##// END OF EJS Templates
Merge pull request #1780 from jonathan-taylor/rmagic_extension...
Fernando Perez -
r7296:b1088356 merge
parent child Browse files
Show More
This diff has been collapsed as it changes many lines, (571 lines changed) Show them Hide them
@@ -0,0 +1,571 b''
1 # -*- coding: utf-8 -*-
2 """
3 ======
4 Rmagic
5 ======
6
7 Magic command interface for interactive work with R via rpy2
8
9 Usage
10 =====
11
12 ``%R``
13
14 {R_DOC}
15
16 ``%Rpush``
17
18 {RPUSH_DOC}
19
20 ``%Rpull``
21
22 {RPULL_DOC}
23
24 ``%Rget``
25
26 {RGET_DOC}
27
28 """
29
30 #-----------------------------------------------------------------------------
31 # Copyright (C) 2012 The IPython Development Team
32 #
33 # Distributed under the terms of the BSD License. The full license is in
34 # the file COPYING, distributed as part of this software.
35 #-----------------------------------------------------------------------------
36
37 import sys
38 import tempfile
39 from glob import glob
40 from shutil import rmtree
41 from getopt import getopt
42
43 # numpy and rpy2 imports
44
45 import numpy as np
46
47 import rpy2.rinterface as ri
48 import rpy2.robjects as ro
49 from rpy2.robjects.numpy2ri import numpy2ri
50 ro.conversion.py2ri = numpy2ri
51
52 # IPython imports
53
54 from IPython.core.displaypub import publish_display_data
55 from IPython.core.magic import (Magics, magics_class, cell_magic, line_magic,
56 line_cell_magic)
57 from IPython.testing.skipdoctest import skip_doctest
58 from IPython.core.magic_arguments import (
59 argument, magic_arguments, parse_argstring
60 )
61 from IPython.utils.py3compat import str_to_unicode, unicode_to_str
62
63 class RMagicError(ri.RRuntimeError):
64 pass
65
66 def Rconverter(Robj, dataframe=False):
67 """
68 Convert an object in R's namespace to one suitable
69 for ipython's namespace.
70
71 For a data.frame, it tries to return a structured array.
72 It first checks for colnames, then names.
73 If all are NULL, it returns np.asarray(Robj), else
74 it tries to construct a recarray
75
76 Parameters
77 ----------
78
79 Robj: an R object returned from rpy2
80 """
81 is_data_frame = ro.r('is.data.frame')
82 colnames = ro.r('colnames')
83 rownames = ro.r('rownames') # with pandas, these could be used for the index
84 names = ro.r('names')
85
86 if dataframe:
87 as_data_frame = ro.r('as.data.frame')
88 cols = colnames(Robj)
89 _names = names(Robj)
90 if cols != ri.NULL:
91 Robj = as_data_frame(Robj)
92 names = tuple(np.array(cols))
93 elif _names != ri.NULL:
94 names = tuple(np.array(_names))
95 else: # failed to find names
96 return np.asarray(Robj)
97 Robj = np.rec.fromarrays(Robj, names = names)
98 return np.asarray(Robj)
99
100 @magics_class
101 class RMagics(Magics):
102 """A set of magics useful for interactive work with R via rpy2.
103 """
104
105 def __init__(self, shell, Rconverter=Rconverter,
106 pyconverter=np.asarray,
107 cache_display_data=False):
108 """
109 Parameters
110 ----------
111
112 shell : IPython shell
113
114 pyconverter : callable
115 To be called on values in ipython namespace before
116 assigning to variables in rpy2.
117
118 cache_display_data : bool
119 If True, the published results of the final call to R are
120 cached in the variable 'display_cache'.
121
122 """
123 super(RMagics, self).__init__(shell)
124 self.cache_display_data = cache_display_data
125
126 self.r = ro.R()
127
128 self.Rstdout_cache = []
129 self.pyconverter = pyconverter
130 self.Rconverter = Rconverter
131
132 def eval(self, line):
133 '''
134 Parse and evaluate a line with rpy2.
135 Returns the output to R's stdout() connection
136 and the value of eval(parse(line)).
137 '''
138 old_writeconsole = ri.get_writeconsole()
139 ri.set_writeconsole(self.write_console)
140 try:
141 value = ri.baseenv['eval'](ri.parse(line))
142 except (ri.RRuntimeError, ValueError) as exception:
143 warning_or_other_msg = self.flush() # otherwise next return seems to have copy of error
144 raise RMagicError(unicode_to_str('parsing and evaluating line "%s".\nR error message: "%s"\n R stdout:"%s"\n' %
145 (line, str_to_unicode(exception.message, 'utf-8'), warning_or_other_msg)))
146 text_output = self.flush()
147 ri.set_writeconsole(old_writeconsole)
148 return text_output, value
149
150 def write_console(self, output):
151 '''
152 A hook to capture R's stdout in a cache.
153 '''
154 self.Rstdout_cache.append(output)
155
156 def flush(self):
157 '''
158 Flush R's stdout cache to a string, returning the string.
159 '''
160 value = ''.join([str_to_unicode(s, 'utf-8') for s in self.Rstdout_cache])
161 self.Rstdout_cache = []
162 return value
163
164 @skip_doctest
165 @line_magic
166 def Rpush(self, line):
167 '''
168 A line-level magic for R that pushes
169 variables from python to rpy2. The line should be made up
170 of whitespace separated variable names in the IPython
171 namespace::
172
173 In [7]: import numpy as np
174
175 In [8]: X = np.array([4.5,6.3,7.9])
176
177 In [9]: X.mean()
178 Out[9]: 6.2333333333333343
179
180 In [10]: %Rpush X
181
182 In [11]: %R mean(X)
183 Out[11]: array([ 6.23333333])
184
185 '''
186
187 inputs = line.split(' ')
188 for input in inputs:
189 self.r.assign(input, self.pyconverter(self.shell.user_ns[input]))
190
191 @skip_doctest
192 @magic_arguments()
193 @argument(
194 '-d', '--as_dataframe', action='store_true',
195 default=False,
196 help='Convert objects to data.frames before returning to ipython.'
197 )
198 @argument(
199 'outputs',
200 nargs='*',
201 )
202 @line_magic
203 def Rpull(self, line):
204 '''
205 A line-level magic for R that pulls
206 variables from python to rpy2::
207
208 In [18]: _ = %R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4)
209
210 In [19]: %Rpull x y z
211
212 In [20]: x
213 Out[20]: array([ 3. , 4. , 6.7])
214
215 In [21]: y
216 Out[21]: array([ 4., 6., 7.])
217
218 In [22]: z
219 Out[22]:
220 array(['a', '3', '4'],
221 dtype='|S1')
222
223
224 If --as_dataframe, then each object is returned as a structured array
225 after first passed through "as.data.frame" in R before
226 being calling self.Rconverter.
227 This is useful when a structured array is desired as output, or
228 when the object in R has mixed data types.
229 See the %%R docstring for more examples.
230
231 Notes
232 -----
233
234 Beware that R names can have '.' so this is not fool proof.
235 To avoid this, don't name your R objects with '.'s...
236
237 '''
238 args = parse_argstring(self.Rpull, line)
239 outputs = args.outputs
240 for output in outputs:
241 self.shell.push({output:self.Rconverter(self.r(output),dataframe=args.as_dataframe)})
242
243 @skip_doctest
244 @magic_arguments()
245 @argument(
246 '-d', '--as_dataframe', action='store_true',
247 default=False,
248 help='Convert objects to data.frames before returning to ipython.'
249 )
250 @argument(
251 'output',
252 nargs=1,
253 type=str,
254 )
255 @line_magic
256 def Rget(self, line):
257 '''
258 Return an object from rpy2, possibly as a structured array (if possible).
259 Similar to Rpull except only one argument is accepted and the value is
260 returned rather than pushed to self.shell.user_ns::
261
262 In [3]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]
263
264 In [4]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype)
265
266 In [5]: %R -i datapy
267
268 In [6]: %Rget datapy
269 Out[6]:
270 array([['1', '2', '3', '4'],
271 ['2', '3', '2', '5'],
272 ['a', 'b', 'c', 'e']],
273 dtype='|S1')
274
275 In [7]: %Rget -d datapy
276 Out[7]:
277 array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')],
278 dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])
279
280 '''
281 args = parse_argstring(self.Rget, line)
282 output = args.output
283 return self.Rconverter(self.r(output[0]),dataframe=args.as_dataframe)
284
285
286 @skip_doctest
287 @magic_arguments()
288 @argument(
289 '-i', '--input', action='append',
290 help='Names of input variable from shell.user_ns to be assigned to R variables of the same names after calling self.pyconverter. Multiple names can be passed separated only by commas with no whitespace.'
291 )
292 @argument(
293 '-o', '--output', action='append',
294 help='Names of variables to be pushed from rpy2 to shell.user_ns after executing cell body and applying self.Rconverter. Multiple names can be passed separated only by commas with no whitespace.'
295 )
296 @argument(
297 '-w', '--width', type=int,
298 help='Width of png plotting device sent as an argument to *png* in R.'
299 )
300 @argument(
301 '-h', '--height', type=int,
302 help='Height of png plotting device sent as an argument to *png* in R.'
303 )
304
305 @argument(
306 '-d', '--dataframe', action='append',
307 help='Convert these objects to data.frames and return as structured arrays.'
308 )
309 @argument(
310 '-u', '--units', type=int,
311 help='Units of png plotting device sent as an argument to *png* in R. One of ["px", "in", "cm", "mm"].'
312 )
313 @argument(
314 '-p', '--pointsize', type=int,
315 help='Pointsize of png plotting device sent as an argument to *png* in R.'
316 )
317 @argument(
318 '-b', '--bg',
319 help='Background of png plotting device sent as an argument to *png* in R.'
320 )
321 @argument(
322 '-n', '--noreturn',
323 help='Force the magic to not return anything.',
324 action='store_true',
325 default=False
326 )
327 @argument(
328 'code',
329 nargs='*',
330 )
331 @line_cell_magic
332 def R(self, line, cell=None):
333 '''
334 Execute code in R, and pull some of the results back into the Python namespace.
335
336 In line mode, this will evaluate an expression and convert the returned value to a Python object.
337 The return value is determined by rpy2's behaviour of returning the result of evaluating the
338 final line.
339
340 Multiple R lines can be executed by joining them with semicolons::
341
342 In [9]: %R X=c(1,4,5,7); sd(X); mean(X)
343 Out[9]: array([ 4.25])
344
345 As a cell, this will run a block of R code, without bringing anything back by default::
346
347 In [10]: %%R
348 ....: Y = c(2,4,3,9)
349 ....: print(summary(lm(Y~X)))
350 ....:
351
352 Call:
353 lm(formula = Y ~ X)
354
355 Residuals:
356 1 2 3 4
357 0.88 -0.24 -2.28 1.64
358
359 Coefficients:
360 Estimate Std. Error t value Pr(>|t|)
361 (Intercept) 0.0800 2.3000 0.035 0.975
362 X 1.0400 0.4822 2.157 0.164
363
364 Residual standard error: 2.088 on 2 degrees of freedom
365 Multiple R-squared: 0.6993,Adjusted R-squared: 0.549
366 F-statistic: 4.651 on 1 and 2 DF, p-value: 0.1638
367
368 In the notebook, plots are published as the output of the cell.
369
370 %R plot(X, Y)
371
372 will create a scatter plot of X bs Y.
373
374 If cell is not None and line has some R code, it is prepended to
375 the R code in cell.
376
377 Objects can be passed back and forth between rpy2 and python via the -i -o flags in line::
378
379 In [14]: Z = np.array([1,4,5,10])
380
381 In [15]: %R -i Z mean(Z)
382 Out[15]: array([ 5.])
383
384
385 In [16]: %R -o W W=Z*mean(Z)
386 Out[16]: array([ 5., 20., 25., 50.])
387
388 In [17]: W
389 Out[17]: array([ 5., 20., 25., 50.])
390
391 The return value is determined by these rules:
392
393 * If the cell is not None, the magic returns None.
394
395 * If the cell evaluates as False, the resulting value is returned
396 unless the final line prints something to the console, in
397 which case None is returned.
398
399 * If the final line results in a NULL value when evaluated
400 by rpy2, then None is returned.
401
402 * No attempt is made to convert the final value to a structured array.
403 Use the --dataframe flag or %Rget to push / return a structured array.
404
405 * If the -n flag is present, there is no return value.
406
407 * A trailing ';' will also result in no return value as the last
408 value in the line is an empty string.
409
410 The --dataframe argument will attempt to return structured arrays.
411 This is useful for dataframes with
412 mixed data types. Note also that for a data.frame,
413 if it is returned as an ndarray, it is transposed::
414
415 In [18]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]
416
417 In [19]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype)
418
419 In [20]: %%R -o datar
420 datar = datapy
421 ....:
422
423 In [21]: datar
424 Out[21]:
425 array([['1', '2', '3', '4'],
426 ['2', '3', '2', '5'],
427 ['a', 'b', 'c', 'e']],
428 dtype='|S1')
429
430 In [22]: %%R -d datar
431 datar = datapy
432 ....:
433
434 In [23]: datar
435 Out[23]:
436 array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')],
437 dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])
438
439 The --dataframe argument first tries colnames, then names.
440 If both are NULL, it returns an ndarray (i.e. unstructured)::
441
442 In [1]: %R mydata=c(4,6,8.3); NULL
443
444 In [2]: %R -d mydata
445
446 In [3]: mydata
447 Out[3]: array([ 4. , 6. , 8.3])
448
449 In [4]: %R names(mydata) = c('a','b','c'); NULL
450
451 In [5]: %R -d mydata
452
453 In [6]: mydata
454 Out[6]:
455 array((4.0, 6.0, 8.3),
456 dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')])
457
458 In [7]: %R -o mydata
459
460 In [8]: mydata
461 Out[8]: array([ 4. , 6. , 8.3])
462
463 '''
464
465 args = parse_argstring(self.R, line)
466
467 # arguments 'code' in line are prepended to
468 # the cell lines
469 if not cell:
470 code = ''
471 return_output = True
472 line_mode = True
473 else:
474 code = cell
475 return_output = False
476 line_mode = False
477
478 code = ' '.join(args.code) + code
479
480 if args.input:
481 for input in ','.join(args.input).split(','):
482 self.r.assign(input, self.pyconverter(self.shell.user_ns[input]))
483
484 png_argdict = dict([(n, getattr(args, n)) for n in ['units', 'height', 'width', 'bg', 'pointsize']])
485 png_args = ','.join(['%s=%s' % (o,v) for o, v in png_argdict.items() if v is not None])
486 # execute the R code in a temporary directory
487
488 tmpd = tempfile.mkdtemp()
489 self.r('png("%s/Rplots%%03d.png",%s)' % (tmpd, png_args))
490
491 text_output = ''
492 if line_mode:
493 for line in code.split(';'):
494 text_result, result = self.eval(line)
495 text_output += text_result
496 if text_result:
497 # the last line printed something to the console so we won't return it
498 return_output = False
499 else:
500 text_result, result = self.eval(code)
501 text_output += text_result
502
503 self.r('dev.off()')
504
505 # read out all the saved .png files
506
507 images = [open(imgfile, 'rb').read() for imgfile in glob("%s/Rplots*png" % tmpd)]
508
509 # now publish the images
510 # mimicking IPython/zmq/pylab/backend_inline.py
511 fmt = 'png'
512 mimetypes = { 'png' : 'image/png', 'svg' : 'image/svg+xml' }
513 mime = mimetypes[fmt]
514
515 # publish the printed R objects, if any
516
517 display_data = []
518 if text_output:
519 display_data.append(('RMagic.R', {'text/plain':text_output}))
520
521 # flush text streams before sending figures, helps a little with output
522 for image in images:
523 # synchronization in the console (though it's a bandaid, not a real sln)
524 sys.stdout.flush(); sys.stderr.flush()
525 display_data.append(('RMagic.R', {mime: image}))
526
527 # kill the temporary directory
528 rmtree(tmpd)
529
530 # try to turn every output into a numpy array
531 # this means that output are assumed to be castable
532 # as numpy arrays
533
534 if args.output:
535 for output in ','.join(args.output).split(','):
536 self.shell.push({output:self.Rconverter(self.r(output), dataframe=False)})
537
538 if args.dataframe:
539 for output in ','.join(args.dataframe).split(','):
540 self.shell.push({output:self.Rconverter(self.r(output), dataframe=True)})
541
542 for tag, disp_d in display_data:
543 publish_display_data(tag, disp_d)
544
545 # this will keep a reference to the display_data
546 # which might be useful to other objects who happen to use
547 # this method
548
549 if self.cache_display_data:
550 self.display_cache = display_data
551
552 # if in line mode and return_output, return the result as an ndarray
553 if return_output and not args.noreturn:
554 if result != ri.NULL:
555 return self.Rconverter(result, dataframe=False)
556
557 __doc__ = __doc__.format(
558 R_DOC = ' '*8 + RMagics.R.__doc__,
559 RPUSH_DOC = ' '*8 + RMagics.Rpush.__doc__,
560 RPULL_DOC = ' '*8 + RMagics.Rpull.__doc__,
561 RGET_DOC = ' '*8 + RMagics.Rget.__doc__
562 )
563
564
565 _loaded = False
566 def load_ipython_extension(ip):
567 """Load the extension in IPython."""
568 global _loaded
569 if not _loaded:
570 ip.register_magics(RMagics)
571 _loaded = True
@@ -0,0 +1,62 b''
1 import numpy as np
2 from IPython.core.interactiveshell import InteractiveShell
3 from IPython.extensions import rmagic
4 import nose.tools as nt
5
6 ip = get_ipython()
7 ip.magic('load_ext rmagic')
8
9
10 def test_push():
11 rm = rmagic.RMagics(ip)
12 ip.push({'X':np.arange(5), 'Y':np.array([3,5,4,6,7])})
13 ip.run_line_magic('Rpush', 'X Y')
14 np.testing.assert_almost_equal(np.asarray(rm.r('X')), ip.user_ns['X'])
15 np.testing.assert_almost_equal(np.asarray(rm.r('Y')), ip.user_ns['Y'])
16
17 def test_pull():
18 rm = rmagic.RMagics(ip)
19 rm.r('Z=c(11:20)')
20 ip.run_line_magic('Rpull', 'Z')
21 np.testing.assert_almost_equal(np.asarray(rm.r('Z')), ip.user_ns['Z'])
22 np.testing.assert_almost_equal(ip.user_ns['Z'], np.arange(11,21))
23
24 def test_Rconverter():
25 datapy= np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c')],
26 dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])
27 ip.user_ns['datapy'] = datapy
28 ip.run_line_magic('Rpush', 'datapy')
29
30 # test to see if a copy is being made
31 v = ip.run_line_magic('Rget', '-d datapy')
32 w = ip.run_line_magic('Rget', '-d datapy')
33 np.testing.assert_almost_equal(w['x'], v['x'])
34 np.testing.assert_almost_equal(w['y'], v['y'])
35 nt.assert_true(np.all(w['z'] == v['z']))
36 np.testing.assert_equal(id(w.data), id(v.data))
37 nt.assert_equal(w.dtype, v.dtype)
38
39 ip.run_cell_magic('R', ' -d datar datar=datapy', '')
40
41 u = ip.run_line_magic('Rget', ' -d datar')
42 np.testing.assert_almost_equal(u['x'], v['x'])
43 np.testing.assert_almost_equal(u['y'], v['y'])
44 nt.assert_true(np.all(u['z'] == v['z']))
45 np.testing.assert_equal(id(u.data), id(v.data))
46 nt.assert_equal(u.dtype, v.dtype)
47
48
49 def test_cell_magic():
50
51 ip.push({'x':np.arange(5), 'y':np.array([3,5,4,6,7])})
52 snippet = '''
53 print(summary(a))
54 plot(x, y, pch=23, bg='orange', cex=2)
55 plot(x, x)
56 print(summary(x))
57 r = resid(a)
58 xc = coef(a)
59 '''
60 ip.run_cell_magic('R', '-i x,y -o r,xc a=lm(y~x)', snippet)
61 np.testing.assert_almost_equal(ip.user_ns['xc'], [3.2, 0.9])
62 np.testing.assert_almost_equal(ip.user_ns['r'], np.array([-0.2, 0.9, -1. , 0.1, 0.2]))
This diff has been collapsed as it changes many lines, (874 lines changed) Show them Hide them
@@ -0,0 +1,874 b''
1 {
2 "metadata": {
3 "name": "rmagic_extension"
4 },
5 "nbformat": 3,
6 "worksheets": [
7 {
8 "cells": [
9 {
10 "cell_type": "heading",
11 "level": 1,
12 "source": [
13 "Rmagic Functions Extension"
14 ]
15 },
16 {
17 "cell_type": "heading",
18 "level": 2,
19 "source": [
20 "Line magics"
21 ]
22 },
23 {
24 "cell_type": "markdown",
25 "source": [
26 "IPython has an `rmagic` extension that contains a some magic functions for working with R via rpy2. This extension can be loaded using the `%load_ext` magic as follows:"
27 ]
28 },
29 {
30 "cell_type": "code",
31 "collapsed": true,
32 "input": [
33 "%load_ext rmagic",
34 " "
35 ],
36 "language": "python",
37 "outputs": [],
38 "prompt_number": 1
39 },
40 {
41 "cell_type": "markdown",
42 "source": [
43 "A typical use case one imagines is having some numpy arrays, wanting to compute some statistics of interest on these",
44 " arrays and return the result back to python. Let's suppose we just want to fit a simple linear model to a scatterplot."
45 ]
46 },
47 {
48 "cell_type": "code",
49 "collapsed": false,
50 "input": [
51 "import numpy as np",
52 "import pylab",
53 "X = np.array([0,1,2,3,4])",
54 "Y = np.array([3,5,4,6,7])",
55 "pylab.scatter(X, Y)",
56 ""
57 ],
58 "language": "python",
59 "outputs": [
60 {
61 "output_type": "pyout",
62 "prompt_number": 2,
63 "text": [
64 "<matplotlib.collections.PathCollection at 0x10f32f610>"
65 ]
66 }
67 ],
68 "prompt_number": 2
69 },
70 {
71 "cell_type": "markdown",
72 "source": [
73 "We can accomplish this by first pushing variables to R, fitting a model and returning the results. The line magic %Rpush copies its arguments to variables of the same name in rpy2. The %R line magic evaluates the string in rpy2 and returns the results. In this case, the coefficients of a linear model."
74 ]
75 },
76 {
77 "cell_type": "code",
78 "collapsed": false,
79 "input": [
80 "%Rpush X Y",
81 "%R lm(Y~X)$coef"
82 ],
83 "language": "python",
84 "outputs": [
85 {
86 "output_type": "pyout",
87 "prompt_number": 3,
88 "text": [
89 "array([ 3.2, 0.9])"
90 ]
91 }
92 ],
93 "prompt_number": 3
94 },
95 {
96 "cell_type": "markdown",
97 "source": [
98 "We can check that this is correct fairly easily:"
99 ]
100 },
101 {
102 "cell_type": "code",
103 "collapsed": false,
104 "input": [
105 "Xr = X - X.mean(); Yr = Y - Y.mean()",
106 "slope = (Xr*Yr).sum() / (Xr**2).sum()",
107 "intercept = Y.mean() - X.mean() * slope",
108 "(intercept, slope)"
109 ],
110 "language": "python",
111 "outputs": [
112 {
113 "output_type": "pyout",
114 "prompt_number": 4,
115 "text": [
116 "(3.2000000000000002, 0.90000000000000002)"
117 ]
118 }
119 ],
120 "prompt_number": 4
121 },
122 {
123 "cell_type": "markdown",
124 "source": [
125 "It is also possible to return more than one value with %R."
126 ]
127 },
128 {
129 "cell_type": "code",
130 "collapsed": false,
131 "input": [
132 "%R resid(lm(Y~X)); coef(lm(X~Y))",
133 ""
134 ],
135 "language": "python",
136 "outputs": [
137 {
138 "output_type": "pyout",
139 "prompt_number": 5,
140 "text": [
141 "array([-2.5, 0.9])"
142 ]
143 }
144 ],
145 "prompt_number": 5
146 },
147 {
148 "cell_type": "markdown",
149 "source": [
150 "One can also easily capture the results of %R into python objects. Like R, the return value of this multiline expression (multiline in the sense that it is separated by ';') is the final value, which is ",
151 "the *coef(lm(X~Y))*. To pull other variables from R, there is one more magic."
152 ]
153 },
154 {
155 "cell_type": "markdown",
156 "source": [
157 "There are two more line magics, %Rpull and %Rget. Both are useful after some R code has been executed and there are variables",
158 "in the rpy2 namespace that one would like to retrieve. The main difference is that one",
159 " returns the value (%Rget), while the other pulls it to self.shell.user_ns (%Rpull). Imagine we've stored the results",
160 "of some calculation in the variable \"a\" in rpy2's namespace. By using the %R magic, we can obtain these results and",
161 "store them in b. We can also pull them directly to user_ns with %Rpull. They are both views on the same data."
162 ]
163 },
164 {
165 "cell_type": "code",
166 "collapsed": false,
167 "input": [
168 "b = %R a=resid(lm(Y~X))",
169 "%Rpull a",
170 "print a",
171 "assert id(b.data) == id(a.data)",
172 "%R -o a"
173 ],
174 "language": "python",
175 "outputs": [
176 {
177 "output_type": "stream",
178 "stream": "stdout",
179 "text": [
180 "[-0.2 0.9 -1. 0.1 0.2]",
181 ""
182 ]
183 }
184 ],
185 "prompt_number": 6
186 },
187 {
188 "cell_type": "markdown",
189 "source": [
190 "%Rpull is equivalent to calling %R with just -o",
191 ""
192 ]
193 },
194 {
195 "cell_type": "code",
196 "collapsed": false,
197 "input": [
198 "%R d=resid(lm(Y~X)); e=coef(lm(Y~X))",
199 "%R -o d -o e",
200 "%Rpull e",
201 "print d",
202 "print e",
203 "import numpy as np",
204 "np.testing.assert_almost_equal(d, a)"
205 ],
206 "language": "python",
207 "outputs": [
208 {
209 "output_type": "stream",
210 "stream": "stdout",
211 "text": [
212 "[-0.2 0.9 -1. 0.1 0.2]",
213 "[ 3.2 0.9]",
214 ""
215 ]
216 }
217 ],
218 "prompt_number": 7
219 },
220 {
221 "cell_type": "markdown",
222 "source": [
223 "On the other hand %Rpush is equivalent to calling %R with just -i and no trailing code."
224 ]
225 },
226 {
227 "cell_type": "code",
228 "collapsed": false,
229 "input": [
230 "A = np.arange(20)",
231 "%R -i A",
232 "%R mean(A)",
233 ""
234 ],
235 "language": "python",
236 "outputs": [
237 {
238 "output_type": "pyout",
239 "prompt_number": 8,
240 "text": [
241 "array([ 9.5])"
242 ]
243 }
244 ],
245 "prompt_number": 8
246 },
247 {
248 "cell_type": "markdown",
249 "source": [
250 "The magic %Rget retrieves one variable from R."
251 ]
252 },
253 {
254 "cell_type": "code",
255 "collapsed": false,
256 "input": [
257 "%Rget A"
258 ],
259 "language": "python",
260 "outputs": [
261 {
262 "output_type": "pyout",
263 "prompt_number": 9,
264 "text": [
265 "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,",
266 " 17, 18, 19], dtype=int32)"
267 ]
268 }
269 ],
270 "prompt_number": 9
271 },
272 {
273 "cell_type": "heading",
274 "level": 2,
275 "source": [
276 "Plotting and capturing output"
277 ]
278 },
279 {
280 "cell_type": "markdown",
281 "source": [
282 "R's console (i.e. its stdout() connection) is captured by ipython, as are any plots which are published as PNG files like the notebook with arguments --pylab inline. As a call to %R may produce a return value (see above) we must ask what happens to a magic like the one below. The R code specifies that something is published to the notebook. If anything is published to the notebook, that call to %R returns None."
283 ]
284 },
285 {
286 "cell_type": "code",
287 "collapsed": false,
288 "input": [
289 "v1 = %R plot(X,Y); print(summary(lm(Y~X))); vv=mean(X)*mean(Y)",
290 "print 'v1 is:', v1",
291 "v2 = %R mean(X)*mean(Y)",
292 "print 'v2 is:', v2"
293 ],
294 "language": "python",
295 "outputs": [
296 {
297 "output_type": "display_data",
298 "text": [
299 "",
300 "Call:",
301 "lm(formula = Y ~ X)",
302 "",
303 "Residuals:",
304 " 1 2 3 4 5 ",
305 "-0.2 0.9 -1.0 0.1 0.2 ",
306 "",
307 "Coefficients:",
308 " Estimate Std. Error t value Pr(>|t|) ",
309 "(Intercept) 3.2000 0.6164 5.191 0.0139 *",
310 "X 0.9000 0.2517 3.576 0.0374 *",
311 "---",
312 "Signif. codes: 0 \u2018***\u2019 0.001 \u2018**\u2019 0.01 \u2018*\u2019 0.05 \u2018.\u2019 0.1 \u2018 \u2019 1 ",
313 "",
314 "Residual standard error: 0.7958 on 3 degrees of freedom",
315 "Multiple R-squared: 0.81,\tAdjusted R-squared: 0.7467 ",
316 "F-statistic: 12.79 on 1 and 3 DF, p-value: 0.03739 ",
317 "",
318 ""
319 ]
320 },
321 {
322 "output_type": "display_data",
323 "png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAD8GlDQ1BJQ0MgUHJvZmlsZQAAKJGN\nVd1v21QUP4lvXKQWP6Cxjg4Vi69VU1u5GxqtxgZJk6XpQhq5zdgqpMl1bhpT1za2021Vn/YCbwz4\nA4CyBx6QeEIaDMT2su0BtElTQRXVJKQ9dNpAaJP2gqpwrq9Tu13GuJGvfznndz7v0TVAx1ea45hJ\nGWDe8l01n5GPn5iWO1YhCc9BJ/RAp6Z7TrpcLgIuxoVH1sNfIcHeNwfa6/9zdVappwMknkJsVz19\nHvFpgJSpO64PIN5G+fAp30Hc8TziHS4miFhheJbjLMMzHB8POFPqKGKWi6TXtSriJcT9MzH5bAzz\nHIK1I08t6hq6zHpRdu2aYdJYuk9Q/881bzZa8Xrx6fLmJo/iu4/VXnfH1BB/rmu5ScQvI77m+Bkm\nfxXxvcZcJY14L0DymZp7pML5yTcW61PvIN6JuGr4halQvmjNlCa4bXJ5zj6qhpxrujeKPYMXEd+q\n00KR5yNAlWZzrF+Ie+uNsdC/MO4tTOZafhbroyXuR3Df08bLiHsQf+ja6gTPWVimZl7l/oUrjl8O\ncxDWLbNU5D6JRL2gxkDu16fGuC054OMhclsyXTOOFEL+kmMGs4i5kfNuQ62EnBuam8tzP+Q+tSqh\nz9SuqpZlvR1EfBiOJTSgYMMM7jpYsAEyqJCHDL4dcFFTAwNMlFDUUpQYiadhDmXteeWAw3HEmA2s\n15k1RmnP4RHuhBybdBOF7MfnICmSQ2SYjIBM3iRvkcMki9IRcnDTthyLz2Ld2fTzPjTQK+Mdg8y5\nnkZfFO+se9LQr3/09xZr+5GcaSufeAfAww60mAPx+q8u/bAr8rFCLrx7s+vqEkw8qb+p26n11Aru\nq6m1iJH6PbWGv1VIY25mkNE8PkaQhxfLIF7DZXx80HD/A3l2jLclYs061xNpWCfoB6WHJTjbH0mV\n35Q/lRXlC+W8cndbl9t2SfhU+Fb4UfhO+F74GWThknBZ+Em4InwjXIyd1ePnY/Psg3pb1TJNu15T\nMKWMtFt6ScpKL0ivSMXIn9QtDUlj0h7U7N48t3i8eC0GnMC91dX2sTivgloDTgUVeEGHLTizbf5D\na9JLhkhh29QOs1luMcScmBXTIIt7xRFxSBxnuJWfuAd1I7jntkyd/pgKaIwVr3MgmDo2q8x6IdB5\nQH162mcX7ajtnHGN2bov71OU1+U0fqqoXLD0wX5ZM005UHmySz3qLtDqILDvIL+iH6jB9y2x83ok\n898GOPQX3lk3Itl0A+BrD6D7tUjWh3fis58BXDigN9yF8M5PJH4B8Gr79/F/XRm8m241mw/wvur4\nBGDj42bzn+Vmc+NL9L8GcMn8F1kAcXjEKMJAAAAYFklEQVR4nO3de5DVBf3/8TfBKne8MICwqCiQ\nVkg6KuqYETZCkgPYqqGEBSIwgnJRGo0cRxgxw3FGhVJRErLFC4o3GoVNE4JKMhJSoCSlMkZuC0hy\nWXZ/fzQx40/4thTs+3j28ZjZP/bzmf2cFzPMPOd8zjm7DWpqamoCAKhTn8keAAD1kQADQAIBBoAE\nAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEg\ngQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAA\nSCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQY\nABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEgQaPsAXXp\nqaeeiqqqquwZABSINm3aRK9evVIeu0FNTU1NyiPXsblz58bdd98dV199dfYUAArEvffeG4899lh8\n8YtfrPPHrjfPgKuqqmLw4MExfPjw7CkAFIg1a9ZEdXV1ymN7DRgAEggwACQQYABIIMAAkECAASCB\nAANAAgEGgAT15nPAABSnt956K7Zu3Rqf/exn45hjjsmeU2sF8Qz4/fffj71792bPAOBTpKamJm69\n9daYNGlSzJ07N0pLS2Pp0qXZs2qtIALct2/fuOCCC2Lt2rXZUwD4lJg8eXLs2LEjysvLY+rUqfHG\nG2/EDTfcEO+99172tFopmFvQ3bp1i/POOy8mTJgQQ4cOjVatWh30NV577bX49a9/vd9zixYtijZt\n2sSIESP+16kAFIBly5bFjBkz9n1/yimnxJAhQ+JXv/pVnHDCCYnLaqcgngFHRAwbNiwWL14cP//5\nz6O0tDRGjBgRixcvjm3bttX6Gu3atYtu3brt96thw4axYcOGw/gvAKAuNW/ePHbu3PmxY5WVlVFS\nUpK06OAUzDPgiIjOnTvHggULYtWqVTFjxoz41re+FevWrYshQ4bEQw899B9/vmvXrtG1a9f9nnv5\n5Zdj/fr1h3oyAEkGDBgQEyZMiEceeSSaNGkS8+bNi5tvvvmgnrhlKqgA/9spp5wSU6dOjalTp8aO\nHTti06ZN2ZMAKDBlZWWxYcOGOOOMM6Jr167RvHnzeO+996JFixbZ02qlIAI8YcKE6Nix437PNWvW\nLJo1a1bHiwD4NBg5cmSMHDkye8Z/pSACPHDgwOwJAFCnCuZNWABQnwgwACQQYABIIMAAkECAASCB\nAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABI\nIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgA\nEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEG\ngAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECA\nASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJGmUPOJCdO3dG\nw4YNo6SkJHsKwEGprq6OGTNmxC9/+cs44ogj4rrrroszzzwzexYFpiCeAa9bty4GDx4cy5Ytiw0b\nNsTQoUOjXbt2cdRRR8WQIUNi9+7d2RMBam3w4MGxYMGCmDx5cowZMya+//3vx4svvpg9iwJTEAG+\n9dZb4/jjj4/Pf/7zcd9990VVVVWsXLky3nzzzdi+fXtMmjSpVteprq6Oqqqq/X5VV1dHTU3NYf6X\nAPXd66+/Hu+++248+eST0alTp+jevXvMmDEj7rvvvuxpFJiCuAX92muvxapVq+KII46IZ555JubN\nmxelpaURETFp0qQYMWJEra4zc+bMmDNnzn7PrV69Ok488cRDNRlgvyorK6N3794fO9ahQ4eorq5O\nWkShKogAd+3aNWbNmhXXXHNN9OzZM+bPnx+jR4+OiIgXXnghunTpUqvrDB06NIYOHbrfc2PHjo31\n69cfss0A+9O1a9e49957Y9OmTXHsscdGRMSiRYviww8/TF5GoSmIAE+bNi2+/vWvx8MPPxydO3eO\nG2+8MR555JH4zGc+E9u2bYvXXnsteyJArZxwwgkxdOjQaN26dcyePTu2bt0azz77bDz55JPZ0ygw\nBRHgk08+Od56661YsGBBrF69Oo4//vg4+uijo0uXLtG3b99o1KggZgLUSv/+/WP58uWxaNGiaNKk\nSZSXl+97Ngz/VjBla9CgQVx00UVx0UUXZU8B+J917949unfvnj2DAlYQ74IGgPpGgAEggQADQAIB\nBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBA\ngAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAk\nEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwA\nCQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQAD\nQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASPCJ\nAN90002xffv2jC3UY5WVlfHyyy/HwoUL46OPPsqeA3DYfSLA69ati9NOOy0WLVqUsWefDRs2RFVV\nVeoG6sbatWvj0ksvjddffz0qKiqiZcuWsX79+uxZAIfVJwL8+OOPxx133BFlZWUxYcKE2L1792Ef\nMXjw4Fi1alVERKxevTr69u0bHTt2jHbt2sWoUaNiz549h30DOT766KM47bTT4rvf/W5873vfiylT\npsTMmTNjwoQJsXfv3ux5AIdNo/0dHDhwYHz1q1+NG2+8Mc4666y4/PLL95079dRT49JLLz2kI1au\nXBk7duyIiIgpU6bEKaecErNnz46NGzfGuHHjYsqUKXHrrbf+x+s899xzsWDBgv2eW7RoURx77LGH\ndDf/uz//+c9x1VVXRe/evfcdGzRoUDz33HPx/vvvR8eOHRPXARw++w1wRESDBg2ipKQk1q9fHytX\nrtx3vHnz5od10EsvvRRr1qyJFi1axDHHHBOTJ0+OcePG1SrAPXr0iJNOOmm/5yorK/dFnsLRuHHj\nqKys/Nix6urqWLt2bTRp0iRpFcDht98Al5eXx/XXXx9f/vKXY8WKFdGmTZvDPmTJkiXRvn37OOec\nc2LTpk3RokWLiIhYsWJFnH766bW6Rtu2baNt27b7Pde6dWuvKRegLl26xMknnxy33357TJgwIaqq\nquIrX/lK9OzZM1q3bp09D+Cw+USAr7jiiqioqIj7778/vvnNb9bJiKuuuiqef/75mDRpUmzdujUa\nN24c5eXlcdttt8W0adOioqKiTnaQY9KkSXH99dfHxRdfHE2bNo0hQ4bE8OHDs2cBHFafCHCrVq3i\nj3/84wGfSR4O48ePj/Hjx0dExN///vfYtm1bRET06dMnbrzxxsN+25tcDRs2jGnTpmXPAKhTnwjw\ngw8+mLFjnw4dOkSHDh0iIuKcc85J3QIAh4vfhAUACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIB\nBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBA\ngAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAk\nEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwA\nCQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQAD\nQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEBRvgnTt3xrZt27JnQFFZtmxZ\nDBw4MPr06RNlZWWxadOm7ElQbxVsgOfOnRvjxo3LngFF469//WvccMMNMX78+Hj22Wdj6NChcfnl\nl8fmzZuzp0G91Ch7QEREly5dYuPGjR87tnv37qiqqoq5c+dG//79Y+bMmf/xOlu2bInKysr9ntu6\ndWvs2bPnkOyFT6O77ror7rjjjjjzzDMjIuJrX/tavPPOO/HYY4/F6NGjk9dB/VMQAZ45c2YMGTIk\nBg0aFFdffXVERMybNy+WLl0aP/jBD6JZs2a1uk5FRUXMnz9/v+d+85vfRNu2bQ/ZZvi0+fDDD6Nd\nu3YfO1ZaWhqrV69OWgT1W0EE+Pzzz49ly5bFqFGjYty4cfHAAw9E69ato3nz5nHCCSfU+jplZWVR\nVla233Njx46N9evXH6rJ8KnTo0eP+OEPfxgzZsyIiH/dZfrOd74Tc+fOTV4G9VNBBDgiomXLljFr\n1qx44okn4oILLogePXpEw4YNs2dB0Rg2bFjMnz8/evfuHf37948FCxbExIkTo1evXtnToF4qmAD/\n2+WXXx7nnXdejBw5Mrp37549B4pGw4YN47nnnouKiorYvHlzTJw4Mc4444zsWVBvFVyAI/71utTz\nzz+fPQOK0oUXXpg9AYgC/hgSABQzAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaA\nBAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIAB\nIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBg\nAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkE\nGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0AC\nAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIEGj7AGF7qWXXor3338/jjvuuOjTp0/2HACKRME+\nA967d29s27YtdcPVV18dTz31VJSUlMRdd90Vl112WVRXV6duAqA4FESA9+zZE1OmTIkhQ4bEG2+8\nEXPmzIm2bdvGUUcdFZdeemns2rWrzjeVl5fHW2+9FQ899FAMGjQofvGLX0TLli3jpz/9aZ1vAaD4\nFMQt6JtuuinefvvtOOOMM+KKK66IRo0axdy5c6O0tDTGjh0b8+bNiyuuuOI/Xmf27Nnx9NNP7/fc\nm2++GaWlpbXetHz58rjnnns+dmz48OHx+OOP1/oaAHAgBRHg+fPnx7Jly6Jly5bRpEmT+OCDD+LL\nX/5yRERMnjw5Jk6cWKsAX3bZZXHJJZfs99yTTz4ZO3bsqPWmli1bxurVq+P888/fd+z3v/99tGzZ\nstbXAIADKYgAn3TSSbFq1ao4++yz45prrom//e1v+86tWLEiOnfuXKvrNG7cOBo3brzfcy1btoy9\ne/fWetOwYcOirKws2rVrF2effXYsWrQoRowYEZWVlbW+BgAcSEEEeNy4cdGvX7/48Y9/HP369Yv2\n7dtHRMQtt9wSjzzySCxcuLDON7Vp0ybmzZsXN910U8yaNSvatGkT69ati1atWtX5FgCKT0EE+KKL\nLorVq1d/4hbxJZdcEhMnToymTZum7DrmmGPi4YcfTnlsAIpbQQQ44l+3iP//11fPPffcpDUAcHgV\nxMeQAKC+EWAASCDAAJBAgAEggQADQAIBBoAEAgwACRrU1NTUZI+oC8uXL4++ffvG6aefftA/+8or\nrxzwV1xy6OzevTsaNGgQJSUl2VOK3o4dO6JZs2bZM4rezp07o6SkJBo2bJg9paj9O2PnnXfeQf/s\n2rVrY8GCBdGhQ4dDPes/qjcB/l/07NkzXn311ewZRW/atGnRtm3bKCsry55S9Pyfrhs333xz9OvX\nL84555zsKUXtgw8+iNGjR3/q/lqdW9AAkECAASCBAANAAgEGgAQCDAAJBBgAEvgYUi384x//iOOO\nOy57RtHbtm1bNGzY0OdT64D/03Vj8+bN0axZszjyyCOzpxS16urq2LhxY7Rp0yZ7ykERYABI4BY0\nACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBJiCsmfPnuwJAHVCgP8Pr776apx//vnRqVOnGDBg\nQGzZsiV7UlErLy+Pc889N3tGUSsvL49evXpF9+7dY9CgQfH2229nTypKa9asiQEDBkS3bt3i7LPP\njtdffz17UtG79tprY/jw4dkzDooAH8DGjRvjyiuvjOnTp8eaNWuiU6dOMX78+OxZRWnLli0xatSo\nuOGGG8IvZjt81q9fH2PHjo3y8vL4wx/+EBdeeGGMGTMme1ZRGjp0aFx22WWxYsWKmDx5cpSVlWVP\nKmovvvhizJ07N3vGQRPgA1i2bFmceuqpcdppp0VJSUmMHj06nn766exZRamioiKaNm0ajz76aPaU\nolZdXR1PPPFEtG3bNiIiunfvHkuWLEleVZzmzZsXAwcOjIiIqqqqqKqqSl5UvDZt2hSTJ0+O0aNH\nZ085aAJ8AOvWrfvYL6tv27ZtbN26NXbt2pW4qjiVlZXFXXfdFU2aNMmeUtTat28fF1xwwb7vH3zw\nwejbt2/iouJ17LHHRoMGDWLMmDFx7bXXxv333589qWiNHDkybrvttmjevHn2lIMmwAewadOmj/1V\nnn/H4Z///GfWJDhkZsyYEc8//3xMnTo1e0rR2rVrV7Rp0yZKS0tjzpw5sXv37uxJRednP/tZNGnS\nJHr37p095b8iwAfQunXr2LZt277vt2/fHo0bN46jjz46cRX87x544IGYOHFiLFy4MEpLS7PnFK0j\njzwybrnllli8eHG88sorsXjx4uxJRWXTpk0xZsyY6NWrV7zwwgvx9ttvx3vvvRdLly7NnlZrAnwA\npaWl8e677+77/t13342OHTvmDYJD4NFHH43bbrstFi5cGKeeemr2nKK0c+fOmDBhwr6Xqxo1ahRd\nu3aNP/3pT8nLiktlZWV07tw5HnjggbjjjjuioqIili9fHrNnz86eVmsCfAC9evWKtWvXRkVFReza\ntSvuvvvu+MY3vpE9C/5rf/nLX+K6666LOXPmRPv27WPz5s2xefPm7FlFp3HjxvG73/0uZs6cGRH/\nekPnb3/72/jSl76UvKy4nHzyybFkyZJ9X6NGjYp+/frF9OnTs6fVWqPsAYXqyCOPjPvvvz/69+8f\nrVq1iq5du8a0adOyZ8F/bfr06bFjx47o2bPnx47v2LEjmjZtmjOqSE2ZMiXGjRsX99xzT7Rq1Spm\nzZoVn/vc57JnUWAa1Pjg5f+pqqoqtm/f7rVf4KBt3bo1WrVqlT2DAiXAAJDAa8AAkECAASCBAANA\nAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAA\nkECAASCBAEM9sHPnzvjCF74Qt9xyy8eOf/vb344rr7wyaRXUb42yBwCHX+PGjaO8vDx69OgRZ511\nVgwYMCDuvPPOWLp0aSxbtix7HtRLAgz1RLdu3eLOO++MYcOGRUlJSUyaNCmWLFkSLVq0yJ4G9VKD\nmpqamuwRQN25+OKL4+WXX47p06fHtddemz0H6i2vAUM907lz59i7d2+0bt06ewrUawIM9cirr74a\ns2bNittvvz2uu+662LJlS/YkqLfcgoZ64sMPP4xu3brFzTffHMOGDYuePXtGp06d4ic/+Un2NKiX\nBBjqieHDh8c777wTCxYsiAYNGsSaNWuie/fu8cwzz0SfPn2y50G9I8BQD7z00ktRVlYWK1asiBNP\nPHHf8TvvvDN+9KMfxcqVK70bGuqYAANAAm/CAoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQAD\nQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAE/w+5mUYqDkF0XgAAAABJRU5E\nrkJggg==\n"
324 },
325 {
326 "output_type": "stream",
327 "stream": "stdout",
328 "text": [
329 "v1 is: [ 10.]",
330 "v2 is: [ 10.]",
331 ""
332 ]
333 }
334 ],
335 "prompt_number": 10
336 },
337 {
338 "cell_type": "heading",
339 "level": 2,
340 "source": [
341 "What value is returned from %R?"
342 ]
343 },
344 {
345 "cell_type": "markdown",
346 "source": [
347 "Some calls have no particularly interesting return value, the magic %R will not return anything in this case. The return value in rpy2 is actually NULL so %R returns None."
348 ]
349 },
350 {
351 "cell_type": "code",
352 "collapsed": false,
353 "input": [
354 "v = %R plot(X,Y)",
355 "assert v == None"
356 ],
357 "language": "python",
358 "outputs": [
359 {
360 "output_type": "display_data",
361 "png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAD8GlDQ1BJQ0MgUHJvZmlsZQAAKJGN\nVd1v21QUP4lvXKQWP6Cxjg4Vi69VU1u5GxqtxgZJk6XpQhq5zdgqpMl1bhpT1za2021Vn/YCbwz4\nA4CyBx6QeEIaDMT2su0BtElTQRXVJKQ9dNpAaJP2gqpwrq9Tu13GuJGvfznndz7v0TVAx1ea45hJ\nGWDe8l01n5GPn5iWO1YhCc9BJ/RAp6Z7TrpcLgIuxoVH1sNfIcHeNwfa6/9zdVappwMknkJsVz19\nHvFpgJSpO64PIN5G+fAp30Hc8TziHS4miFhheJbjLMMzHB8POFPqKGKWi6TXtSriJcT9MzH5bAzz\nHIK1I08t6hq6zHpRdu2aYdJYuk9Q/881bzZa8Xrx6fLmJo/iu4/VXnfH1BB/rmu5ScQvI77m+Bkm\nfxXxvcZcJY14L0DymZp7pML5yTcW61PvIN6JuGr4halQvmjNlCa4bXJ5zj6qhpxrujeKPYMXEd+q\n00KR5yNAlWZzrF+Ie+uNsdC/MO4tTOZafhbroyXuR3Df08bLiHsQf+ja6gTPWVimZl7l/oUrjl8O\ncxDWLbNU5D6JRL2gxkDu16fGuC054OMhclsyXTOOFEL+kmMGs4i5kfNuQ62EnBuam8tzP+Q+tSqh\nz9SuqpZlvR1EfBiOJTSgYMMM7jpYsAEyqJCHDL4dcFFTAwNMlFDUUpQYiadhDmXteeWAw3HEmA2s\n15k1RmnP4RHuhBybdBOF7MfnICmSQ2SYjIBM3iRvkcMki9IRcnDTthyLz2Ld2fTzPjTQK+Mdg8y5\nnkZfFO+se9LQr3/09xZr+5GcaSufeAfAww60mAPx+q8u/bAr8rFCLrx7s+vqEkw8qb+p26n11Aru\nq6m1iJH6PbWGv1VIY25mkNE8PkaQhxfLIF7DZXx80HD/A3l2jLclYs061xNpWCfoB6WHJTjbH0mV\n35Q/lRXlC+W8cndbl9t2SfhU+Fb4UfhO+F74GWThknBZ+Em4InwjXIyd1ePnY/Psg3pb1TJNu15T\nMKWMtFt6ScpKL0ivSMXIn9QtDUlj0h7U7N48t3i8eC0GnMC91dX2sTivgloDTgUVeEGHLTizbf5D\na9JLhkhh29QOs1luMcScmBXTIIt7xRFxSBxnuJWfuAd1I7jntkyd/pgKaIwVr3MgmDo2q8x6IdB5\nQH162mcX7ajtnHGN2bov71OU1+U0fqqoXLD0wX5ZM005UHmySz3qLtDqILDvIL+iH6jB9y2x83ok\n898GOPQX3lk3Itl0A+BrD6D7tUjWh3fis58BXDigN9yF8M5PJH4B8Gr79/F/XRm8m241mw/wvur4\nBGDj42bzn+Vmc+NL9L8GcMn8F1kAcXjEKMJAAAAYFklEQVR4nO3de5DVBf3/8TfBKne8MICwqCiQ\nVkg6KuqYETZCkgPYqqGEBSIwgnJRGo0cRxgxw3FGhVJRErLFC4o3GoVNE4JKMhJSoCSlMkZuC0hy\nWXZ/fzQx40/4thTs+3j28ZjZP/bzmf2cFzPMPOd8zjm7DWpqamoCAKhTn8keAAD1kQADQAIBBoAE\nAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEg\ngQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAA\nSCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQY\nABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEgQaPsAXXp\nqaeeiqqqquwZABSINm3aRK9evVIeu0FNTU1NyiPXsblz58bdd98dV199dfYUAArEvffeG4899lh8\n8YtfrPPHrjfPgKuqqmLw4MExfPjw7CkAFIg1a9ZEdXV1ymN7DRgAEggwACQQYABIIMAAkECAASCB\nAANAAgEGgAT15nPAABSnt956K7Zu3Rqf/exn45hjjsmeU2sF8Qz4/fffj71792bPAOBTpKamJm69\n9daYNGlSzJ07N0pLS2Pp0qXZs2qtIALct2/fuOCCC2Lt2rXZUwD4lJg8eXLs2LEjysvLY+rUqfHG\nG2/EDTfcEO+99172tFopmFvQ3bp1i/POOy8mTJgQQ4cOjVatWh30NV577bX49a9/vd9zixYtijZt\n2sSIESP+16kAFIBly5bFjBkz9n1/yimnxJAhQ+JXv/pVnHDCCYnLaqcgngFHRAwbNiwWL14cP//5\nz6O0tDRGjBgRixcvjm3bttX6Gu3atYtu3brt96thw4axYcOGw/gvAKAuNW/ePHbu3PmxY5WVlVFS\nUpK06OAUzDPgiIjOnTvHggULYtWqVTFjxoz41re+FevWrYshQ4bEQw899B9/vmvXrtG1a9f9nnv5\n5Zdj/fr1h3oyAEkGDBgQEyZMiEceeSSaNGkS8+bNi5tvvvmgnrhlKqgA/9spp5wSU6dOjalTp8aO\nHTti06ZN2ZMAKDBlZWWxYcOGOOOMM6Jr167RvHnzeO+996JFixbZ02qlIAI8YcKE6Nix437PNWvW\nLJo1a1bHiwD4NBg5cmSMHDkye8Z/pSACPHDgwOwJAFCnCuZNWABQnwgwACQQYABIIMAAkECAASCB\nAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABI\nIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgA\nEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEG\ngAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECA\nASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJGmUPOJCdO3dG\nw4YNo6SkJHsKwEGprq6OGTNmxC9/+cs44ogj4rrrroszzzwzexYFpiCeAa9bty4GDx4cy5Ytiw0b\nNsTQoUOjXbt2cdRRR8WQIUNi9+7d2RMBam3w4MGxYMGCmDx5cowZMya+//3vx4svvpg9iwJTEAG+\n9dZb4/jjj4/Pf/7zcd9990VVVVWsXLky3nzzzdi+fXtMmjSpVteprq6Oqqqq/X5VV1dHTU3NYf6X\nAPXd66+/Hu+++248+eST0alTp+jevXvMmDEj7rvvvuxpFJiCuAX92muvxapVq+KII46IZ555JubN\nmxelpaURETFp0qQYMWJEra4zc+bMmDNnzn7PrV69Ok488cRDNRlgvyorK6N3794fO9ahQ4eorq5O\nWkShKogAd+3aNWbNmhXXXHNN9OzZM+bPnx+jR4+OiIgXXnghunTpUqvrDB06NIYOHbrfc2PHjo31\n69cfss0A+9O1a9e49957Y9OmTXHsscdGRMSiRYviww8/TF5GoSmIAE+bNi2+/vWvx8MPPxydO3eO\nG2+8MR555JH4zGc+E9u2bYvXXnsteyJArZxwwgkxdOjQaN26dcyePTu2bt0azz77bDz55JPZ0ygw\nBRHgk08+Od56661YsGBBrF69Oo4//vg4+uijo0uXLtG3b99o1KggZgLUSv/+/WP58uWxaNGiaNKk\nSZSXl+97Ngz/VjBla9CgQVx00UVx0UUXZU8B+J917949unfvnj2DAlYQ74IGgPpGgAEggQADQAIB\nBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBA\ngAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAk\nEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwA\nCQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQAD\nQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASPCJ\nAN90002xffv2jC3UY5WVlfHyyy/HwoUL46OPPsqeA3DYfSLA69ati9NOOy0WLVqUsWefDRs2RFVV\nVeoG6sbatWvj0ksvjddffz0qKiqiZcuWsX79+uxZAIfVJwL8+OOPxx133BFlZWUxYcKE2L1792Ef\nMXjw4Fi1alVERKxevTr69u0bHTt2jHbt2sWoUaNiz549h30DOT766KM47bTT4rvf/W5873vfiylT\npsTMmTNjwoQJsXfv3ux5AIdNo/0dHDhwYHz1q1+NG2+8Mc4666y4/PLL95079dRT49JLLz2kI1au\nXBk7duyIiIgpU6bEKaecErNnz46NGzfGuHHjYsqUKXHrrbf+x+s899xzsWDBgv2eW7RoURx77LGH\ndDf/uz//+c9x1VVXRe/evfcdGzRoUDz33HPx/vvvR8eOHRPXARw++w1wRESDBg2ipKQk1q9fHytX\nrtx3vHnz5od10EsvvRRr1qyJFi1axDHHHBOTJ0+OcePG1SrAPXr0iJNOOmm/5yorK/dFnsLRuHHj\nqKys/Nix6urqWLt2bTRp0iRpFcDht98Al5eXx/XXXx9f/vKXY8WKFdGmTZvDPmTJkiXRvn37OOec\nc2LTpk3RokWLiIhYsWJFnH766bW6Rtu2baNt27b7Pde6dWuvKRegLl26xMknnxy33357TJgwIaqq\nquIrX/lK9OzZM1q3bp09D+Cw+USAr7jiiqioqIj7778/vvnNb9bJiKuuuiqef/75mDRpUmzdujUa\nN24c5eXlcdttt8W0adOioqKiTnaQY9KkSXH99dfHxRdfHE2bNo0hQ4bE8OHDs2cBHFafCHCrVq3i\nj3/84wGfSR4O48ePj/Hjx0dExN///vfYtm1bRET06dMnbrzxxsN+25tcDRs2jGnTpmXPAKhTnwjw\ngw8+mLFjnw4dOkSHDh0iIuKcc85J3QIAh4vfhAUACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIB\nBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBA\ngAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAk\nEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwA\nCQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQAD\nQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEBRvgnTt3xrZt27JnQFFZtmxZ\nDBw4MPr06RNlZWWxadOm7ElQbxVsgOfOnRvjxo3LngFF469//WvccMMNMX78+Hj22Wdj6NChcfnl\nl8fmzZuzp0G91Ch7QEREly5dYuPGjR87tnv37qiqqoq5c+dG//79Y+bMmf/xOlu2bInKysr9ntu6\ndWvs2bPnkOyFT6O77ror7rjjjjjzzDMjIuJrX/tavPPOO/HYY4/F6NGjk9dB/VMQAZ45c2YMGTIk\nBg0aFFdffXVERMybNy+WLl0aP/jBD6JZs2a1uk5FRUXMnz9/v+d+85vfRNu2bQ/ZZvi0+fDDD6Nd\nu3YfO1ZaWhqrV69OWgT1W0EE+Pzzz49ly5bFqFGjYty4cfHAAw9E69ato3nz5nHCCSfU+jplZWVR\nVla233Njx46N9evXH6rJ8KnTo0eP+OEPfxgzZsyIiH/dZfrOd74Tc+fOTV4G9VNBBDgiomXLljFr\n1qx44okn4oILLogePXpEw4YNs2dB0Rg2bFjMnz8/evfuHf37948FCxbExIkTo1evXtnToF4qmAD/\n2+WXXx7nnXdejBw5Mrp37549B4pGw4YN47nnnouKiorYvHlzTJw4Mc4444zsWVBvFVyAI/71utTz\nzz+fPQOK0oUXXpg9AYgC/hgSABQzAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaA\nBAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIAB\nIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBg\nAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkE\nGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0AC\nAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIEGj7AGF7qWXXor3338/jjvuuOjTp0/2HACKRME+\nA967d29s27YtdcPVV18dTz31VJSUlMRdd90Vl112WVRXV6duAqA4FESA9+zZE1OmTIkhQ4bEG2+8\nEXPmzIm2bdvGUUcdFZdeemns2rWrzjeVl5fHW2+9FQ899FAMGjQofvGLX0TLli3jpz/9aZ1vAaD4\nFMQt6JtuuinefvvtOOOMM+KKK66IRo0axdy5c6O0tDTGjh0b8+bNiyuuuOI/Xmf27Nnx9NNP7/fc\nm2++GaWlpbXetHz58rjnnns+dmz48OHx+OOP1/oaAHAgBRHg+fPnx7Jly6Jly5bRpEmT+OCDD+LL\nX/5yRERMnjw5Jk6cWKsAX3bZZXHJJZfs99yTTz4ZO3bsqPWmli1bxurVq+P888/fd+z3v/99tGzZ\nstbXAIADKYgAn3TSSbFq1ao4++yz45prrom//e1v+86tWLEiOnfuXKvrNG7cOBo3brzfcy1btoy9\ne/fWetOwYcOirKws2rVrF2effXYsWrQoRowYEZWVlbW+BgAcSEEEeNy4cdGvX7/48Y9/HP369Yv2\n7dtHRMQtt9wSjzzySCxcuLDON7Vp0ybmzZsXN910U8yaNSvatGkT69ati1atWtX5FgCKT0EE+KKL\nLorVq1d/4hbxJZdcEhMnToymTZum7DrmmGPi4YcfTnlsAIpbQQQ44l+3iP//11fPPffcpDUAcHgV\nxMeQAKC+EWAASCDAAJBAgAEggQADQAIBBoAEAgwACRrU1NTUZI+oC8uXL4++ffvG6aefftA/+8or\nrxzwV1xy6OzevTsaNGgQJSUl2VOK3o4dO6JZs2bZM4rezp07o6SkJBo2bJg9paj9O2PnnXfeQf/s\n2rVrY8GCBdGhQ4dDPes/qjcB/l/07NkzXn311ewZRW/atGnRtm3bKCsry55S9Pyfrhs333xz9OvX\nL84555zsKUXtgw8+iNGjR3/q/lqdW9AAkECAASCBAANAAgEGgAQCDAAJBBgAEvgYUi384x//iOOO\nOy57RtHbtm1bNGzY0OdT64D/03Vj8+bN0axZszjyyCOzpxS16urq2LhxY7Rp0yZ7ykERYABI4BY0\nACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBJiCsmfPnuwJAHVCgP8Pr776apx//vnRqVOnGDBg\nQGzZsiV7UlErLy+Pc889N3tGUSsvL49evXpF9+7dY9CgQfH2229nTypKa9asiQEDBkS3bt3i7LPP\njtdffz17UtG79tprY/jw4dkzDooAH8DGjRvjyiuvjOnTp8eaNWuiU6dOMX78+OxZRWnLli0xatSo\nuOGGG8IvZjt81q9fH2PHjo3y8vL4wx/+EBdeeGGMGTMme1ZRGjp0aFx22WWxYsWKmDx5cpSVlWVP\nKmovvvhizJ07N3vGQRPgA1i2bFmceuqpcdppp0VJSUmMHj06nn766exZRamioiKaNm0ajz76aPaU\nolZdXR1PPPFEtG3bNiIiunfvHkuWLEleVZzmzZsXAwcOjIiIqqqqqKqqSl5UvDZt2hSTJ0+O0aNH\nZ085aAJ8AOvWrfvYL6tv27ZtbN26NXbt2pW4qjiVlZXFXXfdFU2aNMmeUtTat28fF1xwwb7vH3zw\nwejbt2/iouJ17LHHRoMGDWLMmDFx7bXXxv333589qWiNHDkybrvttmjevHn2lIMmwAewadOmj/1V\nnn/H4Z///GfWJDhkZsyYEc8//3xMnTo1e0rR2rVrV7Rp0yZKS0tjzpw5sXv37uxJRednP/tZNGnS\nJHr37p095b8iwAfQunXr2LZt277vt2/fHo0bN46jjz46cRX87x544IGYOHFiLFy4MEpLS7PnFK0j\njzwybrnllli8eHG88sorsXjx4uxJRWXTpk0xZsyY6NWrV7zwwgvx9ttvx3vvvRdLly7NnlZrAnwA\npaWl8e677+77/t13342OHTvmDYJD4NFHH43bbrstFi5cGKeeemr2nKK0c+fOmDBhwr6Xqxo1ahRd\nu3aNP/3pT8nLiktlZWV07tw5HnjggbjjjjuioqIili9fHrNnz86eVmsCfAC9evWKtWvXRkVFReza\ntSvuvvvu+MY3vpE9C/5rf/nLX+K6666LOXPmRPv27WPz5s2xefPm7FlFp3HjxvG73/0uZs6cGRH/\nekPnb3/72/jSl76UvKy4nHzyybFkyZJ9X6NGjYp+/frF9OnTs6fVWqPsAYXqyCOPjPvvvz/69+8f\nrVq1iq5du8a0adOyZ8F/bfr06bFjx47o2bPnx47v2LEjmjZtmjOqSE2ZMiXGjRsX99xzT7Rq1Spm\nzZoVn/vc57JnUWAa1Pjg5f+pqqoqtm/f7rVf4KBt3bo1WrVqlT2DAiXAAJDAa8AAkECAASCBAANA\nAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAA\nkECAASCBAEM9sHPnzvjCF74Qt9xyy8eOf/vb344rr7wyaRXUb42yBwCHX+PGjaO8vDx69OgRZ511\nVgwYMCDuvPPOWLp0aSxbtix7HtRLAgz1RLdu3eLOO++MYcOGRUlJSUyaNCmWLFkSLVq0yJ4G9VKD\nmpqamuwRQN25+OKL4+WXX47p06fHtddemz0H6i2vAUM907lz59i7d2+0bt06ewrUawIM9cirr74a\ns2bNittvvz2uu+662LJlS/YkqLfcgoZ64sMPP4xu3brFzTffHMOGDYuePXtGp06d4ic/+Un2NKiX\nBBjqieHDh8c777wTCxYsiAYNGsSaNWuie/fu8cwzz0SfPn2y50G9I8BQD7z00ktRVlYWK1asiBNP\nPHHf8TvvvDN+9KMfxcqVK70bGuqYAANAAm/CAoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQAD\nQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAE/w+5mUYqDkF0XgAAAABJRU5E\nrkJggg==\n"
362 }
363 ],
364 "prompt_number": 11
365 },
366 {
367 "cell_type": "markdown",
368 "source": [
369 "Also, if the return value of a call to %R (in line mode) has just been printed to the console, then its value is also not returned."
370 ]
371 },
372 {
373 "cell_type": "code",
374 "collapsed": false,
375 "input": [
376 "v = %R print(X)",
377 "assert v == None"
378 ],
379 "language": "python",
380 "outputs": [
381 {
382 "output_type": "display_data",
383 "text": [
384 "[1] 0 1 2 3 4",
385 ""
386 ]
387 }
388 ],
389 "prompt_number": 12
390 },
391 {
392 "cell_type": "markdown",
393 "source": [
394 "But, if the last value did not print anything to console, the value is returned:",
395 ""
396 ]
397 },
398 {
399 "cell_type": "code",
400 "collapsed": false,
401 "input": [
402 "v = %R print(summary(X)); X",
403 "print 'v:', v"
404 ],
405 "language": "python",
406 "outputs": [
407 {
408 "output_type": "display_data",
409 "text": [
410 " Min. 1st Qu. Median Mean 3rd Qu. Max. ",
411 " 0 1 2 2 3 4 ",
412 ""
413 ]
414 },
415 {
416 "output_type": "stream",
417 "stream": "stdout",
418 "text": [
419 "v: [0 1 2 3 4]",
420 ""
421 ]
422 }
423 ],
424 "prompt_number": 13
425 },
426 {
427 "cell_type": "markdown",
428 "source": [
429 "The return value can be suppressed by a trailing ';' or an -n argument.",
430 ""
431 ]
432 },
433 {
434 "cell_type": "code",
435 "collapsed": true,
436 "input": [
437 "%R -n X"
438 ],
439 "language": "python",
440 "outputs": [],
441 "prompt_number": 14
442 },
443 {
444 "cell_type": "code",
445 "collapsed": true,
446 "input": [
447 "%R X; "
448 ],
449 "language": "python",
450 "outputs": [],
451 "prompt_number": 15
452 },
453 {
454 "cell_type": "heading",
455 "level": 2,
456 "source": [
457 "Cell level magic"
458 ]
459 },
460 {
461 "cell_type": "markdown",
462 "source": [
463 "Often, we will want to do more than a simple linear regression model. There may be several lines of R code that we want to ",
464 "use before returning to python. This is the cell-level magic.",
465 "",
466 "",
467 "For the cell level magic, inputs can be passed via the -i or --inputs argument in the line. These variables are copied ",
468 "from the shell namespace to R's namespace using rpy2.robjects.r.assign. It would be nice not to have to copy these into R: rnumpy ( http://bitbucket.org/njs/rnumpy/wiki/API ) has done some work to limit or at least make transparent the number of copies of an array. This seems like a natural thing to try to build on. Arrays can be output from R via the -o or --outputs argument in the line. All other arguments are sent to R's png function, which is the graphics device used to create the plots.",
469 "",
470 "We can redo the above calculations in one ipython cell. We might also want to add some output such as a summary",
471 " from R or perhaps the standard plotting diagnostics of the lm."
472 ]
473 },
474 {
475 "cell_type": "code",
476 "collapsed": false,
477 "input": [
478 "%%R -i X,Y -o XYcoef",
479 "XYlm = lm(Y~X)",
480 "XYcoef = coef(XYlm)",
481 "print(summary(XYlm))",
482 "par(mfrow=c(2,2))",
483 "plot(XYlm)"
484 ],
485 "language": "python",
486 "outputs": [
487 {
488 "output_type": "display_data",
489 "text": [
490 "",
491 "Call:",
492 "lm(formula = Y ~ X)",
493 "",
494 "Residuals:",
495 " 1 2 3 4 5 ",
496 "-0.2 0.9 -1.0 0.1 0.2 ",
497 "",
498 "Coefficients:",
499 " Estimate Std. Error t value Pr(>|t|) ",
500 "(Intercept) 3.2000 0.6164 5.191 0.0139 *",
501 "X 0.9000 0.2517 3.576 0.0374 *",
502 "---",
503 "Signif. codes: 0 \u2018***\u2019 0.001 \u2018**\u2019 0.01 \u2018*\u2019 0.05 \u2018.\u2019 0.1 \u2018 \u2019 1 ",
504 "",
505 "Residual standard error: 0.7958 on 3 degrees of freedom",
506 "Multiple R-squared: 0.81,\tAdjusted R-squared: 0.7467 ",
507 "F-statistic: 12.79 on 1 and 3 DF, p-value: 0.03739 ",
508 "",
509 ""
510 ]
511 },
512 {
513 "output_type": "display_data",
514 "png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAD8GlDQ1BJQ0MgUHJvZmlsZQAAKJGN\nVd1v21QUP4lvXKQWP6Cxjg4Vi69VU1u5GxqtxgZJk6XpQhq5zdgqpMl1bhpT1za2021Vn/YCbwz4\nA4CyBx6QeEIaDMT2su0BtElTQRXVJKQ9dNpAaJP2gqpwrq9Tu13GuJGvfznndz7v0TVAx1ea45hJ\nGWDe8l01n5GPn5iWO1YhCc9BJ/RAp6Z7TrpcLgIuxoVH1sNfIcHeNwfa6/9zdVappwMknkJsVz19\nHvFpgJSpO64PIN5G+fAp30Hc8TziHS4miFhheJbjLMMzHB8POFPqKGKWi6TXtSriJcT9MzH5bAzz\nHIK1I08t6hq6zHpRdu2aYdJYuk9Q/881bzZa8Xrx6fLmJo/iu4/VXnfH1BB/rmu5ScQvI77m+Bkm\nfxXxvcZcJY14L0DymZp7pML5yTcW61PvIN6JuGr4halQvmjNlCa4bXJ5zj6qhpxrujeKPYMXEd+q\n00KR5yNAlWZzrF+Ie+uNsdC/MO4tTOZafhbroyXuR3Df08bLiHsQf+ja6gTPWVimZl7l/oUrjl8O\ncxDWLbNU5D6JRL2gxkDu16fGuC054OMhclsyXTOOFEL+kmMGs4i5kfNuQ62EnBuam8tzP+Q+tSqh\nz9SuqpZlvR1EfBiOJTSgYMMM7jpYsAEyqJCHDL4dcFFTAwNMlFDUUpQYiadhDmXteeWAw3HEmA2s\n15k1RmnP4RHuhBybdBOF7MfnICmSQ2SYjIBM3iRvkcMki9IRcnDTthyLz2Ld2fTzPjTQK+Mdg8y5\nnkZfFO+se9LQr3/09xZr+5GcaSufeAfAww60mAPx+q8u/bAr8rFCLrx7s+vqEkw8qb+p26n11Aru\nq6m1iJH6PbWGv1VIY25mkNE8PkaQhxfLIF7DZXx80HD/A3l2jLclYs061xNpWCfoB6WHJTjbH0mV\n35Q/lRXlC+W8cndbl9t2SfhU+Fb4UfhO+F74GWThknBZ+Em4InwjXIyd1ePnY/Psg3pb1TJNu15T\nMKWMtFt6ScpKL0ivSMXIn9QtDUlj0h7U7N48t3i8eC0GnMC91dX2sTivgloDTgUVeEGHLTizbf5D\na9JLhkhh29QOs1luMcScmBXTIIt7xRFxSBxnuJWfuAd1I7jntkyd/pgKaIwVr3MgmDo2q8x6IdB5\nQH162mcX7ajtnHGN2bov71OU1+U0fqqoXLD0wX5ZM005UHmySz3qLtDqILDvIL+iH6jB9y2x83ok\n898GOPQX3lk3Itl0A+BrD6D7tUjWh3fis58BXDigN9yF8M5PJH4B8Gr79/F/XRm8m241mw/wvur4\nBGDj42bzn+Vmc+NL9L8GcMn8F1kAcXjEKMJAAAAgAElEQVR4nOzdd1gU59rH8e8soCLFDiiCBTtW\njFhQNNbEXqKvvWOMxhNLLImJJ4k91ojHY0libKgxtqiJioomaoIxNjxGxcYRFAERpYiUnfcP4h4R\nLMDuDuX+XBdXsjO78/xYdrx3Zp55HkVVVRUhhBBCmJVO6wBCCCFEQSQFWAghhNCAFGAhhBBCA1KA\nhRBCCA1IARZCCCE0IAVYCCGE0IAUYCGEEEIDUoCFEEIIDUgBFkIIITQgBVgIIYTQgBRgIYQQQgNS\ngIUQQggNSAEWQgghNCAFWAghhNCAFGAhhBBCA1KAhRBCCA1IARZCCCE0IAVYCCGE0IAUYCGEEEID\nUoCFEEIIDUgBFkIIITQgBVgIIYTQgBRgIYQQQgNSgIUQQggNSAEWQgghNCAFWAghhNCAFGAhhBBC\nA1KAhRBCCA1IARZCCCE0IAVYCCGE0IAUYCGEEEIDUoCFEEIIDUgBFkIIITQgBVgIIQqwhIQEnjx5\nkqXXqKpKTEyMiRIVHFKAjeDRo0coioKzszMuLi64uLhQvnx5evTowb1797K93cqVK3P+/PkMy3/9\n9Vc8PDyyvd0TJ05Qt27dbL8+q3r27EmRIkWwt7dP9xMWFsbUqVP55JNPADhw4ABHjhwBIDQ0FF9f\n3yy3NW7cOObOnWvU/EK8rlatWtGuXbt0y+7fv4+iKKSmppo9T7ly5bhy5Uqm6/bu3YuXlxdubm5U\nr16dNm3a8Msvv7x0e2FhYfTs2RMnJyc8PT2pW7cuX375pSmiFwhSgI3o/Pnz3L59m9u3bxMUFERq\naioff/xxtrd3/PhxatWqZcSE2pk1axaPHj1K9+Ps7MxHH33E5MmTAVi1ahVhYWFA2peMgwcPahlZ\niGw5fvw4a9eu1TrGS23bto2JEycyZcoUQkJCuHXrFtOnT6dXr14cOnQo09eEhobi7e1Ns2bNCAoK\n4urVq/j7+7Nt2zbGjx9v5t8gf5ACbCIlSpTAy8vLcJpGVVVmzZpF+fLlcXZ2Zvbs2aiqCsCGDRtw\ndXWlVKlS9O7dmwcPHgAwePBgbty4AcCOHTuoU6cOFStWZOfOnYZ25syZw7///W/D41mzZrFq1SoA\nLl26xJtvvkmxYsWoUKECS5YsyZDz6tWrNGnSBDs7Ozw8PPjtt98yPOe9997j+++/Nzz+8ccfGTVq\nFCkpKQwfPpzixYtToUIF5s+fn+X36ZtvvmHt2rV8++23+Pv7M3XqVHx9fZk0aRJHjx5l4MCBABw7\ndox69epRvHhxevbsSVRUlOF9nThxImXLlqVFixaEhoZmOYMQxjRlyhQ++uijF579OnbsGD179qRk\nyZJ0796d8PBwAObPn8/MmTMpX748H3zwAQsWLGDBggU0b94cBwcH5s6dy549e6hcuTKNGzc27KsJ\nCQmMHj0aZ2dnSpYsSe/evYmNjX1pxkWLFjFz5ky6detGoUKFAGjdujUfffQRS5cuzfQ133//PQ0a\nNODDDz/EwcEBAEdHR3bs2IGvry9xcXHZer8KMinARnTs2DEOHTrE/v37WbZsGfPnzzcUkA0bNrBx\n40b27NnDrl272Lx5M6dOnSIxMZExY8bw448/cv36deLj41m5ciUAN27cIDExkRs3bjBq1ChmzpzJ\nnj17OHz4sKHNiIgIQzECuHfvHvfv3wdg4MCBdOzYkTt37rBkyRImT55MdHR0uswff/wxXbt2JSIi\ngmHDhjF27NgMv5enpycbNmwwPN64cSONGjVi+/btXLt2jevXr7N//35mz57NtWvXMn1vAgMDWbNm\njeHn7Nmz6fIPGDCAVq1aMWPGDEaOHMkXX3yBl5cXK1euJDIyki5dujB58mT++usvihUrZjjNvGLF\nCn755RcCAgIYO3YsP/30U5b/bkIYk7u7O0OHDmXcuHEZ1t28eZOuXbvStWtXLly4gLW1NUOGDAHS\n9oWvvvqK5cuXM2DAACIjI5k7dy6LFi1i+/btfPLJJ/j6+nLw4EG6devGV199BcBXX33F9evXOXv2\nLL/99hsXLlxg69atL8yXnJzM+fPnadKkSYZ1DRs25M8//8z0dX/88Uemr3FxcaF06dKGfVq8Pkut\nA+Qnn376KQDXrl2jXr16HDlyhPr16wOwbt06hg0bhpubGwDDhw9nz5491K9fH71ez5EjRxgwYAC7\ndu0yfCN9yt/fH3d3d7p37w7AsGHDWL9+/SvzrF69mgYNGqCqKhUrVsTa2prIyMh0z7G0tOTPP//k\nypUrjB07ltGjR2fYTo8ePRg/fjyxsbFYWlri7+/PypUrOXr0KLdv3+bkyZO0b9+eyMhIChcunGmW\nCxcu8PDhQ8NjGxsbGjRoYHhcuHBhrKyssLGxwdraGhsbG6ysrLC1tWXTpk24u7vTtWtXAKZPn06X\nLl1YtGgRO3bsYOjQodSoUYMaNWqwbNmyV74vQpjajBkzqFWrFrt376Z58+aG5bt27aJ27doMHToU\ngJkzZ1K1alUiIiIA6NKli2E//+GHH+jatSuNGzcGoHz58gwePJgqVarQqVMn1qxZA0D//v0ZOnQo\nDg4OPH78mKpVqxqOqjMTHR1NYmIiJUqUyLCubNmy3Lt3j+TkZKysrNKtCwsLo02bNplu08nJSc4+\nZYMcARvRL7/8wqVLlzh9+jQ3btzg9u3bhnVhYWEsWLCA6tWrU716dRYsWMDZs2cpXLgw33//PevW\nrcPZ2ZlOnTpl6DRx7do1GjZsaHj8dId8lcjISFq0aIGDgwMffvghqamp6PX6dM9ZvHgxycnJeHp6\nUrNmzXSnmp8qXrw4b775Jvv27ePnn3+mWbNmhtNn/fv3Z8SIETg6OjJ58uQX9qb08fHh4MGDhp/+\n/fu/1u8AadeegoKCDO9dixYtiImJISwsjOvXr6d7bzL7hi6EuRUtWhRfX1/GjBmT7otnSEhIus9o\nlSpVKFWqFHfu3AHSiuyzypUrZ/h/a2trqlevDqR9YU1JSQHAwsKCDz74AEdHRzp16kRwcPBLO3w5\nOjri6OjIf//73wzrbt68iaurK1ZWVpQsWZJChQpRqFAh9u/fT7169dL9m/asW7duGQ4uxOuTAmwC\ndevWZdasWQwdOtTwTbRRo0bMnTuXu3fvcvfuXYKDg/Hz80Ov1+Ph4cH58+c5f/489vb2GU4Du7q6\ncunSJcPjmzdvGv5fp9OlK3pPj3Cjo6Pp1asXkyZN4s6dOxw+fBhVVQ3XnZ+ytLRk+/bthIeHM3r0\naAYPHmw4hf2svn37snPnTrZv307fvn0BePLkiWH7fn5+7Nmzh++++y5nb14mPD09adasmeG9u3v3\nLn/++SflypXL8N48vWYuhNa6dOlCo0aNmDJlimFZ6dKl031e7969S3R0NJUqVQLSiumznn+cmdGj\nR1OyZEmCgoK4ePEinp6eGfbz53l6erJlyxbD4x07dpCUlMTWrVvx8vICICAggN9//53ff/+dZs2a\n4enpyffff28o7sePHyc0NJT9+/djYWGRbzqMmpMUYBMZPXo0lStXZurUqQB069aNtWvX8uDBA1RV\nZeDAgSxZsoSoqChq165NaGgo7u7uvP322xm21bJlS37//XeuXr1KYmJiuqNUR0dHAgMDUVWVu3fv\ncvToUQBDh4i2bdtSpEgRNm/eTGJiIsnJyem2PXToUL7++mtKlizJgAEDKFy4cKY7b5cuXThx4gRH\njx41nCLbsmULffr0QVEU3n77bcO38+yysbExdFqzsbExHDm0bduWwMBAwzWmjRs38tZbb6HX62nT\npg3ff/898fHxhISEvPI2CiHMadmyZezfv9/wuEOHDvz666/85z//Qa/Xs2bNGtzd3SlWrFi227h/\n/76ho1ZoaCj+/v4Z9vPnLVy4kLVr1xoOAg4dOkSNGjX4/vvvmTNnDgD16tXDw8MDDw8P7O3t6dev\nH+XLl2fUqFHExcURERFB06ZNGTp0KDNnzsTW1jbbv0NBJQXYRBRFYfny5WzcuJHffvuNjh074uTk\nRMWKFalatSqpqalMnToVBwcHPvnkE5o3b467uzszZ87McB/r0yPqZs2aUaVKFYoUKWJYN3DgQEJD\nQ3F2dqZ169aGAu7q6sqQIUOoV68eDRs25Oeff6ZJkyZcvXo13bZnzpzJqlWrqFmzJjVr1uTzzz+n\ndOnSGX4fGxsbWrRoYegxDTBo0CBsbGxwc3PD1dUVnU6XpVPLz2vRogWTJk1i5syZ1K1bl0uXLlG/\nfn2sra2ZM2cOLVq0oHr16ixcuJCVK1diYWHBxx9/jLW1NVWrVqVp06avfXpeCHNwdXXln//8p+Fx\no0aNmDFjBp6enlSsWJFt27alu6shOyZPnswnn3xCkyZN6NWrFz169CA4OPilr6lWrRp+fn78+9//\npnTp0mzZsgVXV1cqVarE8uXLSUhIyPAaS0tLtm3bRlxcHJUrV2bUqFHY2dnh7u7Ozp07uXz5co5+\nj4JIUV91rkIYVXx8PJBW0J4XGRlJmTJlXvja5ORkEhMTDQXwdV4bHx+PoigULVr0pbkePHiAnZ0d\nlpZZ75eXmJhIUlIS9vb2WX5tZtuysrLCwsICvV7PkydPsLa2BiA1NZWYmBhKlSqV4XUPHz7E1tb2\ntU7ZCaG1lJQUHj58mOlnOTtUVeX+/fuZfnl+lbi4OCwtLSlSpAjJycmsXLmSkSNHGva7zOj1emJi\nYihZsiQAR48excrKynD6WrweKcBCCCGEBuQUtBBCCKEBKcBCCCGEBvLFQBzr1q17Zbd7IcypaNGi\n9OnTR+sYeYLsvyK3Mdf+m+ePgNevX2+Se0+FyInFixezd+9erWOYVGpqaqa9ZbNC9l+RG5lr/9Xs\nCDg5ORmdTpfjXquqqjJkyBDD0G5C5AbR0dH57qjO19eXevXq4e3tzapVqwzT0Hl5ebFmzZoXDkP6\nMrL/itzIXPuvWY+AU1JS+PDDD3FzczOM3Vu7dm1mzZr1yhvHhRDaCgsL4+HDh8THx7N69WrOnj1L\ncHAwlSpVYsWKFVrHEyLPMWsBfjod3uXLl7l+/TrBwcGcOXOG8PBw/Pz8zBlFCJFNcXFx1K9fH3t7\ne3Q6HZ07dzZMJiCEeH1mPQV9584devfunW6WjUKFCtG1a1dOnTplzihCiCxycXFh4sSJuLm5cenS\nJUJDQ4mKimL06NGGOaiFEK/PrAV44MCBjBkzhl69euHi4gLA7du32bBhQ7o5boUQuc/YsWMZO3Ys\nISEhnDt3DhsbGyIiIli/fj3u7u5axxMizzFrAW7YsCG7du1i7969BAUFodfrcXV15fDhwzg4OJgz\nihAimypUqECFChUAMp1TNjMxMTGZTn939epVihcvbtR8QuQVZu8FXbZsWXx8fLL8umPHjjF//vwM\nyy9fvswbb7whvSiF0MjixYtRVZVJkya98Dk3btxg3bp1GZYfPnyYypUrM3nyZFNGFCJXyhUDcbzO\nDty8eXM8PT0zLB8zZgyKopgynhDiJUaNGvXK5zyd1u55Pj4++e52LSFeV64owK+zA1tYWGQ6O4el\npWWe34EfPHhAYGAgXl5emc50JERuJvPACpE9uWIkLFtb2wKzE+/evZsvv/ySLVu2AGnT7w0fPhxL\nS0sGDRpEamqqxgmFECJ/2bp1K5MmTWL69Ono9XoArly5wnfffceOHTs0O4gz6xHwwoULCQgIyHTd\ngAEDcjSZe17w2WefceLECcaPH8/kyZP55ZdfWLhwIcuXL8fZ2ZnVq1fz8OFDwxybQuQmBX3/FXnX\njRs3WLRoEb6+vhw7dgwbGxt69+7NjBkzWLt2Lb6+vhw6dMjs84mbtQAPGjQIPz8/Jk2aRIMGDdKt\ne9lE9PnBvXv32LhxI1evXkWn09GpUyf69evHrVu3qFWrFl9++SVNmjSR4ityrYK8/4q87aOPPiIx\nMRF/f3/eeecd3n77bXbt2kWDBg0YMWIE48aNY+/evXTr1s2sucxagB0dHdm4cSOffvopAwYMMGfT\nmktNTaVx48YoF4JIadAYi3On0Ol06PV6vvjiCxwdHXn33Xe1jinECxXk/VfkbfHx8QwbNoxPPvmE\nsmXL4uLiQrVq1Qzrq1evTnx8vNlzmf0acK1atdi+fbu5m9Vc2bJlcbCz48rwUTxa/CUBUz7i+PHj\nxMTE8M0333Dy5EmGDBnC3bt3tY4qxAsV1P1X5F2qqtK/f3+GDRtGmTJliIuLo2nTpnTv3p3Y2Fj+\n+OMPxo0bR6tWrcyeLVf0gi4IFEXhy5q12XbqTw4eC2Dy9RtcPH0auzJlCAkJ0TqeyGcCAwNp3Lgx\n+/bt4/Tp0/zjH/947UEzhMhPHj58SIMGDQgMDCQwMJCePXsydepUQkJC6NatGy4uLpw7d45y5cqZ\nPZsUYDNRL19Bd+wX+v0SQH9bW1I//hTl7Dlo307raCKfCQgIYPr06ezatYsxY8YwduxYJkyYIPPu\nigKpePHifPbZZxmW54bxy3PFbUj5nZqain7+QpR/jEX5+3YrXYd2qAf8NU4m8qMTJ04we/Zs9u7d\nS+/evZkyZQphYWFaxxJCPEcKsBmoflugrBO6Vi3/t7BZUwi+hhoZqVkukT9VrlyZTZs2sXLlSt55\n5x1Wr15NlSpVtI4lhHiOFGATU2/fRv1hB7oJ/0i3XLGyQnmzFerBQxolE/lVv3798PT0ZOLEiTRp\n0oSUlBTmzp2rdSwhxHPkGrCJ6RcuQRk6GCWT+ySVDu3Qz1sAA/ppkEzkN2fPnmXHjh3pln366acA\n7Nixg+HDh2sRSwjxAlKATUi/Zx+k6lG6d810vVKrJuj1qJevoNSobuZ0Ir+xt7enevXMP0eOjo5m\nTiOEeBUpwCaiRkejfrMW3dKFL52tSXmrPer+g1KARY65ubnh5uaW6bqUlBQzpxFCvIpcAzYR/VJf\nlO5dUSpWfOnzlPZtUQOOoso/kMJIoqKi6NixI+7u7tSsWZOqVasyZMgQrWMJIZ4jR8AmoB4/ASH/\nRfn041c+V3FwALfKcPI38G5hhnQiv9u0aRMeHh54e3tTrVo1Hj16RExMjNaxhBDPkSNgI1MTEtAv\n9UU3eSKKldVrvUZp3xa99IYWRpKQkECrVq1o2rQpFy9eZOjQoRw7dkzrWEKI50gBNjJ15RoUr2Yo\ntd1f+zVKS284dx714UMTJhMFRZs2bfjnP/9JxYoV2bVrFytXrqRw4cJaxxJCPEdOQRuRGnQR9bff\n0a37JkuvU6ytUbyaoR46gtKrh4nSiYLC09OTefPmUbp0aebNm8ehQ4c0vw/48OHDzJw5M8PyK1eu\nUK9ePQ0SCaE9TQtwamoqT548oWjRolrGMAo1ORn9gsXoxo9Dycbvo7Rvi371NyAFWOTQ1q1bmTVr\nVrplcXFxrFixQqNEaUflbdq0ybDcx8cHVVU1SCSE9sx6CtrX15dffvkFSBsIu1q1atSpU4fBgwfz\n5MkTc0YxOnXDJqhUEcWrWfY24NEAoqNRb90yZixRAPXs2ZOTJ09y8uRJAgICmDRpEpUrV9Y6lhDi\nOWYtwGFhYTx8+JD4+HhWr17N2bNnCQ4OplKlSpp+O88p9eZN1B/3ovvg/WxvQ1EUlA7tUPcfNGIy\nURBZWVlhZ2eHnZ0dpUuXZsiQIezevVvrWEKI52hyCjouLo769etjb28PQOfOnTMMoZdXqKqKfsES\nFJ8RKCVL5mhbSod26Md/iDpqJIpO+seJ7Dl16hR79uwBQK/Xc/HiRWrVqqVxKiHE88xagF1cXJg4\ncSJubm5cunSJ0NBQoqKiGD16dK6YmzE71J27oZAVuk5v53hbiosLODrC6T/Bs5ER0omCqHjx4umG\npGzevHmm11+FENoyawEeO3YsY8eOJSQkhHPnzmFjY0NERATr16/H3f31b9vJLdTISNR1G9CtWGa0\nbSrt26IePIQiBVhkU7Vq1ahWrZrWMYQQr6DJKegKFSpQoUIFAEqUKPFar7l+/TqHDx/OsPzy5cs4\nOTkZNd/r0i/+CqXPOyjOzkbbptLmTfRff4uakJCt3tSi4Nq9ezczZszIdF2jRo34+uuvzZxICPEy\nueI+4MWLF6OqKpMmTXrhcywtLbGzs8uw3MrKCp0G10v1RwLgXgTKrM+Nul3Fzg4aeqAGHEMxwmlt\nUXB06tSJ1q1bc+bMGZYuXcrMmTNxdnZm06ZNhv4WQojcQ7MCnJycjE6nw8LCglGjRr3y+c8eNT/r\nyJEjZr+PUI2NRf3XSnSzv0CxsDD69nXt26L//geQAiyy4OmX1MDAQAYNGkTt2rWBtHttu3btyuDB\ngzVOKIR4llkLcEpKCtOmTWPnzp0A6HQ6ChcuTN++fZk6dao5o+SI+q+VKK1bmW4KwSaNYcFi1PBw\nFI1Or4u8q23btvj4+BAeHk6pUqXYsmULrVu31jqWEHlGXFycWdox67nbJUuWAGnXba9fv05wcDBn\nzpwhPDwcPz8/c0bJNvXMWdRz51FGDDNZG4qFBUrb1nJPsMgWDw8P1qxZQ0hICMeOHaN///556guu\nEOZ29+5dLly4YHhcqFAhs7Rr1gJ8584devbsidUzswQVKlSIrl27cvv2bXNGyRY1KQn9wiXoJn6A\nUqSISdtS2rdDlRmSRBacPn2a77//nt9//52tW7cCYGdnx+nTp/PsbX5CmMqDBw8M/3/27FmKFStm\neGyuAmzWU9ADBw5kzJgx9OrVCxcXFwBu377Nhg0bMu3hnNuoa9ehuNcyyy1CSrWqULgwatBFlDq1\nTd6eyPtKly6NXq+nVKlSNGzYMN06BwcHjVIJkXvo9Xp0Oh1//PEH169fp2/fvgB07NhRkzxmPQJu\n2LAhu3btokSJEgQFBXH+/HlsbW05fPhwrv8HQr12DfWAP8r775mtTaVDO9QD/mZrT+RtFStWxNPT\nEzc3NypUqECfPn2wsbHhr7/+MsmMQ6mpqSQkJBh9u0IYW2xsLHv27CE2NhYANzc3Q/HVktnv3ylb\ntiw+Pj7MmTOHefPmMWbMmNxffPV69PMXobw3CuWZ0xSmprRvi3r0GGpSktnaFHlfQEAAEyZMICIi\ngjFjxmBtbc2ECRNyvN38PJmKyH/u3r3LnTt3AIiJiaFKlSqG08wlczhssLHIgMOvQd22HYoXQ9eu\nrVnbVUqWhFo1UY+fMGu7Im87ceIEs2fPZu/evfTu3ZspU6YQFhaW4+3m18lURP7x+PFjABISEjh0\n6JDhWq6Liws1a9bUMlqmXliAAwMDAdi3bx+ff/55ugvWBYl69y6q3xZ0k8Zr0r6chhZZVblyZTZt\n2sTKlSt55513WL16NVWqVDHa9p+dTEWn09G5c2ciIiKMtn0hsuPAgQOGulWkSBEGDRpE6dKlNU71\ncpkWYFOdwsqL9AuXoAzop9n9uEqL5nDpL9ToaE3aF3lPv3798PT0ZPz48dSpU4fk5GTmzp2b4+0+\nnUxlyJAh+Pv7Exoayrlz5xg9ejS9evUyQnIhXl9UVBRHjx41PK5Vqxbe3t4AmoyOmB2ZpjTVKay8\nRr//AMTFo7zTU7MMSqFCKN4tUP1zfy9xkTsoikJwcDCzZs1i8+bN/PTTT1y7di3H2x07dizBwcGs\nWrUKX19fbGxs0Ov1rF+/njfeeMMIyYV4uaioKBITEwG4efNmunkAXFxc8kzhfSrT25CensK6cOEC\ny5YtM/oprLxAjYlBXf0Nui/naD43r9KhHfqlvvB/vTXNIfKGkydPoigKX3zxBTExMSxdupQZM2aw\nefNmo2w/O5OpnDt3jo0bN2ZYHhgYSKVKlYySS+RPKSkpWFpacvPmTQICAhgwYACQNsFIXpdpAe7X\nrx9xcXG0bduWJk2acObMGaOcwspLVN8VKG+1R8kFXzyUunXg8WPUa9dyRR6R5v79+5w9exZ7e3s8\nPT21jmPwn//8hyZNmhjGSC9btqxJeym/zmQqFSpUoF+/fhmWX79+HRsbG5NlE3lXcnIyP/30EzVq\n1KB69eo4OjoyfPhwrWMZVboCfPbsWXbs2JHuCZ9++ikAO3bsyHe//IuogadQL19BN/VDraMYKB3a\noe4/iPK+FODcICQkhC5dutCrVy9++OEHWrZsyfLly7WOBUDfvn3x9vamdu3aWFpasm3bNoYOHWrU\nNrI6mUqJEiUyDA4CaYOHmHsyFWF8jx49Yvny5dy7d4+GDRtme+KPe/fucf/+fWrVqkVycjI1atSg\natWqABTNh9Ozpju3am9vT/Xq1TP9KVeunFYZzUp9/Bj9kmXoPpyAYqbhyF6H0qEd6qEjqKmpWkcR\nQJcuXZgzZw4zxo8nKCiIyMhIDh7MHWN329nZ4e/vT4sWLShXrhxz587N9Ogzq1JSUvjwww9xc3Oj\nRo0a1KhRg9q1a7N06VIKFy5shOQiL3paKC0tLRk0aBAnT57M0pfRp4NjAPz222+GQlu0aFGqV6+e\n567rZkW6I2A3Nzfc3NyIiopi8ODBhISEoNfrSUlJwdPTk7feekurnGajfrMWxaMBSoP6WkdJRylb\nFlxdIfAUNGuqdZwCRY2MhLA7qGF3ICwMNewO8x/E0nbZv9Gf+hOLL/5Jhw4duHfvntZRAbhx4wZ6\nvf61jkyz4tnJVJ6O556UlMTEiRPx8/NjyJAhRm1P5A3Hjh2jU6dOTJkyBYDatWvzzjvv8P7777/y\ntadOneLGjRuGUam6d+9u0qy5TabXgDdt2oSHhwfe3t5Uq1aNR48eERMTY+5sZqf+dRk14Bi6dd9o\nHSVTSod26A/4YyEF2OjSFdnQ0L//GwZ37oKtDTiXQylfHpzLoWvdirO3QwiwteHLL/7JvXv3GDFi\nRLrZVLT0dLrPl12TzY47d+7Qu3fvTCdTOXXqlFHbEnnLs53xVFXl1q1bmT4vNjaWX3/9FW9vb2xt\nbalUqVKB7kGfaQFOSEigVatWWFlZcezYMWbMmEGPHj0YP16bwSjMQU1NRf/lIpRxY1BsbbWOkynl\nzZaoK1aixsXl2oy5mRoR8eIia4yFFJUAACAASURBVG+XVmSdndOKbJs3obwzODtnOvPVBM9GtGjR\ngtatW2NjY8P+/fupU6eOBr9VRk2aNGHgwIFcvXrVMBBBpUqVGDlyZI62m9cnUxGm4eXlxVdffcWa\nNWuoX78+Y8aMoX///ob1TwdpcXBwICoqCldXV2z//verTJkymmTOLTItwG3atGHChAn4+fkxYcIE\nHBwc8v01HtVvC5R1QteqpdZRXkgpWhSlSWPUwwEo3bpoHccs7ty5w+zZs7l16xYlSpTgu+++w9Ly\nxZN4qREREBqWvsiG3clYZMs7o6tV839FNoufb2tra06fPp3TX88kHBwcmD17drpljo6OOd7u08lU\n9u7dS1BQEHq9HldX1zwxmYowHWtra3744Qe++OILrl69yqRJk+jRoweQdsT7008/0blzZwC55ew5\nmf5L5unpybx58yhdujTz5s3j0KFDRr8N6dlelFpTb99G/WEHuq9Xah3llZQO7dB/twEKQAGOj4/H\n2dmZrVu3MnPmTAYPHsynn3zCnAkT/ldkw8LSH8kWs4fyzv8rsrXd04psuXJZLrJ5VdWqVQ09R43t\n6WQqQjyrcOHChi99T4eE9Pb2xtra2ug98POTFx5KtGjRAoD27dvTvn17ozSWkpLCtGnTDNeodDod\nhQsXpm/fvkydOjXdtSVz0i9cgjJ0MEpeOB3yRkOYtwA1NDTtmmQ+durUKSZNmkTvtm3Rz5nP7hIO\nnP1mPfob/01fZOvUBudyaUeyuajnuhAFQXR0NJcvX6ZZs2YAVKtWzTBQy8vOVokXFOCtW7cya9as\ndMtatGiR4xlPcmMvSv2efZCqR+ne1extZ4ei06G0a5M2N/GIYVrHMalChQoRHR2NfvY8lPLleTRo\nAH0CDnLjez+towlRoD148AAbGxsKFSrE5cuX03XCktPMry/TG6x69uzJyZMnOXnyJAEBAUyaNInK\nlSvnuLE7d+7Qs2fPTHtR3r59O8fbzyo1Ohr162/RTZ6Aoihmbz+7lLfao+7PHfecmpKXlxfOIf9l\n//qN7CzrgPeggcz68kutY+Vau3fvpl69epn+5LQDlhCpf49BcP36dbZv325Y3qxZs1w51V9ekOkR\nsJWVlaFI2tnZMWTIELy9vfnww5yNDJXbelHql/qi9OiG8vfpkrxCqVQJSpRAPXMWxaOB1nFMRk1I\n4LOSZTg07UPC799nxYoVNG/eXOtYuVanTp1o3bo1Z86cYenSpcycORNnZ2c2bdqEvb291vGECQUF\nBbFv3z6SkpJ47733jNq7OCkpCX9/f2rUqIGbmxsODg4MHz48Xw+QYS6ZFuBTp06xZ88eAPR6PRcv\nXqRWrVo5biw39aJUj5+AWyEoM6abtV1jUdq3RT14KH8X4FVfozRtQoeJH9BB6zB5gKWlJXZ2dgQG\nBjJo0CBq164NgI+PD127ds328IAid7t8+TJjxoxh2rRpJCYm0q1bN9avX5+jCXQiIyOJiYmhatWq\nPHnyhIoVKxpOLdvZ2RkreoGXaQEuXrw41atXNzxu3rw5bdq0MUqD2e1F+eTJEx49epRh+ePHjylR\nooRhxoyUlBQeP36MtbX1Cx8nREdT+F8rKTR9GqnA49jYlz4/Nz4u8mZLdN+tJznuPRJVVfM8Rv/9\nbt5Cd+Ik+m9XE58H/z5aXtJo27YtPj4+hIeHU6pUKbZs2ULr1q01yyNMa9myZcyaNYuWLdNuoUxJ\nSWH79u1MnTo1S9uJj483TIwREBBgmGDEzs4Od3d344YWwHPXgJ9eQ+rduzcLFiww/EybNo0xY8aY\nLMTixYtZtGjRS59z+vRpxo4dm+Hn5MmTlCtXjoSEBCBtEJEbN268/PH+Azxu7oVS2/31np8LHz+2\nsoJ6dYn/9XiuyGPMx9evXSNuzTfoxo/jMWieJzuPtez96eHhwZo1awgJCeHYsWP0798/y/8Yi7zD\n3t6eQs/0/rezszNcr31dgYGB/PTTT4bHffr0oWLFisaKKF5EfUZycrL66NEj9ejRo2r37t3VoKAg\nNTo6WvX19VXXrVunmkpsbKwaGxubrdeOHDlSHTFixGs/X38hSE15p6+qj4/PVnu5if7oMTVl4mSt\nYxhd6rffqSkzPtc6Ro4sWrRI/fHHHzXNkJqaqsbFxal6vV7THC+T1f1XZPTrr7+qrVu3Vk+cOKEe\nOHBAbdasmRoSEvLS1zx69Eg9cOCA+vjxY1VVVfXu3btqamqqOeLmCebaf9MdAWd2DalEiRL4+Piw\nadMmoxb+5ORkw7c0W1tbw9BkpqQmJ6NfsBjd+HEo+WFqK69mcDU4bRzjfEK9dQt19x50H7x6IHfx\nYpMnT6Z27dps3ryZzp0759pRu0TONW/enPnz5+Pn58eRI0dYvnw5rq6uGZ4XHR1NVFQUAOHh4Tg4\nOFDk72FWnZycpFOVBjI9T2aqa0haD8ShbtgElSqieDUzaTvmolhaorR+M60z1oCcTzenNVVV0S9Y\ngjJyOErJklrHybNOnjyJoih88cUXxMTEsHTpUmbMmMHmzZu1jiZM5I033sh0UoPk5GSsrKx4+PAh\nO3fupFu3bgAmGylNZE2mX3lMdQ3p2YE4rl+/TnBwMGfOnCE8PBw/P9MOrqDevIn64958d2SldGiH\nesBf6xhGoe76ESwt0HXuqHWUPO0///kPTZo0MXQEK1u2LE+ePNE4lTC3AwcOGGapKlq0KMOHDzdM\nziFyhxf2FPHw8MDDw8OojWk1nZnhyMpnRL47slJq1QRVRf3rMkrNGlrHyTY1MhL1u/Xoli/VOkqe\n17dvX7y9valduzaWlpZs27ZN8/F4o6KiuHLlSobl4eHhco+ykTx48IDg4GBD7+WKFSsabkXSaphf\n8XLpCvDp06e5ceMGrq6uhtPET1WuXJl33303R41pNRCHunM3FLJC1+ltk7WhpadHwXm5AOsXf4XS\nuxfK358LkX12dnb4+/uzY8cOQkJCGDdunNG/TGfVnTt3+PnnnzMsDw0NNYwbLLLu0aNH2NjYYGFh\nwYULF9Id4T57K6nIndIV4NKlS6PX6ylVqhQNGzZM90RjDJShxUAcamQk6roN6FYsM8n2cwOlQzv0\nI95Fff89lDw4+Lk+4Cjci0CZ9bnWUfKFo0eP8uDBA0aNGmVYNm7cOHx9fTXLVLduXerWrZth+b17\n91BVVYNEeZder0en0xEcHMyRI0cYMWIEgOE+YJF3pPvXumLFioZ7v6KiomjcuDH79u3j9OnTtGvX\nzigNmmM6s8ePH7N3716SkpLodupPivZ5J23mnHxKKVMGqlaBEyehpbfWcbJEjYtD9V2Bbs5MlFww\nNWV+cOnSJRYtWsSVK1eYNm0aABcvXtQ4lcippKQkjhw5Qo0aNahYsSIODg74+PhI7+U8LNO/XEBA\nABMmTCAiIoIxY8ZgbW3NhAkTzJ0tW1JTU6lfvz7nzp2jyG+BbF7my5V6dbSOZXJK+7boDx7SOkaW\nqStWobRuhVJDTpcZ05IlSwgJCWHEiBEkJSVpHUdkU3R0NDdv3gTSRqoqV66c4RajYsWKSfHN4zL9\n6504cYLZs2ezd+9eevfuzZQpUwgLCzN3tmxZv349LVq0YNa0aXS/ew/3b9fg+/c0ipGRkTm+jp1b\nKS294dx51IcPtY7y2tSz59ImlMjn0ypqwcLCgn//+99Ur16dzp07y7yseUhiYqLh//ft22fozV6i\nRAnq1q0rRTcfyXSvrFy5Mps2beLChQssW7aM1atX52hgb3OKj49PO10eG4tuxTJck5MJ3bmD0NBQ\npk6dmul40vmBUqQISnMv1ENHUHr10DrOK6lJSegXLkE34R8o1tZax8lXatWqRcm/e/tPmTKFChUq\naDLbmMi6wMBAwsLC6NmzJwCDBg3SOJEwpUwLcL9+/YiLi6N169bUqVOHP//8k7lz55o7W7a0aNGC\ndu3aUTsgACcnJ1q3aMHw4cMpV64cmzZtol+/vD9gxYsoHdqhX7kG8kIB/m49Ss0aKI09tY6Sbzx7\nF8OmTZvSjV73fKdKkTvExcURGBiIt7c3VlZWODs7ZzqghsifMi3AiqIQHBzMvn37SEhI4KeffqJx\n48Z54oNRr149fvjhB3x8fChXrhwffPABY8aMMZzGyc89LhWPBvDgAeqtWyi5eCB19do11J8PoPvu\na62j5CumvotBGMfDhw9RVZXixYvz3//+l+LFixvu0y1fvrzG6YQ5ZVqA8/pQdt7e3pw8eVLrGJpQ\nOrRD3X8QZfSoVz9ZA6penzYoymgflGLFtI6Tr5w/f54ZM2Zkuq5Ro0a0atXKvIGEwdPpUqOjo9m+\nfTu9evUCMMo86yLvyvRqfn4eyq53795aRzAppUM7VP/DqHq91lEypf6wA2xt0HVor3WUfKdTp04c\nP36cZcuWGfpxHD16FB8fH7y989btafnJwYMHDZNh2NjYMGLECMM1elGwZXoEnBuHsjOWp9888yvF\nxQUcHeH0n+DZSOs46ajh4aibNqNbuVzrKPlSZrOZAfj4+NC1a1cGDx6sccKC4eHDh9y8eZP69esD\n4OzsbBiVqnDhwlpGE7lMpgU4Nw5lJ16fYWjKXFaA9QuXoPTvi1K2rNZR8jVTzWYmXiw+Ph5ra2t0\nOh2nTp2i7DOfcXd3dw2Tidwswyno4OBgVq9eTWxsLKNGjWL27NlER0cbhjsTuZ/S5k3U3wNRExK0\njmKgP+gPj2JReufvMxC5galmM3teamoqCbnoM2ZuTzt0BgcHs2HDBsPydu3aGc4+CPEy6QrwnTt3\naNu2LefOnaNdu3bcuXOHDz74gFGjRpnk9p2CvgObimJrC280RA04pnUUANSHD1FXrkE3ZSKKDCJg\ncjdu3MDe3p758+ezYsUKo/V78PX15ZdffgFg1apVVKtWjTp16jB48OB800fkdSQlJeHv728YnKhU\nqVI0bdqUH374gRMnTqR77scff8zly5e1iCnygHT/Gp4+fZp33nmHFStWMHPmTFq1akVCQgJBQUG0\nbds2x43JDmw+ulw0T7C6/N8oHdqh5JHBXPK6nTt3snv3bqNvNywsjIcPHxIfH8/q1as5e/YswcHB\nVKpUiRV/jzaXX8XExPDf//4XSLvGW7p0acNp5uPHjzN8+HDu379P165dWbBgAQDTpk0jMDBQhgIV\nL5SuAN+/f5+qVasC4OLiQuXKlVmzZg02NjZGaawg78Bm19gTQkJQw8M1jaGe+gP1P5dQhg3RNEdB\n0qRJE5YvX867777L9OnTmT59Ol9/bbx7ruPi4qhfvz729vbodDo6d+5MRESE0bafWzxbOHfs2IH+\n7zsLypQpQ4MGDbCwsODhw4cMHjyY/fv389577xEeHs7x48e5dOkSc+bMMcqBi8i/XjhArKIouLm5\nmaTRZ3dggM6dO7Njxw6TtFVQKRYWKO3apN0TPFSb3q9qYiL6RUvRTZuMUqiQJhkKIgcHB2bPnp1u\n2bPzxGaXi4sLEydOxM3NjUuXLhEaGkpUVBSjR49m1apVOd5+bhIYGMjdu3fp3r07AMOGDTPclvms\nuLg4OnXqRJkyZYC0ie+rVq1KdHS0jNksXilDAV62bBk7duwgJiaG8PBwgoODgbQRpp6eWsmugrQD\n5wZKh/bo//kFaFWAv/4WxaMBSoP6mrRfUJUoUYKNGzcSEhKCXq8nJSUFT09P2rfP2b3XY8eOZezY\nsYSEhHDu3DlsbGyIiIhg/fr1eb6nb3x8PKdPnzbMqevo6Jjuzo/Mii+Ak5MTVlZWzJ8/nylTpnD4\n8GEWLVr0wgFRhHhWugLcuXPnF47M8vRoNSfy8w6cGylVq0DhwqhBF1HqmLdXpnr5CmrAMRluUgOb\nNm3Cw8MDb29vqlWrxqNHj4iJiTHa9itUqECFChWAtGKfV8XGxgJpt11eu3aNIkWKGNZVfM2hXC0s\nLPD19aVRo0b4+/vj5ORk6AQHaWPTOzo6Gj27yB/SFeAyZcoYTqWYUn7ZgfMC5a32aaehzViA1dRU\n9AsWo4wdjWJnZ7Z2RZqEhARatWqFlZUVx44dY8aMGfTo0YPx48ebpL3FixejqiqTJk0yyfaNSa/X\no9PpiIqKYvv27fTp0wdIO8OXXXZ2di/s6dy8efNsb1fkf7liktC8tAPnNUq7NugHD0f94H2zXYdV\nN28FhzLoWr9plvZEem3atGHChAn4+fkxYcIEHBwcjD4CU3JyMjqdDgsLC0aNevW444cPH2bmzJkZ\nll+5ciVHxS8rDh48SMmSJXnjjTewsbFh5MiRWFhYmKVtITKjWQHOiztwXqSULAm1aqIeP4FihoKo\nhoaibtuO7uuVJm9LZM7T05N58+ZRunRp5s2bx6FDh4wynWhKSgrTpk1j586dAOh0OgoXLkzfvn1f\nOdBHmzZtaNOmTYblPj4+JpuhLDY2lpCQEMOgGA4ODoZLXdYyB7XIBcxagPPaDpxfPD0NjRkKsH7h\nEpShg1HMcClDvFiLFi0AaN++fY47Xz21ZMkSAC5fvmyYPi8pKYmJEyfi5+fHkCHa32qWmJhouJb7\n66+/4urqalj3dGxmIXILs/aTf3YHvn79OsHBwZw5c4bw8HD8/PzMGaVAUZp7waW/UKOjTdqOft/P\nkJSM0r2rSdsRmdu9ezf16tXL9GfkyJE53v6dO3fo2bOnofgCFCpUiK5du3L79u0cbz+nrly5wnff\nfWd43LFjRxkSUuRqZj0CvnPnDr179850Bz516pQ5oxQoSqFCKC29Uf0Po/yfaaZjVKOjUdd8g27J\nghfesiFMq1OnTrRu3ZozZ86wdOlSZs6cibOzM5s2bTLKXQwDBw5kzJgx9OrVCxcXFwBu377Nhg0b\nOHz4cI63n1VJSUmcOHGCGjVqULZsWUqWLClj1os8xawFOLftwAWJ8lZ79Iu/AhMVYP1Xy1G6dkap\nVMkk2xevZurpCBs2bMiuXbvYu3cvQUFB6PV6XF1dOXz4MA4ODsb4FV4pNjaW2NhYypUrR3R0NLa2\ntoa2zXEHhxDGZNYCnBt24IJKqVMbEhNRg6+l3R9sROrxE3DzFsonHxl1uyJ7TDkdYdmyZfHx8THK\ntl5XSkoKlpaWqKqKn58fb731FpA2CIaTk5NZswhhTGbvBa3FDizSpM0TfNCoBVhNSED/1XJ0M6aj\nPHNpQWjn6XSEW7du5eLFi/Tv399oMyI9a/r06dSsWZOBAwcafdtPBQYGEhkZSefOnVEURW4dEvmK\npoOVTp8+nY0bN2oZoUBR3mqP6n8YNTXVaNtUV32N0rSJ2UfaEi/24MEDPv/8c3bv3s2hQ4eYPn06\ngwYN0jrWa0lISODkyZOGx6VKlUrXi1uKr8hPcsVAHMI8FCcnqFABAk9Bs6Y53p568T+oJ06iW/+t\nEdIJY1m7di0NGjTAz8+PQn8PvmKKjnHu7u44OzsbZVvx8fHY2Nhw6dKldJMYVJEpLEU+pmkBNuYO\nLF6P0qEd+gP+WOSwAKvJyei/XIRu/DiUokWNlE4Yg729PSVLljTaNKIv0r9/f6Nsp1ChQqSkpADw\nxhtvGGWbQuQFmhZgY+3A4vUpb7ZEXbESNS4OxdY229tRN/pBpYpp9xiLXKV+/fp0796dn3/+mUp/\n90qvXLnya404p4WkpCSKFSumdQwhzE5OQRcwStGiKE0aox4OQOnWJVvbUG/dQt29B923q42cThhD\n8eLFWbRoUbplcpeBELmPFOACSOnQDv13GyAbBVhVVfQLlqCMHJ42zrTIdapUqZLh2unTU7xCiNxD\n017QQiNvNIR791CzMXyguutHsLJE17mjCYIJY4iKiqJjx464u7tTs2ZNqlatmivGaRZCpCdHwAWQ\notOhtGuDesAfZeTw136dGhmJum4DOt8lJkwncmrTpk14eHjg7e1NtWrVePToETExMVrHEkI8R46A\nCyjlrfaoB/yz9Br94q9Q3umJ8vcwoiJ3SkhIoFWrVjRt2pSLFy8ydOhQjh07pnUsIcRzpAAXUErF\nilCiBOqZs6/1fH3AUbgXgdLv/0wZSxhBmzZt+Oc//0nFihXZtWsXK1eupHDhwlrHEkI8RwpwAZY2\nNOWrj4LVuDhU3xXopkxCkZGIcj1PT0/mzZtH6dKlmTdvHjdu3GDu3LlaxxJCPEcKcAGmtG2NevwE\namLiS5+nrliF0roVSo3q5gkmcuT48eM4OjpiY2ND+/btmTdvHuvXr9c6lhDiOZp1wkpOTkan08nY\nrhpSihWD+vVQj/2C0qF9ps9Rz55DPXMW3do1Zk4nsiohIYERI0Zw6dIlbG1tDdPzxcXFUaJECU2z\n/fHHH3z99dcZlh8/flyGmxQFllkLcEpKCtOmTWPnzp0A6HQ6ChcuTN++fZk6dSpWMpuO2ek6tEO/\n60fIpACrSUnoFy5BN/EDFGtrDdKJrChatCizZs1i9+7dODk5Ubt2bRISEihRogQVK1bUNFuNGjWY\nNGlShuUPHjygSJEiGiQSQntmPQW9ZEna7SuXL1/m+vXrBAcHc+bMGcLDw/Hz8zNnFPFUs6Zw7Tpq\nZGSGVep361Fq1kDxbKRBMJEde/bsITw8nP79+/PDDz/Qp08fevToQVhYmKa57OzsqFatWoafYsWK\nGSaMEKKgMWsBvnPnDj179kx3pFuoUCG6du3K7WwMCiFyTrG0RGn9ZobOWOq1a6g/H0AZN0ajZCKr\nTp48ybZt2xg3bhwhISGsX7+eK1eusGLFCj7++GOt4wkhnmPWU9ADBw5kzJgx9OrVC5e/7yW9ffs2\nGzZs4PDhw+aMIp6hdGiHfs58GJg2OYaq16cNNznaJ+06scgTAgMDGTBgAC4uLqxcuZJu3bphbW2N\nl5cX//jHP7SOJ4R4jlmPgBs2bMiuXbsoUaIEQUFBnD9/HltbWw4fPiyDxWtIqVkDAPWvy2n/3bYd\n7GzRvaBjlsidSpcuTWhoKAB79+6la9euAFy8eJEKFSpoGU0IkQmz94IuW7YsPj4+5m5WvMKl8s4E\nv/seAU5l+CLiAcW3bNA6ksiirl27Mn/+fH777TeSkpJo2bIlhw4dYvz48Xz55ZdaxxNCPCdXjAW9\nePFiVFXNtJekML0TJ06w9PcTrFQVGlkUYum9u/QID6e+k5PW0UQWFCtWjNOnT3Px4kXq1KmDpWXa\n7v3tt9/i6empcTohxPNyRQF+nYnCL1++zL59+zIsv3DhAuXLlzdFrHzr999/Z8uWLej1eubNm4ef\nnx+T58+n2IcfUSzkNp4L5rF//37q16+vdVSRRUWKFOGNN94wPG7btq2GaYQQL5MrCrCtre0rn2Nv\nb0/16hlHYqpTpw7lypUzRax866+//mLhwoX861//4tdff8Xe3p4HDx5g+UtaR7j4778nNTVV45RC\nCJG/5YoC/DrKlSuXaaG9f/8+qqpqkCjvGjZsGDt37mT9+vUcOXIEJycn3nvvPRISEoiNjWXlypXs\n3btX65hCCJGvmbUAL1y4kICAgEzXDRgwgP79+5szToHWo0cPChUqxPLly5k+fTo7duzAz88PVVXZ\nvHkzJUuW1DqiEELka2YtwIMGDcLPz49JkybRoEGDdOuejlsrTO/dd99lxowZRERE4OrqCoCTkxMT\nJ07UOJkQQhQcZi3Ajo6ObNy4kU8//ZQBAwaYs2nxjC+++IJ169ZRsWJFevbsqXUckUelpqby5MkT\nihYtqnUUIfIks09HWKtWLbZv327uZsUzHB0dmTJlCn369DHcqiLEq/j6+vLLL78AsGrVKqpVq0ad\nOnUYPHgwT548MVo7iYmJ/PDDD2zZsoWoqCgAwsLC+OCDD3j33XcJCQkxWltCaEnT+YCnT5/Oxo0b\ntYwghHhNYWFhPHz4kPj4eFavXs3Zs2cJDg6mUqVKrFixwihtpKam0qBBA86cOcPdu3cpU6YMV65c\nISgoiA8//JBBgwaxadMmo7QlhNY0LcBCiLwnLi6O+vXrY29vj06no3PnzkRERBhl2+vXr6dJkybM\nmTOHCRMmcPDgQb766iveeustIiMj+cc//kGXLl2M0pYQWtO0ALu7uxsmZRBC5G4uLi5MnDiRIUOG\n4O/vT2hoKOfOnWP06NH06tXLKG3Ex8fTsWNHw+NatWoZplL08PBg165dzJ492yhtCaE1TS8Aym1H\nQuQdY8eOZezYsYSEhHDu3DlsbGyIiIhg/fr1uLu7G6UNLy8v3n77bWrXro2TkxNt2rRh4MCBLFq0\niIYNG1KsWDEZeEfkG9IDRwiRJRUqVDDMrlSiRAkWL17M/v37jTKWe4MGDdi6dStDhgyhfPnyvP/+\n+4wdO5bExETWrVsHwOeff57jdoTIDaQACyFy5HXGcr979y7nz5/PsPz27duUKFEi3bKWLVty6tSp\ndMusra0ZPXp0zoIKkcvkiwIcERHB1q1bc7ydixcvEh4e/lpjU7+u1NRUIiMjcTLyzEKhoaFGn4Qi\nJiYGS0vLAv37V61aFTc3txxvKyoqiqpVqxohVe73Op+XmJiYTAuwqqpYWVnleP89deoUCQkJFClS\nJEfbyQlTfCazwhT7b1Zp/R7ExcXh5ORE7dq1c7Qdc+2/iprHB1JOTU1l1apV6HQ570+2a9cu4uLi\njPoBSkxM5MyZMzRr1sxo2wQ4cuQIrVu3Nuo2g4ODKVKkiFE7xuW1379q1aq0atUqx9sqXLgwgwcP\nxsLCIufB8jFj7b/fffcdtra2lC5d2kjJss4Un8msMMX+m1VavwehoaHY2trSvXv3HG3HXPtvni/A\nxuTr64uzs7NRR4e6d+8eH3zwAVu2bDHaNgFatWrF0aNHjbrN5cuXU7ZsWaP1aIW0sxPjxo0zyhmK\nZ5ni9//Xv/6Fo6Mj77zzjlG3m1/k5rHcP/74Y7p06ULTpk01y2CKz2RWmGL/zSqt34MdO3YQFhbG\nuHHjNMuQFfniFLQQwvRkLHchjEsKsBDitchY7kIYl4yEJYR4bTKWuxDGIwVYCJEtMpa7EDlj8dln\nn32mdYjcwtbWlgoVKlC8RQ2UIAAAIABJREFUeHGjbdPCwgJHR0cqVapktG0ClC5dmmrVqhl1m/L7\n2+Lq6prhvlSRuSNHjlCmTBnq1q2rdRTs7e2pVKkSNjY2mmUwxWcyK0yx/2aV1u+BtbU15cuXx8HB\nQbMMWSG9oIUQ2eLn54ezszMtW7bUOooQeZIUYCGEEEIDcg1YCCGE0IAUYCGEEEIDUoCFEEIIDUgB\nFkIIITQgBVgIIYTQQIEuwPfv3yc1NTXTdSkpKSQmJhp+tJacnMz9+/czXZeUlGTImZSUZOZk//Oq\n90yv16dbr9frNUj5P9HR0S98v3Lb319kLiYm5qV/n3v37mHKGz2io6NJTk7OdJ2pP0MvaxsgISGB\n2NhYo7f7lF6vJzIy8oXrn/3dU1JSTJbj7t27L1xn6vcgpwpkAU5NTaVbt26MGTOGRo0aERgYmOE5\n48aNo0GDBnh5eeHl5UV8fLwGSf9n8uTJTJ8+PdN1Hh4ehpzDhg0zc7L/edV7tm3bNqpWrWpYf/z4\ncY2SwsiRIxk6dCitW7fOdKaq3Pb3Fxk9ePCAZs2aERQUlGHdw4cPadKkCSNGjKBBgwZEREQYvf3B\ngwczYMAAqlevzokTJzKsN+Vn6FVtr1ixgnbt2tG0aVO++uoro7X7VGBgIA0aNKBPnz706dMnw5ec\ne/fu4eTkZPjdly1bZvQMACtXrmTkyJGZrjP1e2AUagH066+/qnPnzlVVVVV//vlntW/fvhme07Rp\nU/X+/fvmjpapgwcPqvXq1VPffffdDOvi4+PV+vXra5Aqo1e9Z9OmTVO3b99uxkSZO3LkiOFv/ujR\nI/Xjjz/O8Jzc9PcXGZ06dUqtU6eOWr16dfXUqVMZ1k+bNk1dv369qqqq+vXXX2f6N86J/fv3q8OH\nD1dVVVWDg4NVLy+vDM8x1WfoVW0/ePBArVOnjqrX69Xk5GTV3d1djYmJMWqGZs2aqbdu3VJVVVUH\nDhyoHjx4MEPGcePGGbXN540YMUL18vJSO3bsmGGdOd4DYyiQR8DNmzdn2rRpXL58mW+++YY333wz\n3Xq9Xs/t27dZtmwZ77//fqbfsM3l/v37fPnll7xoxNCgoCCsra0ZO3YsM2fO5N69e+YN+LfXec/O\nnTvHH3/8wZAhQ9i/f78GKdMcO3YMT09PZsyYwebNm/nkk0/Src9Nf3+ROXt7ewICAl44DOb58+dp\n1qwZkLa///nnn0Zt/9ntV6lShbCwsHTrTfkZelXbV69epV69eiiKgqWlJXXq1OGvv/4yWvuQ9u9S\nhQoVgMzf33PnzhEdHc2QIUP45ptvTHIKftiwYaxevTrTdeZ4D4yhQBbgp3bv3s3t27extrZOtzw6\nOpoWLVrQu3dvunfvTvfu3Xn8+LEmGd9//33mz5+fIeNTT548oUmTJkyZMoVSpUoxZMgQMydM8zrv\nmaurKy1btmTSpEl89tln/P7775pkDQ8PZ+3atTRp0oTw8HB8fHzSrc9Nf3+RRq/Xk5ycTHJyMqqq\nUr16dUqVKvXC54eHh1OsWDEA7OzsiImJyXGGlJQUkpOTSU1NTbd9ACsrq3RFxpSfoVe1/fx6Y/3+\nTz169AhLy//NZJvZ9m1tbWncuDGfffYZv/32G0uXLjVa+095eXm9cJ2p3wNjKdAFeOrUqfj7+zN1\n6tT/Z+/O42rK/weOv84NkcqWXZK1kCWEIktZa6wTWcIPWWLGboYxY2xjz1jGDGYYW8jYxjbMGGMJ\nWbPvTCPLpJGotJ7P74/L/UpFkU7p83w8eszcc889532P+7nvez5rkk4CFhYW+Pn5Ua1aNVxdXXFy\ncuLPP//M9Ph2797NuXPn2Lp1K6tWreLEiRPJ7hydnZ3x9fXFysoKHx8frly5wpMnTzI91rRcsyVL\nltC6dWtq1KjBgAEDNFvWrmDBgnh6etK2bVu+/PJLjhw5kqQzVlb595f+Z/Xq1dja2mJra5tin41X\nFSlSxFAOnjx5QqlSpd45hvr162Nra4uXl1eS44N+0ZG8efMaHr/Pz9Cbzv3q8xn1/l8wMzNLkvBT\nOv6QIUP45JNPsLa2Zvz48Zle1t/3NcgoOTIBr1+/nvHjxwMQFRVFiRIlkvyi++eff3B1dQVACMHZ\ns2epW7dupsdZo0YNZs+eTYMGDbCxsaF48eKGap8XNmzYYOic9eJXn7m5eabH+qZrpqoqTk5OhIWF\nAXDq1Cnq16+f6XGC/ov0+vXrgL4qTVVV8uTJY3g+q/z7S//Tu3dvbty4wY0bN2jQoMEb93dwcOCv\nv/4C4K+//qJWrVrvHMOpU6e4ceMGfn5+SY5/+fLlZF/u7/Mz9KZzV6tWjbNnzxIXF0dsbCwXL16k\nfPnyGXJuAEVRKFGiBDdv3gRSvr6ffvopu3fvBrQp6+/7GmSUXG/e5cPTqVMnNm/eTMeOHYmKimLG\njBkADB48mNq1azNgwAAaNmyIm5sbd+/epXPnzhQvXjzT4yxdujSlS5cG9L9y7969i62tLQ8ePMDe\n3p579+7RoUMH/P396dChA5cuXXovVT1pUbZs2RSv2fr16/n111/x8/Nj5MiRdO3aFSEEZmZmuLu7\naxJr+/bt2bx5M25ubty5c4dFixYBWe/fX0qfl8vFsGHD+PTTT1m/fj2xsbHs2rUrQ8/VokUL9u7d\nS+vWrbl//z6rV68GMuczlJZzjx49mrZt2/L48WNGjx6Nqalphpz7BV9fX3x8fIiJicHOzg5nZ+ck\n13/w4MEMGzaMxYsXExISwi+//JKh509NZl6DjJCjV0OKiop67fqhcXFxCCEwNjbOxKjeTmRkJCYm\nJuh02lZqpOWaPX36FDMzs0yMKvU4TExMMDIySvH57PTvL6Xs2bNnqfafyIzjv8/P0JvOnZCQgBCC\n3LlzZ/i50xrDkydPNKmReyEzrsG7yNEJWJIkSZK0kiPbgCVJkiRJazIBS5IkSZIGZAKWJEmSJA3I\nBCxJkiRJGpAJWJIkSZI0IBOwJEmSJGlAJmBJkiRJ0oBMwJIkSZKkAZmAJUmSJEkDMgFLkiRJkgZk\nApYkSZIkDcgELEmSJEkakAlYkiRJkjQgE7AkSZIkaSCX1gFIrxcaGkpUVFSSbZaWlkRERGBiYvLW\na50KIbh37x6lS5d+q9eHhYVhampK3rx53+r1kpRV3b59O9k2U1NTdDrdO5W59IqKiiIuLo5ChQql\n+TWvK5fx8fFcvHiRypUrY2JikpGhGryI2dzcnNDQUEqWLPlezvOhkHfAWdygQYPw9PRkyJAhhr//\n/vuPefPmERgYyL///sv48eMBOHDgAKtXr07TcSMjI2nbtu1bx/X5558TEBDw1q+XpKwoMTHRUM4c\nHR3p2rUrQ4YMYdWqVUyYMIEDBw689xj69esHwP79+1myZEm6XptauZw3bx6WlpbMnDmTpk2bMnjw\nYDJyKfhXY75//z5dunTJsON/qGQCzgamT5/Orl27DH/Fixdn6NCh1K1bl9OnTxMYGMi9e/fYs2cP\nly5d4unTpwDExMRw5cqVJMeKjY0lMDCQyMjIZOd58OCB4bUAt27dIjExkYSEBIKCgjh27BjPnj1L\n8pqIiAgePnwIgKqq3Lp1y/BcSue/c+cOhw4dIjw8/N0uiiS9B0ZGRoZy1rhxY6ZOncquXbsYNWqU\nYZ/bt28THByc5HUpfdYBLl68SHR0dJLX3r9/nxs3bgD6mqjz58+jqiqgL4N79uzh1q1bODs707dv\nX8Nrr169yt9//214/Lpy+bLt27fj5+fHtWvXWLduHcePHyc6Oprp06cDGGIB+Pfffw3fAZGRkRw9\nepSzZ88akvX9+/eJiori1KlThrL+uphfCA0N5d69e0m2ye8CWQWdLURERBAWFgZA3rx5MTU1ZfLk\nyXz00UccOXKEkJAQAgMDOXXqFEIIQkJCOH36NOvXr8fa2prr16+zefNmnjx5gqurK82aNePMmTPJ\nzrN3714uXrzIzJkziYiIoH379gQFBdGsWTPq1auXpEC+sH37dq5evcqUKVOIioqiffv2nD9/nrVr\n1yY7/8GDB5kyZQouLi4MHjyYrVu3UrFixUy7jpL0rubMmYO9vT3bt29nzpw5uLm5pfhZNzIyolmz\nZtSqVYvr16/j4eGBt7c3HTt2pFixYlSsWJFBgwYxZswYatSowalTp5g7dy737t0jKiqKXbt2UaxY\nMU6dOsWMGTPo2bMncXFx5M2blxIlSjBjxozXlsuXbd26FU9PT8zNzQ3bxo0bh5eXF+PHj6d169Zc\nvXoVIyMjZs2ahaOjI7Vq1aJLly60adOG48ePU7FiRRYvXszkyZO5cuUKdnZ2/Pnnn0ydOpXcuXMn\ni/mTTz4xnGvkyJE8evQIVVUpVKgQ8+fPZ8+ePfK7AJmAs4WJEydSsGBBANzd3Rk7dqzhOQ8PDy5c\nuEDHjh25c+cOQghsbW3p168fa9euxczMjO+++45du3Zx6dIlunXrxvjx4zl06BBDhw5Ncp6PP/6Y\nGTNmMH36dDZu3IinpydRUVGGQnrz5k2aN2+epl+s3333XbLz//3331SqVInevXvTq1evdLVtSVJW\n4OHhwcCBA6lTpw579uzBzc0txc86QMuWLZk4cSLPnj2jXr16eHt7Ex0dzcKFC6lSpQrDhg1j0KBB\nNG7cmKCgIJYvX87ChQspVKgQQ4cOxd/fH4Bz585x/fp1jh8/DsDPP/+crnJ57dq1ZHelFSpU4OrV\nq6m+T1VVWbZsGXZ2dhw6dIhhw4YZnnNxcWHChAls2bKF33//ne+++y5ZzC+EhYVx/Phxtm7dCkCv\nXr0IDQ3lwoUL8rsAmYCzhW+//ZbmzZunef+nT59y6dIlvvzyS8O2cuXKERwczEcffQRA7dq1k73O\nxMQER0dHDhw4wNq1a1m1ahW5c+dm1apVzJo1Czs7O4QQJCYmpnjeF9VoqZ3/k08+wdfXly5dupCY\nmMjq1aspXLhwmt+XJGnNysoKAAsLC6Kjo1P9rJ84cYKWLVsCkC9fPvLkycPdu3cNzwMEBARw9+5d\nNm3aBECZMmVSPOfdu3epWbOm4XGfPn149uxZmstljRo12LdvH05OToZtN2/epHz58sn2fVGGAcaM\nGUPu3Lmxs7NLcuw6deoA+o5p8fHxqVwpvWPHjvHw4UOGDx8OQOHChfn777/ld8Fzsg04mzMyMjIU\njhf/b2ZmRrVq1Zg1axZr1qzB3d0dKysratSowcGDBwEIDAxM8Xh9+/bF19cXY2NjLC0t2bt3L4qi\nsH//fqZNm0ZUVFSSwpgvXz5CQ0MBOH/+PECq59+2bRuNGzfm5MmT9OjRg3Xr1r3PSyNJ711qn/WW\nLVsaOmw9evSIf/75h1KlSgGg0+m/dl1dXenSpQtr1qxhzJgxhuSuKEqSczg7OxMUFATo233d3d3Z\ntWvXa8vly7p3787GjRu5evUqJ06c4P/+7/8YPXo0gwYNAvTNWi/K8IULFwBYvHgxXbt25bfffqND\nhw5Jjv1qfKltA2jcuDH58+dn9erVrFmzhkqVKmFpaSm/C56Td8DZnKWlJefPn2fq1Kk0adKEnj17\nUqVKFb7++mv69etHvnz5iImJYePGjTRs2JCOHTvSunVrbGxsUiw0jo6OXL9+nYkTJwLQpEkTpk+f\nTs+ePYmNjaVixYqEhIQY9m/WrBmTJk3Czc2NokWLGoY/pHT+e/fu0a9fP4oVK8adO3dYsWJF5lwk\nSXqPUvqs58qVi23btuHu7s7t27f58ccfk5W3gQMHMnbsWNatW0d4eDjz588HoHLlyrRr146ePXsC\n+jvNnj170qZNG4QQdO3aFRcXF2bPnp1quXyZk5MTkyZNonPnzpibmxMTE4OqqkRFRZGQkMCAAQNo\n0aIFZcuWNfw46NSpE2PGjOHw4cPkyZOHhIQEEhISUr0Gr8b8QoECBejTpw+tW7fG2NgYa2trSpYs\nSa1ateR3AaCIjOyLLmlCVVUSExPJnTs38fHxGBkZGQpSdHR0sjF/z549S/dYxoiICAoUKJDu51M6\n/5MnT5J0CJGkD0FqZS1v3ryp3iGm9rrY2FiMjY2TbHuRAHPl+t9905vK5ateLnubN2+mQ4cO6HQ6\noqKiMDY2TnJsVVWJjo7G1NQ0TcdOKeaXjxUfH5/s+Zz+XSATsCRJkiRpQLYBS5IkSZIGZAKWJEmS\nJA3IBCxJkiRJGpAJWJIkSZI0IBOwJEmSJGlAJmBJkiRJ0oBMwJIkSZKkAZmAJUmSJEkDMgFLkiRJ\nkgZkApYkSZIkDcgELEmSJEkakAlYkiRJkjQgE7AkSZIkaUAmYEmSJEnSgEzAkiRJkqQBmYAlSZIk\nSQMyAUuSJEmSBmQCliRJkiQNyAQsSZIkSRqQCViSJEmSNCATsCRJkiRpQCZgSZIkSdKATMCSJEmS\npAGZgCVJkiRJAzIBS5IkSZIGZAKWJEmSJA3IBCxJkiRJGpAJWJIkSZI0IBOwJEmSJGlAJmBJkiRJ\n0oBMwJIkSZKkAZmAJUmSJEkDMgFLkiRJkgZkApYkSZIkDcgELEmSJEkakAlYkiRJkjQgE7AkSZIk\naUAmYEmSJEnSgEzAkiRJkqQBmYAlSZIkSQMyAUuSJEmSBmQCliRJkiQNyAQsSZIkSRqQCViSJEmS\nNCATsCRJkiRpQCZgSZIkSdKATMCSJEmSpAGZgDUUERHBs2fPtA5DkiRJ0oBMwBrYt28flSpVwtbW\nFktLS+rWrcvZs2ff+njDhw9nypQp6XrNP//8g6IoJCYmvvV502rixInExcUBUL58+Xd6r5KUVk+e\nPEFRFEqXLo2lpSWWlpaUKVOGjh078u+//771cVP7DB86dAh7e/u3Pm5AQAA1atR469enV/369Vm3\nbl2mnU9KTibgTBYXF4eHhwdLlizh3r17hIaG4uXlRceOHbUO7b1ITExk8uTJqKoKwOHDh6latarG\nUUk5ydmzZ7lz5w537tzh/PnzJCYmMn78+Lc+nvwMSxlFJuBMpqoq0dHR5MmTBwCdTseQIUNYtmwZ\nCQkJABw8eBAnJydKlSqFj48PMTExAKxcuRJbW1tMTU2xt7fnxIkTyY7/8OFDOnXqRMGCBalZsyYH\nDx58qxi/++47ateuTenSpZk0aZIhgUZERODh4UGxYsVwd3cnKCgIgEuXLtGsWTMKFCiAlZUV8+bN\nA8DT0xOAmjVrEhYWRq9evbh16xYABw4coFOnThQuXJgOHTrw4MEDAGbPns3cuXNp0qQJBQsWpFu3\nbrKqXsoQhQoVwsnJicePHwMghGDq1KmUKVOG0qVLM23aNIQQAKxevZqyZctSpEgRPDw8CA8PB0jy\nGd68eTN2dnaUK1eOLVu2GM7zzTff8P333xseT506lSVLlgCpl5WXXbt2jQYNGmBmZoa9vT1Hjx5N\nts/gwYPx9/c3PP71118ZMGAACQkJ9O3bl4IFC2JlZcXMmTPTfZ0OHDhAzZo1KViwIJ06dSIsLIzI\nyEhq1qxpuHYAPj4+bN68+bXXsVmzZsyYMYPixYvz22+/vfb9b968mVq1alGmTBlmzZqFq6sr8Pp/\np2xNSJluypQpIleuXKJly5Zi/vz54u+//zY8d//+fWFhYSGWL18uwsLChLu7u5g3b564du2ayJ8/\nvzh9+rR49OiR8Pb2Fi1bthRCCDFs2DAxefJkIYQQ7u7uok+fPuL+/fti+fLlonz58inGEBwcLACR\nkJCQ7LmFCxeKatWqicDAQBEQECAqVaokli1bJoQQon379sLLy0vcv39fLFq0SDg6OgohhKhdu7aY\nNWuWiIyMFJs2bRJGRkbiv//+E+Hh4QIQ9+/fF6qqCmtraxEUFCRu3bolzM3NxYoVK8SdO3eEp6en\n4f2MGTNGWFhYiN27d4u///5bVKpUSfz8888Z9w8g5QgRERECEL/88ov4/fffxe7du8X8+fNFoUKF\nxObNm4UQQqxcuVJUqVJFnD59Whw/flxUq1ZNHDt2TDx79kyYmpqKM2fOiPDwcNGmTRvxzTffCCGE\n4TN88+ZNUaRIEbFlyxZx7tw5UaNGDVG7dm0hRNIyKYQQQ4cOFdOmTRNCpF5WDh8+LOzs7IQQQnTu\n3FlMmzZNREdHiwULFhiO+7Lly5cLd3d3w2MPDw+xdOlSsX79etG4cWMRFhYmLl26JMzMzMT169eT\nvd7BwUH4+fkl2x4aGirMzMzE6tWrxb1790SfPn3EyJEjhRBCtG7dWqxatUoIIURUVJQwNzcXDx8+\nTPU6CiFEmTJlRIsWLcT27dvFgwcPUn3/N27cEBYWFmLz5s3i0qVLom7duqJcuXKv/XfK7mQC1khg\nYKD49NNPRbly5YROpxO+vr5CCCE2bNggqlevbtjvzp074syZMyIiIkJcuHBBCCHE48ePxbx58wyF\n9UVh/++//4ROpxOXLl0SERERIiIiQjRq1EicPXs22flfl4AbNmwo5s2bZ3g8bdo04ezsLGJjY0Wu\nXLnE5cuXhRBCqKoqfvvtN5GQkCBOnDghEhISRHx8vDh16pQwNTUVV65cEQkJCQIQz549E0L878vL\n19fXkLyFEOL69esCEP/++68YM2aM8Pb2Njzn4+Mjvv7667e+1lLO9CIB29raCltbW5E7d25Rt25d\ncebMGcM+zZs3FzNmzDCUl7lz54ovvvhCxMTECBMTEzF37lzx4MEDERsba3jNi8/wDz/8IJydnQ3b\n582bl6YEnFpZeTkBd+3aVXTq1EmcOXNGJCYmiri4uGTvLzw8XJibm4snT56I6OhoUbBgQfHff/+J\nTZs2iXLlyolff/1VxMTEiJiYmBSvT2oJ+IcffhANGjQwXJPr168LGxsbIYQ+EbZv314IIcTGjRtF\nq1atXnsdhdAn4J07dxqOn9r7X7hwoWjRooVhv59++smQgF93/OxMVkFnssTERCIjI3FwcGD+/Pnc\nvn2brVu3Mm7cOK5du8bVq1dxcHAw7F+mTBlq1aqFmZkZGzZsoEqVKtjY2LBp0yZDtfALISEhKIpC\n8+bNqVKlClWqVOHGjRscOXIEb29v8uTJQ548efD29n5tjMHBwTRs2NDwuGHDhty7d4/bt2+TL18+\nbGxsAFAUhVatWmFkZMTDhw9p3LgxxYoVY/To0SQmJiaL79VzNGjQwPC4YsWKFClShHv37gFQrFgx\nw3P58+c3VM9LUnodPHiQS5cucfLkSW7dusWdO3cMz929e5fZs2cbysvs2bM5c+YMxsbG+Pv7s3Ll\nSkqXLo2bmxtXr15NctwbN25Qp04dw+P69eunKZ60lBVfX1/i4+NxcHDA1tY2SVXzCwULFqRZs2bs\n3LmT3bt34+joaGjO6d69O/369aN48eKMGTOG2NjYNF+vkJAQzp8/b7gmjRs35vHjx9y9e5cOHTpw\n4MABIiMj+eWXXwxNTKldxxcsLS3f+P5v3bqVpBNbvXr1DP//puNnV7m0DiCn2bZtG9OnT0/SfvvR\nRx9hZ2fH1atXKVy4MHv27DE8d+fOHU6ePMmTJ0/45Zdf2LRpE9WrV+fXX39l3LhxSY5tY2NDgQIF\nOH/+PBYWFoD+w16gQAHatm3L4MGDAShSpMhrY7SwsODixYuGL5Tz589Tvnx5ChUqxNOnT7l//z4l\nS5YEYPny5bi4uNC5c2dWr16Nm5sbxsbGmJiYvLaNxsLCgoCAAMPj+/fv8+jRI6ytrQF9cpekjFSj\nRg2mTp1Knz59uHjxIiVKlKBevXo4OzsbfpRGRkYaEoK9vT1nz57l4sWLfPXVVwwZMoQ//vjDcLyy\nZcuyc+dOw+Pbt28b/l+n0yVJeg8fPqRkyZI8evQoTWUlV65cbNq0iadPn7Jy5Up69epF69atk5Vd\nT09PtmzZQq5cuQzJMDY2llGjRjFp0iT27t3LkCFDqFatGgMHDkzTdXJwcMDR0ZG9e/catt27d4+S\nJUsafuBv27aNffv2Gdq1U7uOLxgZGQG89v07ODjw888/G17zck/zNx0/u5J3wJnMxcWFa9euMWXK\nFCIiIkhMTGTLli1cuXIFR0dHmjVrxunTp7l8+TKg75B09uxZHj16RKVKlahevTpCCH7++Wfi4+OT\nHDtPnjy4uLjw3XffoaoqDx48oGrVqly5coWyZctib2+Pvb09VlZWhtc8evQoyV9CQgKtWrVi3bp1\nRERE8OjRIzZu3IiTkxPFihWjRo0arF69GiEEhw4dwtfX13AsV1dX8ubNy7p164iJiSE+Ph4jIyOM\njY2JiIhIEmurVq04dOgQFy9eRFVVli1bRrVq1ShQoMB7vPpSTjdo0CDKly/PZ599BkD79u1ZsWIF\n4eHhCCHo2bMn8+bNIywsjOrVqxMSEkK1atVo06ZNsmM1adKEY8eOce3aNWJiYpLcpRYvXpzAwECE\nENy/f5+//voL0CcOSLmsvKxPnz78+OOPFC5cmB49emBsbJziD9qPPvqIgIAA/vrrLzp06ADA+vXr\n6dKlC4qi0KZNG6pUqZLq9YiMjExS/qOjo3F1dSUwMNBwh7lmzRpat25tuEv39PTkq6++olGjRoby\nmtp1TOl8qb3/li1bcvToUf78809CQkL46aefDK9L6/GzHa3qvnOy06dPi2rVqolcuXIJY2NjYWVl\nJfbt22d4ft68eSJ//vyiYsWKonXr1iIsLEw8ePBA2Nvbixo1aghbW1sxbdo0YWpqKqKiopK0N50+\nfVpUqlRJlC1bVlhbW4sZM2akGMOLNuBX/w4cOCDCw8OFm5ubKFSokChatKjo0aOHiI+PF0Lo22+s\nra1FuXLlhJ2dndizZ48QQohBgwYJKysrYW9vL3r27CkaNGgg/P39hRD6jhu5cuUSFy5cMLSfCSHE\nzJkzhYmJibC0tBTVq1c3dBQZM2aMmDBhgiHWVx9LUlq8aAN++PBhku3Hjh0TOp1OHDlyRERFRYmO\nHTsKc3NzUaFCBeHu7i6io6OFEEL4+voKKysrUbVqVVG2bFlx/PhxIYRI8hleuHChKFKkiChdurTo\n2rWroQ04JCRE2Nj1D2ISAAAgAElEQVTYiJIlSwobGxvRp08fQxtwamXl5TbgkydPipo1awobGxtR\nuHBhMWvWrFTfp6enp+jUqZPhcXx8vGjXrp2wsrISZcqUEW3atBFPnjxJ9joHB4dk5X/IkCFCCCEW\nLVok8ufPLypXrixq1qwpAgICDK+Ljo4WpqamYv369YZtr7uOZcqUERcvXjTs+7rviuXLlxvi9vb2\nFpUrV37j8bMzRYgPoS939vTs2TOioqIM1cUvS0hIICoqKtkd4X///UehQoXQ6V5fefHw4UMsLCze\nqSr3yZMn5M6dm3z58iV7LiwsLFncUVFRKIqCiYlJsv2joqLInz9/su0JCQlERES8sVpckt6nqKgo\ngBQ/ow8fPqRo0aKpvjY+Pp6YmBjMzMzS/NrXlZWXhYeHY2ZmRq5c6W8tjImJIS4uDnNz83S/FvT9\nVR4/fpyusvm66/jqfq++/9u3b3Pr1i1cXFwA8Pf3Z/HixYbag/QcP7vIEgn4RQiy3U+SJClnio6O\npkqVKvTv3598+fLxww8/sGDBAtzd3bUO7b3J1Dbg8PBwunXrRokSJRg4cKBhcgV/f38mT56cmaFI\nkiRJWYiJiQknTpzA2toaExMTtm/f/kEnX8jkBLxhwwaaNGnC7du3KVWqFB9//HGyzgeSJElSzlSi\nRAl69erF0KFDqVatmtbhvHeZOgzpxo0beHl5kS9fPiZOnMikSZPo168fbdu2fafjrly58sOYlkz6\nYJiYmNClSxetw8gWZPmVsprMKr+ZegfcqVMnBg4cyLFjxwD9KjnFixfnq6++eutjrlq1KsnYMUnK\nCnx9fdmxY4fWYWR5qZVfRVHe2NEwJ7C4eYtG3y/D+Gmk1qEkJQQlz1+k6u69b943G8qs8pupd8CO\njo74+fklGRM6e/ZsateubVicIL2EEPTu3Zs+ffpkUJQfvsTERA4cOECJEiXkqi7vyaNHjz74u7rE\nxERiY2Pf2JP3dVIrvw8fPuTRo0evHcOaU4hxn1MhKgrlNT2xtSISE3F4PskGgLh7F6V0aQ0jyhiZ\nVX4z/Sdm+fLlqV27dpJt3bt35+OPP37t6xISEnj69Gmyv6ioKNmOnE5ffPEFjx8/Zs6cOZw7dw7Q\nt8/36dOHli1bJpkBR5JeWLhwoWF1rSVLllC5cmXs7Ozo1atXuqY6TAtzc3PDbGs5nWJikiT5isDj\niJAQDSP6H+Wl5AsgVq0l8fMvEBcuahRR9pIlpqL09fVFCMGoUaNS3efIkSPMmTMn2fazZ89StWrV\nN85vnJWFh4cTGBiIk5NTimMJM9oXX3xBXFwcu3fvBvTTY/7yyy/MnTuXyMhIGjZsyK5du3Bycnrv\nsUjZx927dylXrhxRUVEsXbqUM2fOYGpqyqRJk1i8eDEjRozIsHMZGxtjbGycYcf7oBQvhvrJCJSW\nrii9eqJkoTGxymej4be9qN/MhPLWGE2dpHVIWVqWSMADBgx44z7Ozs44Ozsn2+7t7Z2tqvq2bdvG\n1atXsbS0pFu3bsTExNC3b1+GDBmCl5cXmzZtMsybmlHEs2cQGan/i4rGNCqKg0ePEHvzJk+3bOXJ\nvv3MrVeP0vMXoZv0FZs2beLPP/+UCVhKUWRkJLVq1TJM8ODu7s7mzZsz9Bzx8fHEx8e/U/X2h0op\nVw7dquWIZctRvf4Pnb8fyltM1PE+KDodStvWiNYt4XDAm1+Qw2WJfzVTU1OtQ8gUEydO5OjRo4wY\nMYJRo0Zx6NAh5syZw6JFiyhdujRLly4lIiKCwoULG14j4uKeJ84oiIzS/zcqChEZlWy7iHq+7aX9\niIoG4zyQPz+YmoKpKVvu3qGTfR0K1KnHxsBAqhcqSHAuI8o4O6P6fMpdlyYZ/iNAyv4sLS0ZOXIk\nFSpU4NKlS4SEhBAWFsagQYMMk/JnlMePH8s24NdQzMxQRg5DdPgIEhIgiyTgFxSdDpwbJ9mmbtkG\nRkYobVqh5M6tUWRZS9b6V/uAhYaGsnbtWq5fv47Y9yetJk/l+zlzCJ8+i5JmZszYuweHhHgKjP+K\nxJcTq04H+U0MyZP8JpA/P8qL/zc1BcsykN8EXf78zxPt82T7/LHySm/SqJUr+ezCBcLDw/ls/rfk\nzp0ba2trZhctQvPr1zl+LohZAYc0ulJSVjVkyBCGDBlCcHAwQUFB5M+fn9DQUFatWpXhYzbNzc1l\nFXQaKOXLJ3msrl6LUsMOpWYNjSJKndLIEXXR94gVK1E+ckPp0yvZd1NOk6kJeM6cOezfvz/F53r0\n6EH37t0zM5xMlZCQoF/e7/gJ1BZu6ObPRUEhvmABJgedoUStGgzs1v15os1vuGN9H1VLvXv3Ji4u\nLknP8/DwcH799VceNG/K7Lv3MclC7UpS1mJlZWVYUatQoUL4+vry22+/vbYPx759+5gyZUqy7dev\nX6dOnTrJekHLNuC3o9jX1re/limNrm8flCqVtQ7JQClaFKNJXyHu3kX8sgUePIBSpbQOS1OZmoC9\nvLzw8/Nj1KhRyXpCv26y8w9ByZIlKZM3Lzf6D8L0wO/8HHCYH+6HUKN+PVYs+JamTZtydMF8ZsyY\nkSm9P18d9lWwYEF69eoFQGKf/ohTp1Hq2Kf0UklKIi19OFxcXAyT7L8stT4csg347SjVqurbh/f8\njvr1FHTfL0QpWFDrsJJQSpdGGTY0yb+7uHcPbt6CRk45ak2ATE3AxYsXZ82aNXz55Zf06NEjM0+d\nJUw1MWdZQXP+WrSQihUrcuHCBczMzAgODtY6tCSUHp6oa9dhJBOwlAbvow+HbAN+e4qREUrb1iS2\ncOHQgQMUt7SkSpUqiMhIfdNVFpEk0RYogOq/Cb77AaVDO5ROHVDecm6I7CRXXFwcd+/exdraOlNO\nWLVqVTZt2pQp58pKxIaN6HQKgw/uxyeL/8JTmjdD/PQz4spVFBv5BShlPtkGnD63b99m165dKIqC\nl5cXZmZmfPHll9SpU4ddf/xBkyZNaG1ZlsQlP6Lz9EBxctQ65CSU/PkxWjgPceMGYsuviE1bULp1\n1Tqs9y5XSEgI06ZN46effsLT0xNVVVPdedGiRRQrViwTw/swiOs3EOv90S37PltUryhGRiieXVDX\n+MlxfJJBZvbhkG3AaXfnzh28vLwYNGgQDx48wNzcnJCQEPr160elSpUwMzPjwoULtGnTBl2Xzqir\n/WDZcnTTJmW5WauUihVRxozUj/54ibrvTxQnR5S8eTWK7P1IUgW9aNGi146plYump5+IjUWd8g3K\nsKFZciq51ChtWyNWrUEEB6M873Aj5WyZ2YdDtgGn3dSpU5k4cSItWrQA9N/Ta9euZezYsVy+fJnF\nixfj5+cHgNK4EUaNGyHOX4Cw/yCLJeAXklU/nzqDOm8BiqsLSnt3lEyqsX3fkvQBt7CwoGjRohQs\nWJCQkBCKFi2Kn58f/v7+WFhYyMnR34L47gcUWxt0zZpqHUq6KHnyoHzcCbF2vdahSFnEiz4cmzdv\npmrVqkn+MjoBP378mDt37mToMT9UZmZmSeYOKFWqFLGxsQQFBTF58mTWrl2brJ1esauebKiS+s1M\nxOUrmRJzeunGjkK3ajlYFEGdNE3rcDJMihl12rRp+Pv7s3XrVjZv3syZM2dYuXJlZseW7YmjxxDH\nT6AM/0TrUN6K0qEd4lgg4t9/tQ5FyiIyqw+HnAs67VxdXfn666+5dOkSJ0+eZObMmXh4eNCrVy9U\nVWXo0KGGO+DXsrVBnT6LxP6DECdOvv/A00kpXBhdz+4Y/fxjku3i4iXExUsaRfVuUuwFffToUXbs\n2EH//v0ZM2YM5cqVY/ny5ZkdW7YmHj1Cne2LbuoklHz5tA7nrSgmJijt3BHrN6IMG6p1OFI6BAYG\nUr9+fXbu3MnJkyf59NNPKVSokNZhpZlsA0671q1bk5iYyKRJkyhSpAgTJ07ExsbGsNBKWuk6toeO\n7RGnTus7YNar+54izmBmpqgTp0BiIkrrligfd8o2PahTvAO2srJi3rx5HDhwACcnJ+bNm6efREJK\nM3XGbJR27ihVbbUO5Z0oHp0Rf+xDhIdrHYqURvv372fEiBGEhobi4+NDvnz5MnShhMwQHx9PdHS0\n1mFkG25ubmzYsIHFixfTpEmTdzqWUsceXY9uSbapPy5H3bZdP698FqOULYvRimXovvgcHvyLCDii\ndUhplmICnj17Nqqqsn79ehRFoX79+m9cLlD6H3XTFoiMQunVU+tQ3plSoABKC1fExpw3dCy7CggI\nYNq0aezYsQMPDw/Gjh3L3bt3tQ4rXWQbcNaiuDSDs+dQu/ZAnTYDEROjdUjJKFUqoxs5DKVp0h8g\n6tIfs2wVdZIq6BftvS/s3LmTnTt3AnDw4EGaNWuWudFlQ+L2bcSqNeiWfPfBzHOqeHqg9h+E6NEt\nSy19JqWsfPnyrF27lnPnzrFgwQKWLl1KxYoVtQ4rXeQ44KxFsbZG+eoLRFQU4s+/4PFjKFECAKGq\nWeq7LtlQz1KlUH3nQ0wMSvuP0HXJOjeTSRJwiRIlUp15pkCBApkSUHYm4uJQJ3+DMmQQyvMP54dA\nKVYMxbEhYuuvKK9UTUlZT7du3YiMjMTV1ZUGDRpw+vRppk+frnVY6SLbgLMmJX9+lI/ckm6MjiZx\n+GiU5k1RWrhkueGWOve24N4WcfMm4tjxJM+JuDhN24uTJGBHR0ccHR05evQoo0aN4vHjxwghiIuL\nY/jw4djby6kJX0cs/RHFuhy6li20DiXDKd27og4fjfDonG06OOQ0Z86cSbYu75dffgnoa7f69u2r\nRVhvRY4Dzj4UU1N0Iz5F7P0DdYAPSptW6Ab01zqsZJQKFVAqVEi68egxEnfs0v9waNzotR1mxZkg\nxI5d6L4cn2ExpVhvMGvWLCZMmICNjQ27du2iTZs2ODpmranLshpx4iTi4GGUkcO0DuW9UMqWherV\nEDt3ax2KlApzc3OqVKmS4p+lpaXW4aWLbAPOXpRqVdGN+BTdZn+UV+Y8EFeuIh4/1iawN3FujM69\nLSLgKGqX7ojjJ1LcTRw8hPrtQsSDjB2SmeIwpNjYWFxcXDhx4gR37txhxIgR/PDDD9SpUydDT/6h\nEBERqDNmo/vqiyw12XlG0/Xohvrl14h27ihGRlqHI72iQoUKVHj1F/5zCQkJmRzNu5FtwNmToihQ\n6ZX+BqGhqJ+NBysrlGZNUNzaZJlaNEVRoIkzRk2cEdHREBYGwPbt26lbty4fffSRfsdGTuiqV0P9\nMmOn5k0xATdr1ozhw4fTqVMn5s2bh7W1teadOPbv388333yTbPulS5ews7PTIKL/UWfO0Y8/y4KL\nYGckpUplsCyD+GMfSquWWocjpSIsLIxevXoRHByMqqokJCTg4ODA2rVrtQ4tzWQb8IdDcW6MzskR\nTp5CHDwM5y9AFlxpTTExgbJlAf3n7+XmD0WnI/VJmt9eigl45MiR/Pnnn7Ro0YLr16/z+PFjvLy8\n3sPp065p06Y0btw42faBAwdqEM3/qL/ugP8eoUz5WtM4MouuRzfU+YtAJuAsa+3atdjb2+Ps7Ezl\nypV58uQJj7NqFWAqZBvwh0UxMoL6Dij1HZI9l/jpSJSqNigNG2SZmxgjIyOMMqGWL8U2YCMjI8PE\n3j4+PowfPx4zM7P3HszrKIpCrly5kv3pdDrNVhgSd+4gflqB7stxOaZKVrGvDSYmiMMBWocipSI6\nOpqmTZvSsGFDLly4QJ8+fThw4IDWYaGqarK/1BZ/kW3AOYdu1DAwNUVdvITEHr21Did1+fKhuLXJ\n0EOmeAc8evRo9uzZY3hsZGTE0KFD6d8/6/Vs04pITNQPOfLuh1KmjNbhZCpdD0/UNeswauSkdShS\nClxcXBgxYgR+fn6MGDGCYsWKaV6du3//fqZOnZps++XLl6lRI/ldj2wDzjkUKyv9ims9uyfrrCXO\nBCEuX0FpWF/zFZCUfPlQ2rbO0GOmmIBfLG8F8OTJE+bMmUPVqlUz9MTZnfhpBRQvph9jlsMojZxg\n2XLE6TP6O2IpS3FwcGDGjBlYWFgwY8YM/vjjD83HATdr1izFiXy8vb1TvAuWbcA5k1KwYNIN5awg\n4AjqV5P1E2n0/z90H1DzV4oJOG/evOR9vvCxmZkZ3bt3Z926dXIo0nMi6Cxi7x/oli/VOhTNKD08\nUdeuw0gm4Cxnw4YNye42IyMjWbx4sUYRpZ9sA5YAlEKFUIb6wFAQd+9C6MMkz4uAI1CoULadcz/F\nBLxhwwYuXLgA6Icv7N27l9GjR2dqYFmViIxEnTYD3bixKObmWoejGcWlOWL5Sv2qKTYpz54maaNT\np060bauvmYmNjWXHjh2EPR9ekV08fvyYR48epTozn5TzKKVLQ+nSSbaJ+HiE73wIDYXatdAN8kbJ\nRstYppiAS5UqRXx8PAA6nY527drRsGHDTA0sq1Jn++rHsmXBbvSZSTEyQvHsgrrGD6OpGTs2Tno3\nuXPnJnfu3IC+Bqt37944Oztnqx/Rsg1YSgtd0ybQtAkiIgJx8hQ8eQovJWAReBwqV0LJoktxJknA\nEyZMYPv27Snu6OPjo/mQH62pv+2BOyEoE8ZpHUqWoLRtjVi1BhEcrO9EIWUJx48fN5RjVVW5cOFC\ntuvDIduApfRQChRAcWmebLs4GoiYOh2KFkWxr4UyeGCWGrGSLAF/9tlnLF68mCdPnuDj40NiYiLf\nfPMNrq6uWsWYJYh79xDfL0U3fy7K87uLnE7Jkwfl404Ivw0o48ZqHY70XMGCBZNU3TZq1AgXFxcN\nI0o/2QYsZQTd8E8Qw4bCjZuI02cgLg6ez/cs4uPh5CmoYffGVd7Epcuo3y6ExER0C3wN+4v791EH\nDdW3Qzd1RtenV7riS5KAX3S+OnjwICtXrsTCwgKAnj17smLFihSHEeQEIjERdeoMlD69UMqV0zqc\nLEXp0A7Vsyfi339RihfXOhwJqFy5MpUrV9Y6jHci24CljPJiekzl1SkyFQV1yzaY8g2ULYtS1x5d\n/5QXLFFnzUX3wyJEwBHE6rUogwYAIE4HoXT3ROny8VvNR5FiG7Cbmxu9e/emR48ePH36lOXLlzNn\nzpx0H/xDIVatAdP86Dq21zqULEcxMUFp545YvxFl2FCtw8nRtm3bxldffZXic/Xq1ePHH3/M5Ije\nnmwDlt43JVcujGZNRyQmwtVriEuXAVCnzYCgszwsX/5/O8fGouTNC7Y2qDt2/W970FnE38GIHbtQ\nunqke1hqignYx8eHUqVK8ccff2BiYsKCBQuoX79++t/hB0BcuIjYvhPdT0u0DiXLUjw6o/bojejd\nM/k4PinTuLm50bx5c06fPs23337LlClTKF26NGvXrsU8m/XYl23A6SeCg/U/hNu5o9jaaB1OtqEY\nGUFVW8NQJmX8Z7B7JwUKFEi+c3w8vFRdrYwbi06nQyQkoHbpDhmRgAE6dOhAhw4d0nWwD42Ijkad\nOh3d2FFZthddVqAUKIDSwhWxcROKdz+tw8mxcuXKhZmZGYGBgXh5eVG9enVAP9lFu3bt6NUrfe1T\nWpJtwOmnTpuJUqc26vRZACgtXfV/xYppHFn2oigKFDAnz8srNllYIM5fQPy+D8WxISIsDGJjEf6b\nEDXt9DcebzEjYpIE7O/vT4UKFbhy5Qrnzp1LsmOLFi3eS0es2NjYLPtLV3y7EKW+A0qDnHn3nx6K\npwfqAB9Ed883dmiQ3i9XV1e8vb158OABRYoUYf369TRvnryHaFYm24DTR/z7L4SGogzoj26gN+Ly\nFcTeP1C9B0N5a5RWLVCaOL92wXkpdboZUxErV0OxoujatkZcvgJPn6IM7K8fCWJigm7uzHQfN0kC\nLleuHEWKFKF8+fKGcYQvlMyAwc3R0dHMnDmTU6dOMWPGDIYOHUpwcDD16tVj5cqV5MtCHw71z/2I\nK1fR/fiD1qFkC0rx4igNGyC2/orSo5vW4eRo9vb2LFu2zDChTvfu3fHw8Mjw8yQmJhIbG/te7lJl\nG3D6iMNHUJwcDR2BFFsbFFsbxJBBcCwQdc/viEXf61ccatUC6thrtohNdqTkz4/iM+h/j1+q4n/R\nIettJFkNycHBgXLlylG3bl0qVapEly5duH//Pg8fPsyQcYTr168HYNy4cbRo0YL+/ftz+/ZtGjdu\nzNatW9/5+BlFhIYi5i9C99X4LLNwdHagdO+K2LQFERendSg50smTJ/H39+fYsWNs2LAB0E/EcfLk\nSZYsefc+DAsXLuTgwYMALFmyhMqVK2NnZ0evXr2IjY195+O/zNjYONu1W2tJHDqM0ij5VMFKrlwo\njZwwmvI1Or9VUNUW9aefUT26oS5ZhggO1iBa6YUU24CnTZtGbGwswcHBbN68mUqVKrFy5Ur69Onz\nTie7dOkSvXr1okaNGhQtWtQwt3STJk3YtGnTOx07owghUKdM13ctr1jxzS+QDJSyZaFaVcTO3Siy\nx3ims7CwQFVVihQpQp06dZI8VywD2gHv3r1LuXLliIqKYunSpZw5cwZTU1MmTZrE4sWLGTFixDuf\n4wXZBpx2IiICbtyEunVeu59ibq4vlx3bI/75R19FPfpzKFxY31bs2hwlpY5H0nuT4nrAR48eZfLk\nyWzZsoUxY8YwfPjwZG3Cb6Nbt254eXnRokUL6tSpw4ABA1ixYgU+Pj54enq+8/Ezgli7DnLnQtc1\n46vscgJdz+6I9f76rv1SpipXrhwODg5UqFABKysrunTpQv78+bl8+TI1a9bMsPNERkZSq1YtzM3N\n0el0uLu7ExoammHHB7kecHqII8dQ6tVN1wRBStmy6Pr3Refvh25gf7h+A7VHbxLHf4k4cFA/SYX0\n3qWYgK2srJg3bx4HDhzAycmJefPmZcgwpDp16nDgwAFmzJjB8uXLGTt2LMHBwfz444/Y2mq/moW4\neg2xaQu68Z9pHUq2pVSpDGVKI/7Yp3UoOdb+/fsZMWIEoaGh+Pj4kC9fvgy5O7W0tGTkyJH07t2b\n33//nZCQEIKCghg0aBCdO3fOgMj/x9zcPEP6neQE4nAApFD9nBaKoqDY10b3+Rh0v6xHadYEdftO\n1I89UX3nIy5eyuBopZelWAU9e/Zsvv/+e37++WcSEhKoX78+H3/8cYacsGDBgobqsZYtW9KyZdrW\ndrxx4wZ79+5Ntv3SpUsZUlBFTAzq5GnoRnyK8nwGMOnt6Hp0Q52/CD6gdTuzk4CAAKZNm8aOHTvw\n8PBg7NixtGjR4p2PO2TIEIYMGUJwcDBBQUHkz5+f0NBQVq1aRbVq1TIg8v+R44DTRsTEwJkglC8+\nf+djKXnzorRwhRauiIcPEb/vQ53tC/Hx+l7ULV1RSpTIgKilF1JMwHFxcZw9e5YFCxawYcMGNm7c\nSKdOnQxTU2Y0X19fhBCMGjUq1X2MjY0pWrRosu158+bFKAMm1xYLF6PUrIHi3Pidj5XTKfa1wcQE\ncTgApZGT1uHkOOXLl2ft2rWcO3eOBQsWsHTpUipmYH8GKysrrJ4vvlEojePjHz9+zD///JNs+6NH\nj1Js55VtwGkUeByqV0PJ4OukFC2K0t0Tunvqawb3/q6f87icFUrLFihNnTP8nDlRigl42bJleHl5\nYWFhQcmSJenevTv+/v74+Phk2Inj4+PR6XQYGRkxYMCbu3FbWlpiaWmZbPvevXsRQrxTLOLQYUTQ\nWTnbVQbS9fBEXbMOI5mAM123bt2IjIykefPm2NnZcerUKaZPn/7ezpeWH9C3bt1i5cqVybZfvXqV\n8i9P+fecHAecNuLwEZTGjd7rOZQqlVGqVEb4PB/StPcPxOIf9HMktGoBdeug6FJszcwybt++zfXr\n1wFo0KBBlulhn2ICvnz5MgMGDGD37t0AWFtbc+TIkXc+WUJCAp9//jlbtmwB9GsNGxsb4+npyWef\nadPuKv77D3Xut+hmfqOf61PKEEojJ1i2HHH6jP6OWMo0iqJw/fp1du7cSXR0NLt27aJ+/frUrVv3\nvZwvLT+g7e3tsbdPvoa2t7d3ij+g5TjgNxOJiYhjgegGv/041PRQjIzAyREjJ0dEZCTiz79Qf14N\nM+foe1C3bolibZ0psaTXrFmzcHR0xMjIiISEBAD27dtHQEAA+fPn59NPP00290VmSPFnS79+/fDw\n8ODChQusWrWKTz75JEOmsZs3bx4AV65c4ebNm1y/fp3Tp0/z4MED/Pz83vn4b0P9ZiZK5476zkNS\nhlJ6eKKuXad1GDnOkSNHUBSFyZMnA/Dtt98yd+7cDD1HfHw8ic97upuammJqapqhx5fjgNPgTBBY\nWaEULpzpp1ZMTdG1c8do8QJ08+dCnjyon08gsf8g1I2bEOHhmR7T69y/f5/w8HBKlixJ4cKF8ff3\np3fv3jRq1AgTExPc3NyIjIzM9LhSTMBNmzZlyZIluLq6UqBAAXbu3EmZt5jn8lX37t2jU6dOSX5p\n5MmTh3bt2mky5ED1/wXi4lF6ds/0c+cEiktzuHsPceWq1qHkKBcvXqRBgwaGmY5KliyZIRNlJCQk\nMHr0aCpUqICNjQ02NjZUr16dqVOnEp/Bw1bi4+OJjo7O0GN+aMShAJTG2jfxKGXKoOv3fxhtWItu\n6GC4/Tdqr74kjpuAuv+vLDExT/PmzenUqRPr1q0jKCiIOXPmcOzYMZo3b87gwYNp2LAhe/bsyfS4\nUqyCPn78OFWqVOGLL77I0JP17NkTHx8fOnfubGjPvXPnDqtXr2bfvswdtiJu3kSsXYdu6WI5Jdt7\nohgZoXh2QV3jh9HUSVqHk2N4enri7OxM9erVyZUrFxs3bnznSXQgaQ3Wix/RcXFxjBw5Ej8/P3r3\n7v3O53hBtgG/mTh0GN2ib7UOIwmlVk2UWjURw4bq+9bs3oPwna+fh7pVCxS76pkek6qqlC9fnjJl\nytCsWTOuXbuGlZVVkg5+iqK8c1+it5FiAp4yZQpff/11stl03lWdOnXYunUrO3bs4Pz586iqStmy\nZdm3b1+GzIIw9AIAACAASURBVNSTViIuDnXyNyifDpGLyL9nStvW+snKg4NRnvecld4vMzMzfv/9\ndzZv3kxwcDCffPJJiu2v6XXv3j08PDxSrME6fvz4Ox//ZbIN+PXEpctQoABKqVJah5IixdgYxdUF\nXF0Qjx7phzT5ztevq9vSVZ+MM2mct06n49ixYxw5coSYmBgmT55MREQEY8aMYeTIkQQFBTFp0iSe\nPn2aKfG8LMUE7OrqSq9evXB1dTW07bi4uGTIiiolS5bE29v7nY/zLsT3S1EqV0Lnkr1WiMmOlDx5\nUD7uhPDbgDJurNbh5Ai3bt1CVdU0dY5Kj8yswZLjgF9PHM4a1c9poRQujNLVA7p6IK7fQOzZi+rz\nKZQpo++41dT5va+g9qKZ5MWPR29vb4yMjPD19aV48eKEhIRkeD+GtEgxAdepUydZ9XNKY3CzIxF4\nHHHkKLoVy7QOJcdQOrRD9eyJ+PdfWeOQCV6MMnjdsKC3kZk1WHIc8OuJg4fRfT1B6zDSTalUEaVS\nRcTggXD8hH6Vpu+XoDjUQ2npCvXq6ntbvwev9nLu27cvffv2fS/nSqsUE3CjRu93XJlWxOPHqDPn\noJv0lRxEnokUExOUdu6I9RtRhg3VOpwPXoMGDejZsyfXrl0zTJ5jbW1N//793/nYmVWDJduAUyf+\n/hsSErL1YjGKkRE0bIBRwwb6IU37D6CuXQ+z5qK4NNNXUWfj95dWKSbgD5U6fRaKe1tNOgLkdIpH\nZ9QevRG9e6IULKh1OB+0YsWKMW3atCTbimezmgfZBpw6cfhIiksPZleKqSnKR27wkRvi3j39Kk1f\nTgITE317cQsXTYZaZYYck4DVLdvgyVOU3l5ah5IjKQUKoLRwRWzchOLdT+twPmiVKlWiUqVKWofx\nTmQbcOrEoYBkk2/ExMRw6tQpABo2bIgui89MlRqlVCmUPr2gTy/EufOIPb+j9u4Htjb69uJGTh/U\nGu1JEvCECRPYvn17ijv6+PgwcODATAkqo4ngYMTPq9B9v/C9tS9Ib6Z4eqAO8EF093zvnS6k7E22\nAadMPHwIDx5ADTvDtpiYGLp160bFihW5efMmwcHBHDlyJNv/gFFq2KHUsNMPaTocgNjzO2LeAhTn\nxvo745o1tA7xnSX5mTRhwgQOHz5M9+7dcXd3Z9euXWzfvp2GDRvi6uqqVYzvRCQkoE6ahjJ4AEqp\nUhk+XEJKO6V4cZSGDRBbf9U6FCmLk+sBp0wcCkBxckwy9/Lo0aNp164ds2fPZvPmzbi6urJ06VIN\no8xYSp486Jo3w2jmN+hW/gRWZVEXLibRsyfqipWIu3e1DvGtJbkDzps3L3nz5uXgwYOsXLnS0IGj\nZ8+erFixgqlTp2oSZHpFR0ezZcsW4uPj6fBvGGaWZVBdXZg+bRq//fYbhw4d0jrEHEvp3hV1+GiE\nR+dsX5V04cIFjh49irm5OR4eHppX+23bto2vvvoqxefq1avHjz/+mMkRvT3ZBpwycTgA3cedkmxL\nTEzEwcHB8Njd3Z3ffvsts0PLFErhwihdPoYuH+snU9rzO+onI6BUKf1dcfOmKBoMJ3pbKX5juLm5\n0bt3b/z8/FiyZAmjRo2iVatWmR3bW0lISMDW1pZr166R/+o19nw+jqttWxEaGkqjRo0yZEpN6e0p\nZctCtaqInbu1DuWdBAQE0Lp1a/Lly8fGjRtxcnLK8OkY08vNzY3Dhw+zYMECw5KEf/31F97e3jg7\nO2saW3rJuaCTE0+fwtVrUDfpBEm1atVizJgxqKpKfHw8K1asoGbNmhpFmXmUChXQ+QxC98t6dF7d\nIegsqmdPEidORhw9hng+V3lWlmIC9vHxwdvbm4MHD3Lt2jUWLFhA48bZY53cVatW4ebmxtejRtHp\nxm0qLlvCghUrKFWqFE2aNNFkujEpKV3P7oj1/tmigKRm6NCh/Pbbb/RwdOSXX36hQYMG7Ny5U9OY\ncuXKhZmZGYGBgXh5eVG9enUKFSqEt7c3a9eu1TS29JJzQScnAo7ol/57pebI29sba2tr6tatS8eO\nHalZsyZdunTRKMrMp+h0KPUd0H31BTp/PxSHeqjr/FE7d0VdtBhx7brWIaYqxV7QDx8+ZMOGDRw4\ncIANGzYwYcIE1q1bZ6iSzsqePXum/7UfHY3uh0UUi47m3q9btQ5LeolSpTKUKY34Yx9Kq5Zah/NW\nKpQsRYXtu1BjYzH6+kvKlSvHs2fPtA4L0M9k5+3tzYMHDyhSpAjr16/PkFnsMpMcB5ycOHwEpWny\nmgydTsd3332nQURZj2JiguLWBtzaIB480FdRT5oKefLoxxa3cEEpUkTrMA1SvANetmwZXl5edO7c\nmZIlS9K9e3f8/f0zO7a34uzszCeffMLpu3f5Nz6eJk2a0LRpU63Dkl6h69EN4bdB6zDeijhylMkh\n91myZAmPB/Tj8OHDDB8+PMskOXt7e5YtW0ZwcDAHDhyge/fumq23/bbMzc0pmUlzBWcHIjYWzgSh\nNKivdSjZhlKiBLreXhitXYlu1HC4ew/1/7xJHPM56u9/6K+pxlK8A758+TIDBgxg9259O521tTVH\njhzJ1MBeFRMTQ3gKa0xGR0cnmWLMzs6OHTt2MHr0aEqUKMG4ceOSzNyzfv36TIlXej3Fvjbky6ef\n07ZR9pjTVoSHo85fBDduUmX1zyz7eQXd/+//KFOmDBcvXsxSk13Y29tTq1Ytnj17liWG8gQHBxMQ\nEJBs+40bN3BwcODZs2fky5ePZ8+eERYWhoWFBebm5kkev/p8Tnpc5NYtjKvaEmNkRNidO5rHk+0e\nVyhPvlHDifbuS9ixQAofCiDf/P9v787DY7reAI5/72SRkITY94g1SOz7HsFPLbE1paQoVRpLhSq1\nK62taKmttNqQ0KqKUlq1iyWCithjaSyVEBEkss/5/TE1TDORbSaT5Xyex9POvXfOeedO7n3n3nPP\nOV8T7/k2Ua1bpdo+p2bI05uAhw8fjoeHB6BpU92+fbs2GZvKX3/9xYoVK1ItDwwMxMnJSWdZ8+bN\nOXjwYE6FJmWRyvNt1L5bMMsDCVi95w/E2nUoPbujTJuCYmGhnZ4vN5o0aRK//fYbEyZMYPv27cyZ\nM4cmTZqYLJ7k5GRiY2P1Lv/vVHBqtZrExESEECiKglqtTrW+oL1WnzqN0rZNroknr75WLCwQtWqi\natMaVWIiyl/n9G6fU5QbN26Izz77jG+//VZnxbVr19i6dStWVlZ4eHhQuXLlHAsqM0aMGIEQIk91\nsZBeShkyHNWHYzRXxLmQuH8f9eKl8DwO1ccTUKpWzdD7li5dSo0aNejZs6eRI0zt+PHj+Pv706xZ\nM6Kjo2nfvj0zZ85k8+bNOR5LetI6fh8+fCjbgP8lUlJQ934T1Q/f5tshGXOb7t2707x58zS79RmK\n3jbgtWvXkpSUxLRp05g4cSKPHj3iu+++M2ogUsGkDBqA2jf3JQahVqP+cSvqUWNQWrZAtWp5hpOv\nqV28eJEWLVpob6OVK1eOhFzQ3pUZsg34FeeCoVIlmXzzIb23oPfv38+aNWtYuHAhXbp04cmTJ3JU\nGskoFLeOiG+/R1y9pnk6OhcQ16+jXrQUbG1QrV2JUrasqUPKlAEDBtCuXTucnZ0xNzdn69atDB06\n1NRhZYocC/olEXA8z8z9K2VOmpMx+Pv7884773Dr1i15G0gyGsXMDGXAW6g3+WE2d7ZJYxGJiYjv\nfRB7/kAZNQJVHu0iZWtry59//skvv/xCWFgYY8eOpVGjRqYOK1PkWNAviaMBqL5aYuowJCNIMwGX\nLFmSvXv34unpib+/P82by8ffJeNQur+B2OiLCAtDcXAwSQwi+DzqRUtQatVEtWFdnp4y8dChQzx+\n/Jj33385Y87YsWP1PsSYW8l+wBri8hWwtUWpUMHUoUhGoLcN2M3NDXNzc6ysrPjpp5+oX7++bI+R\njEaxtER5s69J+gWL2FjUS75EPW8+qjEfoJo5LU8nX4BLly7x0UcfsWDBAu2yCxcumDCizJNtwBqa\nbnr5Z+5fSZfeBDxy5Eht+4tKpWLBggV5dipCKW9Qertrxm+NiMixOkXAMc1co2ZmqHy+Q2nZIsfq\nNrZly5YRFhbG8OHDSUxMNHU4mSbHgtYQR49pux9J+Y/OLeiffvqJatWqceXKFc6fP6+zYefOnfPs\nlIRS7qcULozSsztiy1aUD8cYtS4RFaUZUOPW36hmz0BxrmvU+kzBzMyM1atXs2jRInr06IG5eZqt\nTbmSbAMGcfs2xMej1Kxh6lAkI9E5KqtUqUKJEiWoWrWqzuhSgLwdJBmd4tEP9TvvIoZ4Gu02sHr3\n75oBNXr1RJn+Ccp//s7zgzp16lD83y4rH3/8MQ4ODuzfv9/EUWWObAN+cfUrn37Oz3QS8K+//srO\nnTv1bujl5UXduvnvSkHKPZRixVA6uSG2bkMZMdygZYt79zQDasQnoPryCxRHR4OWnxucPn2amzdv\nUrlyZXx9fXVmQGrcuPFr3pk1KSkpJCQkGOUqVc4HrOl+pHrfsMeBlLvotAFPnz6dgIAABg4cSI8e\nPdi9ezc7d+6kZcuW8vazlCOUAR6Inb8hDDQVnVCrUW/5CbXXOJQ2rVGtXpEvky9oei5UqVKFUqVK\n0bhxY51/hriSXLFiBUeOHAE0g/XUrFkTFxcXBg8ebPCBPgp6G7CIjIR796B+PVOHIhmRzhWwlZUV\nVlZWHDlyhB9++EE7/aCnpycbNmxg3rx5JglSKjiUMmVQWrZA+P+KMnBAtsoS16+jXrgEihXNkwNq\nZFZwcHCaQ+c1bdo027OC3bt3jypVqhAbG8s333zDX3/9hY2NDXPmzGHVqlV4e3tnq/xXFfQ2YHH0\nGEqrligqvc/JSgawfft2jh8/jlqtZtasWSb5waf32+3evTtDhgzBz8+PtWvXMnHiRP73v//ldGxS\nAaUM7I/4+RdEFp/eFYmJqNeuQz3pExSPvpgtXpDvky9ojtuAgACWL19O1apV8fX15dChQ4wYMUIz\nR7aBxMTE0KBBA+zs7FCpVPTo0YMHDx4YrHzQtAEX5NH3RIBs/zWmb775ho8++oj+/fvTtGlT+vTp\nQ3R0dI7HoffRyCZNmlC0aFGOHz9O4cKFWb58udEG4oiNjaVIkSJGKVvKmxQHB6hbB/HbHpQ+vTL1\nXnEuGPXipSi1nVB9vx6laFEjRZn7mJubY2trS2BgIO+88w7Ozs6AZsIDd3d3Bg8enK3yK1WqxIQJ\nE6hWrRqXLl3i7t27REZGMmrUKNauXWuIj6BVkNuARUwMXLkKTU03e1V+98MPP3Dy5ElKlSpFkyZN\nuHXrFgcOHKBv3745GofeBDx37lxmz57NoEGDDFrZkydPiIuL075Wq9V069aN33//HRsbG2xsbAxa\nn5R3qTwHop45B+HeA8XMLN3tRUwMYvU3iFNBqD7yRmneLAeizJ06derEiBEjCA8Pp0SJEmzZsoWO\nHTtmu9zRo0czevRowsLCOHfuHEWKFOHBgwf4+PgY/AHNgjwWtDh+Aho3QrG0NHUo+VaFChVISUnR\nvo6MjKRmzZwfi15vAu7UqRODBw+mU6dO2qTo5uaW7YN44cKFLF68mMaNG2vnAL1+/Tp9+vThvffe\nY/hw+cSfpKHUqgkVKyD2H0Dp0vm124ojR1F/9TVKu7aaATWsrXMoytypUaNGrFu3jh9//JELFy4w\ncOBA7fzehuDg4IDDv0OG2tvbG6zcVxXkNmBx9BhKOzn4hjH16tWLcePGMX78eM6ePcvatWv57LPP\ncjwOvQm4cePGTJs2TWdZqVKlsl3Z559/TsWKFTlw4AArVqygTJkyNG/enBMnTmS7bCn/UQ16WzNg\nRhoJWERFoV62HG7fQTV3Nkqd2jkcYe508+ZN7OzsWLhwYY7Ut3TpUoQQTJw40WBlFtR+wCIxEc6c\nRZn8kalDydcGDRpEiRIl8Pf3p3jx4ty+fRsrK6scj0NvAm7TJvWvr+TkZINU6OXlRceOHRk6dKi8\n4pVeS2nUEKyt/x0PV/eBFPVvexDfrEfp0wtl1nSUPDbSkzFt374dwKAJ8XVenfQhLefPn2fLli2p\nlgcFBVGlSpVUywtsG/CpIKjthCKb44yua9eudO3a1aQx6D1rnThxgokTJxIdHY0QgsTERMaPH8/Y\nsWMNUqmTkxO7du1i5syZlC9f3iBlSvlTdLeuXPIay9JqDpQpU4avp05DWfolJCah+moJip6Td0HX\nokULPD09uXbtmrYroaOjI++9957B6khKSkKlUmFmZpahZzcqVKhAz549Uy2/cOGC3ocwC2obsGbu\nX3n7uaDQm4AXLVrE9OnTWb9+PUuWLGHJkiW0amXYGTksLCyYP38+kLFbWPv372fu3Lmpll+9epX6\n9esbNDYpd4iLi6N0n15cbtmWdaO8WO3tzdUDXam94DPNla+imDrEXKl06dKp2rNeJOLsSE5OZsqU\nKdorbJVKRaFChRgwYACTJ09ONXztq0qUKEHLli1TLS9TpgxCiFTLC2IbsEhJQRw/gWrEMFOHIuUQ\nvQk4ISEBNzc3goKCuHPnDt7e3qxZs8Yow9lBxm5hubm54ebmlmr5iBEj9B7AUt538uRJxo0bR41+\nb5IydASf9HFnaPBZNvXtberQcjV7e3s2bdpEWFgYarWa5ORkmjVrRpcuXbJV7rJlywC4cuWKNtkm\nJiYyYcIE/Pz8GDJkSLZjf6FAtgEHn4eKFVFKlDB1JFIO0ZuAXV1dGT9+PH379mXZsmU4OjpSvXp1\ng1ac2VtYUsFjaWnJs2fPUNq0xsx/KzEOlTku73aky9fXl0aNGtGuXTtq1qzJ06dPDTLIwD///IOH\nh4fOla6lpSXu7u6cOnUq2+W/qiC2AYuA43Lu3wJGbwKeMGECBw4coHPnzoSGhhIdHc0777yT7cqy\ncwtLKnhatWrFokWLcHNzY9y4ccwcNJAZM2aYOqxc7/nz53To0AELCwsOHz7MzJkz6dOnD+PHj89W\nuZ6ennh5edGvXz8qVaoEwJ07d9i4caPBZ1sqiG3A4mgAqqWLTB2GlIP0JmAzMzM6d9Z0/fDy8jJY\nZTl5C0vK+xRFYceOHfj6+nLz5k2+/PJLXF1dTR1Wrufm5oa3tzd+fn54e3tTunRpgySzxo0b4+/v\nz65duwgJCUGtVlO5cmX2799P6dKlDRD5SwWtDVhcvQaFC6P8+8NGKhh0EvD06dNfOx3hyJEjs1VZ\nTt7CkvIPQ4/Ilt81a9aMBQsWULJkSRYsWMC+ffu0DzxmV7ly5RgxYgQA06ZNw87OzuDJFwpeG7A4\nGiDHfi6AUiXgyZMns2rVKp4+fYqXlxcpKSl8/vnnBpmOMCdvYUlSQda2bVsAunTpku2Hr0yhoLUB\ni4DjqKZMMnUYUhqEWg1HA8DeHqWey8vlSUmIg4cAUCpWzPRgQDqzIVlZWWFra8uRI0fw9vamQoUK\nVK5cWTsdYXa9uIVlb29PSEgIwcHB2NjYGOUWliQVNDt27KB+/fp6/xmyD/ALdevW1f6QNrSCNB+w\nuHsXYmNRnArG1X5eJBYvRVy/gXr5SsSpoJcrzocgfvwZIh9BTEymy9XbBvxiOsJBgwbx7Nkzvvvu\nO7744ossB/+qV29hSZJkON27d6djx46cPXuWL7/8krlz51KhQgV8fX2NkswGDhxo8DJfKEhtwOJI\nQKqR3iQTi4klKSlJ+1JcuIjZxg2Idm1R+2zCrFlTzfJzwVCmNDx7BrWdMl2N3gTs5eVF+fLl2bdv\nn9GnI5QkyTCMPR1hTipIbcAi4Diq9941dRgFnvr3PxAnAjVXtddCeezi/HJlQoLmv7Y2mmT7QuVK\nqJxqaeYgnzIds5VfZapOvQn49OnTfPHFFzx8+BAhBP7+/owdO9ZgQ1FKkmQ8xpqOMCcVlDZg8egR\n3L0L9euZOpQCRdy6BXZ2uoOehN1GadsaZdxolMGDdZtFzcw0Az7d+welcuWXy83NoX49FGtrxMo1\nmY5DbwL+9NNPmTVrFu3atUOlUv1bf/pzskqSZHrGno4wJxSUfsAi4DhKyxYZmvNayh5xKgj1b3s0\nI44VLYrq80911qtGpt00qgz2RP3hRLh3D9WarxFHAxCRj1DKlEbtPQnsi6GMynzTqt4EbGdnR/Xq\n1QvEASBJ+c3jx4+ZM2cOV69eRa1Ws2/fPn799Vc2btxo6tAyrKC0AYujAah6u5s6jHxHPHwI0U9Q\narwcwVH8cx+lTSuUD8egFC+eqfJUb/wP0dnt5axrpUrxYiR6VQtN86yiUul/82voTcDt2rWjXbt2\nvPHGGxT/N9BOnToZpCuSJEnGtWHDBho2bIifnx+WlpYAeW7iioLQBixiYuDSZfg89SQzUuaJiAjE\nlq2Is3/BkyeaW8mvJODs/tBJa8rTrCTeF/SW6OzsnOqp53LlymW5EkmSco6dnR3FixfXO81fXlEQ\n2oDFiZPQqCHKvz+SpIwTQkBYGDrTkd76G8qWQTVzKkq1aiaKLHP0JmB9Uw8mJycbPRhJkrKvQYMG\n9O7dmz179uDo6AhA1apVMzTrWG5RENqANXP/yu5HmaH+/Q8IOoMIOo3StAnKjKnadUqL5igt8lZv\nHb0J+MSJE0ycOJHo6GiEECQmJjJ+/Hj5FLQk5QHFihVjyZIlOsvy2kA3+b0NWCQmwukzKB95mzqU\nXEsIAWq19gE18ewZBJ2BZk1QjR6V6Xbc3EhvAl60aBHTp09n/fr1LFmyhCVLlui9KpYkKfepXr16\nqulDTX0H68iRI3oH8wkODqZOnTqpluf7NuCg0+BUC8XW1tSR5CoiLk5za/7YCcTpM6j8fODfphTF\n1lbnijc/0JuAExIScHNzIygoiDt37uDt7c2aNWto3LhxTscnSVImRUZGMnjwYMLCwlCr1SQnJ9Os\nWTN8fX1NFlOrVq301j9mzBi9XRzzexuwZu5fefv5v9SzPgUrK5TmzVCN+QAlDz/HkBF6E7Crqyvj\nx4+nb9++LFu2DEdHx1S/qCVJyp18fX1p1KgR7dq1o2bNmjx9+pTo6GiTxvRilK7/srS01Nxq/I/8\n3AYs1GrE8ROohhXc6VfF1WuIgGPgWAVVx5dTjKrmz8u1faLFX+cQu3ajMuBVuN4EXKJECerVq0fn\nzp0JDQ0lNDQUKysrg1WaFZcvX9Y7VWJwcDAVK1Y0QUSSlDs9f/6cDh06YGFhweHDh5k5cyZ9+vRh\n/Pjxpg4tw/J1G/D5EChXDqVUKVNHkuPEpcuoP/0MChVCadcGpVFDnfW5JvmmpOi8FEeOov72e7Cx\nMWg1Ogk4JCSEGTNmEBQURJMmTVi9ejUAf//9t8mvgIsVK4aLi0uq5QcOHMi3v5QlKSvc3Nzw9vbG\nz88Pb29vSpcuneeOkfzcBlyQ5v4VV6+h1Kr5coGlBaolC1EqVDBdUBlgce060a8+m9CmNSrnuqhn\nzDFoPToJ2MXFhU8//ZTly5czevRobduMra0tVV7tb2UC5cqV09sX+ZdfftF7C0uSCqpmzZqxYMEC\nSpYsyYIFC9i3bx/z5883dViZkp/bgMXRY6i+WGDqMIxGXLiI2H8QceQoSpPGKJ98rF2n5LKmTCEE\nnApCxMWh6tBeu7zDByOp5vRydiNFpcIYWSbVLeh69eqxfv167euYmBhsDHzZLUmS8QQEBFCmTBmK\nFClCly5d6NSpE3PnzmXWrFmmDi3D8msbsLgWqnnI6NUB/fMZ9co1KG1bo1q1HKVMGVOHo5eIiUF8\n+z3i0GGoWBHVB7p95NU5dCtcJwEnJiYyZswYOnTogIeHBz169CA0NJSaNWuyY8eOfHlASFJ+8fz5\nc4YPH86lS5ewsbGh1L9tjDExMdjb25s4uszJr23A4mgASpv80aVTPHyI2LsPpU5tlIYNtMvNVq8w\nYVQZFHodShRHtXYlSkb7yFtbo3R/w6Bh6CTgJUuWYGZmRq9evdi8eTNFixbl5s2bzJ49mw0bNjBq\n1CiDVi5JkuEULlyYefPmsWPHDsqWLYuzszPPnz/H3t7e5E1ImZVf24BFwHFUH080dRjZIq5fR71y\nDdy8heLaAWrkrtvKrxKxsZrb4QHHMFv0shlGadhA50dDRijW1ijduho0Pp1RpE+ePMnYsWMpUqQI\nu3fv5u233wagTZs2XLp0yaAVS5JkeDt37iQ8PJyBAwfy888/89Zbb9GnTx/u3btn6tAyxc7OLt+N\nPy/u3YOnT1FqO6W/cS4mbv2Nqm9vVL/8hGr8WJRc2kSpXrUG9QBPCD6P6u3+pg5HL50r4JIlS3L3\n7l2qVatGQECAti04JCQEBwcHkwQoSVLGHD9+nK1bt7JlyxbCwsLw8fHh6tWrBAYGMnXqVLZs2WLq\nEDMsP7YBi6PHUNq2MXUYGSZiYhC/74VLl1HNnKZdruqcO2fFE8+e6YwspjjXRXl3CIq1tQmjej2d\nK2AvLy/ee+89WrVqxdtvv42NjQ2rV69m1apVeW5Cb0kqaAIDAxk0aBCVKlViz5499OrVC2tra1q3\nbm2UO1gpKSk8f/7c4OWCpg3YWGWbiiYB543uR+ovlqEeOBhCr6MMGmDqcNIk4uJQ7/yNFK9xiGPH\nddYp7drm6uQLem5Bjx49ms6dO1O5cmW+/vprAgMD8fT05Ndff+XZs2emilOSpHS8uIMFsGvXLtzd\nNfOfXrhwwSB3sFasWMGRI0cAWLt2LTVr1sTFxYXBgweTkJCQ7fJfFR0dzZ07dwxapimJqCi4fRsa\n1Dd1KHoJtVp3QbWqqDZvRPXJx7l2aj9x/TrqtwYizpxFNWwIqq7/M3VImWYOaPvRlitXLlWf2p49\ne2r/X9+YrZIk5Q7u7u4sXLiQEydOkJiYSPv27dm3bx/jx49n0aJF2S7/3r17VKlShdjYWL755hv+\n+usvbGxsmDNnDqtWrcLb23Az++SGfsBJSUlcvnyZWrVqZSmW2NhYIiIi+Pbbbylx/CT1VGY0jI7G\nwsIC13j07AAAHUVJREFUOzu7DJcTFxdHXFwcxYoVIzw8nPLly2c6lrSIhw8R/r+iONWCV26Pq/r0\nMlgdhiJiYnTbm4sUQeX7A0om9mVuoypRogShoaEMHjyY8+fP8/z5c8qVK0fr1q3p16+fzr/81iVA\nkvKTokWLcvr0aRYvXsyBAwcwN9c84vHdd9/RrVs3g9UTExNDgwYNsLOzQ6VS0aNHDx48eGCw8kHT\nBpyZJGVoK1eupFGjRixZsoS2bdvy2WefZbqMHTt2ULt2bcqWLcvg6jW4Ua4sPXv2ZMOGDZkqZ9++\nfcyZM4fHjx/j5eWV5nbDhw/PcJkiNhb1ZwtQDx8JycnQtEmmYspJ4uIl1PMXoR48TGe5Uq5cnk6+\nAOZFixblyJEjhIWFcfPmTW7cuMGvv/7KjRs3eP78OdWqVaNq1arY2dkxbNiw9EuUJMlkrKysaNLk\n5cm0UyfDPTBTqVIlJkyYQLVq1bh06RJ3794lMjKSUaNGsXbtWoPVA6btB7x37158fHw4e/YsFhYW\nJCUl0aJFC/r164fTv6MjXbx4EUdHR534nj17xr1797TbXLt2jTp16jDmvfd4OHAwXRfPZ2n37tjb\n2zNp0iTCw8Np3rw5gwYN0ttP+/Hjx1y/fp2Uf8clLlasGMuWLQM000ueOnUKOzs7nJ2dCQ8P548/\n/uDmzZtUrVqV5ORkLly4QHx8PPXr18fa2pr79+9jZ2fHlStXKHbvHxydaqGa8CGKtTVXr16lUKFC\nOt3VHjx4QHJyskGvuDNLvfALxIWLKL3dUY1N+8dHXmUOoCgKVapUoUqVKnTs2FG7MiQkhB07drB1\n61ZSUlJkApakAmz06NGMHj2asLAwzp07R5EiRXjw4AE+Pj7UrVvXoHW92g9Y3L+PCDqjs15p1QKl\nZEmA9Ner1Yhdu8HaKkNP8O7Zs4exY8diYWEBgIWFBadPn0ZRFBITE3F1daVBgwaEhobi4eHBiBEj\n2LBhAz4+PtSpU4dr166xbds2FEVBURSu373L23dusT4mhvj4eBwdHXn48CEBAQGcPXuWNWvW4O/v\nrzPe/qFDhxg9ejQdO3Zk//79dO7cmUePHjFgwAACAwPp3LkzzZo1IywsjJIlS/LGG28QGxvL7t27\n+eCDD3B1daVp06bExMRw4sQJzq34mjm+m7h6/TouLi4cOHCAefPm0cvKikGDBpGYmIiVlRVly5Zl\n8eLFTJgwgaioKNRqNfb29nz11VfZ+j4zSjx+jPLKjxGlX29Ukz/KkbpNQe9sSAB//fUX/fv3Z/bs\n2Wzbto2yZcsatOKkpCRUKpVsV5akPMbBwUH7UJexRtjSaQOOiYUbN3U3aFDv5f+nt14IzXqbjM0t\ne/36dXr06KGzTFEUQNPPukuXLsyaNYu4uDiaNm3KiBEjWLNmDYcOHcLa2po5c+awfft2atasycOH\nD2nTpg2LFy/mvffew9vbm7Zt23LgwAH+/vtvJk+eTM+ePVPtx7lz57Ju3TpatWrF3LlziYyM1K5T\nq9XcunWLSZMm0aFDBy5fvkzjxo2xt7dnzJgxPH36lKlTp9K1a1dCfTbi5uvHo02bwUyFm5sb06dP\nZ/v27fz55584OjoSGhrKqVOnAPj++++JjIzk1KlT+Pv7AzB48GAePHhA6YyOGJUFIvAU6m3bURyr\noHww8uV+z2VjRxtamgm4Xr16vPvuu7Ru3dpgyTc5OZkpU6awfft2AFQqFYUKFWLAgAFMnjxZ+4tT\nkqS8Y+nSpQghmDjRcCM8vdoPWKlRHcV7XJrbprvezOy16/+rbt26hIaG4ubmpl125MgRSpUqxcGD\nB+nSpQsA1tbWWFpaEhISQnJyMtb/dnlp2LAhO3fupHPnzpiZmVGkSBH279/PrFmztA+1fvLJJyiK\nwsyZM/nhhx/YuHEjxYsX19Z3+/Zt7V2FRo0asXfvXu06lUrFjz/+yNdff83IkSMZOHAgjRs31q63\nsLDAx8eHhd7eOFtZI2yKwOefosyapd3OxsaGpKQk7t27R/36L5/MHjp0KLt27eLhw4fa6SuLFy/O\n33//bZQELGJjUb/vBXZ2KH17oXRyS/9N+YgqrRVmZmZ88sknBh2A40X7xZUrV7hx4wahoaGcPXuW\n8PBw/Pz8DFaPJEk55/3332fkyJGv3Wb//v106NAh1b/du3cTERGRantT9gN+8803+frrr4mOjgY0\nbbHDhg3D2tqaLl26cPjwYQCioqK4ffs2zs7OmJmZERUVBWhuH9euXRuA/v37s3fvXgIDA2nfXjPb\nzsGDBxkxYgQNGzakW7duDBo0iM2bN+vE4OLiou3ydfLkSZ11cXFx+Pv7s3HjRq5fv86GDRuIj4/X\nXqXv3bsXRVE4uG8f848e4XlSkrYd+cU2L7Rr145z584BmgukHj160KJFC4oUKcLGjRvZtGkTNWrU\noFKlSobZuYBISnr5IjER1dTJmK1egapzp1Tx5XdpXgEbwz///IOHh4fOla6lpSXu7u7aWyCSJOUt\nGZktzc3NTeeK8oUffvhB73SiphwLukmTJkyZMoXOnTtjbW1NXFwcs2fPpkqVKpQrV44dO3bQo0cP\nbt26xfr161EUhdmzZzNgwADUajXW1tbMmzePXbt2AVC9enWGDRvGxIkTWbduHa6urpw/f55x48ZR\np04dtm7dmurJ6C+++II+ffrg4+ODpaUlJf9tzwbNlbcQgm7dupGUlISnpyeFQq9TQ2i6ovn4+DB/\n/nzemTKFhIQEqlevru0f/l82NjZ4enryxhtvIISgf//+lCxZkqFDh9K1a1cKFSqEo6OjQYYFFTdv\nIn7ahtKjGzhrru4Ve3vIYxOFGJIicnAy3TNnzuDl5UW/fv20v6ju3LnDxo0b2b9/f5ZucYwYMQIh\nhM4UipJkakuXLqVGjRo6/ejzui+++IKDBw/qXTdo0CAGDhyY6TJfJOChQ4fqLE9ISCAhIcGkXZFA\n82Sz7SvDG74QFxeHlZVVqiu22NhYihTJWFszwNOnT1/7GePj47GystK7LikpiaRHjyi0ai1cC0U1\nehSJzZpqb90/efKEokWLZiiO5ORkAG3XNdC0NSclJWW7P7aIikK9aAlcv4Hy1psob/ZFUaV58zVX\nyKnjN0evgBs3boy/vz+7du0iJCQEtVpN5cqVs5x8JUnKOe+88w5+fn5MnDiRhg0b6qx7MfWhoeSW\nsaD1JV9A2977X5lJvkC6PzDSSr6gaes12/kbuDijzJiKYmHBq3sso8kXdBPvCy+e0cm2S5dROnZA\n+exTFPnQrY4cTcCgGW1rxIgRmX5fTEwM9+/fT7X8yZMnr/0jlSTJMMqUKcOmTZuYMWMGgwYNMmpd\n+XU+YENT3hmEksvOf+qDh1C5dtC+Vtq0pmC17GZcjidgfTLyFOXly5dZt25dquWhoaE6T/FJkmQ8\nderUYdu2bUavJ7/OB5wd4uZN1F9+jdnypdpluSn5qv/ch9joB/bF4JUELKUtVyTg999/P91tmjZt\nStOmTVMtT+shDkmS8q7cMBZ0biHUasQ36xF/7kd5P+PDTeYk9ZIvEXfuoPrIG6Wei6nDyTNMloBf\nHYgjI09RSpKUu0ybNo3atWvj6elp8LJzSxtwbiAOHIRHUai+X68z321uovTrjeqVYSyljMnRR9GS\nk5P56KOPqFatGk5OTjg5OeHs7My8efNIerVvmCRJBVp+nA84M16dHlCpXw/VtCm5JvmKU0GkTJ2h\ns0yRyTdLcvQK+NWBOF70BU5MTGTChAn4+fkxZMiQLJX74MEDfvzxx2zHd+HCBcLDww16RZ6SksLD\nhw8NPpTn3bt3qVixokHLjI6OxtzcvEB//ho1alDNAPOfRkZGUqNGDQNElXvVrVuXChUqZLscfcfv\n48ePiYqK4uHDh9ku/3UiIiIoUaKE3qeADenevXsZ3ldlIh+BohBRonj6G7/CGMfvq+xiYnA9fY7k\nx9Gca92cewacfvK/4uPjiYmJ0en/bAwRERG4urqmeho9p47fPD8Qh6enJ2vXruXx48fZji8oKIiY\nmBiDntjj4+M5e/YsrVq1MliZAIcPH9aZOMMQQkNDsbKyMuioN3nt88fFxekMCZhVNWrUMOgUgLlR\nVvr9/ldax+/58+c5dOgQ9erVS+OdhhEYGIizs3Omuw9lhlqt5siRI3To0CHdbRW14IEQpJipQE+v\nj9cxxvH7qgi1mms1q7L/4EE6piRnOr7MePToEXfv3jX6A7anTp2iWrVqqX4c5djxK3LQ6dOnRbNm\nzcTChQuFn5+f8PPzEwsXLhTOzs4iIiIiJ0PRa/ny5WLbtm0GLTM8PFz079/foGUKIUT79u0NXuaK\nFSvEzz//bNAyIyIixFtvvWXQMoUwzuf/+uuvxdatWw1erpR5x44dE1OnTjV6PUOGDBF///23UetI\nSEgQXbp0MWodQhjn+NXHGMfef504cUJMmTLF6PW8++674ubNm0avJy052gb8YiAOe3t7QkJCCA4O\nxsbGRg7EIUmSJBU4eWYgDkmSJEnKT3L3gJySJEmSlE/JBCxJkiRJJmA2e/bs2aYOIrewsbHBwcGB\nYsWKGaxMMzMzypQpg6Ojo8HKBChZsiQ1a9Y0aJny89tQuXJl7Avw9Gi5RaFChShfvjzly5c3aj32\n9vZUq1YNS0tLo9WhKAqlSpUyercWYxy/+hjj2PsvS0tLypcvb5Bubq/z4vs31aAvOTodoSRJkiRJ\nGvIWtCRJkiSZgEzAkiRJkmQCMgFLkiRJkgnIBCxJkiRJJiATsCRJkiSZgEzAkiRJkmQCBToBP3r0\niJSUFL3rkpOTiY+P1/4ztaSkJB49eqR3XWJiojbOxMTEHI7spfT2mVqt1lmvfmXOU1OIiopKc3/l\ntu8/v4uKinrtnOBqtdogUxNGRESQXs/L+9mc5ef58+c8e/YszfVCCIPM3pbePnv27Fm251TO6H7P\n7j573Wcx5Hkjve//decEozDZNBAmlJycLNzd3cVbb70lGjZsKE6ePJlqm1GjRgknJyfRqFEj0ahR\nIxETE2OCSF/68MMPxciRI/Wuq1u3rjbOgQMH5nBkL6W3z7Zs2SIqVqyoXX/48GETRSrE8OHDRc+e\nPUXr1q3F5s2bU63Pbd9/fvbOO++Irl27CkdHRxEQEJBq/cmTJ0W9evVEhw4dhIeHh1Cr1ZmuIzo6\nWjRv3lx0795d1K9fP83Z11avXi26deuW6fJfWLlypWjVqpWoW7eu+PLLL1Ot37Ztm2jfvr3w8PAQ\n7u7uIj4+Pkv1pLfPpk+fLtzd3UXLli3FqlWrslRHRvf79u3bRa1atbJUhxDpfxZDnDcy8v2nd04w\nhgKZgI8ePSrmz58vhBBiz549YsCAAam2admypXj06FFOh6bX3r17Rf369fUm4NjYWNGgQQMTRJVa\nevtsypQpBp/uMSsOHDig/c6fPn2qd9q73PT952e///67GDZsmBBCiNDQUNG6detU27Rq1Uo7ZaCn\np6fYu3dvpuuZMmWK8PHxEUIIsX79er3f+fDhw0Xr1q2znIAfP34sXFxchFqtFklJSaJu3boiOjpa\nZ5tX/64mTZokNm3alOl60ttn0dHR2h/iz549ExUrVszKx8nQfr9//77o2LFjlhNwRr5/Q5w30vv+\nM3JOMIYCeQu6TZs2TJkyhStXrvDtt9/i6uqqs16tVnPnzh2WL1/OmDFjCAkJMVGkmtvkixYtIq0R\nQ0NCQrC2tmb06NHMnTuXiIiInA3wXxnZZ+fOnSMoKIghQ4bw+++/myBKjcOHD9OsWTNmzpzJ5s2b\nmT59us763PT953fBwcG0atUKgOrVq3Pv3r1U2zx69AgHBwdAc+yeOXMmW/WkVca7777LN998k+my\nX7h27Rr169dHURTMzc1xcXHh8uXLOtscP36c4sWLA3Dz5k0sLCwyXU96+6xo0aL4+vry4MEDli1b\nRtu2bbP0eTKy3728vFi6dGmWyoeMff+GOG+k9/2nd04wlgKZgF/YsWMHd+7cwdraWmd5VFQUbdu2\nxcPDg969e9O7d2/i4uJMEuOYMWNYuHBhqhhfSEhIoEWLFnz88ceUKFGCIUOG5HCEGhnZZ5UrV6Z9\n+/ZMnDiR2bNnc/LkSZPEGh4ezoYNG2jRogXh4eGppsfMTd9/fhceHk7RokW1ry0sLHTa3J8+fYq5\n+ctZU21tbYmOjs5WPWmV0bp160yXm1Ydr6sH4PPPPyc2NpY333wz2/X8d5+9cPToUY4fP07p0qXT\nbff+r4zs9xUrVtCxY0ecnJwy+QleyshnMcR5I73vP71zgrEU6AQ8efJk/vzzTyZPnkxycrJ2ecmS\nJfHz86Nu3bp06tSJ1q1bc+DAgRyPb8+ePZw/fx5/f398fHwICgpK9QuwXbt2LF26FAcHB7y8vLhy\n5QpPnz7N8Vgzss/Wrl1L165dqVevHu+//z7btm3L8TgBihUrxoABA+jWrRszZszg+PHjOg9e5Jbv\nvyAoUaKEzt+rmZkZVlZW2te2trapEnJWJmh4tZ6slpGZOl5Xz/Tp0zlz5gz+/v6oVJk/Bae3z17o\n168fe/bs4ezZswQFBWWqjvT2e1RUlPaO25w5c4iMjGT16tVG+SyGOG+k9/2nd04wlgKZgLds2cLU\nqVMBiI2NpWzZsjq/9m7fvk2nTp0AzROLwcHBNGnSJMfjrFevHosXL6ZFixY4OTlRpkwZ7S2hF378\n8UemTZsGvPyVZ2dnl+OxprfP1Go1rVu3JjIyEoAzZ87QvHnzHI8ToHnz5oSGhgKa22xqtVpnNpzc\n8v0XBM2aNePQoUMAXL58OdWJUVEUypYty40bNwA4dOgQDRo0yFY9WS0jPXXr1iU4OJjExEQSEhK4\nePEiVatW1dlm5syZPHz4kK1bt2Z5Bp709tnt27fp0KGD9nVsbCyVKlXKVB3p7Xdra2u+//57WrZs\nSbNmzbC2tsbFxcXgn8VQ5430vv/0zglGkyMtzblMQkKC8PDwEL179xadO3cWf/zxhxBC8+Tr2rVr\nhRCapwi7desm6tevL+bMmWPKcIUQmocVXjyEdf/+fVGuXDkhhBDx8fGib9++olevXqJGjRrit99+\nM1mM+vbZ5s2bxdtvvy2EEOLnn38WHTt2FK6ursLd3V3ExcWZJM6UlBTh6ekpunXrJlxcXMTOnTuF\nELn7+8/PPvroI/G///1P1KtXTwQHBwshdP9uAgMDRZcuXUS7du3E6NGjs1RHRESE6N+/v+jcubNo\n166d9ql2JycncfXqVe12Fy9ezNZT0D4+PsLNzU00btxYfP/99zqf5f79+8Lc3FzUqFFDODk5CScn\nJ/HVV19lqR59++zVv99Zs2aJ7t27iy5duoilS5dmqQ59+/3Vc88L8fHx2XoKOr3v3xDnjfS+/7TO\nCcZWoKcjjI2NpUiRImmuT0xMRAhhsrkiMyMmJobChQtn6ZaWIWVknz179gxbW9scjCrtOAoXLoyZ\nmZne9Xnp+8/r4uLi0nzOITPbGKKe7EpOTkYIkaUHrDIjvc+SkJCAubl5mn/fhqrHEDJShyHOG+nV\nk945wdAKdAKWJEmSJFMpkG3AkiRJkmRqMgFLkiRJkgnIBCxJkiRJJiATsCRJkiSZgEzAkiRJkmQC\nMgFLkiRJkgnIBCxJkiRJJiATsCRJkiSZgEzAkiRJkmQCMgFLkiRJkgnIBCxJkiRJJiATsCRJkiSZ\ngEzAkiRJkmQCMgFLkiRJkgmYmzoA6fUePHhAbGyszrJKlSrx5MkTChcunOV5OoUQ/PPPP1SoUCFL\n74+MjMTGxgYrK6ssvV+SCrr4+HiePn1K6dKlTR2KZCLyCjiXGzVqFAMGDGD06NHaf48ePWLZsmUE\nBgYSERHB1KlTATh8+DAbN27MULkxMTF069Yty3FNmTKFY8eOZfn9klTQHT16FC8vL1OHIZmQTMB5\nwPz589m9e7f2X5kyZRgzZgxNmjTh7NmzBAYG8s8///DHH39w6dIlnj17Bmh+YV+5ckWnrISEBAID\nA4mJiUlVT3h4uPa9ADdv3iQlJYXk5GTOnTvHyZMniYuL03nPkydPePjwIQBqtZqbN29q1+mr/86d\nOxw9epTHjx9nb6dIUj7232MnrWMTIDQ0lOfPn2vX3b9/n6ioKM6dO4cQgpiYGE6cOEFwcDBCCO12\nYWFhhIeHExUVxZMnT7TL/1ueZDzyFnQe8OTJEyIjIwGwsrLCxsaGTz/9lJ49e3L8+HHu3r1LYGAg\nZ86cQQjB3bt3OXv2LFu2bMHR0ZHQ0FB++eUXnj59SqdOnXB1deWvv/5KVc/evXu5ePEiCxcu5MmT\nJ/Tq1Ytz587h6upK06ZNdQ7kF3bu3MnVq1eZO3cusbGx9OrVi5CQEHx9fVPVf+TIEebOnYubmxsf\nfPAB/v7+VK9ePcf2oyTlBfqOHX3HZlBQEL1798bR0ZHr16/Tv39/hgwZwqxZs7hw4QIlSpRg7ty5\nDB8+nDfeeINTp05RvXp1Vq1axbx58zhw4AA1a9YkKCiIcePG0b9/fzw8PFKVJxmPTMB5wKxZsyhW\nrBgAPXr04OOPP9au8/Dw4MKFC/Tp04c7d+4ghKB27doMHz4cX19fbG1tWblyJbt37+bSpUu8/fbb\nTJ06laNHjzJmzBidet58800WLFjA/Pnz2bp1KwMGDCA2NpapU6fStWtXbty4QceOHTN09bpy5cpU\n9f/999/UqFGDIUOGMHjwYOzt7Q27oyQpH9B37Og7Nvfs2UOtWrWYMmUKycnJeHh4aBPmkCFDGDly\nJKGhoaxbtw4XFxeOHj3Khx9+SGJiIl999RX379/H3Nwcd3d3gNeWJxmHTMB5wJdffknHjh0zvP2z\nZ8+4dOkSM2bM0C6rUqUKYWFh9OzZE4CGDRumel/hwoVp1aoVhw8fxtfXFx8fHywsLPDx8WHRokW4\nuLgghNDe+vovtVr92vrHjh3L0qVLeeutt0hJSWHjxo0UL148w59LkvK7tI4dfcfmV199xalTpxg/\nfjwADg4O2tvUVapU0b5/0qRJWFhY4OLiQkpKCpGRkTg4OGBurjn9u7i4AHDs2DG95dna2ubERy+Q\nZBtwHmdmZqZNiC/+39bWlrp167Jo0SI2bdpEjx49cHBwoF69ehw5cgSAwMBAveUNGzaMpUuXUqhQ\nISpVqsTevXtRFIWDBw/y2WefERsbq5OAra2tefDgAQAhISEAada/Y8cO2rZty+nTpxk0aBCbN282\n5q6RpDwnrWMHUh+bnTp1wtnZmU2bNrFmzRrKlStHkSJFAFCpNKf2VatW0b9/f37//Xd69+5NSkoK\n5cuXJyUlhYiICJKTk9m/fz/Aa8uTjENeAedxlSpVIiQkhHnz5tG+fXs8PT2pVasWs2fPZvjw4Vhb\nWxMfH8/WrVtp2bIlffr0oWvXrjg5OaEoSqryWrVqRWhoKLNmzQKgffv2zJ8/H09PTxISEqhevTp3\n797Vbu/q6sqcOXPo3r07pUqV0nZL0lf/P//8w/DhwyldujR37txhw4YNObOTJCmX2rt3L7Vr19a+\n9vf313vsQOpjs1OnTmzfvh13d3diYmIYOnSoNvG+0LdvXyZNmkRAQACWlpYkJyeTnJzMypUref/9\n97G0tKRIkSJYW1tnqDzJsBTx6mNxUp6kVqtJSUnBwsKCpKQkzMzMtAfO8+fPKVy4sM72cXFxme4/\n/OTJE4oWLZrp9frqf/r0KXZ2dpmqX5IKGn3Hjj7x8fEUKlRI7w9q0Jwfnj9/jo2NjXbZmjVrGDly\nJIqi8Oabb/LJJ5/QuHHjDJUnGY68As4HVCqVNuFaWFjorNN3AGdl8I7XJd/XrddXv0y+kpS+jCRf\nIN3BcFQqlU7yBU2S7datG0IIHBwcdJ4JkYPr5Bx5BSxJklQApaSkkJKSgqWlpalDKbBkApYkSZIk\nE5At7JIkSZJkAjIBS5IkSZIJyAQsSZIkSSYgE7AkSZIkmYBMwJIkSZJkAjIBS5IkSZIJyAQsSZIk\nSSYgE7AkSZIkmYBMwJIkSZJkAjIBS5IkSZIJyAQsSZIkSSbwf/WrCZmGNOguAAAAAElFTkSuQmCC\n"
515 }
516 ],
517 "prompt_number": 16
518 },
519 {
520 "cell_type": "heading",
521 "level": 2,
522 "source": [
523 "Passing data back and forth"
524 ]
525 },
526 {
527 "cell_type": "markdown",
528 "source": [
529 "Currently, data is passed through RMagics.pyconverter when going from python to R and RMagics.Rconverter when ",
530 "going from R to python. These currently default to numpy.ndarray. Future work will involve writing better converters, most likely involving integration with http://pandas.sourceforge.net.",
531 "",
532 "Passing ndarrays into R seems to require a copy, though once an object is returned to python, this object is NOT copied, and it is possible to change its values.",
533 ""
534 ]
535 },
536 {
537 "cell_type": "code",
538 "collapsed": true,
539 "input": [
540 "seq1 = np.arange(10)"
541 ],
542 "language": "python",
543 "outputs": [],
544 "prompt_number": 17
545 },
546 {
547 "cell_type": "code",
548 "collapsed": false,
549 "input": [
550 "%%R -i seq1 -o seq2",
551 "seq2 = rep(seq1, 2)",
552 "print(seq2)"
553 ],
554 "language": "python",
555 "outputs": [
556 {
557 "output_type": "display_data",
558 "text": [
559 " [1] 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9",
560 ""
561 ]
562 }
563 ],
564 "prompt_number": 18
565 },
566 {
567 "cell_type": "code",
568 "collapsed": false,
569 "input": [
570 "seq2[::2] = 0",
571 "seq2"
572 ],
573 "language": "python",
574 "outputs": [
575 {
576 "output_type": "pyout",
577 "prompt_number": 19,
578 "text": [
579 "array([0, 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, 1, 0, 3, 0, 5, 0, 7, 0, 9], dtype=int32)"
580 ]
581 }
582 ],
583 "prompt_number": 19
584 },
585 {
586 "cell_type": "code",
587 "collapsed": false,
588 "input": [
589 "%%R",
590 "print(seq2)"
591 ],
592 "language": "python",
593 "outputs": [
594 {
595 "output_type": "display_data",
596 "text": [
597 " [1] 0 1 0 3 0 5 0 7 0 9 0 1 0 3 0 5 0 7 0 9",
598 ""
599 ]
600 }
601 ],
602 "prompt_number": 20
603 },
604 {
605 "cell_type": "markdown",
606 "source": [
607 "Once the array data has been passed to R, modifring its contents does not modify R's copy of the data."
608 ]
609 },
610 {
611 "cell_type": "code",
612 "collapsed": false,
613 "input": [
614 "seq1[0] = 200",
615 "%R print(seq1)"
616 ],
617 "language": "python",
618 "outputs": [
619 {
620 "output_type": "display_data",
621 "text": [
622 " [1] 0 1 2 3 4 5 6 7 8 9",
623 ""
624 ]
625 }
626 ],
627 "prompt_number": 21
628 },
629 {
630 "cell_type": "markdown",
631 "source": [
632 "But, if we pass data as both input and output, then the value of \"data\" in user_ns will be overwritten and the",
633 "new array will be a view of the data in R's copy."
634 ]
635 },
636 {
637 "cell_type": "code",
638 "collapsed": false,
639 "input": [
640 "print seq1",
641 "%R -i seq1 -o seq1",
642 "print seq1",
643 "seq1[0] = 200",
644 "%R print(seq1)",
645 "seq1_view = %R seq1",
646 "assert(id(seq1_view.data) == id(seq1.data))"
647 ],
648 "language": "python",
649 "outputs": [
650 {
651 "output_type": "stream",
652 "stream": "stdout",
653 "text": [
654 "[200 1 2 3 4 5 6 7 8 9]",
655 "[200 1 2 3 4 5 6 7 8 9]",
656 ""
657 ]
658 },
659 {
660 "output_type": "display_data",
661 "text": [
662 " [1] 200 1 2 3 4 5 6 7 8 9",
663 ""
664 ]
665 }
666 ],
667 "prompt_number": 22
668 },
669 {
670 "cell_type": "heading",
671 "level": 2,
672 "source": [
673 "Exception handling",
674 ""
675 ]
676 },
677 {
678 "cell_type": "markdown",
679 "source": [
680 "Exceptions are handled by passing back rpy2's exception and the line that triggered it."
681 ]
682 },
683 {
684 "cell_type": "code",
685 "collapsed": false,
686 "input": [
687 "try:",
688 " %R -n nosuchvar",
689 "except Exception as e:",
690 " print e.message",
691 " pass"
692 ],
693 "language": "python",
694 "outputs": [
695 {
696 "output_type": "stream",
697 "stream": "stdout",
698 "text": [
699 "parsing and evaluating line \"nosuchvar\".",
700 "R error message: \"Error in eval(expr, envir, enclos) : object 'nosuchvar' not found",
701 "\"",
702 " R stdout:\"Error in eval(expr, envir, enclos) : object 'nosuchvar' not found",
703 "\"",
704 "",
705 ""
706 ]
707 }
708 ],
709 "prompt_number": 23
710 },
711 {
712 "cell_type": "heading",
713 "level": 2,
714 "source": [
715 "Structured arrays and data frames",
716 ""
717 ]
718 },
719 {
720 "cell_type": "markdown",
721 "source": [
722 "In R, data frames play an important role as they allow array-like objects of mixed type with column names (and row names). In bumpy, the closest analogy is a structured array with named fields. In future work, it would be nice to use pandas to return full-fledged DataFrames from rpy2. In the mean time, structured arrays can be passed back and forth with the -d flag to %R, %Rpull, and %Rget"
723 ]
724 },
725 {
726 "cell_type": "code",
727 "collapsed": true,
728 "input": [
729 "datapy= np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c')],",
730 " dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])",
731 ""
732 ],
733 "language": "python",
734 "outputs": [],
735 "prompt_number": 24
736 },
737 {
738 "cell_type": "code",
739 "collapsed": true,
740 "input": [
741 "%%R -i datapy -d datar",
742 "datar = datapy"
743 ],
744 "language": "python",
745 "outputs": [],
746 "prompt_number": 25
747 },
748 {
749 "cell_type": "code",
750 "collapsed": false,
751 "input": [
752 "datar"
753 ],
754 "language": "python",
755 "outputs": [
756 {
757 "output_type": "pyout",
758 "prompt_number": 26,
759 "text": [
760 "array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c')], ",
761 " dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])"
762 ]
763 }
764 ],
765 "prompt_number": 26
766 },
767 {
768 "cell_type": "code",
769 "collapsed": false,
770 "input": [
771 "%R datar2 = datapy",
772 "%Rpull -d datar2",
773 "datar2"
774 ],
775 "language": "python",
776 "outputs": [
777 {
778 "output_type": "pyout",
779 "prompt_number": 27,
780 "text": [
781 "array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c')], ",
782 " dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])"
783 ]
784 }
785 ],
786 "prompt_number": 27
787 },
788 {
789 "cell_type": "code",
790 "collapsed": false,
791 "input": [
792 "%Rget -d datar2"
793 ],
794 "language": "python",
795 "outputs": [
796 {
797 "output_type": "pyout",
798 "prompt_number": 28,
799 "text": [
800 "array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c')], ",
801 " dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])"
802 ]
803 }
804 ],
805 "prompt_number": 28
806 },
807 {
808 "cell_type": "markdown",
809 "source": [
810 "For arrays without names, the -d argument has no effect because the R object has no colnames or names."
811 ]
812 },
813 {
814 "cell_type": "code",
815 "collapsed": false,
816 "input": [
817 "Z = np.arange(6)",
818 "%R -i Z",
819 "%Rget -d Z"
820 ],
821 "language": "python",
822 "outputs": [
823 {
824 "output_type": "pyout",
825 "prompt_number": 29,
826 "text": [
827 "array([0, 1, 2, 3, 4, 5], dtype=int32)"
828 ]
829 }
830 ],
831 "prompt_number": 29
832 },
833 {
834 "cell_type": "markdown",
835 "source": [
836 "For mixed-type data frames in R, if the -d flag is not used, then an array of a single type is returned and",
837 "its value is transposed. This would be nice to fix, but it seems something that should be fixed at the rpy2 level (See: https://bitbucket.org/lgautier/rpy2/issue/44/numpyrecarray-as-dataframe)"
838 ]
839 },
840 {
841 "cell_type": "code",
842 "collapsed": false,
843 "input": [
844 "%Rget datar2"
845 ],
846 "language": "python",
847 "outputs": [
848 {
849 "output_type": "pyout",
850 "prompt_number": 30,
851 "text": [
852 "array([['1', '2', '3'],",
853 " ['2', '3', '2'],",
854 " ['a', 'b', 'c']], ",
855 " dtype='|S1')"
856 ]
857 }
858 ],
859 "prompt_number": 30
860 },
861 {
862 "cell_type": "code",
863 "collapsed": true,
864 "input": [
865 ""
866 ],
867 "language": "python",
868 "outputs": [],
869 "prompt_number": 30
870 }
871 ]
872 }
873 ]
874 } No newline at end of file
@@ -0,0 +1,7 b''
1 .. _extensions_rmagic:
2
3 ===========
4 Rmagic
5 ===========
6
7 .. automodule:: IPython.extensions.rmagic
@@ -148,16 +148,17 b' have = {}'
148
148
149 have['curses'] = test_for('_curses')
149 have['curses'] = test_for('_curses')
150 have['matplotlib'] = test_for('matplotlib')
150 have['matplotlib'] = test_for('matplotlib')
151 have['numpy'] = test_for('numpy')
151 have['pexpect'] = test_for('IPython.external.pexpect')
152 have['pexpect'] = test_for('IPython.external.pexpect')
152 have['pymongo'] = test_for('pymongo')
153 have['pymongo'] = test_for('pymongo')
153 have['pygments'] = test_for('pygments')
154 have['pygments'] = test_for('pygments')
154 have['wx'] = test_for('wx')
155 have['wx.aui'] = test_for('wx.aui')
156 have['qt'] = test_for('IPython.external.qt')
155 have['qt'] = test_for('IPython.external.qt')
156 have['rpy2'] = test_for('rpy2')
157 have['sqlite3'] = test_for('sqlite3')
157 have['sqlite3'] = test_for('sqlite3')
158 have['cython'] = test_for('Cython')
158 have['cython'] = test_for('Cython')
159
160 have['tornado'] = test_for('tornado.version_info', (2,1,0), callback=None)
159 have['tornado'] = test_for('tornado.version_info', (2,1,0), callback=None)
160 have['wx'] = test_for('wx')
161 have['wx.aui'] = test_for('wx.aui')
161
162
162 if os.name == 'nt':
163 if os.name == 'nt':
163 min_zmq = (2,1,7)
164 min_zmq = (2,1,7)
@@ -280,6 +281,10 b' def make_exclude():'
280 if not have['tornado']:
281 if not have['tornado']:
281 exclusions.append(ipjoin('frontend', 'html'))
282 exclusions.append(ipjoin('frontend', 'html'))
282
283
284 if not have['rpy2'] or not have['numpy']:
285 exclusions.append(ipjoin('extensions', 'rmagic'))
286 exclusions.append(ipjoin('extensions', 'tests', 'test_rmagic'))
287
283 # This is needed for the reg-exp to match on win32 in the ipdoctest plugin.
288 # This is needed for the reg-exp to match on win32 in the ipdoctest plugin.
284 if sys.platform == 'win32':
289 if sys.platform == 'win32':
285 exclusions = [s.replace('\\','\\\\') for s in exclusions]
290 exclusions = [s.replace('\\','\\\\') for s in exclusions]
General Comments 0
You need to be logged in to leave comments. Login now