.replace('\n', '\\n')
468 468 if len(vstr) < 50:
469 469 print vstr
470 470 else:
471 471 print vstr[:25] + "<...>" + vstr[-25:]
472 472
473 473 @line_magic
474 474 def reset(self, parameter_s=''):
475 475 """Resets the namespace by removing all names defined by the user, if
476 476 called without arguments, or by removing some types of objects, such
477 477 as everything currently in IPython's In[] and Out[] containers (see
478 478 the parameters for details).
479 479
480 480 Parameters
481 481 ----------
482 482 -f : force reset without asking for confirmation.
483 483
484 484 -s : 'Soft' reset: Only clears your namespace, leaving history intact.
485 485 References to objects may be kept. By default (without this option),
486 486 we do a 'hard' reset, giving you a new session and removing all
487 487 references to objects from the current session.
488 488
489 489 in : reset input history
490 490
491 491 out : reset output history
492 492
493 493 dhist : reset directory history
494 494
495 495 array : reset only variables that are NumPy arrays
496 496
497 497 See Also
498 498 --------
499 499 magic_reset_selective : invoked as ``%reset_selective``
500 500
501 501 Examples
502 502 --------
503 503 ::
504 504
505 505 In [6]: a = 1
506 506
507 507 In [7]: a
508 508 Out[7]: 1
509 509
510 510 In [8]: 'a' in _ip.user_ns
511 511 Out[8]: True
512 512
513 513 In [9]: %reset -f
514 514
515 515 In [1]: 'a' in _ip.user_ns
516 516 Out[1]: False
517 517
518 518 In [2]: %reset -f in
519 519 Flushing input history
520 520
521 521 In [3]: %reset -f dhist in
522 522 Flushing directory history
523 523 Flushing input history
524 524
525 525 Notes
526 526 -----
527 527 Calling this magic from clients that do not implement standard input,
528 528 such as the ipython notebook interface, will reset the namespace
529 529 without confirmation.
530 530 """
531 531 opts, args = self.parse_options(parameter_s,'sf', mode='list')
532 532 if 'f' in opts:
533 533 ans = True
534 534 else:
535 535 try:
536 536 ans = self.shell.ask_yes_no(
537 537 "Once deleted, variables cannot be recovered. Proceed (y/[n])?",
538 538 default='n')
539 539 except StdinNotImplementedError:
540 540 ans = True
541 541 if not ans:
542 542 print 'Nothing done.'
543 543 return
544 544
545 545 if 's' in opts: # Soft reset
546 546 user_ns = self.shell.user_ns
547 547 for i in self.who_ls():
548 548 del(user_ns[i])
549 549 elif len(args) == 0: # Hard reset
550 550 self.shell.reset(new_session = False)
551 551
552 552 # reset in/out/dhist/array: previously extensinions/clearcmd.py
553 553 ip = self.shell
554 554 user_ns = self.shell.user_ns # local lookup, heavily used
555 555
556 556 for target in args:
557 557 target = target.lower() # make matches case insensitive
558 558 if target == 'out':
559 559 print "Flushing output cache (%d entries)" % len(user_ns['_oh'])
560 560 self.shell.displayhook.flush()
561 561
562 562 elif target == 'in':
563 563 print "Flushing input history"
564 564 pc = self.shell.displayhook.prompt_count + 1
565 565 for n in range(1, pc):
566 566 key = '_i'+repr(n)
567 567 user_ns.pop(key,None)
568 568 user_ns.update(dict(_i=u'',_ii=u'',_iii=u''))
569 569 hm = ip.history_manager
570 570 # don't delete these, as %save and %macro depending on the
571 571 # length of these lists to be preserved
572 572 hm.input_hist_parsed[:] = [''] * pc
573 573 hm.input_hist_raw[:] = [''] * pc
574 574 # hm has internal machinery for _i,_ii,_iii, clear it out
575 575 hm._i = hm._ii = hm._iii = hm._i00 = u''
576 576
577 577 elif target == 'array':
578 578 # Support cleaning up numpy arrays
579 579 try:
580 580 from numpy import ndarray
581 581 # This must be done with items and not iteritems because
582 582 # we're going to modify the dict in-place.
583 583 for x,val in user_ns.items():
584 584 if isinstance(val,ndarray):
585 585 del user_ns[x]
586 586 except ImportError:
587 587 print "reset array only works if Numpy is available."
588 588
589 589 elif target == 'dhist':
590 590 print "Flushing directory history"
591 591 del user_ns['_dh'][:]
592 592
593 593 else:
594 594 print "Don't know how to reset ",
595 595 print target + ", please run `%reset?` for details"
596 596
597 597 gc.collect()
598 598
599 599 @line_magic
600 600 def reset_selective(self, parameter_s=''):
601 601 """Resets the namespace by removing names defined by the user.
602 602
603 603 Input/Output history are left around in case you need them.
604 604
605 605 %reset_selective [-f] regex
606 606
607 607 No action is taken if regex is not included
608 608
609 609 Options
610 610 -f : force reset without asking for confirmation.
611 611
612 612 See Also
613 613 --------
614 614 magic_reset : invoked as ``%reset``
615 615
616 616 Examples
617 617 --------
618 618
619 619 We first fully reset the namespace so your output looks identical to
620 620 this example for pedagogical reasons; in practice you do not need a
621 621 full reset::
622 622
623 623 In [1]: %reset -f
624 624
625 625 Now, with a clean namespace we can make a few variables and use
626 626 ``%reset_selective`` to only delete names that match our regexp::
627 627
628 628 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
629 629
630 630 In [3]: who_ls
631 631 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
632 632
633 633 In [4]: %reset_selective -f b[2-3]m
634 634
635 635 In [5]: who_ls
636 636 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
637 637
638 638 In [6]: %reset_selective -f d
639 639
640 640 In [7]: who_ls
641 641 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
642 642
643 643 In [8]: %reset_selective -f c
644 644
645 645 In [9]: who_ls
646 646 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
647 647
648 648 In [10]: %reset_selective -f b
649 649
650 650 In [11]: who_ls
651 651 Out[11]: ['a']
652 652
653 653 Notes
654 654 -----
655 655 Calling this magic from clients that do not implement standard input,
656 656 such as the ipython notebook interface, will reset the namespace
657 657 without confirmation.
658 658 """
659 659
660 660 opts, regex = self.parse_options(parameter_s,'f')
661 661
662 662 if 'f' in opts:
663 663 ans = True
664 664 else:
665 665 try:
666 666 ans = self.shell.ask_yes_no(
667 667 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ",
668 668 default='n')
669 669 except StdinNotImplementedError:
670 670 ans = True
671 671 if not ans:
672 672 print 'Nothing done.'
673 673 return
674 674 user_ns = self.shell.user_ns
675 675 if not regex:
676 676 print 'No regex pattern specified. Nothing done.'
677 677 return
678 678 else:
679 679 try:
680 680 m = re.compile(regex)
681 681 except TypeError:
682 682 raise TypeError('regex must be a string or compiled pattern')
683 683 for i in self.who_ls():
684 684 if m.search(i):
685 685 del(user_ns[i])
686 686
687 687 @line_magic
688 688 def xdel(self, parameter_s=''):
689 689 """Delete a variable, trying to clear it from anywhere that
690 690 IPython's machinery has references to it. By default, this uses
691 691 the identity of the named object in the user namespace to remove
692 692 references held under other names. The object is also removed
693 693 from the output history.
694 694
695 695 Options
696 696 -n : Delete the specified name from all namespaces, without
697 697 checking their identity.
698 698 """
699 699 opts, varname = self.parse_options(parameter_s,'n')
700 700 try:
701 701 self.shell.del_var(varname, ('n' in opts))
702 702 except (NameError, ValueError) as e:
703 703 print type(e).__name__ +": "+ str(e)
@@ -1,873 +1,873 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Tools for inspecting Python objects.
3 3
4 4 Uses syntax highlighting for presenting the various information elements.
5 5
6 6 Similar in spirit to the inspect module, but all calls take a name argument to
7 7 reference the name under which an object is being read.
8 8 """
9 9
10 10 #*****************************************************************************
11 11 # Copyright (C) 2001-2004 Fernando Perez <fperez@colorado.edu>
12 12 #
13 13 # Distributed under the terms of the BSD License. The full license is in
14 14 # the file COPYING, distributed as part of this software.
15 15 #*****************************************************************************
16 16 from __future__ import print_function
17 17
18 18 __all__ = ['Inspector','InspectColors']
19 19
20 20 # stdlib modules
21 21 import __builtin__
22 22 import inspect
23 23 import linecache
24 24 import os
25 25 import sys
26 26 import types
27 27 import io as stdlib_io
28 28
29 29 from collections import namedtuple
30 30 try:
31 31 from itertools import izip_longest
32 32 except ImportError:
33 33 from itertools import zip_longest as izip_longest
34 34
35 35 # IPython's own
36 36 from IPython.core import page
37 37 from IPython.testing.skipdoctest import skip_doctest_py3
38 38 from IPython.utils import PyColorize
39 39 from IPython.utils import io
40 40 from IPython.utils import openpy
41 41 from IPython.utils import py3compat
42 42 from IPython.utils.text import indent
43 43 from IPython.utils.wildcard import list_namespace
44 44 from IPython.utils.coloransi import *
45 45 from IPython.utils.py3compat import cast_unicode
46 46
47 47 #****************************************************************************
48 48 # Builtin color schemes
49 49
50 50 Colors = TermColors # just a shorthand
51 51
52 52 # Build a few color schemes
53 53 NoColor = ColorScheme(
54 54 'NoColor',{
55 55 'header' : Colors.NoColor,
56 56 'normal' : Colors.NoColor # color off (usu. Colors.Normal)
57 57 } )
58 58
59 59 LinuxColors = ColorScheme(
60 60 'Linux',{
61 61 'header' : Colors.LightRed,
62 62 'normal' : Colors.Normal # color off (usu. Colors.Normal)
63 63 } )
64 64
65 65 LightBGColors = ColorScheme(
66 66 'LightBG',{
67 67 'header' : Colors.Red,
68 68 'normal' : Colors.Normal # color off (usu. Colors.Normal)
69 69 } )
70 70
71 71 # Build table of color schemes (needed by the parser)
72 72 InspectColors = ColorSchemeTable([NoColor,LinuxColors,LightBGColors],
73 73 'Linux')
74 74
75 75 #****************************************************************************
76 76 # Auxiliary functions and objects
77 77
78 78 # See the messaging spec for the definition of all these fields. This list
79 79 # effectively defines the order of display
80 80 info_fields = ['type_name', 'base_class', 'string_form', 'namespace',
81 81 'length', 'file', 'definition', 'docstring', 'source',
82 82 'init_definition', 'class_docstring', 'init_docstring',
83 83 'call_def', 'call_docstring',
84 84 # These won't be printed but will be used to determine how to
85 85 # format the object
86 86 'ismagic', 'isalias', 'isclass', 'argspec', 'found', 'name'
87 87 ]
88 88
89 89
90 90 def object_info(**kw):
91 91 """Make an object info dict with all fields present."""
92 92 infodict = dict(izip_longest(info_fields, [None]))
93 93 infodict.update(kw)
94 94 return infodict
95 95
96 96
97 97 def get_encoding(obj):
98 98 """Get encoding for python source file defining obj
99 99
100 100 Returns None if obj is not defined in a sourcefile.
101 101 """
102 102 ofile = find_file(obj)
103 103 # run contents of file through pager starting at line where the object
104 104 # is defined, as long as the file isn't binary and is actually on the
105 105 # filesystem.
106 106 if ofile is None:
107 107 return None
108 108 elif ofile.endswith(('.so', '.dll', '.pyd')):
109 109 return None
110 110 elif not os.path.isfile(ofile):
111 111 return None
112 112 else:
113 113 # Print only text files, not extension binaries. Note that
114 114 # getsourcelines returns lineno with 1-offset and page() uses
115 115 # 0-offset, so we must adjust.
116 116 buffer = stdlib_io.open(ofile, 'rb') # Tweaked to use io.open for Python 2
117 117 encoding, lines = openpy.detect_encoding(buffer.readline)
118 118 return encoding
119 119
120 120 def getdoc(obj):
121 121 """Stable wrapper around inspect.getdoc.
122 122
123 123 This can't crash because of attribute problems.
124 124
125 125 It also attempts to call a getdoc() method on the given object. This
126 126 allows objects which provide their docstrings via non-standard mechanisms
127 127 (like Pyro proxies) to still be inspected by ipython's ? system."""
128 128 # Allow objects to offer customized documentation via a getdoc method:
129 129 try:
130 130 ds = obj.getdoc()
131 131 except Exception:
132 132 pass
133 133 else:
134 134 # if we get extra info, we add it to the normal docstring.
135 135 if isinstance(ds, basestring):
136 136 return inspect.cleandoc(ds)
137 137
138 138 try:
139 139 docstr = inspect.getdoc(obj)
140 140 encoding = get_encoding(obj)
141 141 return py3compat.cast_unicode(docstr, encoding=encoding)
142 142 except Exception:
143 143 # Harden against an inspect failure, which can occur with
144 144 # SWIG-wrapped extensions.
145 145 raise
146 146 return None
147 147
148 148
149 149 def getsource(obj,is_binary=False):
150 150 """Wrapper around inspect.getsource.
151 151
152 152 This can be modified by other projects to provide customized source
153 153 extraction.
154 154
155 155 Inputs:
156 156
157 157 - obj: an object whose source code we will attempt to extract.
158 158
159 159 Optional inputs:
160 160
161 161 - is_binary: whether the object is known to come from a binary source.
162 162 This implementation will skip returning any output for binary objects, but
163 163 custom extractors may know how to meaningfully process them."""
164 164
165 165 if is_binary:
166 166 return None
167 167 else:
168 168 # get source if obj was decorated with @decorator
169 169 if hasattr(obj,"__wrapped__"):
170 170 obj = obj.__wrapped__
171 171 try:
172 172 src = inspect.getsource(obj)
173 173 except TypeError:
174 174 if hasattr(obj,'__class__'):
175 175 src = inspect.getsource(obj.__class__)
176 176 encoding = get_encoding(obj)
177 177 return cast_unicode(src, encoding=encoding)
178 178
179 179 def getargspec(obj):
180 180 """Get the names and default values of a function's arguments.
181 181
182 182 A tuple of four things is returned: (args, varargs, varkw, defaults).
183 183 'args' is a list of the argument names (it may contain nested lists).
184 184 'varargs' and 'varkw' are the names of the * and ** arguments or None.
185 185 'defaults' is an n-tuple of the default values of the last n arguments.
186 186
187 187 Modified version of inspect.getargspec from the Python Standard
188 188 Library."""
189 189
190 190 if inspect.isfunction(obj):
191 191 func_obj = obj
192 192 elif inspect.ismethod(obj):
193 193 func_obj = obj.im_func
194 194 elif hasattr(obj, '__call__'):
195 195 func_obj = obj.__call__
196 196 else:
197 197 raise TypeError('arg is not a Python function')
198 198 args, varargs, varkw = inspect.getargs(func_obj.func_code)
199 199 return args, varargs, varkw, func_obj.func_defaults
200 200
201 201
202 202 def format_argspec(argspec):
203 203 """Format argspect, convenience wrapper around inspect's.
204 204
205 205 This takes a dict instead of ordered arguments and calls
206 206 inspect.format_argspec with the arguments in the necessary order.
207 207 """
208 208 return inspect.formatargspec(argspec['args'], argspec['varargs'],
209 209 argspec['varkw'], argspec['defaults'])
210 210
211 211
212 212 def call_tip(oinfo, format_call=True):
213 213 """Extract call tip data from an oinfo dict.
214 214
215 215 Parameters
216 216 ----------
217 217 oinfo : dict
218 218
219 219 format_call : bool, optional
220 220 If True, the call line is formatted and returned as a string. If not, a
221 221 tuple of (name, argspec) is returned.
222 222
223 223 Returns
224 224 -------
225 225 call_info : None, str or (str, dict) tuple.
226 226 When format_call is True, the whole call information is formattted as a
227 227 single string. Otherwise, the object's name and its argspec dict are
228 228 returned. If no call information is available, None is returned.
229 229
230 230 docstring : str or None
231 231 The most relevant docstring for calling purposes is returned, if
232 232 available. The priority is: call docstring for callable instances, then
233 233 constructor docstring for classes, then main object's docstring otherwise
234 234 (regular functions).
235 235 """
236 236 # Get call definition
237 237 argspec = oinfo.get('argspec')
238 238 if argspec is None:
239 239 call_line = None
240 240 else:
241 241 # Callable objects will have 'self' as their first argument, prune
242 242 # it out if it's there for clarity (since users do *not* pass an
243 243 # extra first argument explicitly).
244 244 try:
245 245 has_self = argspec['args'][0] == 'self'
246 246 except (KeyError, IndexError):
247 247 pass
248 248 else:
249 249 if has_self:
250 250 argspec['args'] = argspec['args'][1:]
251 251
252 252 call_line = oinfo['name']+format_argspec(argspec)
253 253
254 254 # Now get docstring.
255 255 # The priority is: call docstring, constructor docstring, main one.
256 256 doc = oinfo.get('call_docstring')
257 257 if doc is None:
258 258 doc = oinfo.get('init_docstring')
259 259 if doc is None:
260 260 doc = oinfo.get('docstring','')
261 261
262 262 return call_line, doc
263 263
264 264
265 265 def find_file(obj):
266 266 """Find the absolute path to the file where an object was defined.
267 267
268 268 This is essentially a robust wrapper around `inspect.getabsfile`.
269 269
270 270 Returns None if no file can be found.
271 271
272 272 Parameters
273 273 ----------
274 274 obj : any Python object
275 275
276 276 Returns
277 277 -------
278 278 fname : str
279 279 The absolute path to the file where the object was defined.
280 280 """
281 281 # get source if obj was decorated with @decorator
282 282 if hasattr(obj, '__wrapped__'):
283 283 obj = obj.__wrapped__
284 284
285 285 fname = None
286 286 try:
287 287 fname = inspect.getabsfile(obj)
288 288 except TypeError:
289 289 # For an instance, the file that matters is where its class was
290 290 # declared.
291 291 if hasattr(obj, '__class__'):
292 292 try:
293 293 fname = inspect.getabsfile(obj.__class__)
294 294 except TypeError:
295 295 # Can happen for builtins
296 296 pass
297 297 except:
298 298 pass
299 299 return fname
300 300
301 301
302 302 def find_source_lines(obj):
303 303 """Find the line number in a file where an object was defined.
304 304
305 305 This is essentially a robust wrapper around `inspect.getsourcelines`.
306 306
307 307 Returns None if no file can be found.
308 308
309 309 Parameters
310 310 ----------
311 311 obj : any Python object
312 312
313 313 Returns
314 314 -------
315 315 lineno : int
316 316 The line number where the object definition starts.
317 317 """
318 318 # get source if obj was decorated with @decorator
319 319 if hasattr(obj, '__wrapped__'):
320 320 obj = obj.__wrapped__
321 321
322 322 try:
323 323 try:
324 324 lineno = inspect.getsourcelines(obj)[1]
325 325 except TypeError:
326 326 # For instances, try the class object like getsource() does
327 327 if hasattr(obj, '__class__'):
328 328 lineno = inspect.getsourcelines(obj.__class__)[1]
329 329 except:
330 330 return None
331 331
332 332 return lineno
333 333
334 334
335 335 class Inspector:
336 336 def __init__(self, color_table=InspectColors,
337 337 code_color_table=PyColorize.ANSICodeColors,
338 338 scheme='NoColor',
339 339 str_detail_level=0):
340 340 self.color_table = color_table
341 341 self.parser = PyColorize.Parser(code_color_table,out='str')
342 342 self.format = self.parser.format
343 343 self.str_detail_level = str_detail_level
344 344 self.set_active_scheme(scheme)
345 345
346 346 def _getdef(self,obj,oname=''):
347 """Return the definition header for any callable object.
347 """Return the call signature for any callable object.
348 348
349 349 If any exception is generated, None is returned instead and the
350 350 exception is suppressed."""
351 351
352 352 try:
353 353 hdef = oname + inspect.formatargspec(*getargspec(obj))
354 354 return cast_unicode(hdef)
355 355 except:
356 356 return None
357 357
358 358 def __head(self,h):
359 359 """Return a header string with proper colors."""
360 360 return '%s%s%s' % (self.color_table.active_colors.header,h,
361 361 self.color_table.active_colors.normal)
362 362
363 363 def set_active_scheme(self, scheme):
364 364 self.color_table.set_active_scheme(scheme)
365 365 self.parser.color_table.set_active_scheme(scheme)
366 366
367 367 def noinfo(self, msg, oname):
368 368 """Generic message when no information is found."""
369 369 print('No %s found' % msg, end=' ')
370 370 if oname:
371 371 print('for %s' % oname)
372 372 else:
373 373 print()
374 374
375 375 def pdef(self, obj, oname=''):
376 """Print the definition header for any callable object.
376 """Print the call signature for any callable object.
377 377
378 378 If the object is a class, print the constructor information."""
379 379
380 380 if not callable(obj):
381 381 print('Object is not callable.')
382 382 return
383 383
384 384 header = ''
385 385
386 386 if inspect.isclass(obj):
387 387 header = self.__head('Class constructor information:\n')
388 388 obj = obj.__init__
389 389 elif (not py3compat.PY3) and type(obj) is types.InstanceType:
390 390 obj = obj.__call__
391 391
392 392 output = self._getdef(obj,oname)
393 393 if output is None:
394 394 self.noinfo('definition header',oname)
395 395 else:
396 396 print(header,self.format(output), end=' ', file=io.stdout)
397 397
398 398 # In Python 3, all classes are new-style, so they all have __init__.
399 399 @skip_doctest_py3
400 400 def pdoc(self,obj,oname='',formatter = None):
401 401 """Print the docstring for any object.
402 402
403 403 Optional:
404 404 -formatter: a function to run the docstring through for specially
405 405 formatted docstrings.
406 406
407 407 Examples
408 408 --------
409 409
410 410 In [1]: class NoInit:
411 411 ...: pass
412 412
413 413 In [2]: class NoDoc:
414 414 ...: def __init__(self):
415 415 ...: pass
416 416
417 417 In [3]: %pdoc NoDoc
418 418 No documentation found for NoDoc
419 419
420 420 In [4]: %pdoc NoInit
421 421 No documentation found for NoInit
422 422
423 423 In [5]: obj = NoInit()
424 424
425 425 In [6]: %pdoc obj
426 426 No documentation found for obj
427 427
428 428 In [5]: obj2 = NoDoc()
429 429
430 430 In [6]: %pdoc obj2
431 431 No documentation found for obj2
432 432 """
433 433
434 434 head = self.__head # For convenience
435 435 lines = []
436 436 ds = getdoc(obj)
437 437 if formatter:
438 438 ds = formatter(ds)
439 439 if ds:
440 440 lines.append(head("Class Docstring:"))
441 441 lines.append(indent(ds))
442 442 if inspect.isclass(obj) and hasattr(obj, '__init__'):
443 443 init_ds = getdoc(obj.__init__)
444 444 if init_ds is not None:
445 445 lines.append(head("Constructor Docstring:"))
446 446 lines.append(indent(init_ds))
447 447 elif hasattr(obj,'__call__'):
448 448 call_ds = getdoc(obj.__call__)
449 449 if call_ds:
450 450 lines.append(head("Calling Docstring:"))
451 451 lines.append(indent(call_ds))
452 452
453 453 if not lines:
454 454 self.noinfo('documentation',oname)
455 455 else:
456 456 page.page('\n'.join(lines))
457 457
458 458 def psource(self,obj,oname=''):
459 459 """Print the source code for an object."""
460 460
461 461 # Flush the source cache because inspect can return out-of-date source
462 462 linecache.checkcache()
463 463 try:
464 464 src = getsource(obj)
465 465 except:
466 466 self.noinfo('source',oname)
467 467 else:
468 468 page.page(self.format(src))
469 469
470 470 def pfile(self, obj, oname=''):
471 471 """Show the whole file where an object was defined."""
472 472
473 473 lineno = find_source_lines(obj)
474 474 if lineno is None:
475 475 self.noinfo('file', oname)
476 476 return
477 477
478 478 ofile = find_file(obj)
479 479 # run contents of file through pager starting at line where the object
480 480 # is defined, as long as the file isn't binary and is actually on the
481 481 # filesystem.
482 482 if ofile.endswith(('.so', '.dll', '.pyd')):
483 483 print('File %r is binary, not printing.' % ofile)
484 484 elif not os.path.isfile(ofile):
485 485 print('File %r does not exist, not printing.' % ofile)
486 486 else:
487 487 # Print only text files, not extension binaries. Note that
488 488 # getsourcelines returns lineno with 1-offset and page() uses
489 489 # 0-offset, so we must adjust.
490 490 page.page(self.format(openpy.read_py_file(ofile, skip_encoding_cookie=False)), lineno - 1)
491 491
492 492 def _format_fields(self, fields, title_width=12):
493 493 """Formats a list of fields for display.
494 494
495 495 Parameters
496 496 ----------
497 497 fields : list
498 498 A list of 2-tuples: (field_title, field_content)
499 499 title_width : int
500 500 How many characters to pad titles to. Default 12.
501 501 """
502 502 out = []
503 503 header = self.__head
504 504 for title, content in fields:
505 505 if len(content.splitlines()) > 1:
506 506 title = header(title + ":") + "\n"
507 507 else:
508 508 title = header((title+":").ljust(title_width))
509 509 out.append(cast_unicode(title) + cast_unicode(content))
510 510 return "\n".join(out)
511 511
512 512 # The fields to be displayed by pinfo: (fancy_name, key_in_info_dict)
513 513 pinfo_fields1 = [("Type", "type_name"),
514 514 ]
515 515
516 516 pinfo_fields2 = [("String Form", "string_form"),
517 517 ]
518 518
519 519 pinfo_fields3 = [("Length", "length"),
520 520 ("File", "file"),
521 521 ("Definition", "definition"),
522 522 ]
523 523
524 524 pinfo_fields_obj = [("Class Docstring", "class_docstring"),
525 525 ("Constructor Docstring","init_docstring"),
526 526 ("Call def", "call_def"),
527 527 ("Call docstring", "call_docstring")]
528 528
529 529 def pinfo(self,obj,oname='',formatter=None,info=None,detail_level=0):
530 530 """Show detailed information about an object.
531 531
532 532 Optional arguments:
533 533
534 534 - oname: name of the variable pointing to the object.
535 535
536 536 - formatter: special formatter for docstrings (see pdoc)
537 537
538 538 - info: a structure with some information fields which may have been
539 539 precomputed already.
540 540
541 541 - detail_level: if set to 1, more information is given.
542 542 """
543 543 info = self.info(obj, oname=oname, formatter=formatter,
544 544 info=info, detail_level=detail_level)
545 545 displayfields = []
546 546 def add_fields(fields):
547 547 for title, key in fields:
548 548 field = info[key]
549 549 if field is not None:
550 550 displayfields.append((title, field.rstrip()))
551 551
552 552 add_fields(self.pinfo_fields1)
553 553
554 554 # Base class for old-style instances
555 555 if (not py3compat.PY3) and isinstance(obj, types.InstanceType) and info['base_class']:
556 556 displayfields.append(("Base Class", info['base_class'].rstrip()))
557 557
558 558 add_fields(self.pinfo_fields2)
559 559
560 560 # Namespace
561 561 if info['namespace'] != 'Interactive':
562 562 displayfields.append(("Namespace", info['namespace'].rstrip()))
563 563
564 564 add_fields(self.pinfo_fields3)
565 565
566 566 # Source or docstring, depending on detail level and whether
567 567 # source found.
568 568 if detail_level > 0 and info['source'] is not None:
569 569 displayfields.append(("Source",
570 570 self.format(cast_unicode(info['source']))))
571 571 elif info['docstring'] is not None:
572 572 displayfields.append(("Docstring", info["docstring"]))
573 573
574 574 # Constructor info for classes
575 575 if info['isclass']:
576 576 if info['init_definition'] or info['init_docstring']:
577 577 displayfields.append(("Constructor information", ""))
578 578 if info['init_definition'] is not None:
579 579 displayfields.append((" Definition",
580 580 info['init_definition'].rstrip()))
581 581 if info['init_docstring'] is not None:
582 582 displayfields.append((" Docstring",
583 583 indent(info['init_docstring'])))
584 584
585 585 # Info for objects:
586 586 else:
587 587 add_fields(self.pinfo_fields_obj)
588 588
589 589 # Finally send to printer/pager:
590 590 if displayfields:
591 591 page.page(self._format_fields(displayfields))
592 592
593 593 def info(self, obj, oname='', formatter=None, info=None, detail_level=0):
594 594 """Compute a dict with detailed information about an object.
595 595
596 596 Optional arguments:
597 597
598 598 - oname: name of the variable pointing to the object.
599 599
600 600 - formatter: special formatter for docstrings (see pdoc)
601 601
602 602 - info: a structure with some information fields which may have been
603 603 precomputed already.
604 604
605 605 - detail_level: if set to 1, more information is given.
606 606 """
607 607
608 608 obj_type = type(obj)
609 609
610 610 header = self.__head
611 611 if info is None:
612 612 ismagic = 0
613 613 isalias = 0
614 614 ospace = ''
615 615 else:
616 616 ismagic = info.ismagic
617 617 isalias = info.isalias
618 618 ospace = info.namespace
619 619
620 620 # Get docstring, special-casing aliases:
621 621 if isalias:
622 622 if not callable(obj):
623 623 try:
624 624 ds = "Alias to the system command:\n %s" % obj[1]
625 625 except:
626 626 ds = "Alias: " + str(obj)
627 627 else:
628 628 ds = "Alias to " + str(obj)
629 629 if obj.__doc__:
630 630 ds += "\nDocstring:\n" + obj.__doc__
631 631 else:
632 632 ds = getdoc(obj)
633 633 if ds is None:
634 634 ds = '<no docstring>'
635 635 if formatter is not None:
636 636 ds = formatter(ds)
637 637
638 638 # store output in a dict, we initialize it here and fill it as we go
639 639 out = dict(name=oname, found=True, isalias=isalias, ismagic=ismagic)
640 640
641 641 string_max = 200 # max size of strings to show (snipped if longer)
642 642 shalf = int((string_max -5)/2)
643 643
644 644 if ismagic:
645 645 obj_type_name = 'Magic function'
646 646 elif isalias:
647 647 obj_type_name = 'System alias'
648 648 else:
649 649 obj_type_name = obj_type.__name__
650 650 out['type_name'] = obj_type_name
651 651
652 652 try:
653 653 bclass = obj.__class__
654 654 out['base_class'] = str(bclass)
655 655 except: pass
656 656
657 657 # String form, but snip if too long in ? form (full in ??)
658 658 if detail_level >= self.str_detail_level:
659 659 try:
660 660 ostr = str(obj)
661 661 str_head = 'string_form'
662 662 if not detail_level and len(ostr)>string_max:
663 663 ostr = ostr[:shalf] + ' <...> ' + ostr[-shalf:]
664 664 ostr = ("\n" + " " * len(str_head.expandtabs())).\
665 665 join(q.strip() for q in ostr.split("\n"))
666 666 out[str_head] = ostr
667 667 except:
668 668 pass
669 669
670 670 if ospace:
671 671 out['namespace'] = ospace
672 672
673 673 # Length (for strings and lists)
674 674 try:
675 675 out['length'] = str(len(obj))
676 676 except: pass
677 677
678 678 # Filename where object was defined
679 679 binary_file = False
680 680 fname = find_file(obj)
681 681 if fname is None:
682 682 # if anything goes wrong, we don't want to show source, so it's as
683 683 # if the file was binary
684 684 binary_file = True
685 685 else:
686 686 if fname.endswith(('.so', '.dll', '.pyd')):
687 687 binary_file = True
688 688 elif fname.endswith('<string>'):
689 689 fname = 'Dynamically generated function. No source code available.'
690 690 out['file'] = fname
691 691
692 692 # reconstruct the function definition and print it:
693 693 defln = self._getdef(obj, oname)
694 694 if defln:
695 695 out['definition'] = self.format(defln)
696 696
697 697 # Docstrings only in detail 0 mode, since source contains them (we
698 698 # avoid repetitions). If source fails, we add them back, see below.
699 699 if ds and detail_level == 0:
700 700 out['docstring'] = ds
701 701
702 702 # Original source code for any callable
703 703 if detail_level:
704 704 # Flush the source cache because inspect can return out-of-date
705 705 # source
706 706 linecache.checkcache()
707 707 source = None
708 708 try:
709 709 try:
710 710 source = getsource(obj, binary_file)
711 711 except TypeError:
712 712 if hasattr(obj, '__class__'):
713 713 source = getsource(obj.__class__, binary_file)
714 714 if source is not None:
715 715 out['source'] = source.rstrip()
716 716 except Exception:
717 717 pass
718 718
719 719 if ds and source is None:
720 720 out['docstring'] = ds
721 721
722 722
723 723 # Constructor docstring for classes
724 724 if inspect.isclass(obj):
725 725 out['isclass'] = True
726 726 # reconstruct the function definition and print it:
727 727 try:
728 728 obj_init = obj.__init__
729 729 except AttributeError:
730 730 init_def = init_ds = None
731 731 else:
732 732 init_def = self._getdef(obj_init,oname)
733 733 init_ds = getdoc(obj_init)
734 734 # Skip Python's auto-generated docstrings
735 735 if init_ds and \
736 736 init_ds.startswith('x.__init__(...) initializes'):
737 737 init_ds = None
738 738
739 739 if init_def or init_ds:
740 740 if init_def:
741 741 out['init_definition'] = self.format(init_def)
742 742 if init_ds:
743 743 out['init_docstring'] = init_ds
744 744
745 745 # and class docstring for instances:
746 746 else:
747 747 # First, check whether the instance docstring is identical to the
748 748 # class one, and print it separately if they don't coincide. In
749 749 # most cases they will, but it's nice to print all the info for
750 750 # objects which use instance-customized docstrings.
751 751 if ds:
752 752 try:
753 753 cls = getattr(obj,'__class__')
754 754 except:
755 755 class_ds = None
756 756 else:
757 757 class_ds = getdoc(cls)
758 758 # Skip Python's auto-generated docstrings
759 759 if class_ds and \
760 760 (class_ds.startswith('function(code, globals[,') or \
761 761 class_ds.startswith('instancemethod(function, instance,') or \
762 762 class_ds.startswith('module(name[,') ):
763 763 class_ds = None
764 764 if class_ds and ds != class_ds:
765 765 out['class_docstring'] = class_ds
766 766
767 767 # Next, try to show constructor docstrings
768 768 try:
769 769 init_ds = getdoc(obj.__init__)
770 770 # Skip Python's auto-generated docstrings
771 771 if init_ds and \
772 772 init_ds.startswith('x.__init__(...) initializes'):
773 773 init_ds = None
774 774 except AttributeError:
775 775 init_ds = None
776 776 if init_ds:
777 777 out['init_docstring'] = init_ds
778 778
779 779 # Call form docstring for callable instances
780 780 if hasattr(obj, '__call__'):
781 781 call_def = self._getdef(obj.__call__, oname)
782 782 if call_def is not None:
783 783 out['call_def'] = self.format(call_def)
784 784 call_ds = getdoc(obj.__call__)
785 785 # Skip Python's auto-generated docstrings
786 786 if call_ds and call_ds.startswith('x.__call__(...) <==> x(...)'):
787 787 call_ds = None
788 788 if call_ds:
789 789 out['call_docstring'] = call_ds
790 790
791 791 # Compute the object's argspec as a callable. The key is to decide
792 792 # whether to pull it from the object itself, from its __init__ or
793 793 # from its __call__ method.
794 794
795 795 if inspect.isclass(obj):
796 796 # Old-style classes need not have an __init__
797 797 callable_obj = getattr(obj, "__init__", None)
798 798 elif callable(obj):
799 799 callable_obj = obj
800 800 else:
801 801 callable_obj = None
802 802
803 803 if callable_obj:
804 804 try:
805 805 args, varargs, varkw, defaults = getargspec(callable_obj)
806 806 except (TypeError, AttributeError):
807 807 # For extensions/builtins we can't retrieve the argspec
808 808 pass
809 809 else:
810 810 out['argspec'] = dict(args=args, varargs=varargs,
811 811 varkw=varkw, defaults=defaults)
812 812
813 813 return object_info(**out)
814 814
815 815
816 816 def psearch(self,pattern,ns_table,ns_search=[],
817 817 ignore_case=False,show_all=False):
818 818 """Search namespaces with wildcards for objects.
819 819
820 820 Arguments:
821 821
822 822 - pattern: string containing shell-like wildcards to use in namespace
823 823 searches and optionally a type specification to narrow the search to
824 824 objects of that type.
825 825
826 826 - ns_table: dict of name->namespaces for search.
827 827
828 828 Optional arguments:
829 829
830 830 - ns_search: list of namespace names to include in search.
831 831
832 832 - ignore_case(False): make the search case-insensitive.
833 833
834 834 - show_all(False): show all names, including those starting with
835 835 underscores.
836 836 """
837 837 #print 'ps pattern:<%r>' % pattern # dbg
838 838
839 839 # defaults
840 840 type_pattern = 'all'
841 841 filter = ''
842 842
843 843 cmds = pattern.split()
844 844 len_cmds = len(cmds)
845 845 if len_cmds == 1:
846 846 # Only filter pattern given
847 847 filter = cmds[0]
848 848 elif len_cmds == 2:
849 849 # Both filter and type specified
850 850 filter,type_pattern = cmds
851 851 else:
852 852 raise ValueError('invalid argument string for psearch: <%s>' %
853 853 pattern)
854 854
855 855 # filter search namespaces
856 856 for name in ns_search:
857 857 if name not in ns_table:
858 858 raise ValueError('invalid namespace <%s>. Valid names: %s' %
859 859 (name,ns_table.keys()))
860 860
861 861 #print 'type_pattern:',type_pattern # dbg
862 862 search_result, namespaces_seen = set(), set()
863 863 for ns_name in ns_search:
864 864 ns = ns_table[ns_name]
865 865 # Normally, locals and globals are the same, so we just check one.
866 866 if id(ns) in namespaces_seen:
867 867 continue
868 868 namespaces_seen.add(id(ns))
869 869 tmp_res = list_namespace(ns, type_pattern, filter,
870 870 ignore_case=ignore_case, show_all=show_all)
871 871 search_result.update(tmp_res)
872 872
873 873 page.page('\n'.join(sorted(search_result)))
@@ -1,1150 +1,1150 b''
1 1 =================
2 2 IPython reference
3 3 =================
4 4
5 5 .. _command_line_options:
6 6
7 7 Command-line usage
8 8 ==================
9 9
10 10 You start IPython with the command::
11 11
12 12 $ ipython [options] files
13 13
14 14 .. note::
15 15
16 16 For IPython on Python 3, use ``ipython3`` in place of ``ipython``.
17 17
18 18 If invoked with no options, it executes all the files listed in sequence
19 19 and drops you into the interpreter while still acknowledging any options
20 20 you may have set in your ipython_config.py. This behavior is different from
21 21 standard Python, which when called as python -i will only execute one
22 22 file and ignore your configuration setup.
23 23
24 24 Please note that some of the configuration options are not available at
25 25 the command line, simply because they are not practical here. Look into
26 26 your configuration files for details on those. There are separate configuration
27 27 files for each profile, and the files look like "ipython_config.py" or
28 28 "ipython_config_<frontendname>.py". Profile directories look like
29 29 "profile_profilename" and are typically installed in the IPYTHONDIR directory.
30 30 For Linux users, this will be $HOME/.config/ipython, and for other users it
31 31 will be $HOME/.ipython. For Windows users, $HOME resolves to C:\\Documents and
32 32 Settings\\YourUserName in most instances.
33 33
34 34
35 35 Eventloop integration
36 36 ---------------------
37 37
38 38 Previously IPython had command line options for controlling GUI event loop
39 39 integration (-gthread, -qthread, -q4thread, -wthread, -pylab). As of IPython
40 40 version 0.11, these have been removed. Please see the new ``%gui``
41 41 magic command or :ref:`this section <gui_support>` for details on the new
42 42 interface, or specify the gui at the commandline::
43 43
44 44 $ ipython --gui=qt
45 45
46 46
47 47 Command-line Options
48 48 --------------------
49 49
50 50 To see the options IPython accepts, use ``ipython --help`` (and you probably
51 51 should run the output through a pager such as ``ipython --help | less`` for
52 52 more convenient reading). This shows all the options that have a single-word
53 53 alias to control them, but IPython lets you configure all of its objects from
54 54 the command-line by passing the full class name and a corresponding value; type
55 55 ``ipython --help-all`` to see this full list. For example::
56 56
57 57 ipython --pylab qt
58 58
59 59 is equivalent to::
60 60
61 61 ipython --TerminalIPythonApp.pylab='qt'
62 62
63 63 Note that in the second form, you *must* use the equal sign, as the expression
64 64 is evaluated as an actual Python assignment. While in the above example the
65 65 short form is more convenient, only the most common options have a short form,
66 66 while any configurable variable in IPython can be set at the command-line by
67 67 using the long form. This long form is the same syntax used in the
68 68 configuration files, if you want to set these options permanently.
69 69
70 70
71 71 Interactive use
72 72 ===============
73 73
74 74 IPython is meant to work as a drop-in replacement for the standard interactive
75 75 interpreter. As such, any code which is valid python should execute normally
76 76 under IPython (cases where this is not true should be reported as bugs). It
77 77 does, however, offer many features which are not available at a standard python
78 78 prompt. What follows is a list of these.
79 79
80 80
81 81 Caution for Windows users
82 82 -------------------------
83 83
84 84 Windows, unfortunately, uses the '\\' character as a path separator. This is a
85 85 terrible choice, because '\\' also represents the escape character in most
86 86 modern programming languages, including Python. For this reason, using '/'
87 87 character is recommended if you have problems with ``\``. However, in Windows
88 88 commands '/' flags options, so you can not use it for the root directory. This
89 89 means that paths beginning at the root must be typed in a contrived manner
90 90 like: ``%copy \opt/foo/bar.txt \tmp``
91 91
92 92 .. _magic:
93 93
94 94 Magic command system
95 95 --------------------
96 96
97 97 IPython will treat any line whose first character is a % as a special
98 98 call to a 'magic' function. These allow you to control the behavior of
99 99 IPython itself, plus a lot of system-type features. They are all
100 100 prefixed with a % character, but parameters are given without
101 101 parentheses or quotes.
102 102
103 103 Lines that begin with ``%%`` signal a *cell magic*: they take as arguments not
104 104 only the rest of the current line, but all lines below them as well, in the
105 105 current execution block. Cell magics can in fact make arbitrary modifications
106 106 to the input they receive, which need not even be valid Python code at all.
107 107 They receive the whole block as a single string.
108 108
109 109 As a line magic example, the ``%cd`` magic works just like the OS command of
110 110 the same name::
111 111
112 112 In [8]: %cd
113 113 /home/fperez
114 114
115 115 The following uses the builtin ``timeit`` in cell mode::
116 116
117 117 In [10]: %%timeit x = range(10000)
118 118 ...: min(x)
119 119 ...: max(x)
120 120 ...:
121 121 1000 loops, best of 3: 438 us per loop
122 122
123 123 In this case, ``x = range(10000)`` is called as the line argument, and the
124 124 block with ``min(x)`` and ``max(x)`` is called as the cell body. The
125 125 ``timeit`` magic receives both.
126 126
127 127 If you have 'automagic' enabled (as it by default), you don't need to type in
128 128 the single ``%`` explicitly for line magics; IPython will scan its internal
129 129 list of magic functions and call one if it exists. With automagic on you can
130 130 then just type ``cd mydir`` to go to directory 'mydir'::
131 131
132 132 In [9]: cd mydir
133 133 /home/fperez/mydir
134 134
135 135 Note that cell magics *always* require an explicit ``%%`` prefix, automagic
136 136 calling only works for line magics.
137 137
138 138 The automagic system has the lowest possible precedence in name searches, so
139 139 defining an identifier with the same name as an existing magic function will
140 140 shadow it for automagic use. You can still access the shadowed magic function
141 141 by explicitly using the ``%`` character at the beginning of the line.
142 142
143 143 An example (with automagic on) should clarify all this:
144 144
145 145 .. sourcecode:: ipython
146 146
147 147 In [1]: cd ipython # %cd is called by automagic
148 148 /home/fperez/ipython
149 149
150 150 In [2]: cd=1 # now cd is just a variable
151 151
152 152 In [3]: cd .. # and doesn't work as a function anymore
153 153 File "<ipython-input-3-9fedb3aff56c>", line 1
154 154 cd ..
155 155 ^
156 156 SyntaxError: invalid syntax
157 157
158 158
159 159 In [4]: %cd .. # but %cd always works
160 160 /home/fperez
161 161
162 162 In [5]: del cd # if you remove the cd variable, automagic works again
163 163
164 164 In [6]: cd ipython
165 165
166 166 /home/fperez/ipython
167 167
168 168 Defining your own magics
169 169 ~~~~~~~~~~~~~~~~~~~~~~~~
170 170
171 171 There are two main ways to define your own magic functions: from standalone
172 172 functions and by inheriting from a base class provided by IPython:
173 173 :class:`IPython.core.magic.Magics`. Below we show code you can place in a file
174 174 that you load from your configuration, such as any file in the ``startup``
175 175 subdirectory of your default IPython profile.
176 176
177 177 First, let us see the simplest case. The following shows how to create a line
178 178 magic, a cell one and one that works in both modes, using just plain functions:
179 179
180 180 .. sourcecode:: python
181 181
182 182 from IPython.core.magic import (register_line_magic, register_cell_magic,
183 183 register_line_cell_magic)
184 184
185 185 @register_line_magic
186 186 def lmagic(line):
187 187 "my line magic"
188 188 return line
189 189
190 190 @register_cell_magic
191 191 def cmagic(line, cell):
192 192 "my cell magic"
193 193 return line, cell
194 194
195 195 @register_line_cell_magic
196 196 def lcmagic(line, cell=None):
197 197 "Magic that works both as %lcmagic and as %%lcmagic"
198 198 if cell is None:
199 199 print "Called as line magic"
200 200 return line
201 201 else:
202 202 print "Called as cell magic"
203 203 return line, cell
204 204
205 205 # We delete these to avoid name conflicts for automagic to work
206 206 del lmagic, lcmagic
207 207
208 208
209 209 You can also create magics of all three kinds by inheriting from the
210 210 :class:`IPython.core.magic.Magics` class. This lets you create magics that can
211 211 potentially hold state in between calls, and that have full access to the main
212 212 IPython object:
213 213
214 214 .. sourcecode:: python
215 215
216 216 # This code can be put in any Python module, it does not require IPython
217 217 # itself to be running already. It only creates the magics subclass but
218 218 # doesn't instantiate it yet.
219 219 from IPython.core.magic import (Magics, magics_class, line_magic,
220 220 cell_magic, line_cell_magic)
221 221
222 222 # The class MUST call this class decorator at creation time
223 223 @magics_class
224 224 class MyMagics(Magics):
225 225
226 226 @line_magic
227 227 def lmagic(self, line):
228 228 "my line magic"
229 229 print "Full access to the main IPython object:", self.shell
230 230 print "Variables in the user namespace:", self.user_ns.keys()
231 231 return line
232 232
233 233 @cell_magic
234 234 def cmagic(self, line, cell):
235 235 "my cell magic"
236 236 return line, cell
237 237
238 238 @line_cell_magic
239 239 def lcmagic(self, line, cell=None):
240 240 "Magic that works both as %lcmagic and as %%lcmagic"
241 241 if cell is None:
242 242 print "Called as line magic"
243 243 return line
244 244 else:
245 245 print "Called as cell magic"
246 246 return line, cell
247 247
248 248
249 249 # In order to actually use these magics, you must register them with a
250 250 # running IPython. This code must be placed in a file that is loaded once
251 251 # IPython is up and running:
252 252 ip = get_ipython()
253 253 # You can register the class itself without instantiating it. IPython will
254 254 # call the default constructor on it.
255 255 ip.register_magics(MyMagics)
256 256
257 257 If you want to create a class with a different constructor that holds
258 258 additional state, then you should always call the parent constructor and
259 259 instantiate the class yourself before registration:
260 260
261 261 .. sourcecode:: python
262 262
263 263 @magics_class
264 264 class StatefulMagics(Magics):
265 265 "Magics that hold additional state"
266 266
267 267 def __init__(self, shell, data):
268 268 # You must call the parent constructor
269 269 super(StatefulMagics, self).__init__(shell)
270 270 self.data = data
271 271
272 272 # etc...
273 273
274 274 # This class must then be registered with a manually created instance,
275 275 # since its constructor has different arguments from the default:
276 276 ip = get_ipython()
277 277 magics = StatefulMagics(ip, some_data)
278 278 ip.register_magics(magics)
279 279
280 280
281 281 In earlier versions, IPython had an API for the creation of line magics (cell
282 282 magics did not exist at the time) that required you to create functions with a
283 283 method-looking signature and to manually pass both the function and the name.
284 284 While this API is no longer recommended, it remains indefinitely supported for
285 285 backwards compatibility purposes. With the old API, you'd create a magic as
286 286 follows:
287 287
288 288 .. sourcecode:: python
289 289
290 290 def func(self, line):
291 291 print "Line magic called with line:", line
292 292 print "IPython object:", self.shell
293 293
294 294 ip = get_ipython()
295 295 # Declare this function as the magic %mycommand
296 296 ip.define_magic('mycommand', func)
297 297
298 298 Type ``%magic`` for more information, including a list of all available magic
299 299 functions at any time and their docstrings. You can also type
300 300 ``%magic_function_name?`` (see :ref:`below <dynamic_object_info>` for
301 301 information on the '?' system) to get information about any particular magic
302 302 function you are interested in.
303 303
304 304 The API documentation for the :mod:`IPython.core.magic` module contains the full
305 305 docstrings of all currently available magic commands.
306 306
307 307
308 308 Access to the standard Python help
309 309 ----------------------------------
310 310
311 311 Simply type ``help()`` to access Python's standard help system. You can
312 312 also type ``help(object)`` for information about a given object, or
313 313 ``help('keyword')`` for information on a keyword. You may need to configure your
314 314 PYTHONDOCS environment variable for this feature to work correctly.
315 315
316 316 .. _dynamic_object_info:
317 317
318 318 Dynamic object information
319 319 --------------------------
320 320
321 321 Typing ``?word`` or ``word?`` prints detailed information about an object. If
322 322 certain strings in the object are too long (e.g. function signatures) they get
323 323 snipped in the center for brevity. This system gives access variable types and
324 324 values, docstrings, function prototypes and other useful information.
325 325
326 326 If the information will not fit in the terminal, it is displayed in a pager
327 327 (``less`` if available, otherwise a basic internal pager).
328 328
329 329 Typing ``??word`` or ``word??`` gives access to the full information, including
330 330 the source code where possible. Long strings are not snipped.
331 331
332 332 The following magic functions are particularly useful for gathering
333 333 information about your working environment. You can get more details by
334 334 typing ``%magic`` or querying them individually (``%function_name?``);
335 335 this is just a summary:
336 336
337 337 * **%pdoc <object>**: Print (or run through a pager if too long) the
338 338 docstring for an object. If the given object is a class, it will
339 339 print both the class and the constructor docstrings.
340 * **%pdef <object>**: Print the definition header for any callable
340 * **%pdef <object>**: Print the call signature for any callable
341 341 object. If the object is a class, print the constructor information.
342 342 * **%psource <object>**: Print (or run through a pager if too long)
343 343 the source code for an object.
344 344 * **%pfile <object>**: Show the entire source file where an object was
345 345 defined via a pager, opening it at the line where the object
346 346 definition begins.
347 347 * **%who/%whos**: These functions give information about identifiers
348 348 you have defined interactively (not things you loaded or defined
349 349 in your configuration files). %who just prints a list of
350 350 identifiers and %whos prints a table with some basic details about
351 351 each identifier.
352 352
353 353 Note that the dynamic object information functions (?/??, ``%pdoc``,
354 354 ``%pfile``, ``%pdef``, ``%psource``) work on object attributes, as well as
355 355 directly on variables. For example, after doing ``import os``, you can use
356 356 ``os.path.abspath??``.
357 357
358 358 .. _readline:
359 359
360 360 Readline-based features
361 361 -----------------------
362 362
363 363 These features require the GNU readline library, so they won't work if your
364 364 Python installation lacks readline support. We will first describe the default
365 365 behavior IPython uses, and then how to change it to suit your preferences.
366 366
367 367
368 368 Command line completion
369 369 +++++++++++++++++++++++
370 370
371 371 At any time, hitting TAB will complete any available python commands or
372 372 variable names, and show you a list of the possible completions if
373 373 there's no unambiguous one. It will also complete filenames in the
374 374 current directory if no python names match what you've typed so far.
375 375
376 376
377 377 Search command history
378 378 ++++++++++++++++++++++
379 379
380 380 IPython provides two ways for searching through previous input and thus
381 381 reduce the need for repetitive typing:
382 382
383 383 1. Start typing, and then use Ctrl-p (previous,up) and Ctrl-n
384 384 (next,down) to search through only the history items that match
385 385 what you've typed so far. If you use Ctrl-p/Ctrl-n at a blank
386 386 prompt, they just behave like normal arrow keys.
387 387 2. Hit Ctrl-r: opens a search prompt. Begin typing and the system
388 388 searches your history for lines that contain what you've typed so
389 389 far, completing as much as it can.
390 390
391 391
392 392 Persistent command history across sessions
393 393 ++++++++++++++++++++++++++++++++++++++++++
394 394
395 395 IPython will save your input history when it leaves and reload it next
396 396 time you restart it. By default, the history file is named
397 397 $IPYTHONDIR/profile_<name>/history.sqlite. This allows you to keep
398 398 separate histories related to various tasks: commands related to
399 399 numerical work will not be clobbered by a system shell history, for
400 400 example.
401 401
402 402
403 403 Autoindent
404 404 ++++++++++
405 405
406 406 IPython can recognize lines ending in ':' and indent the next line,
407 407 while also un-indenting automatically after 'raise' or 'return'.
408 408
409 409 This feature uses the readline library, so it will honor your
410 410 :file:`~/.inputrc` configuration (or whatever file your INPUTRC variable points
411 411 to). Adding the following lines to your :file:`.inputrc` file can make
412 412 indenting/unindenting more convenient (M-i indents, M-u unindents)::
413 413
414 414 $if Python
415 415 "\M-i": " "
416 416 "\M-u": "\d\d\d\d"
417 417 $endif
418 418
419 419 Note that there are 4 spaces between the quote marks after "M-i" above.
420 420
421 421 .. warning::
422 422
423 423 Setting the above indents will cause problems with unicode text entry in
424 424 the terminal.
425 425
426 426 .. warning::
427 427
428 428 Autoindent is ON by default, but it can cause problems with the pasting of
429 429 multi-line indented code (the pasted code gets re-indented on each line). A
430 430 magic function %autoindent allows you to toggle it on/off at runtime. You
431 431 can also disable it permanently on in your :file:`ipython_config.py` file
432 432 (set TerminalInteractiveShell.autoindent=False).
433 433
434 434 If you want to paste multiple lines in the terminal, it is recommended that
435 435 you use ``%paste``.
436 436
437 437
438 438 Customizing readline behavior
439 439 +++++++++++++++++++++++++++++
440 440
441 441 All these features are based on the GNU readline library, which has an
442 442 extremely customizable interface. Normally, readline is configured via a
443 443 file which defines the behavior of the library; the details of the
444 444 syntax for this can be found in the readline documentation available
445 445 with your system or on the Internet. IPython doesn't read this file (if
446 446 it exists) directly, but it does support passing to readline valid
447 447 options via a simple interface. In brief, you can customize readline by
448 448 setting the following options in your configuration file (note
449 449 that these options can not be specified at the command line):
450 450
451 451 * **readline_parse_and_bind**: this holds a list of strings to be executed
452 452 via a readline.parse_and_bind() command. The syntax for valid commands
453 453 of this kind can be found by reading the documentation for the GNU
454 454 readline library, as these commands are of the kind which readline
455 455 accepts in its configuration file.
456 456 * **readline_remove_delims**: a string of characters to be removed
457 457 from the default word-delimiters list used by readline, so that
458 458 completions may be performed on strings which contain them. Do not
459 459 change the default value unless you know what you're doing.
460 460
461 461 You will find the default values in your configuration file.
462 462
463 463
464 464 Session logging and restoring
465 465 -----------------------------
466 466
467 467 You can log all input from a session either by starting IPython with the
468 468 command line switch ``--logfile=foo.py`` (see :ref:`here <command_line_options>`)
469 469 or by activating the logging at any moment with the magic function %logstart.
470 470
471 471 Log files can later be reloaded by running them as scripts and IPython
472 472 will attempt to 'replay' the log by executing all the lines in it, thus
473 473 restoring the state of a previous session. This feature is not quite
474 474 perfect, but can still be useful in many cases.
475 475
476 476 The log files can also be used as a way to have a permanent record of
477 477 any code you wrote while experimenting. Log files are regular text files
478 478 which you can later open in your favorite text editor to extract code or
479 479 to 'clean them up' before using them to replay a session.
480 480
481 481 The `%logstart` function for activating logging in mid-session is used as
482 482 follows::
483 483
484 484 %logstart [log_name [log_mode]]
485 485
486 486 If no name is given, it defaults to a file named 'ipython_log.py' in your
487 487 current working directory, in 'rotate' mode (see below).
488 488
489 489 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
490 490 history up to that point and then continues logging.
491 491
492 492 %logstart takes a second optional parameter: logging mode. This can be
493 493 one of (note that the modes are given unquoted):
494 494
495 495 * [over:] overwrite existing log_name.
496 496 * [backup:] rename (if exists) to log_name~ and start log_name.
497 497 * [append:] well, that says it.
498 498 * [rotate:] create rotating logs log_name.1~, log_name.2~, etc.
499 499
500 500 The %logoff and %logon functions allow you to temporarily stop and
501 501 resume logging to a file which had previously been started with
502 502 %logstart. They will fail (with an explanation) if you try to use them
503 503 before logging has been started.
504 504
505 505 .. _system_shell_access:
506 506
507 507 System shell access
508 508 -------------------
509 509
510 510 Any input line beginning with a ! character is passed verbatim (minus
511 511 the !, of course) to the underlying operating system. For example,
512 512 typing ``!ls`` will run 'ls' in the current directory.
513 513
514 514 Manual capture of command output
515 515 --------------------------------
516 516
517 517 You can assign the result of a system command to a Python variable with the
518 518 syntax ``myfiles = !ls``. This gets machine readable output from stdout
519 519 (e.g. without colours), and splits on newlines. To explicitly get this sort of
520 520 output without assigning to a variable, use two exclamation marks (``!!ls``) or
521 521 the ``%sx`` magic command.
522 522
523 523 The captured list has some convenience features. ``myfiles.n`` or ``myfiles.s``
524 524 returns a string delimited by newlines or spaces, respectively. ``myfiles.p``
525 525 produces `path objects <http://pypi.python.org/pypi/path.py>`_ from the list items.
526 526 See :ref:`string_lists` for details.
527 527
528 528 IPython also allows you to expand the value of python variables when
529 529 making system calls. Wrap variables or expressions in {braces}::
530 530
531 531 In [1]: pyvar = 'Hello world'
532 532 In [2]: !echo "A python variable: {pyvar}"
533 533 A python variable: Hello world
534 534 In [3]: import math
535 535 In [4]: x = 8
536 536 In [5]: !echo {math.factorial(x)}
537 537 40320
538 538
539 539 For simple cases, you can alternatively prepend $ to a variable name::
540 540
541 541 In [6]: !echo $sys.argv
542 542 [/home/fperez/usr/bin/ipython]
543 543 In [7]: !echo "A system variable: $$HOME" # Use $$ for literal $
544 544 A system variable: /home/fperez
545 545
546 546 System command aliases
547 547 ----------------------
548 548
549 549 The %alias magic function allows you to define magic functions which are in fact
550 550 system shell commands. These aliases can have parameters.
551 551
552 552 ``%alias alias_name cmd`` defines 'alias_name' as an alias for 'cmd'
553 553
554 554 Then, typing ``alias_name params`` will execute the system command 'cmd
555 555 params' (from your underlying operating system).
556 556
557 557 You can also define aliases with parameters using %s specifiers (one per
558 558 parameter). The following example defines the parts function as an
559 559 alias to the command 'echo first %s second %s' where each %s will be
560 560 replaced by a positional parameter to the call to %parts::
561 561
562 562 In [1]: %alias parts echo first %s second %s
563 563 In [2]: parts A B
564 564 first A second B
565 565 In [3]: parts A
566 566 ERROR: Alias <parts> requires 2 arguments, 1 given.
567 567
568 568 If called with no parameters, %alias prints the table of currently
569 569 defined aliases.
570 570
571 571 The %rehashx magic allows you to load your entire $PATH as
572 572 ipython aliases. See its docstring for further details.
573 573
574 574
575 575 .. _dreload:
576 576
577 577 Recursive reload
578 578 ----------------
579 579
580 580 The :mod:`IPython.lib.deepreload` module allows you to recursively reload a
581 581 module: changes made to any of its dependencies will be reloaded without
582 582 having to exit. To start using it, do::
583 583
584 584 from IPython.lib.deepreload import reload as dreload
585 585
586 586
587 587 Verbose and colored exception traceback printouts
588 588 -------------------------------------------------
589 589
590 590 IPython provides the option to see very detailed exception tracebacks,
591 591 which can be especially useful when debugging large programs. You can
592 592 run any Python file with the %run function to benefit from these
593 593 detailed tracebacks. Furthermore, both normal and verbose tracebacks can
594 594 be colored (if your terminal supports it) which makes them much easier
595 595 to parse visually.
596 596
597 597 See the magic xmode and colors functions for details (just type %magic).
598 598
599 599 These features are basically a terminal version of Ka-Ping Yee's cgitb
600 600 module, now part of the standard Python library.
601 601
602 602
603 603 .. _input_caching:
604 604
605 605 Input caching system
606 606 --------------------
607 607
608 608 IPython offers numbered prompts (In/Out) with input and output caching
609 609 (also referred to as 'input history'). All input is saved and can be
610 610 retrieved as variables (besides the usual arrow key recall), in
611 611 addition to the %rep magic command that brings a history entry
612 612 up for editing on the next command line.
613 613
614 614 The following GLOBAL variables always exist (so don't overwrite them!):
615 615
616 616 * _i, _ii, _iii: store previous, next previous and next-next previous inputs.
617 617 * In, _ih : a list of all inputs; _ih[n] is the input from line n. If you
618 618 overwrite In with a variable of your own, you can remake the assignment to the
619 619 internal list with a simple ``In=_ih``.
620 620
621 621 Additionally, global variables named _i<n> are dynamically created (<n>
622 622 being the prompt counter), so ``_i<n> == _ih[<n>] == In[<n>]``.
623 623
624 624 For example, what you typed at prompt 14 is available as _i14, _ih[14]
625 625 and In[14].
626 626
627 627 This allows you to easily cut and paste multi line interactive prompts
628 628 by printing them out: they print like a clean string, without prompt
629 629 characters. You can also manipulate them like regular variables (they
630 630 are strings), modify or exec them (typing ``exec _i9`` will re-execute the
631 631 contents of input prompt 9.
632 632
633 633 You can also re-execute multiple lines of input easily by using the
634 634 magic %rerun or %macro functions. The macro system also allows you to re-execute
635 635 previous lines which include magic function calls (which require special
636 636 processing). Type %macro? for more details on the macro system.
637 637
638 638 A history function %hist allows you to see any part of your input
639 639 history by printing a range of the _i variables.
640 640
641 641 You can also search ('grep') through your history by typing
642 642 ``%hist -g somestring``. This is handy for searching for URLs, IP addresses,
643 643 etc. You can bring history entries listed by '%hist -g' up for editing
644 644 with the %recall command, or run them immediately with %rerun.
645 645
646 646 .. _output_caching:
647 647
648 648 Output caching system
649 649 ---------------------
650 650
651 651 For output that is returned from actions, a system similar to the input
652 652 cache exists but using _ instead of _i. Only actions that produce a
653 653 result (NOT assignments, for example) are cached. If you are familiar
654 654 with Mathematica, IPython's _ variables behave exactly like
655 655 Mathematica's % variables.
656 656
657 657 The following GLOBAL variables always exist (so don't overwrite them!):
658 658
659 659 * [_] (a single underscore) : stores previous output, like Python's
660 660 default interpreter.
661 661 * [__] (two underscores): next previous.
662 662 * [___] (three underscores): next-next previous.
663 663
664 664 Additionally, global variables named _<n> are dynamically created (<n>
665 665 being the prompt counter), such that the result of output <n> is always
666 666 available as _<n> (don't use the angle brackets, just the number, e.g.
667 667 _21).
668 668
669 669 These variables are also stored in a global dictionary (not a
670 670 list, since it only has entries for lines which returned a result)
671 671 available under the names _oh and Out (similar to _ih and In). So the
672 672 output from line 12 can be obtained as _12, Out[12] or _oh[12]. If you
673 673 accidentally overwrite the Out variable you can recover it by typing
674 674 'Out=_oh' at the prompt.
675 675
676 676 This system obviously can potentially put heavy memory demands on your
677 677 system, since it prevents Python's garbage collector from removing any
678 678 previously computed results. You can control how many results are kept
679 679 in memory with the option (at the command line or in your configuration
680 680 file) cache_size. If you set it to 0, the whole system is completely
681 681 disabled and the prompts revert to the classic '>>>' of normal Python.
682 682
683 683
684 684 Directory history
685 685 -----------------
686 686
687 687 Your history of visited directories is kept in the global list _dh, and
688 688 the magic %cd command can be used to go to any entry in that list. The
689 689 %dhist command allows you to view this history. Do ``cd -<TAB>`` to
690 690 conveniently view the directory history.
691 691
692 692
693 693 Automatic parentheses and quotes
694 694 --------------------------------
695 695
696 696 These features were adapted from Nathan Gray's LazyPython. They are
697 697 meant to allow less typing for common situations.
698 698
699 699
700 700 Automatic parentheses
701 701 +++++++++++++++++++++
702 702
703 703 Callable objects (i.e. functions, methods, etc) can be invoked like this
704 704 (notice the commas between the arguments)::
705 705
706 706 In [1]: callable_ob arg1, arg2, arg3
707 707 ------> callable_ob(arg1, arg2, arg3)
708 708
709 709 You can force automatic parentheses by using '/' as the first character
710 710 of a line. For example::
711 711
712 712 In [2]: /globals # becomes 'globals()'
713 713
714 714 Note that the '/' MUST be the first character on the line! This won't work::
715 715
716 716 In [3]: print /globals # syntax error
717 717
718 718 In most cases the automatic algorithm should work, so you should rarely
719 719 need to explicitly invoke /. One notable exception is if you are trying
720 720 to call a function with a list of tuples as arguments (the parenthesis
721 721 will confuse IPython)::
722 722
723 723 In [4]: zip (1,2,3),(4,5,6) # won't work
724 724
725 725 but this will work::
726 726
727 727 In [5]: /zip (1,2,3),(4,5,6)
728 728 ------> zip ((1,2,3),(4,5,6))
729 729 Out[5]: [(1, 4), (2, 5), (3, 6)]
730 730
731 731 IPython tells you that it has altered your command line by displaying
732 732 the new command line preceded by ->. e.g.::
733 733
734 734 In [6]: callable list
735 735 ------> callable(list)
736 736
737 737
738 738 Automatic quoting
739 739 +++++++++++++++++
740 740
741 741 You can force automatic quoting of a function's arguments by using ','
742 742 or ';' as the first character of a line. For example::
743 743
744 744 In [1]: ,my_function /home/me # becomes my_function("/home/me")
745 745
746 746 If you use ';' the whole argument is quoted as a single string, while ',' splits
747 747 on whitespace::
748 748
749 749 In [2]: ,my_function a b c # becomes my_function("a","b","c")
750 750
751 751 In [3]: ;my_function a b c # becomes my_function("a b c")
752 752
753 753 Note that the ',' or ';' MUST be the first character on the line! This
754 754 won't work::
755 755
756 756 In [4]: x = ,my_function /home/me # syntax error
757 757
758 758 IPython as your default Python environment
759 759 ==========================================
760 760
761 761 Python honors the environment variable PYTHONSTARTUP and will execute at
762 762 startup the file referenced by this variable. If you put the following code at
763 763 the end of that file, then IPython will be your working environment anytime you
764 764 start Python::
765 765
766 766 from IPython.frontend.terminal.ipapp import launch_new_instance
767 767 launch_new_instance()
768 768 raise SystemExit
769 769
770 770 The ``raise SystemExit`` is needed to exit Python when
771 771 it finishes, otherwise you'll be back at the normal Python '>>>'
772 772 prompt.
773 773
774 774 This is probably useful to developers who manage multiple Python
775 775 versions and don't want to have correspondingly multiple IPython
776 776 versions. Note that in this mode, there is no way to pass IPython any
777 777 command-line options, as those are trapped first by Python itself.
778 778
779 779 .. _Embedding:
780 780
781 781 Embedding IPython
782 782 =================
783 783
784 784 It is possible to start an IPython instance inside your own Python
785 785 programs. This allows you to evaluate dynamically the state of your
786 786 code, operate with your variables, analyze them, etc. Note however that
787 787 any changes you make to values while in the shell do not propagate back
788 788 to the running code, so it is safe to modify your values because you
789 789 won't break your code in bizarre ways by doing so.
790 790
791 791 .. note::
792 792
793 793 At present, trying to embed IPython from inside IPython causes problems. Run
794 794 the code samples below outside IPython.
795 795
796 796 This feature allows you to easily have a fully functional python
797 797 environment for doing object introspection anywhere in your code with a
798 798 simple function call. In some cases a simple print statement is enough,
799 799 but if you need to do more detailed analysis of a code fragment this
800 800 feature can be very valuable.
801 801
802 802 It can also be useful in scientific computing situations where it is
803 803 common to need to do some automatic, computationally intensive part and
804 804 then stop to look at data, plots, etc.
805 805 Opening an IPython instance will give you full access to your data and
806 806 functions, and you can resume program execution once you are done with
807 807 the interactive part (perhaps to stop again later, as many times as
808 808 needed).
809 809
810 810 The following code snippet is the bare minimum you need to include in
811 811 your Python programs for this to work (detailed examples follow later)::
812 812
813 813 from IPython import embed
814 814
815 815 embed() # this call anywhere in your program will start IPython
816 816
817 817 .. note::
818 818
819 819 As of 0.13, you can embed an IPython *kernel*, for use with qtconsole,
820 820 etc. via ``IPython.embed_kernel()`` instead of ``IPython.embed()``.
821 821 It should function just the same as regular embed, but you connect
822 822 an external frontend rather than IPython starting up in the local
823 823 terminal.
824 824
825 825 You can run embedded instances even in code which is itself being run at
826 826 the IPython interactive prompt with '%run <filename>'. Since it's easy
827 827 to get lost as to where you are (in your top-level IPython or in your
828 828 embedded one), it's a good idea in such cases to set the in/out prompts
829 829 to something different for the embedded instances. The code examples
830 830 below illustrate this.
831 831
832 832 You can also have multiple IPython instances in your program and open
833 833 them separately, for example with different options for data
834 834 presentation. If you close and open the same instance multiple times,
835 835 its prompt counters simply continue from each execution to the next.
836 836
837 837 Please look at the docstrings in the :mod:`~IPython.frontend.terminal.embed`
838 838 module for more details on the use of this system.
839 839
840 840 The following sample file illustrating how to use the embedding
841 841 functionality is provided in the examples directory as example-embed.py.
842 842 It should be fairly self-explanatory:
843 843
844 844 .. literalinclude:: ../../examples/core/example-embed.py
845 845 :language: python
846 846
847 847 Once you understand how the system functions, you can use the following
848 848 code fragments in your programs which are ready for cut and paste:
849 849
850 850 .. literalinclude:: ../../examples/core/example-embed-short.py
851 851 :language: python
852 852
853 853 Using the Python debugger (pdb)
854 854 ===============================
855 855
856 856 Running entire programs via pdb
857 857 -------------------------------
858 858
859 859 pdb, the Python debugger, is a powerful interactive debugger which
860 860 allows you to step through code, set breakpoints, watch variables,
861 861 etc. IPython makes it very easy to start any script under the control
862 862 of pdb, regardless of whether you have wrapped it into a 'main()'
863 863 function or not. For this, simply type '%run -d myscript' at an
864 864 IPython prompt. See the %run command's documentation (via '%run?' or
865 865 in Sec. magic_ for more details, including how to control where pdb
866 866 will stop execution first.
867 867
868 868 For more information on the use of the pdb debugger, read the included
869 869 pdb.doc file (part of the standard Python distribution). On a stock
870 870 Linux system it is located at /usr/lib/python2.3/pdb.doc, but the
871 871 easiest way to read it is by using the help() function of the pdb module
872 872 as follows (in an IPython prompt)::
873 873
874 874 In [1]: import pdb
875 875 In [2]: pdb.help()
876 876
877 877 This will load the pdb.doc document in a file viewer for you automatically.
878 878
879 879
880 880 Automatic invocation of pdb on exceptions
881 881 -----------------------------------------
882 882
883 883 IPython, if started with the ``--pdb`` option (or if the option is set in
884 884 your config file) can call the Python pdb debugger every time your code
885 885 triggers an uncaught exception. This feature
886 886 can also be toggled at any time with the %pdb magic command. This can be
887 887 extremely useful in order to find the origin of subtle bugs, because pdb
888 888 opens up at the point in your code which triggered the exception, and
889 889 while your program is at this point 'dead', all the data is still
890 890 available and you can walk up and down the stack frame and understand
891 891 the origin of the problem.
892 892
893 893 Furthermore, you can use these debugging facilities both with the
894 894 embedded IPython mode and without IPython at all. For an embedded shell
895 895 (see sec. Embedding_), simply call the constructor with
896 896 ``--pdb`` in the argument string and pdb will automatically be called if an
897 897 uncaught exception is triggered by your code.
898 898
899 899 For stand-alone use of the feature in your programs which do not use
900 900 IPython at all, put the following lines toward the top of your 'main'
901 901 routine::
902 902
903 903 import sys
904 904 from IPython.core import ultratb
905 905 sys.excepthook = ultratb.FormattedTB(mode='Verbose',
906 906 color_scheme='Linux', call_pdb=1)
907 907
908 908 The mode keyword can be either 'Verbose' or 'Plain', giving either very
909 909 detailed or normal tracebacks respectively. The color_scheme keyword can
910 910 be one of 'NoColor', 'Linux' (default) or 'LightBG'. These are the same
911 911 options which can be set in IPython with ``--colors`` and ``--xmode``.
912 912
913 913 This will give any of your programs detailed, colored tracebacks with
914 914 automatic invocation of pdb.
915 915
916 916
917 917 Extensions for syntax processing
918 918 ================================
919 919
920 920 This isn't for the faint of heart, because the potential for breaking
921 921 things is quite high. But it can be a very powerful and useful feature.
922 922 In a nutshell, you can redefine the way IPython processes the user input
923 923 line to accept new, special extensions to the syntax without needing to
924 924 change any of IPython's own code.
925 925
926 926 In the IPython/extensions directory you will find some examples
927 927 supplied, which we will briefly describe now. These can be used 'as is'
928 928 (and both provide very useful functionality), or you can use them as a
929 929 starting point for writing your own extensions.
930 930
931 931 .. _pasting_with_prompts:
932 932
933 933 Pasting of code starting with Python or IPython prompts
934 934 -------------------------------------------------------
935 935
936 936 IPython is smart enough to filter out input prompts, be they plain Python ones
937 937 (``>>>`` and ``...``) or IPython ones (``In [N]:`` and `` ...:``). You can
938 938 therefore copy and paste from existing interactive sessions without worry.
939 939
940 940 The following is a 'screenshot' of how things work, copying an example from the
941 941 standard Python tutorial::
942 942
943 943 In [1]: >>> # Fibonacci series:
944 944
945 945 In [2]: ... # the sum of two elements defines the next
946 946
947 947 In [3]: ... a, b = 0, 1
948 948
949 949 In [4]: >>> while b < 10:
950 950 ...: ... print b
951 951 ...: ... a, b = b, a+b
952 952 ...:
953 953 1
954 954 1
955 955 2
956 956 3
957 957 5
958 958 8
959 959
960 960 And pasting from IPython sessions works equally well::
961 961
962 962 In [1]: In [5]: def f(x):
963 963 ...: ...: "A simple function"
964 964 ...: ...: return x**2
965 965 ...: ...:
966 966
967 967 In [2]: f(3)
968 968 Out[2]: 9
969 969
970 970 .. _gui_support:
971 971
972 972 GUI event loop support
973 973 ======================
974 974
975 975 .. versionadded:: 0.11
976 976 The ``%gui`` magic and :mod:`IPython.lib.inputhook`.
977 977
978 978 IPython has excellent support for working interactively with Graphical User
979 979 Interface (GUI) toolkits, such as wxPython, PyQt4/PySide, PyGTK and Tk. This is
980 980 implemented using Python's builtin ``PyOSInputHook`` hook. This implementation
981 981 is extremely robust compared to our previous thread-based version. The
982 982 advantages of this are:
983 983
984 984 * GUIs can be enabled and disabled dynamically at runtime.
985 985 * The active GUI can be switched dynamically at runtime.
986 986 * In some cases, multiple GUIs can run simultaneously with no problems.
987 987 * There is a developer API in :mod:`IPython.lib.inputhook` for customizing
988 988 all of these things.
989 989
990 990 For users, enabling GUI event loop integration is simple. You simple use the
991 991 ``%gui`` magic as follows::
992 992
993 993 %gui [GUINAME]
994 994
995 995 With no arguments, ``%gui`` removes all GUI support. Valid ``GUINAME``
996 996 arguments are ``wx``, ``qt``, ``gtk`` and ``tk``.
997 997
998 998 Thus, to use wxPython interactively and create a running :class:`wx.App`
999 999 object, do::
1000 1000
1001 1001 %gui wx
1002 1002
1003 1003 For information on IPython's Matplotlib integration (and the ``pylab`` mode)
1004 1004 see :ref:`this section <matplotlib_support>`.
1005 1005
1006 1006 For developers that want to use IPython's GUI event loop integration in the
1007 1007 form of a library, these capabilities are exposed in library form in the
1008 1008 :mod:`IPython.lib.inputhook` and :mod:`IPython.lib.guisupport` modules.
1009 1009 Interested developers should see the module docstrings for more information,
1010 1010 but there are a few points that should be mentioned here.
1011 1011
1012 1012 First, the ``PyOSInputHook`` approach only works in command line settings
1013 1013 where readline is activated. The integration with various eventloops
1014 1014 is handled somewhat differently (and more simply) when using the standalone
1015 1015 kernel, as in the qtconsole and notebook.
1016 1016
1017 1017 Second, when using the ``PyOSInputHook`` approach, a GUI application should
1018 1018 *not* start its event loop. Instead all of this is handled by the
1019 1019 ``PyOSInputHook``. This means that applications that are meant to be used both
1020 1020 in IPython and as standalone apps need to have special code to detects how the
1021 1021 application is being run. We highly recommend using IPython's support for this.
1022 1022 Since the details vary slightly between toolkits, we point you to the various
1023 1023 examples in our source directory :file:`docs/examples/lib` that demonstrate
1024 1024 these capabilities.
1025 1025
1026 1026 Third, unlike previous versions of IPython, we no longer "hijack" (replace
1027 1027 them with no-ops) the event loops. This is done to allow applications that
1028 1028 actually need to run the real event loops to do so. This is often needed to
1029 1029 process pending events at critical points.
1030 1030
1031 1031 Finally, we also have a number of examples in our source directory
1032 1032 :file:`docs/examples/lib` that demonstrate these capabilities.
1033 1033
1034 1034 PyQt and PySide
1035 1035 ---------------
1036 1036
1037 1037 .. attempt at explanation of the complete mess that is Qt support
1038 1038
1039 1039 When you use ``--gui=qt`` or ``--pylab=qt``, IPython can work with either
1040 1040 PyQt4 or PySide. There are three options for configuration here, because
1041 1041 PyQt4 has two APIs for QString and QVariant - v1, which is the default on
1042 1042 Python 2, and the more natural v2, which is the only API supported by PySide.
1043 1043 v2 is also the default for PyQt4 on Python 3. IPython's code for the QtConsole
1044 1044 uses v2, but you can still use any interface in your code, since the
1045 1045 Qt frontend is in a different process.
1046 1046
1047 1047 The default will be to import PyQt4 without configuration of the APIs, thus
1048 1048 matching what most applications would expect. It will fall back of PySide if
1049 1049 PyQt4 is unavailable.
1050 1050
1051 1051 If specified, IPython will respect the environment variable ``QT_API`` used
1052 1052 by ETS. ETS 4.0 also works with both PyQt4 and PySide, but it requires
1053 1053 PyQt4 to use its v2 API. So if ``QT_API=pyside`` PySide will be used,
1054 1054 and if ``QT_API=pyqt`` then PyQt4 will be used *with the v2 API* for
1055 1055 QString and QVariant, so ETS codes like MayaVi will also work with IPython.
1056 1056
1057 1057 If you launch IPython in pylab mode with ``ipython --pylab=qt``, then IPython
1058 1058 will ask matplotlib which Qt library to use (only if QT_API is *not set*), via
1059 1059 the 'backend.qt4' rcParam. If matplotlib is version 1.0.1 or older, then
1060 1060 IPython will always use PyQt4 without setting the v2 APIs, since neither v2
1061 1061 PyQt nor PySide work.
1062 1062
1063 1063 .. warning::
1064 1064
1065 1065 Note that this means for ETS 4 to work with PyQt4, ``QT_API`` *must* be set
1066 1066 to work with IPython's qt integration, because otherwise PyQt4 will be
1067 1067 loaded in an incompatible mode.
1068 1068
1069 1069 It also means that you must *not* have ``QT_API`` set if you want to
1070 1070 use ``--gui=qt`` with code that requires PyQt4 API v1.
1071 1071
1072 1072
1073 1073 .. _matplotlib_support:
1074 1074
1075 1075 Plotting with matplotlib
1076 1076 ========================
1077 1077
1078 1078 `Matplotlib`_ provides high quality 2D and 3D plotting for Python. Matplotlib
1079 1079 can produce plots on screen using a variety of GUI toolkits, including Tk,
1080 1080 PyGTK, PyQt4 and wxPython. It also provides a number of commands useful for
1081 1081 scientific computing, all with a syntax compatible with that of the popular
1082 1082 Matlab program.
1083 1083
1084 1084 To start IPython with matplotlib support, use the ``--pylab`` switch. If no
1085 1085 arguments are given, IPython will automatically detect your choice of
1086 1086 matplotlib backend. You can also request a specific backend with ``--pylab
1087 1087 backend``, where ``backend`` must be one of: 'tk', 'qt', 'wx', 'gtk', 'osx'.
1088 1088 In the web notebook and Qt console, 'inline' is also a valid backend value,
1089 1089 which produces static figures inlined inside the application window instead of
1090 1090 matplotlib's interactive figures that live in separate windows.
1091 1091
1092 1092 .. _Matplotlib: http://matplotlib.sourceforge.net
1093 1093
1094 1094 .. _interactive_demos:
1095 1095
1096 1096 Interactive demos with IPython
1097 1097 ==============================
1098 1098
1099 1099 IPython ships with a basic system for running scripts interactively in
1100 1100 sections, useful when presenting code to audiences. A few tags embedded
1101 1101 in comments (so that the script remains valid Python code) divide a file
1102 1102 into separate blocks, and the demo can be run one block at a time, with
1103 1103 IPython printing (with syntax highlighting) the block before executing
1104 1104 it, and returning to the interactive prompt after each block. The
1105 1105 interactive namespace is updated after each block is run with the
1106 1106 contents of the demo's namespace.
1107 1107
1108 1108 This allows you to show a piece of code, run it and then execute
1109 1109 interactively commands based on the variables just created. Once you
1110 1110 want to continue, you simply execute the next block of the demo. The
1111 1111 following listing shows the markup necessary for dividing a script into
1112 1112 sections for execution as a demo:
1113 1113
1114 1114 .. literalinclude:: ../../examples/lib/example-demo.py
1115 1115 :language: python
1116 1116
1117 1117 In order to run a file as a demo, you must first make a Demo object out
1118 1118 of it. If the file is named myscript.py, the following code will make a
1119 1119 demo::
1120 1120
1121 1121 from IPython.lib.demo import Demo
1122 1122
1123 1123 mydemo = Demo('myscript.py')
1124 1124
1125 1125 This creates the mydemo object, whose blocks you run one at a time by
1126 1126 simply calling the object with no arguments. If you have autocall active
1127 1127 in IPython (the default), all you need to do is type::
1128 1128
1129 1129 mydemo
1130 1130
1131 1131 and IPython will call it, executing each block. Demo objects can be
1132 1132 restarted, you can move forward or back skipping blocks, re-execute the
1133 1133 last block, etc. Simply use the Tab key on a demo object to see its
1134 1134 methods, and call '?' on them to see their docstrings for more usage
1135 1135 details. In addition, the demo module itself contains a comprehensive
1136 1136 docstring, which you can access via::
1137 1137
1138 1138 from IPython.lib import demo
1139 1139
1140 1140 demo?
1141 1141
1142 1142 Limitations: It is important to note that these demos are limited to
1143 1143 fairly simple uses. In particular, you cannot break up sections within
1144 1144 indented code (loops, if statements, function definitions, etc.)
1145 1145 Supporting something like this would basically require tracking the
1146 1146 internal execution state of the Python interpreter, so only top-level
1147 1147 divisions are allowed. If you want to be able to open an IPython
1148 1148 instance at an arbitrary point in a program, you can use IPython's
1149 1149 embedding facilities, see :func:`IPython.embed` for details.
1150 1150
General Comments 0
You need to be logged in to leave comments. Login now