Show More
@@ -1,439 +1,439 | |||
|
1 | 1 | { |
|
2 | 2 | "metadata": { |
|
3 | 3 | "name": "Part 1 - Running Code" |
|
4 | 4 | }, |
|
5 | 5 | "nbformat": 3, |
|
6 | 6 | "nbformat_minor": 0, |
|
7 | 7 | "worksheets": [ |
|
8 | 8 | { |
|
9 | 9 | "cells": [ |
|
10 | 10 | { |
|
11 | 11 | "cell_type": "heading", |
|
12 | 12 | "level": 1, |
|
13 | 13 | "metadata": {}, |
|
14 | 14 | "source": [ |
|
15 | 15 | "Running Code in the IPython Notebook" |
|
16 | 16 | ] |
|
17 | 17 | }, |
|
18 | 18 | { |
|
19 | 19 | "cell_type": "markdown", |
|
20 | 20 | "metadata": {}, |
|
21 | 21 | "source": [ |
|
22 | 22 | "First and foremost, the IPython Notebook is an interactive environment for writing and running Python code." |
|
23 | 23 | ] |
|
24 | 24 | }, |
|
25 | 25 | { |
|
26 | 26 | "cell_type": "heading", |
|
27 | 27 | "level": 2, |
|
28 | 28 | "metadata": {}, |
|
29 | 29 | "source": [ |
|
30 | 30 | "Code cells allow you to enter and run Python code" |
|
31 | 31 | ] |
|
32 | 32 | }, |
|
33 | 33 | { |
|
34 | 34 | "cell_type": "markdown", |
|
35 | 35 | "metadata": {}, |
|
36 | 36 | "source": [ |
|
37 | 37 | "Run a code cell using `Shift-Enter` or pressing the \"Play\" button in the toolbar above:" |
|
38 | 38 | ] |
|
39 | 39 | }, |
|
40 | 40 | { |
|
41 | 41 | "cell_type": "code", |
|
42 | 42 | "collapsed": false, |
|
43 | 43 | "input": [ |
|
44 | 44 | "a = 10" |
|
45 | 45 | ], |
|
46 | 46 | "language": "python", |
|
47 | 47 | "metadata": {}, |
|
48 | 48 | "outputs": [], |
|
49 | 49 | "prompt_number": 10 |
|
50 | 50 | }, |
|
51 | 51 | { |
|
52 | 52 | "cell_type": "code", |
|
53 | 53 | "collapsed": false, |
|
54 | 54 | "input": [ |
|
55 |
"print |
|
|
55 | "print(a)" | |
|
56 | 56 | ], |
|
57 | 57 | "language": "python", |
|
58 | 58 | "metadata": {}, |
|
59 | 59 | "outputs": [ |
|
60 | 60 | { |
|
61 | 61 | "output_type": "stream", |
|
62 | 62 | "stream": "stdout", |
|
63 | 63 | "text": [ |
|
64 | 64 | "10\n" |
|
65 | 65 | ] |
|
66 | 66 | } |
|
67 | 67 | ], |
|
68 | 68 | "prompt_number": 11 |
|
69 | 69 | }, |
|
70 | 70 | { |
|
71 | 71 | "cell_type": "heading", |
|
72 | 72 | "level": 2, |
|
73 | 73 | "metadata": {}, |
|
74 | 74 | "source": [ |
|
75 | 75 | "Managing the IPython Kernel" |
|
76 | 76 | ] |
|
77 | 77 | }, |
|
78 | 78 | { |
|
79 | 79 | "cell_type": "markdown", |
|
80 | 80 | "metadata": {}, |
|
81 | 81 | "source": [ |
|
82 | 82 | "Code is run in a separate process called the IPython Kernel. The Kernel can be interrupted or restarted. Try running the following cell and then hit the \"Stop\" button in the toolbar above." |
|
83 | 83 | ] |
|
84 | 84 | }, |
|
85 | 85 | { |
|
86 | 86 | "cell_type": "code", |
|
87 | 87 | "collapsed": false, |
|
88 | 88 | "input": [ |
|
89 | 89 | "import time\n", |
|
90 | 90 | "time.sleep(10)" |
|
91 | 91 | ], |
|
92 | 92 | "language": "python", |
|
93 | 93 | "metadata": {}, |
|
94 | 94 | "outputs": [ |
|
95 | 95 | { |
|
96 | 96 | "ename": "KeyboardInterrupt", |
|
97 | 97 | "evalue": "", |
|
98 | 98 | "output_type": "pyerr", |
|
99 | 99 | "traceback": [ |
|
100 | 100 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", |
|
101 | 101 | "\u001b[0;32m<ipython-input-16-d7b436e260d5>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msleep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
|
102 | 102 | "\u001b[0;31mKeyboardInterrupt\u001b[0m: " |
|
103 | 103 | ] |
|
104 | 104 | } |
|
105 | 105 | ], |
|
106 | 106 | "prompt_number": 16 |
|
107 | 107 | }, |
|
108 | 108 | { |
|
109 | 109 | "cell_type": "markdown", |
|
110 | 110 | "metadata": {}, |
|
111 | 111 | "source": [ |
|
112 | 112 | "If the Kernel dies you will be prompted to restart it. Here we call the low-level system libc.time routine with the wrong argument via\n", |
|
113 | 113 | "ctypes to segfault the Python interpreter:" |
|
114 | 114 | ] |
|
115 | 115 | }, |
|
116 | 116 | { |
|
117 | 117 | "cell_type": "code", |
|
118 | 118 | "collapsed": false, |
|
119 | 119 | "input": [ |
|
120 | 120 | "import sys\n", |
|
121 | 121 | "from ctypes import CDLL\n", |
|
122 | 122 | "# This will crash a Linux or Mac system; equivalent calls can be made on Windows\n", |
|
123 |
"dll = 'dylib' if sys.platform == 'darwin' else ' |
|
|
123 | "dll = 'dylib' if sys.platform == 'darwin' else 'so.6'\n", | |
|
124 | 124 | "libc = CDLL(\"libc.%s\" % dll) \n", |
|
125 | 125 | "libc.time(-1) # BOOM!!" |
|
126 | 126 | ], |
|
127 | 127 | "language": "python", |
|
128 | 128 | "metadata": {}, |
|
129 | 129 | "outputs": [], |
|
130 | 130 | "prompt_number": "*" |
|
131 | 131 | }, |
|
132 | 132 | { |
|
133 | 133 | "cell_type": "heading", |
|
134 | 134 | "level": 2, |
|
135 | 135 | "metadata": {}, |
|
136 | 136 | "source": [ |
|
137 | 137 | "All of the goodness of IPython works" |
|
138 | 138 | ] |
|
139 | 139 | }, |
|
140 | 140 | { |
|
141 | 141 | "cell_type": "markdown", |
|
142 | 142 | "metadata": {}, |
|
143 | 143 | "source": [ |
|
144 | 144 | "Here are two system aliases:" |
|
145 | 145 | ] |
|
146 | 146 | }, |
|
147 | 147 | { |
|
148 | 148 | "cell_type": "code", |
|
149 | 149 | "collapsed": false, |
|
150 | 150 | "input": [ |
|
151 | 151 | "pwd" |
|
152 | 152 | ], |
|
153 | 153 | "language": "python", |
|
154 | 154 | "metadata": {}, |
|
155 | 155 | "outputs": [ |
|
156 | 156 | { |
|
157 | 157 | "output_type": "pyout", |
|
158 | 158 | "prompt_number": 4, |
|
159 | 159 | "text": [ |
|
160 | 160 | "u'/Users/bgranger/Documents/Computation/IPython/code/ipython/examples/notebooks'" |
|
161 | 161 | ] |
|
162 | 162 | } |
|
163 | 163 | ], |
|
164 | 164 | "prompt_number": 4 |
|
165 | 165 | }, |
|
166 | 166 | { |
|
167 | 167 | "cell_type": "code", |
|
168 | 168 | "collapsed": false, |
|
169 | 169 | "input": [ |
|
170 | 170 | "ls" |
|
171 | 171 | ], |
|
172 | 172 | "language": "python", |
|
173 | 173 | "metadata": {}, |
|
174 | 174 | "outputs": [ |
|
175 | 175 | { |
|
176 | 176 | "output_type": "stream", |
|
177 | 177 | "stream": "stdout", |
|
178 | 178 | "text": [ |
|
179 | 179 | "01_notebook_introduction.ipynb Octave Magic.ipynb\r\n", |
|
180 | 180 | "Animations Using clear_output.ipynb PyLab and Matplotlib.ipynb\r\n", |
|
181 | 181 | "Basic Output.ipynb R Magics.ipynb\r\n", |
|
182 | 182 | "Custom Display Logic.ipynb Running Code.ipynb\r\n", |
|
183 | 183 | "Cython Magics.ipynb Script Magics.ipynb\r\n", |
|
184 | 184 | "Data Publication API.ipynb SymPy Examples.ipynb\r\n", |
|
185 | 185 | "Display System.ipynb Trapezoid Rule.ipynb\r\n", |
|
186 | 186 | "JS Progress Bar.ipynb Typesetting Math Using MathJax.ipynb\r\n", |
|
187 | 187 | "Local Files.ipynb animation.m4v\r\n", |
|
188 | 188 | "Markdown Cells.ipynb python-logo.svg\r\n", |
|
189 | 189 | "Notebook Tour.ipynb\r\n" |
|
190 | 190 | ] |
|
191 | 191 | } |
|
192 | 192 | ], |
|
193 | 193 | "prompt_number": 2 |
|
194 | 194 | }, |
|
195 | 195 | { |
|
196 | 196 | "cell_type": "markdown", |
|
197 | 197 | "metadata": {}, |
|
198 | 198 | "source": [ |
|
199 | 199 | "Any command line program can be run using `!` with string interpolation from Python variables:" |
|
200 | 200 | ] |
|
201 | 201 | }, |
|
202 | 202 | { |
|
203 | 203 | "cell_type": "code", |
|
204 | 204 | "collapsed": false, |
|
205 | 205 | "input": [ |
|
206 | 206 | "message = 'The IPython notebook is great!'\n", |
|
207 | 207 | "# note: the echo command does not run on Windows, it's a unix command.\n", |
|
208 | 208 | "!echo $message" |
|
209 | 209 | ], |
|
210 | 210 | "language": "python", |
|
211 | 211 | "metadata": {}, |
|
212 | 212 | "outputs": [] |
|
213 | 213 | }, |
|
214 | 214 | { |
|
215 | 215 | "cell_type": "markdown", |
|
216 | 216 | "metadata": {}, |
|
217 | 217 | "source": [ |
|
218 | 218 | "Tab completion works:" |
|
219 | 219 | ] |
|
220 | 220 | }, |
|
221 | 221 | { |
|
222 | 222 | "cell_type": "code", |
|
223 | 223 | "collapsed": false, |
|
224 | 224 | "input": [ |
|
225 | 225 | "import numpy\n", |
|
226 | 226 | "numpy.random." |
|
227 | 227 | ], |
|
228 | 228 | "language": "python", |
|
229 | 229 | "metadata": {}, |
|
230 | 230 | "outputs": [], |
|
231 | 231 | "prompt_number": 9 |
|
232 | 232 | }, |
|
233 | 233 | { |
|
234 | 234 | "cell_type": "markdown", |
|
235 | 235 | "metadata": {}, |
|
236 | 236 | "source": [ |
|
237 | 237 | "Tab completion after `(` brings up a tooltip with the docstring:" |
|
238 | 238 | ] |
|
239 | 239 | }, |
|
240 | 240 | { |
|
241 | 241 | "cell_type": "code", |
|
242 | 242 | "collapsed": false, |
|
243 | 243 | "input": [ |
|
244 | 244 | "numpy.random.rand(" |
|
245 | 245 | ], |
|
246 | 246 | "language": "python", |
|
247 | 247 | "metadata": {}, |
|
248 | 248 | "outputs": [] |
|
249 | 249 | }, |
|
250 | 250 | { |
|
251 | 251 | "cell_type": "markdown", |
|
252 | 252 | "metadata": {}, |
|
253 | 253 | "source": [ |
|
254 | 254 | "Adding `?` opens the docstring in the pager below:" |
|
255 | 255 | ] |
|
256 | 256 | }, |
|
257 | 257 | { |
|
258 | 258 | "cell_type": "code", |
|
259 | 259 | "collapsed": false, |
|
260 | 260 | "input": [ |
|
261 | 261 | "magic?" |
|
262 | 262 | ], |
|
263 | 263 | "language": "python", |
|
264 | 264 | "metadata": {}, |
|
265 | 265 | "outputs": [], |
|
266 | 266 | "prompt_number": 8 |
|
267 | 267 | }, |
|
268 | 268 | { |
|
269 | 269 | "cell_type": "markdown", |
|
270 | 270 | "metadata": {}, |
|
271 | 271 | "source": [ |
|
272 | 272 | "Exceptions are formatted nicely:" |
|
273 | 273 | ] |
|
274 | 274 | }, |
|
275 | 275 | { |
|
276 | 276 | "cell_type": "code", |
|
277 | 277 | "collapsed": false, |
|
278 | 278 | "input": [ |
|
279 | 279 | "x = 1\n", |
|
280 | 280 | "y = 4\n", |
|
281 | 281 | "z = y/(1-x)" |
|
282 | 282 | ], |
|
283 | 283 | "language": "python", |
|
284 | 284 | "metadata": {}, |
|
285 | 285 | "outputs": [ |
|
286 | 286 | { |
|
287 | 287 | "ename": "ZeroDivisionError", |
|
288 | 288 | "evalue": "integer division or modulo by zero", |
|
289 | 289 | "output_type": "pyerr", |
|
290 | 290 | "traceback": [ |
|
291 | 291 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", |
|
292 | 292 | "\u001b[0;32m<ipython-input-15-dc39888fd1d2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mz\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
|
293 | 293 | "\u001b[0;31mZeroDivisionError\u001b[0m: integer division or modulo by zero" |
|
294 | 294 | ] |
|
295 | 295 | } |
|
296 | 296 | ], |
|
297 | 297 | "prompt_number": 15 |
|
298 | 298 | }, |
|
299 | 299 | { |
|
300 | 300 | "cell_type": "heading", |
|
301 | 301 | "level": 2, |
|
302 | 302 | "metadata": {}, |
|
303 | 303 | "source": [ |
|
304 | 304 | "Working with external code" |
|
305 | 305 | ] |
|
306 | 306 | }, |
|
307 | 307 | { |
|
308 | 308 | "cell_type": "markdown", |
|
309 | 309 | "metadata": {}, |
|
310 | 310 | "source": [ |
|
311 | 311 | "There are a number of ways of getting external code into code cells." |
|
312 | 312 | ] |
|
313 | 313 | }, |
|
314 | 314 | { |
|
315 | 315 | "cell_type": "markdown", |
|
316 | 316 | "metadata": {}, |
|
317 | 317 | "source": [ |
|
318 | 318 | "Pasting code with `>>>` prompts works as expected:" |
|
319 | 319 | ] |
|
320 | 320 | }, |
|
321 | 321 | { |
|
322 | 322 | "cell_type": "code", |
|
323 | 323 | "collapsed": false, |
|
324 | 324 | "input": [ |
|
325 | 325 | ">>> the_world_is_flat = 1\n", |
|
326 | 326 | ">>> if the_world_is_flat:\n", |
|
327 |
"... print |
|
|
327 | "... print(\"Be careful not to fall off!\")" | |
|
328 | 328 | ], |
|
329 | 329 | "language": "python", |
|
330 | 330 | "metadata": {}, |
|
331 | 331 | "outputs": [ |
|
332 | 332 | { |
|
333 | 333 | "output_type": "stream", |
|
334 | 334 | "stream": "stdout", |
|
335 | 335 | "text": [ |
|
336 | 336 | "Be careful not to fall off!\n" |
|
337 | 337 | ] |
|
338 | 338 | } |
|
339 | 339 | ], |
|
340 | 340 | "prompt_number": 1 |
|
341 | 341 | }, |
|
342 | 342 | { |
|
343 | 343 | "cell_type": "markdown", |
|
344 | 344 | "metadata": {}, |
|
345 | 345 | "source": [ |
|
346 | 346 | "The `%load` magic lets you load code from URLs or local files:" |
|
347 | 347 | ] |
|
348 | 348 | }, |
|
349 | 349 | { |
|
350 | 350 | "cell_type": "code", |
|
351 | 351 | "collapsed": false, |
|
352 | 352 | "input": [ |
|
353 | 353 | "%load?" |
|
354 | 354 | ], |
|
355 | 355 | "language": "python", |
|
356 | 356 | "metadata": {}, |
|
357 | 357 | "outputs": [], |
|
358 | 358 | "prompt_number": 14 |
|
359 | 359 | }, |
|
360 | 360 | { |
|
361 | 361 | "cell_type": "code", |
|
362 | 362 | "collapsed": false, |
|
363 | 363 | "input": [ |
|
364 | 364 | "%pylab inline" |
|
365 | 365 | ], |
|
366 | 366 | "language": "python", |
|
367 | 367 | "metadata": {}, |
|
368 | 368 | "outputs": [ |
|
369 | 369 | { |
|
370 | 370 | "output_type": "stream", |
|
371 | 371 | "stream": "stdout", |
|
372 | 372 | "text": [ |
|
373 | 373 | "\n", |
|
374 | 374 | "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", |
|
375 | 375 | "For more information, type 'help(pylab)'.\n" |
|
376 | 376 | ] |
|
377 | 377 | } |
|
378 | 378 | ], |
|
379 | 379 | "prompt_number": 2 |
|
380 | 380 | }, |
|
381 | 381 | { |
|
382 | 382 | "cell_type": "code", |
|
383 | 383 | "collapsed": false, |
|
384 | 384 | "input": [ |
|
385 | 385 | "%load http://matplotlib.sourceforge.net/mpl_examples/pylab_examples/integral_demo.py" |
|
386 | 386 | ], |
|
387 | 387 | "language": "python", |
|
388 | 388 | "metadata": {}, |
|
389 | 389 | "outputs": [], |
|
390 | 390 | "prompt_number": 3 |
|
391 | 391 | }, |
|
392 | 392 | { |
|
393 | 393 | "cell_type": "code", |
|
394 | 394 | "collapsed": false, |
|
395 | 395 | "input": [ |
|
396 | 396 | "#!/usr/bin/env python\n", |
|
397 | 397 | "\n", |
|
398 | 398 | "# implement the example graphs/integral from pyx\n", |
|
399 | 399 | "from pylab import *\n", |
|
400 | 400 | "from matplotlib.patches import Polygon\n", |
|
401 | 401 | "\n", |
|
402 | 402 | "def func(x):\n", |
|
403 | 403 | " return (x-3)*(x-5)*(x-7)+85\n", |
|
404 | 404 | "\n", |
|
405 | 405 | "ax = subplot(111)\n", |
|
406 | 406 | "\n", |
|
407 | 407 | "a, b = 2, 9 # integral area\n", |
|
408 | 408 | "x = arange(0, 10, 0.01)\n", |
|
409 | 409 | "y = func(x)\n", |
|
410 | 410 | "plot(x, y, linewidth=1)\n", |
|
411 | 411 | "\n", |
|
412 | 412 | "# make the shaded region\n", |
|
413 | 413 | "ix = arange(a, b, 0.01)\n", |
|
414 | 414 | "iy = func(ix)\n", |
|
415 | 415 | "verts = [(a,0)] + zip(ix,iy) + [(b,0)]\n", |
|
416 | 416 | "poly = Polygon(verts, facecolor='0.8', edgecolor='k')\n", |
|
417 | 417 | "ax.add_patch(poly)\n", |
|
418 | 418 | "\n", |
|
419 | 419 | "text(0.5 * (a + b), 30,\n", |
|
420 | 420 | " r\"$\\int_a^b f(x)\\mathrm{d}x$\", horizontalalignment='center',\n", |
|
421 | 421 | " fontsize=20)\n", |
|
422 | 422 | "\n", |
|
423 | 423 | "axis([0,10, 0, 180])\n", |
|
424 | 424 | "figtext(0.9, 0.05, 'x')\n", |
|
425 | 425 | "figtext(0.1, 0.9, 'y')\n", |
|
426 | 426 | "ax.set_xticks((a,b))\n", |
|
427 | 427 | "ax.set_xticklabels(('a','b'))\n", |
|
428 | 428 | "ax.set_yticks([])\n", |
|
429 | 429 | "show()\n" |
|
430 | 430 | ], |
|
431 | 431 | "language": "python", |
|
432 | 432 | "metadata": {}, |
|
433 | 433 | "outputs": [] |
|
434 | 434 | } |
|
435 | 435 | ], |
|
436 | 436 | "metadata": {} |
|
437 | 437 | } |
|
438 | 438 | ] |
|
439 | 439 | } No newline at end of file |
@@ -1,1156 +1,1159 | |||
|
1 | 1 | { |
|
2 | 2 | "metadata": { |
|
3 | 3 | "name": "Part 2 - Basic Output" |
|
4 | 4 | }, |
|
5 | 5 | "nbformat": 3, |
|
6 | 6 | "nbformat_minor": 0, |
|
7 | 7 | "worksheets": [ |
|
8 | 8 | { |
|
9 | 9 | "cells": [ |
|
10 | 10 | { |
|
11 | 11 | "cell_type": "heading", |
|
12 | 12 | "level": 1, |
|
13 | 13 | "metadata": {}, |
|
14 | 14 | "source": [ |
|
15 | 15 | "Basic Output" |
|
16 | 16 | ] |
|
17 | 17 | }, |
|
18 | 18 | { |
|
19 | 19 | "cell_type": "markdown", |
|
20 | 20 | "metadata": {}, |
|
21 | 21 | "source": [ |
|
22 | 22 | "When a cell is run, it can generate *output*. In IPython, the definition of output is quite general; it can be text, images, LaTeX, HTML or JSON. All output is displayed below the code that generated it, in the *output area*.\n", |
|
23 | 23 | "\n", |
|
24 | 24 | "This Notebook describes the basics of output and shows how the `stdout/stderr` streams are handled." |
|
25 | 25 | ] |
|
26 | 26 | }, |
|
27 | 27 | { |
|
28 | 28 | "cell_type": "heading", |
|
29 | 29 | "level": 2, |
|
30 | 30 | "metadata": {}, |
|
31 | 31 | "source": [ |
|
32 | 32 | "Displayhook" |
|
33 | 33 | ] |
|
34 | 34 | }, |
|
35 | 35 | { |
|
36 | 36 | "cell_type": "markdown", |
|
37 | 37 | "metadata": {}, |
|
38 | 38 | "source": [ |
|
39 | 39 | "When a Python object is returned by an expression, Python's `displayhook` mechanism is triggered. In IPython, this results in an output prompt, such as `Out[2]`. These objects are then available under the variables:\n", |
|
40 | 40 | "\n", |
|
41 | 41 | "* `_` (last output)\n", |
|
42 | 42 | "* `__` (second to last output)\n", |
|
43 | 43 | "* `_N` (`Out[N]`)" |
|
44 | 44 | ] |
|
45 | 45 | }, |
|
46 | 46 | { |
|
47 | 47 | "cell_type": "code", |
|
48 | 48 | "collapsed": false, |
|
49 | 49 | "input": [ |
|
50 | "import numpy as np" | |
|
50 | "import numpy as np\n", | |
|
51 | "import sys" | |
|
51 | 52 | ], |
|
52 | 53 | "language": "python", |
|
53 | 54 | "metadata": {}, |
|
54 | 55 | "outputs": [], |
|
55 | 56 | "prompt_number": 24 |
|
56 | 57 | }, |
|
57 | 58 | { |
|
58 | 59 | "cell_type": "code", |
|
59 | 60 | "collapsed": false, |
|
60 | 61 | "input": [ |
|
61 |
"n |
|
|
62 | "np.random.rand(10)" | |
|
62 | 63 | ], |
|
63 | 64 | "language": "python", |
|
64 | 65 | "metadata": {}, |
|
65 | 66 | "outputs": [ |
|
66 | 67 | { |
|
67 | 68 | "output_type": "pyout", |
|
68 | 69 | "prompt_number": 27, |
|
69 | 70 | "text": [ |
|
70 | 71 | "array([ 0.94311014, 0.03500265, 0.59873731, 0.63411734, 0.03642486,\n", |
|
71 | 72 | " 0.22090049, 0.33132549, 0.24439398, 0.80084185, 0.25114916])" |
|
72 | 73 | ] |
|
73 | 74 | } |
|
74 | 75 | ], |
|
75 | 76 | "prompt_number": 27 |
|
76 | 77 | }, |
|
77 | 78 | { |
|
78 | 79 | "cell_type": "code", |
|
79 | 80 | "collapsed": false, |
|
80 | 81 | "input": [ |
|
81 | 82 | "np.sin(_)" |
|
82 | 83 | ], |
|
83 | 84 | "language": "python", |
|
84 | 85 | "metadata": {}, |
|
85 | 86 | "outputs": [ |
|
86 | 87 | { |
|
87 | 88 | "output_type": "pyout", |
|
88 | 89 | "prompt_number": 28, |
|
89 | 90 | "text": [ |
|
90 | 91 | "array([ 0.80938852, 0.0349955 , 0.56359988, 0.59246668, 0.0364168 ,\n", |
|
91 | 92 | " 0.21910832, 0.32529671, 0.24196836, 0.71794236, 0.24851724])" |
|
92 | 93 | ] |
|
93 | 94 | } |
|
94 | 95 | ], |
|
95 | 96 | "prompt_number": 28 |
|
96 | 97 | }, |
|
97 | 98 | { |
|
98 | 99 | "cell_type": "heading", |
|
99 | 100 | "level": 2, |
|
100 | 101 | "metadata": {}, |
|
101 | 102 | "source": [ |
|
102 | 103 | "sys.stdout and sys.stderr" |
|
103 | 104 | ] |
|
104 | 105 | }, |
|
105 | 106 | { |
|
106 | 107 | "cell_type": "markdown", |
|
107 | 108 | "metadata": {}, |
|
108 | 109 | "source": [ |
|
109 | 110 | "The stdout and stderr streams are displayed as text in the output area." |
|
110 | 111 | ] |
|
111 | 112 | }, |
|
112 | 113 | { |
|
113 | 114 | "cell_type": "code", |
|
114 | 115 | "collapsed": false, |
|
115 | 116 | "input": [ |
|
116 |
"print |
|
|
117 | "print(\"hi, stdout\")" | |
|
117 | 118 | ], |
|
118 | 119 | "language": "python", |
|
119 | 120 | "metadata": {}, |
|
120 | 121 | "outputs": [ |
|
121 | 122 | { |
|
122 | 123 | "output_type": "stream", |
|
123 | 124 | "stream": "stdout", |
|
124 | 125 | "text": [ |
|
125 | 126 | "hi, stdout\n" |
|
126 | 127 | ] |
|
127 | 128 | } |
|
128 | 129 | ], |
|
129 | 130 | "prompt_number": 29 |
|
130 | 131 | }, |
|
131 | 132 | { |
|
132 | 133 | "cell_type": "code", |
|
133 | 134 | "collapsed": false, |
|
134 | 135 | "input": [ |
|
135 | "print >> sys.stderr, 'hi, stderr'" | |
|
136 | "from __future__ import print_function\n", | |
|
137 | "print('hi, stderr', file=sys.stderr)" | |
|
136 | 138 | ], |
|
137 | 139 | "language": "python", |
|
138 | 140 | "metadata": {}, |
|
139 | 141 | "outputs": [ |
|
140 | 142 | { |
|
141 | 143 | "output_type": "stream", |
|
142 | 144 | "stream": "stderr", |
|
143 | 145 | "text": [ |
|
144 | 146 | "hi, stderr\n" |
|
145 | 147 | ] |
|
146 | 148 | } |
|
147 | 149 | ], |
|
148 | 150 | "prompt_number": 8 |
|
149 | 151 | }, |
|
150 | 152 | { |
|
151 | 153 | "cell_type": "heading", |
|
152 | 154 | "level": 2, |
|
153 | 155 | "metadata": {}, |
|
154 | 156 | "source": [ |
|
155 | 157 | "Output is asynchronous" |
|
156 | 158 | ] |
|
157 | 159 | }, |
|
158 | 160 | { |
|
159 | 161 | "cell_type": "markdown", |
|
160 | 162 | "metadata": {}, |
|
161 | 163 | "source": [ |
|
162 | 164 | "All output is displayed asynchronously as it is generated in the Kernel. If you execute the next cell, you will see the output one piece at a time, not all at the end." |
|
163 | 165 | ] |
|
164 | 166 | }, |
|
165 | 167 | { |
|
166 | 168 | "cell_type": "code", |
|
167 | 169 | "collapsed": false, |
|
168 | 170 | "input": [ |
|
169 | 171 | "import time, sys\n", |
|
170 | 172 | "for i in range(8):\n", |
|
171 |
" print |
|
|
173 | " print(i)\n", | |
|
172 | 174 | " time.sleep(0.5)" |
|
173 | 175 | ], |
|
174 | 176 | "language": "python", |
|
175 | 177 | "metadata": {}, |
|
176 | 178 | "outputs": [ |
|
177 | 179 | { |
|
178 | 180 | "output_type": "stream", |
|
179 | 181 | "stream": "stdout", |
|
180 | 182 | "text": [ |
|
181 | 183 | "0 " |
|
182 | 184 | ] |
|
183 | 185 | }, |
|
184 | 186 | { |
|
185 | 187 | "output_type": "stream", |
|
186 | 188 | "stream": "stdout", |
|
187 | 189 | "text": [ |
|
188 | 190 | "1 " |
|
189 | 191 | ] |
|
190 | 192 | }, |
|
191 | 193 | { |
|
192 | 194 | "output_type": "stream", |
|
193 | 195 | "stream": "stdout", |
|
194 | 196 | "text": [ |
|
195 | 197 | "2 " |
|
196 | 198 | ] |
|
197 | 199 | }, |
|
198 | 200 | { |
|
199 | 201 | "output_type": "stream", |
|
200 | 202 | "stream": "stdout", |
|
201 | 203 | "text": [ |
|
202 | 204 | "3 " |
|
203 | 205 | ] |
|
204 | 206 | }, |
|
205 | 207 | { |
|
206 | 208 | "output_type": "stream", |
|
207 | 209 | "stream": "stdout", |
|
208 | 210 | "text": [ |
|
209 | 211 | "4 " |
|
210 | 212 | ] |
|
211 | 213 | }, |
|
212 | 214 | { |
|
213 | 215 | "output_type": "stream", |
|
214 | 216 | "stream": "stdout", |
|
215 | 217 | "text": [ |
|
216 | 218 | "5 " |
|
217 | 219 | ] |
|
218 | 220 | }, |
|
219 | 221 | { |
|
220 | 222 | "output_type": "stream", |
|
221 | 223 | "stream": "stdout", |
|
222 | 224 | "text": [ |
|
223 | 225 | "6 " |
|
224 | 226 | ] |
|
225 | 227 | }, |
|
226 | 228 | { |
|
227 | 229 | "output_type": "stream", |
|
228 | 230 | "stream": "stdout", |
|
229 | 231 | "text": [ |
|
230 | 232 | "7\n" |
|
231 | 233 | ] |
|
232 | 234 | } |
|
233 | 235 | ], |
|
234 | 236 | "prompt_number": 30 |
|
235 | 237 | }, |
|
236 | 238 | { |
|
237 | 239 | "cell_type": "heading", |
|
238 | 240 | "level": 2, |
|
239 | 241 | "metadata": {}, |
|
240 | 242 | "source": [ |
|
241 | 243 | "Large outputs" |
|
242 | 244 | ] |
|
243 | 245 | }, |
|
244 | 246 | { |
|
245 | 247 | "cell_type": "markdown", |
|
246 | 248 | "metadata": {}, |
|
247 | 249 | "source": [ |
|
248 | 250 | "To better handle large outputs, the output area can be collapsed. Run the following cell and then single- or double- click on the active area to the left of the output:" |
|
249 | 251 | ] |
|
250 | 252 | }, |
|
251 | 253 | { |
|
252 | 254 | "cell_type": "code", |
|
253 | 255 | "collapsed": false, |
|
254 | 256 | "input": [ |
|
255 | 257 | "for i in range(50):\n", |
|
256 |
" print |
|
|
258 | " print(i)" | |
|
257 | 259 | ], |
|
258 | 260 | "language": "python", |
|
259 | 261 | "metadata": {}, |
|
260 | 262 | "outputs": [ |
|
261 | 263 | { |
|
262 | 264 | "output_type": "stream", |
|
263 | 265 | "stream": "stdout", |
|
264 | 266 | "text": [ |
|
265 | 267 | "0\n", |
|
266 | 268 | "1\n", |
|
267 | 269 | "2\n", |
|
268 | 270 | "3\n", |
|
269 | 271 | "4\n", |
|
270 | 272 | "5\n", |
|
271 | 273 | "6\n", |
|
272 | 274 | "7\n", |
|
273 | 275 | "8\n", |
|
274 | 276 | "9\n", |
|
275 | 277 | "10\n", |
|
276 | 278 | "11\n", |
|
277 | 279 | "12\n", |
|
278 | 280 | "13\n", |
|
279 | 281 | "14\n", |
|
280 | 282 | "15\n", |
|
281 | 283 | "16\n", |
|
282 | 284 | "17\n", |
|
283 | 285 | "18\n", |
|
284 | 286 | "19\n", |
|
285 | 287 | "20\n", |
|
286 | 288 | "21\n", |
|
287 | 289 | "22\n", |
|
288 | 290 | "23\n", |
|
289 | 291 | "24\n", |
|
290 | 292 | "25\n", |
|
291 | 293 | "26\n", |
|
292 | 294 | "27\n", |
|
293 | 295 | "28\n", |
|
294 | 296 | "29\n", |
|
295 | 297 | "30\n", |
|
296 | 298 | "31\n", |
|
297 | 299 | "32\n", |
|
298 | 300 | "33\n", |
|
299 | 301 | "34\n", |
|
300 | 302 | "35\n", |
|
301 | 303 | "36\n", |
|
302 | 304 | "37\n", |
|
303 | 305 | "38\n", |
|
304 | 306 | "39\n", |
|
305 | 307 | "40\n", |
|
306 | 308 | "41\n", |
|
307 | 309 | "42\n", |
|
308 | 310 | "43\n", |
|
309 | 311 | "44\n", |
|
310 | 312 | "45\n", |
|
311 | 313 | "46\n", |
|
312 | 314 | "47\n", |
|
313 | 315 | "48\n", |
|
314 | 316 | "49\n" |
|
315 | 317 | ] |
|
316 | 318 | } |
|
317 | 319 | ], |
|
318 | 320 | "prompt_number": 4 |
|
319 | 321 | }, |
|
320 | 322 | { |
|
321 | 323 | "cell_type": "markdown", |
|
322 | 324 | "metadata": {}, |
|
323 | 325 | "source": [ |
|
324 | 326 | "Beyond a certain point, output will scroll automatically:" |
|
325 | 327 | ] |
|
326 | 328 | }, |
|
327 | 329 | { |
|
328 | 330 | "cell_type": "code", |
|
329 | 331 | "collapsed": false, |
|
330 | 332 | "input": [ |
|
331 | 333 | "for i in range(500):\n", |
|
332 |
" print |
|
|
334 | " print(2**i - 1)" | |
|
333 | 335 | ], |
|
334 | 336 | "language": "python", |
|
335 | 337 | "metadata": {}, |
|
336 | 338 | "outputs": [ |
|
337 | 339 | { |
|
338 | 340 | "output_type": "stream", |
|
339 | 341 | "stream": "stdout", |
|
340 | 342 | "text": [ |
|
341 | 343 | "0\n", |
|
342 | 344 | "1\n", |
|
343 | 345 | "3\n", |
|
344 | 346 | "7\n", |
|
345 | 347 | "15\n", |
|
346 | 348 | "31\n", |
|
347 | 349 | "63\n", |
|
348 | 350 | "127\n", |
|
349 | 351 | "255\n", |
|
350 | 352 | "511\n", |
|
351 | 353 | "1023\n", |
|
352 | 354 | "2047\n", |
|
353 | 355 | "4095\n", |
|
354 | 356 | "8191\n", |
|
355 | 357 | "16383\n", |
|
356 | 358 | "32767\n", |
|
357 | 359 | "65535\n", |
|
358 | 360 | "131071\n", |
|
359 | 361 | "262143\n", |
|
360 | 362 | "524287\n", |
|
361 | 363 | "1048575\n", |
|
362 | 364 | "2097151\n", |
|
363 | 365 | "4194303\n", |
|
364 | 366 | "8388607\n", |
|
365 | 367 | "16777215\n", |
|
366 | 368 | "33554431\n", |
|
367 | 369 | "67108863\n", |
|
368 | 370 | "134217727\n", |
|
369 | 371 | "268435455\n", |
|
370 | 372 | "536870911\n", |
|
371 | 373 | "1073741823\n", |
|
372 | 374 | "2147483647\n", |
|
373 | 375 | "4294967295\n", |
|
374 | 376 | "8589934591\n", |
|
375 | 377 | "17179869183\n", |
|
376 | 378 | "34359738367\n", |
|
377 | 379 | "68719476735\n", |
|
378 | 380 | "137438953471\n", |
|
379 | 381 | "274877906943\n", |
|
380 | 382 | "549755813887\n", |
|
381 | 383 | "1099511627775\n", |
|
382 | 384 | "2199023255551\n", |
|
383 | 385 | "4398046511103\n", |
|
384 | 386 | "8796093022207\n", |
|
385 | 387 | "17592186044415\n", |
|
386 | 388 | "35184372088831\n", |
|
387 | 389 | "70368744177663\n", |
|
388 | 390 | "140737488355327\n", |
|
389 | 391 | "281474976710655\n", |
|
390 | 392 | "562949953421311\n", |
|
391 | 393 | "1125899906842623\n", |
|
392 | 394 | "2251799813685247\n", |
|
393 | 395 | "4503599627370495\n", |
|
394 | 396 | "9007199254740991\n", |
|
395 | 397 | "18014398509481983\n", |
|
396 | 398 | "36028797018963967\n", |
|
397 | 399 | "72057594037927935\n", |
|
398 | 400 | "144115188075855871\n", |
|
399 | 401 | "288230376151711743\n", |
|
400 | 402 | "576460752303423487\n", |
|
401 | 403 | "1152921504606846975\n", |
|
402 | 404 | "2305843009213693951\n", |
|
403 | 405 | "4611686018427387903\n", |
|
404 | 406 | "9223372036854775807\n", |
|
405 | 407 | "18446744073709551615\n", |
|
406 | 408 | "36893488147419103231\n", |
|
407 | 409 | "73786976294838206463\n", |
|
408 | 410 | "147573952589676412927\n", |
|
409 | 411 | "295147905179352825855\n", |
|
410 | 412 | "590295810358705651711\n", |
|
411 | 413 | "1180591620717411303423\n", |
|
412 | 414 | "2361183241434822606847\n", |
|
413 | 415 | "4722366482869645213695\n", |
|
414 | 416 | "9444732965739290427391\n", |
|
415 | 417 | "18889465931478580854783\n", |
|
416 | 418 | "37778931862957161709567\n", |
|
417 | 419 | "75557863725914323419135\n", |
|
418 | 420 | "151115727451828646838271\n", |
|
419 | 421 | "302231454903657293676543\n", |
|
420 | 422 | "604462909807314587353087\n", |
|
421 | 423 | "1208925819614629174706175\n", |
|
422 | 424 | "2417851639229258349412351\n", |
|
423 | 425 | "4835703278458516698824703\n", |
|
424 | 426 | "9671406556917033397649407\n", |
|
425 | 427 | "19342813113834066795298815\n", |
|
426 | 428 | "38685626227668133590597631\n", |
|
427 | 429 | "77371252455336267181195263\n", |
|
428 | 430 | "154742504910672534362390527\n", |
|
429 | 431 | "309485009821345068724781055\n", |
|
430 | 432 | "618970019642690137449562111\n", |
|
431 | 433 | "1237940039285380274899124223\n", |
|
432 | 434 | "2475880078570760549798248447\n", |
|
433 | 435 | "4951760157141521099596496895\n", |
|
434 | 436 | "9903520314283042199192993791\n", |
|
435 | 437 | "19807040628566084398385987583\n", |
|
436 | 438 | "39614081257132168796771975167\n", |
|
437 | 439 | "79228162514264337593543950335\n", |
|
438 | 440 | "158456325028528675187087900671\n", |
|
439 | 441 | "316912650057057350374175801343\n", |
|
440 | 442 | "633825300114114700748351602687\n", |
|
441 | 443 | "1267650600228229401496703205375\n", |
|
442 | 444 | "2535301200456458802993406410751\n", |
|
443 | 445 | "5070602400912917605986812821503\n", |
|
444 | 446 | "10141204801825835211973625643007\n", |
|
445 | 447 | "20282409603651670423947251286015\n", |
|
446 | 448 | "40564819207303340847894502572031\n", |
|
447 | 449 | "81129638414606681695789005144063\n", |
|
448 | 450 | "162259276829213363391578010288127\n", |
|
449 | 451 | "324518553658426726783156020576255\n", |
|
450 | 452 | "649037107316853453566312041152511\n", |
|
451 | 453 | "1298074214633706907132624082305023\n", |
|
452 | 454 | "2596148429267413814265248164610047\n", |
|
453 | 455 | "5192296858534827628530496329220095\n", |
|
454 | 456 | "10384593717069655257060992658440191\n", |
|
455 | 457 | "20769187434139310514121985316880383\n", |
|
456 | 458 | "41538374868278621028243970633760767\n", |
|
457 | 459 | "83076749736557242056487941267521535\n", |
|
458 | 460 | "166153499473114484112975882535043071\n", |
|
459 | 461 | "332306998946228968225951765070086143\n", |
|
460 | 462 | "664613997892457936451903530140172287\n", |
|
461 | 463 | "1329227995784915872903807060280344575\n", |
|
462 | 464 | "2658455991569831745807614120560689151\n", |
|
463 | 465 | "5316911983139663491615228241121378303\n", |
|
464 | 466 | "10633823966279326983230456482242756607\n", |
|
465 | 467 | "21267647932558653966460912964485513215\n", |
|
466 | 468 | "42535295865117307932921825928971026431\n", |
|
467 | 469 | "85070591730234615865843651857942052863\n", |
|
468 | 470 | "170141183460469231731687303715884105727\n", |
|
469 | 471 | "340282366920938463463374607431768211455\n", |
|
470 | 472 | "680564733841876926926749214863536422911\n", |
|
471 | 473 | "1361129467683753853853498429727072845823\n", |
|
472 | 474 | "2722258935367507707706996859454145691647\n", |
|
473 | 475 | "5444517870735015415413993718908291383295\n", |
|
474 | 476 | "10889035741470030830827987437816582766591\n", |
|
475 | 477 | "21778071482940061661655974875633165533183\n", |
|
476 | 478 | "43556142965880123323311949751266331066367\n", |
|
477 | 479 | "87112285931760246646623899502532662132735\n", |
|
478 | 480 | "174224571863520493293247799005065324265471\n", |
|
479 | 481 | "348449143727040986586495598010130648530943\n", |
|
480 | 482 | "696898287454081973172991196020261297061887\n", |
|
481 | 483 | "1393796574908163946345982392040522594123775\n", |
|
482 | 484 | "2787593149816327892691964784081045188247551\n", |
|
483 | 485 | "5575186299632655785383929568162090376495103\n", |
|
484 | 486 | "11150372599265311570767859136324180752990207\n", |
|
485 | 487 | "22300745198530623141535718272648361505980415\n", |
|
486 | 488 | "44601490397061246283071436545296723011960831\n", |
|
487 | 489 | "89202980794122492566142873090593446023921663\n", |
|
488 | 490 | "178405961588244985132285746181186892047843327\n", |
|
489 | 491 | "356811923176489970264571492362373784095686655\n", |
|
490 | 492 | "713623846352979940529142984724747568191373311\n", |
|
491 | 493 | "1427247692705959881058285969449495136382746623\n", |
|
492 | 494 | "2854495385411919762116571938898990272765493247\n", |
|
493 | 495 | "5708990770823839524233143877797980545530986495\n", |
|
494 | 496 | "11417981541647679048466287755595961091061972991\n", |
|
495 | 497 | "22835963083295358096932575511191922182123945983\n", |
|
496 | 498 | "45671926166590716193865151022383844364247891967\n", |
|
497 | 499 | "91343852333181432387730302044767688728495783935\n", |
|
498 | 500 | "182687704666362864775460604089535377456991567871\n", |
|
499 | 501 | "365375409332725729550921208179070754913983135743\n", |
|
500 | 502 | "730750818665451459101842416358141509827966271487\n", |
|
501 | 503 | "1461501637330902918203684832716283019655932542975\n", |
|
502 | 504 | "2923003274661805836407369665432566039311865085951\n", |
|
503 | 505 | "5846006549323611672814739330865132078623730171903\n", |
|
504 | 506 | "11692013098647223345629478661730264157247460343807\n", |
|
505 | 507 | "23384026197294446691258957323460528314494920687615\n", |
|
506 | 508 | "46768052394588893382517914646921056628989841375231\n", |
|
507 | 509 | "93536104789177786765035829293842113257979682750463\n", |
|
508 | 510 | "187072209578355573530071658587684226515959365500927\n", |
|
509 | 511 | "374144419156711147060143317175368453031918731001855\n", |
|
510 | 512 | "748288838313422294120286634350736906063837462003711\n", |
|
511 | 513 | "1496577676626844588240573268701473812127674924007423\n", |
|
512 | 514 | "2993155353253689176481146537402947624255349848014847\n", |
|
513 | 515 | "5986310706507378352962293074805895248510699696029695\n", |
|
514 | 516 | "11972621413014756705924586149611790497021399392059391\n", |
|
515 | 517 | "23945242826029513411849172299223580994042798784118783\n", |
|
516 | 518 | "47890485652059026823698344598447161988085597568237567\n", |
|
517 | 519 | "95780971304118053647396689196894323976171195136475135\n", |
|
518 | 520 | "191561942608236107294793378393788647952342390272950271\n", |
|
519 | 521 | "383123885216472214589586756787577295904684780545900543\n", |
|
520 | 522 | "766247770432944429179173513575154591809369561091801087\n", |
|
521 | 523 | "1532495540865888858358347027150309183618739122183602175\n", |
|
522 | 524 | "3064991081731777716716694054300618367237478244367204351\n", |
|
523 | 525 | "6129982163463555433433388108601236734474956488734408703\n", |
|
524 | 526 | "12259964326927110866866776217202473468949912977468817407\n", |
|
525 | 527 | "24519928653854221733733552434404946937899825954937634815\n", |
|
526 | 528 | "49039857307708443467467104868809893875799651909875269631\n", |
|
527 | 529 | "98079714615416886934934209737619787751599303819750539263\n", |
|
528 | 530 | "196159429230833773869868419475239575503198607639501078527\n", |
|
529 | 531 | "392318858461667547739736838950479151006397215279002157055\n", |
|
530 | 532 | "784637716923335095479473677900958302012794430558004314111\n", |
|
531 | 533 | "1569275433846670190958947355801916604025588861116008628223\n", |
|
532 | 534 | "3138550867693340381917894711603833208051177722232017256447\n", |
|
533 | 535 | "6277101735386680763835789423207666416102355444464034512895\n", |
|
534 | 536 | "12554203470773361527671578846415332832204710888928069025791\n", |
|
535 | 537 | "25108406941546723055343157692830665664409421777856138051583\n", |
|
536 | 538 | "50216813883093446110686315385661331328818843555712276103167\n", |
|
537 | 539 | "100433627766186892221372630771322662657637687111424552206335\n", |
|
538 | 540 | "200867255532373784442745261542645325315275374222849104412671\n", |
|
539 | 541 | "401734511064747568885490523085290650630550748445698208825343\n", |
|
540 | 542 | "803469022129495137770981046170581301261101496891396417650687\n", |
|
541 | 543 | "1606938044258990275541962092341162602522202993782792835301375\n", |
|
542 | 544 | "3213876088517980551083924184682325205044405987565585670602751\n", |
|
543 | 545 | "6427752177035961102167848369364650410088811975131171341205503\n", |
|
544 | 546 | "12855504354071922204335696738729300820177623950262342682411007\n", |
|
545 | 547 | "25711008708143844408671393477458601640355247900524685364822015\n", |
|
546 | 548 | "51422017416287688817342786954917203280710495801049370729644031\n", |
|
547 | 549 | "102844034832575377634685573909834406561420991602098741459288063\n", |
|
548 | 550 | "205688069665150755269371147819668813122841983204197482918576127\n", |
|
549 | 551 | "411376139330301510538742295639337626245683966408394965837152255\n", |
|
550 | 552 | "822752278660603021077484591278675252491367932816789931674304511\n", |
|
551 | 553 | "1645504557321206042154969182557350504982735865633579863348609023\n", |
|
552 | 554 | "3291009114642412084309938365114701009965471731267159726697218047\n", |
|
553 | 555 | "6582018229284824168619876730229402019930943462534319453394436095\n", |
|
554 | 556 | "13164036458569648337239753460458804039861886925068638906788872191\n", |
|
555 | 557 | "26328072917139296674479506920917608079723773850137277813577744383\n", |
|
556 | 558 | "52656145834278593348959013841835216159447547700274555627155488767\n", |
|
557 | 559 | "105312291668557186697918027683670432318895095400549111254310977535\n", |
|
558 | 560 | "210624583337114373395836055367340864637790190801098222508621955071\n", |
|
559 | 561 | "421249166674228746791672110734681729275580381602196445017243910143\n", |
|
560 | 562 | "842498333348457493583344221469363458551160763204392890034487820287\n", |
|
561 | 563 | "1684996666696914987166688442938726917102321526408785780068975640575\n", |
|
562 | 564 | "3369993333393829974333376885877453834204643052817571560137951281151\n", |
|
563 | 565 | "6739986666787659948666753771754907668409286105635143120275902562303\n", |
|
564 | 566 | "13479973333575319897333507543509815336818572211270286240551805124607\n", |
|
565 | 567 | "26959946667150639794667015087019630673637144422540572481103610249215\n", |
|
566 | 568 | "53919893334301279589334030174039261347274288845081144962207220498431\n", |
|
567 | 569 | "107839786668602559178668060348078522694548577690162289924414440996863\n", |
|
568 | 570 | "215679573337205118357336120696157045389097155380324579848828881993727\n", |
|
569 | 571 | "431359146674410236714672241392314090778194310760649159697657763987455\n", |
|
570 | 572 | "862718293348820473429344482784628181556388621521298319395315527974911\n", |
|
571 | 573 | "1725436586697640946858688965569256363112777243042596638790631055949823\n", |
|
572 | 574 | "3450873173395281893717377931138512726225554486085193277581262111899647\n", |
|
573 | 575 | "6901746346790563787434755862277025452451108972170386555162524223799295\n", |
|
574 | 576 | "13803492693581127574869511724554050904902217944340773110325048447598591\n", |
|
575 | 577 | "27606985387162255149739023449108101809804435888681546220650096895197183\n", |
|
576 | 578 | "55213970774324510299478046898216203619608871777363092441300193790394367\n", |
|
577 | 579 | "110427941548649020598956093796432407239217743554726184882600387580788735\n", |
|
578 | 580 | "220855883097298041197912187592864814478435487109452369765200775161577471\n", |
|
579 | 581 | "441711766194596082395824375185729628956870974218904739530401550323154943\n", |
|
580 | 582 | "883423532389192164791648750371459257913741948437809479060803100646309887\n", |
|
581 | 583 | "1766847064778384329583297500742918515827483896875618958121606201292619775\n", |
|
582 | 584 | "3533694129556768659166595001485837031654967793751237916243212402585239551\n", |
|
583 | 585 | "7067388259113537318333190002971674063309935587502475832486424805170479103\n", |
|
584 | 586 | "14134776518227074636666380005943348126619871175004951664972849610340958207\n", |
|
585 | 587 | "28269553036454149273332760011886696253239742350009903329945699220681916415\n", |
|
586 | 588 | "56539106072908298546665520023773392506479484700019806659891398441363832831\n", |
|
587 | 589 | "113078212145816597093331040047546785012958969400039613319782796882727665663\n", |
|
588 | 590 | "226156424291633194186662080095093570025917938800079226639565593765455331327\n", |
|
589 | 591 | "452312848583266388373324160190187140051835877600158453279131187530910662655\n", |
|
590 | 592 | "904625697166532776746648320380374280103671755200316906558262375061821325311\n", |
|
591 | 593 | "1809251394333065553493296640760748560207343510400633813116524750123642650623\n", |
|
592 | 594 | "3618502788666131106986593281521497120414687020801267626233049500247285301247\n", |
|
593 | 595 | "7237005577332262213973186563042994240829374041602535252466099000494570602495\n", |
|
594 | 596 | "14474011154664524427946373126085988481658748083205070504932198000989141204991\n", |
|
595 | 597 | "28948022309329048855892746252171976963317496166410141009864396001978282409983\n", |
|
596 | 598 | "57896044618658097711785492504343953926634992332820282019728792003956564819967\n", |
|
597 | 599 | "115792089237316195423570985008687907853269984665640564039457584007913129639935\n", |
|
598 | 600 | "231584178474632390847141970017375815706539969331281128078915168015826259279871\n", |
|
599 | 601 | "463168356949264781694283940034751631413079938662562256157830336031652518559743\n", |
|
600 | 602 | "926336713898529563388567880069503262826159877325124512315660672063305037119487\n", |
|
601 | 603 | "1852673427797059126777135760139006525652319754650249024631321344126610074238975\n", |
|
602 | 604 | "3705346855594118253554271520278013051304639509300498049262642688253220148477951\n", |
|
603 | 605 | "7410693711188236507108543040556026102609279018600996098525285376506440296955903\n", |
|
604 | 606 | "14821387422376473014217086081112052205218558037201992197050570753012880593911807\n", |
|
605 | 607 | "29642774844752946028434172162224104410437116074403984394101141506025761187823615\n", |
|
606 | 608 | "59285549689505892056868344324448208820874232148807968788202283012051522375647231\n", |
|
607 | 609 | "118571099379011784113736688648896417641748464297615937576404566024103044751294463\n", |
|
608 | 610 | "237142198758023568227473377297792835283496928595231875152809132048206089502588927\n", |
|
609 | 611 | "474284397516047136454946754595585670566993857190463750305618264096412179005177855\n", |
|
610 | 612 | "948568795032094272909893509191171341133987714380927500611236528192824358010355711\n", |
|
611 | 613 | "1897137590064188545819787018382342682267975428761855001222473056385648716020711423\n", |
|
612 | 614 | "3794275180128377091639574036764685364535950857523710002444946112771297432041422847\n", |
|
613 | 615 | "7588550360256754183279148073529370729071901715047420004889892225542594864082845695\n", |
|
614 | 616 | "15177100720513508366558296147058741458143803430094840009779784451085189728165691391\n", |
|
615 | 617 | "30354201441027016733116592294117482916287606860189680019559568902170379456331382783\n", |
|
616 | 618 | "60708402882054033466233184588234965832575213720379360039119137804340758912662765567\n", |
|
617 | 619 | "121416805764108066932466369176469931665150427440758720078238275608681517825325531135\n", |
|
618 | 620 | "242833611528216133864932738352939863330300854881517440156476551217363035650651062271\n", |
|
619 | 621 | "485667223056432267729865476705879726660601709763034880312953102434726071301302124543\n", |
|
620 | 622 | "971334446112864535459730953411759453321203419526069760625906204869452142602604249087\n", |
|
621 | 623 | "1942668892225729070919461906823518906642406839052139521251812409738904285205208498175\n", |
|
622 | 624 | "3885337784451458141838923813647037813284813678104279042503624819477808570410416996351\n", |
|
623 | 625 | "7770675568902916283677847627294075626569627356208558085007249638955617140820833992703\n", |
|
624 | 626 | "15541351137805832567355695254588151253139254712417116170014499277911234281641667985407\n", |
|
625 | 627 | "31082702275611665134711390509176302506278509424834232340028998555822468563283335970815\n", |
|
626 | 628 | "62165404551223330269422781018352605012557018849668464680057997111644937126566671941631\n", |
|
627 | 629 | "124330809102446660538845562036705210025114037699336929360115994223289874253133343883263\n", |
|
628 | 630 | "248661618204893321077691124073410420050228075398673858720231988446579748506266687766527\n", |
|
629 | 631 | "497323236409786642155382248146820840100456150797347717440463976893159497012533375533055\n", |
|
630 | 632 | "994646472819573284310764496293641680200912301594695434880927953786318994025066751066111\n", |
|
631 | 633 | "1989292945639146568621528992587283360401824603189390869761855907572637988050133502132223\n", |
|
632 | 634 | "3978585891278293137243057985174566720803649206378781739523711815145275976100267004264447\n", |
|
633 | 635 | "7957171782556586274486115970349133441607298412757563479047423630290551952200534008528895\n", |
|
634 | 636 | "15914343565113172548972231940698266883214596825515126958094847260581103904401068017057791\n", |
|
635 | 637 | "31828687130226345097944463881396533766429193651030253916189694521162207808802136034115583\n", |
|
636 | 638 | "63657374260452690195888927762793067532858387302060507832379389042324415617604272068231167\n", |
|
637 | 639 | "127314748520905380391777855525586135065716774604121015664758778084648831235208544136462335\n", |
|
638 | 640 | "254629497041810760783555711051172270131433549208242031329517556169297662470417088272924671\n", |
|
639 | 641 | "509258994083621521567111422102344540262867098416484062659035112338595324940834176545849343\n", |
|
640 | 642 | "1018517988167243043134222844204689080525734196832968125318070224677190649881668353091698687\n", |
|
641 | 643 | "2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397375\n", |
|
642 | 644 | "4074071952668972172536891376818756322102936787331872501272280898708762599526673412366794751\n", |
|
643 | 645 | "8148143905337944345073782753637512644205873574663745002544561797417525199053346824733589503\n", |
|
644 | 646 | "16296287810675888690147565507275025288411747149327490005089123594835050398106693649467179007\n", |
|
645 | 647 | "32592575621351777380295131014550050576823494298654980010178247189670100796213387298934358015\n", |
|
646 | 648 | "65185151242703554760590262029100101153646988597309960020356494379340201592426774597868716031\n", |
|
647 | 649 | "130370302485407109521180524058200202307293977194619920040712988758680403184853549195737432063\n", |
|
648 | 650 | "260740604970814219042361048116400404614587954389239840081425977517360806369707098391474864127\n", |
|
649 | 651 | "521481209941628438084722096232800809229175908778479680162851955034721612739414196782949728255\n", |
|
650 | 652 | "1042962419883256876169444192465601618458351817556959360325703910069443225478828393565899456511\n", |
|
651 | 653 | "2085924839766513752338888384931203236916703635113918720651407820138886450957656787131798913023\n", |
|
652 | 654 | "4171849679533027504677776769862406473833407270227837441302815640277772901915313574263597826047\n", |
|
653 | 655 | "8343699359066055009355553539724812947666814540455674882605631280555545803830627148527195652095\n", |
|
654 | 656 | "16687398718132110018711107079449625895333629080911349765211262561111091607661254297054391304191\n", |
|
655 | 657 | "33374797436264220037422214158899251790667258161822699530422525122222183215322508594108782608383\n", |
|
656 | 658 | "66749594872528440074844428317798503581334516323645399060845050244444366430645017188217565216767\n", |
|
657 | 659 | "133499189745056880149688856635597007162669032647290798121690100488888732861290034376435130433535\n", |
|
658 | 660 | "266998379490113760299377713271194014325338065294581596243380200977777465722580068752870260867071\n", |
|
659 | 661 | "533996758980227520598755426542388028650676130589163192486760401955554931445160137505740521734143\n", |
|
660 | 662 | "1067993517960455041197510853084776057301352261178326384973520803911109862890320275011481043468287\n", |
|
661 | 663 | "2135987035920910082395021706169552114602704522356652769947041607822219725780640550022962086936575\n", |
|
662 | 664 | "4271974071841820164790043412339104229205409044713305539894083215644439451561281100045924173873151\n", |
|
663 | 665 | "8543948143683640329580086824678208458410818089426611079788166431288878903122562200091848347746303\n", |
|
664 | 666 | "17087896287367280659160173649356416916821636178853222159576332862577757806245124400183696695492607\n", |
|
665 | 667 | "34175792574734561318320347298712833833643272357706444319152665725155515612490248800367393390985215\n", |
|
666 | 668 | "68351585149469122636640694597425667667286544715412888638305331450311031224980497600734786781970431\n", |
|
667 | 669 | "136703170298938245273281389194851335334573089430825777276610662900622062449960995201469573563940863\n", |
|
668 | 670 | "273406340597876490546562778389702670669146178861651554553221325801244124899921990402939147127881727\n", |
|
669 | 671 | "546812681195752981093125556779405341338292357723303109106442651602488249799843980805878294255763455\n", |
|
670 | 672 | "1093625362391505962186251113558810682676584715446606218212885303204976499599687961611756588511526911\n", |
|
671 | 673 | "2187250724783011924372502227117621365353169430893212436425770606409952999199375923223513177023053823\n", |
|
672 | 674 | "4374501449566023848745004454235242730706338861786424872851541212819905998398751846447026354046107647\n", |
|
673 | 675 | "8749002899132047697490008908470485461412677723572849745703082425639811996797503692894052708092215295\n", |
|
674 | 676 | "17498005798264095394980017816940970922825355447145699491406164851279623993595007385788105416184430591\n", |
|
675 | 677 | "34996011596528190789960035633881941845650710894291398982812329702559247987190014771576210832368861183\n", |
|
676 | 678 | "69992023193056381579920071267763883691301421788582797965624659405118495974380029543152421664737722367\n", |
|
677 | 679 | "139984046386112763159840142535527767382602843577165595931249318810236991948760059086304843329475444735\n", |
|
678 | 680 | "279968092772225526319680285071055534765205687154331191862498637620473983897520118172609686658950889471\n", |
|
679 | 681 | "559936185544451052639360570142111069530411374308662383724997275240947967795040236345219373317901778943\n", |
|
680 | 682 | "1119872371088902105278721140284222139060822748617324767449994550481895935590080472690438746635803557887\n", |
|
681 | 683 | "2239744742177804210557442280568444278121645497234649534899989100963791871180160945380877493271607115775\n", |
|
682 | 684 | "4479489484355608421114884561136888556243290994469299069799978201927583742360321890761754986543214231551\n", |
|
683 | 685 | "8958978968711216842229769122273777112486581988938598139599956403855167484720643781523509973086428463103\n", |
|
684 | 686 | "17917957937422433684459538244547554224973163977877196279199912807710334969441287563047019946172856926207\n", |
|
685 | 687 | "35835915874844867368919076489095108449946327955754392558399825615420669938882575126094039892345713852415\n", |
|
686 | 688 | "71671831749689734737838152978190216899892655911508785116799651230841339877765150252188079784691427704831\n", |
|
687 | 689 | "143343663499379469475676305956380433799785311823017570233599302461682679755530300504376159569382855409663\n", |
|
688 | 690 | "286687326998758938951352611912760867599570623646035140467198604923365359511060601008752319138765710819327\n", |
|
689 | 691 | "573374653997517877902705223825521735199141247292070280934397209846730719022121202017504638277531421638655\n", |
|
690 | 692 | "1146749307995035755805410447651043470398282494584140561868794419693461438044242404035009276555062843277311\n", |
|
691 | 693 | "2293498615990071511610820895302086940796564989168281123737588839386922876088484808070018553110125686554623\n", |
|
692 | 694 | "4586997231980143023221641790604173881593129978336562247475177678773845752176969616140037106220251373109247\n", |
|
693 | 695 | "9173994463960286046443283581208347763186259956673124494950355357547691504353939232280074212440502746218495\n", |
|
694 | 696 | "18347988927920572092886567162416695526372519913346248989900710715095383008707878464560148424881005492436991\n", |
|
695 | 697 | "36695977855841144185773134324833391052745039826692497979801421430190766017415756929120296849762010984873983\n", |
|
696 | 698 | "73391955711682288371546268649666782105490079653384995959602842860381532034831513858240593699524021969747967\n", |
|
697 | 699 | "146783911423364576743092537299333564210980159306769991919205685720763064069663027716481187399048043939495935\n", |
|
698 | 700 | "293567822846729153486185074598667128421960318613539983838411371441526128139326055432962374798096087878991871\n", |
|
699 | 701 | "587135645693458306972370149197334256843920637227079967676822742883052256278652110865924749596192175757983743\n", |
|
700 | 702 | "1174271291386916613944740298394668513687841274454159935353645485766104512557304221731849499192384351515967487\n", |
|
701 | 703 | "2348542582773833227889480596789337027375682548908319870707290971532209025114608443463698998384768703031934975\n", |
|
702 | 704 | "4697085165547666455778961193578674054751365097816639741414581943064418050229216886927397996769537406063869951\n", |
|
703 | 705 | "9394170331095332911557922387157348109502730195633279482829163886128836100458433773854795993539074812127739903\n", |
|
704 | 706 | "18788340662190665823115844774314696219005460391266558965658327772257672200916867547709591987078149624255479807\n", |
|
705 | 707 | "37576681324381331646231689548629392438010920782533117931316655544515344401833735095419183974156299248510959615\n", |
|
706 | 708 | "75153362648762663292463379097258784876021841565066235862633311089030688803667470190838367948312598497021919231\n", |
|
707 | 709 | "150306725297525326584926758194517569752043683130132471725266622178061377607334940381676735896625196994043838463\n", |
|
708 | 710 | "300613450595050653169853516389035139504087366260264943450533244356122755214669880763353471793250393988087676927\n", |
|
709 | 711 | "601226901190101306339707032778070279008174732520529886901066488712245510429339761526706943586500787976175353855\n", |
|
710 | 712 | "1202453802380202612679414065556140558016349465041059773802132977424491020858679523053413887173001575952350707711\n", |
|
711 | 713 | "2404907604760405225358828131112281116032698930082119547604265954848982041717359046106827774346003151904701415423\n", |
|
712 | 714 | "4809815209520810450717656262224562232065397860164239095208531909697964083434718092213655548692006303809402830847\n", |
|
713 | 715 | "9619630419041620901435312524449124464130795720328478190417063819395928166869436184427311097384012607618805661695\n", |
|
714 | 716 | "19239260838083241802870625048898248928261591440656956380834127638791856333738872368854622194768025215237611323391\n", |
|
715 | 717 | "38478521676166483605741250097796497856523182881313912761668255277583712667477744737709244389536050430475222646783\n", |
|
716 | 718 | "76957043352332967211482500195592995713046365762627825523336510555167425334955489475418488779072100860950445293567\n", |
|
717 | 719 | "153914086704665934422965000391185991426092731525255651046673021110334850669910978950836977558144201721900890587135\n", |
|
718 | 720 | "307828173409331868845930000782371982852185463050511302093346042220669701339821957901673955116288403443801781174271\n", |
|
719 | 721 | "615656346818663737691860001564743965704370926101022604186692084441339402679643915803347910232576806887603562348543\n", |
|
720 | 722 | "1231312693637327475383720003129487931408741852202045208373384168882678805359287831606695820465153613775207124697087\n", |
|
721 | 723 | "2462625387274654950767440006258975862817483704404090416746768337765357610718575663213391640930307227550414249394175\n", |
|
722 | 724 | "4925250774549309901534880012517951725634967408808180833493536675530715221437151326426783281860614455100828498788351\n", |
|
723 | 725 | "9850501549098619803069760025035903451269934817616361666987073351061430442874302652853566563721228910201656997576703\n", |
|
724 | 726 | "19701003098197239606139520050071806902539869635232723333974146702122860885748605305707133127442457820403313995153407\n", |
|
725 | 727 | "39402006196394479212279040100143613805079739270465446667948293404245721771497210611414266254884915640806627990306815\n", |
|
726 | 728 | "78804012392788958424558080200287227610159478540930893335896586808491443542994421222828532509769831281613255980613631\n", |
|
727 | 729 | "157608024785577916849116160400574455220318957081861786671793173616982887085988842445657065019539662563226511961227263\n", |
|
728 | 730 | "315216049571155833698232320801148910440637914163723573343586347233965774171977684891314130039079325126453023922454527\n", |
|
729 | 731 | "630432099142311667396464641602297820881275828327447146687172694467931548343955369782628260078158650252906047844909055\n", |
|
730 | 732 | "1260864198284623334792929283204595641762551656654894293374345388935863096687910739565256520156317300505812095689818111\n", |
|
731 | 733 | "2521728396569246669585858566409191283525103313309788586748690777871726193375821479130513040312634601011624191379636223\n", |
|
732 | 734 | "5043456793138493339171717132818382567050206626619577173497381555743452386751642958261026080625269202023248382759272447\n", |
|
733 | 735 | "10086913586276986678343434265636765134100413253239154346994763111486904773503285916522052161250538404046496765518544895\n", |
|
734 | 736 | "20173827172553973356686868531273530268200826506478308693989526222973809547006571833044104322501076808092993531037089791\n", |
|
735 | 737 | "40347654345107946713373737062547060536401653012956617387979052445947619094013143666088208645002153616185987062074179583\n", |
|
736 | 738 | "80695308690215893426747474125094121072803306025913234775958104891895238188026287332176417290004307232371974124148359167\n", |
|
737 | 739 | "161390617380431786853494948250188242145606612051826469551916209783790476376052574664352834580008614464743948248296718335\n", |
|
738 | 740 | "322781234760863573706989896500376484291213224103652939103832419567580952752105149328705669160017228929487896496593436671\n", |
|
739 | 741 | "645562469521727147413979793000752968582426448207305878207664839135161905504210298657411338320034457858975792993186873343\n", |
|
740 | 742 | "1291124939043454294827959586001505937164852896414611756415329678270323811008420597314822676640068915717951585986373746687\n", |
|
741 | 743 | "2582249878086908589655919172003011874329705792829223512830659356540647622016841194629645353280137831435903171972747493375\n", |
|
742 | 744 | "5164499756173817179311838344006023748659411585658447025661318713081295244033682389259290706560275662871806343945494986751\n", |
|
743 | 745 | "10328999512347634358623676688012047497318823171316894051322637426162590488067364778518581413120551325743612687890989973503\n", |
|
744 | 746 | "20657999024695268717247353376024094994637646342633788102645274852325180976134729557037162826241102651487225375781979947007\n", |
|
745 | 747 | "41315998049390537434494706752048189989275292685267576205290549704650361952269459114074325652482205302974450751563959894015\n", |
|
746 | 748 | "82631996098781074868989413504096379978550585370535152410581099409300723904538918228148651304964410605948901503127919788031\n", |
|
747 | 749 | "165263992197562149737978827008192759957101170741070304821162198818601447809077836456297302609928821211897803006255839576063\n", |
|
748 | 750 | "330527984395124299475957654016385519914202341482140609642324397637202895618155672912594605219857642423795606012511679152127\n", |
|
749 | 751 | "661055968790248598951915308032771039828404682964281219284648795274405791236311345825189210439715284847591212025023358304255\n", |
|
750 | 752 | "1322111937580497197903830616065542079656809365928562438569297590548811582472622691650378420879430569695182424050046716608511\n", |
|
751 | 753 | "2644223875160994395807661232131084159313618731857124877138595181097623164945245383300756841758861139390364848100093433217023\n", |
|
752 | 754 | "5288447750321988791615322464262168318627237463714249754277190362195246329890490766601513683517722278780729696200186866434047\n", |
|
753 | 755 | "10576895500643977583230644928524336637254474927428499508554380724390492659780981533203027367035444557561459392400373732868095\n", |
|
754 | 756 | "21153791001287955166461289857048673274508949854856999017108761448780985319561963066406054734070889115122918784800747465736191\n", |
|
755 | 757 | "42307582002575910332922579714097346549017899709713998034217522897561970639123926132812109468141778230245837569601494931472383\n", |
|
756 | 758 | "84615164005151820665845159428194693098035799419427996068435045795123941278247852265624218936283556460491675139202989862944767\n", |
|
757 | 759 | "169230328010303641331690318856389386196071598838855992136870091590247882556495704531248437872567112920983350278405979725889535\n", |
|
758 | 760 | "338460656020607282663380637712778772392143197677711984273740183180495765112991409062496875745134225841966700556811959451779071\n", |
|
759 | 761 | "676921312041214565326761275425557544784286395355423968547480366360991530225982818124993751490268451683933401113623918903558143\n", |
|
760 | 762 | "1353842624082429130653522550851115089568572790710847937094960732721983060451965636249987502980536903367866802227247837807116287\n", |
|
761 | 763 | "2707685248164858261307045101702230179137145581421695874189921465443966120903931272499975005961073806735733604454495675614232575\n", |
|
762 | 764 | "5415370496329716522614090203404460358274291162843391748379842930887932241807862544999950011922147613471467208908991351228465151\n", |
|
763 | 765 | "10830740992659433045228180406808920716548582325686783496759685861775864483615725089999900023844295226942934417817982702456930303\n", |
|
764 | 766 | "21661481985318866090456360813617841433097164651373566993519371723551728967231450179999800047688590453885868835635965404913860607\n", |
|
765 | 767 | "43322963970637732180912721627235682866194329302747133987038743447103457934462900359999600095377180907771737671271930809827721215\n", |
|
766 | 768 | "86645927941275464361825443254471365732388658605494267974077486894206915868925800719999200190754361815543475342543861619655442431\n", |
|
767 | 769 | "173291855882550928723650886508942731464777317210988535948154973788413831737851601439998400381508723631086950685087723239310884863\n", |
|
768 | 770 | "346583711765101857447301773017885462929554634421977071896309947576827663475703202879996800763017447262173901370175446478621769727\n", |
|
769 | 771 | "693167423530203714894603546035770925859109268843954143792619895153655326951406405759993601526034894524347802740350892957243539455\n", |
|
770 | 772 | "1386334847060407429789207092071541851718218537687908287585239790307310653902812811519987203052069789048695605480701785914487078911\n", |
|
771 | 773 | "2772669694120814859578414184143083703436437075375816575170479580614621307805625623039974406104139578097391210961403571828974157823\n", |
|
772 | 774 | "5545339388241629719156828368286167406872874150751633150340959161229242615611251246079948812208279156194782421922807143657948315647\n", |
|
773 | 775 | "11090678776483259438313656736572334813745748301503266300681918322458485231222502492159897624416558312389564843845614287315896631295\n", |
|
774 | 776 | "22181357552966518876627313473144669627491496603006532601363836644916970462445004984319795248833116624779129687691228574631793262591\n", |
|
775 | 777 | "44362715105933037753254626946289339254982993206013065202727673289833940924890009968639590497666233249558259375382457149263586525183\n", |
|
776 | 778 | "88725430211866075506509253892578678509965986412026130405455346579667881849780019937279180995332466499116518750764914298527173050367\n", |
|
777 | 779 | "177450860423732151013018507785157357019931972824052260810910693159335763699560039874558361990664932998233037501529828597054346100735\n", |
|
778 | 780 | "354901720847464302026037015570314714039863945648104521621821386318671527399120079749116723981329865996466075003059657194108692201471\n", |
|
779 | 781 | "709803441694928604052074031140629428079727891296209043243642772637343054798240159498233447962659731992932150006119314388217384402943\n", |
|
780 | 782 | "1419606883389857208104148062281258856159455782592418086487285545274686109596480318996466895925319463985864300012238628776434768805887\n", |
|
781 | 783 | "2839213766779714416208296124562517712318911565184836172974571090549372219192960637992933791850638927971728600024477257552869537611775\n", |
|
782 | 784 | "5678427533559428832416592249125035424637823130369672345949142181098744438385921275985867583701277855943457200048954515105739075223551\n", |
|
783 | 785 | "11356855067118857664833184498250070849275646260739344691898284362197488876771842551971735167402555711886914400097909030211478150447103\n", |
|
784 | 786 | "22713710134237715329666368996500141698551292521478689383796568724394977753543685103943470334805111423773828800195818060422956300894207\n", |
|
785 | 787 | "45427420268475430659332737993000283397102585042957378767593137448789955507087370207886940669610222847547657600391636120845912601788415\n", |
|
786 | 788 | "90854840536950861318665475986000566794205170085914757535186274897579911014174740415773881339220445695095315200783272241691825203576831\n", |
|
787 | 789 | "181709681073901722637330951972001133588410340171829515070372549795159822028349480831547762678440891390190630401566544483383650407153663\n", |
|
788 | 790 | "363419362147803445274661903944002267176820680343659030140745099590319644056698961663095525356881782780381260803133088966767300814307327\n", |
|
789 | 791 | "726838724295606890549323807888004534353641360687318060281490199180639288113397923326191050713763565560762521606266177933534601628614655\n", |
|
790 | 792 | "1453677448591213781098647615776009068707282721374636120562980398361278576226795846652382101427527131121525043212532355867069203257229311\n", |
|
791 | 793 | "2907354897182427562197295231552018137414565442749272241125960796722557152453591693304764202855054262243050086425064711734138406514458623\n", |
|
792 | 794 | "5814709794364855124394590463104036274829130885498544482251921593445114304907183386609528405710108524486100172850129423468276813028917247\n", |
|
793 | 795 | "11629419588729710248789180926208072549658261770997088964503843186890228609814366773219056811420217048972200345700258846936553626057834495\n", |
|
794 | 796 | "23258839177459420497578361852416145099316523541994177929007686373780457219628733546438113622840434097944400691400517693873107252115668991\n", |
|
795 | 797 | "46517678354918840995156723704832290198633047083988355858015372747560914439257467092876227245680868195888801382801035387746214504231337983\n", |
|
796 | 798 | "93035356709837681990313447409664580397266094167976711716030745495121828878514934185752454491361736391777602765602070775492429008462675967\n", |
|
797 | 799 | "186070713419675363980626894819329160794532188335953423432061490990243657757029868371504908982723472783555205531204141550984858016925351935\n", |
|
798 | 800 | "372141426839350727961253789638658321589064376671906846864122981980487315514059736743009817965446945567110411062408283101969716033850703871\n", |
|
799 | 801 | "744282853678701455922507579277316643178128753343813693728245963960974631028119473486019635930893891134220822124816566203939432067701407743\n", |
|
800 | 802 | "1488565707357402911845015158554633286356257506687627387456491927921949262056238946972039271861787782268441644249633132407878864135402815487\n", |
|
801 | 803 | "2977131414714805823690030317109266572712515013375254774912983855843898524112477893944078543723575564536883288499266264815757728270805630975\n", |
|
802 | 804 | "5954262829429611647380060634218533145425030026750509549825967711687797048224955787888157087447151129073766576998532529631515456541611261951\n", |
|
803 | 805 | "11908525658859223294760121268437066290850060053501019099651935423375594096449911575776314174894302258147533153997065059263030913083222523903\n", |
|
804 | 806 | "23817051317718446589520242536874132581700120107002038199303870846751188192899823151552628349788604516295066307994130118526061826166445047807\n", |
|
805 | 807 | "47634102635436893179040485073748265163400240214004076398607741693502376385799646303105256699577209032590132615988260237052123652332890095615\n", |
|
806 | 808 | "95268205270873786358080970147496530326800480428008152797215483387004752771599292606210513399154418065180265231976520474104247304665780191231\n", |
|
807 | 809 | "190536410541747572716161940294993060653600960856016305594430966774009505543198585212421026798308836130360530463953040948208494609331560382463\n", |
|
808 | 810 | "381072821083495145432323880589986121307201921712032611188861933548019011086397170424842053596617672260721060927906081896416989218663120764927\n", |
|
809 | 811 | "762145642166990290864647761179972242614403843424065222377723867096038022172794340849684107193235344521442121855812163792833978437326241529855\n", |
|
810 | 812 | "1524291284333980581729295522359944485228807686848130444755447734192076044345588681699368214386470689042884243711624327585667956874652483059711\n", |
|
811 | 813 | "3048582568667961163458591044719888970457615373696260889510895468384152088691177363398736428772941378085768487423248655171335913749304966119423\n", |
|
812 | 814 | "6097165137335922326917182089439777940915230747392521779021790936768304177382354726797472857545882756171536974846497310342671827498609932238847\n", |
|
813 | 815 | "12194330274671844653834364178879555881830461494785043558043581873536608354764709453594945715091765512343073949692994620685343654997219864477695\n", |
|
814 | 816 | "24388660549343689307668728357759111763660922989570087116087163747073216709529418907189891430183531024686147899385989241370687309994439728955391\n", |
|
815 | 817 | "48777321098687378615337456715518223527321845979140174232174327494146433419058837814379782860367062049372295798771978482741374619988879457910783\n", |
|
816 | 818 | "97554642197374757230674913431036447054643691958280348464348654988292866838117675628759565720734124098744591597543956965482749239977758915821567\n", |
|
817 | 819 | "195109284394749514461349826862072894109287383916560696928697309976585733676235351257519131441468248197489183195087913930965498479955517831643135\n", |
|
818 | 820 | "390218568789499028922699653724145788218574767833121393857394619953171467352470702515038262882936496394978366390175827861930996959911035663286271\n", |
|
819 | 821 | "780437137578998057845399307448291576437149535666242787714789239906342934704941405030076525765872992789956732780351655723861993919822071326572543\n", |
|
820 | 822 | "1560874275157996115690798614896583152874299071332485575429578479812685869409882810060153051531745985579913465560703311447723987839644142653145087\n", |
|
821 | 823 | "3121748550315992231381597229793166305748598142664971150859156959625371738819765620120306103063491971159826931121406622895447975679288285306290175\n", |
|
822 | 824 | "6243497100631984462763194459586332611497196285329942301718313919250743477639531240240612206126983942319653862242813245790895951358576570612580351\n", |
|
823 | 825 | "12486994201263968925526388919172665222994392570659884603436627838501486955279062480481224412253967884639307724485626491581791902717153141225160703\n", |
|
824 | 826 | "24973988402527937851052777838345330445988785141319769206873255677002973910558124960962448824507935769278615448971252983163583805434306282450321407\n", |
|
825 | 827 | "49947976805055875702105555676690660891977570282639538413746511354005947821116249921924897649015871538557230897942505966327167610868612564900642815\n", |
|
826 | 828 | "99895953610111751404211111353381321783955140565279076827493022708011895642232499843849795298031743077114461795885011932654335221737225129801285631\n", |
|
827 | 829 | "199791907220223502808422222706762643567910281130558153654986045416023791284464999687699590596063486154228923591770023865308670443474450259602571263\n", |
|
828 | 830 | "399583814440447005616844445413525287135820562261116307309972090832047582568929999375399181192126972308457847183540047730617340886948900519205142527\n", |
|
829 | 831 | "799167628880894011233688890827050574271641124522232614619944181664095165137859998750798362384253944616915694367080095461234681773897801038410285055\n", |
|
830 | 832 | "1598335257761788022467377781654101148543282249044465229239888363328190330275719997501596724768507889233831388734160190922469363547795602076820570111\n", |
|
831 | 833 | "3196670515523576044934755563308202297086564498088930458479776726656380660551439995003193449537015778467662777468320381844938727095591204153641140223\n", |
|
832 | 834 | "6393341031047152089869511126616404594173128996177860916959553453312761321102879990006386899074031556935325554936640763689877454191182408307282280447\n", |
|
833 | 835 | "12786682062094304179739022253232809188346257992355721833919106906625522642205759980012773798148063113870651109873281527379754908382364816614564560895\n", |
|
834 | 836 | "25573364124188608359478044506465618376692515984711443667838213813251045284411519960025547596296126227741302219746563054759509816764729633229129121791\n", |
|
835 | 837 | "51146728248377216718956089012931236753385031969422887335676427626502090568823039920051095192592252455482604439493126109519019633529459266458258243583\n", |
|
836 | 838 | "102293456496754433437912178025862473506770063938845774671352855253004181137646079840102190385184504910965208878986252219038039267058918532916516487167\n", |
|
837 | 839 | "204586912993508866875824356051724947013540127877691549342705710506008362275292159680204380770369009821930417757972504438076078534117837065833032974335\n", |
|
838 | 840 | "409173825987017733751648712103449894027080255755383098685411421012016724550584319360408761540738019643860835515945008876152157068235674131666065948671\n", |
|
839 | 841 | "818347651974035467503297424206899788054160511510766197370822842024033449101168638720817523081476039287721671031890017752304314136471348263332131897343\n", |
|
840 | 842 | "1636695303948070935006594848413799576108321023021532394741645684048066898202337277441635046162952078575443342063780035504608628272942696526664263794687\n" |
|
841 | 843 | ] |
|
842 | 844 | } |
|
843 | 845 | ], |
|
844 | 846 | "prompt_number": 6 |
|
845 | 847 | }, |
|
846 | 848 | { |
|
847 | 849 | "cell_type": "heading", |
|
848 | 850 | "level": 2, |
|
849 | 851 | "metadata": {}, |
|
850 | 852 | "source": [ |
|
851 | 853 | "Capturing output with <tt>%%capture</tt>" |
|
852 | 854 | ] |
|
853 | 855 | }, |
|
854 | 856 | { |
|
855 | 857 | "cell_type": "markdown", |
|
856 | 858 | "metadata": {}, |
|
857 | 859 | "source": [ |
|
858 | 860 | "IPython has a cell magic, `%%capture`, which captures the stdout/stderr of a cell. With this magic you can discard these streams or store them in a variable." |
|
859 | 861 | ] |
|
860 | 862 | }, |
|
861 | 863 | { |
|
862 | 864 | "cell_type": "code", |
|
863 | 865 | "collapsed": false, |
|
864 | 866 | "input": [ |
|
867 | "from __future__ import print_function\n", | |
|
865 | 868 | "import sys" |
|
866 | 869 | ], |
|
867 | 870 | "language": "python", |
|
868 | 871 | "metadata": {}, |
|
869 | 872 | "outputs": [], |
|
870 | 873 | "prompt_number": 9 |
|
871 | 874 | }, |
|
872 | 875 | { |
|
873 | 876 | "cell_type": "markdown", |
|
874 | 877 | "metadata": {}, |
|
875 | 878 | "source": [ |
|
876 | 879 | "By default, `%%capture` discards these streams. This is a simple way to suppress unwanted output." |
|
877 | 880 | ] |
|
878 | 881 | }, |
|
879 | 882 | { |
|
880 | 883 | "cell_type": "code", |
|
881 | 884 | "collapsed": false, |
|
882 | 885 | "input": [ |
|
883 | 886 | "%%capture\n", |
|
884 |
"print |
|
|
885 | "print >> sys.stderr, 'hi, stderr'" | |
|
887 | "print('hi, stdout')\n", | |
|
888 | "print('hi, stderr', file=sys.stderr)" | |
|
886 | 889 | ], |
|
887 | 890 | "language": "python", |
|
888 | 891 | "metadata": {}, |
|
889 | 892 | "outputs": [], |
|
890 | 893 | "prompt_number": 10 |
|
891 | 894 | }, |
|
892 | 895 | { |
|
893 | 896 | "cell_type": "markdown", |
|
894 | 897 | "metadata": {}, |
|
895 | 898 | "source": [ |
|
896 | 899 | "If you specify a name, then stdout/stderr will be stored in an object in your namespace." |
|
897 | 900 | ] |
|
898 | 901 | }, |
|
899 | 902 | { |
|
900 | 903 | "cell_type": "code", |
|
901 | 904 | "collapsed": false, |
|
902 | 905 | "input": [ |
|
903 | 906 | "%%capture captured\n", |
|
904 |
"print |
|
|
905 | "print >> sys.stderr, 'hi, stderr'" | |
|
907 | "print('hi, stdout')\n", | |
|
908 | "print('hi, stderr', file=sys.stderr)" | |
|
906 | 909 | ], |
|
907 | 910 | "language": "python", |
|
908 | 911 | "metadata": {}, |
|
909 | 912 | "outputs": [], |
|
910 | 913 | "prompt_number": 11 |
|
911 | 914 | }, |
|
912 | 915 | { |
|
913 | 916 | "cell_type": "code", |
|
914 | 917 | "collapsed": false, |
|
915 | 918 | "input": [ |
|
916 | 919 | "captured" |
|
917 | 920 | ], |
|
918 | 921 | "language": "python", |
|
919 | 922 | "metadata": {}, |
|
920 | 923 | "outputs": [ |
|
921 | 924 | { |
|
922 | 925 | "output_type": "pyout", |
|
923 | 926 | "prompt_number": 12, |
|
924 | 927 | "text": [ |
|
925 | 928 | "<IPython.utils.io.CapturedIO at 0x107ea2590>" |
|
926 | 929 | ] |
|
927 | 930 | } |
|
928 | 931 | ], |
|
929 | 932 | "prompt_number": 12 |
|
930 | 933 | }, |
|
931 | 934 | { |
|
932 | 935 | "cell_type": "markdown", |
|
933 | 936 | "metadata": {}, |
|
934 | 937 | "source": [ |
|
935 | 938 | "Calling the object writes the output to stdout/stderr as appropriate." |
|
936 | 939 | ] |
|
937 | 940 | }, |
|
938 | 941 | { |
|
939 | 942 | "cell_type": "code", |
|
940 | 943 | "collapsed": false, |
|
941 | 944 | "input": [ |
|
942 | 945 | "captured()" |
|
943 | 946 | ], |
|
944 | 947 | "language": "python", |
|
945 | 948 | "metadata": {}, |
|
946 | 949 | "outputs": [ |
|
947 | 950 | { |
|
948 | 951 | "output_type": "stream", |
|
949 | 952 | "stream": "stdout", |
|
950 | 953 | "text": [ |
|
951 | 954 | "hi, stdout\n" |
|
952 | 955 | ] |
|
953 | 956 | }, |
|
954 | 957 | { |
|
955 | 958 | "output_type": "stream", |
|
956 | 959 | "stream": "stderr", |
|
957 | 960 | "text": [ |
|
958 | 961 | "hi, stderr\n" |
|
959 | 962 | ] |
|
960 | 963 | } |
|
961 | 964 | ], |
|
962 | 965 | "prompt_number": 13 |
|
963 | 966 | }, |
|
964 | 967 | { |
|
965 | 968 | "cell_type": "code", |
|
966 | 969 | "collapsed": false, |
|
967 | 970 | "input": [ |
|
968 | 971 | "captured.stdout" |
|
969 | 972 | ], |
|
970 | 973 | "language": "python", |
|
971 | 974 | "metadata": {}, |
|
972 | 975 | "outputs": [ |
|
973 | 976 | { |
|
974 | 977 | "output_type": "pyout", |
|
975 | 978 | "prompt_number": 14, |
|
976 | 979 | "text": [ |
|
977 | 980 | "'hi, stdout\\n'" |
|
978 | 981 | ] |
|
979 | 982 | } |
|
980 | 983 | ], |
|
981 | 984 | "prompt_number": 14 |
|
982 | 985 | }, |
|
983 | 986 | { |
|
984 | 987 | "cell_type": "code", |
|
985 | 988 | "collapsed": false, |
|
986 | 989 | "input": [ |
|
987 | 990 | "captured.stderr" |
|
988 | 991 | ], |
|
989 | 992 | "language": "python", |
|
990 | 993 | "metadata": {}, |
|
991 | 994 | "outputs": [ |
|
992 | 995 | { |
|
993 | 996 | "output_type": "pyout", |
|
994 | 997 | "prompt_number": 15, |
|
995 | 998 | "text": [ |
|
996 | 999 | "'hi, stderr\\n'" |
|
997 | 1000 | ] |
|
998 | 1001 | } |
|
999 | 1002 | ], |
|
1000 | 1003 | "prompt_number": 15 |
|
1001 | 1004 | }, |
|
1002 | 1005 | { |
|
1003 | 1006 | "cell_type": "markdown", |
|
1004 | 1007 | "metadata": {}, |
|
1005 | 1008 | "source": [ |
|
1006 | 1009 | "`%%capture` only captures stdout/stderr, not other output types, so you can still do plots and use IPython's display system inside `%%capture`" |
|
1007 | 1010 | ] |
|
1008 | 1011 | }, |
|
1009 | 1012 | { |
|
1010 | 1013 | "cell_type": "code", |
|
1011 | 1014 | "collapsed": false, |
|
1012 | 1015 | "input": [ |
|
1013 | 1016 | "%pylab inline" |
|
1014 | 1017 | ], |
|
1015 | 1018 | "language": "python", |
|
1016 | 1019 | "metadata": {}, |
|
1017 | 1020 | "outputs": [ |
|
1018 | 1021 | { |
|
1019 | 1022 | "output_type": "stream", |
|
1020 | 1023 | "stream": "stdout", |
|
1021 | 1024 | "text": [ |
|
1022 | 1025 | "\n", |
|
1023 | 1026 | "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", |
|
1024 | 1027 | "For more information, type 'help(pylab)'.\n" |
|
1025 | 1028 | ] |
|
1026 | 1029 | } |
|
1027 | 1030 | ], |
|
1028 | 1031 | "prompt_number": 16 |
|
1029 | 1032 | }, |
|
1030 | 1033 | { |
|
1031 | 1034 | "cell_type": "code", |
|
1032 | 1035 | "collapsed": false, |
|
1033 | 1036 | "input": [ |
|
1034 | 1037 | "%%capture wontshutup\n", |
|
1035 | 1038 | "\n", |
|
1036 |
"print |
|
|
1039 | "print(\"setting up X\")\n", | |
|
1037 | 1040 | "x = np.linspace(0,5,1000)\n", |
|
1038 |
"print |
|
|
1041 | "print(\"step 2: constructing y-data\")\n", | |
|
1039 | 1042 | "y = np.sin(x)\n", |
|
1040 |
"print |
|
|
1043 | "print(\"step 3: display info about y\")\n", | |
|
1041 | 1044 | "plt.plot(x,y)\n", |
|
1042 |
"print |
|
|
1045 | "print(\"okay, I'm done now\")" | |
|
1043 | 1046 | ], |
|
1044 | 1047 | "language": "python", |
|
1045 | 1048 | "metadata": {}, |
|
1046 | 1049 | "outputs": [ |
|
1047 | 1050 | { |
|
1048 | 1051 | "output_type": "display_data", |
|
1049 | 1052 | "png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD9CAYAAACyYrxEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8z3X/x/HHnC+RzBJlTSHmMOZc2VpyKjmEXyxXzrXI\ncQ6l9HMo6cpVWVwOubhSi6IiVJeIrzHZRi45/oorF66sbGoUifn+/niHHMZs3+/en+/3+7zfbrs5\nfbbv8/YtL++93qcgt9vtRkRE/FYh2wFERMS7VOhFRPycCr2IiJ9ToRcR8XMq9CIifk6FXkTEz+Wr\n0Pfp04ebbrqJOnXq5PjM6NGjuf3222nQoAG7d+/Oz8uJiEge5KvQ9+7dm3/+8585/nlqairr1q1j\n06ZNjBgxghEjRuTn5UREJA/yVeijoqIoW7Zsjn+ekpJCly5dCA4OJjY2ll27duXn5UREJA+82qNP\nTU2lZs2a53594403snfvXm++pIiIXKSIN7+42+3m4hMWgoKCLvtsTr8vIiJXdrWTbLw6om/SpAk7\nd+489+vDhw9z++235/j82X8YAv1j7NixXvm6x4+7mT/fTfv2bkqXdhMd7ebFF90kJZk/y+/XP3LE\nzaefunn6aTcREW5CQtz07Olm5Uo3p087673wxQ+9F3ovLveRG14v9B988AGZmZnMnz+f8PBwb76c\n5GDrVoiLg1tugTffhC5d4NtvYe1aGD0aoqLgT3/K/+uULQtt2sCkSeY1N2+GevVg1CioXBmefRYO\nHsz/64jItclX6yY2Npa1a9eSkZFBaGgo48eP59SpUwDExcXRuHFjmjVrRsOGDQkODiYxMdEjoeXq\n3G5YsQJeeQV27YIBA+Crr6BSpYLLcOutMHSo+di2Df7+d4iIMP8YDB8ODRoUXBaRQBbkzu3Y38uC\ngoJy/W2Iv3O5XMTExOTpc91u+PRTM3o+cwZGjICuXaFYMc9mzKuffoI5c2DKFIiMhOefh7p1c34+\nP++Fv9F7cZ7ei/NyUztV6P3Ihg3w9NOQkQEvvggdOoBT57h//RVmzoSXXoKYGJP3CtM3IpKD3NRO\nHYHgB77/Hh59FLp1gz59TJukY0fnFnmAEiVMS2fPHqhdGxo1grFj4cQJ28lE/I8KvQ/Lzobp002h\nvPlm2LkTevWCwoVtJ8u9UqVgzBjYssXkr1kTli+3nUrEv6h146P27IGePU1RnzEDatWyncgzVq2C\nxx+H6GjTx7/hBtuJRJxNrRs/5Hab3nbTpvDww+By+U+RB2jRwqwOKlkS6tSBKxylJCK5pBG9D8nM\nhB494Icf4O23oUYN24m8a9UqM+fQtauZrC1a1HYiEefRiN6PpKRA/fpm9L5hg/8XeTCj+7O9++ho\n+M9/bCcS8U0q9A7ndsPUqdCuHSQkwMsvB9bItlw5WLYMOnWCxo3VyhHJC7VuHOzkSXjsMbNc8v33\noUoV24nsWrfOzEs89RQMGeLs5aMiBUUbpnzY4cPw0ENQoQK89ZaZnBTTvmnfHho2NEtLixe3nUjE\nLvXofdTOndCkielLL1yoIv9HYWGQnAxHjpgefmam7UQizqdC7zBJSeZIgLFjzUqTQvovdIlSpeCD\nD8wS06goOHDAdiIRZ/PqxSNybZYtM8sJFywwo1XJWaFCMHkyVKwId99tDnLzp/0EIp6kQu8QiYnm\npMmPPzarSyR34uPhppugeXP48ENT9EXkQpqMdYDXX4e//tUsHfzDFbtyDVasMAe7LVxoWl8igUKr\nbnzA5MnwxhtmF2hYmO00vm3NGrP88t134b77bKcRKRhadeNwr7xiirzLpSLvCffeayZpu3WDzz6z\nnUbEOVToLXntNXPq5Jo15i5X8YzoaFiyBP78ZzNBKyJq3ViRkGD68mvWmHtVxfO++MLcsKWevfg7\ntW4caPZsc8766tUq8t50553w3numZ5+aajuNiF0a0RegDz+EgQPNpqiqVW2nCQzLlpnzglatMjdx\nifgbjegdZM0aeOIJs05eRb7gtGtn5kNatza3cokEIm2YKgBffmkuz1i0CCIjbacJPLGxcPSoKfYb\nNpgNViKBRIXey775Bh580CyjvOce22kCV1wcfPedGeGvWQPXXWc7kUjBUY/eizIyzKTgU09Bv362\n04jbDb17m5MvFy82F6uL+DrtjLXo11/NwWTR0eYUSnGG336Dtm3hjjtg2jRdXiK+T4XeErfbbNg5\ndcpsx9dRw86SlWWON370URg50nYakfzJTe1Uj94Lxo2DvXtNL1hF3nnKlIFPPjFttapVzU1eIv5M\nhd7D3n7bXP23cSP86U+200hOKlUyffr77zd38UZE2E4k4j0ab3pQSoo5H335ci3h8wUNG5qjKDp0\nMHf0ivgrFXoPSU+HLl1gzhzddORLYmPhkUfMf7vffrOdRsQ7NBnrAb/9Zm44atnS3PUqvuXMGdOn\nr1ABZs7UShzxLVp1U0D694dDh8xZNpp89U3HjsFdd8GAAea/p4iv0KqbAjB7trk4JCVFRd6XlS5t\nJmfvugsaNNC9veJfNKLPh7Nnnq9bB9Wr204jnvDRRzB4MGzeDCEhttOIXJ1Or/SijAxzUNmcOSry\n/qRDh/MTtNnZttOIeIZG9Hlw5ozZRh8RAX/5i+004mmnT0OrVtCsGUyYYDuNyJVpRO8lL70EP/8M\nL7xgO4l4Q5EisGAB/OMf5v4AEV+nEf01WrsWunWDTZt0qbe/S06GTp3MVYRhYbbTiFyeRvQe9v33\n0L07zJunIh8I7r7bHHoWG2sOqBPxVRrR51J2trmh6M474fnnbaeRgnJ2PqZ+fZg40XYakUtpw5QH\nTZhg1suvXKkLKwLNDz+YKyDfegvuu892GpELqdB7SHIydO5s7n69+WbbacSGVaugZ0/YsgXKl7ed\nRuQ89eg9ICvLXCLyxhsq8oGsRQvo1csU+zNnbKcRuTYa0V9F9+7moorp020nEdtOnTIXvHfqBCNG\n2E4jYuism3xKTDTfqm/aZDuJOEHRomZ9faNGEBNjzrMX8QX5bt0kJSURHh5OtWrVmDp16iV/7nK5\nKFOmDJGRkURGRvKCj+wy+ve/Ydgw8xe7ZEnbacQpwsLMZSWPPgrHj9tOI5I7+W7dREZGkpCQQFhY\nGK1bt2b9+vWE/OE0KJfLxauvvsrSpUuvHMRBrZvTp83l0Q8/bIq9yMW6d4fgYLjM2EakQHl9MjYr\nKwuA6OhowsLCaNWqFSkpKZc855QCnlsTJsD118OQIbaTiFNNm2ZOulyxwnYSkavLV6FPS0ujRo0a\n535ds2ZNNm7ceMEzQUFBbNiwgXr16hEfH8/evXvz85Jet3GjWWHz5ps6X15yVras+X+kb1/IzLSd\nRuTKvD4ZW79+fQ4cOEDRokWZN28eQ4YMYfny5Zd9dty4ced+HhMTQ0xMjLfjXeD4cbN8bto0qFix\nQF9afFDz5qa998QTsHChriCUguFyuXC5XNf0Ofnq0WdlZRETE8OWLVsAGDRoEG3atKFt27aXfd7t\ndlOhQgX2799P8eLFLwzigB790KFw+DC8847VGOJDfv3VrL556ikzQStS0Lzeoy9TpgxgVt7s27eP\nlStX0qRJkwue+f7778+FWLZsGREREZcUeSdYswbef1+Ta3JtSpQwA4Phw+E//7GdRuTy8t26mTJl\nCnFxcZw6dYrBgwcTEhLCrFmzAIiLi+P9999nxowZFClShIiICF555ZV8h/a0o0ehTx/Tmw8Otp1G\nfE3duqbQ9+ljzkLS3I44jXbGAo89Zn6cPdvKy4sfyM42xxr36mV69iIFRYea5cInn8CAAfDVV2ZJ\npUhe7doF0dGQlgaVK9tOI4FChf4qjhwx976+/Tbce2+BvrT4qZdfNmvr1cKRgqLTK69i0CDo0kVF\nXjwnPt7cJ/zGG7aTiJwXsIeaffSRuQt061bbScSfFCliNlJFR0ObNmrhiDMEZOvmp5+gdm2YP9/8\nhRTxtLMtnFWrtJFKvEs9+hz06wfFiumMefGe06fNKpzevbUKR7xLhf4yPv/c/OXbvl2rbMS7tApH\nCoImYy/yyy9mzfzMmSry4n3h4eYmqscfB2cMpyRQBVShHzPGfDv9wAO2k0igGD4cMjLMEl4RWwKm\ndfPFF+auz+3boVw5r72MyCW+/BLuvx+2bYPy5W2nEX+j1s3vTp4054YnJKjIS8GrXx969NBtZWJP\nQIzon3vOjKYWL9ZSN7Hj+HGoU8ecjqrWoXiSVt1gNkS1aGF+vPlmj395kVxbtcp8Z7l9O5QubTuN\n+IuAL/TZ2dC0KcTFmbXzIrb17m1WfCUk2E4i/iLgC/3UqeYyEZdLLRtxhsxMsyt7yRK46I4ekTwJ\n6EJ/8CDUqwfr18Mf7i8Xse7dd2HiRNi82ezQFsmPgF51M3gwPPmkirw4T9euEBZmzsMRKQh+OaL/\n6CMYNcpMwJYo4ZEvKeJR+/ebZZfJyVC9uu004ssCsnVz7BjUqgXz5umceXG2hAQzKPn8c80hSd4F\nZOtm7Fho3lxFXpzvySfNkdmJibaTiL/zqxH92a3mO3ZASIiHgol4UVoatGsHO3dCcLDtNOKLAqp1\nk51tlqsNHAi9enkul4i3DRwIp07BrFm2k4gvCqhCn5Bg1iavXq1+p/iWrCyoWRMWLYK77rKdRnxN\nwBT6AwcgMlIrGMR3vffe+bX1RYvaTiO+JGAmYwcPhkGDVOTFdz38MFSsCFOm2E4i/sjnR/RLlsBT\nT8FXX0Hx4l4IJlJA9u4180ybN5sNVSK54fetm19+Mb3NN9/UckrxDy+8YFbifPSR7STiK/y+dfP8\n8xAVpSIv/mPkSPj6a/Odqoin+OyIftcuiI42F4pUqODFYCIFzOUyN1Lt3AmlStlOI07nt60btxvu\nuw86djQTsSL+plcvs+nvr3+1nUSczm8L/YIF5uS/tDQoUsTLwUQsOHzYnFv/2WdQt67tNOJkflno\njx6F8HBtLhH/N3u2WWiwbh0U8unZNPEmv5yMHTcOWrdWkRf/17cvnD4Nb71lO4n4Op8a0W/bZnrz\nO3bAjTcWUDARizZvhrZtzeKDsmVtpxEn8qvWjdttVtl07w5PPFGAwUQsGzDAnN/0t7/ZTiJO5FeF\nft48mDYNNm6EwoULMJiIZT/+aOalPv4YGjSwnUacxm8K/Y8/mh2wy5ZBw4YFHEzEAf7xD5g5E774\nQhOzciG/mYwdM8asmVeRl0DVs6dZSjxnju0k4oscP6I/OxmlG3gk0P3rX2bF2c6dUK6c7TTiFD7f\nujlzBu6800y+9u5tKZiIgwwZAidOwBtv2E4iTuHzrZu//918u9qzp+0kIs4wYQIsXw4pKbaTiC9x\n7Ig+IwNq1dIWcJGLJSbCa69BaqpWoImPj+hHj4bYWBV5kYt1725OtVT7RnLLkSP6jRuhUyezG7BM\nGcvBRBxo+3Zo3tz8WL687TRik0+O6LOzzU7AyZNV5EVyUrs2PPooPP207STiCxxX6GfMMAX+kUds\nJxFxtrFjzRxWcrLtJOJ0jmrdpKe7qV0b1q41O2FF5MrefRcmTTL7TXQ3Q2AqkNZNUlIS4eHhVKtW\njalTp172mdGjR3P77bfToEEDdu/enePXGjnSrJdXkRfJna5dzeap6dNtJxEny/eIPjIykoSEBMLC\nwmjdujXr168nJCTk3J+npqYSHx/P0qVLWbFiBe+88w7Lly+/NEhQEKGhbt2TKXKNdu2CqChzjHfF\nirbTSEHz+og+KysLgOjoaMLCwmjVqhUpF+3kSElJoUuXLgQHBxMbG8uuXbty/HqvvqoiL3KtwsPN\nJSUjR9pOIk6Vr0KflpZGjRo1zv26Zs2abNy48YJnUlNTqfmHXsyNN97I3r17L/v1OnfOTxqRwPXc\nc5CUZOa3RC7m9ekbt9t9ybcVQUFBl312/Phx534eExNDTEyMF5OJ+I9Spcxu2SefhC1boGhR24nE\nW1wuFy6X65o+J189+qysLGJiYtiyZQsAgwYNok2bNrRt2/bcM1OnTuX06dMMGzYMgCpVqlx2RJ/b\ny8FF5PLcbmjTBlq2hBEjbKeRguL1Hn2Z33c0JSUlsW/fPlauXEmTJk0ueKZJkyZ88MEHZGZmMn/+\nfMLDw/PzkiKSg6AgcwvbSy/BwYO204iT5Lt1M2XKFOLi4jh16hSDBw8mJCSEWbNmARAXF0fjxo1p\n1qwZDRs2JDg4mMTExHyHFpHLq1YN+veH4cPhvfdspxGncNSGKYdEEfFpx4+bk19nz4YWLWynEW/z\nybNuRCR/SpaE1183E7MnT9pOI06gQi/ih9q1g+rV4ZVXbCcRJ1DrRsRPffstNGoEmzZB5cq204i3\nqHUjEsBuuw2GDjUfEthU6EX82IgRsGMHfPyx7SRikwq9iB8rUcKsrR80CE6csJ1GbFGhF/FzrVtD\n/frwl7/YTiK2aDJWJAAcOACRkZCSAlWq2E4jnqTJWBEBIDQURo0yLRyNpwKPCr1IgBg6FPbtgyVL\nbCeRgqbWjUgAcbmgZ0/YuROuu852GvEEtW5E5AIxMdCsGbzwgu0kUpA0ohcJMIcOQZ06sH49/OGC\nOPFRGtGLyCUqVoQxY2DgQE3MBgoVepEANHAgHD4MCxfaTiIFQa0bkQCVnAxdu8KuXVC6tO00kle5\nqZ0q9CIBrHdvCA7Wcca+TIVeRK7ohx+gdm34/HMzQSu+R5OxInJF5cvD+PHmNiqNs/yXCr1IgHv8\ncXOy5dtv204i3qLWjYiQlgbt25uz64ODbaeRa6EevYjk2qBB8OuvMHu27SRyLVToRSTXsrKgVi1Y\nsACiomynkdzSZKyI5FqZMpCQAHFxcPKk7TTiSSr0InJOp05QtSpMnmw7iXiSWjcicoH9+83Vg198\nAdWq2U4jV6PWjYhcs1tvhWeegf79tbbeX6jQi8glBg+GI0cgMdF2EvEEtW5E5LI2bYIHHzRr68uV\ns51GcqLllSKSL0OGwM8/w5w5tpNITlToRSRfjh41a+sTE+Gee2ynkcvRZKyI5Mv118Prr2ttva9T\noReRK3roIXO37Esv2U4ieaXWjYhc1YEDZm392rVQs6btNPJHat2IiEeEhsKECdC3L2Rn204j10qF\nXkRyJS4OihWDqVNtJ5FrpdaNiOTa11/DXXdBaircfrvtNAJq3YiIh91xB4waZW6l0rjMd6jQi8g1\niY+Hn36CuXNtJ5HcUutGRK7ZV1/BfffB1q1w88220wQ2tW5ExCsiIszpljrh0jeo0ItInjz7LOzZ\nAwsX2k4iV6PWjYjk2caNZufstm0QEmI7TWDSoWYi4nXx8XDokLlUXAqeevQi4nUTJ8KWLbBoke0k\nkhON6EUk31JSoH17swqnQgXbaQKLWjciUmCefRa2b4clSyAoyHaawOHV1s2xY8fo0KEDt956Kx07\nduTnn3++7HOVK1cmIiKCyMhIGjdunNeXExGHGzsW9u2DefNsJ5GL5bnQz5gxg1tvvZVvvvmGSpUq\nMXPmzMs+FxQUhMvlYsuWLaSmpuY5qIg4W7Fi8NZbMHIk7N9vO438UZ4LfWpqKn379qV48eL06dOH\nlJSUHJ9VS0YkMNStC8OGQZ8+cOaM7TRyVp4LfVpaGjVq1ACgRo0aOY7Wg4KCaN68OR07dmTp0qV5\nfTkR8RGjRpkLxWfMsJ1EzipypT9s2bIl6enpl/z+xIkTcz1KT05OpmLFiuzatYt27drRuHFjKuQw\nLT9u3LhzP4+JiSEmJiZXryEizlGkiOnT3303tGoF1arZTuRfXC4XLpfrmj4nz6tuOnfuzJgxY4iM\njGTz5s1MmjSJ999//4qfEx8fT3h4OI899tilQbTqRsSvvP46vPMOrF8PRYvaTuO/vLrqpkmTJsyd\nO5cTJ04wd+5cmjZteskzx48f59ixYwAcPnyYFStW0KZNm7y+pIj4kIEDITgYxo+3nUTyXOj79+/P\n/v37qV69Ov/973954oknAPjuu+9o27YtAOnp6URFRVGvXj26devG8OHDCQ0N9UxyEXG0QoXgzTdh\nzhxISrKdJrBpw5SIeNUnn5jjjP/1Lyhb1nYa/6OdsSLiCIMHQ3o6vPeeds16mg41ExFHePll2LXL\ntHKk4GlELyIFYvt2uPde2LBBSy49SSN6EXGM2rXNeTixsXDypO00gUUjehEpMG43dOoEoaFmnb3k\nn0b0IuIoQUEwdy4sXw5X2V8pHqQRvYgUuE2b4IEHTL++alXbaXybRvQi4kgNG5p+/f/8D5w4YTuN\n/9OIXkSscLuhWze44QaYNct2Gt+lEb2IOFZQEMyeDWvWmMPPxHs0ohcRq7ZuhRYtYPVqqFPHdhrf\noxG9iDhe3brw2mvQsSMcOWI7jX/SiF5EHCE+3uye/eQTc3mJ5I5G9CLiM15+GbKz4ZlnbCfxPyr0\nIuIIRYqY0y0XLYJ337Wdxr+odSMijnJ2cvazzyAy0nYa51PrRkR8Tt26MG2amZw9dMh2Gv+gQi8i\njtO1K/TrB+3awS+/2E7j+9S6ERFHcruhVy84etQcgFa4sO1EzqTWjYj4rLM7Z3/8EZ56ynYa36ZC\nLyKOVawYfPghLFum83DyQ9sSRMTRgoPNJqpmzaBiRWjf3nYi36MRvYg4XpUqZlTfrx+sXWs7je9R\noRcRn9CwISxYYM6w37LFdhrfokIvIj7jvvtgxgxo2xa++cZ2Gt+hHr2I+JTOnc0pl61bw7p1cMst\nthM5nwq9iPicxx4zyy6bNweXy0zSSs5U6EXEJ40aZU67vPdec0uVin3OVOhFxGeNHg1nzpiR/Zo1\nUKGC7UTOpEIvIj7t2WfPF/vVq1XsL0eFXkR83nPPmSMToqJg5UqoXNl2ImdRoRcRvzBmDNxwgyn2\nn34KtWvbTuQcKvQi4jcGDjRHJrRoAUuWQNOmthM5gzZMiYhfeeQRmDvXnInz6ae20ziDCr2I+J0H\nHjAj+j59YOpUc7Z9INPFIyLit779Fh58EO65BxISoGhR24k8TxePiEhAu+022LDBFPy2bSEz03Yi\nO1ToRcSvlSljjjiuUwcaNIDUVNuJCp4KvYj4vSJF4JVX4NVXTStn2rTA6turRy8iAWXPHnOmfdWq\nMHMmlCtnO1H+qEcvInKRqlVN375SJYiIMNcU+juN6EUkYLlc0KsXtGwJkyebnbW+RiN6EZEriImB\nr76CwoUhPBwSE/2zd68RvYgIkJIC/fvD9debTVZ16thOlDsa0YuI5FKTJpCWBg8/bFo5f/4z/Pvf\ntlN5hgq9iMjvCheGAQPMxeN33AGNG5tR/p49tpNd6vRpc9lKbqjQi4hcpHRp+N//hd27zWmYd94J\nDz0E69fb7+FnZZn9AFWrmqOZcyPPhX7RokXUqlWLwoUL8+WXX+b4XFJSEuHh4VSrVo2pU6fm9eUC\nisvlsh3BMfRenKf34ryCei9CQmDiRNi3zxx93Ls31KoFL78M331XIBEAczfuZ59B9+4QFmZaTAsX\nQnJy7j4/z4W+Tp06LF68mOjo6Cs+N2TIEGbNmsWqVav429/+RkZGRl5fMmDoL/R5ei/O03txXkG/\nF9ddB08+CV9/DbNmmR9r1YK774aXXoIdOzw/0j92DBYvhr594ZZb4JlnzPn6e/bAggWmrZRbeb54\npEaNGld9JisrC+DcPwatWrUiJSWFtm3b5vVlRUSsOXtdYVSUOUbB5YLly82Bab/8Ylo8d95pbreq\nXt0cqpabEzOPHIH/+z/zkZYGX3xhfn7XXebIhmeegSpV8p7bqzdMpaWlXfAPQs2aNdm4caMKvYj4\nvBIloE0b8zFtGhw8aAr0xo0wfboZ9f/3v1C2rDlmoVw5KFbMfK7bDUePmtM0zzY57rjDfDRoYFb8\n1K8PxYt7JusVC33Lli1JT0+/5PdffPFF2rVr55kEfxAUFOTxr+mrxo8fbzuCY+i9OE/vxXm+8l6k\np5uPq9m0yXzMn+/5DFcs9CtXrszXF2/UqBEjR4489+sdO3bQpk2byz6rzVIiIt7hkeWVORXpMmXK\nAGblzb59+1i5ciVNmjTxxEuKiEgu5bnQL168mNDQ0HM99/vvvx+A77777oIe/JQpU4iLi6NFixYM\nGDCAkJCQ/KcWEZFcs37WTVJSEnFxcZw+fZrBgwczaNAgm3Gs6dOnDx9//DHly5dn27ZttuNYdeDA\nAXr06MEPP/zAjTfeyOOPP84jjzxiO5YVv/76K/fccw8nT56kRIkSdO3alWHDhtmOZU12djYNGzak\nUqVKLFu2zHYcqypXrsz1119P4cKFKVq0KKlXuDrLeqGPjIwkISGBsLAwWrduzfr16wNy1L9u3TpK\nlSpFjx49Ar7Qp6enk56eTr169cjIyKBx48Zs3bqV0qVL245mxfHjxylZsiQnT56kQYMGLFmyhKpV\nq9qOZcWrr77K5s2bOXbsGEuXLrUdx6rbbruNzZs3ExwcfNVnrR6B8Md19mFhYefW2QeiqKgoypYt\nazuGI1SoUIF69eoBEBISQq1atdi0aZPlVPaULFkSgJ9//pnTp09T3FNr7nzMwYMH+eSTT+jXr58W\nb/wut++D1UKf0zp7kbP27NnDjh07aHwt2wD9zJkzZ6hbty433XQTAwcOJDQ01HYkK4YNG8bkyZMp\nVEhHdIFZjt68eXM6dux41e9u9I6JYx07doyuXbvy2muvcd1119mOY02hQoXYunUre/bsYfr06WzZ\nssV2pAK3fPlyypcvT2RkpEbzv0tOTmbr1q1MmjSJ+Pj4y+55OstqoW/UqBG7d+8+9+sdO3bQtGlT\ni4nEKU6dOkXnzp159NFH6dChg+04jlC5cmUeeOCBgGxvbtiwgaVLl3LbbbcRGxvL6tWr6dGjh+1Y\nVlWsWBGA8PBw2rdvf8XJaauFXuvs5XLcbjd9+/aldu3aDB061HYcqzIyMvjpp58AyMzM5LPPPgvI\nf/hefPFFDhw4wLfffsu7775L8+bNeeutt2zHsub48eMcO3YMgMOHD7NixYocN6OCl8+6yY2z6+xP\nnTrF4MGDA3LFDUBsbCxr164lMzOT0NBQJkyYQO/evW3HsiI5OZnExEQiIiKIjIwEYNKkSVf8H9lf\nHTp0iJ6ecMR7AAAAWElEQVQ9e5KdnU2FChUYMWLEuZFcIAv041K+//57HnroIQDKlSvH8OHDrzh3\nY315pYiIeJcmY0VE/JwKvYiIn1OhFxHxcyr0IiJ+ToVeRMTPqdCLiPi5/wfD5TYrE44OIgAAAABJ\nRU5ErkJggg==\n", |
|
1050 | 1053 | "text": [ |
|
1051 | 1054 | "<matplotlib.figure.Figure at 0x108356ed0>" |
|
1052 | 1055 | ] |
|
1053 | 1056 | } |
|
1054 | 1057 | ], |
|
1055 | 1058 | "prompt_number": 17 |
|
1056 | 1059 | }, |
|
1057 | 1060 | { |
|
1058 | 1061 | "cell_type": "code", |
|
1059 | 1062 | "collapsed": false, |
|
1060 | 1063 | "input": [ |
|
1061 | 1064 | "wontshutup()" |
|
1062 | 1065 | ], |
|
1063 | 1066 | "language": "python", |
|
1064 | 1067 | "metadata": {}, |
|
1065 | 1068 | "outputs": [ |
|
1066 | 1069 | { |
|
1067 | 1070 | "output_type": "stream", |
|
1068 | 1071 | "stream": "stdout", |
|
1069 | 1072 | "text": [ |
|
1070 | 1073 | "setting up X\n", |
|
1071 | 1074 | "step 2: constructing y-data\n", |
|
1072 | 1075 | "step 3: display info about y\n", |
|
1073 | 1076 | "okay, I'm done now\n" |
|
1074 | 1077 | ] |
|
1075 | 1078 | } |
|
1076 | 1079 | ], |
|
1077 | 1080 | "prompt_number": 18 |
|
1078 | 1081 | }, |
|
1079 | 1082 | { |
|
1080 | 1083 | "cell_type": "markdown", |
|
1081 | 1084 | "metadata": {}, |
|
1082 | 1085 | "source": [ |
|
1083 | 1086 | "And you can selectively disable capturing stdout or stderr by passing `--no-stdout/err`." |
|
1084 | 1087 | ] |
|
1085 | 1088 | }, |
|
1086 | 1089 | { |
|
1087 | 1090 | "cell_type": "code", |
|
1088 | 1091 | "collapsed": false, |
|
1089 | 1092 | "input": [ |
|
1090 | 1093 | "%%capture cap --no-stderr\n", |
|
1091 |
"print |
|
|
1092 |
"print |
|
|
1094 | "print('hi, stdout')\n", | |
|
1095 | "print(\"hello, stderr\", file=sys.stderr)" | |
|
1093 | 1096 | ], |
|
1094 | 1097 | "language": "python", |
|
1095 | 1098 | "metadata": {}, |
|
1096 | 1099 | "outputs": [ |
|
1097 | 1100 | { |
|
1098 | 1101 | "output_type": "stream", |
|
1099 | 1102 | "stream": "stderr", |
|
1100 | 1103 | "text": [ |
|
1101 | 1104 | "hello, stderr" |
|
1102 | 1105 | ] |
|
1103 | 1106 | }, |
|
1104 | 1107 | { |
|
1105 | 1108 | "output_type": "stream", |
|
1106 | 1109 | "stream": "stderr", |
|
1107 | 1110 | "text": [ |
|
1108 | 1111 | "\n" |
|
1109 | 1112 | ] |
|
1110 | 1113 | } |
|
1111 | 1114 | ], |
|
1112 | 1115 | "prompt_number": 19 |
|
1113 | 1116 | }, |
|
1114 | 1117 | { |
|
1115 | 1118 | "cell_type": "code", |
|
1116 | 1119 | "collapsed": false, |
|
1117 | 1120 | "input": [ |
|
1118 | 1121 | "cap.stdout" |
|
1119 | 1122 | ], |
|
1120 | 1123 | "language": "python", |
|
1121 | 1124 | "metadata": {}, |
|
1122 | 1125 | "outputs": [ |
|
1123 | 1126 | { |
|
1124 | 1127 | "output_type": "pyout", |
|
1125 | 1128 | "prompt_number": 20, |
|
1126 | 1129 | "text": [ |
|
1127 | 1130 | "'hi, stdout\\n'" |
|
1128 | 1131 | ] |
|
1129 | 1132 | } |
|
1130 | 1133 | ], |
|
1131 | 1134 | "prompt_number": 20 |
|
1132 | 1135 | }, |
|
1133 | 1136 | { |
|
1134 | 1137 | "cell_type": "code", |
|
1135 | 1138 | "collapsed": false, |
|
1136 | 1139 | "input": [ |
|
1137 | 1140 | "cap.stderr" |
|
1138 | 1141 | ], |
|
1139 | 1142 | "language": "python", |
|
1140 | 1143 | "metadata": {}, |
|
1141 | 1144 | "outputs": [ |
|
1142 | 1145 | { |
|
1143 | 1146 | "output_type": "pyout", |
|
1144 | 1147 | "prompt_number": 21, |
|
1145 | 1148 | "text": [ |
|
1146 | 1149 | "''" |
|
1147 | 1150 | ] |
|
1148 | 1151 | } |
|
1149 | 1152 | ], |
|
1150 | 1153 | "prompt_number": 21 |
|
1151 | 1154 | } |
|
1152 | 1155 | ], |
|
1153 | 1156 | "metadata": {} |
|
1154 | 1157 | } |
|
1155 | 1158 | ] |
|
1156 | 1159 | } No newline at end of file |
@@ -1,1129 +1,1130 | |||
|
1 | 1 | { |
|
2 | 2 | "metadata": { |
|
3 | 3 | "name": "Part 5 - Rich Display System" |
|
4 | 4 | }, |
|
5 | 5 | "nbformat": 3, |
|
6 | 6 | "nbformat_minor": 0, |
|
7 | 7 | "worksheets": [ |
|
8 | 8 | { |
|
9 | 9 | "cells": [ |
|
10 | 10 | { |
|
11 | 11 | "cell_type": "heading", |
|
12 | 12 | "level": 1, |
|
13 | 13 | "metadata": {}, |
|
14 | 14 | "source": [ |
|
15 | 15 | "IPython's Rich Display System" |
|
16 | 16 | ] |
|
17 | 17 | }, |
|
18 | 18 | { |
|
19 | 19 | "cell_type": "markdown", |
|
20 | 20 | "metadata": {}, |
|
21 | 21 | "source": [ |
|
22 | 22 | "In Python, objects can declare their textual representation using the `__repr__` method. IPython expands on this idea and allows objects to declare other, richer representations including:\n", |
|
23 | 23 | "\n", |
|
24 | 24 | "* HTML\n", |
|
25 | 25 | "* JSON\n", |
|
26 | 26 | "* PNG\n", |
|
27 | 27 | "* JPEG\n", |
|
28 | 28 | "* SVG\n", |
|
29 | 29 | "* LaTeX\n", |
|
30 | 30 | "\n", |
|
31 | 31 | "A single object can declare some or all of these representations; all are handled by IPython's *display system*. This Notebook shows how you can use this display system to incorporate a broad range of content into your Notebooks." |
|
32 | 32 | ] |
|
33 | 33 | }, |
|
34 | 34 | { |
|
35 | 35 | "cell_type": "heading", |
|
36 | 36 | "level": 2, |
|
37 | 37 | "metadata": {}, |
|
38 | 38 | "source": [ |
|
39 | 39 | "Basic display imports" |
|
40 | 40 | ] |
|
41 | 41 | }, |
|
42 | 42 | { |
|
43 | 43 | "cell_type": "markdown", |
|
44 | 44 | "metadata": {}, |
|
45 | 45 | "source": [ |
|
46 | 46 | "The `display` function is a general purpose tool for displaying different representations of objects. Think of it as `print` for these rich representations." |
|
47 | 47 | ] |
|
48 | 48 | }, |
|
49 | 49 | { |
|
50 | 50 | "cell_type": "code", |
|
51 | 51 | "collapsed": false, |
|
52 | 52 | "input": [ |
|
53 | 53 | "from IPython.display import display" |
|
54 | 54 | ], |
|
55 | 55 | "language": "python", |
|
56 | 56 | "metadata": {}, |
|
57 | 57 | "outputs": [], |
|
58 | 58 | "prompt_number": 8 |
|
59 | 59 | }, |
|
60 | 60 | { |
|
61 | 61 | "cell_type": "markdown", |
|
62 | 62 | "metadata": {}, |
|
63 | 63 | "source": [ |
|
64 | 64 | "A few points:\n", |
|
65 | 65 | "\n", |
|
66 | 66 | "* Calling `display` on an object will send **all** possible representations to the Notebook.\n", |
|
67 | 67 | "* These representations are stored in the Notebook document.\n", |
|
68 | 68 | "* In general the Notebook will use the richest available representation.\n", |
|
69 | 69 | "\n", |
|
70 | 70 | "If you want to display a particular representation, there are specific functions for that:" |
|
71 | 71 | ] |
|
72 | 72 | }, |
|
73 | 73 | { |
|
74 | 74 | "cell_type": "code", |
|
75 | 75 | "collapsed": false, |
|
76 | 76 | "input": [ |
|
77 | 77 | "from IPython.display import display_pretty, display_html, display_jpeg, display_png, display_json, display_latex, display_svg" |
|
78 | 78 | ], |
|
79 | 79 | "language": "python", |
|
80 | 80 | "metadata": {}, |
|
81 | 81 | "outputs": [], |
|
82 | 82 | "prompt_number": 11 |
|
83 | 83 | }, |
|
84 | 84 | { |
|
85 | 85 | "cell_type": "heading", |
|
86 | 86 | "level": 2, |
|
87 | 87 | "metadata": {}, |
|
88 | 88 | "source": [ |
|
89 | 89 | "Images" |
|
90 | 90 | ] |
|
91 | 91 | }, |
|
92 | 92 | { |
|
93 | 93 | "cell_type": "markdown", |
|
94 | 94 | "metadata": {}, |
|
95 | 95 | "source": [ |
|
96 | 96 | "To work with images (JPEG, PNG) use the `Image` class." |
|
97 | 97 | ] |
|
98 | 98 | }, |
|
99 | 99 | { |
|
100 | 100 | "cell_type": "code", |
|
101 | 101 | "collapsed": false, |
|
102 | 102 | "input": [ |
|
103 | 103 | "from IPython.display import Image" |
|
104 | 104 | ], |
|
105 | 105 | "language": "python", |
|
106 | 106 | "metadata": {}, |
|
107 | 107 | "outputs": [], |
|
108 | 108 | "prompt_number": 2 |
|
109 | 109 | }, |
|
110 | 110 | { |
|
111 | 111 | "cell_type": "code", |
|
112 | 112 | "collapsed": false, |
|
113 | 113 | "input": [ |
|
114 | 114 | "i = Image(filename='../../docs/source/_static/logo.png')" |
|
115 | 115 | ], |
|
116 | 116 | "language": "python", |
|
117 | 117 | "metadata": {}, |
|
118 | 118 | "outputs": [], |
|
119 | 119 | "prompt_number": 5 |
|
120 | 120 | }, |
|
121 | 121 | { |
|
122 | 122 | "cell_type": "markdown", |
|
123 | 123 | "metadata": {}, |
|
124 | 124 | "source": [ |
|
125 | 125 | "Returning an `Image` object from an expression will automatically display it:" |
|
126 | 126 | ] |
|
127 | 127 | }, |
|
128 | 128 | { |
|
129 | 129 | "cell_type": "code", |
|
130 | 130 | "collapsed": false, |
|
131 | 131 | "input": [ |
|
132 | 132 | "i" |
|
133 | 133 | ], |
|
134 | 134 | "language": "python", |
|
135 | 135 | "metadata": {}, |
|
136 | 136 | "outputs": [ |
|
137 | 137 | { |
|
138 | 138 | "output_type": "pyout", |
|
139 | 139 | "png": "iVBORw0KGgoAAAANSUhEUgAAAggAAABDCAYAAAD5/P3lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAH3AAAB9wBYvxo6AAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURB\nVHic7Z15uBxF1bjfugkJhCWBsCSAJGACNg4QCI3RT1lEAVE+UEBNOmwCDcjHT1wQgU+WD3dFxA1o\nCAikAZFFVlnCjizpsCUjHQjBIAkQlpCFJGS79fvjdGf69vTsc2fuza33eeaZmeqq6jM9vZw6dc4p\nBUwC+tE+fqW1fqmRDpRSHjCggS40sBxYDCxKvL8KzNBaL21EPoPB0DPIWVY/4NlE0ffzYfhgu+Qx\nGHoy/YFjaK+CcB3QkIIAHAWs3wRZsuhUSs0CXgQeBm7UWi/spn0Z+jA5yxpEfYruqnwYllRic5a1\nMaWv8U5gaT4M19Sx396IAnZLfB/SLkEMhp5O/3YL0AvoAHaKXl8HLlZK3QZcpbWe0lbJDOsaHuDU\n0e4u4JAy2wPk/C1JzrKWArOQ0fUtwH35MOysQxaDwbCO0NFuAXoh6wPjgQeUUvcqpUa0WyCDoQls\nCIwBjgfuAV7KWdY+7RWpmJxlXZezrEdylvXxdstiMKzrGAtCYxwI/EspdZbW+g/tFsbQ67kQuBHY\nFNgseh9FV6vCbUAeWBC9PgBeq2EfS6J2MQOBrRDTe5KdgAdzlvW1fBjeUUP/3UbOsoYBE6OvG7VT\nFoOhL9Af+BUwFLkZpV+DaY6V4UPkRpb1+ncT+m8nGwK/V0oN01qf025hDL2XfBi+DLycLMtZVo6u\nCsKfGnSq8/NheEpqHwOBEcDBwJnAsGhTP2ByzrJG5cPwnQb22Sy+0G4BDIa+RH+t9dmlNiqlFKIk\nJJWGi+jq5JPmq8BbJJQArfXqpkncczlbKbVQa/3rdgtiMNRCPgxXAK8Ar+Qs63LgXmDvaPPGwPeA\nH7VJvCRfbLcABkNfouwUg9ZaAwuj178BlFLvVejzgR4WFviM1npcuQpKqf6IyXIjxLS7GzAWuUnu\nXsO+fqWUellr3ZBJdq/jr9+BDn1uve07O9Rz0y6f8PtGZGgWe53oT6SBkZ/q1/nHZy47aloTRTKU\nIR+Gy3OWNR6Zxtg0Kv4KRkEwGPocxgcBiCwcsSI0F5iOhF+ilPok8C3gVGS+thK/VErdrbWuO2ys\ns/+aLZTuOKbe9krrIUCPUBB0B+PQ1P1bdKe6EzAKQgvJh+GbOct6gkJkxM45y+qXDIWMHBhjBWJe\nPgyDWvaRs6zPIVObAG/nw/DpEvUGAp8E9gGGJzbtl7Os7cvs4skqp0V0Yl8jgcOBjyMDhbmIZeWl\nfBg+UUVfReQsayhwELAnsAXi6/E28BxwTz4MP6iyn92RaSCA+/NhuCwqXx9R4MYhU0MfRTK/AjyW\nD8MFGd0ZDFVhFIQKaK3/BXxfKXUlklTq0xWafAI4Driyu2UzGLqRlygoCArYHJif2H4gcFb0+Z2c\nZW2bD8NV1XScs6yNgH8g/jsAPwCeTmzfFPgjYsnbiez71MUVdnMQcF8V4nyUs6whwB8QX4+0s2Ys\n0yPAt/NhGFbRZ/wbzgO+DaxXotqqnGX9GbigCkXhf5CBCsDngYdzljURGQhsWqLN+znL+iFwdT4M\ndYk6BkNJTJhjlWitQ2Bf4P4qqv848t8wGHor6Yd9+ruHJFkC2BI4rIa+D6egHKwmstYlGAxMQCwH\nrRjEPI5ER5S7ZvcFXsxZ1phKneUsawSi8HyH0soB0bbvAM9Ebaplt5xlnYkct1LKAYiFZhJwSQ19\nGwxrMRaEGtBar1RKfRX4JxIzXortou3PN1mE+YgJsSwaeoLHOQCqUy3QSr9eqZ6G/gq2aYVMhqrY\nOfF5FeJwvJZ8GM7JWdY/gC9HRS7wtyr7Pjrx+e6MqYC3KLbU7Qhck/h+FJIKvRRVjfSREXicU8EH\npgAvIIqLBZwGfC7avl5Uf29KkLOsTZCMq8npj9sQx89no37HIlaAODplNPBIzrJ2z4dhNVlaT0HC\nXwFmIkrAC4if2PaIz8/3KCgn385Z1pX5MJxeRd8Gw1qMglAjWutlSqnTgUcqVP0SzVYQtP5mcMXE\nSvvtUUy9YsK5QEWHy7EnTB6lOtSsFohkqEDOsgYAdqJoagkT9Z8pKAj75yzr4/kwnF2h748ho/GY\nq9J1oqiKLj4JOctKK8Yz8mH4Yrl9VcnHkXVYTsyHoZ8WJWdZNyPThbF5/3M5yzowH4alpi9+T0E5\nWA18Nx+Gf0zVeRG4KmdZ90R9bwCMRKwyX69C5h2j91uA4/JhuCSxbTYwJWdZtwNPIFbifsAFSISZ\nwVA1ZoqhDrTWjyIjjXIc3ApZDIZu4ELgY4nvt5Wody8wJ/qsgBOr6HsihfvOfCRrY7v5dYZyAECk\nGP0ISEZmZYZ55yxrB8SyEXNxhnKQ7Pt64H8TRUfmLGuXKmWeC4xPKQfJvp9CLCJlZTYYymEUhPq5\ntcL2XVsihcHQJHKWtU3Osi5GnAZj5iKWgiKitRouTxQdl7OscnPu0HV64dp8GLY7R8pyxEGxJPkw\nfBcZ9ceUSvN8IoV76upK/UZcgawcG3NKqYopfleFU+gDic/b5SzLWIwNNWFOmPqp5CG9sVJqPa11\nVZ7dBkOL2D1nWcmcBkOR8MFtgM/QdTXJZcCR+TBcXqa/SYj5egAFZ8VMX4ScZe2FRPnEXF2z9M3n\n3nwYVsrtAmK6/0z0uVR4ZXLtivvzYfhGpU7zYbgkZ1k3ACdHRQdWIQsUO3ZmkUzB3Q/xjaolLbeh\nj2MUhDrRWr+mlFpJ+eV5hyIxz4YWs98Fj/Rf8uZbozo0/ZYt7D8rf9ORK9stUw/hU9GrEnMAp1R+\ngph8GL4bzdNPiIpOorSzYtJ68FS1IYPdTLWp3hcnPm+Q3pizrA7E+TCmFn+aZN0dcpY1LB+G5e4b\ny6rM8bA49X39GmQyGMwUQ4NUGnkMrbDd0A3sdeLk4z6cN+89pTtDTWd+gyErF+7pTv5eu+XqJbyK\nTDHsmg/DJ6tsc2ni8+dzljUqXSGaevhmoqjIObFNVBzlV8kQug4W5tbQNl13WGatAv+poW+DoW6M\nBaExPgC2LrO9nHWhpSilDqI4NPMhrfXUJvS9M/DfqeJXtdY3N9p3rex50uQ9lFKT6BrTvoFCXbTX\nyZNfmnrZxHtbLVMP4xng74nvK5DzeD7wfIWRayb5MHwiZ1kzgF0oOCuemar2ZQoK8zLgr7Xup5t4\ns0n9DEl9b0RBSPeV5q0a+jYY6sYoCI1RacnZ91siRXUMAH6eKnsYicdulDOAY1NlpzWh35pRqG9R\nIuGN7uw4AfG878s8nw/DX3RDv5dScGY8NmdZP86HYXJaJzm9cHMp7/s2UHdK9BTpKaxBNbRN163k\nt9Rux05DH8FMMTTGZhW2v9sSKarjbopNk/sqpUY30qlSahCSGS/JCuD6RvqtF6UpMm/HaHTJbYaG\nmQzED/0umRVzlrUZhXwJ0HOmF5pJOlXyxzJrZbNt6rtZP8HQIzAKQp0opTZAlsItxTKtdTnv75YS\nLR7lpYqrjV0vx2EUH4fbtdZtucnpMqOrDjPy6jYii8DkRFHSYnAEhem22cBjrZKrVeTDcCldTf/p\nh345ksrEGprnF2EwNIRREOrnMxW2z2uJFLVxJcXmy2OVUo34ShydUda+EaIq7T2u0SZTY/eSdFY8\nMGdZm0efk86J6/LCQUnFp5pIkZjkcvQz8mH4YZPkMRgawigI9VNp7v7BlkhRA1rr+RQneNqC2hba\nWYtSajiS9z3JXLomaGktq/VllLIUdKqSWe0MjZMPwxlIel8Q/6Zv5CxrGIX8AJ10XU+hFtIRQ+UW\nKWoXyYyTu+Qsa79KDXKWNRpJyx5zZ9OlMhjqxCgIdaCU6g98o0K1npBCNotLM8rcOvuagCRgSXKN\n1rozq3IrCCZNfFkrfRjotWsCaJinUBODK51/tkuuPkTy/DoYOIDCfeb+fBjW4t2/lqhdcmRdbUri\nVnILXS2HZ1WRvfAcCk61K4A/dYdgBkM9GAWhPr5F6XSrIBf6Qy2SpSaidSReShV/XilV7veUIj29\noOkB2fGmXT7x7sCbOGpFf7VZx4A1m0/znG2nehMyc+0bms7NFJxzxwH7J7Y1OvWUPG9/mLOsLRvs\nr6lEaaOT0TtfBB5ITLWsJWdZg3KWdRNwTKL4wnwYzu9mMQ2GqjFhjjWilBqBpJYtx51a66UV6rST\nS+maJz52VvxRdvVilFK7UbzexGNa67Kr+bWS6X+ekPYs79HkLGt34JOI+Xyz6D2d1vfMnGUdini6\nL0C851/Oh2HD+SyaQT4MV+YsaxJyLm1Gwf9gAXBHg93/JNHHtsArOcuajCztPBDYCkkytBXg5sOw\n5QmF8mF4W86yLgK+HxXtC8zKWVaALMm8CslHsicS7RFzL8VhyAZDWzEKQg0opbYE7qd8prPVdF2h\nrSdyLfALYMNE2XFKqR/XsHbEURll62L4Wiv5PuBUqPPF6JXkLuCQbpGoPi4HfohYKGMHWD9axrlu\n8mF4Z7RuwfioaDBwaonqRemQW0U+DH+Qs6xFwHnIFNwQsv+3mMnA8dHiVwZDj8FMMVSJUuow4DkK\na7GX4gqt9cstEKlutNaL6boULMho5tBq2iul+lH8IFuCmJcNfZx8GM6hOCFVU5THfBhOQHxfylkH\n3gY+asb+6iUfhhcCewC3l5BlFbJk/P75MDwqlVTKYOgRKK1rizhSSk2h67ximo1abV5XSi2n9EIk\nz2itx5XYVqnfQcjI7DiqW2XtfeCTUbRA3ex50nWfUrqjeJEcrfcLrpj4SCN9xyilxgDPp4of0Fof\nUEXbg4B/pIqv1FrXnVNh7AmTR3V0qIwwRH1E4E28pd5+De0hZ1m/Bb4bfX0+H4Z7dMM+hgGjkDwC\nS5FpjFk9bR4/Z1mDkGmF4VHR20g4Y3oxJYOhR9EXphg6lFLlVjFbH0mZvDGwCTAayCFe0ntTOZ1y\nzDLgkEaVg1ahtX5BKfUU8OlE8ReUUjtorSstCduzch8YehSR5/6ERFG3nBvRuhE9frXUfBguA6pd\n+Mpg6DH0BQXBBro7o+Ea4Bta66e6eT/N5lK6KggKOAE4u1QDpdTGFOdNmNkLf7uh+zgYcRQEMa+3\nJe22wWBoDOOD0DhLgYla67vaLUgd3ETxglLHRXkeSnEExQ5gbQ9tNPQokis5TsqHoVlbwGDohRgF\noTECYHet9Y3tFqQetNYrKDb/DqN46eYk6emF1UhUhMFAzrImUEhDvgr4VRvFMRgMDWAUhPpYAvwf\n8Bmte31+/8uQBEdJMjMrKqW2o5A2N+YfWusePw9s6F5yltWRs6zxwKRE8RXtyEVgMBiaQ1/wQWgm\neWTe/jqtdU9Zz74htNavKaXuAw5KFB+glBqptZ6Tqj6RQlrYGDO90AfJWdY5wNeQFQwHIAmetk5U\neZFCsiCDwdALMQpCed5AphEC4NF12BHvUroqCAoJ7TwvVS+d++BdJEmPoe+xKRLnn0UeODwfhm3N\nRWAwGBqjLygIbwN/LbNdI1MGH6ReL/eWkMUmcDeSeGa7RNlRSqnzdZQoQym1C7Bzqt11NWReNKxb\nzEMU6GHAesBiYCaSLOviaF0Cg8HQi+kLCsLrWuvT2y1ET0ZrvUYp5SG57mO2Bz4LPB59/2ZRQ5P7\noM+SD8OLgYvbLYfBYOg+jJOiIeZKxOs8STJiIb28daC1/lf3imQwGAyGdmEUBAMA0XTKraniI5VS\nA6O0zOnloI31wGAwGNZhjIJgSHJp6vtgJBNlehW65cANLZHIYDAYDG3BKAiGtWitHwVeShV/muLF\nuW7VWi9qjVQGg8FgaAd9wUnRUBuXAn9IfN8f+FyqTo/OfbDnSX8brDpXnqEUe2ropzQvdtDx66ev\nGN9XolIMPQDb9T8LrBd4zsPtlsXQe7Bd/0BgQeA5QbtlMQqCIc21wC+ADaPv6WWu5wAPtVKgWtjt\n6Os2XG/9jhdQjIzTQ2rFF9bQecy4E2/I9UQlwXb9LYDDK1R7K/Cc21shj6FxbNcfDjwGKNv1Rwae\n83q7ZWo2tusPBb6ELGW9BbAICX99Gngs8Jx0hlZDBWzXHwvcC6ywXX9o4DlL2ymPURAMXdBaL1ZK\n+ZRItwz8Jc6N0BMZMFB9GxiZsWnzTjrPAH7QWomqYgTF/h9pngC6RUGwXf+XwC2B50ztjv57M7br\nXwJMCjxneo1NP0SWgAfJq7LOYLv+esAFwOkUL9wWM912/d0Dz+lsnWQ9A9v1BwEXAT8PPKfWVOML\nkPVt3kNWQm0rxgfBkEWph5UG/tJCOWqnQ40ttUkrvWcrRamWwHOmAZsguSfGAi9Hmy5AUhgPAz7f\nHfu2XX8k8ENgx+7ovzdju/4uwP9D/peaCDxnCbANsF3gOYubLVu7sF1/AHAHcBaiHDwI/C+ywNsE\n4KfA68BdfVE5iNgbOBmxqtRE4Dn/BoYDnwg8Z02zBasVY0EwFKG1fkEp9RTioJjkIa11zzaVarYq\nvVFt2TpBaiN6oCwB5tiu/2FUPCvwnLTTaLM5oJv77800dGwCz1kXHXkvRNKydwI/Cjzn1+kKtuuf\ni2TX7Ks0et681yxBGsUoCIZSBBQrCL0h98EbdW7rddiuPwoYFJu/bdffFNgL2BZ4DZgWKR5ZbRWS\n2+KIqGiE7fpjUtXmlrtZRdaHscBAYDowM/CckimWbdffFfgw8JzXou/9kfUccojV5MXAcz4s0XYw\nsCsymu8PzAVmBJ7zVqn9pdoPRVKF7wSsAN4EgqzRve36HcAoZDEqgO0zjs3rged8kGo3gOJ05ADT\ns0bTkan+k9HXGaVGjNFxykVf81nH2Hb9Ich/MRJJeT291H9fL7brj6CwANfPspQDgOi3rijRx/rI\nb8kB7wPPBZ4zL6Ne/JvfCDzn/WhufhvgvsBzVkR1dgN2AR4JPGduom38P7wXeM7c6FzfCfgU4iMR\nlFLebNfPIefXzMBzikz8tusPQyx676bljmTeCfhyVLST7frp//TV9Dluu/6GwOhUvTWB58zIkjFq\nsykyNfmfwHMW2K7fLzoWeyDTFPnAc14t1T7qYwNgT+Rc/wi5ZyT/N20UBEMRSqn+wNdTxQspTqTU\n41BaP6yVOipzGzzSYnG6m6uBz0YPv7OQm3dytc35tuuflHZutF3/BuArwEaJ4p/QNdU2wGnAH9M7\njRSTG5CbS5LQdv2joymTLKYBzwHjbNc/DomW2TCxfbXt+sMCz3k/sa8RwM+Qh/X6qf5W2q4/CTit\nzMN1OPB7CopQktW2658YeM5fEvXvRKZzBiXqZaWUPha4JlW2NfB8Rt0hiANfmjWIuf5jiLPfvVm/\nAfmvbgNmB54zKrkheuD+Bjg11Wap7fpnBJ5TybelFk4E+iE+Fb+ptbHt+scg//nGqfJbgeMDz1mY\nKN4UOZYX2q7fSWHhuNdt198ZOBc4MypbbLv+5wPPeTb6PiJqe5ft+ichx3WXRN8rbdc/OfCcrGis\nR4ChiHKSlSn2f4BzkOvitMRvCKJ9DEzU9TPafwGZlkkyBvExSrKUrtdnmoOBycA5tus/iCyat3li\nu7Zd/0rk2ihS1mzXPwT4E3LulaLTKAiGLL6EaMlJbtBat91pphIjFw289t9DVh4N7Jva9EKnWnpJ\nG0RqBXcjCa08YCqy/PJE4L8A33b9HQPPeTNR/0bgvujzGchoywPSq5U+nd6R7fp7IDfRjYDrEE99\nDeyHrPb5lO364xI36zTb2q4/AUnt/SSyLHQHMvJZklQOIhYChyCLid2FWBoGIQrDfwGnAP8Gskzd\nVvSbBgPvIMdpJjLHuxdikXgg1ewa4Jbo84+BHRAFI/3gT9/QQZa+/iIy9zwccVQrSeA5nbbrX4s8\ncI6htIIQK7xdFJLIAvEEYjmYBlyP/E4LeXj92Xb94YHnnFtOjhrYJ3q/vtbpE9v1fwqcjYxUL0GO\n51bI//g1YIzt+mNTSgJIivfNEIXgBOThfx0ySv8Nct7vgzgfj0+1HQf8E5iPKM/vI+vLHA9cZbs+\nJZSEevgDBZ++3yIKzgVI1FeSrCnD6ci0zebAJxCfjmoZjxzXPPBL5By0gW8jCt3sqHwtkYL1N0RB\n/R2ymOG2yHE5CLFAHAu8ahQEQxbfyijrDdML3HTTkWvUBRfsb88bPb6TzjEK+oHKL184YHL+Jmdl\nu+XrJsYBhwaec0dcYLu+hzw0dkcu/AvjbUmLgu36DqIgPB54zuQq9nURMgI8LjnyBibZrj8z2s/l\ntuvvVcJJbWvkXDoi8JzbKu0s8JxFtut/IqXgAPzOdv0/IiPnb5KhICAjpMGIEjAhPV1iu35HWsbA\nc25ObD8ZURAeqibENBqpTYnark8FBSHiakRBOMx2/cHpB29kSv4KooSlLRYnIcrBHcBXk7/Fdv0b\ngReAM23Xvz7wnJlVyFIJK3qfXUsj2/U/jiiiq4B9ktEytuv/Fhlpfx2xEnw31XxHYLfAc6bbrv8k\ncny/Bnwz8Jy/2q6/DTLd9F8Zu94ceXAeEHhOvM7MNbbrT0UU4vNs15+c2FY3gedcm/hNP0EUhDvL\nKMrJtkuIFPboWNWiIOSAO4HDE7/Dj67FSxEn21+m2pyOWDpuCDxn7fG2Xf8e4F1EIVsceE5oohgM\nXVBKjURuSEke11qXMhv3OPR553VO9Sb407yJZwTexO8FnnNV/qYj11XlAOCfSeUA1s4D/y36mp7f\nrAvb9fdGLDMzU8pBzMXIg2wsMhLKQiFhgxWVg5gM5SDm+uh9VHqD7fr7IlaNFcAJWb4UPcHLPvCc\n2YgVZn3gyIwq30AsQg8lQ+aiefUfR1/PzlB08sD9Udusfmsi2t+Q6GutjspnIE6L16dDaSN/irMR\np8dTbddPOxK/nwgxTZr8747e30SsEkNL7PvXGQrAVYgvwggK/gK9mXMyfuON0fvWkY9Dkp2i97uT\nhYHnLKNgURsDxknRUMz5FJ8XP22DHIbqSc9pxsSOW8ObtJ89ovdXbNcvpQC8j4zcdiTbnAoy4q2b\n6Ia3CYV5/Y0zqsXOf4/WEYveaq5GQuOOQaZekhydqJNkW2BLZF2UzhL/R+xE2XAIa+A52nb9lUho\nY63hd7GD5d1ZGwPPmW27/iuIUrkLXc/n9xP13rZd/yNgVezoF8n1NjAyyyKETGGl97fGdv1/IlaL\n3h7e+06WM2PgOQtt11+GTMcNo6vVJ1aWsyK+4nvFQjAKgiGBUmoshfnOmGe11vdl1Tf0GOaUKI9v\nlqrE9lqJb6b/Hb3KsU2Zba/VslPb9bdDfA0ORLz0N62iWWxVqMkc3iZuRuawP2u7/g6JKI9RSCTR\nYoodhOP/YgNKK2Ix2zZJzjnINMN2NbaL/4uiaIUE/0EUhB3pqiCkMwl2IscjXZZFJ/B2iW1xRtWR\nZWTqDcwps63U9f8Q0TSN7fp/iK0PtuvviPjmrCHyR1qrICilNkTmHjZDLsDke/JzOtwnzY1KqXcR\nR4cFiBab9XlRT87I19dQSo1GNPz0tJOxHvR8mhrOVobB0XuAOBiWo1zmwaqdXW3X3x+4BzGVv4SM\npN9AnPEg21McxMIArTs2dRN4zoe26/8NOA6xGJwfbYqV9b8GnrM81Sz+Lz5A0qOXo2y4Ww3MoT4F\nIY4+KTfNF58TaXN4VthstVNDitLKcdxvOjKmEj0tv0M953fs87E3Eul0B2JliBflOzfwnFcA+iul\n5iEmwQFNEBaK569L0amUWggcqrXO8gg2FKHG2CdW4Uem9XvBlUflu7RUaiByU3lPa92ZKN8cSav8\nfUQBTHKr1rrqueIsxp18/eg1azrLjSYB6NfRsY3G6Is9nDjDYxh4zundvbMotvtm5N50duA5P09t\nT0faJIkfirU+zNrF1YiC4FBQECZE73/JqB//F+u14r+ImIVEOB1iu/6ZNfhwzEamp7YuU2e7RN1m\noZBnW5YVIfZ1qNWfotw51yuIph++hET0bAkcikwpTAEuCjxnSly3PzIP0a8NcnYgD6SBlSoaIhQX\nV2UtVup24LBU6S7IyG+NUuodZP52awojrTSvIjeshlij9XdQKh2jXYRRDtpGfOCruQfEpmzbdn0V\ndP9iPLsgjnEryI67Lzd/PCt6/5Tt+v3LJXAqQ/z7ut2ZO/Ccx23XfxUYZbt+7D8xCngl8Jwsa80s\nZBS8ke36O7cg4ybA5UgegJ0QE/XN5auvZRaiIMQRF12wXX8TCv9ls6eERpOtIMR+EXNS5YsRh8dS\nTo/V+CzUck21i6uR5++4wHNeKFXJRDH0PfoR5fqmtHKwDDhCa73O5JA3lCSeF04v6Z3FPRTMzBO7\nS6AE8Q12PbomgYn5Xpm29yMPhu2RUK96iKMn9q6zfa38JXo/NHoly7oQeM5K4Iro60+jKINuJVJC\nYu/439uuX805A4VkWyfbrp+V/MdFnOmeCmpfFKsSRYMc2/U/DeyG3OfSjpOx5WmfVHmcuXFcFfus\n5ZpqObbrb45EtswqpxyAcVI0FDMbOFxrXeT9a+heopvnEArzolvashT0wmbEapdgGpIU5XDb9R9F\nYqrXQyyL8wPPeTeuGHjOMtv1T0VuqldH6W//jigNmyHOcAcBgwPPcZog20xkRLcJ8DPb9S9CRqM7\nI7kDvoDE1hfdxwLPWWy7/plI7oCLbNffHXm4zUQeRtsjGRP/EXhOKSfcABkpj49i5+9G/putgHmB\n5yxIN4iSF21C14V6Rtiu/yYSW15uHv4a4P8oKAedlPcvOAv4KmItfCTKKfAS8v8NR1ILHwnsl5GA\nqF7ORdYaGA48HGWyfBqYgViDRwCfQR72PkDgOU9E2TvHI4m0TgeeRczb30DyH2iKcyA0ymrgWNv1\nFyDK1NvIQ3tStN3LCH+9HUl29UPb9echFo8BUbtLEKfJtJ9EmgA59ifbrj8bCR3cGDlvZqdTLcPa\n9NCbUMhs2GFLKvPFSAKxZl7/CxEL8pgoA+QMxD+kE3HenAHcHnjOGmNB6Dt8iGjHWSFKK4HHkcQr\nOxvloLXYrr+77fqrEIejNyiE6P0WccZbabv+lFLtG+Ry5AY/BHkYfRDtR9M79QAAA3FJREFUcwYS\nNdCFwHPuQR6a7wHfAR5GMhk+i9xcT6G6KIOKBJ6zFBn9r0GUmBlIWN9ziHf/5yjO/phsfy2yqt4i\nxOJxF3INTI9k/Q7ZoV4xv0PC5LZCci4sQm6g08kYHdquvxy5lt4DwsSmF5EENCts1//Idv3M9LbR\negJTkEx4NvBA1joFifqLIjkeR6wcfwdeQfIFTEEcjHNU79RXkShvw95Ixs5+yOj/KuSh+ATiAHcq\nxb4fxwOXRfJMQc6zlxGF6B3g4MBznmmWnBFzEUfP0xDFcCGiAG+JHKushESXIdanjRBF4l3EInAj\n8vuOqWK/5yNRGaOQFNkfIhkOX6CQgwAA2/W3jkI3V0T7ejjatAFyXb2PXP/LbVnroWGi6bbzo697\nIlaWk5Br93wkk+jztusP7o94Lna7eaoMZU0cVXIAped7eqGZfP2ZqmPFl+ptrVf3n19UpvVMYLRS\nagBywxuEjLwWAe9qrTMXV2mUzs7OP/Xrp+6qt33Hmn5Zue3XNeZTOVoky5nqKiQkrNT883Qk3WvJ\nsMLAc1bbrv9Z5AH6KWRkOB+5wRWlWo7a3Ga7/mOIomAho/GFyI30YeDREru7ELlOq07TG3jONbbr\nT0Nu9KOQm+i/gFsDz3nTdv2fI2FbpdpfHnlpH4LcnHdAlIz5yLErqXgFnvOR7fo28lDYE7lu3kKO\nTdZ9K52xrhTl7knnUVB6SqVeTsr4apQU6lDEbG4hCsFbROsRBE1ebjrwnNB2/XGIGf5gRBkYhPyv\n7yDpjR9MtVkOnGK7/vWIgrFrVPcF4O8ZKbaXIuduWkH6KfL/JbkEsWClfWK2CDzHt10/jzhXjkGO\nyzNIZEiRD00ga3ocaLv+kUh2xo8hSuVURKmIUyiXVGYCWVzKQlJD7xrJNg85b9LX8RLgF6X6SpFU\n9Cpe28gaJgORqEEAbNffDLlvHIQoAndR8NEYilwjExD/nwuUiTQ0GAwGw7qC7fqjEUvKqsBzmhWd\nt05gu/5pyNoifw48J9N5PForxQeeNFMMBoPBYDD0DWL/llvK1In9jt4zCoLBYDAYDH2DePo5MwrJ\ndv0hFPwTnjBRDAaDwWAw9A3+hPgOHRPl25iK+FhsiuR4OARx0Lwf+J1REAwGg8Fg6AMEnvNklL78\nHMRRca/E5hVINNIVwI2B56z6/3ExLRI31pXNAAAAAElFTkSuQmCC\n", |
|
140 | 140 | "prompt_number": 6, |
|
141 | 141 | "text": [ |
|
142 | 142 | "<IPython.core.display.Image at 0x107ea26d0>" |
|
143 | 143 | ] |
|
144 | 144 | } |
|
145 | 145 | ], |
|
146 | 146 | "prompt_number": 6 |
|
147 | 147 | }, |
|
148 | 148 | { |
|
149 | 149 | "cell_type": "markdown", |
|
150 | 150 | "metadata": {}, |
|
151 | 151 | "source": [ |
|
152 | 152 | "Or you can pass it to `display`:" |
|
153 | 153 | ] |
|
154 | 154 | }, |
|
155 | 155 | { |
|
156 | 156 | "cell_type": "code", |
|
157 | 157 | "collapsed": false, |
|
158 | 158 | "input": [ |
|
159 | 159 | "display(i)" |
|
160 | 160 | ], |
|
161 | 161 | "language": "python", |
|
162 | 162 | "metadata": {}, |
|
163 | 163 | "outputs": [ |
|
164 | 164 | { |
|
165 | 165 | "output_type": "display_data", |
|
166 | 166 | "png": "iVBORw0KGgoAAAANSUhEUgAAAggAAABDCAYAAAD5/P3lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAH3AAAB9wBYvxo6AAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURB\nVHic7Z15uBxF1bjfugkJhCWBsCSAJGACNg4QCI3RT1lEAVE+UEBNOmwCDcjHT1wQgU+WD3dFxA1o\nCAikAZFFVlnCjizpsCUjHQjBIAkQlpCFJGS79fvjdGf69vTsc2fuza33eeaZmeqq6jM9vZw6dc4p\nBUwC+tE+fqW1fqmRDpRSHjCggS40sBxYDCxKvL8KzNBaL21EPoPB0DPIWVY/4NlE0ffzYfhgu+Qx\nGHoy/YFjaK+CcB3QkIIAHAWs3wRZsuhUSs0CXgQeBm7UWi/spn0Z+jA5yxpEfYruqnwYllRic5a1\nMaWv8U5gaT4M19Sx396IAnZLfB/SLkEMhp5O/3YL0AvoAHaKXl8HLlZK3QZcpbWe0lbJDOsaHuDU\n0e4u4JAy2wPk/C1JzrKWArOQ0fUtwH35MOysQxaDwbCO0NFuAXoh6wPjgQeUUvcqpUa0WyCDoQls\nCIwBjgfuAV7KWdY+7RWpmJxlXZezrEdylvXxdstiMKzrGAtCYxwI/EspdZbW+g/tFsbQ67kQuBHY\nFNgseh9FV6vCbUAeWBC9PgBeq2EfS6J2MQOBrRDTe5KdgAdzlvW1fBjeUUP/3UbOsoYBE6OvG7VT\nFoOhL9Af+BUwFLkZpV+DaY6V4UPkRpb1+ncT+m8nGwK/V0oN01qf025hDL2XfBi+DLycLMtZVo6u\nCsKfGnSq8/NheEpqHwOBEcDBwJnAsGhTP2ByzrJG5cPwnQb22Sy+0G4BDIa+RH+t9dmlNiqlFKIk\nJJWGi+jq5JPmq8BbJJQArfXqpkncczlbKbVQa/3rdgtiMNRCPgxXAK8Ar+Qs63LgXmDvaPPGwPeA\nH7VJvCRfbLcABkNfouwUg9ZaAwuj178BlFLvVejzgR4WFviM1npcuQpKqf6IyXIjxLS7GzAWuUnu\nXsO+fqWUellr3ZBJdq/jr9+BDn1uve07O9Rz0y6f8PtGZGgWe53oT6SBkZ/q1/nHZy47aloTRTKU\nIR+Gy3OWNR6Zxtg0Kv4KRkEwGPocxgcBiCwcsSI0F5iOhF+ilPok8C3gVGS+thK/VErdrbWuO2ys\ns/+aLZTuOKbe9krrIUCPUBB0B+PQ1P1bdKe6EzAKQgvJh+GbOct6gkJkxM45y+qXDIWMHBhjBWJe\nPgyDWvaRs6zPIVObAG/nw/DpEvUGAp8E9gGGJzbtl7Os7cvs4skqp0V0Yl8jgcOBjyMDhbmIZeWl\nfBg+UUVfReQsayhwELAnsAXi6/E28BxwTz4MP6iyn92RaSCA+/NhuCwqXx9R4MYhU0MfRTK/AjyW\nD8MFGd0ZDFVhFIQKaK3/BXxfKXUlklTq0xWafAI4Driyu2UzGLqRlygoCArYHJif2H4gcFb0+Z2c\nZW2bD8NV1XScs6yNgH8g/jsAPwCeTmzfFPgjYsnbiez71MUVdnMQcF8V4nyUs6whwB8QX4+0s2Ys\n0yPAt/NhGFbRZ/wbzgO+DaxXotqqnGX9GbigCkXhf5CBCsDngYdzljURGQhsWqLN+znL+iFwdT4M\ndYk6BkNJTJhjlWitQ2Bf4P4qqv848t8wGHor6Yd9+ruHJFkC2BI4rIa+D6egHKwmstYlGAxMQCwH\nrRjEPI5ER5S7ZvcFXsxZ1phKneUsawSi8HyH0soB0bbvAM9Ebaplt5xlnYkct1LKAYiFZhJwSQ19\nGwxrMRaEGtBar1RKfRX4JxIzXortou3PN1mE+YgJsSwaeoLHOQCqUy3QSr9eqZ6G/gq2aYVMhqrY\nOfF5FeJwvJZ8GM7JWdY/gC9HRS7wtyr7Pjrx+e6MqYC3KLbU7Qhck/h+FJIKvRRVjfSREXicU8EH\npgAvIIqLBZwGfC7avl5Uf29KkLOsTZCMq8npj9sQx89no37HIlaAODplNPBIzrJ2z4dhNVlaT0HC\nXwFmIkrAC4if2PaIz8/3KCgn385Z1pX5MJxeRd8Gw1qMglAjWutlSqnTgUcqVP0SzVYQtP5mcMXE\nSvvtUUy9YsK5QEWHy7EnTB6lOtSsFohkqEDOsgYAdqJoagkT9Z8pKAj75yzr4/kwnF2h748ho/GY\nq9J1oqiKLj4JOctKK8Yz8mH4Yrl9VcnHkXVYTsyHoZ8WJWdZNyPThbF5/3M5yzowH4alpi9+T0E5\nWA18Nx+Gf0zVeRG4KmdZ90R9bwCMRKwyX69C5h2j91uA4/JhuCSxbTYwJWdZtwNPIFbifsAFSISZ\nwVA1ZoqhDrTWjyIjjXIc3ApZDIZu4ELgY4nvt5Wody8wJ/qsgBOr6HsihfvOfCRrY7v5dYZyAECk\nGP0ISEZmZYZ55yxrB8SyEXNxhnKQ7Pt64H8TRUfmLGuXKmWeC4xPKQfJvp9CLCJlZTYYymEUhPq5\ntcL2XVsihcHQJHKWtU3Osi5GnAZj5iKWgiKitRouTxQdl7OscnPu0HV64dp8GLY7R8pyxEGxJPkw\nfBcZ9ceUSvN8IoV76upK/UZcgawcG3NKqYopfleFU+gDic/b5SzLWIwNNWFOmPqp5CG9sVJqPa11\nVZ7dBkOL2D1nWcmcBkOR8MFtgM/QdTXJZcCR+TBcXqa/SYj5egAFZ8VMX4ScZe2FRPnEXF2z9M3n\n3nwYVsrtAmK6/0z0uVR4ZXLtivvzYfhGpU7zYbgkZ1k3ACdHRQdWIQsUO3ZmkUzB3Q/xjaolLbeh\nj2MUhDrRWr+mlFpJ+eV5hyIxz4YWs98Fj/Rf8uZbozo0/ZYt7D8rf9ORK9stUw/hU9GrEnMAp1R+\ngph8GL4bzdNPiIpOorSzYtJ68FS1IYPdTLWp3hcnPm+Q3pizrA7E+TCmFn+aZN0dcpY1LB+G5e4b\ny6rM8bA49X39GmQyGMwUQ4NUGnkMrbDd0A3sdeLk4z6cN+89pTtDTWd+gyErF+7pTv5eu+XqJbyK\nTDHsmg/DJ6tsc2ni8+dzljUqXSGaevhmoqjIObFNVBzlV8kQug4W5tbQNl13WGatAv+poW+DoW6M\nBaExPgC2LrO9nHWhpSilDqI4NPMhrfXUJvS9M/DfqeJXtdY3N9p3rex50uQ9lFKT6BrTvoFCXbTX\nyZNfmnrZxHtbLVMP4xng74nvK5DzeD7wfIWRayb5MHwiZ1kzgF0oOCuemar2ZQoK8zLgr7Xup5t4\ns0n9DEl9b0RBSPeV5q0a+jYY6sYoCI1RacnZ91siRXUMAH6eKnsYicdulDOAY1NlpzWh35pRqG9R\nIuGN7uw4AfG878s8nw/DX3RDv5dScGY8NmdZP86HYXJaJzm9cHMp7/s2UHdK9BTpKaxBNbRN163k\nt9Rux05DH8FMMTTGZhW2v9sSKarjbopNk/sqpUY30qlSahCSGS/JCuD6RvqtF6UpMm/HaHTJbYaG\nmQzED/0umRVzlrUZhXwJ0HOmF5pJOlXyxzJrZbNt6rtZP8HQIzAKQp0opTZAlsItxTKtdTnv75YS\nLR7lpYqrjV0vx2EUH4fbtdZtucnpMqOrDjPy6jYii8DkRFHSYnAEhem22cBjrZKrVeTDcCldTf/p\nh345ksrEGprnF2EwNIRREOrnMxW2z2uJFLVxJcXmy2OVUo34ShydUda+EaIq7T2u0SZTY/eSdFY8\nMGdZm0efk86J6/LCQUnFp5pIkZjkcvQz8mH4YZPkMRgawigI9VNp7v7BlkhRA1rr+RQneNqC2hba\nWYtSajiS9z3JXLomaGktq/VllLIUdKqSWe0MjZMPwxlIel8Q/6Zv5CxrGIX8AJ10XU+hFtIRQ+UW\nKWoXyYyTu+Qsa79KDXKWNRpJyx5zZ9OlMhjqxCgIdaCU6g98o0K1npBCNotLM8rcOvuagCRgSXKN\n1rozq3IrCCZNfFkrfRjotWsCaJinUBODK51/tkuuPkTy/DoYOIDCfeb+fBjW4t2/lqhdcmRdbUri\nVnILXS2HZ1WRvfAcCk61K4A/dYdgBkM9GAWhPr5F6XSrIBf6Qy2SpSaidSReShV/XilV7veUIj29\noOkB2fGmXT7x7sCbOGpFf7VZx4A1m0/znG2nehMyc+0bms7NFJxzxwH7J7Y1OvWUPG9/mLOsLRvs\nr6lEaaOT0TtfBB5ITLWsJWdZg3KWdRNwTKL4wnwYzu9mMQ2GqjFhjjWilBqBpJYtx51a66UV6rST\nS+maJz52VvxRdvVilFK7UbzexGNa67Kr+bWS6X+ekPYs79HkLGt34JOI+Xyz6D2d1vfMnGUdini6\nL0C851/Oh2HD+SyaQT4MV+YsaxJyLm1Gwf9gAXBHg93/JNHHtsArOcuajCztPBDYCkkytBXg5sOw\n5QmF8mF4W86yLgK+HxXtC8zKWVaALMm8CslHsicS7RFzL8VhyAZDWzEKQg0opbYE7qd8prPVdF2h\nrSdyLfALYMNE2XFKqR/XsHbEURll62L4Wiv5PuBUqPPF6JXkLuCQbpGoPi4HfohYKGMHWD9axrlu\n8mF4Z7RuwfioaDBwaonqRemQW0U+DH+Qs6xFwHnIFNwQsv+3mMnA8dHiVwZDj8FMMVSJUuow4DkK\na7GX4gqt9cstEKlutNaL6boULMho5tBq2iul+lH8IFuCmJcNfZx8GM6hOCFVU5THfBhOQHxfylkH\n3gY+asb+6iUfhhcCewC3l5BlFbJk/P75MDwqlVTKYOgRKK1rizhSSk2h67ximo1abV5XSi2n9EIk\nz2itx5XYVqnfQcjI7DiqW2XtfeCTUbRA3ex50nWfUrqjeJEcrfcLrpj4SCN9xyilxgDPp4of0Fof\nUEXbg4B/pIqv1FrXnVNh7AmTR3V0qIwwRH1E4E28pd5+De0hZ1m/Bb4bfX0+H4Z7dMM+hgGjkDwC\nS5FpjFk9bR4/Z1mDkGmF4VHR20g4Y3oxJYOhR9EXphg6lFLlVjFbH0mZvDGwCTAayCFe0ntTOZ1y\nzDLgkEaVg1ahtX5BKfUU8OlE8ReUUjtorSstCduzch8YehSR5/6ERFG3nBvRuhE9frXUfBguA6pd\n+Mpg6DH0BQXBBro7o+Ea4Bta66e6eT/N5lK6KggKOAE4u1QDpdTGFOdNmNkLf7uh+zgYcRQEMa+3\nJe22wWBoDOOD0DhLgYla67vaLUgd3ETxglLHRXkeSnEExQ5gbQ9tNPQokis5TsqHoVlbwGDohRgF\noTECYHet9Y3tFqQetNYrKDb/DqN46eYk6emF1UhUhMFAzrImUEhDvgr4VRvFMRgMDWAUhPpYAvwf\n8Bmte31+/8uQBEdJMjMrKqW2o5A2N+YfWusePw9s6F5yltWRs6zxwKRE8RXtyEVgMBiaQ1/wQWgm\neWTe/jqtdU9Zz74htNavKaXuAw5KFB+glBqptZ6Tqj6RQlrYGDO90AfJWdY5wNeQFQwHIAmetk5U\neZFCsiCDwdALMQpCed5AphEC4NF12BHvUroqCAoJ7TwvVS+d++BdJEmPoe+xKRLnn0UeODwfhm3N\nRWAwGBqjLygIbwN/LbNdI1MGH6ReL/eWkMUmcDeSeGa7RNlRSqnzdZQoQym1C7Bzqt11NWReNKxb\nzEMU6GHAesBiYCaSLOviaF0Cg8HQi+kLCsLrWuvT2y1ET0ZrvUYp5SG57mO2Bz4LPB59/2ZRQ5P7\noM+SD8OLgYvbLYfBYOg+jJOiIeZKxOs8STJiIb28daC1/lf3imQwGAyGdmEUBAMA0XTKraniI5VS\nA6O0zOnloI31wGAwGNZhjIJgSHJp6vtgJBNlehW65cANLZHIYDAYDG3BKAiGtWitHwVeShV/muLF\nuW7VWi9qjVQGg8FgaAd9wUnRUBuXAn9IfN8f+FyqTo/OfbDnSX8brDpXnqEUe2ropzQvdtDx66ev\nGN9XolIMPQDb9T8LrBd4zsPtlsXQe7Bd/0BgQeA5QbtlMQqCIc21wC+ADaPv6WWu5wAPtVKgWtjt\n6Os2XG/9jhdQjIzTQ2rFF9bQecy4E2/I9UQlwXb9LYDDK1R7K/Cc21shj6FxbNcfDjwGKNv1Rwae\n83q7ZWo2tusPBb6ELGW9BbAICX99Gngs8Jx0hlZDBWzXHwvcC6ywXX9o4DlL2ymPURAMXdBaL1ZK\n+ZRItwz8Jc6N0BMZMFB9GxiZsWnzTjrPAH7QWomqYgTF/h9pngC6RUGwXf+XwC2B50ztjv57M7br\nXwJMCjxneo1NP0SWgAfJq7LOYLv+esAFwOkUL9wWM912/d0Dz+lsnWQ9A9v1BwEXAT8PPKfWVOML\nkPVt3kNWQm0rxgfBkEWph5UG/tJCOWqnQ40ttUkrvWcrRamWwHOmAZsguSfGAi9Hmy5AUhgPAz7f\nHfu2XX8k8ENgx+7ovzdju/4uwP9D/peaCDxnCbANsF3gOYubLVu7sF1/AHAHcBaiHDwI/C+ywNsE\n4KfA68BdfVE5iNgbOBmxqtRE4Dn/BoYDnwg8Z02zBasVY0EwFKG1fkEp9RTioJjkIa11zzaVarYq\nvVFt2TpBaiN6oCwB5tiu/2FUPCvwnLTTaLM5oJv77800dGwCz1kXHXkvRNKydwI/Cjzn1+kKtuuf\ni2TX7Ks0et681yxBGsUoCIZSBBQrCL0h98EbdW7rddiuPwoYFJu/bdffFNgL2BZ4DZgWKR5ZbRWS\n2+KIqGiE7fpjUtXmlrtZRdaHscBAYDowM/CckimWbdffFfgw8JzXou/9kfUccojV5MXAcz4s0XYw\nsCsymu8PzAVmBJ7zVqn9pdoPRVKF7wSsAN4EgqzRve36HcAoZDEqgO0zjs3rged8kGo3gOJ05ADT\ns0bTkan+k9HXGaVGjNFxykVf81nH2Hb9Ich/MRJJeT291H9fL7brj6CwANfPspQDgOi3rijRx/rI\nb8kB7wPPBZ4zL6Ne/JvfCDzn/WhufhvgvsBzVkR1dgN2AR4JPGduom38P7wXeM7c6FzfCfgU4iMR\nlFLebNfPIefXzMBzikz8tusPQyx676bljmTeCfhyVLST7frp//TV9Dluu/6GwOhUvTWB58zIkjFq\nsykyNfmfwHMW2K7fLzoWeyDTFPnAc14t1T7qYwNgT+Rc/wi5ZyT/N20UBEMRSqn+wNdTxQspTqTU\n41BaP6yVOipzGzzSYnG6m6uBz0YPv7OQm3dytc35tuuflHZutF3/BuArwEaJ4p/QNdU2wGnAH9M7\njRSTG5CbS5LQdv2joymTLKYBzwHjbNc/DomW2TCxfbXt+sMCz3k/sa8RwM+Qh/X6qf5W2q4/CTit\nzMN1OPB7CopQktW2658YeM5fEvXvRKZzBiXqZaWUPha4JlW2NfB8Rt0hiANfmjWIuf5jiLPfvVm/\nAfmvbgNmB54zKrkheuD+Bjg11Wap7fpnBJ5TybelFk4E+iE+Fb+ptbHt+scg//nGqfJbgeMDz1mY\nKN4UOZYX2q7fSWHhuNdt198ZOBc4MypbbLv+5wPPeTb6PiJqe5ft+ichx3WXRN8rbdc/OfCcrGis\nR4ChiHKSlSn2f4BzkOvitMRvCKJ9DEzU9TPafwGZlkkyBvExSrKUrtdnmoOBycA5tus/iCyat3li\nu7Zd/0rk2ihS1mzXPwT4E3LulaLTKAiGLL6EaMlJbtBat91pphIjFw289t9DVh4N7Jva9EKnWnpJ\nG0RqBXcjCa08YCqy/PJE4L8A33b9HQPPeTNR/0bgvujzGchoywPSq5U+nd6R7fp7IDfRjYDrEE99\nDeyHrPb5lO364xI36zTb2q4/AUnt/SSyLHQHMvJZklQOIhYChyCLid2FWBoGIQrDfwGnAP8Gskzd\nVvSbBgPvIMdpJjLHuxdikXgg1ewa4Jbo84+BHRAFI/3gT9/QQZa+/iIy9zwccVQrSeA5nbbrX4s8\ncI6htIIQK7xdFJLIAvEEYjmYBlyP/E4LeXj92Xb94YHnnFtOjhrYJ3q/vtbpE9v1fwqcjYxUL0GO\n51bI//g1YIzt+mNTSgJIivfNEIXgBOThfx0ySv8Nct7vgzgfj0+1HQf8E5iPKM/vI+vLHA9cZbs+\nJZSEevgDBZ++3yIKzgVI1FeSrCnD6ci0zebAJxCfjmoZjxzXPPBL5By0gW8jCt3sqHwtkYL1N0RB\n/R2ymOG2yHE5CLFAHAu8ahQEQxbfyijrDdML3HTTkWvUBRfsb88bPb6TzjEK+oHKL184YHL+Jmdl\nu+XrJsYBhwaec0dcYLu+hzw0dkcu/AvjbUmLgu36DqIgPB54zuQq9nURMgI8LjnyBibZrj8z2s/l\ntuvvVcJJbWvkXDoi8JzbKu0s8JxFtut/IqXgAPzOdv0/IiPnb5KhICAjpMGIEjAhPV1iu35HWsbA\nc25ObD8ZURAeqibENBqpTYnark8FBSHiakRBOMx2/cHpB29kSv4KooSlLRYnIcrBHcBXk7/Fdv0b\ngReAM23Xvz7wnJlVyFIJK3qfXUsj2/U/jiiiq4B9ktEytuv/Fhlpfx2xEnw31XxHYLfAc6bbrv8k\ncny/Bnwz8Jy/2q6/DTLd9F8Zu94ceXAeEHhOvM7MNbbrT0UU4vNs15+c2FY3gedcm/hNP0EUhDvL\nKMrJtkuIFPboWNWiIOSAO4HDE7/Dj67FSxEn21+m2pyOWDpuCDxn7fG2Xf8e4F1EIVsceE5oohgM\nXVBKjURuSEke11qXMhv3OPR553VO9Sb407yJZwTexO8FnnNV/qYj11XlAOCfSeUA1s4D/y36mp7f\nrAvb9fdGLDMzU8pBzMXIg2wsMhLKQiFhgxWVg5gM5SDm+uh9VHqD7fr7IlaNFcAJWb4UPcHLPvCc\n2YgVZn3gyIwq30AsQg8lQ+aiefUfR1/PzlB08sD9Udusfmsi2t+Q6GutjspnIE6L16dDaSN/irMR\np8dTbddPOxK/nwgxTZr8747e30SsEkNL7PvXGQrAVYgvwggK/gK9mXMyfuON0fvWkY9Dkp2i97uT\nhYHnLKNgURsDxknRUMz5FJ8XP22DHIbqSc9pxsSOW8ObtJ89ovdXbNcvpQC8j4zcdiTbnAoy4q2b\n6Ia3CYV5/Y0zqsXOf4/WEYveaq5GQuOOQaZekhydqJNkW2BLZF2UzhL/R+xE2XAIa+A52nb9lUho\nY63hd7GD5d1ZGwPPmW27/iuIUrkLXc/n9xP13rZd/yNgVezoF8n1NjAyyyKETGGl97fGdv1/IlaL\n3h7e+06WM2PgOQtt11+GTMcNo6vVJ1aWsyK+4nvFQjAKgiGBUmoshfnOmGe11vdl1Tf0GOaUKI9v\nlqrE9lqJb6b/Hb3KsU2Zba/VslPb9bdDfA0ORLz0N62iWWxVqMkc3iZuRuawP2u7/g6JKI9RSCTR\nYoodhOP/YgNKK2Ix2zZJzjnINMN2NbaL/4uiaIUE/0EUhB3pqiCkMwl2IscjXZZFJ/B2iW1xRtWR\nZWTqDcwps63U9f8Q0TSN7fp/iK0PtuvviPjmrCHyR1qrICilNkTmHjZDLsDke/JzOtwnzY1KqXcR\nR4cFiBab9XlRT87I19dQSo1GNPz0tJOxHvR8mhrOVobB0XuAOBiWo1zmwaqdXW3X3x+4BzGVv4SM\npN9AnPEg21McxMIArTs2dRN4zoe26/8NOA6xGJwfbYqV9b8GnrM81Sz+Lz5A0qOXo2y4Ww3MoT4F\nIY4+KTfNF58TaXN4VthstVNDitLKcdxvOjKmEj0tv0M953fs87E3Eul0B2JliBflOzfwnFcA+iul\n5iEmwQFNEBaK569L0amUWggcqrXO8gg2FKHG2CdW4Uem9XvBlUflu7RUaiByU3lPa92ZKN8cSav8\nfUQBTHKr1rrqueIsxp18/eg1azrLjSYB6NfRsY3G6Is9nDjDYxh4zundvbMotvtm5N50duA5P09t\nT0faJIkfirU+zNrF1YiC4FBQECZE73/JqB//F+u14r+ImIVEOB1iu/6ZNfhwzEamp7YuU2e7RN1m\noZBnW5YVIfZ1qNWfotw51yuIph++hET0bAkcikwpTAEuCjxnSly3PzIP0a8NcnYgD6SBlSoaIhQX\nV2UtVup24LBU6S7IyG+NUuodZP52awojrTSvIjeshlij9XdQKh2jXYRRDtpGfOCruQfEpmzbdn0V\ndP9iPLsgjnEryI67Lzd/PCt6/5Tt+v3LJXAqQ/z7ut2ZO/Ccx23XfxUYZbt+7D8xCngl8Jwsa80s\nZBS8ke36O7cg4ybA5UgegJ0QE/XN5auvZRaiIMQRF12wXX8TCv9ls6eERpOtIMR+EXNS5YsRh8dS\nTo/V+CzUck21i6uR5++4wHNeKFXJRDH0PfoR5fqmtHKwDDhCa73O5JA3lCSeF04v6Z3FPRTMzBO7\nS6AE8Q12PbomgYn5Xpm29yMPhu2RUK96iKMn9q6zfa38JXo/NHoly7oQeM5K4Iro60+jKINuJVJC\nYu/439uuX805A4VkWyfbrp+V/MdFnOmeCmpfFKsSRYMc2/U/DeyG3OfSjpOx5WmfVHmcuXFcFfus\n5ZpqObbrb45EtswqpxyAcVI0FDMbOFxrXeT9a+heopvnEArzolvashT0wmbEapdgGpIU5XDb9R9F\nYqrXQyyL8wPPeTeuGHjOMtv1T0VuqldH6W//jigNmyHOcAcBgwPPcZog20xkRLcJ8DPb9S9CRqM7\nI7kDvoDE1hfdxwLPWWy7/plI7oCLbNffHXm4zUQeRtsjGRP/EXhOKSfcABkpj49i5+9G/putgHmB\n5yxIN4iSF21C14V6Rtiu/yYSW15uHv4a4P8oKAedlPcvOAv4KmItfCTKKfAS8v8NR1ILHwnsl5GA\nqF7ORdYaGA48HGWyfBqYgViDRwCfQR72PkDgOU9E2TvHI4m0TgeeRczb30DyH2iKcyA0ymrgWNv1\nFyDK1NvIQ3tStN3LCH+9HUl29UPb9echFo8BUbtLEKfJtJ9EmgA59ifbrj8bCR3cGDlvZqdTLcPa\n9NCbUMhs2GFLKvPFSAKxZl7/CxEL8pgoA+QMxD+kE3HenAHcHnjOGmNB6Dt8iGjHWSFKK4HHkcQr\nOxvloLXYrr+77fqrEIejNyiE6P0WccZbabv+lFLtG+Ry5AY/BHkYfRDtR9M79QAAA3FJREFUcwYS\nNdCFwHPuQR6a7wHfAR5GMhk+i9xcT6G6KIOKBJ6zFBn9r0GUmBlIWN9ziHf/5yjO/phsfy2yqt4i\nxOJxF3INTI9k/Q7ZoV4xv0PC5LZCci4sQm6g08kYHdquvxy5lt4DwsSmF5EENCts1//Idv3M9LbR\negJTkEx4NvBA1joFifqLIjkeR6wcfwdeQfIFTEEcjHNU79RXkShvw95Ixs5+yOj/KuSh+ATiAHcq\nxb4fxwOXRfJMQc6zlxGF6B3g4MBznmmWnBFzEUfP0xDFcCGiAG+JHKushESXIdanjRBF4l3EInAj\n8vuOqWK/5yNRGaOQFNkfIhkOX6CQgwAA2/W3jkI3V0T7ejjatAFyXb2PXP/LbVnroWGi6bbzo697\nIlaWk5Br93wkk+jztusP7o94Lna7eaoMZU0cVXIAped7eqGZfP2ZqmPFl+ptrVf3n19UpvVMYLRS\nagBywxuEjLwWAe9qrTMXV2mUzs7OP/Xrp+6qt33Hmn5Zue3XNeZTOVoky5nqKiQkrNT883Qk3WvJ\nsMLAc1bbrv9Z5AH6KWRkOB+5wRWlWo7a3Ga7/mOIomAho/GFyI30YeDREru7ELlOq07TG3jONbbr\nT0Nu9KOQm+i/gFsDz3nTdv2fI2FbpdpfHnlpH4LcnHdAlIz5yLErqXgFnvOR7fo28lDYE7lu3kKO\nTdZ9K52xrhTl7knnUVB6SqVeTsr4apQU6lDEbG4hCsFbROsRBE1ebjrwnNB2/XGIGf5gRBkYhPyv\n7yDpjR9MtVkOnGK7/vWIgrFrVPcF4O8ZKbaXIuduWkH6KfL/JbkEsWClfWK2CDzHt10/jzhXjkGO\nyzNIZEiRD00ga3ocaLv+kUh2xo8hSuVURKmIUyiXVGYCWVzKQlJD7xrJNg85b9LX8RLgF6X6SpFU\n9Cpe28gaJgORqEEAbNffDLlvHIQoAndR8NEYilwjExD/nwuUiTQ0GAwGw7qC7fqjEUvKqsBzmhWd\nt05gu/5pyNoifw48J9N5PForxQeeNFMMBoPBYDD0DWL/llvK1In9jt4zCoLBYDAYDH2DePo5MwrJ\ndv0hFPwTnjBRDAaDwWAw9A3+hPgOHRPl25iK+FhsiuR4OARx0Lwf+J1REAwGg8Fg6AMEnvNklL78\nHMRRca/E5hVINNIVwI2B56z6/3ExLRI31pXNAAAAAElFTkSuQmCC\n", |
|
167 | 167 | "text": [ |
|
168 | 168 | "<IPython.core.display.Image at 0x107ea26d0>" |
|
169 | 169 | ] |
|
170 | 170 | } |
|
171 | 171 | ], |
|
172 | 172 | "prompt_number": 9 |
|
173 | 173 | }, |
|
174 | 174 | { |
|
175 | 175 | "cell_type": "markdown", |
|
176 | 176 | "metadata": {}, |
|
177 | 177 | "source": [ |
|
178 | 178 | "An image can also be displayed from raw data or a url" |
|
179 | 179 | ] |
|
180 | 180 | }, |
|
181 | 181 | { |
|
182 | 182 | "cell_type": "code", |
|
183 | 183 | "collapsed": false, |
|
184 | 184 | "input": [ |
|
185 | 185 | "Image(url='http://python.org/images/python-logo.gif')" |
|
186 | 186 | ], |
|
187 | 187 | "language": "python", |
|
188 | 188 | "metadata": {}, |
|
189 | 189 | "outputs": [ |
|
190 | 190 | { |
|
191 | 191 | "html": [ |
|
192 | 192 | "<img src=\"http://python.org/images/python-logo.gif\" />" |
|
193 | 193 | ], |
|
194 | 194 | "output_type": "pyout", |
|
195 | 195 | "prompt_number": 2, |
|
196 | 196 | "text": [ |
|
197 | 197 | "<IPython.core.display.Image at 0x1060e7410>" |
|
198 | 198 | ] |
|
199 | 199 | } |
|
200 | 200 | ], |
|
201 | 201 | "prompt_number": 2 |
|
202 | 202 | }, |
|
203 | 203 | { |
|
204 | 204 | "cell_type": "markdown", |
|
205 | 205 | "metadata": {}, |
|
206 | 206 | "source": [ |
|
207 | 207 | "SVG images are also supported out of the box (since modern browsers do a good job of rendering them):" |
|
208 | 208 | ] |
|
209 | 209 | }, |
|
210 | 210 | { |
|
211 | 211 | "cell_type": "code", |
|
212 | 212 | "collapsed": false, |
|
213 | 213 | "input": [ |
|
214 | 214 | "from IPython.display import SVG\n", |
|
215 | 215 | "SVG(filename='python-logo.svg')" |
|
216 | 216 | ], |
|
217 | 217 | "language": "python", |
|
218 | 218 | "metadata": {}, |
|
219 | 219 | "outputs": [ |
|
220 | 220 | { |
|
221 | 221 | "output_type": "pyout", |
|
222 | 222 | "prompt_number": 3, |
|
223 | 223 | "svg": [ |
|
224 | 224 | "<svg height=\"115.02pt\" id=\"svg2\" inkscape:version=\"0.43\" sodipodi:docbase=\"/home/sdeibel\" sodipodi:docname=\"logo-python-generic.svg\" sodipodi:version=\"0.32\" version=\"1.0\" width=\"388.84pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:cc=\"http://web.resource.org/cc/\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:inkscape=\"http://www.inkscape.org/namespaces/inkscape\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:sodipodi=\"http://inkscape.sourceforge.net/DTD/sodipodi-0.dtd\" xmlns:svg=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", |
|
225 | 225 | " <metadata id=\"metadata2193\">\n", |
|
226 | 226 | " <rdf:RDF>\n", |
|
227 | 227 | " <cc:Work rdf:about=\"\">\n", |
|
228 | 228 | " <dc:format>image/svg+xml</dc:format>\n", |
|
229 | 229 | " <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n", |
|
230 | 230 | " </cc:Work>\n", |
|
231 | 231 | " </rdf:RDF>\n", |
|
232 | 232 | " </metadata>\n", |
|
233 | 233 | " <sodipodi:namedview bordercolor=\"#666666\" borderopacity=\"1.0\" id=\"base\" inkscape:current-layer=\"svg2\" inkscape:cx=\"243.02499\" inkscape:cy=\"71.887497\" inkscape:pageopacity=\"0.0\" inkscape:pageshadow=\"2\" inkscape:window-height=\"543\" inkscape:window-width=\"791\" inkscape:window-x=\"0\" inkscape:window-y=\"0\" inkscape:zoom=\"1.4340089\" pagecolor=\"#ffffff\"/>\n", |
|
234 | 234 | " <defs id=\"defs4\">\n", |
|
235 | 235 | " <linearGradient id=\"linearGradient2795\">\n", |
|
236 | 236 | " <stop id=\"stop2797\" offset=\"0\" style=\"stop-color:#b8b8b8;stop-opacity:0.49803922\"/>\n", |
|
237 | 237 | " <stop id=\"stop2799\" offset=\"1\" style=\"stop-color:#7f7f7f;stop-opacity:0\"/>\n", |
|
238 | 238 | " </linearGradient>\n", |
|
239 | 239 | " <linearGradient id=\"linearGradient2787\">\n", |
|
240 | 240 | " <stop id=\"stop2789\" offset=\"0\" style=\"stop-color:#7f7f7f;stop-opacity:0.5\"/>\n", |
|
241 | 241 | " <stop id=\"stop2791\" offset=\"1\" style=\"stop-color:#7f7f7f;stop-opacity:0\"/>\n", |
|
242 | 242 | " </linearGradient>\n", |
|
243 | 243 | " <linearGradient id=\"linearGradient3676\">\n", |
|
244 | 244 | " <stop id=\"stop3678\" offset=\"0\" style=\"stop-color:#b2b2b2;stop-opacity:0.5\"/>\n", |
|
245 | 245 | " <stop id=\"stop3680\" offset=\"1\" style=\"stop-color:#b3b3b3;stop-opacity:0\"/>\n", |
|
246 | 246 | " </linearGradient>\n", |
|
247 | 247 | " <linearGradient id=\"linearGradient3236\">\n", |
|
248 | 248 | " <stop id=\"stop3244\" offset=\"0\" style=\"stop-color:#f4f4f4;stop-opacity:1\"/>\n", |
|
249 | 249 | " <stop id=\"stop3240\" offset=\"1\" style=\"stop-color:#ffffff;stop-opacity:1\"/>\n", |
|
250 | 250 | " </linearGradient>\n", |
|
251 | 251 | " <linearGradient id=\"linearGradient4671\">\n", |
|
252 | 252 | " <stop id=\"stop4673\" offset=\"0\" style=\"stop-color:#ffd43b;stop-opacity:1\"/>\n", |
|
253 | 253 | " <stop id=\"stop4675\" offset=\"1\" style=\"stop-color:#ffe873;stop-opacity:1\"/>\n", |
|
254 | 254 | " </linearGradient>\n", |
|
255 | 255 | " <linearGradient id=\"linearGradient4689\">\n", |
|
256 | 256 | " <stop id=\"stop4691\" offset=\"0\" style=\"stop-color:#5a9fd4;stop-opacity:1\"/>\n", |
|
257 | 257 | " <stop id=\"stop4693\" offset=\"1\" style=\"stop-color:#306998;stop-opacity:1\"/>\n", |
|
258 | 258 | " </linearGradient>\n", |
|
259 | 259 | " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2987\" x1=\"224.23996\" x2=\"-65.308502\" xlink:href=\"#linearGradient4671\" y1=\"144.75717\" y2=\"144.75717\"/>\n", |
|
260 | 260 | " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2990\" x1=\"172.94208\" x2=\"26.670298\" xlink:href=\"#linearGradient4689\" y1=\"77.475983\" y2=\"76.313133\"/>\n", |
|
261 | 261 | " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2587\" x1=\"172.94208\" x2=\"26.670298\" xlink:href=\"#linearGradient4689\" y1=\"77.475983\" y2=\"76.313133\"/>\n", |
|
262 | 262 | " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2589\" x1=\"224.23996\" x2=\"-65.308502\" xlink:href=\"#linearGradient4671\" y1=\"144.75717\" y2=\"144.75717\"/>\n", |
|
263 | 263 | " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2248\" x1=\"172.94208\" x2=\"26.670298\" xlink:href=\"#linearGradient4689\" y1=\"77.475983\" y2=\"76.313133\"/>\n", |
|
264 | 264 | " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2250\" x1=\"224.23996\" x2=\"-65.308502\" xlink:href=\"#linearGradient4671\" y1=\"144.75717\" y2=\"144.75717\"/>\n", |
|
265 | 265 | " <linearGradient gradientTransform=\"matrix(0.562541,0,0,0.567972,-11.5974,-7.60954)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2255\" x1=\"224.23996\" x2=\"-65.308502\" xlink:href=\"#linearGradient4671\" y1=\"144.75717\" y2=\"144.75717\"/>\n", |
|
266 | 266 | " <linearGradient gradientTransform=\"matrix(0.562541,0,0,0.567972,-11.5974,-7.60954)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2258\" x1=\"172.94208\" x2=\"26.670298\" xlink:href=\"#linearGradient4689\" y1=\"76.176224\" y2=\"76.313133\"/>\n", |
|
267 | 267 | " <radialGradient cx=\"61.518883\" cy=\"132.28575\" fx=\"61.518883\" fy=\"132.28575\" gradientTransform=\"matrix(1,0,0,0.177966,0,108.7434)\" gradientUnits=\"userSpaceOnUse\" id=\"radialGradient2801\" r=\"29.036913\" xlink:href=\"#linearGradient2795\"/>\n", |
|
268 | 268 | " <linearGradient gradientTransform=\"matrix(0.562541,0,0,0.567972,-9.399749,-5.305317)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient1475\" x1=\"150.96111\" x2=\"112.03144\" xlink:href=\"#linearGradient4671\" y1=\"192.35176\" y2=\"137.27299\"/>\n", |
|
269 | 269 | " <linearGradient gradientTransform=\"matrix(0.562541,0,0,0.567972,-9.399749,-5.305317)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient1478\" x1=\"26.648937\" x2=\"135.66525\" xlink:href=\"#linearGradient4689\" y1=\"20.603781\" y2=\"114.39767\"/>\n", |
|
270 | 270 | " <radialGradient cx=\"61.518883\" cy=\"132.28575\" fx=\"61.518883\" fy=\"132.28575\" gradientTransform=\"matrix(2.382716e-8,-0.296405,1.43676,4.683673e-7,-128.544,150.5202)\" gradientUnits=\"userSpaceOnUse\" id=\"radialGradient1480\" r=\"29.036913\" xlink:href=\"#linearGradient2795\"/>\n", |
|
271 | 271 | " </defs>\n", |
|
272 | 272 | " <g id=\"g2303\">\n", |
|
273 | 273 | " <path d=\"M 184.61344,61.929363 C 184.61344,47.367213 180.46118,39.891193 172.15666,39.481813 C 168.85239,39.325863 165.62611,39.852203 162.48754,41.070593 C 159.98254,41.967323 158.2963,42.854313 157.40931,43.751043 L 157.40931,78.509163 C 162.72147,81.842673 167.43907,83.392453 171.55234,83.148783 C 180.25649,82.573703 184.61344,75.507063 184.61344,61.929363 z M 194.85763,62.533683 C 194.85763,69.931723 193.12265,76.072393 189.63319,80.955683 C 185.7441,86.482283 180.35396,89.328433 173.46277,89.484393 C 168.26757,89.650093 162.91642,88.022323 157.40931,84.610843 L 157.40931,116.20116 L 148.50047,113.02361 L 148.50047,42.903043 C 149.96253,41.109583 151.84372,39.569543 154.12454,38.263433 C 159.42696,35.173603 165.86978,33.584823 173.45302,33.506853 L 173.57973,33.633563 C 180.50991,33.545833 185.85132,36.391993 189.60395,42.162263 C 193.10315,47.454933 194.85763,54.238913 194.85763,62.533683 z \" id=\"path46\" style=\"fill:#646464;fill-opacity:1\"/>\n", |
|
274 | 274 | " <path d=\"M 249.30487,83.265743 C 249.30487,93.188283 248.31067,100.05998 246.32227,103.88084 C 244.32411,107.7017 240.52275,110.75254 234.90842,113.02361 C 230.35653,114.81707 225.43425,115.79178 220.15133,115.95748 L 218.67952,110.34316 C 224.05016,109.61213 227.83204,108.88109 230.02513,108.15006 C 234.34309,106.688 237.30621,104.44617 238.93397,101.44406 C 240.24008,98.997543 240.88339,94.328693 240.88339,87.418003 L 240.88339,85.098203 C 234.79146,87.866373 228.40711,89.240713 221.73036,89.240713 C 217.34417,89.240713 213.47457,87.866373 210.14107,85.098203 C 206.39818,82.086343 204.52674,78.265483 204.52674,73.635623 L 204.52674,36.557693 L 213.43558,33.506853 L 213.43558,70.828453 C 213.43558,74.815013 214.7222,77.885353 217.29543,80.039463 C 219.86866,82.193563 223.20217,83.226753 227.2862,83.148783 C 231.37023,83.061053 235.74667,81.482023 240.39603,78.392203 L 240.39603,34.851953 L 249.30487,34.851953 L 249.30487,83.265743 z \" id=\"path48\" style=\"fill:#646464;fill-opacity:1\"/>\n", |
|
275 | 275 | " <path d=\"M 284.08249,88.997033 C 283.02006,89.084753 282.04535,89.123743 281.14862,89.123743 C 276.10937,89.123743 272.18129,87.924853 269.37413,85.517323 C 266.57671,83.109793 265.17314,79.786033 265.17314,75.546053 L 265.17314,40.456523 L 259.07146,40.456523 L 259.07146,34.851953 L 265.17314,34.851953 L 265.17314,19.968143 L 274.07223,16.800333 L 274.07223,34.851953 L 284.08249,34.851953 L 284.08249,40.456523 L 274.07223,40.456523 L 274.07223,75.302373 C 274.07223,78.645623 274.96896,81.014163 276.76243,82.398253 C 278.30247,83.538663 280.74899,84.191723 284.08249,84.357423 L 284.08249,88.997033 z \" id=\"path50\" style=\"fill:#646464;fill-opacity:1\"/>\n", |
|
276 | 276 | " <path d=\"M 338.02288,88.266003 L 329.11404,88.266003 L 329.11404,53.878273 C 329.11404,50.379063 328.29528,47.367213 326.66753,44.852463 C 324.78634,42.006313 322.17411,40.583233 318.82112,40.583233 C 314.73708,40.583233 309.6296,42.737343 303.4987,47.045563 L 303.4987,88.266003 L 294.58985,88.266003 L 294.58985,6.0687929 L 303.4987,3.2616329 L 303.4987,40.700203 C 309.191,36.557693 315.40963,34.481563 322.16436,34.481563 C 326.88196,34.481563 330.70282,36.070333 333.62694,39.238143 C 336.56082,42.405943 338.02288,46.353513 338.02288,51.071103 L 338.02288,88.266003 L 338.02288,88.266003 z \" id=\"path52\" style=\"fill:#646464;fill-opacity:1\"/>\n", |
|
277 | 277 | " <path d=\"M 385.37424,60.525783 C 385.37424,54.930953 384.31182,50.310833 382.19669,46.655673 C 379.68195,42.201253 375.77337,39.852203 370.49044,39.608523 C 360.72386,40.173863 355.85032,47.172273 355.85032,60.584263 C 355.85032,66.734683 356.86401,71.871393 358.91089,75.994413 C 361.52312,81.248093 365.44145,83.840823 370.66589,83.753103 C 380.47146,83.675123 385.37424,75.935933 385.37424,60.525783 z M 395.13109,60.584263 C 395.13109,68.547643 393.09395,75.175663 389.02941,80.468333 C 384.5555,86.394563 378.37584,89.367423 370.49044,89.367423 C 362.67328,89.367423 356.58135,86.394563 352.18541,80.468333 C 348.19885,75.175663 346.21044,68.547643 346.21044,60.584263 C 346.21044,53.098503 348.36455,46.801883 352.67276,41.674913 C 357.22466,36.236033 363.20937,33.506853 370.6074,33.506853 C 378.00545,33.506853 384.02914,36.236033 388.66877,41.674913 C 392.97697,46.801883 395.13109,53.098503 395.13109,60.584263 z \" id=\"path54\" style=\"fill:#646464;fill-opacity:1\"/>\n", |
|
278 | 278 | " <path d=\"M 446.20583,88.266003 L 437.29699,88.266003 L 437.29699,51.928853 C 437.29699,47.942293 436.0981,44.832973 433.70032,42.591133 C 431.30253,40.359053 428.10549,39.277123 424.11893,39.364853 C 419.8887,39.442833 415.86314,40.826913 412.04229,43.507363 L 412.04229,88.266003 L 403.13345,88.266003 L 403.13345,42.405943 C 408.26042,38.672813 412.97801,36.236033 417.28621,35.095623 C 421.35076,34.033193 424.93769,33.506853 428.02752,33.506853 C 430.14264,33.506853 432.13104,33.711543 434.00248,34.120913 C 437.50169,34.929923 440.34783,36.430973 442.54093,38.633823 C 444.98744,41.070593 446.20583,43.994723 446.20583,47.415943 L 446.20583,88.266003 z \" id=\"path56\" style=\"fill:#646464;fill-opacity:1\"/>\n", |
|
279 | 279 | " <path d=\"M 60.510156,6.3979729 C 55.926503,6.4192712 51.549217,6.8101906 47.697656,7.4917229 C 36.35144,9.4962267 34.291407,13.691825 34.291406,21.429223 L 34.291406,31.647973 L 61.103906,31.647973 L 61.103906,35.054223 L 34.291406,35.054223 L 24.228906,35.054223 C 16.436447,35.054223 9.6131468,39.73794 7.4789058,48.647973 C 5.0170858,58.860939 4.9078907,65.233996 7.4789058,75.897973 C 9.3848341,83.835825 13.936449,89.491721 21.728906,89.491723 L 30.947656,89.491723 L 30.947656,77.241723 C 30.947656,68.391821 38.6048,60.585475 47.697656,60.585473 L 74.478906,60.585473 C 81.933857,60.585473 87.885159,54.447309 87.885156,46.960473 L 87.885156,21.429223 C 87.885156,14.162884 81.755176,8.7044455 74.478906,7.4917229 C 69.872919,6.7249976 65.093809,6.3766746 60.510156,6.3979729 z M 46.010156,14.616723 C 48.779703,14.616723 51.041406,16.915369 51.041406,19.741723 C 51.041404,22.558059 48.779703,24.835473 46.010156,24.835473 C 43.23068,24.835472 40.978906,22.558058 40.978906,19.741723 C 40.978905,16.91537 43.23068,14.616723 46.010156,14.616723 z \" id=\"path1948\" style=\"fill:url(#linearGradient1478);fill-opacity:1\"/>\n", |
|
280 | 280 | " <path d=\"M 91.228906,35.054223 L 91.228906,46.960473 C 91.228906,56.191228 83.403011,63.960472 74.478906,63.960473 L 47.697656,63.960473 C 40.361823,63.960473 34.291407,70.238956 34.291406,77.585473 L 34.291406,103.11672 C 34.291406,110.38306 40.609994,114.65704 47.697656,116.74172 C 56.184987,119.23733 64.323893,119.68835 74.478906,116.74172 C 81.229061,114.78733 87.885159,110.85411 87.885156,103.11672 L 87.885156,92.897973 L 61.103906,92.897973 L 61.103906,89.491723 L 87.885156,89.491723 L 101.29141,89.491723 C 109.08387,89.491723 111.98766,84.056315 114.69765,75.897973 C 117.49698,67.499087 117.37787,59.422197 114.69765,48.647973 C 112.77187,40.890532 109.09378,35.054223 101.29141,35.054223 L 91.228906,35.054223 z M 76.166406,99.710473 C 78.945884,99.710476 81.197656,101.98789 81.197656,104.80422 C 81.197654,107.63057 78.945881,109.92922 76.166406,109.92922 C 73.396856,109.92922 71.135156,107.63057 71.135156,104.80422 C 71.135158,101.98789 73.396853,99.710473 76.166406,99.710473 z \" id=\"path1950\" style=\"fill:url(#linearGradient1475);fill-opacity:1\"/>\n", |
|
281 | 281 | " <path d=\"M 463.5544,26.909383 L 465.11635,26.909383 L 465.11635,17.113143 L 468.81648,17.113143 L 468.81648,15.945483 L 459.85427,15.945483 L 459.85427,17.113143 L 463.5544,17.113143 L 463.5544,26.909383 M 470.20142,26.909383 L 471.53589,26.909383 L 471.53589,17.962353 L 474.4323,26.908259 L 475.91799,26.908259 L 478.93615,17.992683 L 478.93615,26.909383 L 480.39194,26.909383 L 480.39194,15.945483 L 478.46605,15.945483 L 475.16774,25.33834 L 472.35477,15.945483 L 470.20142,15.945483 L 470.20142,26.909383\" id=\"text3004\" style=\"font-size:15.16445827px;font-style:normal;font-weight:normal;line-height:125%;fill:#646464;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans\"/>\n", |
|
282 | 282 | " <path d=\"M 110.46717 132.28575 A 48.948284 8.6066771 0 1 1 12.570599,132.28575 A 48.948284 8.6066771 0 1 1 110.46717 132.28575 z\" id=\"path1894\" style=\"opacity:0.44382019;fill:url(#radialGradient1480);fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:20;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1\" transform=\"matrix(0.73406,0,0,0.809524,16.24958,27.00935)\"/>\n", |
|
283 | 283 | " </g>\n", |
|
284 | 284 | "</svg>" |
|
285 | 285 | ], |
|
286 | 286 | "text": [ |
|
287 | 287 | "<IPython.core.display.SVG at 0x10fb998d0>" |
|
288 | 288 | ] |
|
289 | 289 | } |
|
290 | 290 | ], |
|
291 | 291 | "prompt_number": 3 |
|
292 | 292 | }, |
|
293 | 293 | { |
|
294 | 294 | "cell_type": "heading", |
|
295 | 295 | "level": 3, |
|
296 | 296 | "metadata": {}, |
|
297 | 297 | "source": [ |
|
298 | 298 | "Embedded vs Non-embedded Images" |
|
299 | 299 | ] |
|
300 | 300 | }, |
|
301 | 301 | { |
|
302 | 302 | "cell_type": "markdown", |
|
303 | 303 | "metadata": {}, |
|
304 | 304 | "source": [ |
|
305 | 305 | "By default, image data is embedded in the Notebook document so that the images can be viewed offline. However it is also possible to tell the `Image` class to only store a *link* to the image. Let's see how this works using a webcam at Berkeley." |
|
306 | 306 | ] |
|
307 | 307 | }, |
|
308 | 308 | { |
|
309 | 309 | "cell_type": "code", |
|
310 | 310 | "collapsed": false, |
|
311 | 311 | "input": [ |
|
312 | 312 | "# by default Image data are embedded\n", |
|
313 | 313 | "Embed = Image( 'http://scienceview.berkeley.edu/view/images/newview.jpg')\n", |
|
314 | 314 | "\n", |
|
315 | 315 | "# if kwarg `url` is given, the embedding is assumed to be false\n", |
|
316 | 316 | "SoftLinked = Image(url='http://scienceview.berkeley.edu/view/images/newview.jpg')\n", |
|
317 | 317 | "\n", |
|
318 | 318 | "# In each case, embed can be specified explicitly with the `embed` kwarg\n", |
|
319 | 319 | "# ForceEmbed = Image(url='http://scienceview.berkeley.edu/view/images/newview.jpg', embed=True)" |
|
320 | 320 | ], |
|
321 | 321 | "language": "python", |
|
322 | 322 | "metadata": {}, |
|
323 | 323 | "outputs": [], |
|
324 | 324 | "prompt_number": 4 |
|
325 | 325 | }, |
|
326 | 326 | { |
|
327 | 327 | "cell_type": "markdown", |
|
328 | 328 | "metadata": {}, |
|
329 | 329 | "source": [ |
|
330 | 330 | "Here is the embedded version. Note that this image was pulled from the webcam when this code cell was originally run and stored in the Notebook. Unless we rerun this cell, this is not todays image." |
|
331 | 331 | ] |
|
332 | 332 | }, |
|
333 | 333 | { |
|
334 | 334 | "cell_type": "code", |
|
335 | 335 | "collapsed": false, |
|
336 | 336 | "input": [ |
|
337 | 337 | "Embed" |
|
338 | 338 | ], |
|
339 | 339 | "language": "python", |
|
340 | 340 | "metadata": {}, |
|
341 | 341 | "outputs": [ |
|
342 | 342 | { |
|
343 | 343 | "jpeg": "/9j/4AAQSkZJRgABAQEAtAC0AAD//gAdQ29weXJpZ2h0IDIwMTIgVS5DLiBSZWdlbnRz/+Ef/kV4\naWYAAElJKgAIAAAACgAOAQIAIAAAAIYAAAAPAQIABgAAAKYAAAAQAQIAFAAAAKwAAAASAQMAAQAA\nAAEAAAAaAQUAAQAAAMwAAAAbAQUAAQAAANQAAAAoAQMAAQAAAAIAAAAyAQIAFAAAANwAAAATAgMA\nAQAAAAIAAABphwQAAQAAAPAAAADuDAAAICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIABD\nYW5vbgBDYW5vbiBQb3dlclNob3QgRzEwAAAAAAAAAAAAAAAAALQAAAABAAAAtAAAAAEAAAAyMDEy\nOjA3OjE2IDExOjEzOjI1ACAAmoIFAAEAAAB2AgAAnYIFAAEAAAB+AgAAJ4gDAAEAAABQAAAAAJAH\nAAQAAAAwMjIxA5ACABQAAACGAgAABJACABQAAACaAgAAAZEHAAQAAAABAgMAApEFAAEAAACuAgAA\nAZIKAAEAAAC2AgAAApIFAAEAAAC+AgAABJIKAAEAAADGAgAABZIFAAEAAADOAgAAB5IDAAEAAAAF\nAAAACZIDAAEAAAAQAAAACpIFAAEAAADWAgAAfJIHALoIAADeAgAAhpIHAAgBAACYCwAAAKAHAAQA\nAAAwMTAwAaADAAEAAAABAAAAAqADAAEAAAAgCgAAA6ADAAEAAACYBwAABaAEAAEAAACgDAAADqIF\nAAEAAADWDAAAD6IFAAEAAADeDAAAEKIDAAEAAAACAAAAF6IDAAEAAAACAAAAAKMHAAEAAAADAAAA\nAaQDAAEAAAAAAAAAAqQDAAEAAAAAAAAAA6QDAAEAAAAAAAAABKQFAAEAAADmDAAABqQDAAEAAAAA\nAAAAAAAAAAEAAABAAQAAKAAAAAoAAAAyMDEyOjA3OjE2IDExOjEzOjI1ADIwMTI6MDc6MTYgMTE6\nMTM6MjUABQAAAAEAAAAKAQAAIAAAAIAAAAAgAAAAAAAAAAMAAABrAAAAIAAAADgmAADoAwAAGQAB\nAAMAMAAAABwEAAACAAMABAAAAHwEAAADAAMABAAAAIQEAAAEAAMAIgAAAIwEAAAAAAMABgAAANAE\nAAAGAAIAFwAAANwEAAAHAAIAFgAAAPwEAAAIAAQAAQAAAIBjFAAJAAIAIAAAABQFAAANAAQAogAA\nADQFAAAQAAQAAQAAAAAASQImAAMAMAAAALwHAAATAAMABAAAABwIAAAYAAEAAAEAACQIAAAZAAMA\nAQAAAAEAAAAcAAMAAQAAAAAAAAAdAAMAEAAAACQJAAAeAAQAAQAAAAABAgEfAAMARQAAAEQJAAAi\nAAMA0AAAAM4JAAAjAAQAAgAAAG4LAAAnAAMABQAAAHYLAAAoAAEAEAAAAIALAADQAAQAAQAAAAAA\nAAAtAAQAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYAACAAAABQAAAAAAAAAEAP//AQAGAAEAAAAA\nAAAAAAAPAAMAAQABQAEA/3///yR31BfoA2sAwAAAAAAAAAAAAAAAAAAAAAAAQBFAEQAAAAD//wAA\n/3//fwAAAAD//zIAAgA4JisB4AAAAAAAAAAAAEQA8/+gAB0BgAAKAQAAAAAAAAAABQAAAAAAAAAA\nAAAAAAAAAAMAmRkAAIAACwEAAAAAAAD6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASU1HOlBv\nd2VyU2hvdCBHMTAgSlBFRwAAAAAAAAAAAABGaXJtd2FyZSBWZXJzaW9uIDEuMDIAAABTY2llbmNl\nVmlldwAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAAABzAQAAmwEAAAAAAAAAAAAAAAAAAIABAAAjAwAA\n2P///wAAAAAAAAAAAAAAAAAAAABBAgAAMQMAAKX///8AAAAAAAAAAPb///8nAAAAAAAAACcAAAD+\n////AAAAAAAAAABzAAAAAAAAAFcDAAAwAwAARAMAAIABAADoAwAApf///wAAAAAAAAAAMAMAAEQD\nAAAAAAAAAAAAAAEAAAACAAAABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAKwAAAAABAAAAAQAAAMAAABSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGwEAAAAAAAAPAAAA\nVQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8EAAANBAAAMQQAAD0FAAAAAAAADwAAAFUBAABJ\nAAAA5QMAAIkGAACfBgAA5QMAAAAAAAAAAAAAAAAAAAEAAACBAQAAEgQAAFcDAACTAgAApf///wIA\nAABAAAAAwAEAAD8AAAAAAAAACwQAAAEAAAAAAAAAfwQAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAA\nAFT+//8QBAAAfgQAAFIEAAAOBAAAEQQAAA4EAAANBAAADwQAAA0EAAALBAAA//8AAAAAAADABQAA\nFAEAAFQBAABBAAAAbwQAANcAAAAJAQAAMgAAAAAAAAAAAAAAAwAAAAMAAAACAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkAAAAKAAAAU0d28WAABAAJAAkAIAqY\nB2QAZAASABIAEgASABIAEgASABIAEgASABIAEgASABIAEgASABIAEgDu/wAAEgDu/wAAEgDu/wAA\nEgDu/+7/7v8AAAAAAAASABIAEgCAAAAAAAAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACAAAQAAAAIAAgACAAIAAAAAAAAAAAAAAAAAAAAAAAAAigABAAAABAAIAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAoAEAAAAAEAAIAAEAAQCAAuABAAAAAAAAAAAAAAgAgAEAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAoAAAAAAAAAAABJNz0ciOBUJVCJsJVgaq7+\nSUkqAN4CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAEAAgAEAAAAUjk4\nAAIABwAEAAAAMDEwMAEQAwABAAAAIAoAAAIQAwABAAAAmAcAAAAAAAAAjScAJAEAAMCpHQDbAAAA\nQBEAAEARAAAGAAMBAwABAAAABgAAABoBBQABAAAAPA0AABsBBQABAAAARA0AACgBAwABAAAAAgAA\nAAECBAABAAAA9BMAAAICBAABAAAA1QoAAAAAAAC0AAAAAQAAALQAAAABAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9j/2wCEAAkGBggGBQkIBwgK\nCQkLDRYPDQwMDRwTFRAWIR0jIiEcIB8kKTQsJCcxJx4fLT0tMTY3Ojo6Iio/RD44QjM3OTYBCQkJ\nDAoMFAwMFA8KCgoPGhoKChoaTxoaGhoaT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09P\nT09PT//AABEIAHgAoAMBIQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsB\nAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKCxAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEG\nE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVW\nV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLD\nxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6EQACAQIEBAMEBwUEBAABAncAAQID\nEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RF\nRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqy\ns7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/\nAO4UU8CmA4CnAUALilFIYoFPAoAeBS0AFBFADSKQigBDTTQAUUCENNagCutSLTAeBTsUDDFKBSAc\nBT1FADiKKAFxSE0AJTSaAEpKACkoEJimkUAV1qRaYDxTxQMWlxSAUCnjigAJpc0DAmmk0CEJppNA\nBRQAhNFABTT0oEVlqVRTAeBTwKQxcUtACg0uaADNJmkMQtSFqBCZpM0AGaM0wDdSFqAE3UhagRCq\n4qVaAJBTqBhmlzSATNLuoAaWozQMTNJmgAzSE0CGlqaXoATzKQyUwGmXFNM1AiUGnCgCRBnrUgUY\nzmgYhHpTScUAN30b6AFDCnbhQAAr60oCdzQA8eUOpFDGPtSAifaegqFsdqYETEiomc0ARs5pjOaB\nEwuVHU4/GnC8QDO6gVx63qsODT/tQ7mnYdxftA9f1oM496LBcVZlPXNDSJnjNFguJ5qigyD1osFw\n8wetJ5nvRYLgXPqKb5jDuKLBcQzmjzCaLBcTfntRuB7CgBPwFIwGPuigDJWdWYhSCR1xzij7ZGCA\nHjz05OKCSRLyNhxInHXDU/7Qp43qce9ACeevXcv50onBHDD86LgOE2P4v1pfOP8AeP50XATz/wDb\n/Wk+0nPU/nTuFhGvdh53/gM0LfK38ePqcUXCw83YH/LRf++qPtg5+cHHpzRcLMBdZGQaXz2xntS5\nkPlYouCe4/OgzsP/ANdO9xWsNNw3pSG5PoaBHIpqb4x5rj3NH9pMM/vCM9uTUlXHrqWMZnIJzkY6\nU5dUOwgTnHXGMg0tewDjqrAZ8zG70XFIdWeQYVmwD24oHca2ojAZSDjqDk006gxyRgD0piFa/lXm\nTcPc04XrO3Vvr6UAS/a1QHMrE/pUMmoAA/OccYOBQME1FmGRLjFPOqShciU49gKLILsR9Ymjbarl\ngehxQmtTKQokIOM4KiiwrjhrUrMV8z8cYxThrEmdpcOR2BoGB1pV6luBnJNMGt5OAzc+h6UCOTi8\nV20jJ5tsFzgHB4H5c1s2n2a/jL20jOmT8wQjmpuOyLDQW0YKywSJz945x+dMdrSEh8hFHBwSf8aL\nsdkR2+s6fFKd9t5o7bxkflTLWTzpTlFbc3BHGB+FMNDaTR4EtSWi3NnIBfH9arS6cIiomXCnnCHl\naXMFkRiFFOWDCPsruCWP5cU6a1ma2lubdfkXguTjnHT9aLhYp+ROR5Sxs553bRuOfYik/sy7Mqxt\nE5dh8qY5NPmFYcmnzYwwJGMhQMZHYj2p02nXH7kENiTn5RkD0FTzoOUa9hcuZBHHuEbYOWwR+dVb\niOe2KNLtBPbeOP8APpTUrg0yFnY5OeVOCVORTo2kC8IxPbAzx3qriGvIyICV+XPJyf8AP/66je5U\nA72CjaSD6elAHG7yW5Naul3kkSMn2pkHGAGwKljO30jS1udMWWaaW5MwyI1zuUj0A5P16U/Wfsel\nqDJZKyBB+8PI3dwe47fnU3v5LoUtPNnLXWr2UzlUEceGyCi449OlS2s/2hFFqzyEZ4XJx+Hane3+\nZL1f6GxBeyQqFG6REGZAzg4PtzVI+I5bbcsThRk7iTnHPWptf59C3K3y6mxb+K1EIieJXEhBJU7i\nT7/4VFHdX8k48y3YIz5dS+0YFG2vbqF29F1H33iOe2CLE67FyRH5W0DnHPvx1qOPxPdMHuL6Ur+6\nMcbBRuB98/X0o5eu4XZQTUpRbquJY7d2yrISC/GDyetQSXuoINzGZ0AClGJxn+vFVpsTcde3L28Q\nMmNrqH2nOV5+71qmmsyy485VkjUkrH0VQfQUXAhfUA+yMRiMKRyp6+59/pVp9QVHIVgBxwhP5inc\nRW1G+JTy0kV0wPm/i/E1lXF9LIoXeWA9aNwM3bgdfwqRWAHWhgdPpU8ItoG2hJEOepFZt9bPfXMj\nLO7tno/T6Vim03fVI1cU0raNmdNZXMBJaMlR1IGajju5rXcscjxhhhsHGRWqtLzM2mvIb9pcty55\n96UEepbPWnYRf0/UJ7CZWhfauevXFdC+tyRqSJFHmdT15qG+j6jTt6jbXWbYOxvYjMTyhVsYPqcU\nuo6pHc38TxxtFAAOM7j74zQgvp+ZBdX8UpTDP5ajAU4G31x2FVbzUpp440UskSdFDcA+tNbhcqy3\nkk6gyuTgYAx2qKS5Pl8NTsAJdFNrZOQexpzanK00kjEEyAg5GaLAV3mzmodwLU0Ia+WlwSD709EQ\nEZpAWxcFJI1j3bRw2DW0gLW48oAEjgkVjPT9TaGt/wACNZDGNpADdwDwaiuoBLAv+jxyYHpzSWjv\nt5lNXXcz5bCzMRYM0LDqhGcGqOyNMjfn6VqpN/5mMklt80KJFUcD8aV58oMHIBp2JGic9S1WjeOA\noJzxge1JoRIZQyjnB9KY7AH5iPoaF+IETy8khgo6VEzlQATnPftVIYgYgZ7UhfjNUBZ0+wuNUmMV\nuASBkknAFWJvDmoWrjzI0OemHHNAFKXGTtJx61FyDmpQFq1b5lJPB6gDpWhJqAiUInYd6ykrs0jK\nyGNqBdxhDn+HaeanfVIonIYEMvXBBpcrY1PqzEvr0zyl+cGqwz1YfnWyVkZt3d+47/ZB60BSUPWm\nIA4TjtTlbOSxoAlV/wC8Rj0p52O2Sxx2HpUgQywPnKndn3p0DNHkOAB7ih6rzAez/MSgwPSnW1ws\nNwsuxWZT0YAj8qF/w4jbtvEq2UDCK1hV2I3Mqhc9euKZc639vl81owzAbVG7oKL667DuYauSe2fT\nFKQzdV4p7ALG4jwc/hTZXZ5N27d6ZFKwyZGBwBxSmNSCuSTip1Qio6lc4HA9abncDlc1YDVQqcnk\nelSBwRhTQwK03yvxSeYwHNUA5ZM+tTSq0KI25CGGflYE/wD1qLARs5YdSKcHOMHNADg49aeME8Gp\nYCxoN7bjwc1YiCgcHHFTIR//2QAlYyIySoGRSVYY+fjBJ4/HHJrNu72Se6hhRd4kdY1ZBuErnACn\nPHPU4wPzJqfZ207EXvJor+I/EdnawNbvYwiS5gMLwOGdZckg9CdpPTk++BWx4F063u9Dt7eWOWzk\neRmzIXRoyfug9iPce46UvZSpUHJ632FP3bNm7/whsMusaSl/qEFlp94Eu2neFna0YE7iR0OMHIHU\n8Z7hEkjt3l0Oa2tb+wFywDRhvlChgqg/wjDEjIAyfbjgjXVeyWluppTi6j027nam5tYdO02S6aaG\nF9ttcqNj5AXHRRjrgZ69e9WZLeaXTnh01bOZJ4VhtHjPllkxghuzHPfj+Zrgrxakr7N6lQlypX2P\nIvC/hPU7fXZhJElvb6nY3lpdStM2FlQCQIQeAcoMc84w/9j/2wBDAAMCAgICAgMCAgIDAwMDBAYE\nBAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMDAwQD\nBAgEBAgQCwkLEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQ\nEBD/wAARCAHgAoADASEAAhEBAxEB/8QAHQAAAgMBAQEBAQAAAAAAAAAAAQIAAwQFBgcICf/EAEUQ\nAAIBAwMCBAQDBwMDAwMCBwECAwAEEQUSIQYxE0FRYQcUInEygZEIFSNCobHwUsHRFjPhJGLxF1Ny\ngpIlNGOyQ1ST/8QAGQEBAQEBAQEAAAAAAAAAAAAAAAECAwQF/8QAMhEAAgICAgEEAgECBQMFAAAA\nAAECEQMhEjFBBCJRYRMycUKhFCOBkcGx0fAFFUPh8f/aAAwDAQACEQMRAD8A/UCrx3qxRXXwZQ4F\nMBjtULQQKZagodadc0KOBRxg1AECoPbNAHzphRgIFHA96AmKao0WifnR/Oj2Eie2aIz60oUEUw4q\nCg5oj2NC0MKYD3oKGx60w9KlAcCmFUDD1phQo1GoCAfejzQhDUxQpMCjQEoY96EJilIoAHPlQIoA\nYqEeVOigxzQOaEBnmh596UKD70DVBDSmgoU/eh+tQgKU1SAo1KAKlUBqYoCYxUHNECYqH70BOaFC\nCn1oH0qgUgUCKChGqtqCjjIOKsAroBqYVEUYCiB5VAOB5irF+9AMBmjigIBRoVBx6UwFAEcUaF8h\no0BKhGagJ70w470QQRRpRQjOaYCoBhTAVAMKYd6AYU4oBhxTUAwqD7UAalATzqVATzqVQEVKhA4o\nMtEUXbmgRiqCEUpFQEoH1qgXBoYoCUD6UADQJ96AU0MY5oQBoHOKAWoaECKnFATyqYoQn51BnvQB\n4oH3oAVM1QKaBoBTxSmgEPekbz4qEZx17Zqxa6hDAU4HpQo2PamAqAYCnAqAYUaAIFEZoUOOaYCg\nQagHNC9jYqUCJU5oCCmAqFD+VEe9AHFMtQDeVMKgGFMBQDAU49aAaiKAYUaAn50fKgBUoCYo0BOP\nKjgUAaBoBanegBigRQAIoYzQAIFAgUAtQ0AtDFAA4oc0IAihQCmp9qEZKlACiOKEDUzQC1KAlLnz\nqghNCqBSaU1EBCaU0IcVO1WrXQIsApwKhQinAoBgKcAioAgUwoAgUQPShdBAPFHFC6DgnvRwKFDi\ngRQEo4oA4ogVASjj0oBhTCowMAKYA1AMBTqKAcCmA8qAOKNAMOO9QGgJRoCVMedASpQBxUoA9qFA\nDFTAoAEUp4oCUCPOgARilNAClNAD7UCKAHepQAIpcUIA+1D3oQh/pU78UDJzjvQFCEqfahbJUqkB\nQzQAoc0AD2pDRMCkUhFAcZPKrV9a6ERaKYVKKMKcUA9EduKgGHamAoUIFMBQUMFpttCohHpUxQpO\ne1SoAY9KIFAGjj+tAHFSngBAzzTgVAMKcD1oBgPamFQFiinC5FATFQDFAE1BQEo0BKIFATFQCgDj\nyqYoCVMc0BKWgAaFATzqUADzSEUApzSGgJQNATHpU96ABpSKEARUoKBj1qfahPJMe1A+tCExQNCk\nJoc1aIA+tCgITilNEAHNKaoAfOkYVKIcZBVq1sIsB8qajKFTVgP50AwpxUAQKcChRgKYChRsU3FC\nk8qmKAGKhoCURUBMUcUBO9HFQDAUw9TRgYU4qAcUyjzoCxfU04FAQipxQtANQUIECp7CgJimFCkG\namMUIGhQEqUBKBFALQNACpmgJSMaAQ0OKAFSgBipQAoGgBjNQ0IDjtUoCGhQAoVUQlAmgAaBqkBj\n9aGPKp2CYoEetUC4pCKgOMhqwVsiHHNMKFGH2pxUA60wFAWAcCnAFCoYDypgKFG9qgoAgUaFAR7U\nCDmgIB7UagJRoAgUajAwFECoBhTCgHFOBQDgU4oBqBHFC2KagoBqnGaANShBhRx7UACKWgJUzUAC\nfOpmqBSaHc0BO4oGgATxSGgEJoE0AM1AaAhqd/OgBihigJQIz3oCedTtQgDQ7+VAwGhVIDy70MVA\nT7VDVID7Cpj2owQihigFbtVbUYOInAqxa2RDinFGUcUwFQDqPWrBQqHApxQoRTUKEUQaAYfepUBD\n7VMZoA4HeoaAGKgFANj0ogVkDAUQKAfFHFAMKsFANVijihRqBNCCtSgioBgaIPnVKGoKAYUaEATS\nkjtQAzQJ9agFzzQzVKTPvUz70ITPFAmgFZqQmgFJxSlqAFQH3oCUQRQEoUBKgoCUKAHFChAGgeKA\nX2o1UQmD6VCBihAYo44xQExxQxUAhBFVtxQHDU8U/euiIixfvTgZoUcDzNOBUA6irVHrQowog0KM\nDTChQ1M0AQfamAqAOKNRAnNCqCVAKgGxgUe1AEUw4qAcUR7igCOasFCoZasFB5GpSagFJpc0ARzT\nVS0EYphQMOBRqGRCcUpoAE0pPNGEAmhmqAE+tTNCgLVM1CdCn0pTVApNA0AufWj+VATPrRoA0DQA\nx7UaAlAmgAaBNALQOaEJQ/OhAipQEqVSEzigCaAUiqmFQHDXt2p1roTssWrBUKOv2px3oB1zVgNC\nhBo+dCjimFChxUANSwMKYDFAGj5UABRxUBMUQMVAGpjNWwMBimAFQDCjzQDAU4oVDijQoaU+9QgD\nQxSwEU1Cko5qkGBxUJ9KjQFJpScUApNITQgCagPFGEQmhmhRS1KWqgmaBIoQFAmgADUoAg0R3oA1\nMUBOKBoCdhSmgAaU0ISpQAxzRwe9AAc0aEJzU4oQhoUADVTUBwVxVg9a2RFi04FXopYKYVAOOKda\nFDmiKFHHHFMp5qFGGTTflQBHemoAioRUYIPSmxUBMVDxQEAo4NAMBTYoA4pgKFHA9KNAhhRqFITQ\nJqgFGoAj2qE8UsAzRBp0Bs0M+9QgCewpTVKKe/elNGyUChmgJmlJoBSamapAZoZoAZqUAKNAEUft\nQBqeVAT86hoAUuRQCn2od6AOKmKEJihQEqUAKmaEBnnioTQgCfvVTHzFAcJe1OtbIi1KsFCjA804\noVDimGfTNC9DdvKmFANgUwBzUKOKOKnYCKagCM1MUAQKYVAGh3oCAUwoBu1EChRgKbFAGj+VQIOa\nmeKAmahNAQUc0KSgTmoCVM1QQmpmoCZoEigAaQmrYFz60CahmiZpTV7LQKGaJk6AfehmqCVCcUAM\n0cjyoA5og0Ac+9TNATNTIoAE0uaAU1AaANTNAAmpQgM1N1BQMmhmhKJnFLuoQDN71W1AcNPKrFrQ\nRYKsGaoGBqxaAcUwqGhu9MPahRwKcD2owMo7U+OKgBijjFAEUeagJTCgCBUIoCAUwHtQDVBQo1MD\nmoQNHNGaRM0M0shM0allJ2qZoCZqZFAT8qhPNADNTdQA3UC1EBS1LmlkFJ9KmT60BM0CaIWKT71M\n0IA0KvYJQJoAflRqgIPNHNADNENQEB96OagFyaFUAzRoCZoZoAE1M0BM0MigATQzzQnYC3lQ3UIx\nScUjGhDiKfarV+1aBYuacVQOtWLUKWDnimA9qpRgOKIqFLEqwCowOBTqKgARzU7+VAGpQEFNigDj\nNQ0AAaYGgDRFDQaINRkDuok+lASoKhSUc4oCA1M0AM+tDNAHPGaG6oAbsVCc1RQpNAmhAZoE0KLm\npuoQGalCsGaGfahAE0M4oiE/OoaoBkUc0QJn3qZ5pZA1KpQZqZoCZqZoAE1KAGamaAG40M8UBC1K\nWoCbvI1M0IAnilLUIAmkY1GQ4y1YprQLQTVi1QOoqxRQqLAKcAUKOFz3o7QallGC48qcGoBgasHr\nQBxUAoA4oEUBAKag7JmgfWheiAUcUHQaIPnQMYdqlSwHOKIqFQalASgTQAzUzUBPvUJqgGaBPpQA\nz6VM0ACaUmoAFvLNDOaABNTJoQBNTNCgzQJoAVM1SMmfWpmqSiUCaUOiZqZoA5qZ4qWAGhuqoEzi\npuoCZ9qGaoJmgWoBd1Qn3oAFqG71oCbqmaEIT50pNCAJzSMeD7UIchO2TVimqEWLz/8ANWqPOqgX\nLzTqKWaRYq5qwD2oUcCiBUA2KIWoBwoFMOPKgGH2qUAwFQgVC9gxg80fsaWKBg1CKFJzUzTsjJnm\niDQMYVM81LKT3ojNCDA+dTOKhQZoE0AM1N1ATNTNATPlSknPegFJobqAhNKW96oBnNDPvUBM1M1Q\nDNTNQAzUzQAzUzQiASRUzVBM1C1WyC5og0Ac4qbqgFLUCaIEzipuqgm6gWoAFqBbNUAzQ3UAC1Dd\n50Ac0N1CMBagWoQG7yJpHfg81LIcte1WqOOKoLU4q1apUWr2qxT50RUWIRVimhRxTCoBgPanUUAT\nUz5VAMMCjiiKHsKBNGSwZpgaFGoVCgNA0ADRHehFscVCaFIKNQUTPNAmgBuoFqAXNHdQE3UN1ATd\nQLUApbNLmqCZxzS5qAmTmpmqCZ8qmagBUzzQUTPpQzQAzQoKJnmpmqQmc0pal6DJuqbqCybqG6ng\niAWHkaG6iAN3vU3ir4BN9AvQA3UC1ADdQLVQTdQ30IDfQL0DAX96BehOhS/vSs/FRkMajirVHpVC\nLFHtTjigLVNOvPnVNItSrFqFLFp1FANTA0Ac1BUBM0QfenRUHNBvaoWieVMODQg45qGhRTxxQz70\nIwVM0KMD7VCfagCDUzioAE+eaBNAAnNAmgBmoTQC5qZoAZ96hb+lAKTUzQAzUzQAzQzQEzUzQEzU\nzQAzULYoAE0M0BM0M0IQtSk80AN1Dd71QDfQL0Apfyob6EJvHrQ3+VXwGTxPehv96IE8Shv96AG/\n1oF6oFL1N/FAAyUDJ3oQUycUDJ70IwGQVW0nHeoyAVeBVoWqC1RxRC0KWAU6ihaLF4q0UKOpxVoo\nAiiD/SoA1KMWHvTACoUhPrS0BM+VEHmgsbdUJ9KDoGSahOKMIBzU/pQpM0c1BYQcedAtQAJobqEB\nuoZoUm6huoAE0M80BMmhmgFJzUBqgmamagJmgTQEzxQz6UBM0CeaEZM0AapfIMmgTUBCfKgTVCFL\ne9Lv96EF30N9CCl6BfNAAvSlqqAN1DfToA30d9UA31N9ALvoF/egFMlAycd6EAZPelMnvQC+JSmX\nzzQyAy0jSiowb0TirFTigQ4WjtI8qpR8dqYYFCodTVgNAOGFWBs0KNuqA0A2famFQIh71NxFQtgJ\nqZpQBn3pgcVSEzRzUL/IS1LuBoLJu5qZoLATUBoSw5qUKDvQoAUD71ADvUoWwVKAhFA0AMVMGqTo\nOKG2lBMmKGMUoWA0MUHgO2htqkJtOKmw+lSipkKHtih4ZohYpjYcUpQ+hq0QUofSkKmqBCKU5FAK\nc+dLzUoE5oc1QSlP96AXnNQZPNAQmlLAUIDfSF6AUvSGT3oBDLS+L70MgMnlmlMlAKZfekaXg80D\nPQL2og4rKAQaOc9sVoowqZoBg2aYNQo4arFahRg1OpzQDijzQDChipQIVqAH0oCEYxk0CaAmT5VN\nxqiwbjmp+dAHOamalAGc1KjAfeiDQAJFDPpRIXZKBBpRbJiiF9qAOzFTbV/ghNlDw6gAVxQ20Adv\nHehiqAEelKc9qAAUnvVgiJ8qoD4R9KYQk+VTsDCA9sVYttngigG+Vyfw0/yQVckVAUGABiMUvy+T\n2qoCtaZ8qpe2x5VQUNDjyqpoTQCGKgY+O1AKUxSkYoBGpCaABqFsUBWz+9Vs9CCGSlMnvQWVtJVb\nSVWRlbS0N9CCmT0pTJUADL71W0vfmhlnqx271MVEaCM01UB71MGhRlApqFCDTgnyqgsUZrRHHnmo\nUsEf3qxYhjmgJ4YoiPJxigCYgPOkZMcg80BQ7EHk0m4nsKAYZoCgIT6UN1ATd70N/lQE3ijv8qAm\n+pvqAm/PnUD1QENRzQBFMOagHGKHaqAg5qYJqChCvtUC0Q+htlKUOO1AKEOe1Wrbk+VUIsW0xVvg\n4HapYoZYM9xVq24qWWi1LUfrVngKo4AzQUI0Y7YpGU4xQdFTRAnNDwttCAZRjk1mlAziqgZ2UedU\nOB6VQIyikIGMUBUwFUvxQFLNVZYVaApekZ8URCpn96Rn9aAqaSkZ6EK2kPrSl6ArZ+c5pd/mTQgp\nehu96UBS1Vs3HeoRnsgcedOOcCs2UZiMcUAa0BwamRntQDUCx7VQFMk4rQiE1DSNCRnPNaV2gcAU\nKEMPSrByKAcIuOardlUECsrYEDHv5VW7+laBSVZzxTbAtAK7Y/DS5OM5oBC/NAuDQCFqG/zoCbqm\n/wB6AniVPENAHdRD0Awem30IEP60yuKFG8T3o7x60BBJTCQVATePWmUj1omXsYEetEBT3qAsCr6V\nYu0c1Cjq60Q4B5NAWoy+lWBlNCFgkGKRpl9aFKzKPUUjSqaEoqaYA1WZ+O9AVtLnzqln571qiWVM\n3vVTVQVMRSE96ArY1RIaAoY1W1VEKmaq2Y0HZWzVWzedPonkqZvPNVsfvQCFjmlJNOiCMaXPlQCk\n0N3vTwRilveq2bNRk7PaK2R3pgwFQ0HfTBqoGDUyAt2owXBCDil2gttoaL4kVfKr1xj2oB93pRD8\nYFCjo2cVesgArLBDOMEZrO8gznNEGEOGHNTauM5rQISqjA86RgDwDQCYAGTzSMfagKn70poQBPlS\n85qgODUwKUUhC0Mj1oQmRRyKFBvqeJUAyue1OHwKAm+j4lUA8Q0fF8s1AQS896cT4FSgL8z704uz\nSgMLwg8mmN4cYzSii/ON3zRF8fWlEscahgZBojUCOd1SgA6k5/mpDqDE8mrQGW+J7mibvd/NSgIb\ngk96gm470oCmY+tKZfeqBTJ70jSUBUz+9IWoCstVZ5qgRkzVbJxSiFDKRVbKc8U8gqZD3xVbJmqR\nsrKH3pCh9KUQQxH0oeC3pQCNE3pVbRkHtSgKUJ8qUxNilEsVo2qpkao0Q9WsjYqwP71lBMIlPrTC\nWqaHEma0JPtUKKAcS7jg1YpAqdGkyxXU9iKtDgDvQAEwHnQM4HnVAwm571Z44A5as0UpknPkar8Y\n981olhE5FOLnHFAAzgnJJqC496AJuOO1VmXPnRICFx60C/rVIQOKO7txREIWxSFyTjBoUG56BJHe\nqiimSp4pxUQJ4maIY+9WijBiKYMTWQNk4pS+POqBTLil8XnmoCCWp4h9aAm4mnU4FAAyYzih4reV\nADxCO9HxDQEL+9TxPerQAX96XxaUCeN70wnPrUAwmPfNOs3FARpaBk96AVpscZpDLzQCmQUpk96o\nFL0N4oiE3A1CRiqCpgKTw89vOhGKYfKlNvjyoQUwDPal+W57UBDbjyFTwMDgUAhtcnJFQ2S+dLAP\nkl9KQ2Y9KWQT5IHjFI1igoyG9eBijyawiDhT604UmqaGAOe1OpPbFCjhiPamEtBYVuV3Y3cjyqwz\ngj8VKFg3jyaiDn+YUAwPmXo5GPxmgD9Pm1QBfWqCZHkagx61AH6fWoCPbFCjcY7gUhHuKq0QBGPO\np5e9UDKOc4pgD5ioBljXPNaI0hGPpqWaRZ8vE4yAKyzQKCQKiZWZzEg8qmxB5VohMKPKp9I8hSyk\n3LR39gO9QELeRqp25qgUgmiI/MmgAVHlQxQEJOKmWqAmfWgWA86UCbuKBkGKtEB4gHelMvnVrQsR\npue9IZaABm470RP70AfmPenS5A86jFjfMqfOgbkeRqArNxnzoeOPWrQB4/vQ8fPnVBPFqbx60ARL\nxmmEgxyagIHU03iKPOqQHirUMgNQCmRTS+Io86eQIZBREgxQgfEHc1C4PnQEDDHNQsPaoBCwqtmW\nhlmKOSQFvUHmrPFkDAM3fnvV0ZQ8Mskwd1Y4TvVnjbA2ZQGU4x5080XxYsUs8xO1gAp7k4zWmGZZ\n2dhIiqg7ZPJ88Uf0ajvspFyWeSFpiGGSpxnPtUS6Z4mcMcqMnmtGSkXgRjIWyTV6XpcBgT71pryS\nw/OsByacXbcHPBFRo0EXjdsj3plu3IzkYpQssa52rnxRn0ANIt8pGTIA3IwT51ErBo8YNCjwsWYj\nLDyFI07r55z6c1EUJncfi4z2zxSreFjgAjJxya0lZLC92UbaSD9jQN6feqoksnztT54+tOI5DC/P\nrTrfn1qcRyLVv+eavS8jz3/WsuPwaUi9byML+MZrPJdqT+LNZpmuRU1yp86Xx1PnWuLJYBMvlQMo\nPNKFk8SiJ8VKLYwmJ54oNJilFsHjYFDxSatCyeLjtQDZPelEsJbyoFiPOlCxdx8jU785pTJZCB5G\nl25NAQRBj+LFH5fJ/EKbLYjW+D34pWiAoQrMRzxQML+VAKYX7iqmEg8sUAniOPWp4rULZBIxqbmN\nBYd7Hyqbnz2NAMHYdgc0DI1BYRIR3NTxjQhPFPvU8VqFsniNUEhpRCAu3IzUIbzq1QsgDcUxVgMi\npRLIAc1CSvaqUTew5oeI1SiWAu2KQs2KhGcZZ3BYmQHd6k0xuSAXZ0Axz5VqjmpUIdbK26xwxuXD\nnLZGCOMf571kk1W5cjc6Ljz7mkYLyOV9CLeyHJad2HoM4q2C4HO3xG9sVuiI0wrMIZpASg2/zHB7\n1iW8fJxIee/Peidleh1vplH4sj3rYNenLMzRrlueOOc1WrIpUXx6skxBlcggHuOK1LeRMMht3GB5\nYqUaUhxfIOOAPXHNBZPEjdzLKTjggcY9/SpVFuxDfQrgreAnsQwwB/Wit5bSbjJOGL+hq010S0aY\n7uFExFI4P2zTR6hHGxV7whT/AKkBJrPFvs1zQ51S1fiWaPafw/T/AOara7tpMLHKCM+Zzn8qKLRH\nJMYSxHHY4qwSw+ZOPtV2E0Vlo/J2pSUzxI361pEZBsz/AN1qtR4zwZQPuDQg6uh43GmDr/qqCw+K\nB/NQ8cA9xQti+MPMip432oLCJj5Y/Wj4jen9aaFimaQHAQY+9EzS9wKUWxluJccp/WiZm9KlIWTx\nz6VPHPpVpCyeOaHzB96ULIbk0DcGlCwC4+9ET+pNKFh8f3qeOPWo0LD8x70fmP8A3VUhYfHH+qgZ\nh/qqULB4q981PGX/AF4q0WyGZQMlxVT3EfbOacRZQ0iHmpuSpxLyAWX1qCVVpxFjLOoPlVqXcYGD\nGDV4k5E+aiznwxQaeJv5APzqcS8isupPAFOkkYGGTNOJOQxlhxwmKVpIiBhacRZFeLPIzTCSIHla\nUTkMJ4h2GKhkgPnShYVeLGQwoGePtxShYBcR+flTpJAxweCajQsLLCTjIA+9OIrfbw6k1l2Wyp44\nV7sKpLRDsRiiRG6PCCS4OOJTz5AD+4p83DDBikIOc5f/AOK2ckFI5hn/ANMnljJz/c1couByiRrn\nPYD/AIpo1Y4W5Y5aUD7VYElIwZfL1NRULFFmp/FLxjyH/mtCW9qi48JT9+a1YosHgqMCJP8A9tPv\nj4xGg/8A0ioUgkUdlX9BRMqkYAA+wFUguAX8QuxOc4Pb9K2y6vfSwmCW4Zoyu0qQMY/SsuMZdlUm\ntI5/hW/P8IUAkK/hT1Ga2TY6yBFKrkDOcZ70hcM24gAYxwfL7UFilIyckv8AYNxVu9Mg4IKjgjyq\niyeOA2PrJ75PNXfPS/yu69+AeP0qUVSaJ84+8uSTnuCxwaVbtUJbZuzxgsacRyZDdqxLMhBI/wBR\n4pxfhRgA8duaUORZHqagHMec+Z8qYainmpH51eJOQRqSemfuaX94rnzqcRYfn1PkKI1BfQfpVphM\nhv09v0ofPL6jH2pQsb59PUfpU+fSlCyfPr6gfrR+fA/mH60oWMNQ/wDd/WmGpeXH60oWH95Cp+8g\nfKpxFk/eOfL+tT94e1KFg+fHfFT58eYpQsPz6f6RRF9H5rV4lsIvocZ2/wBab5+3PdT+tKZLJ89b\n+hqfPW3bBqcWORPnbb3qfN2vmDV4sckT5u09DQNzaHyNSmOSAbi0Pnip49of56tMckTxbM9pKUvb\neT0pltA8S3/1miJLbPLGmxaG8S1x+Op4lt/9wUpiyBrf/wC6Kbdb9/F/rSmS0AtD5SD9aGY/9X9a\nFsgaNeQR+tQzDPcfrQlg8UeoqeID5igsnij1H60viDzI/WgsBdaXxB3BoQnicck/rQEnuf1qFshk\nz/q/WlZx70Zmzy4umx3pvmTjBrmUR9Tt42KyTxqwGTlscVI9VtJFLJcxMB3w44oC2LUbabcsc8bl\nPxYYce5q1bqFs4lQ444arsDLeW7cpNGeM8MKcXUR4EifrQtlgmB5GKPi1CoglqeLjzq2CeL/AO/+\nlTxv/f8A0oQnjH1FTxT6illJ4vqRU8Ueoq2CGUeZFTxB/qWiYJ4n/uFHeccMKtigl8+YoZz6UslE\nxx3FT/8AUKWWg5PqtTPuKWSiH1yKntkVbFA48jUI9xV5CiY9KmMDzqWWiZ9zU/M1bFEyfWjuPrSx\nRNxz3qb2Hc5pyFB8UbsZxnyqeIfWlihhIanimliieKfWiJTmpYoPin1qeKfWqmTiTxSe9TxqWOJB\nLR8X7VbsnEgmFHxh7UUhxIZRnvU8YetLHEnjCp4o9KvInEUzL6UPGXzpZeJPGWmE6e/61LHEInTz\nJphNF6mljiHx4vImoZ4velscSeNH6miJ4/WliiGdDxuFDxV7b1qXQom9f9af/uobh5Mv/wC4VORU\nibh/8GpuHY7qWKCXGf5qUyD/AN1LFC+KmPxEVPHjz+M1LZKJ48eOXNRriL/7tLYPOrDaFi0kKvn/\nAFDNWFbNic26H2OTXG2dCr5HSmOTZx/pV0UNhGNo0u0YejL/AOKNughtkGMC1tsY28gnI9KV9N0e\nRADYwh/bIH96JtdDT8GSbp7TpWyiJF5YQN/zQj6W03B3Syn7HFbU2ZpGiPQdNhdZI5p0dfNZMGum\nrIoxuLY8zj/ajbZUkg7096m9T5VLBNw9KORSwQso9KXenpSwDenlxQ3x+9UA3oOxqBkzil0Sibk9\nTRDr5ZpYCHXGeTR3jHegIGX/AFGjuHkxpYJuH+qjvU+dCk3j1oh186D+Sbl9f6Udy+tLBNwHvQ3j\njg0spPEHkDU3jHBq2TsyXesWNkgeabOewUFs/pUTWdNkjEgulAPqCPLNFdAH780nIHz0Zzzwcgff\n0pk1nS5IxIl7FtJK5JxyPvVpgEutaSuRJdxMAecHcP6VnfqXRYVBW83A84wxx9+OKU2LJH1Vo0iM\nzzlNue4PP2q6PqDRpYfGF6gHmGOCPypTQLP3vppK4voTvO0fX50/7wsdnifNxbS23O8Yz6ZqbAo1\nWwJYfORDY/htl8Yb0rT4gPIOR271bYBv9+3rR35GRzUsB3MecZoZP+k05AP1ehqHcPI05AOGPkaG\nD5k05CiEHP4j+lT/APUavIUVtNGpw0qg5C4LefpQ8QE4EgJHkDTkQOWqZf1pyKTL+ZqfX5mryJsO\nX8xU3P6UsbQN7e9Te1WyWAyMKBkk8h/WnZLF8aTzpTM2aCwGU96Hin1P61SNimU+poGZv9RoLCLg\nj+Zh9jUNx6u360JZPmv/AOo4/wD1Ur3B5/it+tCNs8ueoJNzqltJgHCuY+D743ZxXn06z6hjuzE8\nEU+Dyipk4/I8VxglI7vVHtLKx12+EDzXsVpJcKGWAQklc9gSex+9WXemalbl4BrEKzrlcujHafsD\nisXs1R5nUuo9ZsvCht5Ybk7vqeOMjOPIg8YPtVP/AFN1I024wxorgBQACF9+/J/Ouiijny2U6n1H\n1QIJEciKLsXRQD+uT/Sujp3WmpR2EMt3ZJKDlfFMyozY/wDaf71Wo0VN2Yk6y6iMTxqkbytJvU4U\n4UD8IA/+a0RfEO7DwK9kj7iTMADkDPAX3x/erxi+iW1pnfj620BnCNNKuccmI8fpVN715o1rIqRp\nNcIc7nVcAfbPescG2btVZtbqO3l0ibWLCznuYoV3NhCuOcck/fyzVGj9aaZqY2NDNDIACQYyw/Ue\nWfXFSrT+h5osh6rtJ782vyV5HFg4naM7TjOeO+OK1Sa/pEcjRSXQXau7cwIB+3rV4vwNLbMCdadP\nPdtaG5KEHAkZfoP2P/Na/wDqHQ96x/vW3y3Ybv8AMUqSCpk/6i0QT/KnUoN/3+n9e1US9WaFCzKb\nosVJH0ocE5xwcYNKbGiyx6p0W+SaSK5CiBdz+INvHqPWrodd0eeMSpqMIU5/Edp478HmpTQpDx6z\npErrHFqMDs/YBxzVj6lpscwga6iEn+ncM02KQf3npyyNCbyAOoyVLgY/zNXvNFGu+R1Qdsk4GabQ\noRruzjkMTzxqwXeQz4wM4zSrf2TMypdQFkyXAcErj19Klii8ODyCMeWKPiAdzSxxAt1B4ogEieIR\nuCbhuIHnikkvkQlTBNgefhMR/allSsrOp2q/i8Qe3hN/xS/vewB2tK4PoY2/4pZeLA2r6eCf4xJH\nJGxs0V1eyPIk/VSP9qtjiytr3RmyHSA+uU/8VDfaFtCyLaEeWVH/ABUscWKt304q/THZkdsLg/0q\nyO90BBj5SMrnH0rmjkVQb6CbjpojBtogPQhhVF/baNd27RafDZxSuCFdmbj7VFL7K4P4OVB0/ctb\nvEY9NkcAgSANuGfzx+orDJ07e2qySz31sixjaRkE5I7Y9a6KRhxKE065RIrlb2CaLcCqlTg+WK3f\n9S6XbTyxS9O2JVTgKjSDGCPMk5/Spy59aK1w72bF6x6VLb5OmYPFJz9I7n17j+1Nb6/0nEqO9rOS\nrByjOwUnvg478n+manuXkXF/RuXqvp+ZXNvoaeEXDEq7lh65Gef960ydWaJJGynTZImTlNkJ+oY4\nHJ9hWLp9m+NrRzD1bEwk8PS7gY/ASAoPPmfLjJ86Nh1Vclt8mjwFslS5mcIV9cAnnjv71XKPyZjG\nTfRdfdVTOIvk9AtwVbMu+SQ59gQR+v8ASsUms399DHFBYNa3EZDK4uZCrN9myMVFKPyb4Pqi+2bU\nhcteR6dcyLkja0+Q3kc5X+3byqi80zVpZDLbwXIDndtMvKk/i5x9scVtfJzfwHT4eqrS4W5mLS5H\nhsjYxtA4P3966viaoT//ACisM5O4Kf7msZIuTuJvHKMVsvS4vSrpJpNuckHISMHPrVC28wbemnRx\nnnkbQf6V51hnF6Z3eaDXRfCJI33S2jMB/wD1sZ/rW0m0mzvR4sgcBgaSx5fDLDJhXaKrhNnEU7sO\n3cD/AHqhLm+hXbHaq/uWGf71I48jWzTy4U9CnUNVClWtIn9225/uKMV/qePqsIuP/cOfyya2sEl0\n2cpZsb7QyX9+H/iaapUD/UOf61rjvEcEtZGMj1IP9jXdKXlnnko/0kN1GeRCP71W88ZP/bx+VaV/\nJzorM0A/FuFTx7PzZ/0q2yUgeLZd9x/OhutSf+8o++aXIUhWS3PadKrKwf8A3cVeTJxJsh/++P0N\nVsq5wJKvJjiKyf8AuBpTGacyNHz6z6ssfCMEkN2r5PMeFAAH0k4Gfvg1ZpfV+lWDlpLKeVXXc6xy\nbCZD5lipJHl6+9cUpHVPdm+HrfTzPFdWieC7KyyRfXKGbOAeSMYx5e9UX/XNxHC8Ed+wD/UxXKuo\n8gC2f8NRR3s3WjFN1dtt/l7qJ2IXgkhWyfMnH+1VxapazlZIYYFZNsgxdiLBUn1Xkn0BrfRjydjT\n+tRqUDWet4mgLbvCURBVUZ7kqdx7en/HNuNb0drppLHTLjwEG3PileP/ANOMfasrT10auy256g01\nYLV47dmtiXV8pHncB2UnJOCecmn07VLhbYTzSaesRUbnkljR2+ykg+vYeVad0E0mWQdU3KNGYmCK\nAxjdvpTGee/fsP1FbJtZv55TcXM0VrCsavFuVZFMgOVA3uBnJHrjFZ6LafWjK+s32sSQxx6/KszI\nfExDEkaqM5Y7HOTjzwK6fT/Uum6GLjwr6Sa4aMIA8mY1CnOc7cDPpTxxQTp2zZqHXmh9QQwwX736\nGEgDw5oo09zkoW7ZrlonS8bJ87rFyHnfBXCSlATjlt4xxjkqMZ4zUTlFUjTUZbZ2X6X6MeAvuEPB\nG9hgk+uTkfpXFih02KbZpF863xQj6IRuIHcYUe3esxySa3s04JPR3Ej0GzuBqM9ne38sagSfNWTs\npx5cAgeXYjOe4zXKk6r0i6mS0uINGMIysnjpOMemAFCjn2rSuW0ZtLRstLjoG2jupobOG6uGQRJ4\nQ/hnIycq5+kZCkH2I+9mka70rLaS3L9MW9wsBbc3gqxxjA4xtHmfby9anve2x7ekcjW+o+l7iO4t\nYLK3tEG6SJobVPEUkLwMY81bz/m9sUtt1ZodrFsGgxyOCrE5KArjH1Nyck88fYVt8l5MPj8HIu9a\nttUMhnsYYo0K4jhcIcY8iQS3Yf1p5NR0r5YW9vZxmVgu7xmdyuB3ypAOPTH/AJ1yflmUjIt3arcP\n81DFLljtVmYZ9u+ft3rZZ29pLbtO9tDGZQdqmd8kZ7ADPoe/c47VOdFUUVouorLLFYS3TQ/9vBlb\nCr25I4plv9RwVu2nn4Eg8S5OcdhtAPJzVckXfkSO805ds9rb3SXcPJYTck+ZzjI9ae5ureZrcRz3\n7Zw0iTXQIAB5APlx6isuewqOtb9WXMEUlvNJcQlYtke2YSAjsCcYPbzB5rmy6voo1GK6N3qEC+GI\n5HSTfI/AHG7sMe5pB30VtMS71DT4Lp5Y9W1YxtsZJJMbnwMgHnyzirhrMLRNdHU9VEwUrg7SDyMA\nc5B98Vq7GuiybqK2ji3QX2qvMF3IGKBNxAwHyOR6/aq9SuOn5LN3sTeyTgHJBzt58+3eibGmUS3c\nLrFDJb34iK4dkUqxYeQ4PPByPeomu2VvCYZ1vFweYzwMjjOSc59vc1aonIaPXNHjWaGaW9clVKKz\nEEZHIGDg49/t70LHWdNt5wZzcTQZG2LxGU53cbjnGMenpTj8muX2XTdT6fBc3HhQ3VswyESO43L3\n4yTkkd/Omg1jpoujtFM8zHe6u5G7jPHHtj86nF/0scleyzT7uwignewDNEzfwY5WP4/Xy86X922U\nqyXl/LOsjENJhQ33JGRjFXrZNMvmm6W063t2ku0YSKVLLC2dwAzkhzjGcdhXPWfSklR9I1ZjvO1x\nJghsk9geQeO/uOawk32tFuKNQmsb6UW9reTQqxxmScgrgc/UQFxwe+PTPNXRappdpL8ndy3DSK21\nnZ0kQ57Fdh8/XJ7VlwtV5NqaQb/UbewcSQXnzCM58RPCcbFAGe4H9a1adrmmTxb7jWbC0ULuKFZG\nbjgjgADt5E8Vh4bNLNTOhZXGj3Fv+8JuorRbdgVUhJEO77EdvepHrOgxspPUkQyp4ZO/cjuSedvA\nxzlfUZw8DOizhPVC20Vw0F4ZlMfi27GyfEjZwU4xg5wM4x+dVQ9YPc2Ecnz0KXBfEqeGFZQeRtB7\n+YPeu0VJR0cJOMpWD/q1op3cX4kUHAXaOO38o5/rW2fq7Tb/AGQWeqW8MnZ5ZoCq/kM4H5+lVKfy\nRqKG+euZYw9pf2EoyAX5KjHDA48yeR5YqpdZnRme5hjSMv4aN4hAJ9c458uOO9T3+GFGJyj1TciV\nLg6ram3aZ4fD2+eeAT39OcYr09rHdT2Zupr21t2BUKkiNznzznt257VZSlFWRQTdAt7qGIwJql0i\nGc4HhgYUZ75LYPl2NbZIrFrgxQahbhP9Usioe2fImuUss60jX4l4eznw3+l3EXjRXhdfEaIYVgSw\n9iM+VRNR0gQmSe9eNtrMq7hnA9R5f5xUWTL8GfxMS+vzZWvzSxXDxYBDiOXaQe31bNo7jzrJL1Ha\nQNHBdeNFLKcLG8bBj+q12Um+ivHWwz9RadamPxGnlEnbwF3HOO3OOea6qXVjJZvcxNcRoVU+JcqU\n8M/6SFJOefSry1szw2cFNdvpJ2gMJcqSpCEn/wDH+1Pe6vJZ7N42lhuYMhyo9/z+9b0Zp2UrrpuW\n22U1u/cHIII9OO5+2K1CfUfB3GKNG9WTjn/27s/1o2l2RKyk6zLtOxImKoS2Im5PqOe1S21eWbb/\nABLYlchxkISfLALZ/vQvES71ySNyniRRleWDJk49e4xUXXIgT40yoCMpxgkedQnEvS8mcjCHBGRz\nyR64qia/1BHIFg5HYZYZJ/zNLROPwfF4rm7a5eKNmX6i24r2I9faulZ3+rQYmQPsQbXbw8r6c57d\n6jaJGx7nXGuZw8szJIrAhYlGMAeQ9P8Amq1u1dkuIiv8ElmD4O4+mP1/Wpeiplx6gaNy1xBBOW3K\nm9QVjB74Hb1+2eMVhGtXU06SeLBDHsAZe6EDtlaqWg5bL7XWLuy/iRwxlcMdxQbZB5H6uD9sUlr1\nFqVrMJrV3SU/iEZx9PmABRRTJyaBdXm3w7xwkW6QkLuJ5Pc4yT+vetUvgXUoM16kqFQPF3ZI8+3/\nADWtrYXwJNKUiPiXCOEGIyDzj7dqR75bmSPbId4xsUtlVXOcdj6miH0bIFuJ5yunWEkjqD9Kxk5X\nzPYeVJYXt4J2trMbWuD4LgZAwT/MBxjODzxxUv5NbRZJrVvYyyg6fa+LbuEA8IShmHfOTjBwecGs\nct6JY3kxHJOxBAjARR6jbgdvatca2zLlfRut9Z1e3lhuYtMKS2ic+KjuDkY3Ybjvk9sUkl/qU8wX\nVrpYInLSF1UPgkDj6TgA4FZqK2a5Sf8ABZGgihBs5ru9nY72WGJtqKDxu5B5J7+X50ZzbTXUbyQT\nRfMj6zuZlByOcYyfPgE/7Vm/gv0dKXUI9Js57c6ZsN0US3maDYwUFvrBYE7fXPOQBnihb63bSWkd\nsYo90aqqSHGJSOwIY45OOMHgVKb2a5U6MEl7IkjrqdglvLHmNMkIC27swX2yMjHlzVdtLp8ksYa6\nYRSovi7VO6NwvPfvk/3/AEVXRnV7OnDeaUtu9wEmliEe0kbfofcQMnlgO3kO+Kfx9JjTx2eSRXjG\nSqr9J2njkgkg7fLHI7dq5SjLo2mmcbU9XR7yB7mYzssUXijgEYIGAcd8HP510dQ6zutQvIpJIN0M\narHCDhBsUjH4QBnA5OO/NdXjujCnxsuvtZ1p9LfRNKtbi3MB3XBhlYqysAeftjk5xgdu+ePb6zqK\n2piklvJ5YiBHtbKoB3z39vSqoRrYlJ3osn60129SK0vdQdIkjEUa/wAqoSCBge/P35qhtcuJPEj8\nAKj/AEELwucf37+fnT8cURzb7KRf3pnKr9LBApww5zgYHr3/AL01ubuS4aKTAYAHbgBgPQAkZNb4\nxSJbNdzDdCaK3d02fi3bkPdQewOf8PGaFvJ4UySxztGrMF8Uggcj1HbisNqqN15NM0F9NdRRW0jX\nMcrBA6FiD5AZIGTjyrDbw3c9zIoeJUDNGpZ8Asozj9PPtVVMjtGuNLuKyaW6hnWIKGEgT6RkZwW8\nuMccnmhYabqWtRzXFrp95KkWVEkMTyKD6EjsfarbSsd6FurPUbQRw3VrOqyDKiSF1yc+6j71uttP\nvNZKEzafaI0ghRWcLlvP6Rlh2zlsUbpWVI6Nr0hJd28T3l54a+IwEg2sjntncceY7YP/ABj1rWEh\nU2Au1vXiPDggeG/PYgYwOOBxXPlyaS8G64K2c+G1ulKW1zcMglG+3VT/ANw+v/8AcM+vFYVvreQT\nW128qTKG8RicgMM+nfsveuqd7RzrjSZu1DRYtJ0+F5eoLQTXcAuUt8ODsO3HOMZ+rOM9gax3lpd2\n0aSpLash43RSBsnPNXmr2Th8A+bnlVo4V+t2Cl0/nJOB9+9W6jZWVjaWjQ6o7XMqgzRPCU8PgHKt\nk7h3GcDtS6JVmWzZJJFL3Epfk4AzurQmyD+JCrylQQw3Dt6+farYS8kmkvJLV03MYg6nnBI79ifX\n/isqOpdD84Y0fAL7cgDOP0Aq3RWjd87qFopRFLRSxlGl8Y/xAD3Az9vKssV7PGVVrks68hsk7TnP\nGaymg7NMd7fIzzRybPmBhsLjPJ59B/asa31xaGJYnuYrhDuLlyPqznIxVtdEd+Trydb6zdEFdRmg\nZExtW4cKxByCcscn/wAVj/6l19Z/Hlv7jwm4EXzLOpUDGGGTxjyNZSikVybM63Tszzy2gUOcgqpC\ng+ZGPTBq20mtDcJFqGpTW8XiF5WiUkY2nbj1O7g/eqRWzPPrpM8aJIwii5RmIyG4yePetM+t6hbu\nzLNcGNm8SIPLkHIxyB51eKHJl41bUNMY29vebXLK/ih1bacHgMD255HqPainUOqCZbm+1ByshJVy\nVYZHcDzXjPbHlWdM1b6Rvg616k+l01pHRSoAcDaw/wDxI/zFY7jVdfvb6C/kmZriA5SVFwVAJ5Hp\n+lFxTDbaon72v7e6F0L2R5dzSgqRnxG75B4yfM96ttb3Vby3Dteqsu/YGcg5bzz649eRSooW7Ny9\nQ3OllbeW+hmB3IywQhiDnjn+bv8Aaukl7c3VsZGu7S4R4ziNvDhcngLxkcZ9/wBay0uzSfgW30fV\ndSkSa5FlDEo3eIURQfLhgccexq2907UhGVs7yW4cOGjMMRZWx5Ej7H+aommWqVjwaZrFxFcC9hii\njKsMHcJO3YkqRjn1rPca/punRqZI5/nUDIY51Lqq+WCOAPyPer3pD7Zmm1Sw19FCW7NNCMobeLdk\ncdweeP8ABWGZ9JikT96Q3QmZC8hZjH4hJ4LLzwD6YrW+kYbi9nUOniW1MemajMrxH8C3eVX8s8Yr\nBeWd1aRLNc9Q3sTyAj6rhQO3IBL8+dLXSRji/DPC3PUSW0l1KumWhjl4TxV3FSO2B+n6UdN6nG0R\n6gkbwIhCRRRqQR5lvPPvWFDWuwpK+tGmPULFflry/wBOjjt5ASfCOwsC2cjPHbj0+1Wi3tLmNZrK\nxWRCCuZbkZRie/fDeeBjnFZqjepdGDT1kmuJhd2MM0ewqArBCCOzefr+ftVyylQ4EEKpDmQpCxfA\nUZJIYHPFHK3SM9K2dFLoXyRXNhZtHCbZXIkmRfq34YgLjIyfTOOTkVzkNwbhy9qbkNES7iQqFxyC\nTwOMDvUU6dWJfRZp19o0l3Db3m+ePBXbHJj6yPp5KnjJ8gc9sjvXqD0va3Dtp8LSboo/ELySBFiG\n0mQtnsBtI57kds4rnPLPH4NRgpbOFps+i2Lz6hepa6jp8YKmCS5dGlOMZBXDDnnH/muvbXHTmoXg\n1OXQ/k7GdN8EdtdM0lrEufNt24bQScqewPFSc8n7J/X+pqPDVo5lzd9HrOi2MkjGQuGkmkKqRnI4\nHby7+dC6ntUb5rZHCM4VxMS39DkcVyk/UOS5OjlKk7j0d4ar0w8Vu17ptxOskUcjKLlY8yBikjqQ\npyrBPTIPJ9+dcz9NW1yZbeGGaLwxjdIcpx2whXJBJ5I5x2osmZaO03DtIW81np+8RFgtobdFARhG\n7byfUM3Hr5fr3qD933rr8zfGInEayTrtRTzkuSDnP2/OtvJkVe0xafRRqup2egWotbHU47q4UEBo\ntpQqexOBkH2z/eob/RL+zhu5dRnlmhjXxD4irsJ5KgYy2ORu+3tXVymo8uOxyXTZIes9LF8txHJc\nDPBDqjZAGArbuDwfMHPpXOHUGlCR7UNd/LykHb9O3fnucAYA9APOtqE09hzTKZtWiup4lFmyrCQu\nAARj8+/OeK0G6tms1toLRWlM5fxmIGRnhSewHqM+daWjNmi11PTrN8yqLkMwKwRoDnkZUk+X5Gul\nHaQalbwz3Gn38JmO3bZ6fIyqwLfTk9+SvbPGPPis1J7ZtU9Hn7oT219LDLHJbADZsmBVu/mMZ8qy\nvdmF/EYiJlIICcgcHsc+XFbXizDsu8eYwBbeaOeWYKWMkgGwqScfUcdv7fel8S6MyReLHhyTtBCq\nCfI44/weVa1RKZZHMJkSCfwYWlcgSkn6V4/FgHj7c0qXEUqsjxCMAFAVckNg/ixTrRV9lF1f6gY7\neNEUxQsTGQoyc+vmfzoRXEYRDJK+7OCvY984BrWq0T+TQt9JHFcXFqkqIsfhv4g3EBwQecY8+O3t\nzVdtqU8kAtyXZ4Buiyw2gY57+3YCsqPyU3Q6/J4JSHT/AJl45Fll8aViuAQCoVdpUHsTnOOARVcr\n3MpOzSYrWVjwd7nAPoGYj+9NR7Zq7FuNbvJ5LiJZjKbhgzqzDy7DPpwP0rrSX2q38ltYLw4iIe1t\nFWMIW5BYDjJwM8eVZpeSptvR6S306ySxkvr3Uby1TEnhpMw3sqKp4+5OBWbTOptM0jUra+M01xaz\nNiaGQ8RqCMEkEE/bzwaxJclSOnPi7ZhmuNT6g1Zv4E1tbQs2yJYvBRYi24KueMc4zye3fFW3Orad\nCy2tppdhHeMsayTzuzhZAMNIc/Qc88f3oo0lRFTdsN11ReKEgms9M1Ke2YqLspuBGQcDPl3HHGCc\nY715+21KyV7vUZhHJJIzKYVGADuDHz7UhJvZiXdfHn5LvnItdtzqusX0u21jEVuM734HAHbAB9j3\n7cVjtHt7qKW4ivUjhALNvI5b2Bxya3b/AFXSJ2Jqc/y7xS2OpNcbedxbG3j0PmBgV0RYafexxNDq\n0DSzAIBJKhZcDuTwFH3IrV6tIVboMyWFvcstgEdvE2oqT7yvococf3HepFDIS8xmjdIjm4fGQrZP\nc+YrLfyEt0VtqMEl7JKIrYxKpPhkFQwxyV54PkK1vsj0Twb3TltxdYW3lVVZ1AJPIyCM47ny8qKW\n6LXyZ4p/kHN3FdKfCygIUFUwMk5P59vb1rGdevJZ2tWvReR3TBmV41Xwz4mQMntwBnywa1SlsjbS\no9L1Fr19qdtaaSZrcKHLRQwR4RQo/FuPkQx4yTXldR1OGygWK4jO9JSo4ByOCe/by8vOswi0yzaZ\nyBrMkIwjOYJHEm3PAYdvY1cmvSNdR3JKjYwJXAAYDyxjzrq47s48joRdRrdPDDuCpEZI90ajLBj9\nWR58dj7Cg+sn5wWtw3hQKpVmVdpZTgjdzzjHFZSrs2pWjVZazY3cz552A5jYABk82HuOTirb3qdo\nLjdZyxyxEeEzyp9Uibs4+st9P2A+1Z3Zq0lZVfauupRxu1tZWkMrFMxQBBnyywGc0p1i2Q/LWNxa\nfw2A8c/Rn6dpH24745yalNKhyp2jNJrDWbbIjB4ikjxeWBHbtxn24r0PT0ep649tbQ6UkksjHawt\nGbxMZJ4UdgOe/apJJK2E22c2VdXvbuTT5prbEcsiLFuSLbt7kbsADAPGck+9O+mmaYJp7pcfLxAP\nJCAU287mIJByM457+XlTnFaRadlNta3F24ubeJSIlbedrFuB+Ij0HfiuelybSL5qaYOCCFjKbh6c\n58vtmqpKWjNeTt2moXi6YF0y/cw3EebiOQAIFyd2M55GPLntWC41cwxPPPc/XnC7ZGRymMZ2kc+W\nO3aqvgttLs1W97LcWbXVvq10r8eErhsZxnhgdoHlzzTjqHUF8S3nZGeRCTKLhw5cDl1YHGR2xj1r\nOhfkw22qoIriWSzkvSR/DkmkZShzndw2D+dX6jrttDNIbaERT4UqGbxF3ffcMH2INa6MX5OOmr6t\ndRo087O+0qMvgtz2x3NdS16i1+zcRrLdxwYG9D9eSRgld2ceZ4o6MXLs8iovZdOMHiQxqX3MHkX+\n5ptLS1lt5IJJ2S5OSrK/lj7ZNW9UaSV7BFp8rWogN3GnffvO3bzxjOM961HVYIrFbXwd8KshfbIw\nDuq4ywz/AO5sceZrLYXtBb6pbxpcC3mdXUA2+ZDlW55yMHI4rLc3uoSu8lxfhmITxE5LyYHBzjHY\n+ZpFqw22im3BmwplkRVRiCRx6hRj1NPaNcyia2hjcMTu5/mUenrzjitUTzRov7cWWmRXkbXRSZ9u\nXg2J2PY5POP71mfWNRLZW+l24w2GIyKJJ9mm+PRX+8BcQSCRMYAwqDBIrorrGpXek/KW940aW2I4\n4VzuIbORkeXfP5UpJUyJvdGFbzwGt2uIYmMP4o3XAbnzxgmt931DqGrmOyllWWCBMRDw1BA8xnuf\nzJq0pbIn4GS5u7aMXNtdxqY1aHwyx3bWB3AZ8iCc4PnWeO6e5WW4u5kMsg2qCg7AYH2/TyrKSWzT\n+B7WH5lREJscgGbH0qcZx/grs389nfXe6eVblBGTuhQq0nnliR3ORzziju9D6OGReXt21xZ2jeGi\nMHwoVFAGe/bOKsMV2LF2ltZ0hABZxGQobtzxj1Fb7MpGWZooQsZgbxATuDE59uKvgNjJD/GaQSA8\nxjAIPHOT5e1LfgqSvZ3INNjksoYdIWS6u5iS20lTF9jnB/T1rNPp98s0OntaTxhowVdFXLg92Jzy\nO3c4rPJHRxZgF9DDZXNrLPckrLhFRlCbv9Td89u39afSuoHZxaFwgZAiu2eDnlu+O3Hpj9arVown\nTNF4mpRxm2ivIHtnG+MiVAHyfTOQfY1lvTNIwTdHBuRT+DYh2gc+596JIrt6ZotGv7q5trODU4pL\nifK53dgATjkY7CpLNFAVt76Ri0blZI938wPB7cflUaS6QN95qunLp9xEbBVuAoMckUxAA7YK45Pf\nzH2rmaZd2Fyz/P30sAEe87YxIXbd+HBI8ufyqJOm2NN0el/6cs7qyNxd34tYpI8wyTR+GjYGTypO\n7jHnmscfT2lwCFL/AFmKSKUkxeEpOTjIIYngdu4rKnXtOv4r2Zpk0/RGlgS8+beQDkrhQPQ+p9xX\nIm1AwSSO+JAclTjGPIH/AMVU+TMTXHR17K40OS5ih1bV5obSS3MzyIgO2bH4doPP59/aqYLzSRdS\nnStUkXwwDDNdEoXYg5wFOFx7k0jB30TS3Zf+7LWyg/eUmrQzhCsqywSZ3FhkKQeQQQe4HnXSjmvt\nYljnsZruYjEbAvnIxn8IHbnzzSTtnSKpUuynXfFs9Ks9T1GZjcKfCeCTersdxIZs8dh5e2artCmt\n6bdJaQW8V54Y2RfXmRS3cE5UEe5HtntUg9XQkt0+2hbq/wBat1+c1iJ0dFSKNWOTgKRjHocA59qr\nvNctXhF27ypHhUFt4eIwxGSeDg/fANa4p9Gb1srs9fJ0q7aG+toHLKkkT/8AddR2KsQaxvJHL4Ml\nrbIpY/iSUsc+4HbgZ/Wqo0zPaQ+rXp05h4d5HcocAtAMYyTuHI7/APNcYXUMSOLSZ92cgMe+R6et\nIRVWvJJd0B7qa9Qu1wzPtCtvPmPQ1t0ue3tIyLqHxZsFVO8gLxWm/wClGV3bO1pN3H4c7NEzy7Sq\nhf5eMHnH+9U3GuEReBcwPHFGmAUQLuOQ3fzI7Zrlx2dFpaFsNWOtPcIA0jsy43HDMDk+gA5575/r\nWpbmS4gjV7mQeCx5/Hv4weexHHb0FXjx7Cdka6jtoJdLdUhZ1IJniC7gWHY8kdscVyZbmwJVZ/HY\nF1BKcEcYb15JB79s1U30SVUbr6bS3uLOGN9RtlZzsM9yJSB37Ki7c8VouDJfG6tbuBIQpDidkOFP\nYc/l3796Kyrujzl1bfJSzwXlypxhwImDAjBwc/p+tbrSO41PTktJmh8K3heWEQmMSH/8uxPP3Nbc\ntWjCjToex0m7sVe7lRNpi3xyk5TfnlVZcgHGf/Fc/WV1adf3lcWHgxSuR4nfc3c59/P9aKab2X8b\nSK9M1W2tN0JshdSSEJnxChGeOD25zXcSLTLqB5zaqZ7efZIGZgvly2PLGe2KNNbC2qOfq3ixWdq9\nnbxtGGO6TPZv74rG0KX9wi2iRQFgoeMzZJfB7ZHGcHj3pF0RrdHUsrfTkWW91a93xxlURUIdnYgg\ng9sYxWqK8mC2kwtppYgrRQNc3BwqnJIABG0d+e3esO30ajUf5LdS11JoHjuLT5gRLhQ1z/ERewA+\nrJxjzrjHUuBKlubY4LDh8H7HPp70UPIk1dG+21aK8uDbvPc28XgExkyn6SeDyTgKe3NdLTjp9+EN\nh1XDbLbQFpIr2RsHcDkJlME+1Gq8Fi1LRydN1LUZTNHLrNr4YTCiaTafqBY4yO45B/SufJLNap8z\nJbwul2QIX3q4888ZJ8/MVqlZh2X+LeLp80Ci9h2S+GAVPhgrnxMn1HoBWDUNTKzxKY1IAU8ZwRge\nRAP6+tVU3RH0MdYn3iNJtkLFWcR8DA/809nf2ly7W900cIZcJKEJJOeBx2J8z7Ur4Jd9iahIobBl\ndPq28vuGM8ciurpmu6fZxvDdXUkokj5CIHBxwAM8j8iKjui9SNlt0TBp1tM2ra3aJKquXi8QyAkc\njDKOM9u/eqNY6Wl6fu7S7l8a0sbxFe3v0icxOSAcIT3I88ZrzrI26OrhUbMupw2EVzLANXlu7hH8\nNLgPkEgjIbIx5nz/ADrmwwo118pM5dVzkRsueeO2R966VoxQeoRpmmyJaWnzufCDYlKqd+fQZ474\nrVZaFqqSxSJ4phYgLcIhYgsucMvJwM98YzT9VsKO9GXU7Q6dcG2fUZHMHEbAMAPPIBAOMmpddRnU\nyg1S6crHFtxGiLkjnkKMHv3PPqaJWRqtHOTU0d3W5ed1YZx4hPcc1s0pILkXEsVq0jBNqA5bDcc4\nHoAa07iRJssu4vCtHnRpRcJkBDEQNh4JB/Ouek7LaLMWckd/pOM8edRbiWSaZZBJHLKDI8boclix\nOQf710JkAga7iubUKh2nCfUR5YwO/wDmatko0aHawX93DDeXscVuELySTNtCj0XP4s/5616Ar0de\n2tqNH0hri4kDqkEUbmTIJwX+vAHbz/4rFtuzoqcdnJm6L19pSlxYrHI7b1hS5iAXHrluOPWtVpaa\nzpEMstnDDbTA7gZIJDIycjCnbxn7/nWuVxoii47K9E6D6y6vjmbprRbi7QHMnhptUMfIscDODnv5\n16OL9n/4xzLDC/TEywJxzdwEdyc48Sr+SK0woSe0cXWembTR9Wk0jqK5TTNQt1UTow3kEqD9IiUq\nSM+bV5mXS7ZrtUsLu5uAxIy0IRmPltUtk/pRTfbLLGu0bvD6in1KJ7Gzu2mjjDHwUJbCjGSAOKuX\nU7zSri4WR5o5ljGC8ZDqe+Du7f8Amlxel2PdVnnIbx0jGAOCWIOTu9M+XrXpdGtTq1nEqJbxNvYr\niMBmxzjOc9q03TMRt6MeoadeadbC4SCVoSxXxTGTGCPLdjGayQbrj+JdAoOysVIU/byqKWmy1ujq\n6V0pqd/GtzEY1jDBFkdwMN+Rz257VuEKWenrPBqNt885C7Rb5kUBzks5I2nz/CeAKy5qTo2otI5u\nt6pfz3Pz0c6RuqC2YK5y68/Vz3HPPP6DtgT/APhE3i6gyXW5fpWGZf8A+4AgD+tbTXSM1uzaNelb\nTre1kuJWtkOTbl+HG4kjPkea69leWN5IRZWlrZI0O1jJctujJ7lBu+rAx5Z965v6Np32aNM0TTbj\nVIVXUY9RYB8wglcjBG5iDnAOOPtXNu7O1ueoLiwutQj07T2KqzLEzDaP9OASTkDk9+fYFCXlosoq\nK0zuX/8A9N7O3eGwt4NTaNVPacSytz3J2hQO5x3B9a4y6ZPeC6ls9HsoogdqRojsVzkYG7J7HOWx\n/tV5OrbM8U3UUa7GC303Ka5Y+HA7qzrFGCNg79+Cea09QdT6H4dpcaRbvDA8LIJFVY2DKo2g4J3e\nYPHGan7SOjqCvyeY/fF1fWVuNRDzQrMU8QgjPc4LfrW3RIdW1drpdD0mYKwX8JJVQPUnj9a3SSo5\ncm2mdS56ZiQRS6zqWpJL4IZlt7NGMZHYFvE+oA8cD9K8ldazdwxvYouItzKHaEB2XyyT2/KkdiWi\nWt7A2nCDZFJMJlc7gc48x3wQcDsM0JJ5LbEseTnuAo4P5fnST3Rm6MUt7DMQfqGe5J4z+VVpIo+v\nD88kEf71pWlsnk3aNavKJmeFSsYMjb5Nh2+3r+taZ7y61OZQipCsUefwkrgDue5ye33xR1dlTdUv\nJunlFtYC2sb2GaRY/FkYZBIPcYJ7j7VwHucxPNJNgocLE3mcj+mM1Et2JapHonFk1myw2PyszQmS\nOSW4BzjGQBwc8+dILyxgsLTT5kfxVkEz7GyQM/8AHOKypPpmteDN1Td2s9037st5Xgt1UtPJu3c8\n49AOeOK5lvqMtxHt3LlXDAsRny457jitdLZmT2dPWdQWVoPpwYOMsCp7DjgD0+9bINZfdczSXHys\nONzZLMwbOPI9uft2rF2aTqR52XfNPKkM3jq+clVOSoOeB/WnttQltJpRcRRlHjCgOo45HbzBrona\nMXuzq3N6un28mkRXzStcFdoiP0hj3H28qputa+etG063tBCERWuGVR9WOMk/3zWavaNXWjkmPTli\n8TdcxTRyiNkEeV7ZznI574Ht3ruaZcabqdq0MGLDU1Zpt7ElZAPfOM8+nlVbbWzMdaM9jq1nHPMm\noW3zBAKbRJgKSeTx3FYXjnHita27szMuShPGQcDGfesQbTpl7M0eoPBE1qyLncVdmG4YPlx5jnmt\nVpcRzpKHtmkD/wDa8ItkAZyQO3oeRXR9aIjNZXK21+Lo3j2/GMhSSTjy5rbPqDtdrFd3Ek0fh4DK\nxBBIzzkeXY1GgnSLoLODU3k1X55IbdHEGyWT61+ng8+pzVhu7qLT/ldTi8SBQTbsHRimT5dzg59v\nOo3eixjXuMNrqOpabB4kVwIZZHaHwskNjHJIPlzjPrWZp7iZdsjRAQ8qjZPOecAZ5+/FVUuiPaOi\n3Ud09lJY2dgkcbFWcQswHbBJHYZrmyJJlpJJdo2gqO5zj9DUbSY70abe6hlaAXqRfLhNq7Xwdx8j\n9z39qbVbO0ttSNrbTAxnOzwyGHvwCarlXQq1Rmu5RHEtlbBpEIDTBowrB/QHk45rPLeR6dbgKN0r\nrgBsMBng1OV6+TLVHttM6m6T1iztrZtRG502LZfM7WYsqnGdu4kEngnjP5l73TXu7OHTZ9GFvPAJ\nDGs8uyRI88MFGCwOT+IngcV5Y5FR6GrZpt7Fum2s9bvVilhszhle2aLxBjkZHAOPOupY9YdEPf3G\nqXnQtkInXMDpsZ3J/EWycA98Ec0alP8AV0WSimrPK3UOkdTdRbUsLqyiMe5Vjjab6gSQSTyTyB+V\na59GuYC7Txas/wBR2u0RUbR2zx5/8VZXdMzGKS0La2F6UXU5dDu7hgQkaTwiTeD3baynjHnVE+h6\nvc3iahZdNojR/QBFEqefmq455x2zVi3WmVqu0fQbe0ttQsrODVraSMpGkfhTxkLFsXAwNnYdgR+t\nXR6do+nwvFbfutWkBUqLPe57jK5Ule55BH9KmzWvA37rAgLGSdwBwiW0xP5ZIFY7yaO0WC3sdKt4\nyGDySTWLSlx6YkJUHy4rnDBCD9qo6PLOSps22vUiPC1vddE6FcTq7bZUsIoSoPG1gBgn+tca5sOn\nLn6xZm3ac7WWydIovfiReCPaukaiYlFSORrnTehyfVaajOkgAXcSr49fTOB510tE0rpPSbcwzTXz\n3DSeEZyiEhsZ+n6vpz+vlWuVqiKLTsTUNN6ZluHkS8upJEkSN4vCJwTgcBSScdyRke9dO4sbvTlF\nradTpbxELtSO2LSBAckBmbAzkeVLVpM3Lk10e66b6ytNE0901KeS7TeG8ZDEpUbRwVBAHI8vWunY\nfFrQNRvbmwsbK8k+XiWUSuFRJAcZUZOdwz2qcl8j8cqs/L2szSza1fyrI67rqU7WPK/Ufy86HSV5\nBF1NYS3s7RwiYF3UZIX7etejtaOS8We9vevv3dqdxHpcMvgq2yOQS+GzJxgkbSRnvjPnRh1LS9ft\njPqdm7OLh8Y+s4IGOTjd/tXlhj4y5eT0TdwpmtulfhqsEl3Jb6mZyRsijbac+xGVA+5rr9CdMaDB\nMl1aafI6xllWO6Kylc4ywIUc+Xau05NROGPGuR67UNNW4vka704Nax42GTdjOOQRnBGQveuYbXQS\nksF3YWvgwM/y6PGuyNjnLLwcHz4rhGdrTO04Utng9Wtbq76kuZNLt7ZbULGluNy7ZCFBOFI55J8h\n964xk1jStUn36THcs0YzDGq7RxgceWfPzzXXTZxap7OppSXOsX8dhqPTkWnrKh3O9oT4a84IzyfO\nurc/CJJnRbLVGVGHea1lA/I4rEpuD+jUYKSss/8AobcTxi4bUVaCM5llEDDGD5Z4H5+3eub1H0Bb\nWNrHc6p1NPEkDCG2c2ZKg4BADZAzj+3tT8/wg8Pyzzw0QXer29toXUweSTInnvLlLcJjHmW5HsCT\nX1OHoXpO16ckXqj4im/hQBpobSeMZZiuPJmIB/5rcpN1okMfK7ejy15oHT8GpjTui7q6uC7HfNMy\n+AgAOf4gH8Q8eS4989+Z1CuodKrC0sKyNO2d0BJUgerYHNc5Rk3XydlNY1rwY9RWa6tTqNpnUI41\nIkELbzH5jcF/OvL6lrtuyPDDEmZVKkPGv0E+YyOD9q6404o5ZZJuxLFP3ctnNfP4cE8iuHA3dl8h\nnGRnz9a7E3UCR2qfuu7uZgZy7JIQEdAv05UYIO7PHbgV1kzivacptcvLuaJ5oZYzGngqfGIBQc7c\ndgPtxVt29lPYLDpenyyyh9p8TJfbjJYkHA9Me2az5HZy7SMLJOVtVBVcZdu3f18+KqtvmLosturg\nhTgKeMeeavJdtmK8DNaTq4guQY3R8FAuSD2wRxXY1HXZ5bL93tZWyXED7BIbb68A/hOSe32qWjUd\nHMvru4vrk+FGsRJyyZ2KOOcAnAHFV6ZdX1rfCVZ5o442UymKTDbdw7ZPOK0mqI7u0btPt72/1aK8\ntLa7u41O6ZooWJ5PIbAOe/PrXei0dbq4ma66Z+WijmRSzW1w2VIOSSSSAMZ5rDmlqzcYt+DLqtxo\ns+pF7QN4NtF9AKHax9B54Pqay6bLZTTTaxqizxPHnwWgCgF8HOQ3cfnUUn2g1bOJc3dxdTyXc2ov\nJLL9Lq/JIHvnntT20MAubV498S5HiMDnz5ZQfbyz5V0UjNWei1yVLuEtJqTyAzFgcsBgDGTkkE4A\nGazaNcy2VyHDW8sWxt2Txj14FcHLZtrdsqvNYsEujerp4jkd9zqC0ZKexGBzzg4rBcXPzdxO1nYn\nwY18UgMW2rxk5PP51ab2zD93RTbXFoHlNxbzbiqm3kySyuCD6gY7jnPfzq7V21PS7qV5bS4t7e42\nSoMEKTjJ59ATXS+kTaOdZIrslzcIwe4kZVjYFUI/1A+x4rpXC6ckFotvfRKiq3zBk3Ebgc87RkA9\ngMVXLeglqxY7vRLmcxW+m/JESANcR75FC9jnLdifbPFNLdXMYubWKYRsP4bOrhgPzHce4rlO002a\nWto5k+n6jDbLNPFsicAqQysWHYnAORyDVK6ndafA1rCY2JbcGKAsvBBGT2rupKWkY3HY8cxtgBJt\ndmXeBjdjPIrpWFxaNB4kxQSZGfFbarDOMHHIrL7tBLZ07vTtb8F1ihtPDZh/EjnjYYycfVnAx7nN\nYNP6n1Eadc6Yl8I7eP6xGWCqzEqOQOGP0g59qVaN3TTKdNt+obmVbmztTdBzhCqbwSOeBjjyrX09\n1LcaHf3st7aiaQSkyRlvDlTyJHGR6GlLpGdvs5+odWabfTy3kGk/LyGf8EchEJTHA2HJDZBP4scn\niuhBY2euW8N9b3BTZl7oNuCRrznOE4JwAME9/ao047KmpaMF3c6Na2qSKrq77pI4g5I4yFOe4PHn\nQuOqLq/jR7HTxAIkUSOqtJnHYsWz9WMcjFKclsai9A6fu7rU9VVpNPhuFEbAhyypnBxlsg5z71Vr\n+j39lLFO9r4PjLuSPk7RnPf2B+9XUWjP7Kz8+6Nq82nXgmjcnwxuDOAcDHlmvbXvXK66z6tq2uLA\nFt2h8O1QrMMnIYluG55OTnjvyK8ji7tHVGSX4gaxrmhTxya1qUaQzpIkborLKxXaS0hO7ug4wR3r\n6F8J+q9W6q6gsNA6s1u1sbELI8E0VnEPFdQxySUI4HmcYBHIIFYneOLo6QSnKn5Pvd71b0V05pt9\nDL1JEt0BJHFuwrl4x9RQKcHJYDJB5HFc9db1iSxMSLLaX80SS2i3tz4RlTJJY5ZQBgHyrOCTy7kj\npKXFUjfY3t03TF/rurahbzQQNsEltctJGF80Yk8nJAwOOalhrFveaZBqGlabHch1YqfE8M88fizg\nFTn/AM12rgrbJy/I6XZwurrfqXUNFkhsHBlaQNJEkrF2UejE8n7YrTpmralF0/bWWsWFvFc28S73\ne5ZZdnI3kAEHjHn5VqMotKmZlGSk7WjYnVNnFEslnrE8hDGNk5APow+r7Z/Otov9PvkEh3TzFRwZ\nicf19asvbslOTpCoYzZyC5LWaBXLADcSApKncct3xxmsCW1qWjuoXnMcbYCNFJ4b49ew+o+vtXNy\ncna6OkfYqZRcFZ51d7W5s2lU7UgZYlxyeRhs8Y866EMVjMt9CnUV14+lzxTSl3Rld2UlcZwGYEY5\n8zinigpuJ5abr/pIWnzgnu570l90T2sSKwwSMle2TjnvXkrn4gaxcBUhnmtI1BURwTMFwSe4zyee\n9aWJNe5GJ55NVFnc074nwjS0sdUs5LmSFdvieIP4gB43ZBx5dvSurbfE7p7wY4pbS7gKMp224i25\nz3BwD/b7+dFDjpB5eXZ46+lnnvp7kQyFJZXdWYfiyeDzWfTJJ7HUobxokAjfcBOgKt7bSPq+2K9U\nejj8M6d1fPNO7ygAlvqwmB+gxivcdJW8EuhtM8ZaUXJwA+OPo8s+hNcZNx6PSlaPT6taRz6c+m6c\n+JxIrKjzHA45z+ten0nqCPTorK2mtWl8C1SORzOdu4AA8E89vMceXnXNvnEkVxbs6MmvaTeWf8G8\ntPHYk+GHIfPkBnBH6eX518317Ury3txPp+jT3CTMROUtzxjyPHPc1iMLNNpbY2g6Fq3VDvawx6hD\nDH9bwxOkEhJx2LDIByOwwa6v7guummmt7Oyv49h/iKGMjsSM5Zl47/2PpXX6OTVM860mqXeovcR2\ndxbywqTG3huJCQCc89ufT1NdbQ9V1636Ymlu7m7hnlWE72eTcWfAY4J78ngAVmXwemMVxR5XX+pN\nd0rNhpeu3ty+1mVX3/iYclRuPv8A1zmubc9Pda6+IGnRY3KKuzOxQdoyxJ4yQMn3JHtXSoVbPNkc\nps9dpPRuladoKPq/U2kWbxuTO95p8sgVicAhgp75AHH8tV9WdM6bPaWw0bWNO1SKWRZZHsLTw/Bi\nLoq5ZgDzu8gfcVl5KfWiqGj0g0zpQJc79QntILRzbPKZdu08fRk9yQcYx65rwmg6tqet2EukWHzT\nz3MnhbGjyI1ckBi4wFHHf1rOPJJq5FkqaSN1poPxf6dRodE0e2Bk2qJHe3LE98YLfcfavm2t6Trt\nrqEh1oL880zxyxB97q42nLEZBzuHYnsc4rpDLB/q9nOcZpbRpvtV1eeLTRLaGNrAjwgkW3P4cH3P\n016+bUeieoryOXUOnZ7GWYKryw3nhqrAYDYKY74JHn61vxswt9nk7az1vWb2a7tbaWR5OchTgfb9\nK0XJ1jSpblVD2kyReKyFSGYehz3x3/KsOKux1sBm6ovbNQjMtolt4ki7lUOjnG7b3bnjgVRb2N/8\ntDpUTTQeJM02ZkKIPpALepwB/wCKNqqK7megsbZdHjW7u7mG+hgd1jeMgnxBhjlWHfbnBPHeuFqc\nt5qWsvNb231XDEosaY35OQAoHb+nFIvkg1So369bXehQ2Ol3lpBEzu00p8L+Ix4H1NnJAGRxjzrv\nWVhoV70oNJtNCSbXpWkMLqkpdo+Tv2g8naO31AcmubmooqjcqYvTdh8RtOiuNCs+mtQhtrMNf3hW\n3KPHBwGYs2Nq/QORyMe1c/Wj1vNPPda1c31v+8f48MHiP4Lq3YJjgqF/LkVisfK32dFPJx4rpGTT\n9B1LUZIrO0d3vC6KsYjY4Tscgc8dz719D+Jhm0fp2SwjsbeO7bZHJ/8Aw1bcofPaSuBwPJs8/eq5\nR8GYUu/g+WQ6DqSWkWrzx25iZ2ikHjx+KCvbcgO7HvjHvXrdAsYUjguLW8cvbIwAmQgxgg7kADY2\nHceTz9vPMsqXTLhinL3FPUunSg2yxeACPE8WVZCUK5G0YJyPP/evL6rpEslmksbRwbJGE7KfxggY\nx5Ht29644syeSxmh720Lq3TzWaLMt015DFGgaQwlAmfwqc4zx6VzLGS+sxObS7lhgmjMU/hkjKZ4\nDeWDXsc7s4tcWZ2jvNTu2ttNspJmc5EcSElV9gPIV6Fukda1SwkNjpeq3T2I/wDVNNGV8L6QcAZ9\nP1ra0thK2cO+0rVLSKGXULWe1hkDJFIRjOO45+9YLdLvUbI6fbQbpWk8gSzADhQBz5MT+XpWovX8\nEaa7Nc/SuvwwtcW0N3eNAQJ/BglPhZGQTle2KOk3liLd7a91e6t5N+6ELFvwffnz4qyqgqtWWPqe\nqWV5JZvA8eED+GwK5JHcA/etcP8A01daWHOkn5yKTEpMxAceuT29MAVzpwSo0km+LONZvZXF5IHg\nMSH6VJclVyeP0zVJmYTNFLFu8NgpIH6YHc1YXb5Mzo9LZ65OmlW0oto9k0vy05EuZQvkNnBxjt3r\nzqXlxHPcxRWUJikQooeFCQM9+eQfsa0qT7I3pG/UIbjSILW3k1O2vEuEEwW0aQ+HzjDBlXDfb9ar\naWO3uFi1cSRyT7cSCPdIFI8gSAR271Uk+i3SpnO1PTIbNZJhcoRHP4Sx4xIcZyWB/Dj0rdGt9o+l\nwyPFbSxao2YP4qSPx3+hSSuc45A9qqdoOPCSK7IWeqXyWt7GqHO4kcfSPI+nGftV8X7zt9OvNJto\nVELTGV9h3AcfTjzwOealuqZat8kZOmeo+otChuptFvZ4oJGCTlAGUnnGQQR61s1LRuoXRLxNMuFR\nsIWjJl+vt5Zx9qS/azCuqPzQGjBaOJxsIwdxqyERRBJ1WOYDIZXJwf0NcDqhJbqVnCBmDcqF29hn\nPHtWywvb+yT5r5gr4Z2gb9rEnPbz/OjVqmDT85cXjmeO5Z24Ufy5Pvk9vf3r9HfCfUtH+IGhxdO6\npNqPzWjRfSxmLKyOeTkjjyAB9yM84iSiajtOJ9Ksui9Kg0q40dXvJLadtzRtcAJxjB27e+RnPeul\npOhRaNZpYaVLKiJwAzhhyef5a5z9ypm8b/G7RuutEvZgD84UcqBkRg447jJxmvLSfCu4urueay6q\nuFeRSJhLErsS3fOG4BwP0rWNcBlk57OJr/w11bp6z8eDUn1CUt9MKW5DYyMngmqbPVdR0TQJhe28\n6XXijZHKSMqceXp3/SvRXJHNSrs2v1BcmBXMSu4POXBUk5PYk8fSawTSajqFvLeXmoQQW8Y7PJtG\nT2UDk55HlSKjBUhKTk7Y+v8AWOif9Ira22rSHW1kSDwEUMgjCgFhJnHljAB796+eTazeKzMblssx\nLDuGz5EdiK5wg1+xrJkUmuPg58tyNmSBg99vaq/mGyuGY59Oa9CWjgK0rCRo95PODWuCdkuFYRq+\nz+QjI/OjQ8ndTXStrsghgSSMcnJJbPHmT2z5elei6biXedTNnb3W6ECJSy5DAclg3sDXNypHTtl/\nTuva/qeuPpD2/iyTsPCRI8+CAOQowcjYM4wewI9a9xptjpS6jLY3+pWZvomUmOSKXIGckj6OOcDy\nrhktaR3xO42+z6bo8sWhNLcadGkckzzOzQgBnCgYBLHn+nAHtXVfqea1hmeK4tZDK3i/UB9Ttjtx\nx9q86k10dOKfZG6ol0+SX/0tk8c00hZyGLq+0bQAF8zgd/OuNrWoxJbSTGzLObiBt0kshGWVmzsY\n7RyMccVVNt7JwSWjq6PqlzLrlp85fo7z2pcg27I8m0vklmY9sr5elcfqfV9Su4J9G03VPBmS6uPE\nCfwwi7h4ZYqTzjdz3+1ex1RwjfI8gbXWNOsbgOZJp5FcG4RvEcM2cOM5J5I4x5fnXJmsdZmgig1i\n6kYoB/EMYQyHOffnj1HFcXBPaOym+WxtG6WhUT6mYbuSC1dYpZprkKzbgNqKxBzgjPA88V0Z9Q1W\nG3mbSbJb9mgAjiYtI0gC99ylcd/IVmTbaUjcOMU2cXry/wCrNeWTTtP+HGpW6PBEDst5XBcEFiOC\ncdxXP0yBINUjs9Q6NvNNtILMS5ksGUtNjlCZONu4kAk54/Ku0YqCpM88p8pdC/8ASl0kL6ve6Bqd\n94isyJZWhZEO0bQTt4Gcc8n719Y+AVn0Nr+i6lpuuWK6dHtE15807BpZF/AmxjyFbeQByefOo5Jr\nXgqjXZ7nrHQ59J0ubqmHVdMj0dGR/EgLSqHUhCd7YO7IOST3zxXwHqrqjpc9Q6RqdzZM1ruZnC4j\n8cZ5LEDufy4z28pCn0iyVbZ6DWPiV0DoQj03pXpqz1ZjPJHLNKA67izDK5JJHCkHtg+5rxGmdIX/\nAFFY6nq0Wo2RNoBu8efBiJzglRgt24/3qTlwpzJxc5cYm3SOhdR01zf3evltRGJI5IhKqgZyCMp7\nfavUWvwJ6u1DULPXtV1bR9Vl1aIytFdLdOXVo1wW2Ybd9XYHjHn2rGT1GOElaNLBOSo9BH8FJ7YF\nT0t0qZ7cAfTLqI44O0iVyCMeRGMiud1Z0XrfSmj6pqsvTPS8dksUcS2xnlMyrube0SKACx3AYYkD\nYPesLMpT29HT8Mo+P7nzTp/p6LqjWTpliTp9rK73Ra4JKwx4zgkcnAHcYzj9Puui/Bf4a2mnSX0X\nVF081om2WeQoFjYRlmwGjJVT+ZA4zzW5S/pvZyhhaj+V/rdHzvRekoPjTbt8jJa2d3o4FrLHczuF\nZC5ZTGMNtGS2V4HPvW7U9P6e+G+ep+m+vLG91LQYHgsh8woaKYiVShRg+4jdwM45PIxXjm8spcYt\nV8fyVR/+StGHoO2+JPWOhalq95Fqmo2upWclktxEQ5EqggB8HOApfIOCeMVd/wBK/EC+ki6bvdN1\nG7k0a1KReODDHDCrfxEV32jcGI+nJP6VM+PjFqKqvJqM5ZF82d/oC86k6d6j/f3/AE5rUdwo+WtZ\nI7TxYX8UEM8r+SjjkZ9fLnV1T0i3V62fSw1WfRvlHdGe4a58JsHCgthogpySpGDyQc8Vyw+nWCMf\nyK5fP/n8msd/jcLo+eax8OtRs9QbTunGutSsrZR411HGdhuACXRQwUkA4w2ORyM12eg/h3p1zpmo\nX/Vepz2WoQSxwQ2BjVzMHzh8Ejj8+9ehbtV3/wAnL8LjPfQfinpNtDpumWNhqUN1HB/CCR2SQsEB\nI3PIp+rLkj6snI44FcLprStBg6j0e36lkigsluYpL1PD8VpYA67xt4OCqsCRk+3aumJcoNpf8Gsu\nNxlx+j65qGtfA/VNOk+f6RiWSOSODEVrJGjRKjYY7LkBsbIwMnjPnzjyt3H+za+ojSodFmVbq1WX\ncnzIHiBN2z/vn+bI7Y47+dE8kPHZqUMV7ZVZat8B+j7GXqbS9IuINSjeeC3RHMgmCqMbtxcAsxwM\n8/SSMcV5rr/V+hNb0kR9PaG1jqcaLdRTQwpFAUfaNj4QOz9gBjAz3711UcrlbYvFjVLs+b9W61eQ\ntZaNqIuVuI4fGeCWExPCSoyuCoJPB7j9a5MHVa2TRSWkt5atC5dGWTEkeRjhu3rjjzr0JUzy3b2d\nbX/iP1Fr7fNy63fCUwiJ8TlgyKTtB5z5nvnvXC0G3iu7hEgtxNOPrZcj8Pn37fcc0l7VoTfJpHo5\nbK7v0v8ASdDMXhzBJHGoMxnibyCuoww+nPIB5xgefl5LLWrQyrclWQyNbM8A+kyKPqU9jnGO4qxk\nmthxZ1J7npSPRbe1v7jUbWa3UIQsImdpDktwzKFXOOOTz713h0zY32hxX9rezW0bQhjG1jCzysF7\nB1YEE8E8HGec0l8sRinryczovp7V+ovmodKvYLeS0ZHHjzbcnnBGAeRj+1bP+kdEjje51h9TS6k3\nyMIBhU2ttbkg5zyc+eR96J0SEOSp9HLaS70nWmbTraa5S1fcu628SPaVHBJGOQeeK72nWPTPWNvL\nqd/b2em6jYS5aBJkiE4I4IEjBRg9wABx71pyfaKkuVeDzcVv09d2V/FrN7c2d8JM7Y2EiSNk/UB5\n8nyPn6V5t4vCkjkhvJN8B/hIy5PtjyoptGZRT2dPS7uXVLB7K0iiS4tY2/iyZJIYnPl38sn1qi9u\nNct7FotReZbeQ/XsbjHH5eQq9OhdrRRbXi2Mfy2k6m8cdztkmRwPxLnAz5jk/fNeb6k+IHU97c/J\nT6jIiwSfw1h+g/TwpOO/YVibtWag66PnMcUSx+MEiXwwMLJgKW44z3yRn8/MVgg1PapgS3jUl8g+\nEvYe/nWVtAW6XO2dSqsMAgfb2/OrFeFlUSbRuHP3qeAdbRry10+VZTArFG3BWBIJ9Cc5HGe3tX0r\nor4p6J0xpzodPmW9LBFkWRuY852nbjOD6iuOSMm9OjUZcfB7jRPjBfy6Xf6g0oea4uv/AEyMT/Di\nPljsexqyP4w6580cBRAGJRTyQuMAE+eO9XHhn22HmWkkaLb4waul6s9w5MIiZdiYByQPbjlc/mam\ng/EHqS/63FzYXggfUJgPDYjYQF2qpzxgCunBx7Ip8mlWz2nVt717f6RKsWnNvVgJrqKdFRVHJAOR\nj0+3nXyqLXr9dTa41cSXhw67ZJMjdtIDA4PAJB49O4zmukG2t+CSpS0ez6ftdT1yyYSaekUZOQRH\nJuII7j68ngnvxW28+HmhzIj3Nzq0I8/pXB/UV5snqeEtbPfh9A8sFKUqfwYT8Len1bcur6hnP0lr\ndDgf/uqqT4W6NKp3dQ3wfH/+ih/r4orP+N3tHT/2mXakihvhVpLfwx1Vdhu4U6cvI/8A+1Z734VK\nq40zqAzzD+Sa18EH8w7f2rovXRumjD/9LyVfJHitc0i/0S/e2vrcxFzuTkEMM4yCKWCTG9VUEtkn\nPpXscuUVJHzJRcJOL7Rb4o2rsQjJ5JPevW6f19qFh0wvTlg7QRSeItyAARMrHzPBB5x3IxisNWip\n0crQNVvdP12C/spEjmhYyKZCwUcEffzrtr1HqEesT9Qx3MyXUgYSESEAKy49ckex/wDFSSUmVSdH\nRj+JnUtkxMOoNKrW5gHijdtypG7nu3Pf2r3vRPXPVN5p9vYTWLTRBQGupZVj+kdtuApOOB39a8mZ\nQxrZ7PTRyeonwirOnrmsTXO0MLiNBdeKjb3Ylsggck+a+X5VXeTa8xuNUvLa7EQMSMGhcIu3hOce\njfnketeeOR6fg9+X0uLGqlL3Hida6o6n6i6iF1bWEtugBtY44YZGQJn/ALeB3ye/rXrum9Q1LTb6\nyutX6h0JIpZEM0JjmMmTyVJKlRwxBOe5PNemc1wp7f0fNxK5X4PV3HXfSshk8SbRERlG1JVlUglu\nQx4H4SBx5+1E9R9GC2lvlt9Kkt4RJK7Q3rAiPIVGwG/1kKfvx6V5OOeO7Z6uWK9/9Tpa5c9MwdFa\nxqE9rHby6ciNgTtKu8hcAHPP1Ej9O3ld8FbfVLXTJ+oNUhWKz1CK2FmVVwhA379zEcc7PP1rcJzl\nCVvaJOMIzS8NHtNVu76PWjNpOvSPC0TApLpysgzHj6GKkkq+05JwQWGPM+Aventav7+z0n992pfx\nBJHLcROjo5PfcTwMk/h9+OBW+TcaumSHGM7as5uuz9R9M6lN03H1AuyzKpGk5MayyLk/w1w2V+nI\nY4yDnFeLh1u9utSddQFtEsTAkyOjb2O7ktIyjy/+amDEpS5Wej1Ob8eFxUO132e16m+J2kyfC/8A\n+mqQl55bZboTRbSgPzeQgCFhnGTkHHpXhNHXRb20XTtWsHmWBQIzvZVV27gbCCX448geeR39GNOK\na+zwe2TS+j6h8NfhL0v1VpcmpLO2mbbpoooZLdwrlMOQ8nfZggYBDd/TNfUdLg0noqDULbSLzQAq\nMHu5BOoMe1QFPEYCAKPIDPJ968+TPyfFHRYuH7I8N1D8XIddhvri91TSNRhvNGLWRhh3LbMpwDh+\nTJsEjY4wSD5ZrN0s+s9D9PaXqHQ/Ul3rd9ds/i313vAgg+nw8Rs7qAQSuMHO0epxzknJKK/3Nc1D\n3Lr4+T6R0x13quvaVpsJ6XW61fT8JqPgXlvFlTN/DmCOx3LhH3NgZLNtOQceC+NmvW/VEWn6fpuq\n2iWbM6Xby3MSRrMFP0Bl+k8p3zngDNcU8j9RFy/T/wCjvilB4JWvcv8Ak8501bdL9Oa6s+p9RdLT\nXM9igtbRNQVEaRyozISjKAULYweTjjHI9r1w8dhFq2nRroNn8xahYUuriMFyT9fiKqg42gYIbntj\nmvbNRlvyeSLk1w8d0fka76s1LSOp75tE1BbQwzyKi2cjohBPIHZsc8Z5r6d8M9M1Dpq6n13W+nr2\n21G+jc2Es0DMHkwSW+rJHbkn15xzW4Yo4/d8nnlyl7UbfjJ8Wn0bpV9E0WSZbjXb1w08iPHIlrGi\n7gFIGCzuwz3wpHnXh+sPj4+s9A2WgW9ui3jWaW086qqnCnaR27sqjJ/9xro4ctFWRw/lI63QnxQ0\n9+gk0FtKvp9Vs7aSSORYfGAUONjHnju/PGAoHpSRfHDSms5bHqLpcQeBcRQu9vK/iOobLsYydpO0\nY9MnjFR4k22ajmcYqhND+M83VHVb6VpfSdpYWUrM8KW6sXh2xsA58txOOQB3Irj6tqGnX/V9zD1f\nd6jp0EUKpbFRxuUe4zhjk5x+ted4+OWl5Vnb8nPHe6swat1lrdrYw6FpNxLNBfxQ/OQCH8UgwQrH\nkscjk8c+QzitHUVxd2+k290RtvpVELBGLMByCAB65xz6mvXxUU+Pk87yOT34NOp6h1PovTkNpcaZ\nYILeMeB4agupJG4Nsbhuc4IPnXh9KMFxdQXNzq9xZLEkzTrC4jljAXP07iM53YxnOM8VUl2yTS0l\no9vB8Kr270bWJtV6kn0/T9JT52KHUG8NowQTuZRu78jjkn0r3sHx/wCodB0DTenX0bTruKTTozHJ\nbsu2WIrtDFycgnHIxnPueMSm5KjWOCVSf/nR8Ut5dU1rqqTWoFSO4gZzKfEDRJCwKbACcngkdyce\nXFPN8KOsdVt/3loOnx3dtuZBKtwgDbe/DEdsH9K6rVGGuTb82ed0PQtWu5J54Li3iFm22VZX/EQe\nwA4IzXoum7e80/UZtZ1XpXVZdNkRlEtkhgXaP5lkZGXsM+talVHJRa2ed1rVtMuL17zRFuIrWMqf\n/UOryI2ewIxkcelU6Brk9tNPBKgnhnffIduTGScbx781FH20w5btHptQ0Sxvi0EOoM1wqgw+IhXx\nPXnke3fjiieqtW0GKO3vFiaUSfVbiLDCLAwcg47kgDHl9qlclSOlcdnV/fUGj6Hcano1pcWGqTMj\nfLvGribOTnBB4GTwMH+tczTPiNqGk9PzWWoESXzOxRpoQXXLZJyfLkjB/LtWFHkn8muXFoOlfEGH\nqC/g0/V9HyFjZTdWrES5GTnb+EjyPGffyru650BoV/pMl90RrL6jqayb3tnmG7aTydpA4GRW1Fx7\nZnk5dnA6y/eXSmkQx6rYWccrRIFMcagGTHfcBkH1FfLW1/qCeaOY6jIy25/hr4mRHnsFHpx6Vzq3\n30anVKlWj03TvUPTe4p1bZao0qvuMlvMhVhzn6WHPl/NWyx6j0See+sNI0yORbhtlu966gxgnsSc\nJ69+2e5rX5X0cqrZ4jV760vrsxJcm3ESFcAExl8+oziuO7FY/DtmT6hyV5LfnWG77NJM8ct0SQsk\nauCGGDyBkentVYuHlZpSy5YkHAwOPLFdKIW/wmiUb8nPY0oVM7t4B7nJyDUQCspGHBJz5dq22c5E\noZ1IU8EL6VJIp9DsnlWxtz4TKjLwO/FbIxOzBwje+Tiu8a4pnLyWi5JYZUlh2Oc16PpLp3XtV1+x\nhtLNwZLmNTJLlI0yw5du4HPJqTaitmoJuSSP0z098OfEnEvUVvp2pIoVIooZdsaqvfcn8/ccmp1l\n0vpmmW8dxJoOnxW0RLBPDLiTaQRhWztAAAwfTt5V4IZm5VZ6pwpWz0vQWs6dqenKq6Wb6cxgssjI\nNmDgkbvXI4wBwfznX9xY2a2MsGnJYT3EjWsEUpjEUzuRgsVOQQAcH3o1CMqLcmk0cOH9z6femDqW\nxlbU0gjjn8FUKBVJaMAMSPwtzg85rCeoel7K7jtb1rDFw4FuJreNSVAOcnYQTyv+dzjz2bjNxpJn\niviLe6Iscmr6ZqUFrc2SRxS28QVS24HC42DBzz+vavGab1jeSyR61LaWkgW4JlC2/wBCA7QDwB5Z\nwM9xmukMacbZl5pp1eji/Eq7k1W506/GGM1vklF2jLOTgDJx9smvOi2KIwDfxSeQGGACa9N1FI8k\nv2AYbpmEezdGG4IIxivU2un6fHYLILgEMhkJT6WDZPHHnwKzKUUhSZwr2K8hud7ztI0ox9THPsO/\nNaCtyU2r9Kj8ZY8fbmp+RUmSmel6G0a7vNat9Sm0e8vNPiWYOEgdozL4TeGNwBAO8pya9RqGk618\n4o1vUpbMv9UcFuN21OMEkMCCeTzXlzuLdtWfQ9HzmvxwlVnIh63NhruotqlzfNbCFoEEMqLJleEb\nLKwz3JwBnJ5Ga+onrCa+6XXRn1DUEguPCZppIVklk28jksvf6c//AI+XNebLgqNRWmenHL/FKUZz\n3/B8x656hMFpZWNh1DdXEQmed0aLwwh4GeHbcccZ4/rVx1K0t0ttEbWpZne3abc6FQME5GCTwVUc\neorpgxrDiUUjyfh4ylFSuq/ucfRvinrHTq6nb6VfTRC7VYyVkIUqD+Igd2wTzWLqP4idT9SafDou\npaxdXEJn8VUkkLgsRjP9f612WFqds4/mk48T610hcaIvTel2mpaRq1xJC5eUyLHPGZBkKVBdMBcM\nBkHv3r6DY/GKJ7+2s7vU9UmClc2s8CMWyvAI8Q4wSD+XnUuMNLyd3Lk7kdu8+LXS9/a+F+8r2xnk\nQFZl04uyKexAIYeXmDXndG1roiCa5u4uvdTvLucby11p0srAgHB+pMcAduBxVatCLV0mfIeuOvNK\nu9ftNWu+or7UjaXjkmaMJIYtoG0IG2xjk4AHmc47VVZa3HrfUcs8VpIIYbhZTEknhFVCOqjI4Hfn\n17ZrotK0jnKbb4vo4WqapqK9RWs+p6lHGBatEz7hjYN2AQp7n2PfmvtvQ0+lv0pbdQadramaGeOV\n7S0slmeEuzKRsGX5RVAbB/FjGeaxL2oQ/ZnG62+Jtz0/cjS9NstRkguZ5pbm0u7JrdjFKAjbFIBI\nIBGG4xkeZryV313oV1od90tpvTYs4riPElxbTlJ53UNt8QtkEYY8Y45ryyg0rgq+b/0Ojz297OF0\n7f2fR0ctzrnS8966xlrVbktDErkdyCPrBHcZGR7GvQaJ8ftXi6HPSeoaTpVzFZyNLaysZFuYm3eI\nmGU4Cq2Dt7HAGMV6eKls4qfHR53T+uOqOnL+frHS9YW4klOy/lkG9JC53bSDwTlSfy9DXN6n+OfU\n+tW11pK/IpY3aKGjitEVY/qZ/o4+glpCxIwSQOauLGpOktGfyNKmfR/gVrXTEOgW8PUeiw6o31l1\nntbZ1JZiR9TRF2AXb/P6jyxXO+NOj9TdT9TJrr9VxDRNyRRRXVz4RgLYBGMbAOO4P4R24qzgnO5d\nLo3GVQqHbOXHb6RoHScl10/Fp1xrNvKpGpyunhkBi5GWJXd+DBHJAHPPPK074prbaTCmqmAXNpIz\nwR28exVDBslSMBPxN277jWuLaMqSh4M3xD0u26rjsZej0e8uYYo2uRDEyrGHRSE9Mhg+SAM4zk54\n6ll8PejxpMEWqaReG8SJfHcGRQXwNxHOK0p0kkTipybfR86N7qEGvX9j0ha3YLIbcxwgyuY+z9hn\nBJP5Vh6lL2E1pataXVrcJFmdJv8AUWbG0YBA2he+TnPPNdYw3bOTfaXSH6f1nW9FuV1fp/VZ7DUF\nBTxYX2nYc5yR+XH/ABXp9K6pGt6g3/Xmq6nqzyBI/pYeKSpXYVZgRnjB4yfXk1mWnfk1BtKvB2Pi\nRr2kJqlvqXS9o1gYECyJcZE4nB3HOBwQGXtXnNJ6p1vWdU8dx480DrN+LOSGGODyfIcVxWNtObZX\n+1Lyehf4m3D3k9rqpjt5VVTHM6u7RPvJ3FSfqwrcDgZrgdOatH/1B+/b820kgnaWYXiqwlQ/6RgD\ndjnsPKusaxq0WTeR8Ojh/Ev4gydX9UareaK01rpl40axQSybiVRQMn88nHbmuT07dzQXUJuJpJYR\nHtwGyO5OPYfb1rFa+xOW6R7Z9d6Ytory403TL+zllTCML3cC+Dyw2c8nOBgcDjzr1mhdSz6T0rp6\nAi5lSNtwjkX6i8h2r3z/ADj/AAZrMnzVSOuJq78I8r0L1snw+6j1T/qDSre8SeJibObbIPF3qVJZ\nc9lLcZ57V0tX+Leoa1r+mDRPB0nT4LA6d8tGMQfUCGbbhsA/T64AFdk7lRw5KCb8/wD4eK1fQ7PR\nLrwNR1mwu45fqM1lIZFB5wvIXnj7c96ostKSaMvbTqgADb2yAG8l963z5aRy4u6Z7+21fVNY1u0n\n1LV55WgiMYaW5knJ88MD2BOe1cnqTVtAvkaa3SGW5Scx5RGXAyfX/OaKlGkdNrsrsdbjsLNYvlY5\nZlm8RJZFV2CbAu0ZBx2rTqMNprSRSW+jpNOE2sykKQOO4PHryPU1yjkXI3FKii2hh6NuBq7RzZ2M\nghfG05HqDkVwNe6xbV72F7e2j0yKAfUtqzDJOMtknJ9hXRV+xlx4a+Tnar17qF2nganHb36RI4tx\nMgAi3cZ45JwOMnivIiRGl3xxZLDIOcAGsX5Qbb7FW4lU/wART7necA/rQOougclyNgwNpwD+dRxT\nIedk1O5lLISdvOQfKgLq4iXwUPYZJPf8q1xRbOVGjvukd2VRhmY8+foe/wBqQkl2mCAoWO3y7+3l\nWl8EoeJojJ9ceVUEn0/pWyC3e9lZba2WQqu/Cg4VR3OPKo9A22FhYMJXvVxtjLKoB+rscA+/b296\n0250qS7TCSW8OVBQHcRgAZz5nz7DvXK2za41s+oQ6xpEemW7iyktXSRYozLIT4kezLSN6HJX2O6q\n9XljglDxIPrORgeXrTHt0Znx3xPon7POj6DrXWdxc9SWCTW1lYvcL4qZRX8RFDY9gx/vX6hKaCdP\nmh0vUbqOPCpIYZGIUbsAYbjzP9axmlJZKR1xwTgjztrp3TlhdSalZ6jf20tnEFdiuBjAycEHk4yf\nzxgcUupdbdMXMCRXXxCmg3koBFhHzj1UA+YwfWvPxd3R1cr1Z6zQoNMtrR4W6huJ4ool8WeaZyWD\nklWLOcfysOPXmvz98dOtNP1DXNJHT9+Lq2tEDrIVCN4hO0gnAxgRr+pPnXTHblTRzzOkjBr/AMRJ\nlsYJbIq8syj6uQFPqB9/WvM9S6zZ9Vy6NZF2jnEnhzhGAZSdig5YgeR7nHqa9MVxOM5ctGTV+ntN\n0m/msrO5kv3uRLEkcrqXEivkNlMqQBgHDckNwBXnDrtnpzPGbxFWAgShPI+QwPPNSck9GWnWjVN1\nbpU6ok+oiR44wiK4xt9j6HnFC/NnKFkt5YghUsCsgG/8z58GuUMj5WVq42Mb2yJitre6ilmK4ZY3\nU4J7DH5/3raVmgmSJnAEagcnOT+X61pyTOe+ii5n8GUPI7M44Bz2z5n+lVrJLslDMCGYDHOMfb/j\nitJWhbR6rp/rAdPbBdSEbVTwiODHk8kc5HcVuuutDcXN+qTgSyOzRSu5fPHqM5JxnPvXnlicpW+j\n62D1sceNNL3VV/7nl1sby+DyO+8TjLkjJPrjP+favQjrLXdKttK06SUiOxVkhHIIjbP0kqeRhmH2\nY812lHno+bGTgzzGtahJdsXuZGliZ2bd4YAXcSSBjtzWLVdal1HUY7tgsYhh2gIAv0jOO3HmK0o0\nTm6aOPe3Tq3jAt/E45zit1lfylEeLw9ygEFuwI5zXSUfbZhOj0Ftq3VnUV2LKC6YbRveTeViT34+\n33rtXXT0ukwHVv8AqmCaW2KO0TRsrE45w3POe2cV5prHBV5PVHDPJjeW+iq1+I1+Li3Et/K0UGNy\nNIVGM7sHHfue/wDsK9Za/Ei0Mdx40oQJbskWCSSWBxnJOTknP2HJrjFSiqmYx5G9s+UXZso2mnkd\n7hm7qW4ByDnjvXR0vq/UIlubZbUyeMq4aPht7cAv/qGM+nNeyNtWZTpnGaSWWCLxQFAcx4kGNp+n\nzr3fw10Xpu56gFz1Prt3p2i2yb7i5ihlLSsFIEabAcZIPJz6AZIqN6o1jg5PR9MvOq/h5a9b+FoE\nun6jZx6WzPcX1nNI8MgkC4znLN35KkAOMAnBGr4h2vwY0/T5OoXhSa81JWNvHpCzw26yNGhLyCba\neJN4AX6drfhBxjnKNLo7uKdp9nx3TusdIt7bUIJtIjaa5DeGzyuVGVcZ2k44baAeSMn0ryc8M9qt\nxqU108cFyMKkRILA+fPl9q1H/LdNHCTT0S11K41i0t+nVvpXiWQeBG2ZCXPkg8sknjzJrdHoOo2+\nJjo2ooY49rF7d/LO7y9ePyo3KLaSObkz6R8LvjhffD+0GialbQXGmJlms54MYLYyRwR5e3c1r67+\nJvRfxC1m00i00m0sPFtFaViNsC3P1HICDOQjAZ5ya5QhJTcmzvDJGS4tHy75PT/3heaQLy1u4bUP\n4U48RGfjjbuHHccEDt5Vw76FI4txuULhxlFyOK9Cn7qOMo0zuafr+paS62lpeTReDxgngEZH/P61\n6C3+IPV81ysMIWW3Zfqc7cg/3rEV7qkbxzrR4e0Ov9N6wutmBoXWQsJZI0fLHPYMCM1s1LUNT+In\nUEmp6zezTTrAF8TaoOFHA4wO2e1elyS2jMYuXt+TzsTypbSOv4QdvHGKyLLdM7OmSPI5qultmbaV\nH174LHRtafV06ksV1CWGGN4RJGHPAKnDHHYADGcU3xGk0vQtftr3piw/du+35FsCsgkBO7JycHkD\nGeMGvLkuTqJ1jH28zxcl2b64NzqFn807nMniKd7cebcH+tcnWtRt/Ba3iiVfBVmT6Pqydo2fkATm\nkNas53btnkyJvmCXikRlO0nHAzW23uQYwwBVgSBz39a6XWyPZum1GXarMfoT6ee+ftUXWLuBURxI\nFI4zkfY1wcOezVUUzajFLL/Eyxc7i+3kn1rHLdFWcRkk87W7E+ldoxoskqMyyyzEjD57cnJP9a9Z\n0RZ6v1JrltoGkWr3dzJuMcaYDSBVLHuRnABOPPHFdKMdbZ7SDRuoLz5mC3lVFLGJ8ziFi/fBDkOO\n54xn1rzfTcGnWt5LaavdbHkkKnCeJt2+2QO+ecmrFxcaNZE7s0dQRafp1mt1pOptP4pbIeLw3Q5+\n5H6GufoWuXtpcRXGI5XRvwyLvHbuRg5rm4JKyXWj6Zpeo9P9S6DHowEdtfRxiIT3FhbvLI2G4D4B\nI98ZGBXy7VdCvbbWn0+UxYiYrJcIrGEHGTubbk/pRNSZqm1Z5a7WO3vZFkUtscqxjBA49M1k3xON\nviAEHy8h/ao20iVsTcka4LLnGMse/vWC+uFEbJBIryP+JscUTtijmDHHKh/PjzqpwQgP845Jzzj0\nrqQw+OrlI2l2he/HAOeaUyEyyQjLbufpPBI8+3aolRbBG2wFc/iHIxWm3uTaNvRjnz29vt/ejIWw\nzPJJje3IwOe1a7a4a3limQqChBXIyOKxQR3rvq6K9vTf32nqSQPpicoOMgf1wf19a7Gj9e6RLfXF\nxrGjN8t4JSCOGYjZIcAMS2d2BnI4zXLjJL2slJvZ7roPWun9V6muLC86nvLbRLxzEm1GjljiLnaZ\nViVgey58hx3r9e9Bp/8AS4RQ6D01FrviJBeRahI80gmSRPFQ4G1Tje38ucg+lcZSa9p3gnBcu0Y9\nc+Imu/FXqa56b6l6nj0PTJFa1udLiklgwCT3JVgWPPDHPIIXFdG3/ZO6StVi1HQdZ1OSXkFNUi8S\nPaBkFQiDJ4GDn1GCTXVUujLV1MuuJE6F1aXQ7q2utVazkjBnikijjkVVDKpSSFwdpJH9uMVz+pNH\nvfifp9zP1GNM6U6NRClxfTRWsLR7SCCHEaF2OCMAD0rCfF2atZFxo/PPXHRHwx6e/eOq6N8Rb27s\nLRdwnlshm4lbJVEVT9IIBILbfsK+D9VdY6VLctDoPzJiTvJK4DOfXC9ufLJ7V25vIqOMocXTZ59u\nob+6t2Wa+lZWYMFaQ4/SsE+rXpdIJJmKfiyTyOB/sB+lIwXQK4rtvqHzD8n6RXTk17Uhaonj+JFE\nOIwMbfImkoqwVWnUc0DfMMZA0RyNpxgnjuOa97oHVk+pWRjuosNG4SJUGS+e/BPf/wAVlrhstWe9\n6O6I6v8AiJdT2/Suk3VybR9lztXAi9nHcfpmvY//AEQ6n6fmOofEA3Gl6PEPGnMER8SRARkBmXC+\nQzg4yOKxk9RHHpJs7YfRvO7clFfYdd6i/Zt00O2o9J9RsY8ASLcuA6jGW+rAz6Djt715rSOqPhRc\ndQpFoen6hqMV/ujjS4IVrELyS20BZMgfkeeSasM02txMPBGEtzs+hdOL8KtcVon1S6WW2QsUjaMb\nCv8ArYkjz54715Lq3V+gNMubi2bUdRCxndE6qr5Q5wc7cHJ4yMVVJyYeOK8nz3qDWdMs4/mZ7iWO\nCUgQBipkcYzuwDhR28q85cdb6IsckaM/0LhcgEt61rm26o4tGmPUdOuNLbU5rzMKjMion1IeOP1N\ncAdbxWriKKBnVTwc8EZ7GtLI5WqMpbPoPRnxOg6W1Np4oUn8SJVe3L7c+hyPTJ/X2ro6r1vedT31\nyOLa1vNhMY+vBUYUZ4J71mUOScjty9nA50txZ6bbkLOs025mO5fM+39K6nRHRmtdYampsrb/ANNk\nE7gQi4GSSewHH/imOLpy+TFeEfXLP4QdLaTfROiS3kkWWlkmYNG5zn8JGNo7c/nW0N8P7bS/+obj\nTdDgtJTthuRbRqr87edmDwQBXoaVUzpBK6Rm0rSbPTL2a+vbLQJYr5Asdu3hGNPPxB4xbB5xhfvz\n2rua0vRukY0rpttMuLJY0IuNtv4gLD61QGRWUbjndk5weB2PyPze902l/DPpQxJRWt/yfLOpOi4/\n3qdet+oVu55mDG1YYZ8j8IZHIAHbGQeDjypOsIdSGhPFdMsQYRpbQOXYxKGwQN5JwT9WcnnOK9uP\nNGdJHknhlFts8WOnZlDajdsGjjiLHaQe2DyD3yM8e1cSe5n1S4S1hVXeRtkaA4A9AB2Ar0UpO/g8\n0k06O1pXwu67uJBdabaRGSA+IDHcopDA8YJIwa950bqPxG6ZtJrHVIhIBKz/APqG8RkOfqwyt2Jy\nfOpOUWrR0hF3Ujg9cdeyazcldRtomTwDBvRNy7ckseeQ3uD5V84mlb5i4u9OgdI1bMYBJIX71MPv\nXJ9GJuMuvAA+qySJMFkBlHDEHk1+hYP2crK36Si1rXddvP3m8CyzQrCoSJj/AC4P1MAc5ORkc8Vu\nXGO0ZinKVHya6jsmkLRQqIw5AZeNy54yMn9KttrhYZd8Upx/pxgf+K8cpNsVxZ7S06Ri6t6XlvYO\nobGDYcTJMrZjAwSc4x2P+3vXF6E6EvJNdkNpLYzi0Cv4N3IbZpIzgqwyrcMpB+xr1wpo29tM0de9\nMP0U1vq50HTVsbv+D8vHctOqyYJJZuDyOf1ry0vQRe10zU59asrW31RWMUsgKxDDMu0Hu3K8+nnW\nZyV0xxvo+gdG/Dm80SzfWtN1GX942DxtMLJhzvwfCYE7WAHJ/wByMVd8Suq7PqHT9Niis3372lk8\nWNkMbgbSuc4P5e1eec7VI6cXGOz5vf6jbwwNOxjBTuccj8vOvn2p6hNcTeKlw27cSWP/ABTDF3s5\nAs715Akdy34vpDYxir4jdNfN4SncoIz2/SuvBLXgiuzrNKEtT8ykUjqAxHO7NLJfokXjojbOwUkD\nHt/eoo0d29fZke4W6TdMAjofoJ4wPt/zWJ4JjmWKF5QSQGUErWuSSOL9w1tK1rMZDE0UjKyYYHOC\nCCR+Rq6wh1/5uG60GCdJEO6JkcI+727HtzmqpctWRp1R6ifXOt105LjqSzml+XLpbXExDSIW5ILA\n5x58+p9TXnd98B80wABBb6WB48/PIrDVeStOqYY9Tu/l/BnDvAw43jOD7H15/rTJbanADKtrcAPg\nqVhJyv6VqD4poy4ts6EfVJss7C4uBhcDIYY759POqb/rfWNQg+UnuJFCgbC0m9QB5DviuS9sjopc\nVR5u5leSR1km3iQcEtnJ+/51lkWFVTfNgMQSoXBFdk72Y7ONczu0rKGwu7g+1LGV2k72U/r3rolo\ngr7lcbX3R9+TzVckcqykORgtjNUHHQu0hTaBzgehq5yYVKQygFsqQO+M+tOwU+MQx2DHoKcd95PJ\n5xVBphGcbeOfWtUSmRdvi8+nr7GubIPPE8kShGGQR354p4S6SxrdBVQZDFDgt6fn/Ss2aXZ39FgW\nbUPkgWSKeRVRXYFm5H8wH9QPyr6jJp3V2gtDPpfUF5A4H0qkpIJxgDv+X2rxZsyxzSZ68OGU48oM\n87q0fXejagdZfUL5ZGkMjyRSHc3b6t3qeefv5V9t6R626x6g6bGvv1N1FaBUkQgXCGE4VwHJ4Ycg\ndgOccHmu2OcZrkjn/mY7i9Hm/iJ8dusukp7Wz6d+Ieq3dzC7G4ZrnchXCkfgwO/598+VfGOq/iz1\n11xZmDXupL26hWbxvCmuHYeJz9XJ74bFaUU90cpTntM8ZL1BqqWktjJezrbysJPB3EKzDsceZGa5\ntnI0k7Ox5UE8Gu8YpLRzLZbkLtWJsknH2p5YCsYZWDSpyRnuPMU6BVG0by/SzMBye3FaDHHtaMzF\nSedx5Ao3RTCoaCUqRuVTn13Yrs6dqt2ky3CzSRtGdyEHBB9QfKpNckE6PqvTH7QHXnRFsP8AovWn\n0i8YBri6thtkuGGwjxf5X5QHJGcjOcls4etvjb8S/iTcnVOtuqrrVp0G2Lx5AViBxkInCqDgE4Hc\nc15vxK7Z0eV1R4/Ueob3VyDqd88hjTYMsTx6H29awNqz2x8SxIhIO4GM859jniuqj48HO/ILXqK6\nty7K7qZEaN2DH8J4NPLr101ttjmkWEfQSSSe+e/3quAs5Vzqs1wQZpizN3LHNY/mmdsAYyf5R5V0\njGkQ6D3UktofCZ1SPJAU8Z96wvJcwhZGYg57VIpeQdCzneJ/mmlJZhkgcED1r1PTfUem2Nz8vqEd\n7N4rr4ZhnC7BzuOCpyeR5jsfyw7TtFPsa6Z0Zf2elalZzSTSSxeJJBcSqHQbSSWAwScg49cj1xX1\nfpHr3piz0i30PT9Jn0s7wjGQjdOx5VmbsO5wOOKuFt1fR1/HXRV1l1nDFol/baLcbr908JVEgRl3\nfzDuCRz5ivPdCy3fS/SsUGt3tpEl3M/yok+pYyQSd2OMZUnv3NdZZEqkRY23R7v5wGIalHrcdxGA\nHUY2eK7FT9JUdsgdz/54951VPbSpZmbP0Ylw7kQENn6jvDNnP8oPAIPFfJfpsLer/t/2PpLLk8pf\n3/7nA6nvYeoZk2ar4Bt2CQMkDhn2k/Ud7HjnuefYVwNWiS81C3sHvluRaRruI+lcA5fuTljnHp/W\nvTgxY4tcdtHHJOdNdJnL6nniu2Qvb2tsqRgbVLL3+nkjOTjv5cnAFWfD3T7C01q5vby2hRI7cpE1\nw6YV9yk4DcA4B/w1qeSUXL+x5MHGWZc+j3uqX82nW3j6Vq9hBvKbTG8T4J7kqjZ478+nasvU+vWd\n1pd++kyJLcTKUtgCdzlmIAwWJ7ZJ4HFc3k1Ff7nu447nf+h8k0630yG6e0166YXEoEaw7SqgMPNu\nT2P9a9DaW3TKWzafAphMilNySDgeZyRntkfn7V0nNxpRWj50car7OxpfSFp001t1KmswyxQOJYbe\na5EhlKtnGxcFRxzzXf62+NnUHUenDR5NO0+1ikV0do5H3HICjHPoW4ORz7U/Op6SPTwjijcnvwfK\np4o1ZUK7177QfP7elUGXTkmkEl0I3zztc/ix+YFXb6PJ9s9T0pc2FgDBNq0kSXE4kmjCB1CKckEd\nnBO3jHlgg19Ks+tugLWeA3XSVx43hpC1w12VEqpGiqDjGRtjTAI4yfU1pZ/FHWEVJbZ8X+LHxDte\ns9dCaRBLa6TYgRwQmQyAPgbnzxnPl7Adua4mndaXVjcRWcoTULOJPDi8YP8Awc5wVG7ggtnHbNbi\nuW2Ry3SPe9GPqXUhu9TtL9enbVYzLLLHcsGucLz3bOB9RLHPJrjdbdZ6NK8emW+qTao9mDE12TlJ\nfUqSAx59ay9+1I3J+22eF1S6W/iga0uCVyxZWbgenH61zks7WOcSzXWSRu2heTRSa0ls4HRiltmI\nT5aNmAypGDtI8896vM4ktDDbqBPJ3lLYz5f8ViKae2dYaYs+o3VrAsUtsAjY3suO4HJ4rmS6iRzG\nVAI8uPzrUlekSbbdMNpdmV/GYb8MAGP4R71ql1JpH2I25VJZsMR39vSsPFYi+Jkj1ZmbZHCFYkgk\nr29x6V6norqa+0/V4bZoIXtpmCt4jhWUtgA7u/61pY1BpyY5OtH0fqLqfT9OtHsX08TNNBLKrPKB\ntC8MM9jjJOO9fDJNWguLidxCfl8HEZcsEb19+c/rWob2byOkke66Zh6U1PQIrPWNbu49SkZ5UCQh\nlU4GEUZyzE4OeO+ADjlviPY3cOgdM29nHermKUzSyTALK5fCkAgEcc457/c1pxRmLdfZ4C6hhhjA\nku1kkb/uKvG31GT3NZfCjaMKuRISed3BFT+DFBhmW2OwMJG8ty5ANYrxWaTY5wW5z5VqPditGB1M\nL5ifcCecVRhnO1mG2uq3shA+7ajADbxxRlZhetCoGA2M+lCHJaV5cYOCcsTnuaRIpZGLFsHOePM1\negRoJRklO3GRnIp1XCjeQBn86A1QqIlDE5yM0znYSVPAHesMGiC43YSTJBOB5Yq1F3Sfx2+jdjPk\nBWHpg970DrcEGt2NjJFG8YlOyR41LoD5Z8u+TivuFxNaC1+YkRWEZGAF4I/2r4vrYNZLPs+jfKBm\nubrSxGskkCosnGH5xV3TuqJ0rPLfQQxz2si/TbyH+GTg4OB964YskodM65MKltnyDrXpe2v9Yu7y\nH+EbyV5hHnhAxzj+vpXg9Q6Yu9PQujvMNu76eQeP/mvs4MqcUmfJyYHDo4ctlcTbRcBgueMd84zi\ns1xIbcrEhC9h2r1LejzgiLKpkIBz6CszXEjSb88itJWyIut7mRAyqM+I2WA74+9aEmSRtiKCx7D0\nFRookltgqUkALEAjdyKY7oisbriQd8Hil2B0vFXBEZJbPc0Bes7sXyAD3B7UoFcl4NuUb6u3HpSP\nPlAMHIBqqILorjYMqfwgHv3NWRsJFLK2ARyv+9ZeiGWS0cSCSKQSZ7qByK0Latv3TLswOcDijkDT\nAYCjw7f4ajsPPmrWBnTaioBztz3FY2nsDBRCm1kBLHgt2NKCoQjAVgpAIPAz61E92DXpWrXtvvjt\nZ/D3soY9gwHlX0DS+oGszazZguo0O4xv+Bh5g1iSaejcXR9Kt7vTLjT0vl6V00GaRV2pebfpKhgT\n9XfB7d6ya/rMKNY25s3FokbFrZLsumdxAGckYxzxjzrTt1b/ALHok4qNo6Ova/b2Gj/u+C3u4AYo\ntgN4WGGXPA9sCvLXvUut3yM9o773yJGRSR/+o55J/Ss8FJbM5Mj6RTbapdQOPGu2+kkZfKlvfHvW\nrTtatJNSjF1eyIkj5aaXPhr6k7FLY58gTWE/xv2IwpOqP0t0j0t8Nrext9YsviD0fezXMqS3D3ex\nHES52wokpDIckliQCeOO1dLq260vR+pNG1Cy666LvF1S9W3kWKUTOm4EtLJIFyoHb7n2rrzUtnb/\nAA01Hk46PV3HTsWqavHcafq/SN1axKUkiN4m1mIGGGY8tht3IZQc48sn8uftA9RXVh123T8OnaRZ\nnRsLv01gyys6KXJde/mMeXI9aik5OrM5MUscbcWj5NqWpT3WpRahbyusq7VDbsspUYU/kAAPtXru\ng+jOptennvtKaxljQeHKJ5O5Jz/MuPI+9dVFOKTPMn7j2MfTmvx3sWh2Fto93cXbN4vgNsYKp+oZ\nOB5Ht/pNeL6i0yGy1uSK4d4Zx/3oWkSRV4xxtPGPTvXGUXF8kemc4yhxraMlx8tp8YceGGY8Oo5N\nPo3w71HX7O41VNUtIIgxMXi53SkHnt+EZ8z6UwTu3I8z3o9fol98FtLa00vW3cTxWyC9u4Z5HRps\nkFUAVs4GDzgcHkefhOstZ0WXWL7/AKcup5dOCNDB8yACATncAO3bzyeTWpJN2kbrjGrPDXFxwu2M\n/Tx+HBNVb4jKgZMmU8AV0SMo0JfywRFDePHEcgoGPI+w/Osy3trLtSCzCljg7mzkevsay027WjV/\nJdBAYTmZiwJ7A4Bqu4aK4nUsdqcgADsBRNt2T6E8Z4AGi3N7kY7Vs0tm8OUzS4U+Q5A4q15LHsyX\nl2zLtedcnt9PGK5ElzMztGvCNycmkUZZbDJMUGWwgJ3e/vXobB7Aae0hlnN038NI9v8ADMZHJDeT\nD0PBz3qt0yo508V29zNcEIUVcM4AAKg4rp6fq0E1mImsY/FtxtjYIuDk8lsjk47EEYqS2ir7JrvU\n93qrpGzFTFF4aIvAC4AK/njn3rhQXC2jKy7Rzzkcg5qQ0Rttmi21RrN1uEUCWN96OrHIOc8Y9P8A\neul1F1dr/V7W8uq3pkjtl8OKMLtAB5JAHmT596r+WVOujleHG6ndKq7OQMYzWVQ6OQ5ABHke33pF\n+B0IJUjUqrHf7+dJNdB8Ftr7DyDWq8k8GaVg6FgoHPGP9qpCESLkjae/sK0mZGuYX+qWJlOMbscm\ni1q/zXD/AI2XHPrVbRWcmGJpGLugHl6dq3Kqxqzxx5B4wPXHrUZCsbNhO8k98Z5rLJ+Pb5HnGOwo\ngaYlRF24U4Hn3zVyRxPyVHHkRk/ao2BPAVGBXdjJ48qv+ZjUgSAHvx6/rWGrBvtJjFPHdW6ANxxg\nGvv3Ser3F1poa5uYZnIUnb9IGR2weRxj8818310U4pvs+j6F7aBrFi96wR5tqxtuG054/Kujb3Nv\na2aWc6b0UEBmHFeCtI+jeqZ5TVtWtXu5JGRRsx9TEdq85da9pruyR2ylT9IGOCM17cMJHlyOPRI7\nDQ9RhDTxK2QT7q2eR/bmvO6/8MVuWN5p14jBc5V+GJxwOBj869GP1DxyqR5cnp+S5RPO3vTt9pVq\nvzEJ2RgMD7k/p51w5LC2WdXjyQTnYeSa9kJ3tHilFxdMWe2QK0m54z6Y4qq0LQnxAgJOME10u0ZH\nmeQPvKAFucgVXPcb05ckqaJAph8Sc7PEwq+taAgjBLOORWvoAVYwihCoJ7k1XKmXGZhuJoBXm2gR\npkj7963W8SLDlG+vseM59azLopqhi8FzOrbS67QM8fnT/NeICkm3Hsa5tcnZDK8qxFsJnPOM9qZJ\n2DBh5+VarQRr8G6eMMYGZPMjmhLbusYk5Q/5/wAVi0UxwzESlEzjOc+1e16auY7qD5e4VFVBkLs+\np/sT2FJ62Vdn03QCr6WtkohiUXDOxniDjaV24XPtxmqdS0a7uwz20lodj7EVGK8EnJ9PSvO/U44Q\ntvo6SfJUjm3t6OLe9ceMkSxPlckhcAfpTxXCWkXy6y7TIPpIH6n9aOdrRzi/ds5t7cRS3EbFizld\nwC8g4H/mm0fU9Ss5ZXgd4/GXw35CgxnkjH6fpWkqjs1e7PRH4lXHTNte2ltbQtJeWqWfMavscHAl\nAP4W2ZG4e33rvav1noV/0/ot2bo3F0Q/zMDRqxWXawD7+OM7Tt9zWYN9GuXaB0715pcfTbWGp6Ha\nTTpI7fMupDBW2/SdpAPbgkZHOOM14PXr394a1PLbjKSSNtwOACeOAMD+1XHKbyOMukSc+UEjjZlR\n23AgIcZJ7+p96+gfDT4i698PdWW80+5ij8WOQTRzQCRSGIbBBB80U58sd69E/wBdHKDXJX0a9D+M\nnWWha4ur2s8MzjxcpLCrI3iFi+fX8bc9/wBBXP1XqB+oNVvNVvIYvHvJTcSCNQqqcnAGOwGe1cZq\nVdm3K/Bwb+4hv5w1xdYt4TghTk5P5Vc+sXsekPpVnqNxbaU58RlEnDMQAcc+YA5NcG5Korr/AKsi\ne7POrLZWxeK3PjZ5Dt3/AKVRIkqIz5B3HgdjivTG/wCryZOVd3xRWTazMMnAFWJJP4UF1GoG+Ik5\n7jDY/LNd60aTMU84uJ1SQncDjcOTz/eulE3y+3w7dW5yxI4yKzJaoq7L7qUSSeMhCsTuKgYGayi6\ntlBMx+pTkgnOTWUmlRX2SV1dPF8Y7ccAc5zRsjGGaNsxh+Ru9qrftJsyXTQiVtoDbTySf7VjuZVx\nhI1XH83bikb8gltFKwUu+EPcscDFdDFusR/iSudvG1R9I9MUcqYRQ17tk3LDG2eCu4k/p501xqrt\nH9MKxyucFV8/es8W+xZkDXMj7jMEzzwB5VSY5GUzkk7eT9XauiIBbmTww6McBjj/AJq0X1yRnOV8\nzijiEwxy+CB/MXBzUeZAAo48+aUUoupF2hg3b8qoMjGPGAPq5PrWkRhlYOApOFxjIFZ/HZDhhx2z\nREDHMyNg8hvL2q+WcidWUAc/pirQObMk0E5gfaDH32MGAJ8sgkVcZSYQqAgdvc1OwZhOex59Mnmk\nluDL2Ta3H1Y7+1WgRXk3YY58+fWtCXBVtx5znio0CPNLJledo7A/1pljwiqd7N/nap0Dt6DbLPMs\nMkbnxOFHkT/nvX0KyivdPhJgmONwypIHHrXj9QlLTPZ6W47OlpPUN/JM5R32k7c4z5+ldS71VBjx\nJHKHG4bT34r58oVLR9HlyVnl+o0a4g8KEF3kO8kD6VUf715e3EonRVBVMgBiDg17Mb9h5Zq5nrrD\nRguHnnZEyCTx511bS0KyrMPEMRxgHkYwOa8s58ts9MIcVQ2sWunXQdJtuzYACMDmuCnRmhX86TIA\nrRHJGOWJxj2866Y80scdHDJgWSdGPXPhTdXRW50mJ44lGcNx+ef6V4TWel9R0i5jtJY8k9mx3969\nmD1Mcip9nizeneJ/RnvtNn+XRY7R/GXBOOc8c5/OuQyNE7pcJhgcYIxg+leqLTRwaoyl2ViIcj14\n4qo3DM5BJ58jXRIhf46AhcE5HJNIpZ5M5AHlz2oCHfHLgEEnvkVrgupYvpZfpHlmo9gulvd6ZPfG\nO9VpcZXOBn1Pmayo0QeKF5w5GPpHPPNaLZIgAsqkEc5JqNg3fPhVAXaMcZx5VoEnjRgFi6nABI7Z\nrk40UqvLRI8TRxr3GSB2rRpL4uVZmYODkYOORz+lO1sUe+s9ZMUQhjYcfyse+ece/eutBqj3CK5D\nK6/UTHgFcf52r5WbEr5Es8p1B1J4l8B3RAFLeaZ78+fnWeHWUe8CXLGSJA2BnOR3rvig4RQ82PBq\njyTv4MY8N1IXb388cVNR1WSLf4h5UBeMcH/M10duO+yXoxXdyt54Ld2LZYjGT+vlXRjvYlttquAE\ncHA42gADH9P7VLaVks9DoV/d3ls1ppJAN1Hsk5wTnuCf886W/sNY0j/1N9AsSn6Y8MDk/wD6T6V0\ng49Ptnepzx34X/JzzLHdp4lwygwgFlX+bPtVc12fGjdiysw7kcen+9d4bOHRVFeq84PiAAEk5Uk4\n98VumvbtohFAwjDAggPjIPamSktizmTzeGWhQorMfq+rP+Gsl5qciwKJufDARSGPPvUjDls0WWcD\nj6FVQzfU5zjA9zW3wbDIEkkmcZ78Z+9YnOV1EiM94tkAJYMZBwSQT/vWK5uIYoDDAw3S4y3mpBOf\nyrcHJqmai0jm2qA3Znbb9OWOOwrY9ycFQx7iu3bNIKMWjYgtxjGBn0rnTsrTusiFSCMmpQYsN7cb\n2hjX+EgHKkZPpTyatdW52vGAhwBg5zWeCYsW5k+ZBkQ+G5GSDxXL3zCVUZiBmtxXghqiu2J2kbhz\nmr4btEYDuDycHtjtUcSiSsgbI7HONtDLRuZeMICDzV8ApaMlDLnae/fg0bSUujeP+EcDHY08EEkZ\nFz4TlQR28qNvNJHnuy47d/1qiy1t0QzknJyfzrPLI5fcDnzqRA8gBKs2MKO1VPKjZC8nFUFfisi7\nW4FUGQu2WHA9atELsxtggZXjt5VcpikmEkhJAJY1CnZurma2incyxBpSp8KSNTkAZHlwSBjjHl61\n5528QO6BUAbJHkc+lcMK1ZqZWyxlR/DC84qqe2kLb1XGO4zXZOjBVGcnjzrWtsXjMgUtjAJz2qt0\nCsH/AO2dp9TXSisyirMSjgnJJ4ArMmairOpp0ge6gMa7Y4uQQeCfWvVz69FaQbWLmRyY02jJB8sA\n14skW5Kj1Y5cYNmXRdaFtatLPO0lwZSdqj6iM9yfKuy/UltOsk8TuSjCJBjgnGTx27VyniuVnWGZ\nKCTL9JvHc/LylQeNjsNviZ5JGe9ejTSbedUTwoZAfqyEHA9e3NcMj4vR6cXujsvl0FHtjM06hQwy\nqKxLfkM1Vcy2VhF8pC5TKcZHOeMZBFcU3PR0fs2zzl1bXTOzRQeLbvyccEf4a16Pp2oWwW+a2fw0\nwUyeMZr0OUVGjlFNy5Hel6kjDeCCVZdo4PnWTVYLDUbNJ30vxpO27uVOK4RTxtNHSSjlTiziaFot\ntcak0N1atAmDtb861a58L9Fu0C2sSCQ87jHkEbvb8+a9C9RLHP6PPL0qnE8BqfwZ1m3jNxbjxAxO\n1VOTj8v715S/+H+u2szRvZsGUZJI/pX0cXqoZPJ4J4Jw7Rxzoupl2jNuw2k7jj8PuaMek3caksFD\nfevQ5xOPQ0unr4RIfMoOQ2arW2dmUuTgd8nzopWSx3SJSVX17U0MEZcbnIXvS9A6ShVXbA2FI+oA\n+dZ5Ew2N2AeSawUtigeYEoAcD1rSvzNu5glUBgT3Pl7VG10DWjyhSGhLAjkkUIZYN4BRsrnBHnmu\nbXwDRJcTRgKGZTvBEi88Z4ziu9Hrnhovhy4baCzY7n/5rhOKk9mfJ5zWdpn8U5O7JPI4JP8AapZ3\nAlXYIgjkBBn+uT9q2v1Bo03U445SpIVsbcgYG3y/tWea58e42/VknDKRxwayouyF0NwDFsyVG7lf\nPPANIl02xoFyfr5yM96lDo9HoGovZbXXgJzx/n3r0Wu9Qw6g1tHcFgVRyORjBxjk+fH9a5uLTUkb\njkcYuHhnE0x1a2uZVkDJuwEC/Uw+/liqmu4oHaOK3+sDLEtnn9K9OPaozV9jC3kcq7StGz8lAvYf\nkadpSyGKABk7ZVs8+9ZlLk6Jd6KJY5LeJXu0Cx9ghILffNZxcxupFsi8fiLeVdF7la6NCPdyxL4Q\nOVHLE8bjTLJF8uBPErSSHKkHsDTjXRDDcm7J8NCsaZ4w3P3xUh06SRlMjMFOckjkj2FaclBWEXnS\noIbdpbeTL+YPpWCR5kym4Aj+9MWT8i2bRotbkxbJJJEAXk5pNVvE1ErL4ipgFR7/AH/WtN29GvBg\njuYIIxbA7TyWx5tTpJEyb5OWQk7SO/2q/ZEV3ErFgVXLMBwOce1Z/DTJMvLDtzVWiCGRYmKA8Yxk\neVWwsnP08Y8/WjsFxkhyAMAgceXNKcq/hyJuVgM5PFAUzOGkVgQFBxgHtSu7eIQ+FAPlVoDIIXZt\n54/vSMhiJIcbT+VSwSUyBNyHepOcj1qyGQJHuI+sjt6Ve0Cm4mbOEwM9zValgN4UAeXvTogkso/D\n3JNUu5/DWgNFuHIIxjFbY4SkV4SchNig+mef7CjKjNJevcuJWBC4AC98D0/rSzOUjGwADBJB9f8A\nMVhRrRHt2UxyqxBRSD557c1tRIp4jukTdzz60YQ1gYYG8POXz+v61oQIysFxhzgcc1zd3Y8lHyDB\ngZG+pm744I8q69rZqwGIQUPqDg1mcjvjirOxpejwR5mUhYY+WGAT38v1roX8OmwrE93GT40eYwwO\nD6nNeZycpHoqMY0eLuJY4WdZDtcNxgnaRn9a9d0bb3WpyN8tdpFBbLudOM4/PyzW8rUYWzhhTlkS\nPcRrpjENM3jzqf4coHAOAM+3byrpW9iuTidQue68A/Y/818xya7PrRil0G61VLC2Gd0pOcEYII9s\nd68Jfa/LcXfjiMkZwD7V39NC/czz+pk9JG7SNfkkd7eeAlVwQSMA4NeghuIb24RS7xjbykbcdqma\nHF6OmCfKKMGpaGhumnguWPHKnIFdOLU5bHSzbyBc+bdyKw3+RJG0uDbOTa67MsxeWEkKPob0rtTa\nykMouIziMRcZYnJ70nDeixlaPPatr928okgvghABKhsYrP8A9UQnbbX5jkVnGZMjdjB969EMGlXZ\n5J56nT6N9nofTWqWxt7WdUkfO3I5z6H7DFeP6r6Au9NjL28IcFR4YUZz+f3zXTFmanxmc8uGMo84\nHGtvhvrkth8/cRGMMNyq3H9/avPzafc2pkR0x4ZOcrg5Hf8AtXsjljNtI8c8bglZnS3ZZlucF88Y\nK9j51pSyWeQ5UYVSQwXAz5CtOVbOZolsLrwg4aNCVyFHB58jSSaV4UKM1xvLH6kUfqc/pWPyLwDT\nZ+BbDKAdyxDHtzWqe4SXEoVWYDGTznntXOVuVkCsw3srsxYDdhRweP8AP0rMfrkVgI1KNlsdx/mK\nLRouTeqPHgFXACtn8J9qqaSREIAVWHHPA9fKs+TPky3hfcElUhx3b29OKqbesQjWfADbt2e/+f7V\n0XQYkdwzSPuVMkZxjHn2Bou7HDpGSRwQDVqmCJeEgrLwB2bz9gavs7jEgZju4IwBUcaK0diwuRH/\nAN4khVx6HHr+taL67Uq1y2GaNyuMA5B7cV53d0ZaJpl/JGhdT4S7QfzI860C+08zRuEaRpAxGX4D\nDsMVW5R/UPovF00k7wRhm7g47DP9qFpPeWMex4gN/wDMACB7/wBqsKlcWEZtVvJbiH6UYGP6hu7G\ns+nuZUaeUBFJAUKvfHfH6ivTFcYUijXzMCLhYnAHYYPHvVUF7LMpb8Tj6Rgc/bFVJUCqAzQTtcXC\nlih3Ip827c/3/KtYvnKmeQM8jkrypGAOw+1csqvaKWCbcpUsFwMZ57VxL648KYzABixyBj/amBVa\nL0ZjcSM5KrgEYI8sU7IsVs04OShC8HgZ8/716FophjZ5ieRn3row4xtUnsBnzFWXREVySHdkAfQc\ncd8UklxC0qqg8vzqJFRSkYY7xn7Z5qCR8lQPbmtdix9xkGGI+mrk2MCWYkKOQBWWQR3XHCkb+QKp\nkkDMFRWHPBPf7VUB3+kx4YZ43H0NU3kgDGNDkYFXtgKMwiXB49R5UZPpwQ34uBzU8gjorYw2AO/v\nVUjy71A7AcY7YqoFLuAc98e9KpLZOPPvVAwQnGGAFdSWeL5URQgkTbWkJHP0jA/3qMqN8uh27aOt\n5bKuFQ7XGQX+rByO3b/Oa89MyxqVZSeeMVyxzcrssmr0UxbDIEP0/UM+1dW0sySd4zG44P29K1N0\njI62weRgjZXPYDtitUaJBmVApC48vyrnJ2ArcRbsMAHPOCMD2+5rXDcSoojVcZwCcZxz6VzaNRk0\n7Ogs6xW7z+KQgBAVn/EMn/Pyrm6pq93PFFtuCUgXhSck/Y/Y4rEY27Zpza6PPTmd5x4sLxrjIBFe\nn6SvZLYzJ9TPOu0LnjvXXKrhRvC6kmfSNGvmhtxCPlzJn0JwfLNdG4vLmWNbeWEAHhnBwSPQdua+\nRKPus+vFrjsuS30z5aK2Z2RT3QH6sef+1cq66f0kzOsTMv18g+47DFSGWUXSE4KWzkSaONKInc7h\nnblec8/0rXBHcokjWsqqxOQSc7T5g16XLmrZxinHSLI9Wu7qNrXx2WY8Msi5DEdsVjNzrHj+E2nK\nqsBvcEgN9s/epGEY6ejTm2d21shcBENphjwT3XP5VRqWlxCMrk8K30jtj/P7VxUqkbr26PKXumso\nNxJkqx8++McAVw3kgEjfMoMg/SiD/f8AzvX0sUrWj5+WDUrNnT16trfAxscZ53eVfTtO6itZbJ5J\npI5OyKp5JYZxx+v615vVxbpo9Ppn4Yb/AF620yGC1uGE6Tr9OVyF47n0ry2sS6HeyyK9iQEBYBCB\nuJA71xw807RrPwapnhtYg0db7FpGUTH1K2QB6/2/rWcyx+GYoxhT2x3xXuTlKKs+RJK9FQmJYruO\n3z9O/wD8UZb6ASZ2qeMHAq1ekQzT3kbZ4APABI71mkvRGAsJyB+VdIxAY7mQpuJA9SatiuQjBj3X\nOcedVx8Atju0RiXc4JyARVkpjuEdUm2+J3wM4PrXNprZGjlPM6s0cgJY8Kc8HFZWLs3fPGcE+Vd4\nqgXRqokRlkBBI8Qeg86vPhtcbonkGVzkkcAe9Zd2CK5WKQyKcMMJxnn1+9V+MsbDEi54JODj7f2o\nlbB04LkzDeUO4KFx/WtVwGgtVluQx2ndgHknJ9PY1wkqdA5r3DuZEaYgDkAdznsD+lOk0aKboZBT\n+GpHbtXRojOxb6g5hTAKgZ+oDBOfOupZySSWiRsysUyx3c4x615uPF2ToknyssbfUuQc5HY+VZJp\noLSBF+YfxMEA47D7/wCdq7QcnoqCWaGEu84mO36VXnJHmT6UITNJGx2JHIQWEQULnjkk988Vp1LY\nqyiC3ufmTPdxgR92DN+eOKl94u4sQoA5BXHA/wAxUck3SCKYJA+8RtggE4rC9gBJ41zLIF3ElWXk\n4/2rUZcF9lbokulyXMv/AKaUCIhQS5x+ePSrH0WzlikihvG8VBu2nseO1V52qSX8k5CC3XTbMi5g\njnjmUAkfiQn0PassFzFBbmIoQRzn1ziu0ZKatG1JMoku4mmOwABgAff1oRmLdvAIbtxW6ohZwiBg\ne3c5qmSRWfgefJFRdgaLK5YtnPC4omVgR+JefLtVewNcTeGokOeeM4pmELxKyqRIBhst3PtU6BQJ\nVRCSNxPtkVSWBZmccHtitAhbJADfSOwppGBVVzxSgbdF0TUNcvbXTNPj8W4uZNir/v8AbFfTdQ/Z\ny64Rd1rdaZN6YmZCfyK/71G0h5o89qHwG+JlgSZOnzLjn+HMhP6ZzWCX4W9eWylT0zdO4XeY4dsk\ngHrsUlv6UTT6JZzbjorq1NmzpXWANoyWs5ME+ePp7Vn1LRtR0zat3aTwkgcSRsp7e9VhSTGWe5CC\nCR2CJkFdxx6YxXPmszHKzwkc8qPSuUaTFhtVj3fXGN7DO4Hv7YrTHLPExxuVQcDBHIpLemC8yONy\nyptLcgnPNI0gAK7wqsS3fAA9KxRSvxlGZDkbe588+taILmUsoOWP8pA5B8qNeQdGWd00+C2lCqzA\n/UCMkA45/rWLwZDJlGBPljt965rRp9lkNjNcSOXIyqt+Mcj7Ctllo91GS21hLuO3BHI8vtRyS0d4\nQ6Z7TpsG1ljW9kKtJ+IEg4HpXtX06OBFeOdSuc5Zg2B6duK+XnlU9eT6eJe0a0trKW4DHYJGY4x3\nAx70dRgt4YECkMzSHLbf8964b5I34OfdESyGGOBCQuSGGM/auHc3UkLgQKpBzuUjufSvRi2qOc3x\nM8WpJK24wgSIB9TjOf8APyro3OpfvS3FjGskGxe48yR/zXWWOmn8GITTiU29hrGnSK4uXVc73UHP\nrXYgvxPIzEv9WBgqSDx/SueTjL3ROkG1pl1zb6VPhpImYhgoG0nn/POuBqXTEcjFYLQRqxOXqY8k\noPYyQUjiX3TQ0tDlSzN9ZOPX3rjWlxdK5KSMqA5yO3Pv2r3RkskbZ45/5Ju1DWW+QLIWZi/JOG4w\neMf715m61ic4tg5Khiw+rOCRUxY0eXLlc3bOdc3m8Z4x25NZ1vNnY8EfpXqjHRxJ882Rhx9QwT2r\nLPcPHL/3BkjsOKsY0wWRETg75grqO2fL0qfLsxBRQyg4P/zWroFm1kQoxHkD+VZpZ2QkEjFI7Aqy\ns+Oc+fetsE4VWC4wfU+VJIAunEiqUC+f1Y/3rFJKIwAQvPHfkVIrwQluMLuZ8BhkDPf/AI7VYLqT\nwxFEmCwxnHJGfX71pq+wPcyuluUViWzlie4NVW6eKf4zjPcc+dEqVlO1a3Py4GECkjkj/etF4YpY\nWcl2OeCGzivO1uyHHK55kcoVHmPxVtgM0qmFx9PkO4JPtW5LQNUK/gWXeGHGSp449PyroGdrS3dE\nBJbtgd8jv71xa2GrMEd8YrkiVuW8vOugssWwyzruUfTt4Arck10Q2ePZyWwMRChSBwfXy7dq0dJ9\nBdbfEHV7mw6N0C+1p7S2a9njtkyywKQC+M9gWUfc4qY73ZbLup/ht8T9F0bQ9buekb6TTdetmvNN\nuLdVuUuIlC7m/hFtoXeoIbBBPNeUmOqxWMU88EypP4hjndCFlVTgkE98cjjPIxXRQXknkxX921rD\naqoIeWEPgHB5JrTHfeFbrDdPtkiYsd31Yz/80nC0R7Kbm7BhMNqG5VmZnbB/KuQlzIspaJn4UNzz\nkccVrHHWwkda31hZIPAeD+H9SuTzjJ/pVmq2cDAXmnEEH6fD9G7/AKVmN45fRVpnLurCe0VTKwDH\n86Nt/Ek+rO0cnPnXoUk1aNC+Id2GHY1rttMedoZ5mIhclSRwRipKSirDNlwj22irbTqrSRztIrDG\nQpUDH9Af8NckuNgG0ZJzuBOcelIS5qx4K3aTac8qR3PlWjxHMKADDd60CqYnw1Kscef3qhVbHJ4F\nEAhyHLg4GasAWQkFvqHnVB+lvgL8MLrSNMXqzUURb66XbBHLGT4cf5Hgmvry/PiRctbIUYH8RBPP\nlkVzltlxrVmxLS617Vmm1G0mnYgM8qXJQhB37MormatoHS0Es+rW82qWTxI31vLuwoHmcPxx61zT\ncXSOtc9s+XXnVlzdiOXpjqO1gkUBP/WL4YdOcgkDknjv+tXz3GvuUW71fSrv5hA7/K3YVUPH0njv\nxXa68HN70j87TFpJpDKqKxbceOPXFCRVxmMKp7gjsa4fwYKnaKOHhT4mRyMHisrzFjjHI8qqQE8a\nTdmQncMYHc0WkLwYfBCc5xzWqADKzREpGxODnJ5xW7TfqEbSttycORzx/wA1mekaRbJE80ytHFJs\nIKplcnAzwcVbaS7SPFOzOQN3A7efpXN9FS2d60SCREYBWlYgDB4Bxk4I7+VaEnulmZZomiRMBQTk\n1wat0z1wfhHYsXlVGXwEctgqXPYedewbUNOuYlCxNC6qD9LNhj7+VeLNF2mj3YnqmUxX0xLRwyjf\nHjcpHI9x6jisbXlyJHgug6j+UjkN+XrzXHib5fBp0y5S4lMbYbyGGHY8DPmKya3YNaSpJbFGkBOY\n/T37/wCZrcHxnTM5FatHFS6soJv/AF0r7cZLLGcZ5/8AFdXRbuLULrEctn4aAKuCA7f8Y9K7zur8\nHDG0nxOndyxTgxQy/UD9RCDdz/tgUphitS7QvtKDc6n0PPH9K4xbSo9LVOylY4rOZZvCeNG77Tkj\nnn/5Fda2mSZWm3kgAY38kDt/Wk7aEWcvX76NI2leH6fwk7eMtxyP8718v1S7uIZpIML4bHa7AHA9\nq9PpVqmeH1rTpHHlmAiKmRseWe9cx5UUllOTk/VmvfBHzzFJcM4GD2zyTUVw5AD5Yc9+9dqoCOzM\npKvgYyBjGKMVu0iZm5cD6f8AzToCphhiJstznIyM1bFLPG2FcEtyR7VWgbVkmKbVXOcViuIpYpGM\nylcZAHr6ViNWCoSxoA4TJOQQa0WtwF4ck89j71trQLZ5QibV5bPOP71z5JkyVKZHqe+akUQVSCxU\nsFA/w10bG3ikcSSygqCMKDg8Uk6WimuRIAuYlDbfJud1VLbptUzEtxzjjBPl9q5ptIg0l4kZ8MgK\nrdx7etFrph9KksCe/njypxBmlWUSox3MqjOR5e1WreOq7Q43DnNVpSBrW5mZDIW3EjB+ry+9aoLn\nlVLqEU5BPfHuaw0qKXEQXoAQorxk7STnI9Oe9ZAzSK+wIHHfjIJqLrYP1F+zX8DtP6h6PPxFg0Xp\nr4n3CiaG/wCjDqb2V/ZQhtouFYHDOQGIVlAwQVYvwv6O+G/7SX7Knw16cfp8aFddBaj05bzI2mat\npZW/3LlnjEo3F3Yns7BjkZA8ukag1aM9H53+EH7aVh8E9f6v0zS9C1TXPh9qWoz3+gWEkiQ3OneJ\nJu8McsoRgxyufxKCMFmz7/oL409Iftd/tCaL0hP09Y2Hw30Oxvb6DQdUihT94X8sbRySSRglWk3X\nJZApJG13zknHRPRT4j+0N+yV8R/hN1cj6B01edT6RcW013aSaJp1xcLZxK5LLMoDGMIHXBZiCOd2\nc4/NU93Jeu38cLJ37dx7/wBKnHyyUWrPNE2Q7SFEzwOMeY9/Ov0v+yF1X0Xrdl1B0P1L8F+iNaPT\n3TOsdQxapf6eZby4khw6RSMTgoN+3gA4A5qxSCNPw06W0H9ozob4v6vadJ9BdGahC/Ta6dI7CxsN\nPBe4Wbw3fcYzII1zz9TYFfQul/gb0t0cfgD011LY9JdQXWudR6rBq99pkiXltqESFWhR5QAJAgOM\nHsQRWZRsHA/aG6dOm9EXkV/0t8BbS2mvYrdLnpAs2rQgOXHeQ7VITaxx54868P0d0X0tefsxfEzX\nJtDs59U0nUNGisL14g08CyTMHCv3AYdwO9ef8kuVPoW2zgfs2/By2+JnxjtLHWbF5undDgfXNWSK\nIyGS1gwzR7Ry3iNtjwOfryO1fdNY6B+HegftAdB6lqPw9i0voL4vaU1iuk31lsOj6k6CJo0Rh/Dk\nScwkOAOJWxxXW/yJF7EtP2cun7T9n3qXpHqDTIG+KNx+9db0vbFmcWelXMcEsSZ5/iYlZVH4wwPO\n2u30j8Lfh5pnxkt/g/a/DjpnV9V6T+G0lzfx39rG8d7r7JHLmZiVyB4iKCWG0MwyO9RexJIn0c/r\nf4UdMP0/0Ve/FP4P9GdCdY3vWmm2lnp2gXEbw6rpbyqJjJBHLKmwZA3FiScDgHByftGdKN0pYdcw\naJ0J+zrbaPYGe2tVsyw6hgiL7EKxiTCzqGyRtwMHjjFdISte4qL/AIqfs4/D7rPU+lpfhTo9nbdS\ndN2eh3XU/T0UQRb/AE658Mm+jQcMULMsvH4eTjC7/dzfs8/AnoNOuPiTd9E6JrN2vV1zoGl6ddvu\n06xwpky1urKp+ngIewCkYzmuvRabZR8Pvgj8K/iJ8VbDVYPhj0fp62uhXy3VikTNpt3chcxTNAxK\nxBOM7Tk5JJ7Y8p8UvgZqVsdFg1PpP4NWUAvDdrcdGWLx3QaNCoSYtO4MR8Tdtxy0a8gAg55aJKL6\nOgsNxZwRWcGBtUIJH8vy4yeKFx4dqY2l3EbiWJY/qecVzZ2XwizTurdLt1urZ54lM8eTJv4ABxt3\nZwOMmvnPxm6hjtrGOzsZCslyrB9rZ+gAn+tZjT2jtxlDUkfI+lbWW8mEEheAqhIMkZ/F5V1bmwvY\n9xeWN+6kk4GMDyPvmvSkeJvZ82udKu/pR02FslmY4JPPFc9I08PY7kgH6mHavFCfKOjRmuBlSEYn\nnA4rMlvKu2Rm49fSuqeiEIwBu2hRw2O5oNIghOxM84XPatFKVLRMzMOx7+9axc/RuViCvvg1JKwW\nxanfxM8UczKJOGjV8c4P/JpyzlVkZiwAyfq58sVhpI022a7GciTgumWBVh3z7V63TA90PEleYNz9\nTHOecD7Dv2rz5lSs9GB+6j0WnrscLsEg/m5B2++K3ahH4CJJLdQomcogBBOO/PPP5V8+TqR9CWla\nMV/qml2NxbTiaRZVXndjnnv6Ecg/lXIu9X1a/wBRRYVeKEuAsmcdvMDv/NWow57keeWV7jE7tw9t\naWCm3+WzKGDBndmaTPc47H2xiuRL1bYyzxyPAlouQx2Hbu47sRzj2wM4rEISntCWVY6ibWNh1BIj\npfRhJojJII12+EPU8+1cy66cvtEvYryBzPbtskhl5258uf0rtjlw9kiuPL3o9qNIkubKK5jmCXSY\nLGPnDY7EDsOaRlZ5ha6gUWYYAmjwpPsR+VedST6PUvhlFzDfSSFY3SRQeShyT/TijDcKm5ZC0bKB\nldvf3zW1UlSD9vZ5nXLm4toZo5r9cS/UQw4XPYH07j7V89vL93aXZMSjd892x5/1Ne7DFPaPmepb\n5bOTNNuDoCTgZHtWJ5CoO7B7E17oqjymaV/qPhkmjEAwG+QI2QRXQGkIRlGdWIPlVrRqVJ29u+PO\nubAsMcbF127M8hc+dDKQA7ZMlcEE9802QIvNyZyVPOMDyP8AXyrPIbmX6/qKg5A9feqlRRY0weTg\nj2rZCiefBb3o2QsFmwV2ildm/wBB7Ma5cwaGRTtHpzSLseTRBGzyBZ41UDIyPOtUsgihWFSM/wAz\nYo9sDxPJEPrz6qc00cqsN0ihVB4B86y15KZbpk5Cruyfqf09KRPolJc87d/9Owra6IdKASzxPyUJ\nAIBH2/8ANSO0to5f4jEAE9z3+9crrSBoSeGKIpDg7iMqwyOPSszSqX3AY9sd80in5KWxu8o3qTgD\ngDv9q7nT9j++NRsdFso0N3qE0dtEruAhaRgo3E9hkisz+ED+nv7NvQsf7L/wyvbT4uaj0doM13eN\ndi9jvwJZkKqBFKXRdzLj6QjMDu7A9/yR+378WPht8XOqulrf4f3a6ibKK6iv76LTDCzk+H4Y8ZwJ\nJFX6/pxtHJBOeNqSiuLeyM/NPTthfafeCG/RXgkUqmG4Bz+E5H3NbIlm6cvItR0yaSC7Mq3MUkbl\nXR1bIKkHIIIyD3FYlNSftB+4v2Tunfip+0joFx8SOrv2luvINPs9Sl059I0qY2jB4wrjfOcqwKyI\ncKmQDjcD2/IH7TXSPS/Q/wAb+ounul+mtY0Cw06aNWs9TuhPP4hRWMgk3OWSQFZQSzH+J3HAHfaQ\nZ8rkJZwschAXKkj7/wDBr2Xw7+JHUHwj1HVde0fTYLwdQaFe9Ps13G+xYp1VXdCpGXXHHceoouwh\ndA+I2s9K/D3qr4bLo8JtetJNNnuJZkcTR/KSSPGY+QCGMhzkHsMYr23R/wC0L1l0Ppvw/wBFh6b0\n6WT4dapd6hp8VxHKJria6bLRygEcDjbtAP3qNUKNvVXxr0TrzQr/AKdi+BfR2galeyLu1DTorkXc\nEglVm2h5SAW2lDkdmPnW34XfG/UPhh091B0Jqvw90TX7DXpbWe7tdYimA3wFvD+lHXzOefQV5p+2\nRk72uftP65ZdPXui/DLozRuh77XVtbW5vOnXuYboLDI0iLFJ4hZSxYBiOSoC147qn45/E/X/AIfw\n/DzrOa/1m7s9Zi1nTtV1O6uJtSs5wuzZHI7E7DydpyATkc0hNuinotW/ag+M+q/G3SPjrfdORQap\noVmtjFai1nWzNuFkWRWBbIDGWRj9XBIx2FeZ6S+OfWNn8Rer+ujptrqWrdb2ep6feQuruI1uzmQx\nqpBBUDCjkADkcV1kwx7T47dVaf0j030Lquh6fqbdEa7Fq2iXV4sgu7PbIrPaghhmFmUEoRkHsfpU\nD1XXPx1g67udV/e37P3RlrrnUSyNLqMdvdLeeNICDMgaUgtnOCQefKufKkDGvx1+IjfGHQ/jDpek\nNpur9P2trpLRWcErQTwQIIzFMpJJDpkMMjGQRggEfQNA/aT6pOudV6jrnSGk6npHVd4dQ1XQNQtH\na2SQnKyoc7o2HYNk+WckAjtjyt9i9nW6a/aQ1x+sdL6i6f6B6W0rTtPs7jR4LC2tXithFNzIZZAw\neRyMkZbzOACzE9PW/j3pWqaNFBYfDfRNFtINRUC/svG3TQ7XBQGRmB55OPNQPOk8ulRuLfknWus3\nWm6DBqcelXcpYxTxrGDzyDjgEkc84H5142X4y6NFqlsl5Y5XYPEkDn+FnG4Y2nJHIxmuMsnF9HRt\nJI6+r9ddGiwtdRtYYJWndPEDxrujQ8knyz28/OvmGv6pH1Nr6ziVWgRixB7Ko4CnOKqmpPRYtKJ0\n9YuP3XYwvbIkEhfG4Eg4OPTHl71xx1BdCVvEQPyD3Byc+e4GvVFJo4S0fPJLtOfmSZ0IO7GSMf8A\nNcK6lWNnS2DBXJCe4rw407oPozM6kjar5HLA+X2pGRmUjYQvoa9KFmdotvlkD1pTEXbIwMZIJHat\nIITw2I3nBGexphMA5GGCgBfp/wA+9R7KX20Yu5cNxuOSxHavWjQtK/d4uLZpZ3AHiYUbVPlyK4ZJ\nONJHWEU1bOZHAiP/AAcbQeAWBb7GvTWeo2kFsN8zllfOGzgc+VccickdcLUXbOsdZEESzQxIVJyz\nJ3H5Y7VTqmp2V3ZtK9rIpUjw3PJ/I+X2rx8XaaPTLInFo8sWN1qCQqz7X52kcAfzY47dxWrVNRSC\nNI45ZSEIZSvG05HufSvQk3JJHji6tlUOuSvIEaZwWOAwJBH5/rWe5ivDLLM0sM5YhkXHJIHJyPL+\n9WKWN7MOTfZTaXmuwGZyv0ybQ25SAwHbuO398VZqfW2s3dkmiw6k0lvGQQuDkkHI5/P7fpXX8cMk\nrWyrLKKpeT1XTvUOtaPpl3qd6LmR7lV8NfAb6mI4b0wBiudadWX6SLdTOZpDcEvkjj29/OvP+CLb\naO8s8oqKO1N1Xp1s0Ul9FIjTxBwYm5J8/vXMveufD3RrarslhxFLnhT55H34x7VYYJM6z9SqPJX3\nUt7fXpuHnAXCqQowDj27Vxrm4kYMqj8RzzXthjUaR4Jzc3bOXLIwJBbGO9JJMXXYGPHJr0JGRI5V\nGElCnvjFWTQRlA0UnGMlSeRVA8MRXCuWyf8ASKsTemQWx25/3rL2DZCmxSsSbmkGd2O3rWe5gRQN\nz4Yt3/Tisp7BXCoE5jVcDOCfatvhBoykQyF5XP8AakiMzzyKgYEfWBjbjzNVxpdOMInAxkdsGqqr\nYN0STQRfWcSE8jGCv3NZpWUrkIGZju59e1ZVN2iGl5kIXckYzzwMmuZezgy5ifzxyBVggi1LkEgu\nDhR2yTVkMjXIIYEKFbGR51qqKVXM0zr4awuETjdzzz6/entYwyq0h/FkDI7GnSBvgIUMC7E9lIHl\n9/Ko8WWO+XcW+ojtXPphGWASPMVCk5yq5NdKPTWaUs86LtHHPf8Aw5pOXEprDfLOsTNGP5c9z9xx\nTRXMkEsdza3jw3MbCWNoWKMrKeCCOQQec1y82D9pdHdW/sS9Y6t0pY650p1b1L1p1LNY2VzJfahe\nTLBezlY2Eksk6B0DucsFbgZA8q/TfU/7IfwJ13pHUemNP6E03Rp7238OHUreHdc2zjBV1dyWPIGR\nn6hkHvXWMIS2kD+Ymp9JapZ9daz0L0i1z1U+l3l1BFLY2Tu1zFbs2+ZY13ELtQtnOAOc+dchOnr2\n71LTre80y4tp9RdflXuAYEkDNtBDPhdu4/iJwOckYrz0420LP3b8Lv2Uf2iPgZo1t1F8LfiXpqan\nfKtxrHS2pox0+SXsVV1LAttCjcFQ5X8eDXw/9tbpLTrr5P4g9R/DbqbpLr7Vr4w6pZ3N4L3Tr+JY\ndvj2tyNy5XESiLcpUMMJgbq9Huitg/IJtH3JD4MiKxJ+pTxn/iv1bP0l8M+o/wBkP4UD4jfFG46N\nitNV142ssWgS6p8yzXADAhJE2bcLyc53e1dUD6Zqfwk0rrT9pz4f6wblNT6V6G+Heja1LczqtpHe\niEOLRW8U7YjLJ4ZKufwhwTxmuZ8VOhtb1b45fAr486rp2l2+pdQdS6NpXU0WlXkd1awatb3cQRhJ\nGzL/ABYAGC7iQI8HmqD4r1k6j9qnqhZRtDfEK7IIxnjU3/z9Kt/avCzftD9eMHAK6uwJJ5/AuP61\n5Jrt/ZEj2H7Nk1z018J/ir8VOi9NivOuOn4bCHT5Gt1nk061ldlnuYUOfq2g5bB2hOeCwPu/hr1n\n1L8Y/hRB1l8YbdbvUemuuunrbpTXp4VW4unmvY1ubUSBRvREy578nk/SMbinVeCop/ax+MV5pzfE\nHpzT/wBpzVbx5LybTm6O/wCkxHEkbTBJbcXpJ4SMud2Pq24GCa+T/sn/ABL0XoDTviB+97jX9BGs\nWtlawdZ6PpS3kmhOsrsVkDA7Vn4Bwcnw+OcMu1t2Tyfe4dH600PWet/jDP1XpXxE6ys+gNP1XonV\nYtHWCSWwkmkSW8a1IBFxGqg5O44cAk5K18o+EPxn+NHxP+JPwwtviFeXOtaPZ9Z2zWuq3OmoGW4J\nBaAXIQdlJbw93mCRwuJK1oH0fTOrI+l/hn8SdQf4yal8Nw/xevbddVsNHfUpJiYJT8uYkZSFO0vu\nzgGMDzrnfBP4q2Njrvxh646p6ruvijoNl0/pltNqGoWBspNRtJJ445k8FiShTxZFGTyUB4B4RpRV\nkPoPTnwp6P6b6D0XRotZg1noLrL4maVqGkXLyj/1FlLbMBby47OJEMTDgn2JwPkXX3x//aIuutOu\n/h1LY3B0qFb2wl6eGjRy29jp0e4bljCHaFj2uJc4wA2cYrnK4L2g+n/FP4sR9M9O/DLxf2lNa+Hs\nk/w80a6j0Sy6ekvorkmNwJjKjqFLFdm3HAjB86/DMutzapdy6teTmWa6kaR2ZhlnY8k+pJJNMibS\ndhmqbULjwTGk/wBDABmxjPI/SmtryWJSxuWdWbcCD5A//FcEqCNGva7qlxYwLBdThhMPrWQ5IIPf\nB4HA71yrfqPWPHWM35kLOqEOisRz7jNfQxtOKNS7Oa1xPAjhHKox7nkGssCS3Eqgld27IJPFckkt\nmfo1C2dMyPKHc8KF86xSPJJnLHCnj70i+RQFSv05yD5YwacRK31Mre/3raKGdFEYAVtzHCqB3NY2\nglO7aMDsQTzQo9om3grkk5DDg5rpWlxMAwTMWBkc4yf8NcplTNYs5Fk2x5kz9ZYNwuK6mn2Z8FJm\nhEwdsk5yUPv+lcJyOsIuzdfStAFCwmJAOGVhyc9wPSuNeXpKDfI5UNnaxIH9K4RVsuRtaMJ1NGuS\ny/SBHtG3JwPzNK00UxUCUOucsrkjdjPlXZJxOHI3C6hkCHw1RgAxVEwp8sE+lKLiSV03xBckqfpG\nAB79xXOnWxetFTsb6MoZJGjEm3d2GR6c8jvXd0DSdPsD+8r2Jc7RtD/UFwM+ecniujbjCkd8Si3c\nujv6t1zo01pNZeNc70xtKgqHwO3Hlxjmvly3Hih7dm27pc5J/FyeOfPmp6XFLHF8jXqM0crTib9T\ne4uYUtY48pAiqjg5OPP9awXt3JLFbJINojjwV9Tk4P6Yr1JHCXkwqyyN4DK0G0jk9z70JVmUuhI+\nnBGBzitHNnNNvLLKTtZeCcnIFVQRSTPsU44JzXW1RTbFp0YwGbe5zwOBirRZyRRgNsQNwcHP5Vhy\n3sEaaPcAm07RjnuD/wAVnWcYzxjG0HHf2qpA08hAckZXOAfKqpTL2UkqeQCeaIBUeHyV7jmtUDlg\nBhgDzj9aj2CqW2WR2niHIOeewxWqBS0aqPxgYx5msyeiGia2adAsf0sDyDzmufLAwJVSGUfzA9/f\n7cVmEvBChplPBA+o448qoESNKTvGRnjzrstFRU8m1ipbse44porp1YiNlKqOCatWU2yzLJbmYYVy\nACF/m/8ANSxkHirCWBU8kY7cedYrRDUzeHE0oTZn6RkVjSdvxBhzyOKkVaKbo2jYeKyBA3IYHJzT\nxOQzMZsBcE4+9ZrRCqS7XJZSSWHfP+ef96ujut+VkkznngZ/81eOijwajNazLLDcOHicNFKjEOrA\n5BB7g5/rX9Ivgh8Zet9D/ZA6o+MvXvxHXqLVYorhdOSaaKRrFx/AtopSg3eI8xVjvJYqyeeasVQL\nf2H/AIO6b8HujLX4l/EK6gs+pfiBLFaaYt04Vo7d1MkUK5//AMs2wyEd8BBwQQfpv7VXwT0j449E\nfuW1mtk6w0qKbUtCDyKsk2zaJYiCc+G5aNS3ZWMZPoa43CgeT6P/AGmOprH9liH4lw9HNr+u9Iud\nF6m0+e7a1ntZYP4bTODG7FsGF3TAwHc5Gw1/Pfqz4k9c9aWNjp/VfUl5qdlpUk0lhDcTNKtsJCpY\nIWywX6FwCcAKAMVym3pMqPKtq1tMpRo1J/Aecfb+1elmuurOrelNA6ENjql/o+mGW+0jTobJmCme\nfwpJIyi7nVphszkjeCo54rKUor2g7esdX/Grqbpq66YurnqC60m+s7SxuIE03AlttPZjDGzJGCUi\nYSdzwQ2eRxy+krv44dO6AkPRFl1HD0/b3tr1E72+lGe3hubY7obsOYyqkFD9QIBCYOQCK3GUvJD3\nXVPxX/bJ6xs5OjuoD1pexyCLUZbF+n8P4dvOkiTYWENtWREO7tkAHviqNZ+Mf7YPxG6XvdD1S66x\n1nRNUjSG4SHQQ0cscipIg3xw5G5WjYYPIZSOCK17mgeB6D1/4o/D/qPTdU+HcmvaZrmoB4LE2ts7\nSXa79rRrGVImG9CCuCNy9sivW9cdc/tSdd63FqnWg6uvb7oy4S6ETaO1vFpcyAOryQRxLHGwUBss\noO3vxWFySoHitatevutrXUvid1Do2sahaXl47ahrgsXFq1w55DyqgjDEntkd+1dbo3rv4v8AwF1D\nUpOltU1zp1keK11K3mtf4BkdGeNZ4ZlKb2RXK7lyVDY4zUTkuiGzXetP2m77rWP4yvedafvq1K2E\nWrJp8sccRL+GLYBUESqZG2+FtwWbGCTXW6n+KP7X3WXUunv1SvWMmsdJzRanBapoJtzYS8lLh7aO\nFUB/FhnQ5G7nvXVW0DldLfGv9pPoGfUV6P6g16wj1m4GuaiY9KR/GlnjMvjndEeHjRnBGFKqSOAT\nWfrL4vfGrqSKfUesuoNTk/6u0yK1kmurOOEahYRTsybMRgFFmV/rTzVgTwRWJN0iMdL342P0Lp3Q\ncej9VXPTV/ejUdKs49OleKe6EbtvgbYSx8MO+EOMBmx3Nez1v41/tean0rL0trl91q2ikJp10X0c\npKSxCiGW4EQlYtvVdrOS24Ag555pT8E2W6H8cf2vrTp+w0no/Verf3TpVnDFapa6GsqRWkYaNBuE\nJ+keEygk90YZyDXxhtA676p128isel9a1TUYnN1eRW2nSyTIZDku6KuVyTnkAc8VuNySTKYbrSep\n7EyvqehajYwQGJJWntXRYzMheINkcF0BZc9wCRkUbCZ41bK5ViFIzntWZxpA6UGp43bT4bPkfSc8\nDsCK6kdzcZgjdLOUyruQtGMj3J9RXHk4MWeYtbASR4mkb6h9Qz5VTeQRWzgIm3zG08k+gr08rlQK\n7MSySBVVhz9se1blW13fw4dzjI/MVmVp6KUzpG+cgq+AR7/8VSypEuZHJKjccD+lbg9bKiqa8MsY\neOLiP6Qx7DP+9ZGaQ4bkA98DvWui2aIj4R/iYeI9sZFXo7yEphQhPAPeuTW7Bvt7l4DtRwFOMA9s\n/wC9dhL1VgJt4FgUFQ4JJLZ74HlXCUTrCbTs0vPp91BFdMXL4zzyFx7ffmvOavqlzcW/gNLGEUna\noAya5wjct+DrmlS15OPbxEljPKg3jB5z/wDFb7exeQ7IxvVSOVGSRiu85Vs8lBijltnZ57eVI9xC\nsSMj+larS+YHEtpLNHyoIzkH8q4zjz2mQ1PLbSRLBtcBTu8NMghvXPaqzqEu5YJJX2RgEpjkYA4/\nvW8VtVI6puWkZbTUbIEgFGLcbSeQR5f70l1axzS71jjUjO0KcEe3oa7ptPZHCtofZOkRblQFO0Zx\nya488N3MrKFzg/jc4A+5rUZJBvRhWGeAlphuPB3DPatYZfD3M+4ngceVbe+jAXUmBsgYII5OMCsl\ntbRxv4wUk/iXcec1E6BrKRxlwfpBPkaPhLM4QEMqsMkZ7c/5+lR2tgWfSIy++OUKGGcHnj/PKubc\nWywv4eWZmOFGP61qE+QKhMRlXJOBtGOwpzcK+0HdkAA4PNboFkVwcGPGUbjk1p+VlkwyybAvOc5r\nLqPZLLrGMxHxZ51J/wBI+/vWh/xlowhUckg/0rlLbsMaWd0YXCnngEAds0kjNKpKArvO3v8A0Ptz\nUSrZLOVPCYkYGEsQduQexrBvdSQCQc4969MdmkK0SueXOSM4AzmmCRowDEgHuTVsG2CNbaLc1wGB\nYYA/3p1nTdgsoYEsSB/as9kDLMhHhOznPI5pP4bMiqxKr3HYE/eotFC0hUYj4UnkZ5otLuH1E847\n0SAIWBBGBkZIFOJTs2FMnOc57VatgUyMCNsm2uhp+p6pZpKlrezRpK0byw5zHNsbcniIfpcAjIDA\njNR6B9W+Kn7SnxW+NuiaFo/X2uW00WgSSXEL2luLZ55mCqJJAmE3KAQu1Vxub1rkdEfH34g/D74g\naZ8RrXqK81bVdJV4k/etzLdJLCwKtC259xjO48AjBwRggGsW2wZ+v/jj1v8AEnWdcvr/AFN7C36p\nuo73UtN03db2c88a7EdogSGbjJLEknknPNeIe7+UDRSSM5Od2CeBRxvsGG6uYVcPFKxyc8+lfZPh\nx+0tpfw9sumbg9AzahrfTMUFhHefvjwYJbBNYGqNGYPBYiUyeJGJfEKhX/7ZIzW0gdzVP2xuoNVg\n0i8HSFnb6zpssM815DOBFeSJeG5Z5YRGATKp2Sc4Yl2x9RWkn/ab0TVtL6h0q9+HSx2l7cwyaLDD\ndWjrpMEFsLe3gBuLOZzsRFzJC0EjHcdylshIHpLj9s6z1TX7jV9X+GebG4nvpZ9LttUhW2uhPeC5\nXxhLaSMzjaitIhjY7FaMwnO75nr3x11HUOntY6e07TLjTm1NOmBDPBqLf+mOj6c1nlRtBPi5WT8Q\nKbQMv+KoDff/ALQ+o6p8XpfijqmgvLFPpcukSael4IXit5rNrecwTJGBDIxllmDiM4eQkhuc9DqX\n9pObUegpfh7oPSCWVh4Vvawz6peJqV0ltFBLEQZGhQeKTMxEiBNiqqqoAzUBg0b4zdMroPS2m9Td\nDanqtx0rElpDHFr/AMvp93arfG88Oe1MD72Z2KswkAKhTt3KGrr9b/tDdOfE/TtVt+vPhvcpqWrt\nptxdXeja81sj3Vil7FBIy3UNzIw8K9VGUyZ/gJhlB2iWDbqH7V2qtr+kavadG6atrp1/cXk0ErpJ\nPKJrmWUiO5EayQkCXaCucMofHlVug/tX6d0Smj6X018NHk0vRnsxajU9XF1eRiKe5nZxP4CrvEl1\nmM+Fsj2cpJuaik7IJe/tVXV3oEWi6p0XBctaafZ6XaXnzu24jgt9JlsWRn8L+IjSzSXKqQCjSSKC\n2/cOT1p8eekPiX0zD09r/wAMjpf/AE5atbdKy6ZqDu0EfhwxJDdCbIkULCGLxCMb97eHmVmEb5LY\nZ3NO/a30jQtG0bp+f4XfNNY2MNleMb2yX5hU0u708MA1gxc7bxm23RuowF2hArGsXTv7WNl08iWG\nkfDZIbKKdriFxd2sVzGTdwXLxgwWcUCRt4DIVjgQkPkFSDu2n7Qjcf2qdJ17SeoIeoPhYs171FBp\n8Fx8jdWngRmyW5jgaG2u7K5jh/hXCKdgUhoiylN7Cs9v8f8AojSLvXdWl+FepTz9V2VrBqyXWtaf\neQhoGiMbxQ3WmSxKMo2VdZD9QKspXJxySdEPnetfE7Xus+i+legrj5k2XSpuPB3SiQzRu48PfhFJ\n8NPoUknC8LtHFeUgkDyfQucsduTjscVmbtslnWe3hnkLx3AVuzKBxu/27f1q6G4uBDGlwVDYIVcj\nsO3avI22gedOpGRVIBGfPPf7VFfxFaSZGdY+/Ne7jRseHUN5JWRVI/CDnt96teZnk3pHtB7n0/Oj\njsgRMrkkryF54yRVQuRLJsDiNWOD5/0qUAF4J9sat/7Qo4wfUe1GOOAKW+ZZxjAVU5Jz29hUtpUa\nX2SOOSNiz7VwcAOcgVYwaMAKEO45HmM+vt2rLLWi2zSdBJJIqAKN27d2JPlXUt1W5jLOi7Y8fVjj\ndzj+mK5ypbNwVujla3E8QLwO0Z5BVTlT/wAVwxIxUmSRWYjOQRgD7etdIJNWTItjbiI0bCsHB8qv\nS5mthF4UgjcfVgcDGeO/2qtKWmcrO89/eyRqbsq6kE4xx9sCtYgtFWN9imQryrNnB7cZ7968iio/\nqV7OcTHaTieBtyycuGHP3rXPcCSKNtkcviEg/Ryee2PtRptphOujLd6DBuM9vaPAGTko30j8vI8+\ntWW8JjjQLKHAHAbAP5Gu0cjlHZ0jo6IsYhC0kpeQYPJY4AHfJFcK6lkkldNwCg4UAdsVnHLm3Y43\noyzRsePEVvL6e5/KsskciJuCjgYA9DXqjTObVFfiEREu3KnHA70IZgOXUc5watAtku0c7Suff1NR\nJZBiNEAVuODnNSgXRTMMBl3EZAI8qpkWVpQfDBJ5DHuKykkwcy5t7mA4lbdx3B4rO6NE4JXAYZ79\n67Jpg12dwkLnfES2cBcd67CSk7d4MTDkbR6+v51zmtkY4hErESmMKo/GoycnscVVeSSRTKqQ4XIx\n9IG7Nc07dEDHdypKYjF9L/jx2xWLxyJmGT7DOft+daUQNJJMbaT+GwKkhcd89uD51xvAmZQp3LJv\nIAx+tdYUiozyRSRvsMoJUY4Oce1RGfguOx8/OunZS5pQ5CgMMY7/ANaCyfX3JGcZNSgNKrDDlySR\nwD6U0cpJCjcM9+f608AtL7m2jHqMGrQsgU7iMYGDUACwViANzE804EoccFQ3OfSnQNFrErs8UynA\nyMjHlirC7xBv4QCjg49Kw9sGKW8lkfEfA9BTW7yM3hyoQ25Tk+Q9ea1VA0CeNch4huA4K1RdSLlZ\n8N6HJqJOyGfwzctmEsD6eoquW2lgl2tCSBjnPB/OtJ+CmqDwxtdxtcHkD2rXutmP4VUtgnB/zFZl\nYLJI4hGypjd3/wDNZ0kBKgjODgYP9KytgtcLuz+IMchccgUzGKcZXghcbaAMjFVDA/TwB6g0+BJE\nHf8AGx79zioC9YAEXecHO3GO3oarnt5opN8fbJJx/L2rClbIBlWeMI0mCSCffFSORXlQ7mVVyDtX\nB496oZm1i2cT+MWZDt+nIxkf81RboiIzTHczYOQMVuDuKFnWsZfAuY5QEIbgqV3A88Vu1fTXe3cy\nP9RfcoAILDyBPliuEpKM0wmXaXFb2QaMqxycg47A+Wfy/rVt5BGzGaGNdxOABgE58z71xcnzsyW6\nbbS2ofxHDpJJwQMkff0/PzoC32gJHCXb6styQfSjkpF6PKwyoZArFWXA8sAH2rahEY3bd2eMHsRX\nvZvsdGinlIEaocHsMUZCVKxsDg8Eis/TIUztMXZICcMMYHn7VTFKZZSMKoA59vWrSYQYoXkOQxXj\nGSODWgKIlP8ABLschCoxn34rDfg0gQGLxlWViAcbuT5V0rjwJpBaQbGXjaV/Fg+WfvXOV3ZVVAS3\nhW0kl3MUX6djHAYZAzn+tZ7e6keFrWNh4YIZgvBPkP8Aana2Xro6Cz2T5WWElceZyCfOuRdxWM0j\nQyWuM5KvG2MD2rMeSeiSd9GYwRabGbpZd8a/UA3JH/mqbVvnZFucHw/LIyAfIV1W1yOZ14JULjdI\nv0IQo8sn3qxnIWNS7OSQSw7Y/wAP9K5URmiAW0jNGqDxAdwH+on0BrdbSyRk292FkUD6d4GAcjz/\nACrlON6ZUi2R3cbPF8IA8hVwv6jtS5hjQiafLA91HYefOOf6VzVpcUjdlUN0bhpGiQshGV3NwT3/\nANqW4SGUtI5SOWUd9vPbtxXWMeJpM4N6rWpCCPYTwDj+1c2eZ0XYwYk88jHf+9euG0Yey2ySMwy3\nE65A+kL2DGsYtyGLhiAScehFaT2yEFyQxiI7nA4q3xSCC3J9RVoBN0QzBAdvFKLtQcFfqbgnuRU4\ngZ0S7UFgfp4wT358v0qeDCzcAl2GFVj29xUugVTWErSiQ7Y/I89/cCtKzJbL4nL9to9/vRvlpELJ\nL7eivGoRifqx2P8A5qwX6+HslQHsQQec1hw0BJJHLlfGbDDBBOe/nRfZCyb41BI25xnjtmnWiCRx\nxqoiZg29ztySMf5zxXN1BQjOdyR7sgktk+mf7VuL2VHImhkhcBnB3chge4otJIUVNxAUV27KNCHk\nO5R96sz9GM4YEHmgELn+Zicf0qZx+HnNUDrIQc4OKv8AmCMAO2fKo0C6O4TKttyR3q6W9ycghsgY\nrLWwdnpXSbbVbt/30+o2unrGzeNaWfjtvyAAF3KD39ax6hpepWt5cQWFnfz2yuRFJJaMjMvllecH\n86cSWvLOMjFJSWUDHtRku3J5ftx28qtWUdJJQC3YjkZ8/tVyxCYiN2IyNx44H/FToAdPlgTEfIDP\nkc//ABUju5CDE2CB24qVYELpuCxqR3zj1qwqULOr9iCoY/57UAy3OPwjtgnHpWhUXlhkduDUaogV\neFt24Mv9PyqRkKxOAwH9ahQSSFnBQjnnaTxWmKcKoDBTk/fFRoFhkLHaBgDnJ86dnBQ/xNpHf3rm\n0Chgs3rz54rQkULFJGQho2yrA4yffFHZCy4+XnjAl2llyACOxz3zWcw27RNsJDnsTSNpENenxBJI\n0KjcnOfI+1daa4tyh3l3cNuVC3cgjjjyrjkTctFRhnnmMp2Nnccgj1/zFaYPEkiEpLFgy8D2PpWZ\nKkQ6NvPEs5UgkOOAq9ifWi81vZOscSFQ5HA7AVxafQZ4q4smSTCqFKAk545q9JibclB9YAO3v271\n9Ts6dDWc8k8wSXHPYDitqxqrmViWQZO3PY1iTrSIH5dXLSRqQoYHBPJ88/561Zb2KvK6x27A7gGz\n5+v9a58yxVmiKwlLhHt2CkgIdvc/f9Kw3K7XacCSHaVVQRgMOee3nWeVsrWjLOrIwAwGIyV28U8E\n0kRRliZCCQ7D/O9a7RlCtdujDwlymSRxkDnsB+v61W4l8aSZioVxnuBxV0LHaefwghQ7R555/wAx\nQK78YYAd93p7UWiAPhvG6A7kI4U9vvn9KO+JY9uAhOTjyPsMUewRd4IKqTknv5/etiXCiJRiPcMg\n8d/esyRKBGy7lZ5Crn+bb3X/AH866sLeOpXAkBxyByPvXOQZYlxjJaNhuOwgcVzrqZ5mjj2bWbjO\nPxev51IrdlRstVKqjBxgnBVT/Q1L1JZokhUBcfWrYwWb0pauy2ci4VSY2nKgocHdSTRTMVb6ufMD\ncCPQV3TBXvgtlDCIjblgAPP3FYp77dIGZRj/APHArSV7IZ2CzNk7VPqex5q5YDtBkYEYwAa3dA1w\nLarEyttJA5I8qzLYwku4YkZ/4/4rCk0wAxoSA1yF+o8kEc+lNFKsY+lkLZOG9Kr2Cw+JIArzjIP+\n/p9qxy2Uocljhck88E+lItIzZjSVwSjDYDw3vV4uovD/AO1g+f1Vtq+itGiG7h8MKR9StnJPJH+1\nWglgSkuRu4DH8NYapkZbMgeLa+VVSGG31/OuLdWE0kn8QOV8m78UxugjnSiWNvCO7GchTRjhkfgL\nxnvXc0aBGIFwCee3vT7I0ZVJOcZwagM07oZG2dgewpA2DVQCrZIwKuAQEbsjB5qgvZFA3R4zUKhA\nSPPn7VkHtOi+vrnpSwezmtTcwyHeilsbT516H/6yHYyro+A+M5kz/tV6Kq8nzjqTULbUtVl1K1s/\nl0uG3yRBsgN5kema5xaPnnBPYDyFQhqAUQqqIxKcEkdl9P1qqGVlbEbZGe5HFRA13NyJo9scIG09\n1Hess8eyfaQEDEcg8Z+9RKtAvg8NZDLIjYzu59+KskEEkfhlsgD1OfaoQpSCOMO7yfXwF57DzoQ3\nBLFAzHP9avZQuzBtwU4zjkVYCAp+rPPfNAQOkYOMkngH0q2F2IO1yueaj+QXGWRfpOTkZBoq64IZ\niCexrNEssiuIRldxwPzrVLcxNEI8+g474/zFc3F2CidRLiNFyPXFBYQqgNKFOfw1pPRTStwsP4ZC\n3GQQKsjv1lYfwym3sccGsOPkCrM8rMH+nZwP+K2Wtz4QWLcCPPPlWJxTVEezVDOZl8OJlypzkjnH\n3prgmYlQfpOQMHkmuDVMI//Z\n", |
|
344 | 344 | "output_type": "pyout", |
|
345 | 345 | "prompt_number": 5, |
|
346 | 346 | "text": [ |
|
347 | 347 | "<IPython.core.display.Image at 0x10fb99b50>" |
|
348 | 348 | ] |
|
349 | 349 | } |
|
350 | 350 | ], |
|
351 | 351 | "prompt_number": 5 |
|
352 | 352 | }, |
|
353 | 353 | { |
|
354 | 354 | "cell_type": "markdown", |
|
355 | 355 | "metadata": {}, |
|
356 | 356 | "source": [ |
|
357 | 357 | "Here is today's image from same webcam at Berkeley, (refreshed every minutes, if you reload the notebook), visible only with an active internet connection, that should be different from the previous one. Notebooks saved with this kind of image will be lighter and always reflect the current version of the source, but the image won't display offline." |
|
358 | 358 | ] |
|
359 | 359 | }, |
|
360 | 360 | { |
|
361 | 361 | "cell_type": "code", |
|
362 | 362 | "collapsed": false, |
|
363 | 363 | "input": [ |
|
364 | 364 | "SoftLinked" |
|
365 | 365 | ], |
|
366 | 366 | "language": "python", |
|
367 | 367 | "metadata": {}, |
|
368 | 368 | "outputs": [ |
|
369 | 369 | { |
|
370 | 370 | "html": [ |
|
371 | 371 | "<img src=\"http://scienceview.berkeley.edu/view/images/newview.jpg\" />" |
|
372 | 372 | ], |
|
373 | 373 | "output_type": "pyout", |
|
374 | 374 | "prompt_number": 6, |
|
375 | 375 | "text": [ |
|
376 | 376 | "<IPython.core.display.Image at 0x10fb99b10>" |
|
377 | 377 | ] |
|
378 | 378 | } |
|
379 | 379 | ], |
|
380 | 380 | "prompt_number": 6 |
|
381 | 381 | }, |
|
382 | 382 | { |
|
383 | 383 | "cell_type": "markdown", |
|
384 | 384 | "metadata": {}, |
|
385 | 385 | "source": [ |
|
386 | 386 | "Of course, if you re-run this Notebook, the two images will be the same again." |
|
387 | 387 | ] |
|
388 | 388 | }, |
|
389 | 389 | { |
|
390 | 390 | "cell_type": "heading", |
|
391 | 391 | "level": 2, |
|
392 | 392 | "metadata": {}, |
|
393 | 393 | "source": [ |
|
394 | 394 | "Video" |
|
395 | 395 | ] |
|
396 | 396 | }, |
|
397 | 397 | { |
|
398 | 398 | "cell_type": "markdown", |
|
399 | 399 | "metadata": {}, |
|
400 | 400 | "source": [ |
|
401 | 401 | "More exotic objects can also be displayed, as long as their representation supports the IPython display protocol. For example, videos hosted externally on YouTube are easy to load (and writing a similar wrapper for other hosted content is trivial):" |
|
402 | 402 | ] |
|
403 | 403 | }, |
|
404 | 404 | { |
|
405 | 405 | "cell_type": "code", |
|
406 | 406 | "collapsed": false, |
|
407 | 407 | "input": [ |
|
408 | 408 | "from IPython.display import YouTubeVideo\n", |
|
409 | 409 | "# a talk about IPython at Sage Days at U. Washington, Seattle.\n", |
|
410 | 410 | "# Video credit: William Stein.\n", |
|
411 | 411 | "YouTubeVideo('1j_HxD4iLn8')" |
|
412 | 412 | ], |
|
413 | 413 | "language": "python", |
|
414 | 414 | "metadata": {}, |
|
415 | 415 | "outputs": [ |
|
416 | 416 | { |
|
417 | 417 | "html": [ |
|
418 | 418 | "\n", |
|
419 | 419 | " <iframe\n", |
|
420 | 420 | " width=\"400\"\n", |
|
421 | 421 | " height=\"300\"\n", |
|
422 | 422 | " src=\"http://www.youtube.com/embed/1j_HxD4iLn8\"\n", |
|
423 | 423 | " frameborder=\"0\"\n", |
|
424 | 424 | " allowfullscreen\n", |
|
425 | 425 | " ></iframe>\n", |
|
426 | 426 | " " |
|
427 | 427 | ], |
|
428 | 428 | "output_type": "pyout", |
|
429 | 429 | "prompt_number": 7, |
|
430 | 430 | "text": [ |
|
431 | 431 | "<IPython.lib.display.YouTubeVideo at 0x10fba2190>" |
|
432 | 432 | ] |
|
433 | 433 | } |
|
434 | 434 | ], |
|
435 | 435 | "prompt_number": 7 |
|
436 | 436 | }, |
|
437 | 437 | { |
|
438 | 438 | "cell_type": "markdown", |
|
439 | 439 | "metadata": {}, |
|
440 | 440 | "source": [ |
|
441 | 441 | "Using the nascent video capabilities of modern browsers, you may also be able to display local\n", |
|
442 | 442 | "videos. At the moment this doesn't work very well in all browsers, so it may or may not work for you;\n", |
|
443 | 443 | "we will continue testing this and looking for ways to make it more robust. \n", |
|
444 | 444 | "\n", |
|
445 | 445 | "The following cell loads a local file called `animation.m4v`, encodes the raw video as base64 for http\n", |
|
446 | 446 | "transport, and uses the HTML5 video tag to load it. On Chrome 15 it works correctly, displaying a control\n", |
|
447 | 447 | "bar at the bottom with a play/pause button and a location slider." |
|
448 | 448 | ] |
|
449 | 449 | }, |
|
450 | 450 | { |
|
451 | 451 | "cell_type": "code", |
|
452 | 452 | "collapsed": false, |
|
453 | 453 | "input": [ |
|
454 | 454 | "from IPython.display import HTML\n", |
|
455 | "from base64 import b64encode\n", | |
|
455 | 456 | "video = open(\"animation.m4v\", \"rb\").read()\n", |
|
456 |
"video_encoded = |
|
|
457 | "video_encoded = b64encode(video)\n", | |
|
457 | 458 | "video_tag = '<video controls alt=\"test\" src=\"data:video/x-m4v;base64,{0}\">'.format(video_encoded)\n", |
|
458 | 459 | "HTML(data=video_tag)" |
|
459 | 460 | ], |
|
460 | 461 | "language": "python", |
|
461 | 462 | "metadata": {}, |
|
462 | 463 | "outputs": [ |
|
463 | 464 | { |
|
464 | 465 | "html": [ |
|
465 | 466 | "<video controls alt=\"test\" src=\"data:video/x-m4v;base64,AAAAHGZ0eXBNNFYgAAACAGlzb21pc28yYXZjMQAAAAhmcmVlAAAqiW1kYXQAAAKMBgX//4jcRem9\n", |
|
466 | 467 | "5tlIt5Ys2CDZI+7veDI2NCAtIGNvcmUgMTE4IC0gSC4yNjQvTVBFRy00IEFWQyBjb2RlYyAtIENv\n", |
|
467 | 468 | "cHlsZWZ0IDIwMDMtMjAxMSAtIGh0dHA6Ly93d3cudmlkZW9sYW4ub3JnL3gyNjQuaHRtbCAtIG9w\n", |
|
468 | 469 | "dGlvbnM6IGNhYmFjPTEgcmVmPTMgZGVibG9jaz0xOjA6MCBhbmFseXNlPTB4MzoweDExMyBtZT1o\n", |
|
469 | 470 | "ZXggc3VibWU9NyBwc3k9MSBwc3lfcmQ9MS4wMDowLjAwIG1peGVkX3JlZj0xIG1lX3JhbmdlPTE2\n", |
|
470 | 471 | "IGNocm9tYV9tZT0xIHRyZWxsaXM9MSA4eDhkY3Q9MSBjcW09MCBkZWFkem9uZT0yMSwxMSBmYXN0\n", |
|
471 | 472 | "X3Bza2lwPTEgY2hyb21hX3FwX29mZnNldD0tMiB0aHJlYWRzPTEgc2xpY2VkX3RocmVhZHM9MCBu\n", |
|
472 | 473 | "cj0wIGRlY2ltYXRlPTEgaW50ZXJsYWNlZD0wIGJsdXJheV9jb21wYXQ9MCBjb25zdHJhaW5lZF9p\n", |
|
473 | 474 | "bnRyYT0wIGJmcmFtZXM9MyBiX3B5cmFtaWQ9MiBiX2FkYXB0PTEgYl9iaWFzPTAgZGlyZWN0PTEg\n", |
|
474 | 475 | "d2VpZ2h0Yj0xIG9wZW5fZ29wPTAgd2VpZ2h0cD0yIGtleWludD0yNTAga2V5aW50X21pbj0yNSBz\n", |
|
475 | 476 | "Y2VuZWN1dD00MCBpbnRyYV9yZWZyZXNoPTAgcmNfbG9va2FoZWFkPTQwIHJjPWNyZiBtYnRyZWU9\n", |
|
476 | 477 | "MSBjcmY9MjMuMCBxY29tcD0wLjYwIHFwbWluPTAgcXBtYXg9NjkgcXBzdGVwPTQgaXBfcmF0aW89\n", |
|
477 | 478 | "MS40MCBhcT0xOjEuMDAAgAAACqVliIQAV/0TAAI/3gU2tIW7KawwaCmQGTGHKmuYAAADACBcshU+\n", |
|
478 | 479 | "yICkgAA14AHowiEeT6ei7v7h3Hu0i2fpUBLGBIkbCMP3Vfz+9BVGCDXnw9Uv5o3iN030tb7eq6rs\n", |
|
479 | 480 | "EEhHs2azbdTiE9Csz5Zm6SiUWRdmB43hbD5i6syATuODUJd7LM3d9cbFpc7zFlu5y3vUmNGd6urp\n", |
|
480 | 481 | "vKKT9iyleIyTuR1sVS431DhevGfkUllVeIznYUe2USoMW1tufETjyRdmGldN6eNlhAOsGAH4z+Hk\n", |
|
481 | 482 | "rwKecPPU7Q5T4gDAIxj9hW84jVExMTSTHxkPTq1I4OotgUxURCGTsw60k/ezPNmNg38j1bqaGmPc\n", |
|
482 | 483 | "ruDKEIBDsK5qEytFB90Q68s0h2wmlf2KXd5bleBefiK+/p47ZsyUO4IdlW25rRy+HLjt6wQXfYee\n", |
|
483 | 484 | "3IkiQOoOK+U7u/lxcl78zfxwIoEMjUUSKNZjkp8clnmecDDJ3Kz+viF7bPklk7N6QRyizAKPIIpn\n", |
|
484 | 485 | "NJUuMWQmqeL2Or6cr4D0/0tOym+4tficxmhuEONKUtO2pPn3hRjMllkd12tXp70fLTfxy0dwB70M\n", |
|
485 | 486 | "L9iLEcItHb7zVupHlP5RxdvecpREw+OsIPr9KWilIesNE19jgIbT+TkiRBjOoKvUuwcQnKg7fOTH\n", |
|
486 | 487 | "VoLvnKuAfea+oujEdm1Rwd2tEOnkF+ZC11WaNQsiNR/eJ9EnUXjXDYGfhB+Oe7qj8nYTT+eOXg1c\n", |
|
487 | 488 | "uJNgLXEs4vOheWEjQOqfIWMQc3DmTof5s0ksBmUQ3PQ+UHPxZSnmOEZB+j6xT3wbm7HGzDjWtSg1\n", |
|
488 | 489 | "SjTxd1EiJ8xA4SIxxR8WIKLg+TwFxJNS7Laxq7Uglu3AkXe82P1JCdJX5PsbFbxuDbuJgakzRcTw\n", |
|
489 | 490 | "MLLSKCiizS/eCW0uJed/lev9yb80kKlVET4S219cn/zhkpeDV83cHYOr+sJQKDRk/Wh2c7fsuxfx\n", |
|
490 | 491 | "aEH/6reSmvFDsAnXAyPXliJ3G4VG3OkEM5K5WyGGrBizZbTrdGsBnzj5VSGGOJdCKuRrUluw/8es\n", |
|
491 | 492 | "2vYRPs9BcTqAqvHk9M52SSIf+1T6L53EZP8VbtXB+G29CMW4xVCK/B/YDjaNmqMwJ61dapugjnWJ\n", |
|
492 | 493 | "fqeXlGGa3Ch3aA7gi30T8PucNRBjLK3lF67ZDDvkWXRQXd+VMnKWHkBbCkQ/F/fMuNpHO3C00Y2p\n", |
|
493 | 494 | "ljna1qImBhVMvPe0F7Qx7G/YyxLRzhyUU8e23HGzp0agtNJRbydbrPV+TqJMSifJMNcZIf8wkdnC\n", |
|
494 | 495 | "3/xdpcXnLf2Ye3Kbd0o7utciTG+q5h6WTEk+PaNbXLLA0YyZ2VnLTcyV1QTS76aNCbV9Q1/OQ7QU\n", |
|
495 | 496 | "81Gg0hPa9aSiscGary6jLVwDQaik4zLsi7jPqgPVdup7pwx7uJDqRCVcVi5QoZFp/GHdex5sJTF6\n", |
|
496 | 497 | "9A6sja69/NLkFIWNSIeRcuGahXpF+wZeYIrqJv975s1TKYKAvp1WtzgtgWNkcbzCtROqf8rPtlAI\n", |
|
497 | 498 | "xkX8GLcEo9zfExyfimeXQ64qfFxEy0IMy2Hsxau9fSMqUnIjntuVVjCQtBL+94gx1RZLndE6wROV\n", |
|
498 | 499 | "Tq/wHwHrQzo9QL9cpPqPFJjiZ/NGZIFuudS+wsBFe6Hu8Oitf5zToLqLdtU4Smwh4ne3JsiT9lOz\n", |
|
499 | 500 | "N+4PPw3VSx9l5FppVwdKUWELw1dYpCOppyVWlJ3YQ8H4FQQM8EcYMG9N3Bxu79y1J1ikuvuhMmLQ\n", |
|
500 | 501 | "lehLTbguhbix74hd1VIQC8EjHmOZSSWbssulYwPbr6FF49tifk6PymJvulR9/u+2585HkRfbxveG\n", |
|
501 | 502 | "eWCz0ix1pIVfaNpESKmtLy/0mcbMg9hYDz2werz9oe0lT2BiMV6uAin6RaQcT8Vk9MPctfwae+gk\n", |
|
502 | 503 | "vtnZA/sOBk8MbpylaHqc0KIVHhhLFMNnkOFiucjtGo/JWTa/F6g8wWeow5ZuIJUORaYHWqegZbTg\n", |
|
503 | 504 | "M9dCsYYsfZGjjVMuSlDIvpYvIvFFooGPC7Ye2Jfawmq4Ut7EL/nv/dyAd2HRc5msmUhzeu/XpX3r\n", |
|
504 | 505 | "VlzRmf9/Qan8Dbve3QfW1Ym0o5J/KAc3z1VBho7JBr5PgCL68RiD9jZHN0VvsT4gzsEjNlW3D91U\n", |
|
505 | 506 | "y4RduaodBFoNTzXwlfUYULBzdiTbH75l/UmVMC4TKeTWhNzw2UezaqeGd8at3WSY7W/VR3+hvZHD\n", |
|
506 | 507 | "pkIjgKuNNH0DsCRa/Kk56XQoHIyvvUH/eNekNvziReqS4qgLnXUT4BRGt2BOtCifI6+X/DGHUOmW\n", |
|
507 | 508 | "lX7TN5b4pw5U7jwfwshtbhGZM49T8JMk15Mzrc7tM6J11TYxb5R3mQhZ8TZumJ0bMJXPM69HFyih\n", |
|
508 | 509 | "r5dJSEJMycxJVUh6NTQALUOoRTHIOwE+FpWI6feTv1SiZ0YpYe5DbkYJJbN7zAHbAKw25XvqR2mA\n", |
|
509 | 510 | "jQmOlsfX/tK8DPjP/8h5/xgAF4EUbj1tOnQCBQL8jk9vHtfsXncsprww4Z+P/Z/UrKifuFyEpBWN\n", |
|
510 | 511 | "8kLpF7yywE2iYdDruV9+/qKR8rC9ozNKyqQNIwtxrzYkWpE5t8K7gG4JFnrHona/Rp8dOX6VW41+\n", |
|
511 | 512 | "jb5LB1LEtE8MwjLp3RCUOq/+6yLzaOEgBTqzvEjDeFpg/u9DMHMr4/2TOchfjg7dl+uQ6Gsx+4Ia\n", |
|
512 | 513 | "9W7vivG95027p25eKL0nHvx/OqmAQEZYJL/JO58lOj0zPdJxrQ5dZksjMISzVZNn7DsxqE3zgBBu\n", |
|
513 | 514 | "Nzk50R8lTK3U8P12QiOAQYSTeGlYlkvfeofrfO1AitEj02m9aUkxTFd1ZZJoLQT2d3zEU5PmE4lx\n", |
|
514 | 515 | "MVfL5ttNnIbqfcIU2RJKNWqdw77xfjfrNc/eNpRKPZ/6z50LzBprgjzBHRfKgSWWkDxHrX0aTbgw\n", |
|
515 | 516 | "QFwd51+PoUWH4DkQg26uGslF5Hn3hB58+fkeLTosTANOIBNAeFZtTc4PIaLHw759zae7scY55xcT\n", |
|
516 | 517 | "abzlilYIftst2RZ6ntsRC3zFxduCKvL6wLfYT+TiIWJn5P7sTwZwXuSzXY+9Q3xMZ5o4Xcpz6vD9\n", |
|
517 | 518 | "FtTjzS69iefEYt4pXiDrZUo4ePGiLeoIFIwYB/v6GXdmG5VLLk+eKbOc9AmsX2zmvqtcvDRGQbzu\n", |
|
518 | 519 | "gXbH/kTH/lkNPBTmqN3ZJODUEXVohPEJ6th0xna0EVleB73Q3eNvaVUvhlJbjs3D/T17FRCebN7A\n", |
|
519 | 520 | "OXvzzbLE/I5kNfEmJcv4dxtIeo2uQ/z9ohSpiZzbDj1u40nJRyJxUK60wEv0nA9f/NuJ6/PEyU0b\n", |
|
520 | 521 | "kK16z2KH12k3Lc4+1f5fawIzkK2qJRB4wnj8VHhUW9mbJhs9vgfFmU3xrXSShY67Ygb+gYNPxxtn\n", |
|
521 | 522 | "4K/9eTSwIA9fv/nR33lA2lZoXALRUTmOZIl3R0gAM5h6oX1y1thIyqViBK95VZc8Pvy7G3O90M9S\n", |
|
522 | 523 | "4zkpyFQ36jrMazvMveMA4d39fvoaC7p90quiJfjI4yrl+ECVkCJL5MxRSa+iVcIL7Xbl0jVaGhZI\n", |
|
523 | 524 | "cMYmcGOBbLzhJgloM1x1zFnnj3ggJRFAM8yNnXxhavk+mA18JC+y3lqGsp6vPReRxGlGHMou17L4\n", |
|
524 | 525 | "It070LzkoeCzarpv8Apw59smdS5KN9qVN1WgeL7OSN8BHg94ubCvS7DW6H3/PbtRB62jFLsBhUV5\n", |
|
525 | 526 | "YqCIbIN5VZ81AAACpUGaIWxFfwAru8x8uT3FuOjrAeSWXmAWqq9jCNGE+N5AOv//9//xjk4uBAcA\n", |
|
526 | 527 | "DN96c97AVGmzRtnWwPsgcCbLrVdQJgbKp4QSmPwQnVhv0hXyBjeFWWlcvx70urEN3FK6/lvk2tQe\n", |
|
527 | 528 | "ZgbtlbzXluvTfnSj/Ctz7vZ+O1FjhDzzdpL7uLzewzCIW5VWLAEKUVuS2J6wNk6MR7UblcEd4EtO\n", |
|
528 | 529 | "Y+R4/qJgfojCsfRvA0oC5dc41Vd0erZbSkrmPTjLCn815bxlchUJMS8gQD5hJNwoKHvNLNwn7XKu\n", |
|
529 | 530 | "TtYIhH2wVNZvDWgzCjlPeQajnrcMsb6bZYJvNJU8HuGHvm50r7VG8qifEwmuyegAZXojh5Ul5Vvj\n", |
|
530 | 531 | "DW7kSAZyw8a7I6mHY3FZHd+OA3V4JZMbNliI3Tj1L6+MKTmilVialmyZagRtEMeKRdtxUPd3vVEt\n", |
|
531 | 532 | "rOBVIVYWdgAGA7HmZiHQUQNxLkWxbLyWVlrh5EM0Do2NdbclHxxArz90d+MSVeUOIXQ/4V9quq8C\n", |
|
532 | 533 | "8qVflo1gPtPMkjO2/UrdOYqhY404ReObOu/fdp4hAEDq6jhy64vOeT7XUK/Onq0rXTldtA6kvgQa\n", |
|
533 | 534 | "Jg+mgYSR9hfXtMbOUSLgLj/RmBSO8aAMHuJJZqf1tCM5pZ9eYUsrHmy+/z2NGalon0//uF6+33bQ\n", |
|
534 | 535 | "zT/RLRfBbYTjy9QrJqHLlw46lggWPGkHuPKSqk/CB7U4pNPXUbR0DdcJy9Db00wCzVzxVc6h7jfC\n", |
|
535 | 536 | "FgiL2Y0HVqd6bgIaVUqn/gJCEyCDVplnzebv0gg3XwMJAGu639lHu7rEvxTp1smIYjWp9R5L4Ssp\n", |
|
536 | 537 | "VvS07Nb+Smk1FgsMp1K3EMUT8X2Fty4VG54/Ec6bE8tNVw4/QV1VzBw7Px2/2eEhhUS+FMfbHAlD\n", |
|
537 | 538 | "28x00jRgAAACW0GaQjwhkymEVwArOUkEOhoFqiELtH8wgecFLiUq6WqmwAP7iGEwbYzfnHacfqUN\n", |
|
538 | 539 | "XAfD+CGR2ap0lAHL25ipuYtd5j2O0PU/MpaWPG/n2y5OkfTzaOpotaR5tWjN55B2XblVVqsFfBC/\n", |
|
539 | 540 | "mvsiPvCBWUHFChacdY5whj5mP5rqQ0dqLJCsWjrs4TWnIbL2V/Iwfj3hwI35jfo1JkTOeR+8GhOd\n", |
|
540 | 541 | "ma9rgiKWafCbQyhYMTDmVdvhND60Flm97EDSTjF0OC+0gD9b8Yn4tNeHipCa/aWyt0n79bMmjfcj\n", |
|
541 | 542 | "ntBCPjrcB5ecRTpfGHbEHy1IRj2cjkGXKC+VYoYJXBp4rd4cMd8ygLCk5nBSd8/cTaKNRjdBscOe\n", |
|
542 | 543 | "TXG6QEjSxj9/2pVwx9DMRVtWQR0BSaAcQcZ8W2KPSaeRC4QwmNMu2xx25CSyrDiq2rFSK/JJtmvo\n", |
|
543 | 544 | "IjAKq0ciEXoOgw+Ke+Ylb7ULKCS3k1p/613UNRp450uSq5b7CAHo7S0b7fBMLfNmwSjRYEhLlo0H\n", |
|
544 | 545 | "UaRe/I+IX2Z6XdZH9Hty/399ZA1PwZGC6EfvUJIf7CBeaxv7cu6IT2/s0zPRGthpvXpYw6A7P4Ww\n", |
|
545 | 546 | "z5C4V98KnIUNUanadqabKP6eXWhvbvcQHxAjiOOiKZgXZplZW2g+B2NNyJSLiR+g48DqvWR6t9S2\n", |
|
546 | 547 | "aGfFjdOW1Gi6oTtZ1d4p5XIslAr8mryeZ6+htSSQe4AcfVt7k+V6mOthBCYtr/LEU4ZHtl0mW987\n", |
|
547 | 548 | "6PK8mRFAaT8DJOUFVz1lPfzRApuPggkkyq+UMvyfKTUbCk7/DpfX8Y4s4QAAAg9BmmNJ4Q8mUwIr\n", |
|
548 | 549 | "/wAsWUPjZw3ksgRsxZ6n4fQjprPbkj2aUh30y0bZJnLmiXnWskvOGnCPwBnG9dEhatwX3hoxk7BN\n", |
|
549 | 550 | "yG+wQ4emZUpcVzcWl2T9nKQB1euucuZWHTg7TCtM/iHyfPO2vbmGsfzs70b/egIbywUH4y4BQSL1\n", |
|
550 | 551 | "nWc1SmpHm2zHMBcUjYLDZ5gL5vdfxn0V8FFw66G88c/LN4I5icUa7xf4fcSBKywU0ajbp1P+aJYj\n", |
|
551 | 552 | "BgWT6Ggu0MDLDNl54tfqd42lKosQtM1aif4WXAZFP5Ww3vrQ1rH9+utSYxqZd6N6gGtNbSNMcVia\n", |
|
552 | 553 | "Kn5LcnjsbBi3T3EmGqshEbcme8VHKwR3kSfBOAprrIsv6K8R+X6az+MD23rWka/2v64m1qM69D7X\n", |
|
553 | 554 | "a+Kcs/n0KLCJdTilyaGadopLeaAn3eYvWTeHcucMM1Fp1KgHD1tiFeO6HvobLkZlRximsA3/7Mio\n", |
|
554 | 555 | "hYklLIcJrZL22BH+6W9d6kZsYIsej9RM681nU6mWNjepBAfAfTbrGRrVB/h2DxC5B8YyRjgSIzQj\n", |
|
555 | 556 | "NYrse0rzChqbrsLl7mQ7W+1bsNKze5//9ZIa8rSsF+BXh/vgoRTDkPW/ws95B7VPCZEFChfX0icw\n", |
|
556 | 557 | "+tpcpN/q7NY87tUn4vESdSiMMlyhKklMjQu/G51J69ZRQLs2oUO6YfoJFqliy4qCFCrf8SZE9Fc6\n", |
|
557 | 558 | "DcCagAAAAodBmoRJ4Q8mUwIr/wArPWF/KOw78THwadfPqhJO0CnmR/M74/XYZLqVYKlNcEaYauf+\n", |
|
558 | 559 | "vrRUDJPmu75sMKy2Y+Bnslc/iAISSyWtw/h/3CF8fE5ZrbrwSNst+MSyCoNWP+8imtoX2eyojpdC\n", |
|
559 | 560 | "k8YP5K+cbK4SJPCkZXbYqSXYk7hO8AdSemBHgXKWiZ+UOr802aJo+98ZOIjX9hWL9bo31Gqx7cy4\n", |
|
560 | 561 | "ZG+W/ar/WGlzDa1xPWnPRsEdrIcZlEVGV/jGmbirkxw1lyUYoqj8Vv7Bxube9XPQlBkXOV6Lc1LT\n", |
|
561 | 562 | "2IzNq0V7WwVhF0kA6yxfAsFxc9krNEH8vGGntTWI608ovjatXc/CKKXw7AjJSftlTcLI0hIIGXbR\n", |
|
562 | 563 | "Ur0NCYNp7M4cVd/n73Rjetnixz4SAKpcz/P47UsijZG7T3SxzK2D79WS42aEalc12hQwCZ01LfmF\n", |
|
563 | 564 | "/H2mmGEvOzPBie1D0YT7Jh19vxa4Dd3SQ1FrDfmSUpvv4DjbYcZ2PrPpFpWtMjWqHBeoyMiZf6RP\n", |
|
564 | 565 | "3EfYR6z9jsVNIIHxM0bzzBQF8eeYkPgDySydxPXv9Izo+QUY94N8kWi16fI6eZSDc1G0Yo0L91jc\n", |
|
565 | 566 | "RQuDMGGS7B2zuf/0GbJyRhUO48UbMrqnILMrbQg1LF00Q3pH9nbGEK/RRQpRN3T/J/4IZQjwW2Ft\n", |
|
566 | 567 | "2ipWGztg1Jn9I4DmffKS60QC+JQcyakdVON6zDcKttIKlqeTcmAi4xzmo4QXa2dRKleS+fs3EtTd\n", |
|
567 | 568 | "BBtony2wK9T2Imj+NCziOSEL7Q7VuIU8kclUHrJJsSneFcxGRgIgGGUEQM8/pklwTOqab7mMmJeR\n", |
|
568 | 569 | "iaBrjJDEnDpkR4Vz3qXxgyn4/5x24FuTMNVPwQAAAhtBmqVJ4Q8mUwIr/wApcLwPT0/Xh9UdWqWX\n", |
|
569 | 570 | "Is8Wbj5K1hivmN6qIQnq+aolcegdlM/63MbHsdC6xYZC1e/Q8UjQCt9N/Ejqwms8DzeWv2qxskel\n", |
|
570 | 571 | "iZH0kt1QWkErWSEodq7V0ZNksctLkMGWayX33gBT368EehfIeGDolBZoqIbJfb4nqcfU+ev4OzVv\n", |
|
571 | 572 | "9zVqWyLck315GFmXxQKIM8pICQc8Q5es34LH1+DmnMnW8kQpVGrztQcDXhjCU3F0fOgoSsXSVWCj\n", |
|
572 | 573 | "c6XKqGbCwQDfJUxCfXfIT6YmQoPpVp1mpGy1wQypXus9z0bScDpyDu23hViYDntdj1O45ea0znKZ\n", |
|
573 | 574 | "kj1+tLHbBtqAGJ1WTcbGlF6Vya6hQhEsiiZUIC2fRxIj8/wEXCICIbr0gZ/m6gcOhE10tenvE7iy\n", |
|
574 | 575 | "+BKY81wLWrnzos3S6FWxYtmCRes+LLhNGOKWRuQo6SyePH2OZ90xZm8oA1MuTe3V59euVNxjAt0F\n", |
|
575 | 576 | "LkAc9TEiFhP/8CB+gA8mF+A8h1U01f4DVX55GzCH51jHI2xUS0L9GtsHoBxLPLK/NNel8zcnwG4X\n", |
|
576 | 577 | "+UusfcfEb5hh+ffnXteCE9vRGbs2n9wYW0xA3ZicklfadmWKUtMiHYBfkMSULWnkBQr4CXxjpYOs\n", |
|
577 | 578 | "6ygeEoA5+5B0B1SZObgZ42wWqddyyYE0NfwQAl75tfdJGqOa7OMHwBYNeatJaJK0zT2+bFaw2qWC\n", |
|
578 | 579 | "WwAAAitBmsZJ4Q8mUwIr/wAstkdsayRXchoFk703izqzduZ5WsyXriI9cfUdMUWvm0iGHwYIrUuj\n", |
|
579 | 580 | "vz3Yjou+JLwv9df2kt7MJo8u+3P5CjEKbwlz4vkE5AHTAbgXn3+Xc/MMJLgW5cm7iX3KiGNnBpbp\n", |
|
580 | 581 | "hhwJRlb3u91NRDr0d1IR2up/z7lKxE7XPAPFe0siPMYVlIqWNSn5KqLABPeuxxbOsvMEb27/nH1L\n", |
|
581 | 582 | "UVM8I2F95c1I3Lv1SpkhZXjs1JsmS9X7gsoTxkXyShGC2+zRJSGUbhCPo/q1XSFMHQyMWJ79FKPQ\n", |
|
582 | 583 | "SL/RpVsacN2bYwdKo4TFBw1SsKq/L1iOmqMI+4Gxnbbjojdk0ek0JIcDb4bHv1czxchF7FX1Ym8H\n", |
|
583 | 584 | "6IpPuE8CeNKjzQ1a1wqhEu+wl1N0x3Y37ZryCCKJRkxj0FT7bOoH3L38/yMUuh/v3aCmxY4eCkyk\n", |
|
584 | 585 | "b2p6ZrYMFE044anM/nMjmbErMibfRFuCz58Io1rBlF7JfkIz0R2/5vjUMVskcdbX2mm7DntncOsW\n", |
|
585 | 586 | "DIdg/XVmgsC9CzVzUyq4VsS/sk97lJggcddpWLNw/29egz8iLyzWHOAXCvl2fTIPkviYAOQXfVhZ\n", |
|
586 | 587 | "UQdxsyJUNFMTiALrZCmoQLMp2LmDbfbW8JQriDeR3fVz6P1sjT8C2yEDvzkCn7sh0aTBK+sx7BKH\n", |
|
587 | 588 | "1nb4320+caQepQj4TCJtCeNXjdrVcNEnjvwlcRJwFT1pT+Y7HREbHnT71XYNh4EAAAGEQZrnSeEP\n", |
|
588 | 589 | "JlMCK/8AKIjxcI58rm/ML255fOJW1zbznFna7lfgMQrka7OTPPsvVAV4EJXye/Uxiu9dlftmRypJ\n", |
|
589 | 590 | "qfDot3xwDe8lX/qAVf6pBkSlUsaLyBYtww/SUSa1bGl1JvrJCN7FXCCXbLd5R4PoYlPiDIm/DQH2\n", |
|
590 | 591 | "puO0StIWmrR77Isc/J1pRvdu5+mQa/n0SEHUeM2KkoRzCznfD9zaaRO7BDtvC9SYIT0uYZxrwTjx\n", |
|
591 | 592 | "Q7N7UERTrYG0P+vRLAhxkfohFIYl3HXyjPOvnlbUFP2oiiy6nkUFuaIyQcJawJv3GU8k4ObcKsC1\n", |
|
592 | 593 | "cNDXjSpsyQRrxLFaCCjke4mikyt7vs0iN0bnrNWv9HXruG9zOFEOer1ggIFTsT1Eos5CXRkgja5H\n", |
|
593 | 594 | "N4QUM6MhWpc5du/HgBIH8ANFcoo2kJpqcadw9r/0qk25X91MQSDJQiH8Hny2dQhqR+LFWEawiW75\n", |
|
594 | 595 | "3SJhn0ngZcv/mPj3mwcHv1SL9ErBqAjm4JGiDetPKYtFwANYY11OyQAAAVdBmwhJ4Q8mUwIr/wAr\n", |
|
595 | 596 | "Ox5HV2505jRePGgMxptW4PGIHEszV1xGZS+flSkF+aq30AaqO7u6XK9jJsuWXTfYCRQTn1bZfFQ2\n", |
|
596 | 597 | "2DbO5DXAxK/TUmbQleCflFzeS6/czxkL4PJ8AwOs2U+oehekgCZC8gZyHHaQSaKbNJ46gTjNsLy8\n", |
|
597 | 598 | "4ACQ5uNt11TPuCPqPTuh+schdw9S+/lU/6m+EyaqGZ49wDFPiBFBYXglQQBjyP9k/rqq0xL7SiLj\n", |
|
598 | 599 | "pe4riYg8SFUuUtOzPdWHyvxnI7Ug/0VLPGAAhgMISUnqe01d5QFf36yHpwMAHexjAZFIGQHAFaut\n", |
|
599 | 600 | "uMuEw6HzUZVzNdeHYxvEYOGkTo007bLwbuf/nxzrywGOxlRTYJLRdYI0mk0SdN3+LeTv1RIJwv21\n", |
|
600 | 601 | "+e9rT5iFOTCgzeQoekEWXLYz0X8YLq5bVCtijP7/T7w1Ck71j0aqfrEn6wtIAAABNUGbKUnhDyZT\n", |
|
601 | 602 | "Aiv/ACcySi7VBgOid6qZNXvhh/JsllHkMLLq0yNbQTqv/Wk2EBoSKICZwFwAD0WRzhvvReCGirep\n", |
|
602 | 603 | "1Fe4bxjm49/UR+OYrXRmHR18T0C83AUVeBk7KvDZmb/eHzuzEN4yfXucr/NWFJl+USVMY4r4UQ9C\n", |
|
603 | 604 | "ayrfEY9v6AQ6mzAdLy2UMfFxrRJ99g/Rfl8qx+m4jIZNjlrTaThzJ/3OpVmAliDfxVyg8+CVIlI3\n", |
|
604 | 605 | "1IykiwQrXcebgajG+av8XU1SfyAG5ibvwbtdSAxkGBcJWL387V+uTdY56w3KN2vBtoQpVKD2zb3y\n", |
|
605 | 606 | "azIcATZ02upwIytNcM/rpaLCdMb1myWcikE25agzLhDhOS+4zwjYz2DnW6VY0gFBAPsphhsUMnau\n", |
|
606 | 607 | "VVdUVHzCTSdvzEve/H8q4AAAAVdBm0pJ4Q8mUwIr/wAo+x5XKuiN1am7SkJKSMonFZDPU3f5XFcD\n", |
|
607 | 608 | "QSs0FLVq2idfsKwuIkt1mxIq8NgMHpzofTnDHqs/WedvAmhBgL0N5azdQa5MNKG2rJ4IAvGQY/uF\n", |
|
608 | 609 | "m3jKQAKzvhSS01gO1oIfizF817z9IShS4QK2WT0PeFPELqLSpED8eNOpVTR96vmwpk/WBKRVJdTQ\n", |
|
609 | 610 | "JzjiCQ5pgEwjtvk7KqoS0+lwXSbvIrXkYm8DignEts3DLNoLHrPjXlQmbIop76JZSyJEtB+91GrL\n", |
|
610 | 611 | "wo6Km5GeebyA2E6qGL3xSkpppej/ruoFprSKrH60UMbrq/SK7eCo+1QFoySPQmqDFsMGiQFqvtld\n", |
|
611 | 612 | "5BXDYdVI4yRaoyN7Y7wi83HRC6eVazuHU9OtIY3xJJApBWq1aJOsYwc38aTC3ee863Aa/4n9Lk4D\n", |
|
612 | 613 | "AtyFYHNZjB5m2e2vk8G2Gny9YFlBAAABQEGba0nhDyZTAiv/ACoZSZQfHxhfQxEqOBQrP+L3Dmgv\n", |
|
613 | 614 | "HSJQtB1iVkcLTxm+vagLHBLG91OGnopwrr7gT/loDypIhoRxjcwAAOeg/jN4WBbXzCJtnWGGllUC\n", |
|
614 | 615 | "SdtUZQzKOSp9iM4yX18C6jrY4Sq6R9PUV/lEGNveJR4gw4FMve7110XdEPL1O2VTdHvdqeANyaq0\n", |
|
615 | 616 | "nLdEmtXnrzvdrFlBaUvmaR4EdlkqGkvkZKWJej8Vq+msbKa7JdbxjwZtRufiyGfD/NVqMgSrYRzw\n", |
|
616 | 617 | "9z/a8Zwbr+9+19CxlWD5bCuAEfPmjY6kZJE2L/CQI6+tnCBTXOmWZtZMBoCLGOf7G2uAC3+kFlbo\n", |
|
617 | 618 | "h9as5WCkO6+iqXq29dyhKnsHInorRYsPlgxIXyU1Om/Kyhj1DJV0Am9WJK3Dln0zNUH0q6ZTOnZc\n", |
|
618 | 619 | "FD36AAABYkGbjEnhDyZTAiv/ACcwdIOLRFfoGK2ZkKsvgMwG0m0qsY0vMLPSzefc+ebp/aztyF7M\n", |
|
619 | 620 | "lsBz/fBeNtxFBcsKgR4pf65GvdfOMHah0ltZ918sMDmXUEZMeRHy/xpnWpTLeGz6uTs/7MATPmU5\n", |
|
620 | 621 | "BgHbT/DkD8QeaZnFAzidyFCXDz2l/jaKhEdgqipbB2pH0+fQ039r05z9axxEWGmaLQjg6x9+po1o\n", |
|
621 | 622 | "24yhkVO7m03YwWmPyCgy8cOwrvRyJkXJpRN4m8ZBS1zwY80HeN/VyMQQJSMwsTo7R1XMerSFuyx0\n", |
|
622 | 623 | "nz+8qOuhiqykc2ohCCsXia/+kIKbJ5Vs+cbWtvkqBKIDSfU7FhAd3GjcY/xar0EVmi6wWFTugAog\n", |
|
623 | 624 | "R3I7mTrQDdlTAqYgqO7Gn5NMXQVHu2i1zhFSdo9GjMbeGnbkJwsFbQ2XkoKRIDpuW7AewC9AEBt0\n", |
|
624 | 625 | "Ox/Ah6dGXfXO1jl8pEApj2RFmgAAAPlBm61J4Q8mUwIr/wAlR+eW/VZ7bSrmwwMA62G05DZ7p/5F\n", |
|
625 | 626 | "UugsSsQdonUq6abtbU5hjFr+I1lPgoiV5c3CkTQZS+K5zivdo+Ti2P4K90xXANp8dSMAu85uJIOC\n", |
|
626 | 627 | "Qn2TXbEnNDifLB+3V84ht5tj4lvTaZx317BcliV8D5v2zZQW8RO1mUbuJEBItst8E7hfE+ZXj7tf\n", |
|
627 | 628 | "DxNZPTvtpFyUv0fH1cTg1pr2VLy0d0zQLiA58dg+GkRvR1/hs2LyifBgHcj6eTWz0vsypVn9iPXR\n", |
|
628 | 629 | "H/unJ6i8cfFL69NO24tQ9QQB+nDFhoP2cRhkAvhHwn56n5PppBD/oxni2f8AAAE9QZvOSeEPJlMC\n", |
|
629 | 630 | "K/8AJjAXVGf+Kj2XNJnFeKC/gr7dJDTC2ngpd4WeAHlg04GuJKnn9hAmiECxxo9qM1IYMRiB85t6\n", |
|
630 | 631 | "gALnlm9sRqGmioyzAm18RJndc9Ah8RlpGzr+44a6ntRaPx0cIwNIWAA8buL2JP00dmfjNqEiAlCa\n", |
|
631 | 632 | "8OdV8FQxjp1vDXsGcAGF3Qbd62KEpkimeI3wH2nuXpbDHm8/ZKOR49s5ifUCkxCoJpfp43aC0lTz\n", |
|
632 | 633 | "h2NXpcfVw6h0QnK8G60R4ZAxOxaJB7c0nn8ixXSU2JVY24EtGMF53nxJnHfzUheewUfBOGYSxeo8\n", |
|
633 | 634 | "oK7oUCqX4rztzDwoc2QywNqQUJUkFrqIN+sb5ecYvX24Zujn+ZzTW6UDAF3R6WdNyJyRAremgC8s\n", |
|
634 | 635 | "pSflTqygQNGfHyGkfIEEJJaFo/pBCBkAAAEWQZvvSeEPJlMCK/8AKI41fuekXG59Knbw4Y6YJrit\n", |
|
635 | 636 | "sh9VtQgc3QKvVmxrzzo7f4aXn8N74eyP4b2lV1Z2Q+rohxps7EHTkOY9jLdqxI3MXe7je4g2qepz\n", |
|
636 | 637 | "71+hY+jYdX+9LO0kA0Zg3NfyAlIRX7k6c/YHAZNtNaGZgTBMqiPgmEjiJH9Luk7shbgr+srfwiYw\n", |
|
637 | 638 | "BX9rdS3fQNNFwcT8orQC+F60LAY9+GbFo2Sw3Ld4Tw9jq9yJtrY8RtHAdzytyek/mv2+j2TbTvAQ\n", |
|
638 | 639 | "KbbCYtdC8E/KtR4V5ZTSScr5Wb63vmbw7UpddEXYvl55pARyyvMxWNSh3Li4GF8Jk5JBi5B5ASQw\n", |
|
639 | 640 | "xCMYpX5hkAMc+d8tl2bT+IEvUTsAAAElQZoQSeEPJlMCK/8AJIAzFZs00JJ0yfm8CZiew4xWdArL\n", |
|
640 | 641 | "klEvBVXo/+ukPLu3XP9HFOfsme3T6BJEKmPPgZw/Lxnraq6Sl2kLVW19YU1qmqgfv+80LkZaWU5g\n", |
|
641 | 642 | "RAH4hqyo3bFYcbuY2SC3IW5Wm69gtYyAXOdbAYSEHA16fvCeRQjHEsxKVndJdrRAlrGHsKgUBQ3U\n", |
|
642 | 643 | "p/ZXIy1vkdFOfKSjpuZnswkuqr8NZI5tJ/dnBSErBTNWPaNwWV7nNomC0EYVGo+geGBhLXzaLw0U\n", |
|
643 | 644 | "AOCYGjiPc3803BDw1GLoLIXjrIFJxwRfBNIAXYZAglu30oYzhpAfRWSprkeULMWYJTlWvbUQ5CNe\n", |
|
644 | 645 | "wSZssuDWIRAc3w8AcFaywwn+YSGhtR8VI1OGjYkfBbcAAAD8QZoxSeEPJlMCK/8AJdokjCUETRw/\n", |
|
645 | 646 | "nciVPtaZQSBP/VxAQSITASEzlJBl9Na1r0DJhLOz279+KQLtl/xHZ8vAKc528mTMTqtWs4sFbeVg\n", |
|
646 | 647 | "HWyBpHcHEtgTzjIqEinp/MPuUXF5poo8YLSSMFn9Ozx2FbU5/Kh9A39oN9NHQflVxV1NA6yT/84H\n", |
|
647 | 648 | "HyfMtfdSMS8KTvAEE2lDs14VQayNs5ctjXboQT7xMBf5OLj6thhPvgaDrFB2o/PV9ouK147lruWT\n", |
|
648 | 649 | "P2mkoA9oDIMYW1pcBx4yyV/t9GOPZ3aXneMUb2fFmUCX43BjXfUDMaa4GO2/Ankj3UEQwDxA7ZlN\n", |
|
649 | 650 | "UQK2AAAA4UGaUknhDyZTAiv/ACJHv33I08bkhybYiJ/JiiheW5zMPBu4n5CxGr3frhE7TkLh0vPk\n", |
|
650 | 651 | "tM8m/AhaDiJisdk5QXNe/4WmxEDSAyaVi4eUVu0iHT2ly/KNTGqiORqA2oKpTjh84nYbrpXwnGv9\n", |
|
651 | 652 | "SOf/34Z06xN6Yo3t35UZrP8nlcs/63GtnEmnUwVZHBYfPM6bs5M5AeBfAQ/9mIqu7vnEst+5O2wp\n", |
|
652 | 653 | "PjzdItjwGCZ2ApHVjGnYYFomlA9nm6AXnxNIWHIsDgxCk3zx+6QbXipu/CWLG1Wf0WIbt4C0JPVl\n", |
|
653 | 654 | "3TEb0QAAAMlBmnNJ4Q8mUwIr/wAVV64OfTKmlktYOqZHH1W1DhPy/X/6sD4T6hRdzfOgNtTOX2Ic\n", |
|
654 | 655 | "kRJHshfBQVkJIzns079io6kpJFCcS3VD4zrWCn/dNaGV0kWTpFBRuusfn8F0C0R/EhsQeyTsdZft\n", |
|
655 | 656 | "EkLGb5tq+nrir3vfmeb7rjmWJRXkIrTEKu8pIuAd+4FBGp8ARgGe80Jqpp//s1433HqBFqXsIFJT\n", |
|
656 | 657 | "mU8j/toF9HyueI1Ea4uvsQ6NANGcYCbOAKCmbNiwABMCFaiUTMAAAAPSbW9vdgAAAGxtdmhkAAAA\n", |
|
657 | 658 | "AHwlsIB8JbCAAAAD6AAAAyAAAQAAAQAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAA\n", |
|
658 | 659 | "AAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAv10cmFrAAAAXHRraGQA\n", |
|
659 | 660 | "AAAPfCWwgHwlsIAAAAABAAAAAAAAAyAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAB\n", |
|
660 | 661 | "AAAAAAAAAAAAAAAAAABAAAAAAY4AAAGGAAAAAAAkZWR0cwAAABxlbHN0AAAAAAAAAAEAAAMgAAAA\n", |
|
661 | 662 | "AgABAAAAAAJ1bWRpYQAAACBtZGhkAAAAAHwlsIB8JbCAAAAAGQAAABRVxAAAAAAALWhkbHIAAAAA\n", |
|
662 | 663 | "AAAAAHZpZGUAAAAAAAAAAAAAAABWaWRlb0hhbmRsZXIAAAACIG1pbmYAAAAUdm1oZAAAAAEAAAAA\n", |
|
663 | 664 | "AAAAAAAAACRkaW5mAAAAHGRyZWYAAAAAAAAAAQAAAAx1cmwgAAAAAQAAAeBzdGJsAAAAtHN0c2QA\n", |
|
664 | 665 | "AAAAAAAAAQAAAKRhdmMxAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAY4BhgBIAAAASAAAAAAAAAAB\n", |
|
665 | 666 | "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGP//AAAAMmF2Y0MBZAAV/+EAGWdkABWs\n", |
|
666 | 667 | "2UGQz6mhAAADAAEAAAMAMg8WLZYBAAZo6+PLIsAAAAAcdXVpZGtoQPJfJE/FujmlG88DI/MAAAAA\n", |
|
667 | 668 | "AAAAGHN0dHMAAAAAAAAAAQAAABQAAAABAAAAFHN0c3MAAAAAAAAAAQAAAAEAAAAYY3R0cwAAAAAA\n", |
|
668 | 669 | "AAABAAAAFAAAAAIAAAAcc3RzYwAAAAAAAAABAAAAAQAAAAEAAAABAAAAZHN0c3oAAAAAAAAAAAAA\n", |
|
669 | 670 | "ABQAAA05AAACqQAAAl8AAAITAAACiwAAAh8AAAIvAAABiAAAAVsAAAE5AAABWwAAAUQAAAFmAAAA\n", |
|
670 | 671 | "/QAAAUEAAAEaAAABKQAAAQAAAADlAAAAzQAAAGBzdGNvAAAAAAAAABQAAAAsAAANZQAAEA4AABJt\n", |
|
671 | 672 | "AAAUgAAAFwsAABkqAAAbWQAAHOEAAB48AAAfdQAAINAAACIUAAAjegAAJHcAACW4AAAm0gAAJ/sA\n", |
|
672 | 673 | "ACj7AAAp4AAAAGF1ZHRhAAAAWW1ldGEAAAAAAAAAIWhkbHIAAAAAAAAAAG1kaXJhcHBsAAAAAAAA\n", |
|
673 | 674 | "AAAAAAAALGlsc3QAAAAkqXRvbwAAABxkYXRhAAAAAQAAAABMYXZmNTIuMTExLjA=\n", |
|
674 | 675 | "\">" |
|
675 | 676 | ], |
|
676 | 677 | "output_type": "pyout", |
|
677 | 678 | "prompt_number": 8, |
|
678 | 679 | "text": [ |
|
679 | 680 | "<IPython.core.display.HTML at 0x10fba28d0>" |
|
680 | 681 | ] |
|
681 | 682 | } |
|
682 | 683 | ], |
|
683 | 684 | "prompt_number": 8 |
|
684 | 685 | }, |
|
685 | 686 | { |
|
686 | 687 | "cell_type": "heading", |
|
687 | 688 | "level": 2, |
|
688 | 689 | "metadata": {}, |
|
689 | 690 | "source": [ |
|
690 | 691 | "HTML" |
|
691 | 692 | ] |
|
692 | 693 | }, |
|
693 | 694 | { |
|
694 | 695 | "cell_type": "markdown", |
|
695 | 696 | "metadata": {}, |
|
696 | 697 | "source": [ |
|
697 | 698 | "Python objects can declare HTML representations that will be displayed in the Notebook. If you have some HTML you want to display, simply use the `HTML` class." |
|
698 | 699 | ] |
|
699 | 700 | }, |
|
700 | 701 | { |
|
701 | 702 | "cell_type": "code", |
|
702 | 703 | "collapsed": false, |
|
703 | 704 | "input": [ |
|
704 | 705 | "from IPython.display import HTML" |
|
705 | 706 | ], |
|
706 | 707 | "language": "python", |
|
707 | 708 | "metadata": {}, |
|
708 | 709 | "outputs": [], |
|
709 | 710 | "prompt_number": 3 |
|
710 | 711 | }, |
|
711 | 712 | { |
|
712 | 713 | "cell_type": "code", |
|
713 | 714 | "collapsed": false, |
|
714 | 715 | "input": [ |
|
715 | 716 | "s = \"\"\"<table>\n", |
|
716 | 717 | "<tr>\n", |
|
717 | 718 | "<th>Header 1</th>\n", |
|
718 | 719 | "<th>Header 2</th>\n", |
|
719 | 720 | "</tr>\n", |
|
720 | 721 | "<tr>\n", |
|
721 | 722 | "<td>row 1, cell 1</td>\n", |
|
722 | 723 | "<td>row 1, cell 2</td>\n", |
|
723 | 724 | "</tr>\n", |
|
724 | 725 | "<tr>\n", |
|
725 | 726 | "<td>row 2, cell 1</td>\n", |
|
726 | 727 | "<td>row 2, cell 2</td>\n", |
|
727 | 728 | "</tr>\n", |
|
728 | 729 | "</table>\"\"\"" |
|
729 | 730 | ], |
|
730 | 731 | "language": "python", |
|
731 | 732 | "metadata": {}, |
|
732 | 733 | "outputs": [], |
|
733 | 734 | "prompt_number": 4 |
|
734 | 735 | }, |
|
735 | 736 | { |
|
736 | 737 | "cell_type": "code", |
|
737 | 738 | "collapsed": false, |
|
738 | 739 | "input": [ |
|
739 | 740 | "h = HTML(s); h" |
|
740 | 741 | ], |
|
741 | 742 | "language": "python", |
|
742 | 743 | "metadata": {}, |
|
743 | 744 | "outputs": [ |
|
744 | 745 | { |
|
745 | 746 | "html": [ |
|
746 | 747 | "<table>\n", |
|
747 | 748 | "<tr>\n", |
|
748 | 749 | "<th>Header 1</th>\n", |
|
749 | 750 | "<th>Header 2</th>\n", |
|
750 | 751 | "</tr>\n", |
|
751 | 752 | "<tr>\n", |
|
752 | 753 | "<td>row 1, cell 1</td>\n", |
|
753 | 754 | "<td>row 1, cell 2</td>\n", |
|
754 | 755 | "</tr>\n", |
|
755 | 756 | "<tr>\n", |
|
756 | 757 | "<td>row 2, cell 1</td>\n", |
|
757 | 758 | "<td>row 2, cell 2</td>\n", |
|
758 | 759 | "</tr>\n", |
|
759 | 760 | "</table>" |
|
760 | 761 | ], |
|
761 | 762 | "output_type": "pyout", |
|
762 | 763 | "prompt_number": 5, |
|
763 | 764 | "text": [ |
|
764 | 765 | "<IPython.core.display.HTML at 0x1087a0c10>" |
|
765 | 766 | ] |
|
766 | 767 | } |
|
767 | 768 | ], |
|
768 | 769 | "prompt_number": 5 |
|
769 | 770 | }, |
|
770 | 771 | { |
|
771 | 772 | "cell_type": "markdown", |
|
772 | 773 | "metadata": {}, |
|
773 | 774 | "source": [ |
|
774 | 775 | "Pandas makes use of this capability to allow `DataFrames` to be represented as HTML tables." |
|
775 | 776 | ] |
|
776 | 777 | }, |
|
777 | 778 | { |
|
778 | 779 | "cell_type": "code", |
|
779 | 780 | "collapsed": false, |
|
780 | 781 | "input": [ |
|
781 | 782 | "import pandas" |
|
782 | 783 | ], |
|
783 | 784 | "language": "python", |
|
784 | 785 | "metadata": {}, |
|
785 | 786 | "outputs": [], |
|
786 | 787 | "prompt_number": 6 |
|
787 | 788 | }, |
|
788 | 789 | { |
|
789 | 790 | "cell_type": "markdown", |
|
790 | 791 | "metadata": {}, |
|
791 | 792 | "source": [ |
|
792 | 793 | "By default, `DataFrames` will be represented as text; to enable HTML representations we need to set a print option:" |
|
793 | 794 | ] |
|
794 | 795 | }, |
|
795 | 796 | { |
|
796 | 797 | "cell_type": "code", |
|
797 | 798 | "collapsed": false, |
|
798 | 799 | "input": [ |
|
799 | 800 | "pandas.core.format.set_printoptions(notebook_repr_html=True)" |
|
800 | 801 | ], |
|
801 | 802 | "language": "python", |
|
802 | 803 | "metadata": {}, |
|
803 | 804 | "outputs": [], |
|
804 | 805 | "prompt_number": 9 |
|
805 | 806 | }, |
|
806 | 807 | { |
|
807 | 808 | "cell_type": "markdown", |
|
808 | 809 | "metadata": {}, |
|
809 | 810 | "source": [ |
|
810 | 811 | "Here is a small amount of stock data for APPL:" |
|
811 | 812 | ] |
|
812 | 813 | }, |
|
813 | 814 | { |
|
814 | 815 | "cell_type": "code", |
|
815 | 816 | "collapsed": false, |
|
816 | 817 | "input": [ |
|
817 | 818 | "%%file data.csv\n", |
|
818 | 819 | "Date,Open,High,Low,Close,Volume,Adj Close\n", |
|
819 | 820 | "2012-06-01,569.16,590.00,548.50,584.00,14077000,581.50\n", |
|
820 | 821 | "2012-05-01,584.90,596.76,522.18,577.73,18827900,575.26\n", |
|
821 | 822 | "2012-04-02,601.83,644.00,555.00,583.98,28759100,581.48\n", |
|
822 | 823 | "2012-03-01,548.17,621.45,516.22,599.55,26486000,596.99\n", |
|
823 | 824 | "2012-02-01,458.41,547.61,453.98,542.44,22001000,540.12\n", |
|
824 | 825 | "2012-01-03,409.40,458.24,409.00,456.48,12949100,454.53" |
|
825 | 826 | ], |
|
826 | 827 | "language": "python", |
|
827 | 828 | "metadata": {}, |
|
828 | 829 | "outputs": [ |
|
829 | 830 | { |
|
830 | 831 | "output_type": "stream", |
|
831 | 832 | "stream": "stdout", |
|
832 | 833 | "text": [ |
|
833 | 834 | "Writing data.csv\n" |
|
834 | 835 | ] |
|
835 | 836 | } |
|
836 | 837 | ], |
|
837 | 838 | "prompt_number": 11 |
|
838 | 839 | }, |
|
839 | 840 | { |
|
840 | 841 | "cell_type": "markdown", |
|
841 | 842 | "metadata": {}, |
|
842 | 843 | "source": [ |
|
843 | 844 | "Read this as into a `DataFrame`:" |
|
844 | 845 | ] |
|
845 | 846 | }, |
|
846 | 847 | { |
|
847 | 848 | "cell_type": "code", |
|
848 | 849 | "collapsed": false, |
|
849 | 850 | "input": [ |
|
850 | 851 | "df = pandas.read_csv('data.csv')" |
|
851 | 852 | ], |
|
852 | 853 | "language": "python", |
|
853 | 854 | "metadata": {}, |
|
854 | 855 | "outputs": [], |
|
855 | 856 | "prompt_number": 12 |
|
856 | 857 | }, |
|
857 | 858 | { |
|
858 | 859 | "cell_type": "markdown", |
|
859 | 860 | "metadata": {}, |
|
860 | 861 | "source": [ |
|
861 | 862 | "And view the HTML representation:" |
|
862 | 863 | ] |
|
863 | 864 | }, |
|
864 | 865 | { |
|
865 | 866 | "cell_type": "code", |
|
866 | 867 | "collapsed": false, |
|
867 | 868 | "input": [ |
|
868 | 869 | "df" |
|
869 | 870 | ], |
|
870 | 871 | "language": "python", |
|
871 | 872 | "metadata": {}, |
|
872 | 873 | "outputs": [ |
|
873 | 874 | { |
|
874 | 875 | "html": [ |
|
875 | 876 | "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", |
|
876 | 877 | "<table border=\"1\">\n", |
|
877 | 878 | " <thead>\n", |
|
878 | 879 | " <tr>\n", |
|
879 | 880 | " <th></th>\n", |
|
880 | 881 | " <th>Date</th>\n", |
|
881 | 882 | " <th>Open</th>\n", |
|
882 | 883 | " <th>High</th>\n", |
|
883 | 884 | " <th>Low</th>\n", |
|
884 | 885 | " <th>Close</th>\n", |
|
885 | 886 | " <th>Volume</th>\n", |
|
886 | 887 | " <th>Adj Close</th>\n", |
|
887 | 888 | " </tr>\n", |
|
888 | 889 | " </thead>\n", |
|
889 | 890 | " <tbody>\n", |
|
890 | 891 | " <tr>\n", |
|
891 | 892 | " <td><strong>0</strong></td>\n", |
|
892 | 893 | " <td> 2012-06-01</td>\n", |
|
893 | 894 | " <td> 569.16</td>\n", |
|
894 | 895 | " <td> 590.00</td>\n", |
|
895 | 896 | " <td> 548.50</td>\n", |
|
896 | 897 | " <td> 584.00</td>\n", |
|
897 | 898 | " <td> 14077000</td>\n", |
|
898 | 899 | " <td> 581.50</td>\n", |
|
899 | 900 | " </tr>\n", |
|
900 | 901 | " <tr>\n", |
|
901 | 902 | " <td><strong>1</strong></td>\n", |
|
902 | 903 | " <td> 2012-05-01</td>\n", |
|
903 | 904 | " <td> 584.90</td>\n", |
|
904 | 905 | " <td> 596.76</td>\n", |
|
905 | 906 | " <td> 522.18</td>\n", |
|
906 | 907 | " <td> 577.73</td>\n", |
|
907 | 908 | " <td> 18827900</td>\n", |
|
908 | 909 | " <td> 575.26</td>\n", |
|
909 | 910 | " </tr>\n", |
|
910 | 911 | " <tr>\n", |
|
911 | 912 | " <td><strong>2</strong></td>\n", |
|
912 | 913 | " <td> 2012-04-02</td>\n", |
|
913 | 914 | " <td> 601.83</td>\n", |
|
914 | 915 | " <td> 644.00</td>\n", |
|
915 | 916 | " <td> 555.00</td>\n", |
|
916 | 917 | " <td> 583.98</td>\n", |
|
917 | 918 | " <td> 28759100</td>\n", |
|
918 | 919 | " <td> 581.48</td>\n", |
|
919 | 920 | " </tr>\n", |
|
920 | 921 | " <tr>\n", |
|
921 | 922 | " <td><strong>3</strong></td>\n", |
|
922 | 923 | " <td> 2012-03-01</td>\n", |
|
923 | 924 | " <td> 548.17</td>\n", |
|
924 | 925 | " <td> 621.45</td>\n", |
|
925 | 926 | " <td> 516.22</td>\n", |
|
926 | 927 | " <td> 599.55</td>\n", |
|
927 | 928 | " <td> 26486000</td>\n", |
|
928 | 929 | " <td> 596.99</td>\n", |
|
929 | 930 | " </tr>\n", |
|
930 | 931 | " <tr>\n", |
|
931 | 932 | " <td><strong>4</strong></td>\n", |
|
932 | 933 | " <td> 2012-02-01</td>\n", |
|
933 | 934 | " <td> 458.41</td>\n", |
|
934 | 935 | " <td> 547.61</td>\n", |
|
935 | 936 | " <td> 453.98</td>\n", |
|
936 | 937 | " <td> 542.44</td>\n", |
|
937 | 938 | " <td> 22001000</td>\n", |
|
938 | 939 | " <td> 540.12</td>\n", |
|
939 | 940 | " </tr>\n", |
|
940 | 941 | " <tr>\n", |
|
941 | 942 | " <td><strong>5</strong></td>\n", |
|
942 | 943 | " <td> 2012-01-03</td>\n", |
|
943 | 944 | " <td> 409.40</td>\n", |
|
944 | 945 | " <td> 458.24</td>\n", |
|
945 | 946 | " <td> 409.00</td>\n", |
|
946 | 947 | " <td> 456.48</td>\n", |
|
947 | 948 | " <td> 12949100</td>\n", |
|
948 | 949 | " <td> 454.53</td>\n", |
|
949 | 950 | " </tr>\n", |
|
950 | 951 | " </tbody>\n", |
|
951 | 952 | "</table>\n", |
|
952 | 953 | "</div>" |
|
953 | 954 | ], |
|
954 | 955 | "output_type": "pyout", |
|
955 | 956 | "prompt_number": 14, |
|
956 | 957 | "text": [ |
|
957 | 958 | " Date Open High Low Close Volume Adj Close\n", |
|
958 | 959 | "0 2012-06-01 569.16 590.00 548.50 584.00 14077000 581.50\n", |
|
959 | 960 | "1 2012-05-01 584.90 596.76 522.18 577.73 18827900 575.26\n", |
|
960 | 961 | "2 2012-04-02 601.83 644.00 555.00 583.98 28759100 581.48\n", |
|
961 | 962 | "3 2012-03-01 548.17 621.45 516.22 599.55 26486000 596.99\n", |
|
962 | 963 | "4 2012-02-01 458.41 547.61 453.98 542.44 22001000 540.12\n", |
|
963 | 964 | "5 2012-01-03 409.40 458.24 409.00 456.48 12949100 454.53" |
|
964 | 965 | ] |
|
965 | 966 | } |
|
966 | 967 | ], |
|
967 | 968 | "prompt_number": 14 |
|
968 | 969 | }, |
|
969 | 970 | { |
|
970 | 971 | "cell_type": "heading", |
|
971 | 972 | "level": 2, |
|
972 | 973 | "metadata": {}, |
|
973 | 974 | "source": [ |
|
974 | 975 | "External sites" |
|
975 | 976 | ] |
|
976 | 977 | }, |
|
977 | 978 | { |
|
978 | 979 | "cell_type": "markdown", |
|
979 | 980 | "metadata": {}, |
|
980 | 981 | "source": [ |
|
981 | 982 | "You can even embed an entire page from another site in an iframe; for example this is today's Wikipedia\n", |
|
982 | 983 | "page for mobile users:" |
|
983 | 984 | ] |
|
984 | 985 | }, |
|
985 | 986 | { |
|
986 | 987 | "cell_type": "code", |
|
987 | 988 | "collapsed": false, |
|
988 | 989 | "input": [ |
|
989 | 990 | "HTML('<iframe src=http://en.mobile.wikipedia.org/?useformat=mobile width=700 height=350></iframe>')" |
|
990 | 991 | ], |
|
991 | 992 | "language": "python", |
|
992 | 993 | "metadata": {}, |
|
993 | 994 | "outputs": [ |
|
994 | 995 | { |
|
995 | 996 | "html": [ |
|
996 | 997 | "<iframe src=http://en.mobile.wikipedia.org/?useformat=mobile width=700 height=350></iframe>" |
|
997 | 998 | ], |
|
998 | 999 | "output_type": "pyout", |
|
999 | 1000 | "prompt_number": 9, |
|
1000 | 1001 | "text": [ |
|
1001 | 1002 | "<IPython.core.display.HTML at 0x1094900d0>" |
|
1002 | 1003 | ] |
|
1003 | 1004 | } |
|
1004 | 1005 | ], |
|
1005 | 1006 | "prompt_number": 9 |
|
1006 | 1007 | }, |
|
1007 | 1008 | { |
|
1008 | 1009 | "cell_type": "heading", |
|
1009 | 1010 | "level": 2, |
|
1010 | 1011 | "metadata": {}, |
|
1011 | 1012 | "source": [ |
|
1012 | 1013 | "LaTeX" |
|
1013 | 1014 | ] |
|
1014 | 1015 | }, |
|
1015 | 1016 | { |
|
1016 | 1017 | "cell_type": "markdown", |
|
1017 | 1018 | "metadata": {}, |
|
1018 | 1019 | "source": [ |
|
1019 | 1020 | "And we also support the display of mathematical expressions typeset in LaTeX, which is rendered\n", |
|
1020 | 1021 | "in the browser thanks to the [MathJax library](http://mathjax.org)." |
|
1021 | 1022 | ] |
|
1022 | 1023 | }, |
|
1023 | 1024 | { |
|
1024 | 1025 | "cell_type": "code", |
|
1025 | 1026 | "collapsed": false, |
|
1026 | 1027 | "input": [ |
|
1027 | 1028 | "from IPython.display import Math\n", |
|
1028 | 1029 | "Math(r'F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx')" |
|
1029 | 1030 | ], |
|
1030 | 1031 | "language": "python", |
|
1031 | 1032 | "metadata": {}, |
|
1032 | 1033 | "outputs": [ |
|
1033 | 1034 | { |
|
1034 | 1035 | "latex": [ |
|
1035 | 1036 | "$$F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx$$" |
|
1036 | 1037 | ], |
|
1037 | 1038 | "output_type": "pyout", |
|
1038 | 1039 | "prompt_number": 10, |
|
1039 | 1040 | "text": [ |
|
1040 | 1041 | "<IPython.core.display.Math at 0x10fba26d0>" |
|
1041 | 1042 | ] |
|
1042 | 1043 | } |
|
1043 | 1044 | ], |
|
1044 | 1045 | "prompt_number": 10 |
|
1045 | 1046 | }, |
|
1046 | 1047 | { |
|
1047 | 1048 | "cell_type": "markdown", |
|
1048 | 1049 | "metadata": {}, |
|
1049 | 1050 | "source": [ |
|
1050 | 1051 | "With the `Latex` class, you have to include the delimiters yourself. This allows you to use other LaTeX modes such as `eqnarray`:" |
|
1051 | 1052 | ] |
|
1052 | 1053 | }, |
|
1053 | 1054 | { |
|
1054 | 1055 | "cell_type": "code", |
|
1055 | 1056 | "collapsed": false, |
|
1056 | 1057 | "input": [ |
|
1057 | 1058 | "from IPython.display import Latex\n", |
|
1058 | 1059 | "Latex(r\"\"\"\\begin{eqnarray}\n", |
|
1059 | 1060 | "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n", |
|
1060 | 1061 | "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n", |
|
1061 | 1062 | "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n", |
|
1062 | 1063 | "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0 \n", |
|
1063 | 1064 | "\\end{eqnarray}\"\"\")" |
|
1064 | 1065 | ], |
|
1065 | 1066 | "language": "python", |
|
1066 | 1067 | "metadata": {}, |
|
1067 | 1068 | "outputs": [ |
|
1068 | 1069 | { |
|
1069 | 1070 | "latex": [ |
|
1070 | 1071 | "\\begin{eqnarray}\n", |
|
1071 | 1072 | "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n", |
|
1072 | 1073 | "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n", |
|
1073 | 1074 | "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n", |
|
1074 | 1075 | "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0 \n", |
|
1075 | 1076 | "\\end{eqnarray}" |
|
1076 | 1077 | ], |
|
1077 | 1078 | "output_type": "pyout", |
|
1078 | 1079 | "prompt_number": 11, |
|
1079 | 1080 | "text": [ |
|
1080 | 1081 | "<IPython.core.display.Latex at 0x10fba2c10>" |
|
1081 | 1082 | ] |
|
1082 | 1083 | } |
|
1083 | 1084 | ], |
|
1084 | 1085 | "prompt_number": 11 |
|
1085 | 1086 | }, |
|
1086 | 1087 | { |
|
1087 | 1088 | "cell_type": "markdown", |
|
1088 | 1089 | "metadata": {}, |
|
1089 | 1090 | "source": [ |
|
1090 | 1091 | "Or you can enter latex directly with the `%%latex` cell magic:" |
|
1091 | 1092 | ] |
|
1092 | 1093 | }, |
|
1093 | 1094 | { |
|
1094 | 1095 | "cell_type": "code", |
|
1095 | 1096 | "collapsed": false, |
|
1096 | 1097 | "input": [ |
|
1097 | 1098 | "%%latex\n", |
|
1098 | 1099 | "\\begin{aligned}\n", |
|
1099 | 1100 | "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n", |
|
1100 | 1101 | "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n", |
|
1101 | 1102 | "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n", |
|
1102 | 1103 | "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n", |
|
1103 | 1104 | "\\end{aligned}" |
|
1104 | 1105 | ], |
|
1105 | 1106 | "language": "python", |
|
1106 | 1107 | "metadata": {}, |
|
1107 | 1108 | "outputs": [ |
|
1108 | 1109 | { |
|
1109 | 1110 | "latex": [ |
|
1110 | 1111 | "\\begin{aligned}\n", |
|
1111 | 1112 | "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n", |
|
1112 | 1113 | "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n", |
|
1113 | 1114 | "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n", |
|
1114 | 1115 | "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n", |
|
1115 | 1116 | "\\end{aligned}" |
|
1116 | 1117 | ], |
|
1117 | 1118 | "output_type": "display_data", |
|
1118 | 1119 | "text": [ |
|
1119 | 1120 | "<IPython.core.display.Latex at 0x10a617c90>" |
|
1120 | 1121 | ] |
|
1121 | 1122 | } |
|
1122 | 1123 | ], |
|
1123 | 1124 | "prompt_number": 12 |
|
1124 | 1125 | } |
|
1125 | 1126 | ], |
|
1126 | 1127 | "metadata": {} |
|
1127 | 1128 | } |
|
1128 | 1129 | ] |
|
1129 | 1130 | } |
@@ -1,146 +1,147 | |||
|
1 | 1 | { |
|
2 | 2 | "metadata": { |
|
3 | 3 | "name": "Progress Bars" |
|
4 | 4 | }, |
|
5 | 5 | "nbformat": 3, |
|
6 | 6 | "nbformat_minor": 0, |
|
7 | 7 | "worksheets": [ |
|
8 | 8 | { |
|
9 | 9 | "cells": [ |
|
10 | 10 | { |
|
11 | 11 | "cell_type": "heading", |
|
12 | 12 | "level": 1, |
|
13 | 13 | "metadata": {}, |
|
14 | 14 | "source": [ |
|
15 | 15 | "Two Examples of Progress Bars" |
|
16 | 16 | ] |
|
17 | 17 | }, |
|
18 | 18 | { |
|
19 | 19 | "cell_type": "heading", |
|
20 | 20 | "level": 2, |
|
21 | 21 | "metadata": {}, |
|
22 | 22 | "source": [ |
|
23 | 23 | "A Javascript Progress Bar" |
|
24 | 24 | ] |
|
25 | 25 | }, |
|
26 | 26 | { |
|
27 | 27 | "cell_type": "markdown", |
|
28 | 28 | "metadata": {}, |
|
29 | 29 | "source": [ |
|
30 | 30 | "Here is a simple progress bar using HTML/Javascript:" |
|
31 | 31 | ] |
|
32 | 32 | }, |
|
33 | 33 | { |
|
34 | 34 | "cell_type": "code", |
|
35 | 35 | "collapsed": false, |
|
36 | 36 | "input": [ |
|
37 | 37 | "import uuid\n", |
|
38 | 38 | "import time\n", |
|
39 | 39 | "from IPython.display import HTML, Javascript, display\n", |
|
40 | 40 | "\n", |
|
41 | 41 | "divid = str(uuid.uuid4())\n", |
|
42 | 42 | "\n", |
|
43 | 43 | "pb = HTML(\n", |
|
44 | 44 | "\"\"\"\n", |
|
45 | 45 | "<div style=\"border: 1px solid black; width:500px\">\n", |
|
46 | 46 | " <div id=\"%s\" style=\"background-color:blue; width:0%%\"> </div>\n", |
|
47 | 47 | "</div> \n", |
|
48 | 48 | "\"\"\" % divid)\n", |
|
49 | 49 | "display(pb)\n", |
|
50 | 50 | "for i in range(1,101):\n", |
|
51 | 51 | " time.sleep(0.1)\n", |
|
52 | 52 | " \n", |
|
53 | 53 | " display(Javascript(\"$('div#%s').width('%i%%')\" % (divid, i)))" |
|
54 | 54 | ], |
|
55 | 55 | "language": "python", |
|
56 | 56 | "metadata": {}, |
|
57 | 57 | "outputs": [], |
|
58 | 58 | "prompt_number": 2 |
|
59 | 59 | }, |
|
60 | 60 | { |
|
61 | 61 | "cell_type": "markdown", |
|
62 | 62 | "metadata": {}, |
|
63 | 63 | "source": [ |
|
64 | 64 | "The above simply makes a div that is a box, and a blue div inside it with a unique ID \n", |
|
65 | 65 | "(so that the javascript won't collide with other similar progress bars on the same page). \n", |
|
66 | 66 | "\n", |
|
67 | 67 | "Then, at every progress point, we run a simple jQuery call to resize the blue box to\n", |
|
68 | 68 | "the appropriate fraction of the width of its containing box, and voil\u00e0 a nice\n", |
|
69 | 69 | "HTML/Javascript progress bar!" |
|
70 | 70 | ] |
|
71 | 71 | }, |
|
72 | 72 | { |
|
73 | 73 | "cell_type": "heading", |
|
74 | 74 | "level": 1, |
|
75 | 75 | "metadata": {}, |
|
76 | 76 | "source": [ |
|
77 | 77 | "ProgressBar class" |
|
78 | 78 | ] |
|
79 | 79 | }, |
|
80 | 80 | { |
|
81 | 81 | "cell_type": "markdown", |
|
82 | 82 | "metadata": {}, |
|
83 | 83 | "source": [ |
|
84 | 84 | "And finally, here is a progress bar *class* extracted from [PyMC](http://code.google.com/p/pymc/), which will work in regular Python as well as in the IPython Notebook" |
|
85 | 85 | ] |
|
86 | 86 | }, |
|
87 | 87 | { |
|
88 | 88 | "cell_type": "code", |
|
89 | 89 | "collapsed": true, |
|
90 | 90 | "input": [ |
|
91 | "from __future__ import print_function\n", | |
|
91 | 92 | "import sys, time\n", |
|
92 | 93 | "\n", |
|
93 | 94 | "class ProgressBar:\n", |
|
94 | 95 | " def __init__(self, iterations):\n", |
|
95 | 96 | " self.iterations = iterations\n", |
|
96 | 97 | " self.prog_bar = '[]'\n", |
|
97 | 98 | " self.fill_char = '*'\n", |
|
98 | 99 | " self.width = 50\n", |
|
99 | 100 | " self.__update_amount(0)\n", |
|
100 | 101 | "\n", |
|
101 | 102 | " def animate(self, iter):\n", |
|
102 |
" print |
|
|
103 | " print('\\r', self, end='')\n", | |
|
103 | 104 | " sys.stdout.flush()\n", |
|
104 | 105 | " self.update_iteration(iter + 1)\n", |
|
105 | 106 | "\n", |
|
106 | 107 | " def update_iteration(self, elapsed_iter):\n", |
|
107 | 108 | " self.__update_amount((elapsed_iter / float(self.iterations)) * 100.0)\n", |
|
108 | 109 | " self.prog_bar += ' %d of %s complete' % (elapsed_iter, self.iterations)\n", |
|
109 | 110 | "\n", |
|
110 | 111 | " def __update_amount(self, new_amount):\n", |
|
111 | 112 | " percent_done = int(round((new_amount / 100.0) * 100.0))\n", |
|
112 | 113 | " all_full = self.width - 2\n", |
|
113 | 114 | " num_hashes = int(round((percent_done / 100.0) * all_full))\n", |
|
114 | 115 | " self.prog_bar = '[' + self.fill_char * num_hashes + ' ' * (all_full - num_hashes) + ']'\n", |
|
115 | 116 | " pct_place = (len(self.prog_bar) // 2) - len(str(percent_done))\n", |
|
116 | 117 | " pct_string = '%d%%' % percent_done\n", |
|
117 | 118 | " self.prog_bar = self.prog_bar[0:pct_place] + \\\n", |
|
118 | 119 | " (pct_string + self.prog_bar[pct_place + len(pct_string):])\n", |
|
119 | 120 | "\n", |
|
120 | 121 | " def __str__(self):\n", |
|
121 | 122 | " return str(self.prog_bar)" |
|
122 | 123 | ], |
|
123 | 124 | "language": "python", |
|
124 | 125 | "metadata": {}, |
|
125 | 126 | "outputs": [], |
|
126 | 127 | "prompt_number": 3 |
|
127 | 128 | }, |
|
128 | 129 | { |
|
129 | 130 | "cell_type": "code", |
|
130 | 131 | "collapsed": false, |
|
131 | 132 | "input": [ |
|
132 | 133 | "p = ProgressBar(1000)\n", |
|
133 | 134 | "for i in range(1001):\n", |
|
134 | 135 | " time.sleep(0.002)\n", |
|
135 | 136 | " p.animate(i)" |
|
136 | 137 | ], |
|
137 | 138 | "language": "python", |
|
138 | 139 | "metadata": {}, |
|
139 | 140 | "outputs": [], |
|
140 | 141 | "prompt_number": 4 |
|
141 | 142 | } |
|
142 | 143 | ], |
|
143 | 144 | "metadata": {} |
|
144 | 145 | } |
|
145 | 146 | ] |
|
146 | 147 | } No newline at end of file |
@@ -1,928 +1,929 | |||
|
1 | 1 | { |
|
2 | 2 | "metadata": { |
|
3 | 3 | "name": "R Magics" |
|
4 | 4 | }, |
|
5 | 5 | "nbformat": 3, |
|
6 | 6 | "nbformat_minor": 0, |
|
7 | 7 | "worksheets": [ |
|
8 | 8 | { |
|
9 | 9 | "cells": [ |
|
10 | 10 | { |
|
11 | 11 | "cell_type": "heading", |
|
12 | 12 | "level": 1, |
|
13 | 13 | "metadata": {}, |
|
14 | 14 | "source": [ |
|
15 | 15 | "Using R Within the IPython Notebok" |
|
16 | 16 | ] |
|
17 | 17 | }, |
|
18 | 18 | { |
|
19 | 19 | "cell_type": "markdown", |
|
20 | 20 | "metadata": {}, |
|
21 | 21 | "source": [ |
|
22 | 22 | "Using the `rmagic` extension, users can run R code from within the IPython Notebook. This example Notebook demonstrates this capability. " |
|
23 | 23 | ] |
|
24 | 24 | }, |
|
25 | 25 | { |
|
26 | 26 | "cell_type": "code", |
|
27 | 27 | "collapsed": false, |
|
28 | 28 | "input": [ |
|
29 | 29 | "%pylab inline" |
|
30 | 30 | ], |
|
31 | 31 | "language": "python", |
|
32 | 32 | "metadata": {}, |
|
33 | 33 | "outputs": [] |
|
34 | 34 | }, |
|
35 | 35 | { |
|
36 | 36 | "cell_type": "heading", |
|
37 | 37 | "level": 2, |
|
38 | 38 | "metadata": {}, |
|
39 | 39 | "source": [ |
|
40 | 40 | "Line magics" |
|
41 | 41 | ] |
|
42 | 42 | }, |
|
43 | 43 | { |
|
44 | 44 | "cell_type": "markdown", |
|
45 | 45 | "metadata": {}, |
|
46 | 46 | "source": [ |
|
47 | 47 | "IPython has an `rmagic` extension that contains a some magic functions for working with R via rpy2. This extension can be loaded using the `%load_ext` magic as follows:" |
|
48 | 48 | ] |
|
49 | 49 | }, |
|
50 | 50 | { |
|
51 | 51 | "cell_type": "code", |
|
52 | 52 | "collapsed": true, |
|
53 | 53 | "input": [ |
|
54 | 54 | "%load_ext rmagic " |
|
55 | 55 | ], |
|
56 | 56 | "language": "python", |
|
57 | 57 | "metadata": {}, |
|
58 | 58 | "outputs": [], |
|
59 | 59 | "prompt_number": 1 |
|
60 | 60 | }, |
|
61 | 61 | { |
|
62 | 62 | "cell_type": "markdown", |
|
63 | 63 | "metadata": {}, |
|
64 | 64 | "source": [ |
|
65 | 65 | "A typical use case one imagines is having some numpy arrays, wanting to compute some statistics of interest on these\n", |
|
66 | 66 | " arrays and return the result back to python. Let's suppose we just want to fit a simple linear model to a scatterplot." |
|
67 | 67 | ] |
|
68 | 68 | }, |
|
69 | 69 | { |
|
70 | 70 | "cell_type": "code", |
|
71 | 71 | "collapsed": false, |
|
72 | 72 | "input": [ |
|
73 | 73 | "import numpy as np\n", |
|
74 | 74 | "import pylab\n", |
|
75 | 75 | "X = np.array([0,1,2,3,4])\n", |
|
76 | 76 | "Y = np.array([3,5,4,6,7])\n", |
|
77 | 77 | "pylab.scatter(X, Y)" |
|
78 | 78 | ], |
|
79 | 79 | "language": "python", |
|
80 | 80 | "metadata": {}, |
|
81 | 81 | "outputs": [ |
|
82 | 82 | { |
|
83 | 83 | "output_type": "pyout", |
|
84 | 84 | "prompt_number": 2, |
|
85 | 85 | "text": [ |
|
86 | 86 | "<matplotlib.collections.PathCollection at 0x10f32f610>" |
|
87 | 87 | ] |
|
88 | 88 | } |
|
89 | 89 | ], |
|
90 | 90 | "prompt_number": 2 |
|
91 | 91 | }, |
|
92 | 92 | { |
|
93 | 93 | "cell_type": "markdown", |
|
94 | 94 | "metadata": {}, |
|
95 | 95 | "source": [ |
|
96 | 96 | "We can accomplish this by first pushing variables to R, fitting a model and returning the results. The line magic %Rpush copies its arguments to variables of the same name in rpy2. The %R line magic evaluates the string in rpy2 and returns the results. In this case, the coefficients of a linear model." |
|
97 | 97 | ] |
|
98 | 98 | }, |
|
99 | 99 | { |
|
100 | 100 | "cell_type": "code", |
|
101 | 101 | "collapsed": false, |
|
102 | 102 | "input": [ |
|
103 | 103 | "%Rpush X Y\n", |
|
104 | 104 | "%R lm(Y~X)$coef" |
|
105 | 105 | ], |
|
106 | 106 | "language": "python", |
|
107 | 107 | "metadata": {}, |
|
108 | 108 | "outputs": [ |
|
109 | 109 | { |
|
110 | 110 | "output_type": "pyout", |
|
111 | 111 | "prompt_number": 3, |
|
112 | 112 | "text": [ |
|
113 | 113 | "array([ 3.2, 0.9])" |
|
114 | 114 | ] |
|
115 | 115 | } |
|
116 | 116 | ], |
|
117 | 117 | "prompt_number": 3 |
|
118 | 118 | }, |
|
119 | 119 | { |
|
120 | 120 | "cell_type": "markdown", |
|
121 | 121 | "metadata": {}, |
|
122 | 122 | "source": [ |
|
123 | 123 | "We can check that this is correct fairly easily:" |
|
124 | 124 | ] |
|
125 | 125 | }, |
|
126 | 126 | { |
|
127 | 127 | "cell_type": "code", |
|
128 | 128 | "collapsed": false, |
|
129 | 129 | "input": [ |
|
130 | 130 | "Xr = X - X.mean(); Yr = Y - Y.mean()\n", |
|
131 | 131 | "slope = (Xr*Yr).sum() / (Xr**2).sum()\n", |
|
132 | 132 | "intercept = Y.mean() - X.mean() * slope\n", |
|
133 | 133 | "(intercept, slope)" |
|
134 | 134 | ], |
|
135 | 135 | "language": "python", |
|
136 | 136 | "metadata": {}, |
|
137 | 137 | "outputs": [ |
|
138 | 138 | { |
|
139 | 139 | "output_type": "pyout", |
|
140 | 140 | "prompt_number": 4, |
|
141 | 141 | "text": [ |
|
142 | 142 | "(3.2000000000000002, 0.90000000000000002)" |
|
143 | 143 | ] |
|
144 | 144 | } |
|
145 | 145 | ], |
|
146 | 146 | "prompt_number": 4 |
|
147 | 147 | }, |
|
148 | 148 | { |
|
149 | 149 | "cell_type": "markdown", |
|
150 | 150 | "metadata": {}, |
|
151 | 151 | "source": [ |
|
152 | 152 | "It is also possible to return more than one value with %R." |
|
153 | 153 | ] |
|
154 | 154 | }, |
|
155 | 155 | { |
|
156 | 156 | "cell_type": "code", |
|
157 | 157 | "collapsed": false, |
|
158 | 158 | "input": [ |
|
159 | 159 | "%R resid(lm(Y~X)); coef(lm(X~Y))\n" |
|
160 | 160 | ], |
|
161 | 161 | "language": "python", |
|
162 | 162 | "metadata": {}, |
|
163 | 163 | "outputs": [ |
|
164 | 164 | { |
|
165 | 165 | "output_type": "pyout", |
|
166 | 166 | "prompt_number": 5, |
|
167 | 167 | "text": [ |
|
168 | 168 | "array([-2.5, 0.9])" |
|
169 | 169 | ] |
|
170 | 170 | } |
|
171 | 171 | ], |
|
172 | 172 | "prompt_number": 5 |
|
173 | 173 | }, |
|
174 | 174 | { |
|
175 | 175 | "cell_type": "markdown", |
|
176 | 176 | "metadata": {}, |
|
177 | 177 | "source": [ |
|
178 | 178 | "One can also easily capture the results of %R into python objects. Like R, the return value of this multiline expression (multiline in the sense that it is separated by ';') is the final value, which is \n", |
|
179 | 179 | "the *coef(lm(X~Y))*. To pull other variables from R, there is one more magic." |
|
180 | 180 | ] |
|
181 | 181 | }, |
|
182 | 182 | { |
|
183 | 183 | "cell_type": "markdown", |
|
184 | 184 | "metadata": {}, |
|
185 | 185 | "source": [ |
|
186 | 186 | "There are two more line magics, %Rpull and %Rget. Both are useful after some R code has been executed and there are variables\n", |
|
187 | 187 | "in the rpy2 namespace that one would like to retrieve. The main difference is that one\n", |
|
188 | 188 | " returns the value (%Rget), while the other pulls it to self.shell.user_ns (%Rpull). Imagine we've stored the results\n", |
|
189 | 189 | "of some calculation in the variable \"a\" in rpy2's namespace. By using the %R magic, we can obtain these results and\n", |
|
190 | 190 | "store them in b. We can also pull them directly to user_ns with %Rpull. They are both views on the same data." |
|
191 | 191 | ] |
|
192 | 192 | }, |
|
193 | 193 | { |
|
194 | 194 | "cell_type": "code", |
|
195 | 195 | "collapsed": false, |
|
196 | 196 | "input": [ |
|
197 | 197 | "b = %R a=resid(lm(Y~X))\n", |
|
198 | 198 | "%Rpull a\n", |
|
199 |
"print |
|
|
199 | "print(a)\n", | |
|
200 | 200 | "assert id(b.data) == id(a.data)\n", |
|
201 | 201 | "%R -o a" |
|
202 | 202 | ], |
|
203 | 203 | "language": "python", |
|
204 | 204 | "metadata": {}, |
|
205 | 205 | "outputs": [ |
|
206 | 206 | { |
|
207 | 207 | "output_type": "stream", |
|
208 | 208 | "stream": "stdout", |
|
209 | 209 | "text": [ |
|
210 | 210 | "[-0.2 0.9 -1. 0.1 0.2]\n" |
|
211 | 211 | ] |
|
212 | 212 | } |
|
213 | 213 | ], |
|
214 | 214 | "prompt_number": 6 |
|
215 | 215 | }, |
|
216 | 216 | { |
|
217 | 217 | "cell_type": "markdown", |
|
218 | 218 | "metadata": {}, |
|
219 | 219 | "source": [ |
|
220 | 220 | "%Rpull is equivalent to calling %R with just -o\n" |
|
221 | 221 | ] |
|
222 | 222 | }, |
|
223 | 223 | { |
|
224 | 224 | "cell_type": "code", |
|
225 | 225 | "collapsed": false, |
|
226 | 226 | "input": [ |
|
227 | 227 | "%R d=resid(lm(Y~X)); e=coef(lm(Y~X))\n", |
|
228 | 228 | "%R -o d -o e\n", |
|
229 | 229 | "%Rpull e\n", |
|
230 |
"print |
|
|
231 |
"print |
|
|
230 | "print(d)\n", | |
|
231 | "print(e)\n", | |
|
232 | 232 | "import numpy as np\n", |
|
233 | 233 | "np.testing.assert_almost_equal(d, a)" |
|
234 | 234 | ], |
|
235 | 235 | "language": "python", |
|
236 | 236 | "metadata": {}, |
|
237 | 237 | "outputs": [ |
|
238 | 238 | { |
|
239 | 239 | "output_type": "stream", |
|
240 | 240 | "stream": "stdout", |
|
241 | 241 | "text": [ |
|
242 | 242 | "[-0.2 0.9 -1. 0.1 0.2]\n", |
|
243 | 243 | "[ 3.2 0.9]\n" |
|
244 | 244 | ] |
|
245 | 245 | } |
|
246 | 246 | ], |
|
247 | 247 | "prompt_number": 7 |
|
248 | 248 | }, |
|
249 | 249 | { |
|
250 | 250 | "cell_type": "markdown", |
|
251 | 251 | "metadata": {}, |
|
252 | 252 | "source": [ |
|
253 | 253 | "On the other hand %Rpush is equivalent to calling %R with just -i and no trailing code." |
|
254 | 254 | ] |
|
255 | 255 | }, |
|
256 | 256 | { |
|
257 | 257 | "cell_type": "code", |
|
258 | 258 | "collapsed": false, |
|
259 | 259 | "input": [ |
|
260 | 260 | "A = np.arange(20)\n", |
|
261 | 261 | "%R -i A\n", |
|
262 | 262 | "%R mean(A)\n" |
|
263 | 263 | ], |
|
264 | 264 | "language": "python", |
|
265 | 265 | "metadata": {}, |
|
266 | 266 | "outputs": [ |
|
267 | 267 | { |
|
268 | 268 | "output_type": "pyout", |
|
269 | 269 | "prompt_number": 8, |
|
270 | 270 | "text": [ |
|
271 | 271 | "array([ 9.5])" |
|
272 | 272 | ] |
|
273 | 273 | } |
|
274 | 274 | ], |
|
275 | 275 | "prompt_number": 8 |
|
276 | 276 | }, |
|
277 | 277 | { |
|
278 | 278 | "cell_type": "markdown", |
|
279 | 279 | "metadata": {}, |
|
280 | 280 | "source": [ |
|
281 | 281 | "The magic %Rget retrieves one variable from R." |
|
282 | 282 | ] |
|
283 | 283 | }, |
|
284 | 284 | { |
|
285 | 285 | "cell_type": "code", |
|
286 | 286 | "collapsed": false, |
|
287 | 287 | "input": [ |
|
288 | 288 | "%Rget A" |
|
289 | 289 | ], |
|
290 | 290 | "language": "python", |
|
291 | 291 | "metadata": {}, |
|
292 | 292 | "outputs": [ |
|
293 | 293 | { |
|
294 | 294 | "output_type": "pyout", |
|
295 | 295 | "prompt_number": 9, |
|
296 | 296 | "text": [ |
|
297 | 297 | "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n", |
|
298 | 298 | " 17, 18, 19], dtype=int32)" |
|
299 | 299 | ] |
|
300 | 300 | } |
|
301 | 301 | ], |
|
302 | 302 | "prompt_number": 9 |
|
303 | 303 | }, |
|
304 | 304 | { |
|
305 | 305 | "cell_type": "heading", |
|
306 | 306 | "level": 2, |
|
307 | 307 | "metadata": {}, |
|
308 | 308 | "source": [ |
|
309 | 309 | "Plotting and capturing output" |
|
310 | 310 | ] |
|
311 | 311 | }, |
|
312 | 312 | { |
|
313 | 313 | "cell_type": "markdown", |
|
314 | 314 | "metadata": {}, |
|
315 | 315 | "source": [ |
|
316 | 316 | "R's console (i.e. its stdout() connection) is captured by ipython, as are any plots which are published as PNG files like the notebook with arguments --pylab inline. As a call to %R may produce a return value (see above) we must ask what happens to a magic like the one below. The R code specifies that something is published to the notebook. If anything is published to the notebook, that call to %R returns None." |
|
317 | 317 | ] |
|
318 | 318 | }, |
|
319 | 319 | { |
|
320 | 320 | "cell_type": "code", |
|
321 | 321 | "collapsed": false, |
|
322 | 322 | "input": [ |
|
323 | "from __future__ import print_function\n", | |
|
323 | 324 | "v1 = %R plot(X,Y); print(summary(lm(Y~X))); vv=mean(X)*mean(Y)\n", |
|
324 |
"print |
|
|
325 | "print('v1 is:', v1)\n", | |
|
325 | 326 | "v2 = %R mean(X)*mean(Y)\n", |
|
326 |
"print |
|
|
327 | "print('v2 is:', v2)" | |
|
327 | 328 | ], |
|
328 | 329 | "language": "python", |
|
329 | 330 | "metadata": {}, |
|
330 | 331 | "outputs": [ |
|
331 | 332 | { |
|
332 | 333 | "output_type": "display_data", |
|
333 | 334 | "text": [ |
|
334 | 335 | "\n", |
|
335 | 336 | "Call:\n", |
|
336 | 337 | "lm(formula = Y ~ X)\n", |
|
337 | 338 | "\n", |
|
338 | 339 | "Residuals:\n", |
|
339 | 340 | " 1 2 3 4 5 \n", |
|
340 | 341 | "-0.2 0.9 -1.0 0.1 0.2 \n", |
|
341 | 342 | "\n", |
|
342 | 343 | "Coefficients:\n", |
|
343 | 344 | " Estimate Std. Error t value Pr(>|t|) \n", |
|
344 | 345 | "(Intercept) 3.2000 0.6164 5.191 0.0139 *\n", |
|
345 | 346 | "X 0.9000 0.2517 3.576 0.0374 *\n", |
|
346 | 347 | "---\n", |
|
347 | 348 | "Signif. codes: 0 \u2018***\u2019 0.001 \u2018**\u2019 0.01 \u2018*\u2019 0.05 \u2018.\u2019 0.1 \u2018 \u2019 1 \n", |
|
348 | 349 | "\n", |
|
349 | 350 | "Residual standard error: 0.7958 on 3 degrees of freedom\n", |
|
350 | 351 | "Multiple R-squared: 0.81,\tAdjusted R-squared: 0.7467 \n", |
|
351 | 352 | "F-statistic: 12.79 on 1 and 3 DF, p-value: 0.03739 \n", |
|
352 | 353 | "\n" |
|
353 | 354 | ] |
|
354 | 355 | }, |
|
355 | 356 | { |
|
356 | 357 | "output_type": "display_data", |
|
357 | 358 | "png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAD8GlDQ1BJQ0MgUHJvZmlsZQAAKJGN\nVd1v21QUP4lvXKQWP6Cxjg4Vi69VU1u5GxqtxgZJk6XpQhq5zdgqpMl1bhpT1za2021Vn/YCbwz4\nA4CyBx6QeEIaDMT2su0BtElTQRXVJKQ9dNpAaJP2gqpwrq9Tu13GuJGvfznndz7v0TVAx1ea45hJ\nGWDe8l01n5GPn5iWO1YhCc9BJ/RAp6Z7TrpcLgIuxoVH1sNfIcHeNwfa6/9zdVappwMknkJsVz19\nHvFpgJSpO64PIN5G+fAp30Hc8TziHS4miFhheJbjLMMzHB8POFPqKGKWi6TXtSriJcT9MzH5bAzz\nHIK1I08t6hq6zHpRdu2aYdJYuk9Q/881bzZa8Xrx6fLmJo/iu4/VXnfH1BB/rmu5ScQvI77m+Bkm\nfxXxvcZcJY14L0DymZp7pML5yTcW61PvIN6JuGr4halQvmjNlCa4bXJ5zj6qhpxrujeKPYMXEd+q\n00KR5yNAlWZzrF+Ie+uNsdC/MO4tTOZafhbroyXuR3Df08bLiHsQf+ja6gTPWVimZl7l/oUrjl8O\ncxDWLbNU5D6JRL2gxkDu16fGuC054OMhclsyXTOOFEL+kmMGs4i5kfNuQ62EnBuam8tzP+Q+tSqh\nz9SuqpZlvR1EfBiOJTSgYMMM7jpYsAEyqJCHDL4dcFFTAwNMlFDUUpQYiadhDmXteeWAw3HEmA2s\n15k1RmnP4RHuhBybdBOF7MfnICmSQ2SYjIBM3iRvkcMki9IRcnDTthyLz2Ld2fTzPjTQK+Mdg8y5\nnkZfFO+se9LQr3/09xZr+5GcaSufeAfAww60mAPx+q8u/bAr8rFCLrx7s+vqEkw8qb+p26n11Aru\nq6m1iJH6PbWGv1VIY25mkNE8PkaQhxfLIF7DZXx80HD/A3l2jLclYs061xNpWCfoB6WHJTjbH0mV\n35Q/lRXlC+W8cndbl9t2SfhU+Fb4UfhO+F74GWThknBZ+Em4InwjXIyd1ePnY/Psg3pb1TJNu15T\nMKWMtFt6ScpKL0ivSMXIn9QtDUlj0h7U7N48t3i8eC0GnMC91dX2sTivgloDTgUVeEGHLTizbf5D\na9JLhkhh29QOs1luMcScmBXTIIt7xRFxSBxnuJWfuAd1I7jntkyd/pgKaIwVr3MgmDo2q8x6IdB5\nQH162mcX7ajtnHGN2bov71OU1+U0fqqoXLD0wX5ZM005UHmySz3qLtDqILDvIL+iH6jB9y2x83ok\n898GOPQX3lk3Itl0A+BrD6D7tUjWh3fis58BXDigN9yF8M5PJH4B8Gr79/F/XRm8m241mw/wvur4\nBGDj42bzn+Vmc+NL9L8GcMn8F1kAcXjEKMJAAAAYFklEQVR4nO3de5DVBf3/8TfBKne8MICwqCiQ\nVkg6KuqYETZCkgPYqqGEBSIwgnJRGo0cRxgxw3FGhVJRErLFC4o3GoVNE4JKMhJSoCSlMkZuC0hy\nWXZ/fzQx40/4thTs+3j28ZjZP/bzmf2cFzPMPOd8zjm7DWpqamoCAKhTn8keAAD1kQADQAIBBoAE\nAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEg\ngQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAA\nSCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQY\nABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEgQaPsAXXp\nqaeeiqqqquwZABSINm3aRK9evVIeu0FNTU1NyiPXsblz58bdd98dV199dfYUAArEvffeG4899lh8\n8YtfrPPHrjfPgKuqqmLw4MExfPjw7CkAFIg1a9ZEdXV1ymN7DRgAEggwACQQYABIIMAAkECAASCB\nAANAAgEGgAT15nPAABSnt956K7Zu3Rqf/exn45hjjsmeU2sF8Qz4/fffj71792bPAOBTpKamJm69\n9daYNGlSzJ07N0pLS2Pp0qXZs2qtIALct2/fuOCCC2Lt2rXZUwD4lJg8eXLs2LEjysvLY+rUqfHG\nG2/EDTfcEO+99172tFopmFvQ3bp1i/POOy8mTJgQQ4cOjVatWh30NV577bX49a9/vd9zixYtijZt\n2sSIESP+16kAFIBly5bFjBkz9n1/yimnxJAhQ+JXv/pVnHDCCYnLaqcgngFHRAwbNiwWL14cP//5\nz6O0tDRGjBgRixcvjm3bttX6Gu3atYtu3brt96thw4axYcOGw/gvAKAuNW/ePHbu3PmxY5WVlVFS\nUpK06OAUzDPgiIjOnTvHggULYtWqVTFjxoz41re+FevWrYshQ4bEQw899B9/vmvXrtG1a9f9nnv5\n5Zdj/fr1h3oyAEkGDBgQEyZMiEceeSSaNGkS8+bNi5tvvvmgnrhlKqgA/9spp5wSU6dOjalTp8aO\nHTti06ZN2ZMAKDBlZWWxYcOGOOOMM6Jr167RvHnzeO+996JFixbZ02qlIAI8YcKE6Nix437PNWvW\nLJo1a1bHiwD4NBg5cmSMHDkye8Z/pSACPHDgwOwJAFCnCuZNWABQnwgwACQQYABIIMAAkECAASCB\nAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABI\nIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgA\nEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEG\ngAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECA\nASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJGmUPOJCdO3dG\nw4YNo6SkJHsKwEGprq6OGTNmxC9/+cs44ogj4rrrroszzzwzexYFpiCeAa9bty4GDx4cy5Ytiw0b\nNsTQoUOjXbt2cdRRR8WQIUNi9+7d2RMBam3w4MGxYMGCmDx5cowZMya+//3vx4svvpg9iwJTEAG+\n9dZb4/jjj4/Pf/7zcd9990VVVVWsXLky3nzzzdi+fXtMmjSpVteprq6Oqqqq/X5VV1dHTU3NYf6X\nAPXd66+/Hu+++248+eST0alTp+jevXvMmDEj7rvvvuxpFJiCuAX92muvxapVq+KII46IZ555JubN\nmxelpaURETFp0qQYMWJEra4zc+bMmDNnzn7PrV69Ok488cRDNRlgvyorK6N3794fO9ahQ4eorq5O\nWkShKogAd+3aNWbNmhXXXHNN9OzZM+bPnx+jR4+OiIgXXnghunTpUqvrDB06NIYOHbrfc2PHjo31\n69cfss0A+9O1a9e49957Y9OmTXHsscdGRMSiRYviww8/TF5GoSmIAE+bNi2+/vWvx8MPPxydO3eO\nG2+8MR555JH4zGc+E9u2bYvXXnsteyJArZxwwgkxdOjQaN26dcyePTu2bt0azz77bDz55JPZ0ygw\nBRHgk08+Od56661YsGBBrF69Oo4//vg4+uijo0uXLtG3b99o1KggZgLUSv/+/WP58uWxaNGiaNKk\nSZSXl+97Ngz/VjBla9CgQVx00UVx0UUXZU8B+J917949unfvnj2DAlYQ74IGgPpGgAEggQADQAIB\nBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBA\ngAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAk\nEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwA\nCQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQAD\nQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASPCJ\nAN90002xffv2jC3UY5WVlfHyyy/HwoUL46OPPsqeA3DYfSLA69ati9NOOy0WLVqUsWefDRs2RFVV\nVeoG6sbatWvj0ksvjddffz0qKiqiZcuWsX79+uxZAIfVJwL8+OOPxx133BFlZWUxYcKE2L1792Ef\nMXjw4Fi1alVERKxevTr69u0bHTt2jHbt2sWoUaNiz549h30DOT766KM47bTT4rvf/W5873vfiylT\npsTMmTNjwoQJsXfv3ux5AIdNo/0dHDhwYHz1q1+NG2+8Mc4666y4/PLL95079dRT49JLLz2kI1au\nXBk7duyIiIgpU6bEKaecErNnz46NGzfGuHHjYsqUKXHrrbf+x+s899xzsWDBgv2eW7RoURx77LGH\ndDf/uz//+c9x1VVXRe/evfcdGzRoUDz33HPx/vvvR8eOHRPXARw++w1wRESDBg2ipKQk1q9fHytX\nrtx3vHnz5od10EsvvRRr1qyJFi1axDHHHBOTJ0+OcePG1SrAPXr0iJNOOmm/5yorK/dFnsLRuHHj\nqKys/Nix6urqWLt2bTRp0iRpFcDht98Al5eXx/XXXx9f/vKXY8WKFdGmTZvDPmTJkiXRvn37OOec\nc2LTpk3RokWLiIhYsWJFnH766bW6Rtu2baNt27b7Pde6dWuvKRegLl26xMknnxy33357TJgwIaqq\nquIrX/lK9OzZM1q3bp09D+Cw+USAr7jiiqioqIj7778/vvnNb9bJiKuuuiqef/75mDRpUmzdujUa\nN24c5eXlcdttt8W0adOioqKiTnaQY9KkSXH99dfHxRdfHE2bNo0hQ4bE8OHDs2cBHFafCHCrVq3i\nj3/84wGfSR4O48ePj/Hjx0dExN///vfYtm1bRET06dMnbrzxxsN+25tcDRs2jGnTpmXPAKhTnwjw\ngw8+mLFjnw4dOkSHDh0iIuKcc85J3QIAh4vfhAUACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIB\nBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBA\ngAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAk\nEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwA\nCQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQAD\nQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEBRvgnTt3xrZt27JnQFFZtmxZ\nDBw4MPr06RNlZWWxadOm7ElQbxVsgOfOnRvjxo3LngFF469//WvccMMNMX78+Hj22Wdj6NChcfnl\nl8fmzZuzp0G91Ch7QEREly5dYuPGjR87tnv37qiqqoq5c+dG//79Y+bMmf/xOlu2bInKysr9ntu6\ndWvs2bPnkOyFT6O77ror7rjjjjjzzDMjIuJrX/tavPPOO/HYY4/F6NGjk9dB/VMQAZ45c2YMGTIk\nBg0aFFdffXVERMybNy+WLl0aP/jBD6JZs2a1uk5FRUXMnz9/v+d+85vfRNu2bQ/ZZvi0+fDDD6Nd\nu3YfO1ZaWhqrV69OWgT1W0EE+Pzzz49ly5bFqFGjYty4cfHAAw9E69ato3nz5nHCCSfU+jplZWVR\nVla233Njx46N9evXH6rJ8KnTo0eP+OEPfxgzZsyIiH/dZfrOd74Tc+fOTV4G9VNBBDgiomXLljFr\n1qx44okn4oILLogePXpEw4YNs2dB0Rg2bFjMnz8/evfuHf37948FCxbExIkTo1evXtnToF4qmAD/\n2+WXXx7nnXdejBw5Mrp37549B4pGw4YN47nnnouKiorYvHlzTJw4Mc4444zsWVBvFVyAI/71utTz\nzz+fPQOK0oUXXpg9AYgC/hgSABQzAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaA\nBAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIAB\nIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBg\nAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkE\nGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0AC\nAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIEGj7AGF7qWXXor3338/jjvuuOjTp0/2HACKRME+\nA967d29s27YtdcPVV18dTz31VJSUlMRdd90Vl112WVRXV6duAqA4FESA9+zZE1OmTIkhQ4bEG2+8\nEXPmzIm2bdvGUUcdFZdeemns2rWrzjeVl5fHW2+9FQ899FAMGjQofvGLX0TLli3jpz/9aZ1vAaD4\nFMQt6JtuuinefvvtOOOMM+KKK66IRo0axdy5c6O0tDTGjh0b8+bNiyuuuOI/Xmf27Nnx9NNP7/fc\nm2++GaWlpbXetHz58rjnnns+dmz48OHx+OOP1/oaAHAgBRHg+fPnx7Jly6Jly5bRpEmT+OCDD+LL\nX/5yRERMnjw5Jk6cWKsAX3bZZXHJJZfs99yTTz4ZO3bsqPWmli1bxurVq+P888/fd+z3v/99tGzZ\nstbXAIADKYgAn3TSSbFq1ao4++yz45prrom//e1v+86tWLEiOnfuXKvrNG7cOBo3brzfcy1btoy9\ne/fWetOwYcOirKws2rVrF2effXYsWrQoRowYEZWVlbW+BgAcSEEEeNy4cdGvX7/48Y9/HP369Yv2\n7dtHRMQtt9wSjzzySCxcuLDON7Vp0ybmzZsXN910U8yaNSvatGkT69ati1atWtX5FgCKT0EE+KKL\nLorVq1d/4hbxJZdcEhMnToymTZum7DrmmGPi4YcfTnlsAIpbQQQ44l+3iP//11fPPffcpDUAcHgV\nxMeQAKC+EWAASCDAAJBAgAEggQADQAIBBoAEAgwACRrU1NTUZI+oC8uXL4++ffvG6aefftA/+8or\nrxzwV1xy6OzevTsaNGgQJSUl2VOK3o4dO6JZs2bZM4rezp07o6SkJBo2bJg9paj9O2PnnXfeQf/s\n2rVrY8GCBdGhQ4dDPes/qjcB/l/07NkzXn311ewZRW/atGnRtm3bKCsry55S9Pyfrhs333xz9OvX\nL84555zsKUXtgw8+iNGjR3/q/lqdW9AAkECAASCBAANAAgEGgAQCDAAJBBgAEvgYUi384x//iOOO\nOy57RtHbtm1bNGzY0OdT64D/03Vj8+bN0axZszjyyCOzpxS16urq2LhxY7Rp0yZ7ykERYABI4BY0\nACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBJiCsmfPnuwJAHVCgP8Pr776apx//vnRqVOnGDBg\nQGzZsiV7UlErLy+Pc889N3tGUSsvL49evXpF9+7dY9CgQfH2229nTypKa9asiQEDBkS3bt3i7LPP\njtdffz17UtG79tprY/jw4dkzDooAH8DGjRvjyiuvjOnTp8eaNWuiU6dOMX78+OxZRWnLli0xatSo\nuOGGG8IvZjt81q9fH2PHjo3y8vL4wx/+EBdeeGGMGTMme1ZRGjp0aFx22WWxYsWKmDx5cpSVlWVP\nKmovvvhizJ07N3vGQRPgA1i2bFmceuqpcdppp0VJSUmMHj06nn766exZRamioiKaNm0ajz76aPaU\nolZdXR1PPPFEtG3bNiIiunfvHkuWLEleVZzmzZsXAwcOjIiIqqqqqKqqSl5UvDZt2hSTJ0+O0aNH\nZ085aAJ8AOvWrfvYL6tv27ZtbN26NXbt2pW4qjiVlZXFXXfdFU2aNMmeUtTat28fF1xwwb7vH3zw\nwejbt2/iouJ17LHHRoMGDWLMmDFx7bXXxv333589qWiNHDkybrvttmjevHn2lIMmwAewadOmj/1V\nnn/H4Z///GfWJDhkZsyYEc8//3xMnTo1e0rR2rVrV7Rp0yZKS0tjzpw5sXv37uxJRednP/tZNGnS\nJHr37p095b8iwAfQunXr2LZt277vt2/fHo0bN46jjz46cRX87x544IGYOHFiLFy4MEpLS7PnFK0j\njzwybrnllli8eHG88sorsXjx4uxJRWXTpk0xZsyY6NWrV7zwwgvx9ttvx3vvvRdLly7NnlZrAnwA\npaWl8e677+77/t13342OHTvmDYJD4NFHH43bbrstFi5cGKeeemr2nKK0c+fOmDBhwr6Xqxo1ahRd\nu3aNP/3pT8nLiktlZWV07tw5HnjggbjjjjuioqIili9fHrNnz86eVmsCfAC9evWKtWvXRkVFReza\ntSvuvvvu+MY3vpE9C/5rf/nLX+K6666LOXPmRPv27WPz5s2xefPm7FlFp3HjxvG73/0uZs6cGRH/\nekPnb3/72/jSl76UvKy4nHzyybFkyZJ9X6NGjYp+/frF9OnTs6fVWqPsAYXqyCOPjPvvvz/69+8f\nrVq1iq5du8a0adOyZ8F/bfr06bFjx47o2bPnx47v2LEjmjZtmjOqSE2ZMiXGjRsX99xzT7Rq1Spm\nzZoVn/vc57JnUWAa1Pjg5f+pqqoqtm/f7rVf4KBt3bo1WrVqlT2DAiXAAJDAa8AAkECAASCBAANA\nAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAA\nkECAASCBAEM9sHPnzvjCF74Qt9xyy8eOf/vb344rr7wyaRXUb42yBwCHX+PGjaO8vDx69OgRZ511\nVgwYMCDuvPPOWLp0aSxbtix7HtRLAgz1RLdu3eLOO++MYcOGRUlJSUyaNCmWLFkSLVq0yJ4G9VKD\nmpqamuwRQN25+OKL4+WXX47p06fHtddemz0H6i2vAUM907lz59i7d2+0bt06ewrUawIM9cirr74a\ns2bNittvvz2uu+662LJlS/YkqLfcgoZ64sMPP4xu3brFzTffHMOGDYuePXtGp06d4ic/+Un2NKiX\nBBjqieHDh8c777wTCxYsiAYNGsSaNWuie/fu8cwzz0SfPn2y50G9I8BQD7z00ktRVlYWK1asiBNP\nPHHf8TvvvDN+9KMfxcqVK70bGuqYAANAAm/CAoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQAD\nQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAE/w+5mUYqDkF0XgAAAABJRU5E\nrkJggg==\n" |
|
358 | 359 | }, |
|
359 | 360 | { |
|
360 | 361 | "output_type": "stream", |
|
361 | 362 | "stream": "stdout", |
|
362 | 363 | "text": [ |
|
363 | 364 | "v1 is: [ 10.]\n", |
|
364 | 365 | "v2 is: [ 10.]\n" |
|
365 | 366 | ] |
|
366 | 367 | } |
|
367 | 368 | ], |
|
368 | 369 | "prompt_number": 10 |
|
369 | 370 | }, |
|
370 | 371 | { |
|
371 | 372 | "cell_type": "heading", |
|
372 | 373 | "level": 2, |
|
373 | 374 | "metadata": {}, |
|
374 | 375 | "source": [ |
|
375 | 376 | "What value is returned from %R?" |
|
376 | 377 | ] |
|
377 | 378 | }, |
|
378 | 379 | { |
|
379 | 380 | "cell_type": "markdown", |
|
380 | 381 | "metadata": {}, |
|
381 | 382 | "source": [ |
|
382 | 383 | "Some calls have no particularly interesting return value, the magic %R will not return anything in this case. The return value in rpy2 is actually NULL so %R returns None." |
|
383 | 384 | ] |
|
384 | 385 | }, |
|
385 | 386 | { |
|
386 | 387 | "cell_type": "code", |
|
387 | 388 | "collapsed": false, |
|
388 | 389 | "input": [ |
|
389 | 390 | "v = %R plot(X,Y)\n", |
|
390 | 391 | "assert v == None" |
|
391 | 392 | ], |
|
392 | 393 | "language": "python", |
|
393 | 394 | "metadata": {}, |
|
394 | 395 | "outputs": [ |
|
395 | 396 | { |
|
396 | 397 | "output_type": "display_data", |
|
397 | 398 | "png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAD8GlDQ1BJQ0MgUHJvZmlsZQAAKJGN\nVd1v21QUP4lvXKQWP6Cxjg4Vi69VU1u5GxqtxgZJk6XpQhq5zdgqpMl1bhpT1za2021Vn/YCbwz4\nA4CyBx6QeEIaDMT2su0BtElTQRXVJKQ9dNpAaJP2gqpwrq9Tu13GuJGvfznndz7v0TVAx1ea45hJ\nGWDe8l01n5GPn5iWO1YhCc9BJ/RAp6Z7TrpcLgIuxoVH1sNfIcHeNwfa6/9zdVappwMknkJsVz19\nHvFpgJSpO64PIN5G+fAp30Hc8TziHS4miFhheJbjLMMzHB8POFPqKGKWi6TXtSriJcT9MzH5bAzz\nHIK1I08t6hq6zHpRdu2aYdJYuk9Q/881bzZa8Xrx6fLmJo/iu4/VXnfH1BB/rmu5ScQvI77m+Bkm\nfxXxvcZcJY14L0DymZp7pML5yTcW61PvIN6JuGr4halQvmjNlCa4bXJ5zj6qhpxrujeKPYMXEd+q\n00KR5yNAlWZzrF+Ie+uNsdC/MO4tTOZafhbroyXuR3Df08bLiHsQf+ja6gTPWVimZl7l/oUrjl8O\ncxDWLbNU5D6JRL2gxkDu16fGuC054OMhclsyXTOOFEL+kmMGs4i5kfNuQ62EnBuam8tzP+Q+tSqh\nz9SuqpZlvR1EfBiOJTSgYMMM7jpYsAEyqJCHDL4dcFFTAwNMlFDUUpQYiadhDmXteeWAw3HEmA2s\n15k1RmnP4RHuhBybdBOF7MfnICmSQ2SYjIBM3iRvkcMki9IRcnDTthyLz2Ld2fTzPjTQK+Mdg8y5\nnkZfFO+se9LQr3/09xZr+5GcaSufeAfAww60mAPx+q8u/bAr8rFCLrx7s+vqEkw8qb+p26n11Aru\nq6m1iJH6PbWGv1VIY25mkNE8PkaQhxfLIF7DZXx80HD/A3l2jLclYs061xNpWCfoB6WHJTjbH0mV\n35Q/lRXlC+W8cndbl9t2SfhU+Fb4UfhO+F74GWThknBZ+Em4InwjXIyd1ePnY/Psg3pb1TJNu15T\nMKWMtFt6ScpKL0ivSMXIn9QtDUlj0h7U7N48t3i8eC0GnMC91dX2sTivgloDTgUVeEGHLTizbf5D\na9JLhkhh29QOs1luMcScmBXTIIt7xRFxSBxnuJWfuAd1I7jntkyd/pgKaIwVr3MgmDo2q8x6IdB5\nQH162mcX7ajtnHGN2bov71OU1+U0fqqoXLD0wX5ZM005UHmySz3qLtDqILDvIL+iH6jB9y2x83ok\n898GOPQX3lk3Itl0A+BrD6D7tUjWh3fis58BXDigN9yF8M5PJH4B8Gr79/F/XRm8m241mw/wvur4\nBGDj42bzn+Vmc+NL9L8GcMn8F1kAcXjEKMJAAAAYFklEQVR4nO3de5DVBf3/8TfBKne8MICwqCiQ\nVkg6KuqYETZCkgPYqqGEBSIwgnJRGo0cRxgxw3FGhVJRErLFC4o3GoVNE4JKMhJSoCSlMkZuC0hy\nWXZ/fzQx40/4thTs+3j28ZjZP/bzmf2cFzPMPOd8zjm7DWpqamoCAKhTn8keAAD1kQADQAIBBoAE\nAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEg\ngQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAA\nSCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQY\nABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEgQaPsAXXp\nqaeeiqqqquwZABSINm3aRK9evVIeu0FNTU1NyiPXsblz58bdd98dV199dfYUAArEvffeG4899lh8\n8YtfrPPHrjfPgKuqqmLw4MExfPjw7CkAFIg1a9ZEdXV1ymN7DRgAEggwACQQYABIIMAAkECAASCB\nAANAAgEGgAT15nPAABSnt956K7Zu3Rqf/exn45hjjsmeU2sF8Qz4/fffj71792bPAOBTpKamJm69\n9daYNGlSzJ07N0pLS2Pp0qXZs2qtIALct2/fuOCCC2Lt2rXZUwD4lJg8eXLs2LEjysvLY+rUqfHG\nG2/EDTfcEO+99172tFopmFvQ3bp1i/POOy8mTJgQQ4cOjVatWh30NV577bX49a9/vd9zixYtijZt\n2sSIESP+16kAFIBly5bFjBkz9n1/yimnxJAhQ+JXv/pVnHDCCYnLaqcgngFHRAwbNiwWL14cP//5\nz6O0tDRGjBgRixcvjm3bttX6Gu3atYtu3brt96thw4axYcOGw/gvAKAuNW/ePHbu3PmxY5WVlVFS\nUpK06OAUzDPgiIjOnTvHggULYtWqVTFjxoz41re+FevWrYshQ4bEQw899B9/vmvXrtG1a9f9nnv5\n5Zdj/fr1h3oyAEkGDBgQEyZMiEceeSSaNGkS8+bNi5tvvvmgnrhlKqgA/9spp5wSU6dOjalTp8aO\nHTti06ZN2ZMAKDBlZWWxYcOGOOOMM6Jr167RvHnzeO+996JFixbZ02qlIAI8YcKE6Nix437PNWvW\nLJo1a1bHiwD4NBg5cmSMHDkye8Z/pSACPHDgwOwJAFCnCuZNWABQnwgwACQQYABIIMAAkECAASCB\nAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABI\nIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgA\nEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEG\ngAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECA\nASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJGmUPOJCdO3dG\nw4YNo6SkJHsKwEGprq6OGTNmxC9/+cs44ogj4rrrroszzzwzexYFpiCeAa9bty4GDx4cy5Ytiw0b\nNsTQoUOjXbt2cdRRR8WQIUNi9+7d2RMBam3w4MGxYMGCmDx5cowZMya+//3vx4svvpg9iwJTEAG+\n9dZb4/jjj4/Pf/7zcd9990VVVVWsXLky3nzzzdi+fXtMmjSpVteprq6Oqqqq/X5VV1dHTU3NYf6X\nAPXd66+/Hu+++248+eST0alTp+jevXvMmDEj7rvvvuxpFJiCuAX92muvxapVq+KII46IZ555JubN\nmxelpaURETFp0qQYMWJEra4zc+bMmDNnzn7PrV69Ok488cRDNRlgvyorK6N3794fO9ahQ4eorq5O\nWkShKogAd+3aNWbNmhXXXHNN9OzZM+bPnx+jR4+OiIgXXnghunTpUqvrDB06NIYOHbrfc2PHjo31\n69cfss0A+9O1a9e49957Y9OmTXHsscdGRMSiRYviww8/TF5GoSmIAE+bNi2+/vWvx8MPPxydO3eO\nG2+8MR555JH4zGc+E9u2bYvXXnsteyJArZxwwgkxdOjQaN26dcyePTu2bt0azz77bDz55JPZ0ygw\nBRHgk08+Od56661YsGBBrF69Oo4//vg4+uijo0uXLtG3b99o1KggZgLUSv/+/WP58uWxaNGiaNKk\nSZSXl+97Ngz/VjBla9CgQVx00UVx0UUXZU8B+J917949unfvnj2DAlYQ74IGgPpGgAEggQADQAIB\nBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBA\ngAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAk\nEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwA\nCQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQAD\nQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASPCJ\nAN90002xffv2jC3UY5WVlfHyyy/HwoUL46OPPsqeA3DYfSLA69ati9NOOy0WLVqUsWefDRs2RFVV\nVeoG6sbatWvj0ksvjddffz0qKiqiZcuWsX79+uxZAIfVJwL8+OOPxx133BFlZWUxYcKE2L1792Ef\nMXjw4Fi1alVERKxevTr69u0bHTt2jHbt2sWoUaNiz549h30DOT766KM47bTT4rvf/W5873vfiylT\npsTMmTNjwoQJsXfv3ux5AIdNo/0dHDhwYHz1q1+NG2+8Mc4666y4/PLL95079dRT49JLLz2kI1au\nXBk7duyIiIgpU6bEKaecErNnz46NGzfGuHHjYsqUKXHrrbf+x+s899xzsWDBgv2eW7RoURx77LGH\ndDf/uz//+c9x1VVXRe/evfcdGzRoUDz33HPx/vvvR8eOHRPXARw++w1wRESDBg2ipKQk1q9fHytX\nrtx3vHnz5od10EsvvRRr1qyJFi1axDHHHBOTJ0+OcePG1SrAPXr0iJNOOmm/5yorK/dFnsLRuHHj\nqKys/Nix6urqWLt2bTRp0iRpFcDht98Al5eXx/XXXx9f/vKXY8WKFdGmTZvDPmTJkiXRvn37OOec\nc2LTpk3RokWLiIhYsWJFnH766bW6Rtu2baNt27b7Pde6dWuvKRegLl26xMknnxy33357TJgwIaqq\nquIrX/lK9OzZM1q3bp09D+Cw+USAr7jiiqioqIj7778/vvnNb9bJiKuuuiqef/75mDRpUmzdujUa\nN24c5eXlcdttt8W0adOioqKiTnaQY9KkSXH99dfHxRdfHE2bNo0hQ4bE8OHDs2cBHFafCHCrVq3i\nj3/84wGfSR4O48ePj/Hjx0dExN///vfYtm1bRET06dMnbrzxxsN+25tcDRs2jGnTpmXPAKhTnwjw\ngw8+mLFjnw4dOkSHDh0iIuKcc85J3QIAh4vfhAUACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIB\nBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBA\ngAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAk\nEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwA\nCQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQAD\nQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAEBRvgnTt3xrZt27JnQFFZtmxZ\nDBw4MPr06RNlZWWxadOm7ElQbxVsgOfOnRvjxo3LngFF469//WvccMMNMX78+Hj22Wdj6NChcfnl\nl8fmzZuzp0G91Ch7QEREly5dYuPGjR87tnv37qiqqoq5c+dG//79Y+bMmf/xOlu2bInKysr9ntu6\ndWvs2bPnkOyFT6O77ror7rjjjjjzzDMjIuJrX/tavPPOO/HYY4/F6NGjk9dB/VMQAZ45c2YMGTIk\nBg0aFFdffXVERMybNy+WLl0aP/jBD6JZs2a1uk5FRUXMnz9/v+d+85vfRNu2bQ/ZZvi0+fDDD6Nd\nu3YfO1ZaWhqrV69OWgT1W0EE+Pzzz49ly5bFqFGjYty4cfHAAw9E69ato3nz5nHCCSfU+jplZWVR\nVla233Njx46N9evXH6rJ8KnTo0eP+OEPfxgzZsyIiH/dZfrOd74Tc+fOTV4G9VNBBDgiomXLljFr\n1qx44okn4oILLogePXpEw4YNs2dB0Rg2bFjMnz8/evfuHf37948FCxbExIkTo1evXtnToF4qmAD/\n2+WXXx7nnXdejBw5Mrp37549B4pGw4YN47nnnouKiorYvHlzTJw4Mc4444zsWVBvFVyAI/71utTz\nzz+fPQOK0oUXXpg9AYgC/hgSABQzAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaA\nBAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIAB\nIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBg\nAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkE\nGAASCDAAJBBgAEggwACQQIABIIEAA0ACAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIIEAA0AC\nAQaABAIMAAkEGAASCDAAJBBgAEggwACQQIABIEGj7AGF7qWXXor3338/jjvuuOjTp0/2HACKRME+\nA967d29s27YtdcPVV18dTz31VJSUlMRdd90Vl112WVRXV6duAqA4FESA9+zZE1OmTIkhQ4bEG2+8\nEXPmzIm2bdvGUUcdFZdeemns2rWrzjeVl5fHW2+9FQ899FAMGjQofvGLX0TLli3jpz/9aZ1vAaD4\nFMQt6JtuuinefvvtOOOMM+KKK66IRo0axdy5c6O0tDTGjh0b8+bNiyuuuOI/Xmf27Nnx9NNP7/fc\nm2++GaWlpbXetHz58rjnnns+dmz48OHx+OOP1/oaAHAgBRHg+fPnx7Jly6Jly5bRpEmT+OCDD+LL\nX/5yRERMnjw5Jk6cWKsAX3bZZXHJJZfs99yTTz4ZO3bsqPWmli1bxurVq+P888/fd+z3v/99tGzZ\nstbXAIADKYgAn3TSSbFq1ao4++yz45prrom//e1v+86tWLEiOnfuXKvrNG7cOBo3brzfcy1btoy9\ne/fWetOwYcOirKws2rVrF2effXYsWrQoRowYEZWVlbW+BgAcSEEEeNy4cdGvX7/48Y9/HP369Yv2\n7dtHRMQtt9wSjzzySCxcuLDON7Vp0ybmzZsXN910U8yaNSvatGkT69ati1atWtX5FgCKT0EE+KKL\nLorVq1d/4hbxJZdcEhMnToymTZum7DrmmGPi4YcfTnlsAIpbQQQ44l+3iP//11fPPffcpDUAcHgV\nxMeQAKC+EWAASCDAAJBAgAEggQADQAIBBoAEAgwACRrU1NTUZI+oC8uXL4++ffvG6aefftA/+8or\nrxzwV1xy6OzevTsaNGgQJSUl2VOK3o4dO6JZs2bZM4rezp07o6SkJBo2bJg9paj9O2PnnXfeQf/s\n2rVrY8GCBdGhQ4dDPes/qjcB/l/07NkzXn311ewZRW/atGnRtm3bKCsry55S9Pyfrhs333xz9OvX\nL84555zsKUXtgw8+iNGjR3/q/lqdW9AAkECAASCBAANAAgEGgAQCDAAJBBgAEvgYUi384x//iOOO\nOy57RtHbtm1bNGzY0OdT64D/03Vj8+bN0axZszjyyCOzpxS16urq2LhxY7Rp0yZ7ykERYABI4BY0\nACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBJiCsmfPnuwJAHVCgP8Pr776apx//vnRqVOnGDBg\nQGzZsiV7UlErLy+Pc889N3tGUSsvL49evXpF9+7dY9CgQfH2229nTypKa9asiQEDBkS3bt3i7LPP\njtdffz17UtG79tprY/jw4dkzDooAH8DGjRvjyiuvjOnTp8eaNWuiU6dOMX78+OxZRWnLli0xatSo\nuOGGG8IvZjt81q9fH2PHjo3y8vL4wx/+EBdeeGGMGTMme1ZRGjp0aFx22WWxYsWKmDx5cpSVlWVP\nKmovvvhizJ07N3vGQRPgA1i2bFmceuqpcdppp0VJSUmMHj06nn766exZRamioiKaNm0ajz76aPaU\nolZdXR1PPPFEtG3bNiIiunfvHkuWLEleVZzmzZsXAwcOjIiIqqqqqKqqSl5UvDZt2hSTJ0+O0aNH\nZ085aAJ8AOvWrfvYL6tv27ZtbN26NXbt2pW4qjiVlZXFXXfdFU2aNMmeUtTat28fF1xwwb7vH3zw\nwejbt2/iouJ17LHHRoMGDWLMmDFx7bXXxv333589qWiNHDkybrvttmjevHn2lIMmwAewadOmj/1V\nnn/H4Z///GfWJDhkZsyYEc8//3xMnTo1e0rR2rVrV7Rp0yZKS0tjzpw5sXv37uxJRednP/tZNGnS\nJHr37p095b8iwAfQunXr2LZt277vt2/fHo0bN46jjz46cRX87x544IGYOHFiLFy4MEpLS7PnFK0j\njzwybrnllli8eHG88sorsXjx4uxJRWXTpk0xZsyY6NWrV7zwwgvx9ttvx3vvvRdLly7NnlZrAnwA\npaWl8e677+77/t13342OHTvmDYJD4NFHH43bbrstFi5cGKeeemr2nKK0c+fOmDBhwr6Xqxo1ahRd\nu3aNP/3pT8nLiktlZWV07tw5HnjggbjjjjuioqIili9fHrNnz86eVmsCfAC9evWKtWvXRkVFReza\ntSvuvvvu+MY3vpE9C/5rf/nLX+K6666LOXPmRPv27WPz5s2xefPm7FlFp3HjxvG73/0uZs6cGRH/\nekPnb3/72/jSl76UvKy4nHzyybFkyZJ9X6NGjYp+/frF9OnTs6fVWqPsAYXqyCOPjPvvvz/69+8f\nrVq1iq5du8a0adOyZ8F/bfr06bFjx47o2bPnx47v2LEjmjZtmjOqSE2ZMiXGjRsX99xzT7Rq1Spm\nzZoVn/vc57JnUWAa1Pjg5f+pqqoqtm/f7rVf4KBt3bo1WrVqlT2DAiXAAJDAa8AAkECAASCBAANA\nAgEGgAQCDAAJBBgAEggwACQQYABIIMAAkECAASCBAANAAgEGgAQCDAAJBBgAEggwACQQYABIIMAA\nkECAASCBAEM9sHPnzvjCF74Qt9xyy8eOf/vb344rr7wyaRXUb42yBwCHX+PGjaO8vDx69OgRZ511\nVgwYMCDuvPPOWLp0aSxbtix7HtRLAgz1RLdu3eLOO++MYcOGRUlJSUyaNCmWLFkSLVq0yJ4G9VKD\nmpqamuwRQN25+OKL4+WXX47p06fHtddemz0H6i2vAUM907lz59i7d2+0bt06ewrUawIM9cirr74a\ns2bNittvvz2uu+662LJlS/YkqLfcgoZ64sMPP4xu3brFzTffHMOGDYuePXtGp06d4ic/+Un2NKiX\nBBjqieHDh8c777wTCxYsiAYNGsSaNWuie/fu8cwzz0SfPn2y50G9I8BQD7z00ktRVlYWK1asiBNP\nPHHf8TvvvDN+9KMfxcqVK70bGuqYAANAAm/CAoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQAD\nQAIBBoAEAgwACQQYABIIMAAkEGAASCDAAJBAgAEggQADQAIBBoAE/w+5mUYqDkF0XgAAAABJRU5E\nrkJggg==\n" |
|
398 | 399 | } |
|
399 | 400 | ], |
|
400 | 401 | "prompt_number": 11 |
|
401 | 402 | }, |
|
402 | 403 | { |
|
403 | 404 | "cell_type": "markdown", |
|
404 | 405 | "metadata": {}, |
|
405 | 406 | "source": [ |
|
406 | 407 | "Also, if the return value of a call to %R (in line mode) has just been printed to the console, then its value is also not returned." |
|
407 | 408 | ] |
|
408 | 409 | }, |
|
409 | 410 | { |
|
410 | 411 | "cell_type": "code", |
|
411 | 412 | "collapsed": false, |
|
412 | 413 | "input": [ |
|
413 | 414 | "v = %R print(X)\n", |
|
414 | 415 | "assert v == None" |
|
415 | 416 | ], |
|
416 | 417 | "language": "python", |
|
417 | 418 | "metadata": {}, |
|
418 | 419 | "outputs": [ |
|
419 | 420 | { |
|
420 | 421 | "output_type": "display_data", |
|
421 | 422 | "text": [ |
|
422 | 423 | "[1] 0 1 2 3 4\n" |
|
423 | 424 | ] |
|
424 | 425 | } |
|
425 | 426 | ], |
|
426 | 427 | "prompt_number": 12 |
|
427 | 428 | }, |
|
428 | 429 | { |
|
429 | 430 | "cell_type": "markdown", |
|
430 | 431 | "metadata": {}, |
|
431 | 432 | "source": [ |
|
432 | 433 | "But, if the last value did not print anything to console, the value is returned:\n" |
|
433 | 434 | ] |
|
434 | 435 | }, |
|
435 | 436 | { |
|
436 | 437 | "cell_type": "code", |
|
437 | 438 | "collapsed": false, |
|
438 | 439 | "input": [ |
|
439 | 440 | "v = %R print(summary(X)); X\n", |
|
440 |
"print |
|
|
441 | "print('v:', v)" | |
|
441 | 442 | ], |
|
442 | 443 | "language": "python", |
|
443 | 444 | "metadata": {}, |
|
444 | 445 | "outputs": [ |
|
445 | 446 | { |
|
446 | 447 | "output_type": "display_data", |
|
447 | 448 | "text": [ |
|
448 | 449 | " Min. 1st Qu. Median Mean 3rd Qu. Max. \n", |
|
449 | 450 | " 0 1 2 2 3 4 \n" |
|
450 | 451 | ] |
|
451 | 452 | }, |
|
452 | 453 | { |
|
453 | 454 | "output_type": "stream", |
|
454 | 455 | "stream": "stdout", |
|
455 | 456 | "text": [ |
|
456 | 457 | "v: [0 1 2 3 4]\n" |
|
457 | 458 | ] |
|
458 | 459 | } |
|
459 | 460 | ], |
|
460 | 461 | "prompt_number": 13 |
|
461 | 462 | }, |
|
462 | 463 | { |
|
463 | 464 | "cell_type": "markdown", |
|
464 | 465 | "metadata": {}, |
|
465 | 466 | "source": [ |
|
466 | 467 | "The return value can be suppressed by a trailing ';' or an -n argument.\n" |
|
467 | 468 | ] |
|
468 | 469 | }, |
|
469 | 470 | { |
|
470 | 471 | "cell_type": "code", |
|
471 | 472 | "collapsed": true, |
|
472 | 473 | "input": [ |
|
473 | 474 | "%R -n X" |
|
474 | 475 | ], |
|
475 | 476 | "language": "python", |
|
476 | 477 | "metadata": {}, |
|
477 | 478 | "outputs": [], |
|
478 | 479 | "prompt_number": 14 |
|
479 | 480 | }, |
|
480 | 481 | { |
|
481 | 482 | "cell_type": "code", |
|
482 | 483 | "collapsed": true, |
|
483 | 484 | "input": [ |
|
484 | 485 | "%R X; " |
|
485 | 486 | ], |
|
486 | 487 | "language": "python", |
|
487 | 488 | "metadata": {}, |
|
488 | 489 | "outputs": [], |
|
489 | 490 | "prompt_number": 15 |
|
490 | 491 | }, |
|
491 | 492 | { |
|
492 | 493 | "cell_type": "heading", |
|
493 | 494 | "level": 2, |
|
494 | 495 | "metadata": {}, |
|
495 | 496 | "source": [ |
|
496 | 497 | "Cell level magic" |
|
497 | 498 | ] |
|
498 | 499 | }, |
|
499 | 500 | { |
|
500 | 501 | "cell_type": "markdown", |
|
501 | 502 | "metadata": {}, |
|
502 | 503 | "source": [ |
|
503 | 504 | "Often, we will want to do more than a simple linear regression model. There may be several lines of R code that we want to \n", |
|
504 | 505 | "use before returning to python. This is the cell-level magic.\n", |
|
505 | 506 | "\n", |
|
506 | 507 | "\n", |
|
507 | 508 | "For the cell level magic, inputs can be passed via the -i or --inputs argument in the line. These variables are copied \n", |
|
508 | 509 | "from the shell namespace to R's namespace using rpy2.robjects.r.assign. It would be nice not to have to copy these into R: rnumpy ( http://bitbucket.org/njs/rnumpy/wiki/API ) has done some work to limit or at least make transparent the number of copies of an array. This seems like a natural thing to try to build on. Arrays can be output from R via the -o or --outputs argument in the line. All other arguments are sent to R's png function, which is the graphics device used to create the plots.\n", |
|
509 | 510 | "\n", |
|
510 | 511 | "We can redo the above calculations in one ipython cell. We might also want to add some output such as a summary\n", |
|
511 | 512 | " from R or perhaps the standard plotting diagnostics of the lm." |
|
512 | 513 | ] |
|
513 | 514 | }, |
|
514 | 515 | { |
|
515 | 516 | "cell_type": "code", |
|
516 | 517 | "collapsed": false, |
|
517 | 518 | "input": [ |
|
518 | 519 | "%%R -i X,Y -o XYcoef\n", |
|
519 | 520 | "XYlm = lm(Y~X)\n", |
|
520 | 521 | "XYcoef = coef(XYlm)\n", |
|
521 | 522 | "print(summary(XYlm))\n", |
|
522 | 523 | "par(mfrow=c(2,2))\n", |
|
523 | 524 | "plot(XYlm)" |
|
524 | 525 | ], |
|
525 | 526 | "language": "python", |
|
526 | 527 | "metadata": {}, |
|
527 | 528 | "outputs": [ |
|
528 | 529 | { |
|
529 | 530 | "output_type": "display_data", |
|
530 | 531 | "text": [ |
|
531 | 532 | "\n", |
|
532 | 533 | "Call:\n", |
|
533 | 534 | "lm(formula = Y ~ X)\n", |
|
534 | 535 | "\n", |
|
535 | 536 | "Residuals:\n", |
|
536 | 537 | " 1 2 3 4 5 \n", |
|
537 | 538 | "-0.2 0.9 -1.0 0.1 0.2 \n", |
|
538 | 539 | "\n", |
|
539 | 540 | "Coefficients:\n", |
|
540 | 541 | " Estimate Std. Error t value Pr(>|t|) \n", |
|
541 | 542 | "(Intercept) 3.2000 0.6164 5.191 0.0139 *\n", |
|
542 | 543 | "X 0.9000 0.2517 3.576 0.0374 *\n", |
|
543 | 544 | "---\n", |
|
544 | 545 | "Signif. codes: 0 \u2018***\u2019 0.001 \u2018**\u2019 0.01 \u2018*\u2019 0.05 \u2018.\u2019 0.1 \u2018 \u2019 1 \n", |
|
545 | 546 | "\n", |
|
546 | 547 | "Residual standard error: 0.7958 on 3 degrees of freedom\n", |
|
547 | 548 | "Multiple R-squared: 0.81,\tAdjusted R-squared: 0.7467 \n", |
|
548 | 549 | "F-statistic: 12.79 on 1 and 3 DF, p-value: 0.03739 \n", |
|
549 | 550 | "\n" |
|
550 | 551 | ] |
|
551 | 552 | }, |
|
552 | 553 | { |
|
553 | 554 | "output_type": "display_data", |
|
554 | 555 | "png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAD8GlDQ1BJQ0MgUHJvZmlsZQAAKJGN\nVd1v21QUP4lvXKQWP6Cxjg4Vi69VU1u5GxqtxgZJk6XpQhq5zdgqpMl1bhpT1za2021Vn/YCbwz4\nA4CyBx6QeEIaDMT2su0BtElTQRXVJKQ9dNpAaJP2gqpwrq9Tu13GuJGvfznndz7v0TVAx1ea45hJ\nGWDe8l01n5GPn5iWO1YhCc9BJ/RAp6Z7TrpcLgIuxoVH1sNfIcHeNwfa6/9zdVappwMknkJsVz19\nHvFpgJSpO64PIN5G+fAp30Hc8TziHS4miFhheJbjLMMzHB8POFPqKGKWi6TXtSriJcT9MzH5bAzz\nHIK1I08t6hq6zHpRdu2aYdJYuk9Q/881bzZa8Xrx6fLmJo/iu4/VXnfH1BB/rmu5ScQvI77m+Bkm\nfxXxvcZcJY14L0DymZp7pML5yTcW61PvIN6JuGr4halQvmjNlCa4bXJ5zj6qhpxrujeKPYMXEd+q\n00KR5yNAlWZzrF+Ie+uNsdC/MO4tTOZafhbroyXuR3Df08bLiHsQf+ja6gTPWVimZl7l/oUrjl8O\ncxDWLbNU5D6JRL2gxkDu16fGuC054OMhclsyXTOOFEL+kmMGs4i5kfNuQ62EnBuam8tzP+Q+tSqh\nz9SuqpZlvR1EfBiOJTSgYMMM7jpYsAEyqJCHDL4dcFFTAwNMlFDUUpQYiadhDmXteeWAw3HEmA2s\n15k1RmnP4RHuhBybdBOF7MfnICmSQ2SYjIBM3iRvkcMki9IRcnDTthyLz2Ld2fTzPjTQK+Mdg8y5\nnkZfFO+se9LQr3/09xZr+5GcaSufeAfAww60mAPx+q8u/bAr8rFCLrx7s+vqEkw8qb+p26n11Aru\nq6m1iJH6PbWGv1VIY25mkNE8PkaQhxfLIF7DZXx80HD/A3l2jLclYs061xNpWCfoB6WHJTjbH0mV\n35Q/lRXlC+W8cndbl9t2SfhU+Fb4UfhO+F74GWThknBZ+Em4InwjXIyd1ePnY/Psg3pb1TJNu15T\nMKWMtFt6ScpKL0ivSMXIn9QtDUlj0h7U7N48t3i8eC0GnMC91dX2sTivgloDTgUVeEGHLTizbf5D\na9JLhkhh29QOs1luMcScmBXTIIt7xRFxSBxnuJWfuAd1I7jntkyd/pgKaIwVr3MgmDo2q8x6IdB5\nQH162mcX7ajtnHGN2bov71OU1+U0fqqoXLD0wX5ZM005UHmySz3qLtDqILDvIL+iH6jB9y2x83ok\n898GOPQX3lk3Itl0A+BrD6D7tUjWh3fis58BXDigN9yF8M5PJH4B8Gr79/F/XRm8m241mw/wvur4\nBGDj42bzn+Vmc+NL9L8GcMn8F1kAcXjEKMJAAAAgAElEQVR4nOzdd1gU59rH8e8soCLFDiiCBTtW\njFhQNNbEXqKvvWOMxhNLLImJJ4k91ojHY0libKgxtqiJioomaoIxNjxGxcYRFAERpYiUnfcP4h4R\nLMDuDuX+XBdXsjO78/xYdrx3Zp55HkVVVRUhhBBCmJVO6wBCCCFEQSQFWAghhNCAFGAhhBBCA1KA\nhRBCCA1IARZCCCE0IAVYCCGE0IAUYCGEEEIDUoCFEEIIDUgBFkIIITQgBVgIIYTQgBRgIYQQQgNS\ngIUQQggNSAEWQgghNCAFWAghhNCAFGAhhBBCA1KAhRBCCA1IARZCCCE0IAVYCCGE0IAUYCGEEEID\nUoCFEEIIDUgBFkIIITQgBVgIIYTQgBRgIYQQQgNSgIUQQggNSAEWQgghNCAFWAghhNCAFGAhhBBC\nA1KAhRBCCA1IARZCCCE0IAVYCCGE0IAUYCGEEEIDUoCFEEIIDUgBFkIIITQgBVgIIQqwhIQEnjx5\nkqXXqKpKTEyMiRIVHFKAjeDRo0coioKzszMuLi64uLhQvnx5evTowb1797K93cqVK3P+/PkMy3/9\n9Vc8PDyyvd0TJ05Qt27dbL8+q3r27EmRIkWwt7dP9xMWFsbUqVP55JNPADhw4ABHjhwBIDQ0FF9f\n3yy3NW7cOObOnWvU/EK8rlatWtGuXbt0y+7fv4+iKKSmppo9T7ly5bhy5Uqm6/bu3YuXlxdubm5U\nr16dNm3a8Msvv7x0e2FhYfTs2RMnJyc8PT2pW7cuX375pSmiFwhSgI3o/Pnz3L59m9u3bxMUFERq\naioff/xxtrd3/PhxatWqZcSE2pk1axaPHj1K9+Ps7MxHH33E5MmTAVi1ahVhYWFA2peMgwcPahlZ\niGw5fvw4a9eu1TrGS23bto2JEycyZcoUQkJCuHXrFtOnT6dXr14cOnQo09eEhobi7e1Ns2bNCAoK\n4urVq/j7+7Nt2zbGjx9v5t8gf5ACbCIlSpTAy8vLcJpGVVVmzZpF+fLlcXZ2Zvbs2aiqCsCGDRtw\ndXWlVKlS9O7dmwcPHgAwePBgbty4AcCOHTuoU6cOFStWZOfOnYZ25syZw7///W/D41mzZrFq1SoA\nLl26xJtvvkmxYsWoUKECS5YsyZDz6tWrNGnSBDs7Ozw8PPjtt98yPOe9997j+++/Nzz+8ccfGTVq\nFCkpKQwfPpzixYtToUIF5s+fn+X36ZtvvmHt2rV8++23+Pv7M3XqVHx9fZk0aRJHjx5l4MCBABw7\ndox69epRvHhxevbsSVRUlOF9nThxImXLlqVFixaEhoZmOYMQxjRlyhQ++uijF579OnbsGD179qRk\nyZJ0796d8PBwAObPn8/MmTMpX748H3zwAQsWLGDBggU0b94cBwcH5s6dy549e6hcuTKNGzc27KsJ\nCQmMHj0aZ2dnSpYsSe/evYmNjX1pxkWLFjFz5ky6detGoUKFAGjdujUfffQRS5cuzfQ133//PQ0a\nNODDDz/EwcEBAEdHR3bs2IGvry9xcXHZer8KMinARnTs2DEOHTrE/v37WbZsGfPnzzcUkA0bNrBx\n40b27NnDrl272Lx5M6dOnSIxMZExY8bw448/cv36deLj41m5ciUAN27cIDExkRs3bjBq1ChmzpzJ\nnj17OHz4sKHNiIgIQzECuHfvHvfv3wdg4MCBdOzYkTt37rBkyRImT55MdHR0uswff/wxXbt2JSIi\ngmHDhjF27NgMv5enpycbNmwwPN64cSONGjVi+/btXLt2jevXr7N//35mz57NtWvXMn1vAgMDWbNm\njeHn7Nmz6fIPGDCAVq1aMWPGDEaOHMkXX3yBl5cXK1euJDIyki5dujB58mT++usvihUrZjjNvGLF\nCn755RcCAgIYO3YsP/30U5b/bkIYk7u7O0OHDmXcuHEZ1t28eZOuXbvStWtXLly4gLW1NUOGDAHS\n9oWvvvqK5cuXM2DAACIjI5k7dy6LFi1i+/btfPLJJ/j6+nLw4EG6devGV199BcBXX33F9evXOXv2\nLL/99hsXLlxg69atL8yXnJzM+fPnadKkSYZ1DRs25M8//8z0dX/88Uemr3FxcaF06dKGfVq8Pkut\nA+Qnn376KQDXrl2jXr16HDlyhPr16wOwbt06hg0bhpubGwDDhw9nz5491K9fH71ez5EjRxgwYAC7\ndu0yfCN9yt/fH3d3d7p37w7AsGHDWL9+/SvzrF69mgYNGqCqKhUrVsTa2prIyMh0z7G0tOTPP//k\nypUrjB07ltGjR2fYTo8ePRg/fjyxsbFYWlri7+/PypUrOXr0KLdv3+bkyZO0b9+eyMhIChcunGmW\nCxcu8PDhQ8NjGxsbGjRoYHhcuHBhrKyssLGxwdraGhsbG6ysrLC1tWXTpk24u7vTtWtXAKZPn06X\nLl1YtGgRO3bsYOjQodSoUYMaNWqwbNmyV74vQpjajBkzqFWrFrt376Z58+aG5bt27aJ27doMHToU\ngJkzZ1K1alUiIiIA6NKli2E//+GHH+jatSuNGzcGoHz58gwePJgqVarQqVMn1qxZA0D//v0ZOnQo\nDg4OPH78mKpVqxqOqjMTHR1NYmIiJUqUyLCubNmy3Lt3j+TkZKysrNKtCwsLo02bNplu08nJSc4+\nZYMcARvRL7/8wqVLlzh9+jQ3btzg9u3bhnVhYWEsWLCA6tWrU716dRYsWMDZs2cpXLgw33//PevW\nrcPZ2ZlOnTpl6DRx7do1GjZsaHj8dId8lcjISFq0aIGDgwMffvghqamp6PX6dM9ZvHgxycnJeHp6\nUrNmzXSnmp8qXrw4b775Jvv27ePnn3+mWbNmhtNn/fv3Z8SIETg6OjJ58uQX9qb08fHh4MGDhp/+\n/fu/1u8AadeegoKCDO9dixYtiImJISwsjOvXr6d7bzL7hi6EuRUtWhRfX1/GjBmT7otnSEhIus9o\nlSpVKFWqFHfu3AHSiuyzypUrZ/h/a2trqlevDqR9YU1JSQHAwsKCDz74AEdHRzp16kRwcPBLO3w5\nOjri6OjIf//73wzrbt68iaurK1ZWVpQsWZJChQpRqFAh9u/fT7169dL9m/asW7duGQ4uxOuTAmwC\ndevWZdasWQwdOtTwTbRRo0bMnTuXu3fvcvfuXYKDg/Hz80Ov1+Ph4cH58+c5f/489vb2GU4Du7q6\ncunSJcPjmzdvGv5fp9OlK3pPj3Cjo6Pp1asXkyZN4s6dOxw+fBhVVQ3XnZ+ytLRk+/bthIeHM3r0\naAYPHmw4hf2svn37snPnTrZv307fvn0BePLkiWH7fn5+7Nmzh++++y5nb14mPD09adasmeG9u3v3\nLn/++SflypXL8N48vWYuhNa6dOlCo0aNmDJlimFZ6dKl031e7969S3R0NJUqVQLSiumznn+cmdGj\nR1OyZEmCgoK4ePEinp6eGfbz53l6erJlyxbD4x07dpCUlMTWrVvx8vICICAggN9//53ff/+dZs2a\n4enpyffff28o7sePHyc0NJT9+/djYWGRbzqMmpMUYBMZPXo0lStXZurUqQB069aNtWvX8uDBA1RV\nZeDAgSxZsoSoqChq165NaGgo7u7uvP322xm21bJlS37//XeuXr1KYmJiuqNUR0dHAgMDUVWVu3fv\ncvToUQBDh4i2bdtSpEgRNm/eTGJiIsnJyem2PXToUL7++mtKlizJgAEDKFy4cKY7b5cuXThx4gRH\njx41nCLbsmULffr0QVEU3n77bcO38+yysbExdFqzsbExHDm0bduWwMBAwzWmjRs38tZbb6HX62nT\npg3ff/898fHxhISEvPI2CiHMadmyZezfv9/wuEOHDvz666/85z//Qa/Xs2bNGtzd3SlWrFi227h/\n/76ho1ZoaCj+/v4Z9vPnLVy4kLVr1xoOAg4dOkSNGjX4/vvvmTNnDgD16tXDw8MDDw8P7O3t6dev\nH+XLl2fUqFHExcURERFB06ZNGTp0KDNnzsTW1jbbv0NBJQXYRBRFYfny5WzcuJHffvuNjh074uTk\nRMWKFalatSqpqalMnToVBwcHPvnkE5o3b467uzszZ87McB/r0yPqZs2aUaVKFYoUKWJYN3DgQEJD\nQ3F2dqZ169aGAu7q6sqQIUOoV68eDRs25Oeff6ZJkyZcvXo13bZnzpzJqlWrqFmzJjVr1uTzzz+n\ndOnSGX4fGxsbWrRoYegxDTBo0CBsbGxwc3PD1dUVnU6XpVPLz2vRogWTJk1i5syZ1K1bl0uXLlG/\nfn2sra2ZM2cOLVq0oHr16ixcuJCVK1diYWHBxx9/jLW1NVWrVqVp06avfXpeCHNwdXXln//8p+Fx\no0aNmDFjBp6enlSsWJFt27alu6shOyZPnswnn3xCkyZN6NWrFz169CA4OPilr6lWrRp+fn78+9//\npnTp0mzZsgVXV1cqVarE8uXLSUhIyPAaS0tLtm3bRlxcHJUrV2bUqFHY2dnh7u7Ozp07uXz5co5+\nj4JIUV91rkIYVXx8PJBW0J4XGRlJmTJlXvja5ORkEhMTDQXwdV4bHx+PoigULVr0pbkePHiAnZ0d\nlpZZ75eXmJhIUlIS9vb2WX5tZtuysrLCwsICvV7PkydPsLa2BiA1NZWYmBhKlSqV4XUPHz7E1tb2\ntU7ZCaG1lJQUHj58mOlnOTtUVeX+/fuZfnl+lbi4OCwtLSlSpAjJycmsXLmSkSNHGva7zOj1emJi\nYihZsiQAR48excrKynD6WrweKcBCCCGEBuQUtBBCCKEBKcBCCCGEBvLFQBzr1q17Zbd7IcypaNGi\n9OnTR+sYeYLsvyK3Mdf+m+ePgNevX2+Se0+FyInFixezd+9erWOYVGpqaqa9ZbNC9l+RG5lr/9Xs\nCDg5ORmdTpfjXquqqjJkyBDD0G5C5AbR0dH57qjO19eXevXq4e3tzapVqwzT0Hl5ebFmzZoXDkP6\nMrL/itzIXPuvWY+AU1JS+PDDD3FzczOM3Vu7dm1mzZr1yhvHhRDaCgsL4+HDh8THx7N69WrOnj1L\ncHAwlSpVYsWKFVrHEyLPMWsBfjod3uXLl7l+/TrBwcGcOXOG8PBw/Pz8zBlFCJFNcXFx1K9fH3t7\ne3Q6HZ07dzZMJiCEeH1mPQV9584devfunW6WjUKFCtG1a1dOnTplzihCiCxycXFh4sSJuLm5cenS\nJUJDQ4mKimL06NGGOaiFEK/PrAV44MCBjBkzhl69euHi4gLA7du32bBhQ7o5boUQuc/YsWMZO3Ys\nISEhnDt3DhsbGyIiIli/fj3u7u5axxMizzFrAW7YsCG7du1i7969BAUFodfrcXV15fDhwzg4OJgz\nihAimypUqECFChUAMp1TNjMxMTGZTn939epVihcvbtR8QuQVZu8FXbZsWXx8fLL8umPHjjF//vwM\nyy9fvswbb7whvSiF0MjixYtRVZVJkya98Dk3btxg3bp1GZYfPnyYypUrM3nyZFNGFCJXyhUDcbzO\nDty8eXM8PT0zLB8zZgyKopgynhDiJUaNGvXK5zyd1u55Pj4++e52LSFeV64owK+zA1tYWGQ6O4el\npWWe34EfPHhAYGAgXl5emc50JERuJvPACpE9uWIkLFtb2wKzE+/evZsvv/ySLVu2AGnT7w0fPhxL\nS0sGDRpEamqqxgmFECJ/2bp1K5MmTWL69Ono9XoArly5wnfffceOHTs0O4gz6xHwwoULCQgIyHTd\ngAEDcjSZe17w2WefceLECcaPH8/kyZP55ZdfWLhwIcuXL8fZ2ZnVq1fz8OFDwxybQuQmBX3/FXnX\njRs3WLRoEb6+vhw7dgwbGxt69+7NjBkzWLt2Lb6+vhw6dMjs84mbtQAPGjQIPz8/Jk2aRIMGDdKt\ne9lE9PnBvXv32LhxI1evXkWn09GpUyf69evHrVu3qFWrFl9++SVNmjSR4ityrYK8/4q87aOPPiIx\nMRF/f3/eeecd3n77bXbt2kWDBg0YMWIE48aNY+/evXTr1s2sucxagB0dHdm4cSOffvopAwYMMGfT\nmktNTaVx48YoF4JIadAYi3On0Ol06PV6vvjiCxwdHXn33Xe1jinECxXk/VfkbfHx8QwbNoxPPvmE\nsmXL4uLiQrVq1Qzrq1evTnx8vNlzmf0acK1atdi+fbu5m9Vc2bJlcbCz48rwUTxa/CUBUz7i+PHj\nxMTE8M0333Dy5EmGDBnC3bt3tY4qxAsV1P1X5F2qqtK/f3+GDRtGmTJliIuLo2nTpnTv3p3Y2Fj+\n+OMPxo0bR6tWrcyeLVf0gi4IFEXhy5q12XbqTw4eC2Dy9RtcPH0auzJlCAkJ0TqeyGcCAwNp3Lgx\n+/bt4/Tp0/zjH/947UEzhMhPHj58SIMGDQgMDCQwMJCePXsydepUQkJC6NatGy4uLpw7d45y5cqZ\nPZsUYDNRL19Bd+wX+v0SQH9bW1I//hTl7Dlo307raCKfCQgIYPr06ezatYsxY8YwduxYJkyYIPPu\nigKpePHifPbZZxmW54bxy3PFbUj5nZqain7+QpR/jEX5+3YrXYd2qAf8NU4m8qMTJ04we/Zs9u7d\nS+/evZkyZQphYWFaxxJCPEcKsBmoflugrBO6Vi3/t7BZUwi+hhoZqVkukT9VrlyZTZs2sXLlSt55\n5x1Wr15NlSpVtI4lhHiOFGATU2/fRv1hB7oJ/0i3XLGyQnmzFerBQxolE/lVv3798PT0ZOLEiTRp\n0oSUlBTmzp2rdSwhxHPkGrCJ6RcuQRk6GCWT+ySVDu3Qz1sAA/ppkEzkN2fPnmXHjh3pln366acA\n7Nixg+HDh2sRSwjxAlKATUi/Zx+k6lG6d810vVKrJuj1qJevoNSobuZ0Ir+xt7enevXMP0eOjo5m\nTiOEeBUpwCaiRkejfrMW3dKFL52tSXmrPer+g1KARY65ubnh5uaW6bqUlBQzpxFCvIpcAzYR/VJf\nlO5dUSpWfOnzlPZtUQOOoso/kMJIoqKi6NixI+7u7tSsWZOqVasyZMgQrWMJIZ4jR8AmoB4/ASH/\nRfn041c+V3FwALfKcPI38G5hhnQiv9u0aRMeHh54e3tTrVo1Hj16RExMjNaxhBDPkSNgI1MTEtAv\n9UU3eSKKldVrvUZp3xa99IYWRpKQkECrVq1o2rQpFy9eZOjQoRw7dkzrWEKI50gBNjJ15RoUr2Yo\ntd1f+zVKS284dx714UMTJhMFRZs2bfjnP/9JxYoV2bVrFytXrqRw4cJaxxJCPEdOQRuRGnQR9bff\n0a37JkuvU6ytUbyaoR46gtKrh4nSiYLC09OTefPmUbp0aebNm8ehQ4c0vw/48OHDzJw5M8PyK1eu\nUK9ePQ0SCaE9TQtwamoqT548oWjRolrGMAo1ORn9gsXoxo9Dycbvo7Rvi371NyAFWOTQ1q1bmTVr\nVrplcXFxrFixQqNEaUflbdq0ybDcx8cHVVU1SCSE9sx6CtrX15dffvkFSBsIu1q1atSpU4fBgwfz\n5MkTc0YxOnXDJqhUEcWrWfY24NEAoqNRb90yZixRAPXs2ZOTJ09y8uRJAgICmDRpEpUrV9Y6lhDi\nOWYtwGFhYTx8+JD4+HhWr17N2bNnCQ4OplKlSpp+O88p9eZN1B/3ovvg/WxvQ1EUlA7tUPcfNGIy\nURBZWVlhZ2eHnZ0dpUuXZsiQIezevVvrWEKI52hyCjouLo769etjb28PQOfOnTMMoZdXqKqKfsES\nFJ8RKCVL5mhbSod26Md/iDpqJIpO+seJ7Dl16hR79uwBQK/Xc/HiRWrVqqVxKiHE88xagF1cXJg4\ncSJubm5cunSJ0NBQoqKiGD16dK6YmzE71J27oZAVuk5v53hbiosLODrC6T/Bs5ER0omCqHjx4umG\npGzevHmm11+FENoyawEeO3YsY8eOJSQkhHPnzmFjY0NERATr16/H3f31b9vJLdTISNR1G9CtWGa0\nbSrt26IePIQiBVhkU7Vq1ahWrZrWMYQQr6DJKegKFSpQoUIFAEqUKPFar7l+/TqHDx/OsPzy5cs4\nOTkZNd/r0i/+CqXPOyjOzkbbptLmTfRff4uakJCt3tSi4Nq9ezczZszIdF2jRo34+uuvzZxICPEy\nueI+4MWLF6OqKpMmTXrhcywtLbGzs8uw3MrKCp0G10v1RwLgXgTKrM+Nul3Fzg4aeqAGHEMxwmlt\nUXB06tSJ1q1bc+bMGZYuXcrMmTNxdnZm06ZNhv4WQojcQ7MCnJycjE6nw8LCglGjRr3y+c8eNT/r\nyJEjZr+PUI2NRf3XSnSzv0CxsDD69nXt26L//geQAiyy4OmX1MDAQAYNGkTt2rWBtHttu3btyuDB\ngzVOKIR4llkLcEpKCtOmTWPnzp0A6HQ6ChcuTN++fZk6dao5o+SI+q+VKK1bmW4KwSaNYcFi1PBw\nFI1Or4u8q23btvj4+BAeHk6pUqXYsmULrVu31jqWEHlGXFycWdox67nbJUuWAGnXba9fv05wcDBn\nzpwhPDwcPz8/c0bJNvXMWdRz51FGDDNZG4qFBUrb1nJPsMgWDw8P1qxZQ0hICMeOHaN///556guu\nEOZ29+5dLly4YHhcqFAhs7Rr1gJ8584devbsidUzswQVKlSIrl27cvv2bXNGyRY1KQn9wiXoJn6A\nUqSISdtS2rdDlRmSRBacPn2a77//nt9//52tW7cCYGdnx+nTp/PsbX5CmMqDBw8M/3/27FmKFStm\neGyuAmzWU9ADBw5kzJgx9OrVCxcXFwBu377Nhg0bMu3hnNuoa9ehuNcyyy1CSrWqULgwatBFlDq1\nTd6eyPtKly6NXq+nVKlSNGzYMN06BwcHjVIJkXvo9Xp0Oh1//PEH169fp2/fvgB07NhRkzxmPQJu\n2LAhu3btokSJEgQFBXH+/HlsbW05fPhwrv8HQr12DfWAP8r775mtTaVDO9QD/mZrT+RtFStWxNPT\nEzc3NypUqECfPn2wsbHhr7/+MsmMQ6mpqSQkJBh9u0IYW2xsLHv27CE2NhYANzc3Q/HVktnv3ylb\ntiw+Pj7MmTOHefPmMWbMmNxffPV69PMXobw3CuWZ0xSmprRvi3r0GGpSktnaFHlfQEAAEyZMICIi\ngjFjxmBtbc2ECRNyvN38PJmKyH/u3r3LnTt3AIiJiaFKlSqG08wlczhssLHIgMOvQd22HYoXQ9eu\nrVnbVUqWhFo1UY+fMGu7Im87ceIEs2fPZu/evfTu3ZspU6YQFhaW4+3m18lURP7x+PFjABISEjh0\n6JDhWq6Liws1a9bUMlqmXliAAwMDAdi3bx+ff/55ugvWBYl69y6q3xZ0k8Zr0r6chhZZVblyZTZt\n2sTKlSt55513WL16NVWqVDHa9p+dTEWn09G5c2ciIiKMtn0hsuPAgQOGulWkSBEGDRpE6dKlNU71\ncpkWYFOdwsqL9AuXoAzop9n9uEqL5nDpL9ToaE3aF3lPv3798PT0ZPz48dSpU4fk5GTmzp2b4+0+\nnUxlyJAh+Pv7Exoayrlz5xg9ejS9evUyQnIhXl9UVBRHjx41PK5Vqxbe3t4AmoyOmB2ZpjTVKay8\nRr//AMTFo7zTU7MMSqFCKN4tUP1zfy9xkTsoikJwcDCzZs1i8+bN/PTTT1y7di3H2x07dizBwcGs\nWrUKX19fbGxs0Ov1rF+/njfeeMMIyYV4uaioKBITEwG4efNmunkAXFxc8kzhfSrT25CensK6cOEC\ny5YtM/oprLxAjYlBXf0Nui/naD43r9KhHfqlvvB/vTXNIfKGkydPoigKX3zxBTExMSxdupQZM2aw\nefNmo2w/O5OpnDt3jo0bN2ZYHhgYSKVKlYySS+RPKSkpWFpacvPmTQICAhgwYACQNsFIXpdpAe7X\nrx9xcXG0bduWJk2acObMGaOcwspLVN8VKG+1R8kFXzyUunXg8WPUa9dyRR6R5v79+5w9exZ7e3s8\nPT21jmPwn//8hyZNmhjGSC9btqxJeym/zmQqFSpUoF+/fhmWX79+HRsbG5NlE3lXcnIyP/30EzVq\n1KB69eo4OjoyfPhwrWMZVboCfPbsWXbs2JHuCZ9++ikAO3bsyHe//IuogadQL19BN/VDraMYKB3a\noe4/iPK+FODcICQkhC5dutCrVy9++OEHWrZsyfLly7WOBUDfvn3x9vamdu3aWFpasm3bNoYOHWrU\nNrI6mUqJEiUyDA4CaYOHmHsyFWF8jx49Yvny5dy7d4+GDRtme+KPe/fucf/+fWrVqkVycjI1atSg\natWqABTNh9Ozpju3am9vT/Xq1TP9KVeunFYZzUp9/Bj9kmXoPpyAYqbhyF6H0qEd6qEjqKmpWkcR\nQJcuXZgzZw4zxo8nKCiIyMhIDh7MHWN329nZ4e/vT4sWLShXrhxz587N9Ogzq1JSUvjwww9xc3Oj\nRo0a1KhRg9q1a7N06VIKFy5shOQiL3paKC0tLRk0aBAnT57M0pfRp4NjAPz222+GQlu0aFGqV6+e\n567rZkW6I2A3Nzfc3NyIiopi8ODBhISEoNfrSUlJwdPTk7feekurnGajfrMWxaMBSoP6WkdJRylb\nFlxdIfAUNGuqdZwCRY2MhLA7qGF3ICwMNewO8x/E0nbZv9Gf+hOLL/5Jhw4duHfvntZRAbhx4wZ6\nvf61jkyz4tnJVJ6O556UlMTEiRPx8/NjyJAhRm1P5A3Hjh2jU6dOTJkyBYDatWvzzjvv8P7777/y\ntadOneLGjRuGUam6d+9u0qy5TabXgDdt2oSHhwfe3t5Uq1aNR48eERMTY+5sZqf+dRk14Bi6dd9o\nHSVTSod26A/4YyEF2OjSFdnQ0L//GwZ37oKtDTiXQylfHpzLoWvdirO3QwiwteHLL/7JvXv3GDFi\nRLrZVLT0dLrPl12TzY47d+7Qu3fvTCdTOXXqlFHbEnnLs53xVFXl1q1bmT4vNjaWX3/9FW9vb2xt\nbalUqVKB7kGfaQFOSEigVatWWFlZcezYMWbMmEGPHj0YP16bwSjMQU1NRf/lIpRxY1BsbbWOkynl\nzZaoK1aixsXl2oy5mRoR8eIia4yFFJUAACAASURBVG+XVmSdndOKbJs3obwzODtnOvPVBM9GtGjR\ngtatW2NjY8P+/fupU6eOBr9VRk2aNGHgwIFcvXrVMBBBpUqVGDlyZI62m9cnUxGm4eXlxVdffcWa\nNWuoX78+Y8aMoX///ob1TwdpcXBwICoqCldXV2z//verTJkymmTOLTItwG3atGHChAn4+fkxYcIE\nHBwc8v01HtVvC5R1QteqpdZRXkgpWhSlSWPUwwEo3bpoHccs7ty5w+zZs7l16xYlSpTgu+++w9Ly\nxZN4qREREBqWvsiG3clYZMs7o6tV839FNoufb2tra06fPp3TX88kHBwcmD17drpljo6OOd7u08lU\n9u7dS1BQEHq9HldX1zwxmYowHWtra3744Qe++OILrl69yqRJk+jRoweQdsT7008/0blzZwC55ew5\nmf5L5unpybx58yhdujTz5s3j0KFDRr8N6dlelFpTb99G/WEHuq9Xah3llZQO7dB/twEKQAGOj4/H\n2dmZrVu3MnPmTAYPHsynn3zCnAkT/ldkw8LSH8kWs4fyzv8rsrXd04psuXJZLrJ5VdWqVQ09R43t\n6WQqQjyrcOHChi99T4eE9Pb2xtra2ug98POTFx5KtGjRAoD27dvTvn17ozSWkpLCtGnTDNeodDod\nhQsXpm/fvkydOjXdtSVz0i9cgjJ0MEpeOB3yRkOYtwA1NDTtmmQ+durUKSZNmkTvtm3Rz5nP7hIO\nnP1mPfob/01fZOvUBudyaUeyuajnuhAFQXR0NJcvX6ZZs2YAVKtWzTBQy8vOVokXFOCtW7cya9as\ndMtatGiR4xlPcmMvSv2efZCqR+ne1extZ4ei06G0a5M2N/GIYVrHMalChQoRHR2NfvY8lPLleTRo\nAH0CDnLjez+towlRoD148AAbGxsKFSrE5cuX03XCktPMry/TG6x69uzJyZMnOXnyJAEBAUyaNInK\nlSvnuLE7d+7Qs2fPTHtR3r59O8fbzyo1Ohr162/RTZ6Aoihmbz+7lLfao+7PHfecmpKXlxfOIf9l\n//qN7CzrgPeggcz68kutY+Vau3fvpl69epn+5LQDlhCpf49BcP36dbZv325Y3qxZs1w51V9ekOkR\nsJWVlaFI2tnZMWTIELy9vfnww5yNDJXbelHql/qi9OiG8vfpkrxCqVQJSpRAPXMWxaOB1nFMRk1I\n4LOSZTg07UPC799nxYoVNG/eXOtYuVanTp1o3bo1Z86cYenSpcycORNnZ2c2bdqEvb291vGECQUF\nBbFv3z6SkpJ47733jNq7OCkpCX9/f2rUqIGbmxsODg4MHz48Xw+QYS6ZFuBTp06xZ88eAPR6PRcv\nXqRWrVo5biw39aJUj5+AWyEoM6abtV1jUdq3RT14KH8X4FVfozRtQoeJH9BB6zB5gKWlJXZ2dgQG\nBjJo0CBq164NgI+PD127ds328IAid7t8+TJjxoxh2rRpJCYm0q1bN9avX5+jCXQiIyOJiYmhatWq\nPHnyhIoVKxpOLdvZ2RkreoGXaQEuXrw41atXNzxu3rw5bdq0MUqD2e1F+eTJEx49epRh+ePHjylR\nooRhxoyUlBQeP36MtbX1Cx8nREdT+F8rKTR9GqnA49jYlz4/Nz4u8mZLdN+tJznuPRJVVfM8Rv/9\nbt5Cd+Ik+m9XE58H/z5aXtJo27YtPj4+hIeHU6pUKbZs2ULr1q01yyNMa9myZcyaNYuWLdNuoUxJ\nSWH79u1MnTo1S9uJj483TIwREBBgmGDEzs4Od3d344YWwHPXgJ9eQ+rduzcLFiww/EybNo0xY8aY\nLMTixYtZtGjRS59z+vRpxo4dm+Hn5MmTlCtXjoSEBCBtEJEbN268/PH+Azxu7oVS2/31np8LHz+2\nsoJ6dYn/9XiuyGPMx9evXSNuzTfoxo/jMWieJzuPtez96eHhwZo1awgJCeHYsWP0798/y/8Yi7zD\n3t6eQs/0/rezszNcr31dgYGB/PTTT4bHffr0oWLFisaKKF5EfUZycrL66NEj9ejRo2r37t3VoKAg\nNTo6WvX19VXXrVunmkpsbKwaGxubrdeOHDlSHTFixGs/X38hSE15p6+qj4/PVnu5if7oMTVl4mSt\nYxhd6rffqSkzPtc6Ro4sWrRI/fHHHzXNkJqaqsbFxal6vV7THC+T1f1XZPTrr7+qrVu3Vk+cOKEe\nOHBAbdasmRoSEvLS1zx69Eg9cOCA+vjxY1VVVfXu3btqamqqOeLmCebaf9MdAWd2DalEiRL4+Piw\nadMmoxb+5ORkw7c0W1tbw9BkpqQmJ6NfsBjd+HEo+WFqK69mcDU4bRzjfEK9dQt19x50H7x6IHfx\nYpMnT6Z27dps3ryZzp0759pRu0TONW/enPnz5+Pn58eRI0dYvnw5rq6uGZ4XHR1NVFQUAOHh4Tg4\nOFDk72FWnZycpFOVBjI9T2aqa0haD8ShbtgElSqieDUzaTvmolhaorR+M60z1oCcTzenNVVV0S9Y\ngjJyOErJklrHybNOnjyJoih88cUXxMTEsHTpUmbMmMHmzZu1jiZM5I033sh0UoPk5GSsrKx4+PAh\nO3fupFu3bgAmGylNZE2mX3lMdQ3p2YE4rl+/TnBwMGfOnCE8PBw/P9MOrqDevIn64958d2SldGiH\nesBf6xhGoe76ESwt0HXuqHWUPO0///kPTZo0MXQEK1u2LE+ePNE4lTC3AwcOGGapKlq0KMOHDzdM\nziFyhxf2FPHw8MDDw8OojWk1nZnhyMpnRL47slJq1QRVRf3rMkrNGlrHyTY1MhL1u/Xoli/VOkqe\n17dvX7y9valduzaWlpZs27ZN8/F4o6KiuHLlSobl4eHhco+ykTx48IDg4GBD7+WKFSsabkXSaphf\n8XLpCvDp06e5ceMGrq6uhtPET1WuXJl33303R41pNRCHunM3FLJC1+ltk7WhpadHwXm5AOsXf4XS\nuxfK358LkX12dnb4+/uzY8cOQkJCGDdunNG/TGfVnTt3+PnnnzMsDw0NNYwbLLLu0aNH2NjYYGFh\nwYULF9Id4T57K6nIndIV4NKlS6PX6ylVqhQNGzZM90RjDJShxUAcamQk6roN6FYsM8n2cwOlQzv0\nI95Fff89lDw4+Lk+4Cjci0CZ9bnWUfKFo0eP8uDBA0aNGmVYNm7cOHx9fTXLVLduXerWrZth+b17\n91BVVYNEeZder0en0xEcHMyRI0cYMWIEgOE+YJF3pPvXumLFioZ7v6KiomjcuDH79u3j9OnTtGvX\nzigNmmM6s8ePH7N3716SkpLodupPivZ5J23mnHxKKVMGqlaBEyehpbfWcbJEjYtD9V2Bbs5MlFww\nNWV+cOnSJRYtWsSVK1eYNm0aABcvXtQ4lcippKQkjhw5Qo0aNahYsSIODg74+PhI7+U8LNO/XEBA\nABMmTCAiIoIxY8ZgbW3NhAkTzJ0tW1JTU6lfvz7nzp2jyG+BbF7my5V6dbSOZXJK+7boDx7SOkaW\nqStWobRuhVJDTpcZ05IlSwgJCWHEiBEkJSVpHUdkU3R0NDdv3gTSRqoqV66c4RajYsWKSfHN4zL9\n6504cYLZs2ezd+9eevfuzZQpUwgLCzN3tmxZv349LVq0YNa0aXS/ew/3b9fg+/c0ipGRkTm+jp1b\nKS294dx51IcPtY7y2tSz59ImlMjn0ypqwcLCgn//+99Ur16dzp07y7yseUhiYqLh//ft22fozV6i\nRAnq1q0rRTcfyXSvrFy5Mps2beLChQssW7aM1atX52hgb3OKj49PO10eG4tuxTJck5MJ3bmD0NBQ\npk6dmul40vmBUqQISnMv1ENHUHr10DrOK6lJSegXLkE34R8o1tZax8lXatWqRcm/e/tPmTKFChUq\naDLbmMi6wMBAwsLC6NmzJwCDBg3SOJEwpUwLcL9+/YiLi6N169bUqVOHP//8k7lz55o7W7a0aNGC\ndu3aUTsgACcnJ1q3aMHw4cMpV64cmzZtol+/vD9gxYsoHdqhX7kG8kIB/m49Ss0aKI09tY6Sbzx7\nF8OmTZvSjV73fKdKkTvExcURGBiIt7c3VlZWODs7ZzqghsifMi3AiqIQHBzMvn37SEhI4KeffqJx\n48Z54oNRr149fvjhB3x8fChXrhwffPABY8aMMZzGyc89LhWPBvDgAeqtWyi5eCB19do11J8PoPvu\na62j5CumvotBGMfDhw9RVZXixYvz3//+l+LFixvu0y1fvrzG6YQ5ZVqA8/pQdt7e3pw8eVLrGJpQ\nOrRD3X8QZfSoVz9ZA6penzYoymgflGLFtI6Tr5w/f54ZM2Zkuq5Ro0a0atXKvIGEwdPpUqOjo9m+\nfTu9evUCMMo86yLvyvRqfn4eyq53795aRzAppUM7VP/DqHq91lEypf6wA2xt0HVor3WUfKdTp04c\nP36cZcuWGfpxHD16FB8fH7y989btafnJwYMHDZNh2NjYMGLECMM1elGwZXoEnBuHsjOWp9888yvF\nxQUcHeH0n+DZSOs46ajh4aibNqNbuVzrKPlSZrOZAfj4+NC1a1cGDx6sccKC4eHDh9y8eZP69esD\n4OzsbBiVqnDhwlpGE7lMpgU4Nw5lJ16fYWjKXFaA9QuXoPTvi1K2rNZR8jVTzWYmXiw+Ph5ra2t0\nOh2nTp2i7DOfcXd3dw2Tidwswyno4OBgVq9eTWxsLKNGjWL27NlER0cbhjsTuZ/S5k3U3wNRExK0\njmKgP+gPj2JReufvMxC5galmM3teamoqCbnoM2ZuTzt0BgcHs2HDBsPydu3aGc4+CPEy6QrwnTt3\naNu2LefOnaNdu3bcuXOHDz74gFGjRpnk9p2CvgObimJrC280RA04pnUUANSHD1FXrkE3ZSKKDCJg\ncjdu3MDe3p758+ezYsUKo/V78PX15ZdffgFg1apVVKtWjTp16jB48OB800fkdSQlJeHv728YnKhU\nqVI0bdqUH374gRMnTqR77scff8zly5e1iCnygHT/Gp4+fZp33nmHFStWMHPmTFq1akVCQgJBQUG0\nbds2x43JDmw+ulw0T7C6/N8oHdqh5JHBXPK6nTt3snv3bqNvNywsjIcPHxIfH8/q1as5e/YswcHB\nVKpUiRV/jzaXX8XExPDf//4XSLvGW7p0acNp5uPHjzN8+HDu379P165dWbBgAQDTpk0jMDBQhgIV\nL5SuAN+/f5+qVasC4OLiQuXKlVmzZg02NjZGaawg78Bm19gTQkJQw8M1jaGe+gP1P5dQhg3RNEdB\n0qRJE5YvX867777L9OnTmT59Ol9/bbx7ruPi4qhfvz729vbodDo6d+5MRESE0bafWzxbOHfs2IH+\n7zsLypQpQ4MGDbCwsODhw4cMHjyY/fv389577xEeHs7x48e5dOkSc+bMMcqBi8i/XjhArKIouLm5\nmaTRZ3dggM6dO7Njxw6TtFVQKRYWKO3apN0TPFSb3q9qYiL6RUvRTZuMUqiQJhkKIgcHB2bPnp1u\n2bPzxGaXi4sLEydOxM3NjUuXLhEaGkpUVBSjR49m1apVOd5+bhIYGMjdu3fp3r07AMOGDTPclvms\nuLg4OnXqRJkyZYC0ie+rVq1KdHS0jNksXilDAV62bBk7duwgJiaG8PBwgoODgbQRpp6eWsmugrQD\n5wZKh/bo//kFaFWAv/4WxaMBSoP6mrRfUJUoUYKNGzcSEhKCXq8nJSUFT09P2rfP2b3XY8eOZezY\nsYSEhHDu3DlsbGyIiIhg/fr1eb6nb3x8PKdPnzbMqevo6Jjuzo/Mii+Ak5MTVlZWzJ8/nylTpnD4\n8GEWLVr0wgFRhHhWugLcuXPnF47M8vRoNSfy8w6cGylVq0DhwqhBF1HqmLdXpnr5CmrAMRluUgOb\nNm3Cw8MDb29vqlWrxqNHj4iJiTHa9itUqECFChWAtGKfV8XGxgJpt11eu3aNIkWKGNZVfM2hXC0s\nLPD19aVRo0b4+/vj5ORk6AQHaWPTOzo6Gj27yB/SFeAyZcoYTqWYUn7ZgfMC5a32aaehzViA1dRU\n9AsWo4wdjWJnZ7Z2RZqEhARatWqFlZUVx44dY8aMGfTo0YPx48ebpL3FixejqiqTJk0yyfaNSa/X\no9PpiIqKYvv27fTp0wdIO8OXXXZ2di/s6dy8efNsb1fkf7liktC8tAPnNUq7NugHD0f94H2zXYdV\nN28FhzLoWr9plvZEem3atGHChAn4+fkxYcIEHBwcjD4CU3JyMjqdDgsLC0aNevW444cPH2bmzJkZ\nll+5ciVHxS8rDh48SMmSJXnjjTewsbFh5MiRWFhYmKVtITKjWQHOiztwXqSULAm1aqIeP4FihoKo\nhoaibtuO7uuVJm9LZM7T05N58+ZRunRp5s2bx6FDh4wynWhKSgrTpk1j586dAOh0OgoXLkzfvn1f\nOdBHmzZtaNOmTYblPj4+JpuhLDY2lpCQEMOgGA4ODoZLXdYyB7XIBcxagPPaDpxfPD0NjRkKsH7h\nEpShg1HMcClDvFiLFi0AaN++fY47Xz21ZMkSAC5fvmyYPi8pKYmJEyfi5+fHkCHa32qWmJhouJb7\n66+/4urqalj3dGxmIXILs/aTf3YHvn79OsHBwZw5c4bw8HD8/PzMGaVAUZp7waW/UKOjTdqOft/P\nkJSM0r2rSdsRmdu9ezf16tXL9GfkyJE53v6dO3fo2bOnofgCFCpUiK5du3L79u0cbz+nrly5wnff\nfWd43LFjRxkSUuRqZj0CvnPnDr179850Bz516pQ5oxQoSqFCKC29Uf0Po/yfaaZjVKOjUdd8g27J\nghfesiFMq1OnTrRu3ZozZ86wdOlSZs6cibOzM5s2bTLKXQwDBw5kzJgx9OrVCxcXFwBu377Nhg0b\nOHz4cI63n1VJSUmcOHGCGjVqULZsWUqWLClj1os8xawFOLftwAWJ8lZ79Iu/AhMVYP1Xy1G6dkap\nVMkk2xevZurpCBs2bMiuXbvYu3cvQUFB6PV6XF1dOXz4MA4ODsb4FV4pNjaW2NhYypUrR3R0NLa2\ntoa2zXEHhxDGZNYCnBt24IJKqVMbEhNRg6+l3R9sROrxE3DzFsonHxl1uyJ7TDkdYdmyZfHx8THK\ntl5XSkoKlpaWqKqKn58fb731FpA2CIaTk5NZswhhTGbvBa3FDizSpM0TfNCoBVhNSED/1XJ0M6aj\nPHNpQWjn6XSEW7du5eLFi/Tv399oMyI9a/r06dSsWZOBAwcafdtPBQYGEhkZSefOnVEURW4dEvmK\npoOVTp8+nY0bN2oZoUBR3mqP6n8YNTXVaNtUV32N0rSJ2UfaEi/24MEDPv/8c3bv3s2hQ4eYPn06\ngwYN0jrWa0lISODkyZOGx6VKlUrXi1uKr8hPcsVAHMI8FCcnqFABAk9Bs6Y53p568T+oJ06iW/+t\nEdIJY1m7di0NGjTAz8+PQn8PvmKKjnHu7u44OzsbZVvx8fHY2Nhw6dKldJMYVJEpLEU+pmkBNuYO\nLF6P0qEd+gP+WOSwAKvJyei/XIRu/DiUokWNlE4Yg729PSVLljTaNKIv0r9/f6Nsp1ChQqSkpADw\nxhtvGGWbQuQFmhZgY+3A4vUpb7ZEXbESNS4OxdY229tRN/pBpYpp9xiLXKV+/fp0796dn3/+mUp/\n90qvXLnya404p4WkpCSKFSumdQwhzE5OQRcwStGiKE0aox4OQOnWJVvbUG/dQt29B923q42cThhD\n8eLFWbRoUbplcpeBELmPFOACSOnQDv13GyAbBVhVVfQLlqCMHJ42zrTIdapUqZLh2unTU7xCiNxD\n017QQiNvNIR791CzMXyguutHsLJE17mjCYIJY4iKiqJjx464u7tTs2ZNqlatmivGaRZCpCdHwAWQ\notOhtGuDesAfZeTw136dGhmJum4DOt8lJkwncmrTpk14eHjg7e1NtWrVePToETExMVrHEkI8R46A\nCyjlrfaoB/yz9Br94q9Q3umJ8vcwoiJ3SkhIoFWrVjRt2pSLFy8ydOhQjh07pnUsIcRzpAAXUErF\nilCiBOqZs6/1fH3AUbgXgdLv/0wZSxhBmzZt+Oc//0nFihXZtWsXK1eupHDhwlrHEkI8RwpwAZY2\nNOWrj4LVuDhU3xXopkxCkZGIcj1PT0/mzZtH6dKlmTdvHjdu3GDu3LlaxxJCPEcKcAGmtG2NevwE\namLiS5+nrliF0roVSo3q5gkmcuT48eM4OjpiY2ND+/btmTdvHuvXr9c6lhDiOZp1wkpOTkan08nY\nrhpSihWD+vVQj/2C0qF9ps9Rz55DPXMW3do1Zk4nsiohIYERI0Zw6dIlbG1tDdPzxcXFUaJECU2z\n/fHHH3z99dcZlh8/flyGmxQFllkLcEpKCtOmTWPnzp0A6HQ6ChcuTN++fZk6dSpWMpuO2ek6tEO/\n60fIpACrSUnoFy5BN/EDFGtrDdKJrChatCizZs1i9+7dODk5Ubt2bRISEihRogQVK1bUNFuNGjWY\nNGlShuUPHjygSJEiGiQSQntmPQW9ZEna7SuXL1/m+vXrBAcHc+bMGcLDw/Hz8zNnFPFUs6Zw7Tpq\nZGSGVep361Fq1kDxbKRBMJEde/bsITw8nP79+/PDDz/Qp08fevToQVhYmKa57OzsqFatWoafYsWK\nGSaMEKKgMWsBvnPnDj179kx3pFuoUCG6du3K7WwMCiFyTrG0RGn9ZobOWOq1a6g/H0AZN0ajZCKr\nTp48ybZt2xg3bhwhISGsX7+eK1eusGLFCj7++GOt4wkhnmPWU9ADBw5kzJgx9OrVC5e/7yW9ffs2\nGzZs4PDhw+aMIp6hdGiHfs58GJg2OYaq16cNNznaJ+06scgTAgMDGTBgAC4uLqxcuZJu3bphbW2N\nl5cX//jHP7SOJ4R4jlmPgBs2bMiuXbsoUaIEQUFBnD9/HltbWw4fPiyDxWtIqVkDAPWvy2n/3bYd\n7GzRvaBjlsidSpcuTWhoKAB79+6la9euAFy8eJEKFSpoGU0IkQmz94IuW7YsPj4+5m5WvMKl8s4E\nv/seAU5l+CLiAcW3bNA6ksiirl27Mn/+fH777TeSkpJo2bIlhw4dYvz48Xz55ZdaxxNCPCdXjAW9\nePFiVFXNtJekML0TJ06w9PcTrFQVGlkUYum9u/QID6e+k5PW0UQWFCtWjNOnT3Px4kXq1KmDpWXa\n7v3tt9/i6empcTohxPNyRQF+nYnCL1++zL59+zIsv3DhAuXLlzdFrHzr999/Z8uWLej1eubNm4ef\nnx+T58+n2IcfUSzkNp4L5rF//37q16+vdVSRRUWKFOGNN94wPG7btq2GaYQQL5MrCrCtre0rn2Nv\nb0/16hlHYqpTpw7lypUzRax866+//mLhwoX861//4tdff8Xe3p4HDx5g+UtaR7j4778nNTVV45RC\nCJG/5YoC/DrKlSuXaaG9f/8+qqpqkCjvGjZsGDt37mT9+vUcOXIEJycn3nvvPRISEoiNjWXlypXs\n3btX65hCCJGvmbUAL1y4kICAgEzXDRgwgP79+5szToHWo0cPChUqxPLly5k+fTo7duzAz88PVVXZ\nvHkzJUuW1DqiEELka2YtwIMGDcLPz49JkybRoEGDdOuejlsrTO/dd99lxowZRERE4OrqCoCTkxMT\nJ07UOJkQQhQcZi3Ajo6ObNy4kU8//ZQBAwaYs2nxjC+++IJ169ZRsWJFevbsqXUckUelpqby5MkT\nihYtqnUUIfIks09HWKtWLbZv327uZsUzHB0dmTJlCn369DHcqiLEq/j6+vLLL78AsGrVKqpVq0ad\nOnUYPHgwT548MVo7iYmJ/PDDD2zZsoWoqCgAwsLC+OCDD3j33XcJCQkxWltCaEnT+YCnT5/Oxo0b\ntYwghHhNYWFhPHz4kPj4eFavXs3Zs2cJDg6mUqVKrFixwihtpKam0qBBA86cOcPdu3cpU6YMV65c\nISgoiA8//JBBgwaxadMmo7QlhNY0LcBCiLwnLi6O+vXrY29vj06no3PnzkRERBhl2+vXr6dJkybM\nmTOHCRMmcPDgQb766iveeustIiMj+cc//kGXLl2M0pYQWtO0ALu7uxsmZRBC5G4uLi5MnDiRIUOG\n4O/vT2hoKOfOnWP06NH06tXLKG3Ex8fTsWNHw+NatWoZplL08PBg165dzJ492yhtCaE1TS8Aym1H\nQuQdY8eOZezYsYSEhHDu3DlsbGyIiIhg/fr1uLu7G6UNLy8v3n77bWrXro2TkxNt2rRh4MCBLFq0\niIYNG1KsWDEZeEfkG9IDRwiRJRUqVDDMrlSiRAkWL17M/v37jTKWe4MGDdi6dStDhgyhfPnyvP/+\n+4wdO5bExETWrVsHwOeff57jdoTIDaQACyFy5HXGcr979y7nz5/PsPz27duUKFEi3bKWLVty6tSp\ndMusra0ZPXp0zoIKkcvkiwIcERHB1q1bc7ydixcvEh4e/lpjU7+u1NRUIiMjcTLyzEKhoaFGn4Qi\nJiYGS0vLAv37V61aFTc3txxvKyoqiqpVqxohVe73Op+XmJiYTAuwqqpYWVnleP89deoUCQkJFClS\nJEfbyQlTfCazwhT7b1Zp/R7ExcXh5ORE7dq1c7Qdc+2/iprHB1JOTU1l1apV6HQ570+2a9cu4uLi\njPoBSkxM5MyZMzRr1sxo2wQ4cuQIrVu3Nuo2g4ODKVKkiFE7xuW1379q1aq0atUqx9sqXLgwgwcP\nxsLCIufB8jFj7b/fffcdtra2lC5d2kjJss4Un8msMMX+m1VavwehoaHY2trSvXv3HG3HXPtvni/A\nxuTr64uzs7NRR4e6d+8eH3zwAVu2bDHaNgFatWrF0aNHjbrN5cuXU7ZsWaP1aIW0sxPjxo0zyhmK\nZ5ni9//Xv/6Fo6Mj77zzjlG3m1/k5rHcP/74Y7p06ULTpk01y2CKz2RWmGL/zSqt34MdO3YQFhbG\nuHHjNMuQFfniFLQQwvRkLHchjEsKsBDitchY7kIYl4yEJYR4bTKWuxDGIwVYCJEtMpa7EDlj8dln\nn32mdYjcwtbWlgoVKlC8RQ2UIAAAIABJREFUeHGjbdPCwgJHR0cqVapktG0ClC5dmmrVqhl1m/L7\n2+Lq6prhvlSRuSNHjlCmTBnq1q2rdRTs7e2pVKkSNjY2mmUwxWcyK0yx/2aV1u+BtbU15cuXx8HB\nQbMMWSG9oIUQ2eLn54ezszMtW7bUOooQeZIUYCGEEEIDcg1YCCGE0IAUYCGEEEIDUoCFEEIIDUgB\nFkIIITQgBVgIIYTQQIEuwPfv3yc1NTXTdSkpKSQmJhp+tJacnMz9+/czXZeUlGTImZSUZOZk//Oq\n90yv16dbr9frNUj5P9HR0S98v3Lb319kLiYm5qV/n3v37mHKGz2io6NJTk7OdJ2pP0MvaxsgISGB\n2NhYo7f7lF6vJzIy8oXrn/3dU1JSTJbj7t27L1xn6vcgpwpkAU5NTaVbt26MGTOGRo0aERgYmOE5\n48aNo0GDBnh5eeHl5UV8fLwGSf9n8uTJTJ8+PdN1Hh4ehpzDhg0zc7L/edV7tm3bNqpWrWpYf/z4\ncY2SwsiRIxk6dCitW7fOdKaq3Pb3Fxk9ePCAZs2aERQUlGHdw4cPadKkCSNGjKBBgwZEREQYvf3B\ngwczYMAAqlevzokTJzKsN+Vn6FVtr1ixgnbt2tG0aVO++uoro7X7VGBgIA0aNKBPnz706dMnw5ec\ne/fu4eTkZPjdly1bZvQMACtXrmTkyJGZrjP1e2AUagH066+/qnPnzlVVVVV//vlntW/fvhme07Rp\nU/X+/fvmjpapgwcPqvXq1VPffffdDOvi4+PV+vXra5Aqo1e9Z9OmTVO3b99uxkSZO3LkiOFv/ujR\nI/Xjjz/O8Jzc9PcXGZ06dUqtU6eOWr16dfXUqVMZ1k+bNk1dv369qqqq+vXXX2f6N86J/fv3q8OH\nD1dVVVWDg4NVLy+vDM8x1WfoVW0/ePBArVOnjqrX69Xk5GTV3d1djYmJMWqGZs2aqbdu3VJVVVUH\nDhyoHjx4MEPGcePGGbXN540YMUL18vJSO3bsmGGdOd4DYyiQR8DNmzdn2rRpXL58mW+++YY333wz\n3Xq9Xs/t27dZtmwZ77//fqbfsM3l/v37fPnll7xoxNCgoCCsra0ZO3YsM2fO5N69e+YN+LfXec/O\nnTvHH3/8wZAhQ9i/f78GKdMcO3YMT09PZsyYwebNm/nkk0/Src9Nf3+ROXt7ewICAl44DOb58+dp\n1qwZkLa///nnn0Zt/9ntV6lShbCwsHTrTfkZelXbV69epV69eiiKgqWlJXXq1OGvv/4yWvuQ9u9S\nhQoVgMzf33PnzhEdHc2QIUP45ptvTHIKftiwYaxevTrTdeZ4D4yhQBbgp3bv3s3t27extrZOtzw6\nOpoWLVrQu3dvunfvTvfu3Xn8+LEmGd9//33mz5+fIeNTT548oUmTJkyZMoVSpUoxZMgQMydM8zrv\nmaurKy1btmTSpEl89tln/P7775pkDQ8PZ+3atTRp0oTw8HB8fHzSrc9Nf3+RRq/Xk5ycTHJyMqqq\nUr16dUqVKvXC54eHh1OsWDEA7OzsiImJyXGGlJQUkpOTSU1NTbd9ACsrq3RFxpSfoVe1/fx6Y/3+\nTz169AhLy//NZJvZ9m1tbWncuDGfffYZv/32G0uXLjVa+095eXm9cJ2p3wNjKdAFeOrUqfj7+zN1\n6tT/Z+/O42rK/weOv84NkcqWXZK1kCWEIktZa6wTWcIPWWLGboYxY2xjz1jGDGYYW8jYxjbMGGMJ\nWbPvTCPLpJGotJ7P74/L/UpFkU7p83w8eszcc889532P+7nvez5rkk4CFhYW+Pn5Ua1aNVxdXXFy\ncuLPP//M9Ph2797NuXPn2Lp1K6tWreLEiRPJ7hydnZ3x9fXFysoKHx8frly5wpMnTzI91rRcsyVL\nltC6dWtq1KjBgAEDNFvWrmDBgnh6etK2bVu+/PJLjhw5kqQzVlb595f+Z/Xq1dja2mJra5tin41X\nFSlSxFAOnjx5QqlSpd45hvr162Nra4uXl1eS44N+0ZG8efMaHr/Pz9Cbzv3q8xn1/l8wMzNLkvBT\nOv6QIUP45JNPsLa2Zvz48Zle1t/3NcgoOTIBr1+/nvHjxwMQFRVFiRIlkvyi++eff3B1dQVACMHZ\ns2epW7dupsdZo0YNZs+eTYMGDbCxsaF48eKGap8XNmzYYOic9eJXn7m5eabH+qZrpqoqTk5OhIWF\nAXDq1Cnq16+f6XGC/ov0+vXrgL4qTVVV8uTJY3g+q/z7S//Tu3dvbty4wY0bN2jQoMEb93dwcOCv\nv/4C4K+//qJWrVrvHMOpU6e4ceMGfn5+SY5/+fLlZF/u7/Mz9KZzV6tWjbNnzxIXF0dsbCwXL16k\nfPnyGXJuAEVRKFGiBDdv3gRSvr6ffvopu3fvBrQp6+/7GmSUXG/e5cPTqVMnNm/eTMeOHYmKimLG\njBkADB48mNq1azNgwAAaNmyIm5sbd+/epXPnzhQvXjzT4yxdujSlS5cG9L9y7969i62tLQ8ePMDe\n3p579+7RoUMH/P396dChA5cuXXovVT1pUbZs2RSv2fr16/n111/x8/Nj5MiRdO3aFSEEZmZmuLu7\naxJr+/bt2bx5M25ubty5c4dFixYBWe/fX0qfl8vFsGHD+PTTT1m/fj2xsbHs2rUrQ8/VokUL9u7d\nS+vWrbl//z6rV68GMuczlJZzjx49mrZt2/L48WNGjx6Nqalphpz7BV9fX3x8fIiJicHOzg5nZ+ck\n13/w4MEMGzaMxYsXExISwi+//JKh509NZl6DjJCjV0OKiop67fqhcXFxCCEwNjbOxKjeTmRkJCYm\nJuh02lZqpOWaPX36FDMzs0yMKvU4TExMMDIySvH57PTvL6Xs2bNnqfafyIzjv8/P0JvOnZCQgBCC\n3LlzZ/i50xrDkydPNKmReyEzrsG7yNEJWJIkSZK0kiPbgCVJkiRJazIBS5IkSZIGZAKWJEmSJA3I\nBCxJkiRJGpAJWJIkSZI0IBOwJEmSJGlAJmBJkiRJ0oBMwJIkSZKkAZmAJUmSJEkDMgFLkiRJkgZk\nApYkSZIkDcgELEmSJEkakAlYkiRJkjQgE7AkSZIkaSCX1gFIrxcaGkpUVFSSbZaWlkRERGBiYvLW\na50KIbh37x6lS5d+q9eHhYVhampK3rx53+r1kpRV3b59O9k2U1NTdDrdO5W59IqKiiIuLo5ChQql\n+TWvK5fx8fFcvHiRypUrY2JikpGhGryI2dzcnNDQUEqWLPlezvOhkHfAWdygQYPw9PRkyJAhhr//\n/vuPefPmERgYyL///sv48eMBOHDgAKtXr07TcSMjI2nbtu1bx/X5558TEBDw1q+XpKwoMTHRUM4c\nHR3p2rUrQ4YMYdWqVUyYMIEDBw689xj69esHwP79+1myZEm6XptauZw3bx6WlpbMnDmTpk2bMnjw\nYDJyKfhXY75//z5dunTJsON/qGQCzgamT5/Orl27DH/Fixdn6NCh1K1bl9OnTxMYGMi9e/fYs2cP\nly5d4unTpwDExMRw5cqVJMeKjY0lMDCQyMjIZOd58OCB4bUAt27dIjExkYSEBIKCgjh27BjPnj1L\n8pqIiAgePnwIgKqq3Lp1y/BcSue/c+cOhw4dIjw8/N0uiiS9B0ZGRoZy1rhxY6ZOncquXbsYNWqU\nYZ/bt28THByc5HUpfdYBLl68SHR0dJLX3r9/nxs3bgD6mqjz58+jqiqgL4N79uzh1q1bODs707dv\nX8Nrr169yt9//214/Lpy+bLt27fj5+fHtWvXWLduHcePHyc6Oprp06cDGGIB+Pfffw3fAZGRkRw9\nepSzZ88akvX9+/eJiori1KlThrL+uphfCA0N5d69e0m2ye8CWQWdLURERBAWFgZA3rx5MTU1ZfLk\nyXz00UccOXKEkJAQAgMDOXXqFEIIQkJCOH36NOvXr8fa2prr16+zefNmnjx5gqurK82aNePMmTPJ\nzrN3714uXrzIzJkziYiIoH379gQFBdGsWTPq1auXpEC+sH37dq5evcqUKVOIioqiffv2nD9/nrVr\n1yY7/8GDB5kyZQouLi4MHjyYrVu3UrFixUy7jpL0rubMmYO9vT3bt29nzpw5uLm5pfhZNzIyolmz\nZtSqVYvr16/j4eGBt7c3HTt2pFixYlSsWJFBgwYxZswYatSowalTp5g7dy737t0jKiqKXbt2UaxY\nMU6dOsWMGTPo2bMncXFx5M2blxIlSjBjxozXlsuXbd26FU9PT8zNzQ3bxo0bh5eXF+PHj6d169Zc\nvXoVIyMjZs2ahaOjI7Vq1aJLly60adOG48ePU7FiRRYvXszkyZO5cuUKdnZ2/Pnnn0ydOpXcuXMn\ni/mTTz4xnGvkyJE8evQIVVUpVKgQ8+fPZ8+ePfK7AJmAs4WJEydSsGBBANzd3Rk7dqzhOQ8PDy5c\nuEDHjh25c+cOQghsbW3p168fa9euxczMjO+++45du3Zx6dIlunXrxvjx4zl06BBDhw5Ncp6PP/6Y\nGTNmMH36dDZu3IinpydRUVGGQnrz5k2aN2+epl+s3333XbLz//3331SqVInevXvTq1evdLVtSVJW\n4OHhwcCBA6lTpw579uzBzc0txc86QMuWLZk4cSLPnj2jXr16eHt7Ex0dzcKFC6lSpQrDhg1j0KBB\nNG7cmKCgIJYvX87ChQspVKgQQ4cOxd/fH4Bz585x/fp1jh8/DsDPP/+crnJ57dq1ZHelFSpU4OrV\nq6m+T1VVWbZsGXZ2dhw6dIhhw4YZnnNxcWHChAls2bKF33//ne+++y5ZzC+EhYVx/Phxtm7dCkCv\nXr0IDQ3lwoUL8rsAmYCzhW+//ZbmzZunef+nT59y6dIlvvzyS8O2cuXKERwczEcffQRA7dq1k73O\nxMQER0dHDhw4wNq1a1m1ahW5c+dm1apVzJo1Czs7O4QQJCYmpnjeF9VoqZ3/k08+wdfXly5dupCY\nmMjq1aspXLhwmt+XJGnNysoKAAsLC6Kjo1P9rJ84cYKWLVsCkC9fPvLkycPdu3cNzwMEBARw9+5d\nNm3aBECZMmVSPOfdu3epWbOm4XGfPn149uxZmstljRo12LdvH05OToZtN2/epHz58sn2fVGGAcaM\nGUPu3Lmxs7NLcuw6deoA+o5p8fHxqVwpvWPHjvHw4UOGDx8OQOHChfn777/ld8Fzsg04mzMyMjIU\njhf/b2ZmRrVq1Zg1axZr1qzB3d0dKysratSowcGDBwEIDAxM8Xh9+/bF19cXY2NjLC0t2bt3L4qi\nsH//fqZNm0ZUVFSSwpgvXz5CQ0MBOH/+PECq59+2bRuNGzfm5MmT9OjRg3Xr1r3PSyNJ711qn/WW\nLVsaOmw9evSIf/75h1KlSgGg0+m/dl1dXenSpQtr1qxhzJgxhuSuKEqSczg7OxMUFATo233d3d3Z\ntWvXa8vly7p3787GjRu5evUqJ06c4P/+7/8YPXo0gwYNAvTNWi/K8IULFwBYvHgxXbt25bfffqND\nhw5Jjv1qfKltA2jcuDH58+dn9erVrFmzhkqVKmFpaSm/C56Td8DZnKWlJefPn2fq1Kk0adKEnj17\nUqVKFb7++mv69etHvnz5iImJYePGjTRs2JCOHTvSunVrbGxsUiw0jo6OXL9+nYkTJwLQpEkTpk+f\nTs+ePYmNjaVixYqEhIQY9m/WrBmTJk3Czc2NokWLGoY/pHT+e/fu0a9fP4oVK8adO3dYsWJF5lwk\nSXqPUvqs58qVi23btuHu7s7t27f58ccfk5W3gQMHMnbsWNatW0d4eDjz588HoHLlyrRr146ePXsC\n+jvNnj170qZNG4QQdO3aFRcXF2bPnp1quXyZk5MTkyZNonPnzpibmxMTE4OqqkRFRZGQkMCAAQNo\n0aIFZcuWNfw46NSpE2PGjOHw4cPkyZOHhIQEEhISUr0Gr8b8QoECBejTpw+tW7fG2NgYa2trSpYs\nSa1ateR3AaCIjOyLLmlCVVUSExPJnTs38fHxGBkZGQpSdHR0sjF/z549S/dYxoiICAoUKJDu51M6\n/5MnT5J0CJGkD0FqZS1v3ryp3iGm9rrY2FiMjY2TbHuRAHPl+t9905vK5ateLnubN2+mQ4cO6HQ6\noqKiMDY2TnJsVVWJjo7G1NQ0TcdOKeaXjxUfH5/s+Zz+XSATsCRJkiRpQLYBS5IkSZIGZAKWJEmS\nJA3IBCxJkiRJGpAJWJIkSZI0IBOwJEmSJGlAJmBJkiRJ0oBMwJIkSZKkAZmAJUmSJEkDMgFLkiRJ\nkgZkApYkSZIkDcgELEmSJEkakAlYkiRJkjQgE7AkSZIkaUAmYEmSJEnSgEzAkiRJkqQBmYAlSZIk\nSQMyAUuSJEmSBmQCliRJkiQNyAQsSZIkSRqQCViSJEmSNCATsCRJkiRpQCZgSZIkSdKATMCSJEmS\npAGZgCVJkiRJAzIBS5IkSZIGZAKWJEmSJA3IBCxJkiRJGpAJWJIkSZI0IBOwJEmSJGlAJmBJkiRJ\n0oBMwJIkSZKkAZmAJUmSJEkDMgFLkiRJkgZkApYkSZIkDcgELEmSJEkakAlYkiRJkjQgE7AkSZIk\naUAmYEmSJEnSgEzAkiRJkqQBmYAlSZIkSQMyAUuSJEmSBmQCliRJkiQNyAQsSZIkSRqQCViSJEmS\nNCATsCRJkiRpQCZgSZIkSdKATMCSJEmSpAGZgDUUERHBs2fPtA5DkiRJ0oBMwBrYt28flSpVwtbW\nFktLS+rWrcvZs2ff+njDhw9nypQp6XrNP//8g6IoJCYmvvV502rixInExcUBUL58+Xd6r5KUVk+e\nPEFRFEqXLo2lpSWWlpaUKVOGjh078u+//771cVP7DB86dAh7e/u3Pm5AQAA1atR469enV/369Vm3\nbl2mnU9KTibgTBYXF4eHhwdLlizh3r17hIaG4uXlRceOHbUO7b1ITExk8uTJqKoKwOHDh6latarG\nUUk5ydmzZ7lz5w537tzh/PnzJCYmMn78+Lc+nvwMSxlFJuBMpqoq0dHR5MmTBwCdTseQIUNYtmwZ\nCQkJABw8eBAnJydKlSqFj48PMTExAKxcuRJbW1tMTU2xt7fnxIkTyY7/8OFDOnXqRMGCBalZsyYH\nDx58qxi/++47ateuTenSpZk0aZIhgUZERODh4UGxYsVwd3cnKCgIgEuXLtGsWTMKFCiAlZUV8+bN\nA8DT0xOAmjVrEhYWRq9evbh16xYABw4coFOnThQuXJgOHTrw4MEDAGbPns3cuXNp0qQJBQsWpFu3\nbrKqXsoQhQoVwsnJicePHwMghGDq1KmUKVOG0qVLM23aNIQQAKxevZqyZctSpEgRPDw8CA8PB0jy\nGd68eTN2dnaUK1eOLVu2GM7zzTff8P333xseT506lSVLlgCpl5WXXbt2jQYNGmBmZoa9vT1Hjx5N\nts/gwYPx9/c3PP71118ZMGAACQkJ9O3bl4IFC2JlZcXMmTPTfZ0OHDhAzZo1KViwIJ06dSIsLIzI\nyEhq1qxpuHYAPj4+bN68+bXXsVmzZsyYMYPixYvz22+/vfb9b968mVq1alGmTBlmzZqFq6sr8Pp/\np2xNSJluypQpIleuXKJly5Zi/vz54u+//zY8d//+fWFhYSGWL18uwsLChLu7u5g3b564du2ayJ8/\nvzh9+rR49OiR8Pb2Fi1bthRCCDFs2DAxefJkIYQQ7u7uok+fPuL+/fti+fLlonz58inGEBwcLACR\nkJCQ7LmFCxeKatWqicDAQBEQECAqVaokli1bJoQQon379sLLy0vcv39fLFq0SDg6OgohhKhdu7aY\nNWuWiIyMFJs2bRJGRkbiv//+E+Hh4QIQ9+/fF6qqCmtraxEUFCRu3bolzM3NxYoVK8SdO3eEp6en\n4f2MGTNGWFhYiN27d4u///5bVKpUSfz8888Z9w8g5QgRERECEL/88ov4/fffxe7du8X8+fNFoUKF\nxObNm4UQQqxcuVJUqVJFnD59Whw/flxUq1ZNHDt2TDx79kyYmpqKM2fOiPDwcNGmTRvxzTffCCGE\n4TN88+ZNUaRIEbFlyxZx7tw5UaNGDVG7dm0hRNIyKYQQQ4cOFdOmTRNCpF5WDh8+LOzs7IQQQnTu\n3FlMmzZNREdHiwULFhiO+7Lly5cLd3d3w2MPDw+xdOlSsX79etG4cWMRFhYmLl26JMzMzMT169eT\nvd7BwUH4+fkl2x4aGirMzMzE6tWrxb1790SfPn3EyJEjhRBCtG7dWqxatUoIIURUVJQwNzcXDx8+\nTPU6CiFEmTJlRIsWLcT27dvFgwcPUn3/N27cEBYWFmLz5s3i0qVLom7duqJcuXKv/XfK7mQC1khg\nYKD49NNPRbly5YROpxO+vr5CCCE2bNggqlevbtjvzp074syZMyIiIkJcuHBBCCHE48ePxbx58wyF\n9UVh/++//4ROpxOXLl0SERERIiIiQjRq1EicPXs22flfl4AbNmwo5s2bZ3g8bdo04ezsLGJjY0Wu\nXLnE5cuXhRBCqKoqfvvtN5GQkCBOnDghEhISRHx8vDh16pQwNTUVV65cEQkJCQIQz549E0L878vL\n19fXkLyFEOL69esCEP/++68YM2aM8Pb2Njzn4+Mjvv7667e+1lLO9CIB29raCltbW5E7d25Rt25d\ncebMGcM+zZs3FzNmzDCUl7lz54ovvvhCxMTECBMTEzF37lzx4MEDERsba3jNi8/wDz/8IJydnQ3b\n582bl6YEnFpZeTkBd+3aVXTq1EmcOXNGJCYmiri4uGTvLzw8XJibm4snT56I6OhoUbBgQfHff/+J\nTZs2iXLlyolff/1VxMTEiJiYmBSvT2oJ+IcffhANGjQwXJPr168LGxsbIYQ+EbZv314IIcTGjRtF\nq1atXnsdhdAn4J07dxqOn9r7X7hwoWjRooVhv59++smQgF93/OxMVkFnssTERCIjI3FwcGD+/Pnc\nvn2brVu3Mm7cOK5du8bVq1dxcHAw7F+mTBlq1aqFmZkZGzZsoEqVKtjY2LBp0yZDtfALISEhKIpC\n8+bNqVKlClWqVOHGjRscOXIEb29v8uTJQ548efD29n5tjMHBwTRs2NDwuGHDhty7d4/bt2+TL18+\nbGxsAFAUhVatWmFkZMTDhw9p3LgxxYoVY/To0SQmJiaL79VzNGjQwPC4YsWKFClShHv37gFQrFgx\nw3P58+c3VM9LUnodPHiQS5cucfLkSW7dusWdO3cMz929e5fZs2cbysvs2bM5c+YMxsbG+Pv7s3Ll\nSkqXLo2bmxtXr15NctwbN25Qp04dw+P69eunKZ60lBVfX1/i4+NxcHDA1tY2SVXzCwULFqRZs2bs\n3LmT3bt34+joaGjO6d69O/369aN48eKMGTOG2NjYNF+vkJAQzp8/b7gmjRs35vHjx9y9e5cOHTpw\n4MABIiMj+eWXXwxNTKldxxcsLS3f+P5v3bqVpBNbvXr1DP//puNnV7m0DiCn2bZtG9OnT0/SfvvR\nRx9hZ2fH1atXKVy4MHv27DE8d+fOHU6ePMmTJ0/45Zdf2LRpE9WrV+fXX39l3LhxSY5tY2NDgQIF\nOH/+PBYWFoD+w16gQAHatm3L4MGDAShSpMhrY7SwsODixYuGL5Tz589Tvnx5ChUqxNOnT7l//z4l\nS5YEYPny5bi4uNC5c2dWr16Nm5sbxsbGmJiYvLaNxsLCgoCAAMPj+/fv8+jRI6ytrQF9cpekjFSj\nRg2mTp1Knz59uHjxIiVKlKBevXo4OzsbfpRGRkYaEoK9vT1nz57l4sWLfPXVVwwZMoQ//vjDcLyy\nZcuyc+dOw+Pbt28b/l+n0yVJeg8fPqRkyZI8evQoTWUlV65cbNq0iadPn7Jy5Up69epF69atk5Vd\nT09PtmzZQq5cuQzJMDY2llGjRjFp0iT27t3LkCFDqFatGgMHDkzTdXJwcMDR0ZG9e/catt27d4+S\nJUsafuBv27aNffv2Gdq1U7uOLxgZGQG89v07ODjw888/G17zck/zNx0/u5J3wJnMxcWFa9euMWXK\nFCIiIkhMTGTLli1cuXIFR0dHmjVrxunTp7l8+TKg75B09uxZHj16RKVKlahevTpCCH7++Wfi4+OT\nHDtPnjy4uLjw3XffoaoqDx48oGrVqly5coWyZctib2+Pvb09VlZWhtc8evQoyV9CQgKtWrVi3bp1\nRERE8OjRIzZu3IiTkxPFihWjRo0arF69GiEEhw4dwtfX13AsV1dX8ubNy7p164iJiSE+Ph4jIyOM\njY2JiIhIEmurVq04dOgQFy9eRFVVli1bRrVq1ShQoMB7vPpSTjdo0CDKly/PZ599BkD79u1ZsWIF\n4eHhCCHo2bMn8+bNIywsjOrVqxMSEkK1atVo06ZNsmM1adKEY8eOce3aNWJiYpLcpRYvXpzAwECE\nENy/f5+//voL0CcOSLmsvKxPnz78+OOPFC5cmB49emBsbJziD9qPPvqIgIAA/vrrLzp06ADA+vXr\n6dKlC4qi0KZNG6pUqZLq9YiMjExS/qOjo3F1dSUwMNBwh7lmzRpat25tuEv39PTkq6++olGjRoby\nmtp1TOl8qb3/li1bcvToUf78809CQkL46aefDK9L6/GzHa3qvnOy06dPi2rVqolcuXIJY2NjYWVl\nJfbt22d4ft68eSJ//vyiYsWKonXr1iIsLEw8ePBA2Nvbixo1aghbW1sxbdo0YWpqKqKiopK0N50+\nfVpUqlRJlC1bVlhbW4sZM2akGMOLNuBX/w4cOCDCw8OFm5ubKFSokChatKjo0aOHiI+PF0Lo22+s\nra1FuXLlhJ2dndizZ48QQohBgwYJKysrYW9vL3r27CkaNGgg/P39hRD6jhu5cuUSFy5cMLSfCSHE\nzJkzhYmJibC0tBTVq1c3dBQZM2aMmDBhgiHWVx9LUlq8aAN++PBhku3Hjh0TOp1OHDlyRERFRYmO\nHTsKc3NzUaFCBeHu7i6io6OFEEL4+voKKysrUbVqVVG2bFlx/PhxIYRI8hleuHChKFKkiChdurTo\n2rWroQ04JCRE2Nj1D2ISAAAgAElEQVTYiJIlSwobGxvRp08fQxtwamXl5TbgkydPipo1awobGxtR\nuHBhMWvWrFTfp6enp+jUqZPhcXx8vGjXrp2wsrISZcqUEW3atBFPnjxJ9joHB4dk5X/IkCFCCCEW\nLVok8ufPLypXrixq1qwpAgICDK+Ljo4WpqamYv369YZtr7uOZcqUERcvXjTs+7rviuXLlxvi9vb2\nFpUrV37j8bMzRYgPoS939vTs2TOioqIM1cUvS0hIICoqKtkd4X///UehQoXQ6V5fefHw4UMsLCze\nqSr3yZMn5M6dm3z58iV7LiwsLFncUVFRKIqCiYlJsv2joqLInz9/su0JCQlERES8sVpckt6nqKgo\ngBQ/ow8fPqRo0aKpvjY+Pp6YmBjMzMzS/NrXlZWXhYeHY2ZmRq5c6W8tjImJIS4uDnNz83S/FvT9\nVR4/fpyusvm66/jqfq++/9u3b3Pr1i1cXFwA8Pf3Z/HixYbag/QcP7vIEgn4RQiy3U+SJClnio6O\npkqVKvTv3598+fLxww8/sGDBAtzd3bUO7b3J1Dbg8PBwunXrRokSJRg4cKBhcgV/f38mT56cmaFI\nkiRJWYiJiQknTpzA2toaExMTtm/f/kEnX8jkBLxhwwaaNGnC7du3KVWqFB9//HGyzgeSJElSzlSi\nRAl69erF0KFDqVatmtbhvHeZOgzpxo0beHl5kS9fPiZOnMikSZPo168fbdu2fafjrly58sOYlkz6\nYJiYmNClSxetw8gWZPmVsprMKr+ZegfcqVMnBg4cyLFjxwD9KjnFixfnq6++eutjrlq1KsnYMUnK\nCnx9fdmxY4fWYWR5qZVfRVHe2NEwJ7C4eYtG3y/D+Gmk1qEkJQQlz1+k6u69b943G8qs8pupd8CO\njo74+fklGRM6e/ZsateubVicIL2EEPTu3Zs+ffpkUJQfvsTERA4cOECJEiXkqi7vyaNHjz74u7rE\nxERiY2Pf2JP3dVIrvw8fPuTRo0evHcOaU4hxn1MhKgrlNT2xtSISE3F4PskGgLh7F6V0aQ0jyhiZ\nVX4z/Sdm+fLlqV27dpJt3bt35+OPP37t6xISEnj69Gmyv6ioKNmOnE5ffPEFjx8/Zs6cOZw7dw7Q\nt8/36dOHli1bJpkBR5JeWLhwoWF1rSVLllC5cmXs7Ozo1atXuqY6TAtzc3PDbGs5nWJikiT5isDj\niJAQDSP6H+Wl5AsgVq0l8fMvEBcuahRR9pIlpqL09fVFCMGoUaNS3efIkSPMmTMn2fazZ89StWrV\nN85vnJWFh4cTGBiIk5NTimMJM9oXX3xBXFwcu3fvBvTTY/7yyy/MnTuXyMhIGjZsyK5du3Bycnrv\nsUjZx927dylXrhxRUVEsXbqUM2fOYGpqyqRJk1i8eDEjRozIsHMZGxtjbGycYcf7oBQvhvrJCJSW\nrii9eqJkoTGxymej4be9qN/MhPLWGE2dpHVIWVqWSMADBgx44z7Ozs44Ozsn2+7t7Z2tqvq2bdvG\n1atXsbS0pFu3bsTExNC3b1+GDBmCl5cXmzZtMsybmlHEs2cQGan/i4rGNCqKg0ePEHvzJk+3bOXJ\nvv3MrVeP0vMXoZv0FZs2beLPP/+UCVhKUWRkJLVq1TJM8ODu7s7mzZsz9Bzx8fHEx8e/U/X2h0op\nVw7dquWIZctRvf4Pnb8fyltM1PE+KDodStvWiNYt4XDAm1+Qw2WJfzVTU1OtQ8gUEydO5OjRo4wY\nMYJRo0Zx6NAh5syZw6JFiyhdujRLly4lIiKCwoULG14j4uKeJ84oiIzS/zcqChEZlWy7iHq+7aX9\niIoG4zyQPz+YmoKpKVvu3qGTfR0K1KnHxsBAqhcqSHAuI8o4O6P6fMpdlyYZ/iNAyv4sLS0ZOXIk\nFSpU4NKlS4SEhBAWFsagQYMMk/JnlMePH8s24NdQzMxQRg5DdPgIEhIgiyTgFxSdDpwbJ9mmbtkG\nRkYobVqh5M6tUWRZS9b6V/uAhYaGsnbtWq5fv47Y9yetJk/l+zlzCJ8+i5JmZszYuweHhHgKjP+K\nxJcTq04H+U0MyZP8JpA/P8qL/zc1BcsykN8EXf78zxPt82T7/LHySm/SqJUr+ezCBcLDw/ls/rfk\nzp0ba2trZhctQvPr1zl+LohZAYc0ulJSVjVkyBCGDBlCcHAwQUFB5M+fn9DQUFatWpXhYzbNzc1l\nFXQaKOXLJ3msrl6LUsMOpWYNjSJKndLIEXXR94gVK1E+ckPp0yvZd1NOk6kJeM6cOezfvz/F53r0\n6EH37t0zM5xMlZCQoF/e7/gJ1BZu6ObPRUEhvmABJgedoUStGgzs1v15os1vuGN9H1VLvXv3Ji4u\nLknP8/DwcH799VceNG/K7Lv3MclC7UpS1mJlZWVYUatQoUL4+vry22+/vbYPx759+5gyZUqy7dev\nX6dOnTrJekHLNuC3o9jX1re/limNrm8flCqVtQ7JQClaFKNJXyHu3kX8sgUePIBSpbQOS1OZmoC9\nvLzw8/Nj1KhRyXpCv26y8w9ByZIlKZM3Lzf6D8L0wO/8HHCYH+6HUKN+PVYs+JamTZtydMF8ZsyY\nkSm9P18d9lWwYEF69eoFQGKf/ohTp1Hq2Kf0UklKIi19OFxcXAyT7L8stT4csg347SjVqurbh/f8\njvr1FHTfL0QpWFDrsJJQSpdGGTY0yb+7uHcPbt6CRk45ak2ATE3AxYsXZ82aNXz55Zf06NEjM0+d\nJUw1MWdZQXP+WrSQihUrcuHCBczMzAgODtY6tCSUHp6oa9dhJBOwlAbvow+HbAN+e4qREUrb1iS2\ncOHQgQMUt7SkSpUqiMhIfdNVFpEk0RYogOq/Cb77AaVDO5ROHVDecm6I7CRXXFwcd+/exdraOlNO\nWLVqVTZt2pQp58pKxIaN6HQKgw/uxyeL/8JTmjdD/PQz4spVFBv5BShlPtkGnD63b99m165dKIqC\nl5cXZmZmfPHll9SpU4ddf/xBkyZNaG1ZlsQlP6Lz9EBxctQ65CSU/PkxWjgPceMGYsuviE1bULp1\n1Tqs9y5XSEgI06ZN46effsLT0xNVVVPdedGiRRQrViwTw/swiOs3EOv90S37PltUryhGRiieXVDX\n+MlxfJJBZvbhkG3AaXfnzh28vLwYNGgQDx48wNzcnJCQEPr160elSpUwMzPjwoULtGnTBl2Xzqir\n/WDZcnTTJmW5WauUihVRxozUj/54ibrvTxQnR5S8eTWK7P1IUgW9aNGi146plYump5+IjUWd8g3K\nsKFZciq51ChtWyNWrUEEB6M873Aj5WyZ2YdDtgGn3dSpU5k4cSItWrQA9N/Ta9euZezYsVy+fJnF\nixfj5+cHgNK4EUaNGyHOX4Cw/yCLJeAXklU/nzqDOm8BiqsLSnt3lEyqsX3fkvQBt7CwoGjRohQs\nWJCQkBCKFi2Kn58f/v7+WFhYyMnR34L47gcUWxt0zZpqHUq6KHnyoHzcCbF2vdahSFnEiz4cmzdv\npmrVqkn+MjoBP378mDt37mToMT9UZmZmSeYOKFWqFLGxsQQFBTF58mTWrl2brJ1esauebKiS+s1M\nxOUrmRJzeunGjkK3ajlYFEGdNE3rcDJMihl12rRp+Pv7s3XrVjZv3syZM2dYuXJlZseW7YmjxxDH\nT6AM/0TrUN6K0qEd4lgg4t9/tQ5FyiIyqw+HnAs67VxdXfn666+5dOkSJ0+eZObMmXh4eNCrVy9U\nVWXo0KGGO+DXsrVBnT6LxP6DECdOvv/A00kpXBhdz+4Y/fxjku3i4iXExUsaRfVuUuwFffToUXbs\n2EH//v0ZM2YM5cqVY/ny5ZkdW7YmHj1Cne2LbuoklHz5tA7nrSgmJijt3BHrN6IMG6p1OFI6BAYG\nUr9+fXbu3MnJkyf59NNPKVSokNZhpZlsA0671q1bk5iYyKRJkyhSpAgTJ07ExsbGsNBKWuk6toeO\n7RGnTus7YNar+54izmBmpqgTp0BiIkrrligfd8o2PahTvAO2srJi3rx5HDhwACcnJ+bNm6efREJK\nM3XGbJR27ihVbbUO5Z0oHp0Rf+xDhIdrHYqURvv372fEiBGEhobi4+NDvnz5MnShhMwQHx9PdHS0\n1mFkG25ubmzYsIHFixfTpEmTdzqWUsceXY9uSbapPy5H3bZdP698FqOULYvRimXovvgcHvyLCDii\ndUhplmICnj17Nqqqsn79ehRFoX79+m9cLlD6H3XTFoiMQunVU+tQ3plSoABKC1fExpw3dCy7CggI\nYNq0aezYsQMPDw/Gjh3L3bt3tQ4rXWQbcNaiuDSDs+dQu/ZAnTYDEROjdUjJKFUqoxs5DKVp0h8g\n6tIfs2wVdZIq6BftvS/s3LmTnTt3AnDw4EGaNWuWudFlQ+L2bcSqNeiWfPfBzHOqeHqg9h+E6NEt\nSy19JqWsfPnyrF27lnPnzrFgwQKWLl1KxYoVtQ4rXeQ44KxFsbZG+eoLRFQU4s+/4PFjKFECAKGq\nWeq7LtlQz1KlUH3nQ0wMSvuP0HXJOjeTSRJwiRIlUp15pkCBApkSUHYm4uJQJ3+DMmQQyvMP54dA\nKVYMxbEhYuuvKK9UTUlZT7du3YiMjMTV1ZUGDRpw+vRppk+frnVY6SLbgLMmJX9+lI/ckm6MjiZx\n+GiU5k1RWrhkueGWOve24N4WcfMm4tjxJM+JuDhN24uTJGBHR0ccHR05evQoo0aN4vHjxwghiIuL\nY/jw4djby6kJX0cs/RHFuhy6li20DiXDKd27og4fjfDonG06OOQ0Z86cSbYu75dffgnoa7f69u2r\nRVhvRY4Dzj4UU1N0Iz5F7P0DdYAPSptW6Ab01zqsZJQKFVAqVEi68egxEnfs0v9waNzotR1mxZkg\nxI5d6L4cn2ExpVhvMGvWLCZMmICNjQ27du2iTZs2ODpmranLshpx4iTi4GGUkcO0DuW9UMqWherV\nEDt3ax2KlApzc3OqVKmS4p+lpaXW4aWLbAPOXpRqVdGN+BTdZn+UV+Y8EFeuIh4/1iawN3FujM69\nLSLgKGqX7ojjJ1LcTRw8hPrtQsSDjB2SmeIwpNjYWFxcXDhx4gR37txhxIgR/PDDD9SpUydDT/6h\nEBERqDNmo/vqiyw12XlG0/Xohvrl14h27ihGRlqHI72iQoUKVHj1F/5zCQkJmRzNu5FtwNmToihQ\n6ZX+BqGhqJ+NBysrlGZNUNzaZJlaNEVRoIkzRk2cEdHREBYGwPbt26lbty4fffSRfsdGTuiqV0P9\nMmOn5k0xATdr1ozhw4fTqVMn5s2bh7W1teadOPbv388333yTbPulS5ews7PTIKL/UWfO0Y8/y4KL\nYGckpUplsCyD+GMfSquWWocjpSIsLIxevXoRHByMqqokJCTg4ODA2rVrtQ4tzWQb8IdDcW6MzskR\nTp5CHDwM5y9AFlxpTTExgbJlAf3n7+XmD0WnI/VJmt9eigl45MiR/Pnnn7Ro0YLr16/z+PFjvLy8\n3sPp065p06Y0btw42faBAwdqEM3/qL/ugP8eoUz5WtM4MouuRzfU+YtAJuAsa+3atdjb2+Ps7Ezl\nypV58uQJj7NqFWAqZBvwh0UxMoL6Dij1HZI9l/jpSJSqNigNG2SZmxgjIyOMMqGWL8U2YCMjI8PE\n3j4+PowfPx4zM7P3HszrKIpCrly5kv3pdDrNVhgSd+4gflqB7stxOaZKVrGvDSYmiMMBWocipSI6\nOpqmTZvSsGFDLly4QJ8+fThw4IDWYaGqarK/1BZ/kW3AOYdu1DAwNUVdvITEHr21Did1+fKhuLXJ\n0EOmeAc8evRo9uzZY3hsZGTE0KFD6d8/6/Vs04pITNQPOfLuh1KmjNbhZCpdD0/UNeswauSkdShS\nClxcXBgxYgR+fn6MGDGCYsWKaV6du3//fqZOnZps++XLl6lRI/ldj2wDzjkUKyv9ims9uyfrrCXO\nBCEuX0FpWF/zFZCUfPlQ2rbO0GOmmIBfLG8F8OTJE+bMmUPVqlUz9MTZnfhpBRQvph9jlsMojZxg\n2XLE6TP6O2IpS3FwcGDGjBlYWFgwY8YM/vjjD83HATdr1izFiXy8vb1TvAuWbcA5k1KwYNIN5awg\n4AjqV5P1E2n0/z90H1DzV4oJOG/evOR9vvCxmZkZ3bt3Z926dXIo0nMi6Cxi7x/oli/VOhTNKD08\nUdeuw0gm4Cxnw4YNye42IyMjWbx4sUYRpZ9sA5YAlEKFUIb6wFAQd+9C6MMkz4uAI1CoULadcz/F\nBLxhwwYuXLgA6Icv7N27l9GjR2dqYFmViIxEnTYD3bixKObmWoejGcWlOWL5Sv2qKTYpz54maaNT\np060bauvmYmNjWXHjh2EPR9ekV08fvyYR48epTozn5TzKKVLQ+nSSbaJ+HiE73wIDYXatdAN8kbJ\nRstYppiAS5UqRXx8PAA6nY527drRsGHDTA0sq1Jn++rHsmXBbvSZSTEyQvHsgrrGD6OpGTs2Tno3\nuXPnJnfu3IC+Bqt37944Oztnqx/Rsg1YSgtd0ybQtAkiIgJx8hQ8eQovJWAReBwqV0LJoktxJknA\nEyZMYPv27Snu6OPjo/mQH62pv+2BOyEoE8ZpHUqWoLRtjVi1BhEcrO9EIWUJx48fN5RjVVW5cOFC\ntuvDIduApfRQChRAcWmebLs4GoiYOh2KFkWxr4UyeGCWGrGSLAF/9tlnLF68mCdPnuDj40NiYiLf\nfPMNrq6uWsWYJYh79xDfL0U3fy7K87uLnE7Jkwfl404Ivw0o48ZqHY70XMGCBZNU3TZq1AgXFxcN\nI0o/2QYsZQTd8E8Qw4bCjZuI02cgLg6ez/cs4uPh5CmoYffGVd7Epcuo3y6ExER0C3wN+4v791EH\nDdW3Qzd1RtenV7riS5KAX3S+OnjwICtXrsTCwgKAnj17smLFihSHEeQEIjERdeoMlD69UMqV0zqc\nLEXp0A7Vsyfi339RihfXOhwJqFy5MpUrV9Y6jHci24CljPJiekzl1SkyFQV1yzaY8g2ULYtS1x5d\n/5QXLFFnzUX3wyJEwBHE6rUogwYAIE4HoXT3ROny8VvNR5FiG7Cbmxu9e/emR48ePH36lOXLlzNn\nzpx0H/xDIVatAdP86Dq21zqULEcxMUFp545YvxFl2FCtw8nRtm3bxldffZXic/Xq1ePHH3/M5Ije\nnmwDlt43JVcujGZNRyQmwtVriEuXAVCnzYCgszwsX/5/O8fGouTNC7Y2qDt2/W970FnE38GIHbtQ\nunqke1hqignYx8eHUqVK8ccff2BiYsKCBQuoX79++t/hB0BcuIjYvhPdT0u0DiXLUjw6o/bojejd\nM/k4PinTuLm50bx5c06fPs23337LlClTKF26NGvXrsU8m/XYl23A6SeCg/U/hNu5o9jaaB1OtqEY\nGUFVW8NQJmX8Z7B7JwUKFEi+c3w8vFRdrYwbi06nQyQkoHbpDhmRgAE6dOhAhw4d0nWwD42Ijkad\nOh3d2FFZthddVqAUKIDSwhWxcROKdz+tw8mxcuXKhZmZGYGBgXh5eVG9enVAP9lFu3bt6NUrfe1T\nWpJtwOmnTpuJUqc26vRZACgtXfV/xYppHFn2oigKFDAnz8srNllYIM5fQPy+D8WxISIsDGJjEf6b\nEDXt9DcebzEjYpIE7O/vT4UKFbhy5Qrnzp1LsmOLFi3eS0es2NjYLPtLV3y7EKW+A0qDnHn3nx6K\npwfqAB9Ed883dmiQ3i9XV1e8vb158OABRYoUYf369TRvnryHaFYm24DTR/z7L4SGogzoj26gN+Ly\nFcTeP1C9B0N5a5RWLVCaOL92wXkpdboZUxErV0OxoujatkZcvgJPn6IM7K8fCWJigm7uzHQfN0kC\nLleuHEWKFKF8+fKGcYQvlMyAwc3R0dHMnDmTU6dOMWPGDIYOHUpwcDD16tVj5cqV5MtCHw71z/2I\nK1fR/fiD1qFkC0rx4igNGyC2/orSo5vW4eRo9vb2LFu2zDChTvfu3fHw8Mjw8yQmJhIbG/te7lJl\nG3D6iMNHUJwcDR2BFFsbFFsbxJBBcCwQdc/viEXf61ccatUC6thrtohNdqTkz4/iM+h/j1+q4n/R\nIettJFkNycHBgXLlylG3bl0qVapEly5duH//Pg8fPsyQcYTr168HYNy4cbRo0YL+/ftz+/ZtGjdu\nzNatW9/5+BlFhIYi5i9C99X4LLNwdHagdO+K2LQFERendSg50smTJ/H39+fYsWNs2LAB0E/EcfLk\nSZYsefc+DAsXLuTgwYMALFmyhMqVK2NnZ0evXr2IjY195+O/zNjYONu1W2tJHDqM0ij5VMFKrlwo\njZwwmvI1Or9VUNUW9aefUT26oS5ZhggO1iBa6YUU24CnTZtGbGwswcHBbN68mUqVKrFy5Ur69Onz\nTie7dOkSvXr1okaNGhQtWtQwt3STJk3YtGnTOx07owghUKdM13ctr1jxzS+QDJSyZaFaVcTO3Siy\nx3ims7CwQFVVihQpQp06dZI8VywD2gHv3r1LuXLliIqKYunSpZw5cwZTU1MmTZrE4sWLGTFixDuf\n4wXZBpx2IiICbtyEunVeu59ibq4vlx3bI/75R19FPfpzKFxY31bs2hwlpY5H0nuT4nrAR48eZfLk\nyWzZsoUxY8YwfPjwZG3Cb6Nbt254eXnRokUL6tSpw4ABA1ixYgU+Pj54enq+8/Ezgli7DnLnQtc1\n46vscgJdz+6I9f76rv1SpipXrhwODg5UqFABKysrunTpQv78+bl8+TI1a9bMsPNERkZSq1YtzM3N\n0el0uLu7ExoammHHB7kecHqII8dQ6tVN1wRBStmy6Pr3Refvh25gf7h+A7VHbxLHf4k4cFA/SYX0\n3qWYgK2srJg3bx4HDhzAycmJefPmZcgwpDp16nDgwAFmzJjB8uXLGTt2LMHBwfz444/Y2mq/moW4\neg2xaQu68Z9pHUq2pVSpDGVKI/7Yp3UoOdb+/fsZMWIEoaGh+Pj4kC9fvgy5O7W0tGTkyJH07t2b\n33//nZCQEIKCghg0aBCdO3fOgMj/x9zcPEP6neQE4nAApFD9nBaKoqDY10b3+Rh0v6xHadYEdftO\n1I89UX3nIy5eyuBopZelWAU9e/Zsvv/+e37++WcSEhKoX78+H3/8cYacsGDBgobqsZYtW9KyZdrW\ndrxx4wZ79+5Ntv3SpUsZUlBFTAzq5GnoRnyK8nwGMOnt6Hp0Q52/CD6gdTuzk4CAAKZNm8aOHTvw\n8PBg7NixtGjR4p2PO2TIEIYMGUJwcDBBQUHkz5+f0NBQVq1aRbVq1TIg8v+R44DTRsTEwJkglC8+\nf+djKXnzorRwhRauiIcPEb/vQ53tC/Hx+l7ULV1RSpTIgKilF1JMwHFxcZw9e5YFCxawYcMGNm7c\nSKdOnQxTU2Y0X19fhBCMGjUq1X2MjY0pWrRosu158+bFKAMm1xYLF6PUrIHi3Pidj5XTKfa1wcQE\ncTgApZGT1uHkOOXLl2ft2rWcO3eOBQsWsHTpUipmYH8GKysrrJ4vvlEojePjHz9+zD///JNs+6NH\nj1Js55VtwGkUeByqV0PJ4OukFC2K0t0Tunvqawb3/q6f87icFUrLFihNnTP8nDlRigl42bJleHl5\nYWFhQcmSJenevTv+/v74+Phk2Inj4+PR6XQYGRkxYMCbu3FbWlpiaWmZbPvevXsRQrxTLOLQYUTQ\nWTnbVQbS9fBEXbMOI5mAM123bt2IjIykefPm2NnZcerUKaZPn/7ezpeWH9C3bt1i5cqVybZfvXqV\n8i9P+fecHAecNuLwEZTGjd7rOZQqlVGqVEb4PB/StPcPxOIf9HMktGoBdeug6FJszcwybt++zfXr\n1wFo0KBBlulhn2ICvnz5MgMGDGD37t0AWFtbc+TIkXc+WUJCAp9//jlbtmwB9GsNGxsb4+npyWef\nadPuKv77D3Xut+hmfqOf61PKEEojJ1i2HHH6jP6OWMo0iqJw/fp1du7cSXR0NLt27aJ+/frUrVv3\nvZwvLT+g7e3tsbdPvoa2t7d3ij+g5TjgNxOJiYhjgegGv/041PRQjIzAyREjJ0dEZCTiz79Qf14N\nM+foe1C3bolibZ0psaTXrFmzcHR0xMjIiISEBAD27dtHQEAA+fPn59NPP00290VmSPFnS79+/fDw\n8ODChQusWrWKTz75JEOmsZs3bx4AV65c4ebNm1y/fp3Tp0/z4MED/Pz83vn4b0P9ZiZK5476zkNS\nhlJ6eKKuXad1GDnOkSNHUBSFyZMnA/Dtt98yd+7cDD1HfHw8ic97upuammJqapqhx5fjgNPgTBBY\nWaEULpzpp1ZMTdG1c8do8QJ08+dCnjyon08gsf8g1I2bEOHhmR7T69y/f5/w8HBKlixJ4cKF8ff3\np3fv3jRq1AgTExPc3NyIjIzM9LhSTMBNmzZlyZIluLq6UqBAAXbu3EmZt5jn8lX37t2jU6dOSX5p\n5MmTh3bt2mky5ED1/wXi4lF6ds/0c+cEiktzuHsPceWq1qHkKBcvXqRBgwaGmY5KliyZIRNlJCQk\nMHr0aCpUqICNjQ02NjZUr16dqVOnEp/Bw1bi4+OJjo7O0GN+aMShAJTG2jfxKGXKoOv3fxhtWItu\n6GC4/Tdqr74kjpuAuv+vLDExT/PmzenUqRPr1q0jKCiIOXPmcOzYMZo3b87gwYNp2LAhe/bsyfS4\nUqyCPn78OFWqVOGLL77I0JP17NkTHx8fOnfubGjPvXPnDqtXr2bfvswdtiJu3kSsXYdu6WI5Jdt7\nohgZoXh2QV3jh9HUSVqHk2N4enri7OxM9erVyZUrFxs3bnznSXQgaQ3Wix/RcXFxjBw5Ej8/P3r3\n7v3O53hBtgG/mTh0GN2ib7UOIwmlVk2UWjURw4bq+9bs3oPwna+fh7pVCxS76pkek6qqlC9fnjJl\nytCsWTOuXbuGlZVVkg5+iqK8c1+it5FiAp4yZQpff/11stl03lWdOnXYunUrO3bs4Pz586iqStmy\nZdm3b1+GzIIw9AIAACAASURBVNSTViIuDnXyNyifDpGLyL9nStvW+snKg4NRnvecld4vMzMzfv/9\ndzZv3kxwcDCffPJJiu2v6XXv3j08PDxSrME6fvz4Ox//ZbIN+PXEpctQoABKqVJah5IixdgYxdUF\nXF0Qjx7phzT5ztevq9vSVZ+MM2mct06n49ixYxw5coSYmBgmT55MREQEY8aMYeTIkQQFBTFp0iSe\nPn2aKfG8LMUE7OrqSq9evXB1dTW07bi4uGTIiiolS5bE29v7nY/zLsT3S1EqV0Lnkr1WiMmOlDx5\nUD7uhPDbgDJurNbh5Ai3bt1CVdU0dY5Kj8yswZLjgF9PHM4a1c9poRQujNLVA7p6IK7fQOzZi+rz\nKZQpo++41dT5va+g9qKZ5MWPR29vb4yMjPD19aV48eKEhIRkeD+GtEgxAdepUydZ9XNKY3CzIxF4\nHHHkKLoVy7QOJcdQOrRD9eyJ+PdfWeOQCV6MMnjdsKC3kZk1WHIc8OuJg4fRfT1B6zDSTalUEaVS\nRcTggXD8hH6Vpu+XoDjUQ2npCvXq6ntbvwev9nLu27cvffv2fS/nSqsUE3CjRu93XJlWxOPHqDPn\noJv0lRxEnokUExOUdu6I9RtRhg3VOpwPXoMGDejZsyfXrl0zTJ5jbW1N//793/nYmVWDJduAUyf+\n/hsSErL1YjGKkRE0bIBRwwb6IU37D6CuXQ+z5qK4NNNXUWfj95dWKSbgD5U6fRaKe1tNOgLkdIpH\nZ9QevRG9e6IULKh1OB+0YsWKMW3atCTbimezmgfZBpw6cfhIiksPZleKqSnKR27wkRvi3j39Kk1f\nTgITE317cQsXTYZaZYYck4DVLdvgyVOU3l5ah5IjKQUKoLRwRWzchOLdT+twPmiVKlWiUqVKWofx\nTmQbcOrEoYBkk2/ExMRw6tQpABo2bIgui89MlRqlVCmUPr2gTy/EufOIPb+j9u4Htjb69uJGTh/U\nGu1JEvCECRPYvn17ijv6+PgwcODATAkqo4ngYMTPq9B9v/C9tS9Ib6Z4eqAO8EF093zvnS6k7E22\nAadMPHwIDx5ADTvDtpiYGLp160bFihW5efMmwcHBHDlyJNv/gFFq2KHUsNMPaTocgNjzO2LeAhTn\nxvo745o1tA7xnSX5mTRhwgQOHz5M9+7dcXd3Z9euXWzfvp2GDRvi6uqqVYzvRCQkoE6ahjJ4AEqp\nUhk+XEJKO6V4cZSGDRBbf9U6FCmLk+sBp0wcCkBxckwy9/Lo0aNp164ds2fPZvPmzbi6urJ06VIN\no8xYSp486Jo3w2jmN+hW/gRWZVEXLibRsyfqipWIu3e1DvGtJbkDzps3L3nz5uXgwYOsXLnS0IGj\nZ8+erFixgqlTp2oSZHpFR0ezZcsW4uPj6fBvGGaWZVBdXZg+bRq//fYbhw4d0jrEHEvp3hV1+GiE\nR+dsX5V04cIFjh49irm5OR4eHppX+23bto2vvvoqxefq1avHjz/+mMkRvT3ZBpwycTgA3cedkmxL\nTEzEwcHB8Njd3Z3ffvsts0PLFErhwihdPoYuH+snU9rzO+onI6BUKf1dcfOmKBoMJ3pbKX5juLm5\n0bt3b/z8/FiyZAmjRo2iVatWmR3bW0lISMDW1pZr166R/+o19nw+jqttWxEaGkqjRo0yZEpN6e0p\nZctCtaqInbu1DuWdBAQE0Lp1a/Lly8fGjRtxcnLK8OkY08vNzY3Dhw+zYMECw5KEf/31F97e3jg7\nO2saW3rJuaCTE0+fwtVrUDfpBEm1atVizJgxqKpKfHw8K1asoGbNmhpFmXmUChXQ+QxC98t6dF7d\nIegsqmdPEidORhw9hng+V3lWlmIC9vHxwdvbm4MHD3Lt2jUWLFhA48bZY53cVatW4ebmxtejRtHp\nxm0qLlvCghUrKFWqFE2aNNFkujEpKV3P7oj1/tmigKRm6NCh/Pbbb/RwdOSXX36hQYMG7Ny5U9OY\ncuXKhZmZGYGBgXh5eVG9enUKFSqEt7c3a9eu1TS29JJzQScnAo7ol/57pebI29sba2tr6tatS8eO\nHalZsyZdunTRKMrMp+h0KPUd0H31BTp/PxSHeqjr/FE7d0VdtBhx7brWIaYqxV7QDx8+ZMOGDRw4\ncIANGzYwYcIE1q1bZ6iSzsqePXum/7UfHY3uh0UUi47m3q9btQ5LeolSpTKUKY34Yx9Kq5Zah/NW\nKpQsRYXtu1BjYzH6+kvKlSvHs2fPtA4L0M9k5+3tzYMHDyhSpAjr16/PkFnsMpMcB5ycOHwEpWny\nmgydTsd3332nQURZj2JiguLWBtzaIB480FdRT5oKefLoxxa3cEEpUkTrMA1SvANetmwZXl5edO7c\nmZIlS9K9e3f8/f0zO7a34uzszCeffMLpu3f5Nz6eJk2a0LRpU63Dkl6h69EN4bdB6zDeijhylMkh\n91myZAmPB/Tj8OHDDB8+PMskOXt7e5YtW0ZwcDAHDhyge/fumq23/bbMzc0pmUlzBWcHIjYWzgSh\nNKivdSjZhlKiBLreXhitXYlu1HC4ew/1/7xJHPM56u9/6K+pxlK8A758+TIDBgxg9259O521tTVH\njhzJ1MBeFRMTQ3gKa0xGR0cnmWLMzs6OHTt2MHr0aEqUKMG4ceOSzNyzfv36TIlXej3Fvjbky6ef\n07ZR9pjTVoSHo85fBDduUmX1zyz7eQXd/+//KFOmDBcvXsxSk13Y29tTq1Ytnj17liWG8gQHBxMQ\nEJBs+40bN3BwcODZs2fky5ePZ8+eERYWhoWFBebm5kkev/p8Tnpc5NYtjKvaEmNkRNidO5rHk+0e\nVyhPvlHDifbuS9ixQAofCiDf/P9v787DY7reAI5/72SRkITY94g1SOz7HsFPLbE1paQoVRpLhSq1\nK62taKmttNqQ0KqKUlq1iyWCithjaSyVEBEkss/5/TE1TDORbSaT5Xyex9POvXfOeedO7n3n3nPP\nOV8T7/k2Ua1bpdo+p2bI05uAhw8fjoeHB6BpU92+fbs2GZvKX3/9xYoVK1ItDwwMxMnJSWdZ8+bN\nOXjwYE6FJmWRyvNt1L5bMMsDCVi95w/E2nUoPbujTJuCYmGhnZ4vN5o0aRK//fYbEyZMYPv27cyZ\nM4cmTZqYLJ7k5GRiY2P1Lv/vVHBqtZrExESEECiKglqtTrW+oL1WnzqN0rZNroknr75WLCwQtWqi\natMaVWIiyl/n9G6fU5QbN26Izz77jG+//VZnxbVr19i6dStWVlZ4eHhQuXLlHAsqM0aMGIEQIk91\nsZBeShkyHNWHYzRXxLmQuH8f9eKl8DwO1ccTUKpWzdD7li5dSo0aNejZs6eRI0zt+PHj+Pv706xZ\nM6Kjo2nfvj0zZ85k8+bNOR5LetI6fh8+fCjbgP8lUlJQ934T1Q/f5tshGXOb7t2707x58zS79RmK\n3jbgtWvXkpSUxLRp05g4cSKPHj3iu+++M2ogUsGkDBqA2jf3JQahVqP+cSvqUWNQWrZAtWp5hpOv\nqV28eJEWLVpob6OVK1eOhFzQ3pUZsg34FeeCoVIlmXzzIb23oPfv38+aNWtYuHAhXbp04cmTJ3JU\nGskoFLeOiG+/R1y9pnk6OhcQ16+jXrQUbG1QrV2JUrasqUPKlAEDBtCuXTucnZ0xNzdn69atDB06\n1NRhZYocC/olEXA8z8z9K2VOmpMx+Pv7884773Dr1i15G0gyGsXMDGXAW6g3+WE2d7ZJYxGJiYjv\nfRB7/kAZNQJVHu0iZWtry59//skvv/xCWFgYY8eOpVGjRqYOK1PkWNAviaMBqL5aYuowJCNIMwGX\nLFmSvXv34unpib+/P82by8ffJeNQur+B2OiLCAtDcXAwSQwi+DzqRUtQatVEtWFdnp4y8dChQzx+\n/Jj33385Y87YsWP1PsSYW8l+wBri8hWwtUWpUMHUoUhGoLcN2M3NDXNzc6ysrPjpp5+oX7++bI+R\njEaxtER5s69J+gWL2FjUS75EPW8+qjEfoJo5LU8nX4BLly7x0UcfsWDBAu2yCxcumDCizJNtwBqa\nbnr5Z+5fSZfeBDxy5Eht+4tKpWLBggV5dipCKW9Qertrxm+NiMixOkXAMc1co2ZmqHy+Q2nZIsfq\nNrZly5YRFhbG8OHDSUxMNHU4mSbHgtYQR49pux9J+Y/OLeiffvqJatWqceXKFc6fP6+zYefOnfPs\nlIRS7qcULozSsztiy1aUD8cYtS4RFaUZUOPW36hmz0BxrmvU+kzBzMyM1atXs2jRInr06IG5eZqt\nTbmSbAMGcfs2xMej1Kxh6lAkI9E5KqtUqUKJEiWoWrWqzuhSgLwdJBmd4tEP9TvvIoZ4Gu02sHr3\n75oBNXr1RJn+Ccp//s7zgzp16lD83y4rH3/8MQ4ODuzfv9/EUWWObAN+cfUrn37Oz3QS8K+//srO\nnTv1bujl5UXduvnvSkHKPZRixVA6uSG2bkMZMdygZYt79zQDasQnoPryCxRHR4OWnxucPn2amzdv\nUrlyZXx9fXVmQGrcuPFr3pk1KSkpJCQkGOUqVc4HrOl+pHrfsMeBlLvotAFPnz6dgIAABg4cSI8e\nPdi9ezc7d+6kZcuW8vazlCOUAR6Inb8hDDQVnVCrUW/5CbXXOJQ2rVGtXpEvky9oei5UqVKFUqVK\n0bhxY51/hriSXLFiBUeOHAE0g/XUrFkTFxcXBg8ebPCBPgp6G7CIjIR796B+PVOHIhmRzhWwlZUV\nVlZWHDlyhB9++EE7/aCnpycbNmxg3rx5JglSKjiUMmVQWrZA+P+KMnBAtsoS16+jXrgEihXNkwNq\nZFZwcHCaQ+c1bdo027OC3bt3jypVqhAbG8s333zDX3/9hY2NDXPmzGHVqlV4e3tnq/xXFfQ2YHH0\nGEqrligqvc/JSgawfft2jh8/jlqtZtasWSb5waf32+3evTtDhgzBz8+PtWvXMnHiRP73v//ldGxS\nAaUM7I/4+RdEFp/eFYmJqNeuQz3pExSPvpgtXpDvky9ojtuAgACWL19O1apV8fX15dChQ4wYMUIz\nR7aBxMTE0KBBA+zs7FCpVPTo0YMHDx4YrHzQtAEX5NH3RIBs/zWmb775ho8++oj+/fvTtGlT+vTp\nQ3R0dI7HoffRyCZNmlC0aFGOHz9O4cKFWb58udEG4oiNjaVIkSJGKVvKmxQHB6hbB/HbHpQ+vTL1\nXnEuGPXipSi1nVB9vx6laFEjRZn7mJubY2trS2BgIO+88w7Ozs6AZsIDd3d3Bg8enK3yK1WqxIQJ\nE6hWrRqXLl3i7t27REZGMmrUKNauXWuIj6BVkNuARUwMXLkKTU03e1V+98MPP3Dy5ElKlSpFkyZN\nuHXrFgcOHKBv3745GofeBDx37lxmz57NoEGDDFrZkydPiIuL075Wq9V069aN33//HRsbG2xsbAxa\nn5R3qTwHop45B+HeA8XMLN3tRUwMYvU3iFNBqD7yRmneLAeizJ06derEiBEjCA8Pp0SJEmzZsoWO\nHTtmu9zRo0czevRowsLCOHfuHEWKFOHBgwf4+PgY/AHNgjwWtDh+Aho3QrG0NHUo+VaFChVISUnR\nvo6MjKRmzZwfi15vAu7UqRODBw+mU6dO2qTo5uaW7YN44cKFLF68mMaNG2vnAL1+/Tp9+vThvffe\nY/hw+cSfpKHUqgkVKyD2H0Dp0vm124ojR1F/9TVKu7aaATWsrXMoytypUaNGrFu3jh9//JELFy4w\ncOBA7fzehuDg4IDDv0OG2tvbG6zcVxXkNmBx9BhKOzn4hjH16tWLcePGMX78eM6ePcvatWv57LPP\ncjwOvQm4cePGTJs2TWdZqVKlsl3Z559/TsWKFTlw4AArVqygTJkyNG/enBMnTmS7bCn/UQ16WzNg\nRhoJWERFoV62HG7fQTV3Nkqd2jkcYe508+ZN7OzsWLhwYY7Ut3TpUoQQTJw40WBlFtR+wCIxEc6c\nRZn8kalDydcGDRpEiRIl8Pf3p3jx4ty+fRsrK6scj0NvAm7TJvWvr+TkZINU6OXlRceOHRk6dKi8\n4pVeS2nUEKyt/x0PV/eBFPVvexDfrEfp0wtl1nSUPDbSkzFt374dwKAJ8XVenfQhLefPn2fLli2p\nlgcFBVGlSpVUywtsG/CpIKjthCKb44yua9eudO3a1aQx6D1rnThxgokTJxIdHY0QgsTERMaPH8/Y\nsWMNUqmTkxO7du1i5syZlC9f3iBlSvlTdLeuXPIay9JqDpQpU4avp05DWfolJCah+moJip6Td0HX\nokULPD09uXbtmrYroaOjI++9957B6khKSkKlUmFmZpahZzcqVKhAz549Uy2/cOGC3ocwC2obsGbu\nX3n7uaDQm4AXLVrE9OnTWb9+PUuWLGHJkiW0amXYGTksLCyYP38+kLFbWPv372fu3Lmpll+9epX6\n9esbNDYpd4iLi6N0n15cbtmWdaO8WO3tzdUDXam94DPNla+imDrEXKl06dKp2rNeJOLsSE5OZsqU\nKdorbJVKRaFChRgwYACTJ09ONXztq0qUKEHLli1TLS9TpgxCiFTLC2IbsEhJQRw/gWrEMFOHIuUQ\nvQk4ISEBNzc3goKCuHPnDt7e3qxZs8Yow9lBxm5hubm54ebmlmr5iBEj9B7AUt538uRJxo0bR41+\nb5IydASf9HFnaPBZNvXtberQcjV7e3s2bdpEWFgYarWa5ORkmjVrRpcuXbJV7rJlywC4cuWKNtkm\nJiYyYcIE/Pz8GDJkSLZjf6FAtgEHn4eKFVFKlDB1JFIO0ZuAXV1dGT9+PH379mXZsmU4OjpSvXp1\ng1ac2VtYUsFjaWnJs2fPUNq0xsx/KzEOlTku73aky9fXl0aNGtGuXTtq1qzJ06dPDTLIwD///IOH\nh4fOla6lpSXu7u6cOnUq2+W/qiC2AYuA43Lu3wJGbwKeMGECBw4coHPnzoSGhhIdHc0777yT7cqy\ncwtLKnhatWrFokWLcHNzY9y4ccwcNJAZM2aYOqxc7/nz53To0AELCwsOHz7MzJkz6dOnD+PHj89W\nuZ6ennh5edGvXz8qVaoEwJ07d9i4caPBZ1sqiG3A4mgAqqWLTB2GlIP0JmAzMzM6d9Z0/fDy8jJY\nZTl5C0vK+xRFYceOHfj6+nLz5k2+/PJLXF1dTR1Wrufm5oa3tzd+fn54e3tTunRpgySzxo0b4+/v\nz65duwgJCUGtVlO5cmX2799P6dKlDRD5SwWtDVhcvQaFC6P8+8NGKhh0EvD06dNfOx3hyJEjs1VZ\nTt7CkvIPQ4/Ilt81a9aMBQsWULJkSRYsWMC+ffu0DzxmV7ly5RgxYgQA06ZNw87OzuDJFwpeG7A4\nGiDHfi6AUiXgyZMns2rVKp4+fYqXlxcpKSl8/vnnBpmOMCdvYUlSQda2bVsAunTpku2Hr0yhoLUB\ni4DjqKZMMnUYUhqEWg1HA8DeHqWey8vlSUmIg4cAUCpWzPRgQDqzIVlZWWFra8uRI0fw9vamQoUK\nVK5cWTsdYXa9uIVlb29PSEgIwcHB2NjYGOUWliQVNDt27KB+/fp6/xmyD/ALdevW1f6QNrSCNB+w\nuHsXYmNRnArG1X5eJBYvRVy/gXr5SsSpoJcrzocgfvwZIh9BTEymy9XbBvxiOsJBgwbx7Nkzvvvu\nO7744ossB/+qV29hSZJkON27d6djx46cPXuWL7/8krlz51KhQgV8fX2NkswGDhxo8DJfKEhtwOJI\nQKqR3iQTi4klKSlJ+1JcuIjZxg2Idm1R+2zCrFlTzfJzwVCmNDx7BrWdMl2N3gTs5eVF+fLl2bdv\nn9GnI5QkyTCMPR1hTipIbcAi4Diq9941dRgFnvr3PxAnAjVXtddCeezi/HJlQoLmv7Y2mmT7QuVK\nqJxqaeYgnzIds5VfZapOvQn49OnTfPHFFzx8+BAhBP7+/owdO9ZgQ1FKkmQ8xpqOMCcVlDZg8egR\n3L0L9euZOpQCRdy6BXZ2uoOehN1GadsaZdxolMGDdZtFzcw0Az7d+welcuWXy83NoX49FGtrxMo1\nmY5DbwL+9NNPmTVrFu3atUOlUv1bf/pzskqSZHrGno4wJxSUfsAi4DhKyxYZmvNayh5xKgj1b3s0\nI44VLYrq80911qtGpt00qgz2RP3hRLh3D9WarxFHAxCRj1DKlEbtPQnsi6GMynzTqt4EbGdnR/Xq\n1QvEASBJ+c3jx4+ZM2cOV69eRa1Ws2/fPn799Vc2btxo6tAyrKC0AYujAah6u5s6jHxHPHwI0U9Q\narwcwVH8cx+lTSuUD8egFC+eqfJUb/wP0dnt5axrpUrxYiR6VQtN86yiUul/82voTcDt2rWjXbt2\nvPHGGxT/N9BOnToZpCuSJEnGtWHDBho2bIifnx+WlpYAeW7iioLQBixiYuDSZfg89SQzUuaJiAjE\nlq2Is3/BkyeaW8mvJODs/tBJa8rTrCTeF/SW6OzsnOqp53LlymW5EkmSco6dnR3FixfXO81fXlEQ\n2oDFiZPQqCHKvz+SpIwTQkBYGDrTkd76G8qWQTVzKkq1aiaKLHP0JmB9Uw8mJycbPRhJkrKvQYMG\n9O7dmz179uDo6AhA1apVMzTrWG5RENqANXP/yu5HmaH+/Q8IOoMIOo3StAnKjKnadUqL5igt8lZv\nHb0J+MSJE0ycOJHo6GiEECQmJjJ+/Hj5FLQk5QHFihVjyZIlOsvy2kA3+b0NWCQmwukzKB95mzqU\nXEsIAWq19gE18ewZBJ2BZk1QjR6V6Xbc3EhvAl60aBHTp09n/fr1LFmyhCVLlui9KpYkKfepXr16\nqulDTX0H68iRI3oH8wkODqZOnTqpluf7NuCg0+BUC8XW1tSR5CoiLk5za/7YCcTpM6j8fODfphTF\n1lbnijc/0JuAExIScHNzIygoiDt37uDt7c2aNWto3LhxTscnSVImRUZGMnjwYMLCwlCr1SQnJ9Os\nWTN8fX1NFlOrVq301j9mzBi9XRzzexuwZu5fefv5v9SzPgUrK5TmzVCN+QAlDz/HkBF6E7Crqyvj\nx4+nb9++LFu2DEdHx1S/qCVJyp18fX1p1KgR7dq1o2bNmjx9+pTo6GiTxvRilK7/srS01Nxq/I/8\n3AYs1GrE8ROohhXc6VfF1WuIgGPgWAVVx5dTjKrmz8u1faLFX+cQu3ajMuBVuN4EXKJECerVq0fn\nzp0JDQ0lNDQUKysrg1WaFZcvX9Y7VWJwcDAVK1Y0QUSSlDs9f/6cDh06YGFhweHDh5k5cyZ9+vRh\n/Pjxpg4tw/J1G/D5EChXDqVUKVNHkuPEpcuoP/0MChVCadcGpVFDnfW5JvmmpOi8FEeOov72e7Cx\nMWg1Ogk4JCSEGTNmEBQURJMmTVi9ejUAf//9t8mvgIsVK4aLi0uq5QcOHMi3v5QlKSvc3Nzw9vbG\nz88Pb29vSpcuneeOkfzcBlyQ5v4VV6+h1Kr5coGlBaolC1EqVDBdUBlgce060a8+m9CmNSrnuqhn\nzDFoPToJ2MXFhU8//ZTly5czevRobduMra0tVV7tb2UC5cqV09sX+ZdfftF7C0uSCqpmzZqxYMEC\nSpYsyYIFC9i3bx/z5883dViZkp/bgMXRY6i+WGDqMIxGXLiI2H8QceQoSpPGKJ98rF2n5LKmTCEE\nnApCxMWh6tBeu7zDByOp5vRydiNFpcIYWSbVLeh69eqxfv167euYmBhsDHzZLUmS8QQEBFCmTBmK\nFClCly5d6NSpE3PnzmXWrFmmDi3D8msbsLgWqnnI6NUB/fMZ9co1KG1bo1q1HKVMGVOHo5eIiUF8\n+z3i0GGoWBHVB7p95NU5dCtcJwEnJiYyZswYOnTogIeHBz169CA0NJSaNWuyY8eOfHlASFJ+8fz5\nc4YPH86lS5ewsbGh1L9tjDExMdjb25s4uszJr23A4mgASpv80aVTPHyI2LsPpU5tlIYNtMvNVq8w\nYVQZFHodShRHtXYlSkb7yFtbo3R/w6Bh6CTgJUuWYGZmRq9evdi8eTNFixbl5s2bzJ49mw0bNjBq\n1CiDVi5JkuEULlyYefPmsWPHDsqWLYuzszPPnz/H3t7e5E1ImZVf24BFwHFUH080dRjZIq5fR71y\nDdy8heLaAWrkrtvKrxKxsZrb4QHHMFv0shlGadhA50dDRijW1ijduho0Pp1RpE+ePMnYsWMpUqQI\nu3fv5u233wagTZs2XLp0yaAVS5JkeDt37iQ8PJyBAwfy888/89Zbb9GnTx/u3btn6tAyxc7OLt+N\nPy/u3YOnT1FqO6W/cS4mbv2Nqm9vVL/8hGr8WJRc2kSpXrUG9QBPCD6P6u3+pg5HL50r4JIlS3L3\n7l2qVatGQECAti04JCQEBwcHkwQoSVLGHD9+nK1bt7JlyxbCwsLw8fHh6tWrBAYGMnXqVLZs2WLq\nEDMsP7YBi6PHUNq2MXUYGSZiYhC/74VLl1HNnKZdruqcO2fFE8+e6YwspjjXRXl3CIq1tQmjej2d\nK2AvLy/ee+89WrVqxdtvv42NjQ2rV69m1apVeW5Cb0kqaAIDAxk0aBCVKlViz5499OrVC2tra1q3\nbm2UO1gpKSk8f/7c4OWCpg3YWGWbiiYB543uR+ovlqEeOBhCr6MMGmDqcNIk4uJQ7/yNFK9xiGPH\nddYp7drm6uQLem5Bjx49ms6dO1O5cmW+/vprAgMD8fT05Ndff+XZs2emilOSpHS8uIMFsGvXLtzd\nNfOfXrhwwSB3sFasWMGRI0cAWLt2LTVr1sTFxYXBgweTkJCQ7fJfFR0dzZ07dwxapimJqCi4fRsa\n1Dd1KHoJtVp3QbWqqDZvRPXJx7l2aj9x/TrqtwYizpxFNWwIqq7/M3VImWYOaPvRlitXLlWf2p49\ne2r/X9+YrZIk5Q7u7u4sXLiQEydOkJiYSPv27dm3bx/jx49n0aJF2S7/3r17VKlShdjYWL755hv+\n+usvbGxsmDNnDqtWrcLb23Az++SGfsBJSUlcvnyZWrVqZSmW2NhYIiIi+Pbbbylx/CT1VGY0jI7G\nwsIC13j07AAAHUVJREFUOzu7DJcTFxdHXFwcxYoVIzw8nPLly2c6lrSIhw8R/r+iONWCV26Pq/r0\nMlgdhiJiYnTbm4sUQeX7A0om9mVuoypRogShoaEMHjyY8+fP8/z5c8qVK0fr1q3p16+fzr/81iVA\nkvKTokWLcvr0aRYvXsyBAwcwN9c84vHdd9/RrVs3g9UTExNDgwYNsLOzQ6VS0aNHDx48eGCw8kHT\nBpyZJGVoK1eupFGjRixZsoS2bdvy2WefZbqMHTt2ULt2bcqWLcvg6jW4Ua4sPXv2ZMOGDZkqZ9++\nfcyZM4fHjx/j5eWV5nbDhw/PcJkiNhb1ZwtQDx8JycnQtEmmYspJ4uIl1PMXoR48TGe5Uq5cnk6+\nAOZFixblyJEjhIWFcfPmTW7cuMGvv/7KjRs3eP78OdWqVaNq1arY2dkxbNiw9EuUJMlkrKysaNLk\n5cm0UyfDPTBTqVIlJkyYQLVq1bh06RJ3794lMjKSUaNGsXbtWoPVA6btB7x37158fHw4e/YsFhYW\nJCUl0aJFC/r164fTv6MjXbx4EUdHR534nj17xr1797TbXLt2jTp16jDmvfd4OHAwXRfPZ2n37tjb\n2zNp0iTCw8Np3rw5gwYN0ttP+/Hjx1y/fp2Uf8clLlasGMuWLQM000ueOnUKOzs7nJ2dCQ8P548/\n/uDmzZtUrVqV5ORkLly4QHx8PPXr18fa2pr79+9jZ2fHlStXKHbvHxydaqGa8CGKtTVXr16lUKFC\nOt3VHjx4QHJyskGvuDNLvfALxIWLKL3dUY1N+8dHXmUOoCgKVapUoUqVKnTs2FG7MiQkhB07drB1\n61ZSUlJkApakAmz06NGMHj2asLAwzp07R5EiRXjw4AE+Pj7UrVvXoHW92g9Y3L+PCDqjs15p1QKl\nZEmA9Ner1Yhdu8HaKkNP8O7Zs4exY8diYWEBgIWFBadPn0ZRFBITE3F1daVBgwaEhobi4eHBiBEj\n2LBhAz4+PtSpU4dr166xbds2FEVBURSu373L23dusT4mhvj4eBwdHXn48CEBAQGcPXuWNWvW4O/v\nrzPe/qFDhxg9ejQdO3Zk//79dO7cmUePHjFgwAACAwPp3LkzzZo1IywsjJIlS/LGG28QGxvL7t27\n+eCDD3B1daVp06bExMRw4sQJzq34mjm+m7h6/TouLi4cOHCAefPm0cvKikGDBpGYmIiVlRVly5Zl\n8eLFTJgwgaioKNRqNfb29nz11VfZ+j4zSjx+jPLKjxGlX29Ukz/KkbpNQe9sSAB//fUX/fv3Z/bs\n2Wzbto2yZcsatOKkpCRUKpVsV5akPMbBwUH7UJexRtjSaQOOiYUbN3U3aFDv5f+nt14IzXqbjM0t\ne/36dXr06KGzTFEUQNPPukuXLsyaNYu4uDiaNm3KiBEjWLNmDYcOHcLa2po5c+awfft2atasycOH\nD2nTpg2LFy/mvffew9vbm7Zt23LgwAH+/vtvJk+eTM+ePVPtx7lz57Ju3TpatWrF3LlziYyM1K5T\nq9XcunWLSZMm0aFDBy5fvkzjxo2xt7dnzJgxPH36lKlTp9K1a1dCfTbi5uvHo02bwUyFm5sb06dP\nZ/v27fz55584OjoSGhrKqVOnAPj++++JjIzk1KlT+Pv7AzB48GAePHhA6YyOGJUFIvAU6m3bURyr\noHww8uV+z2VjRxtamgm4Xr16vPvuu7Ru3dpgyTc5OZkpU6awfft2AFQqFYUKFWLAgAFMnjxZ+4tT\nkqS8Y+nSpQghmDjRcCM8vdoPWKlRHcV7XJrbprvezOy16/+rbt26hIaG4ubmpl125MgRSpUqxcGD\nB+nSpQsA1tbWWFpaEhISQnJyMtb/dnlp2LAhO3fupHPnzpiZmVGkSBH279/PrFmztA+1fvLJJyiK\nwsyZM/nhhx/YuHEjxYsX19Z3+/Zt7V2FRo0asXfvXu06lUrFjz/+yNdff83IkSMZOHAgjRs31q63\nsLDAx8eHhd7eOFtZI2yKwOefosyapd3OxsaGpKQk7t27R/36L5/MHjp0KLt27eLhw4fa6SuLFy/O\n33//bZQELGJjUb/vBXZ2KH17oXRyS/9N+YgqrRVmZmZ88sknBh2A40X7xZUrV7hx4wahoaGcPXuW\n8PBw/Pz8DFaPJEk55/3332fkyJGv3Wb//v106NAh1b/du3cTERGRantT9gN+8803+frrr4mOjgY0\nbbHDhg3D2tqaLl26cPjwYQCioqK4ffs2zs7OmJmZERUVBWhuH9euXRuA/v37s3fvXgIDA2nfXjPb\nzsGDBxkxYgQNGzakW7duDBo0iM2bN+vE4OLiou3ydfLkSZ11cXFx+Pv7s3HjRq5fv86GDRuIj4/X\nXqXv3bsXRVE4uG8f848e4XlSkrYd+cU2L7Rr145z584BmgukHj160KJFC4oUKcLGjRvZtGkTNWrU\noFKlSobZuYBISnr5IjER1dTJmK1egapzp1Tx5XdpXgEbwz///IOHh4fOla6lpSXu7u7aWyCSJOUt\nGZktzc3NTeeK8oUffvhB73SiphwLukmTJkyZMoXOnTtjbW1NXFwcs2fPpkqVKpQrV44dO3bQo0cP\nbt26xfr161EUhdmzZzNgwADUajXW1tbMmzePXbt2AVC9enWGDRvGxIkTWbduHa6urpw/f55x48ZR\np04dtm7dmurJ6C+++II+ffrg4+ODpaUlJf9tzwbNlbcQgm7dupGUlISnpyeFQq9TQ2i6ovn4+DB/\n/nzemTKFhIQEqlevru0f/l82NjZ4enryxhtvIISgf//+lCxZkqFDh9K1a1cKFSqEo6OjQYYFFTdv\nIn7ahtKjGzhrru4Ve3vIYxOFGJIicnAy3TNnzuDl5UW/fv20v6ju3LnDxo0b2b9/f5ZucYwYMQIh\nhM4UipJkakuXLqVGjRo6/ejzui+++IKDBw/qXTdo0CAGDhyY6TJfJOChQ4fqLE9ISCAhIcGkXZFA\n82Sz7SvDG74QFxeHlZVVqiu22NhYihTJWFszwNOnT1/7GePj47GystK7LikpiaRHjyi0ai1cC0U1\nehSJzZpqb90/efKEokWLZiiO5ORkAG3XNdC0NSclJWW7P7aIikK9aAlcv4Hy1psob/ZFUaV58zVX\nyKnjN0evgBs3boy/vz+7du0iJCQEtVpN5cqVs5x8JUnKOe+88w5+fn5MnDiRhg0b6qx7MfWhoeSW\nsaD1JV9A2977X5lJvkC6PzDSSr6gaes12/kbuDijzJiKYmHBq3sso8kXdBPvCy+e0cm2S5dROnZA\n+exTFPnQrY4cTcCgGW1rxIgRmX5fTEwM9+/fT7X8yZMnr/0jlSTJMMqUKcOmTZuYMWMGgwYNMmpd\n+XU+YENT3hmEksvOf+qDh1C5dtC+Vtq0pmC17GZcjidgfTLyFOXly5dZt25dquWhoaE6T/FJkmQ8\nderUYdu2bUavJ7/OB5wd4uZN1F9+jdnypdpluSn5qv/ch9joB/bF4JUELKUtVyTg999/P91tmjZt\nStOmTVMtT+shDkmS8q7cMBZ0biHUasQ36xF/7kd5P+PDTeYk9ZIvEXfuoPrIG6Wei6nDyTNMloBf\nHYgjI09RSpKUu0ybNo3atWvj6elp8LJzSxtwbiAOHIRHUai+X68z321uovTrjeqVYSyljMnRR9GS\nk5P56KOPqFatGk5OTjg5OeHs7My8efNIerVvmCRJBVp+nA84M16dHlCpXw/VtCm5JvmKU0GkTJ2h\ns0yRyTdLcvQK+NWBOF70BU5MTGTChAn4+fkxZMiQLJX74MEDfvzxx2zHd+HCBcLDww16RZ6SksLD\nhw8NPpTn3bt3qVixokHLjI6OxtzcvEB//ho1alDNAPOfRkZGUqNGDQNElXvVrVuXChUqZLscfcfv\n48ePiYqK4uHDh9ku/3UiIiIoUaKE3qeADenevXsZ3ldlIh+BohBRonj6G7/CGMfvq+xiYnA9fY7k\nx9Gca92cewacfvK/4uPjiYmJ0en/bAwRERG4urqmeho9p47fPD8Qh6enJ2vXruXx48fZji8oKIiY\nmBiDntjj4+M5e/YsrVq1MliZAIcPH9aZOMMQQkNDsbKyMuioN3nt88fFxekMCZhVNWrUMOgUgLlR\nVvr9/ldax+/58+c5dOgQ9erVS+OdhhEYGIizs3Omuw9lhlqt5siRI3To0CHdbRW14IEQpJipQE+v\nj9cxxvH7qgi1mms1q7L/4EE6piRnOr7MePToEXfv3jX6A7anTp2iWrVqqX4c5djxK3LQ6dOnRbNm\nzcTChQuFn5+f8PPzEwsXLhTOzs4iIiIiJ0PRa/ny5WLbtm0GLTM8PFz079/foGUKIUT79u0NXuaK\nFSvEzz//bNAyIyIixFtvvWXQMoUwzuf/+uuvxdatWw1erpR5x44dE1OnTjV6PUOGDBF///23UetI\nSEgQXbp0MWodQhjn+NXHGMfef504cUJMmTLF6PW8++674ubNm0avJy052gb8YiAOe3t7QkJCCA4O\nxsbGRg7EIUmSJBU4eWYgDkmSJEnKT3L3gJySJEmSlE/JBCxJkiRJJmA2e/bs2aYOIrewsbHBwcGB\nYsWKGaxMMzMzypQpg6Ojo8HKBChZsiQ1a9Y0aJny89tQuXJl7Avw9Gi5RaFChShfvjzly5c3aj32\n9vZUq1YNS0tLo9WhKAqlSpUyercWYxy/+hjj2PsvS0tLypcvb5Bubq/z4vs31aAvOTodoSRJkiRJ\nGvIWtCRJkiSZgEzAkiRJkmQCMgFLkiRJkgnIBCxJkiRJJiATsCRJkiSZgEzAkiRJkmQCBToBP3r0\niJSUFL3rkpOTiY+P1/4ztaSkJB49eqR3XWJiojbOxMTEHI7spfT2mVqt1lmvfmXOU1OIiopKc3/l\ntu8/v4uKinrtnOBqtdogUxNGRESQXs/L+9mc5ef58+c8e/YszfVCCIPM3pbePnv27Fm251TO6H7P\n7j573Wcx5Hkjve//decEozDZNBAmlJycLNzd3cVbb70lGjZsKE6ePJlqm1GjRgknJyfRqFEj0ahR\nIxETE2OCSF/68MMPxciRI/Wuq1u3rjbOgQMH5nBkL6W3z7Zs2SIqVqyoXX/48GETRSrE8OHDRc+e\nPUXr1q3F5s2bU63Pbd9/fvbOO++Irl27CkdHRxEQEJBq/cmTJ0W9evVEhw4dhIeHh1Cr1ZmuIzo6\nWjRv3lx0795d1K9fP83Z11avXi26deuW6fJfWLlypWjVqpWoW7eu+PLLL1Ot37Ztm2jfvr3w8PAQ\n7u7uIj4+Pkv1pLfPpk+fLtzd3UXLli3FqlWrslRHRvf79u3bRa1atbJUhxDpfxZDnDcy8v2nd04w\nhgKZgI8ePSrmz58vhBBiz549YsCAAam2admypXj06FFOh6bX3r17Rf369fUm4NjYWNGgQQMTRJVa\nevtsypQpBp/uMSsOHDig/c6fPn2qd9q73PT952e///67GDZsmBBCiNDQUNG6detU27Rq1Uo7ZaCn\np6fYu3dvpuuZMmWK8PHxEUIIsX79er3f+fDhw0Xr1q2znIAfP34sXFxchFqtFklJSaJu3boiOjpa\nZ5tX/64mTZokNm3alOl60ttn0dHR2h/iz549ExUrVszKx8nQfr9//77o2LFjlhNwRr5/Q5w30vv+\nM3JOMIYCeQu6TZs2TJkyhStXrvDtt9/i6uqqs16tVnPnzh2WL1/OmDFjCAkJMVGkmtvkixYtIq0R\nQ0NCQrC2tmb06NHMnTuXiIiInA3wXxnZZ+fOnSMoKIghQ4bw+++/myBKjcOHD9OsWTNmzpzJ5s2b\nmT59us763PT953fBwcG0atUKgOrVq3Pv3r1U2zx69AgHBwdAc+yeOXMmW/WkVca7777LN998k+my\nX7h27Rr169dHURTMzc1xcXHh8uXLOtscP36c4sWLA3Dz5k0sLCwyXU96+6xo0aL4+vry4MEDli1b\nRtu2bbP0eTKy3728vFi6dGmWyoeMff+GOG+k9/2nd04wlgKZgF/YsWMHd+7cwdraWmd5VFQUbdu2\nxcPDg969e9O7d2/i4uJMEuOYMWNYuHBhqhhfSEhIoEWLFnz88ceUKFGCIUOG5HCEGhnZZ5UrV6Z9\n+/ZMnDiR2bNnc/LkSZPEGh4ezoYNG2jRogXh4eGppsfMTd9/fhceHk7RokW1ry0sLHTa3J8+fYq5\n+ctZU21tbYmOjs5WPWmV0bp160yXm1Ydr6sH4PPPPyc2NpY333wz2/X8d5+9cPToUY4fP07p0qXT\nbff+r4zs9xUrVtCxY0ecnJwy+QleyshnMcR5I73vP71zgrEU6AQ8efJk/vzzTyZPnkxycrJ2ecmS\nJfHz86Nu3bp06tSJ1q1bc+DAgRyPb8+ePZw/fx5/f398fHwICgpK9QuwXbt2LF26FAcHB7y8vLhy\n5QpPnz7N8Vgzss/Wrl1L165dqVevHu+//z7btm3L8TgBihUrxoABA+jWrRszZszg+PHjOg9e5Jbv\nvyAoUaKEzt+rmZkZVlZW2te2trapEnJWJmh4tZ6slpGZOl5Xz/Tp0zlz5gz+/v6oVJk/Bae3z17o\n168fe/bs4ezZswQFBWWqjvT2e1RUlPaO25w5c4iMjGT16tVG+SyGOG+k9/2nd04wlgKZgLds2cLU\nqVMBiI2NpWzZsjq/9m7fvk2nTp0AzROLwcHBNGnSJMfjrFevHosXL6ZFixY4OTlRpkwZ7S2hF378\n8UemTZsGvPyVZ2dnl+OxprfP1Go1rVu3JjIyEoAzZ87QvHnzHI8ToHnz5oSGhgKa22xqtVpnNpzc\n8v0XBM2aNePQoUMAXL58OdWJUVEUypYty40bNwA4dOgQDRo0yFY9WS0jPXXr1iU4OJjExEQSEhK4\nePEiVatW1dlm5syZPHz4kK1bt2Z5Bp709tnt27fp0KGD9nVsbCyVKlXKVB3p7Xdra2u+//57WrZs\nSbNmzbC2tsbFxcXgn8VQ5430vv/0zglGkyMtzblMQkKC8PDwEL179xadO3cWf/zxhxBC8+Tr2rVr\nhRCapwi7desm6tevL+bMmWPKcIUQmocVXjyEdf/+fVGuXDkhhBDx8fGib9++olevXqJGjRrit99+\nM1mM+vbZ5s2bxdtvvy2EEOLnn38WHTt2FK6ursLd3V3ExcWZJM6UlBTh6ekpunXrJlxcXMTOnTuF\nELn7+8/PPvroI/G///1P1KtXTwQHBwshdP9uAgMDRZcuXUS7du3E6NGjs1RHRESE6N+/v+jcubNo\n166d9ql2JycncfXqVe12Fy9ezNZT0D4+PsLNzU00btxYfP/99zqf5f79+8Lc3FzUqFFDODk5CScn\nJ/HVV19lqR59++zVv99Zs2aJ7t27iy5duoilS5dmqQ59+/3Vc88L8fHx2XoKOr3v3xDnjfS+/7TO\nCcZWoKcjjI2NpUiRImmuT0xMRAhhsrkiMyMmJobChQtn6ZaWIWVknz179gxbW9scjCrtOAoXLoyZ\nmZne9Xnp+8/r4uLi0nzOITPbGKKe7EpOTkYIkaUHrDIjvc+SkJCAubl5mn/fhqrHEDJShyHOG+nV\nk945wdAKdAKWJEmSJFMpkG3AkiRJkmRqMgFLkiRJkgnIBCxJkiRJJiATsCRJkiSZgEzAkiRJkmQC\nMgFLkiRJkgnIBCxJkiRJJiATsCRJkiSZgEzAkiRJkmQCMgFLkiRJkgnIBCxJkiRJJiATsCRJkiSZ\ngEzAkiRJkmQCMgFLkiRJkgmYmzoA6fUePHhAbGyszrJKlSrx5MkTChcunOV5OoUQ/PPPP1SoUCFL\n74+MjMTGxgYrK6ssvV+SCrr4+HiePn1K6dKlTR2KZCLyCjiXGzVqFAMGDGD06NHaf48ePWLZsmUE\nBgYSERHB1KlTATh8+DAbN27MULkxMTF069Yty3FNmTKFY8eOZfn9klTQHT16FC8vL1OHIZmQTMB5\nwPz589m9e7f2X5kyZRgzZgxNmjTh7NmzBAYG8s8///DHH39w6dIlnj17Bmh+YV+5ckWnrISEBAID\nA4mJiUlVT3h4uPa9ADdv3iQlJYXk5GTOnTvHyZMniYuL03nPkydPePjwIQBqtZqbN29q1+mr/86d\nOxw9epTHjx9nb6dIUj7232MnrWMTIDQ0lOfPn2vX3b9/n6ioKM6dO4cQgpiYGE6cOEFwcDBCCO12\nYWFhhIeHExUVxZMnT7TL/1ueZDzyFnQe8OTJEyIjIwGwsrLCxsaGTz/9lJ49e3L8+HHu3r1LYGAg\nZ86cQQjB3bt3OXv2LFu2bMHR0ZHQ0FB++eUXnj59SqdOnXB1deWvv/5KVc/evXu5ePEiCxcu5MmT\nJ/Tq1Ytz587h6upK06ZNdQ7kF3bu3MnVq1eZO3cusbGx9OrVi5CQEHx9fVPVf+TIEebOnYubmxsf\nfPAB/v7+VK9ePcf2oyTlBfqOHX3HZlBQEL1798bR0ZHr16/Tv39/hgwZwqxZs7hw4QIlSpRg7ty5\nDB8+nDfeeINTp05RvXp1Vq1axbx58zhw4AA1a9YkKCiIcePG0b9/fzw8PFKVJxmPTMB5wKxZsyhW\nrBgAPXr04OOPP9au8/Dw4MKFC/Tp04c7d+4ghKB27doMHz4cX19fbG1tWblyJbt37+bSpUu8/fbb\nTJ06laNHjzJmzBidet58800WLFjA/Pnz2bp1KwMGDCA2NpapU6fStWtXbty4QceOHTN09bpy5cpU\n9f/999/UqFGDIUOGMHjwYOzt7Q27oyQpH9B37Og7Nvfs2UOtWrWYMmUKycnJeHh4aBPmkCFDGDly\nJKGhoaxbtw4XFxeOHj3Khx9+SGJiIl999RX379/H3Nwcd3d3gNeWJxmHTMB5wJdffknHjh0zvP2z\nZ8+4dOkSM2bM0C6rUqUKYWFh9OzZE4CGDRumel/hwoVp1aoVhw8fxtfXFx8fHywsLPDx8WHRokW4\nuLgghNDe+vovtVr92vrHjh3L0qVLeeutt0hJSWHjxo0UL148w59LkvK7tI4dfcfmV199xalTpxg/\nfjwADg4O2tvUVapU0b5/0qRJWFhY4OLiQkpKCpGRkTg4OGBurjn9u7i4AHDs2DG95dna2ubERy+Q\nZBtwHmdmZqZNiC/+39bWlrp167Jo0SI2bdpEjx49cHBwoF69ehw5cgSAwMBAveUNGzaMpUuXUqhQ\nISpVqsTevXtRFIWDBw/y2WefERsbq5OAra2tefDgAQAhISEAada/Y8cO2rZty+nTpxk0aBCbN282\n5q6RpDwnrWMHUh+bnTp1wtnZmU2bNrFmzRrKlStHkSJFAFCpNKf2VatW0b9/f37//Xd69+5NSkoK\n5cuXJyUlhYiICJKTk9m/fz/Aa8uTjENeAedxlSpVIiQkhHnz5tG+fXs8PT2pVasWs2fPZvjw4Vhb\nWxMfH8/WrVtp2bIlffr0oWvXrjg5OaEoSqryWrVqRWhoKLNmzQKgffv2zJ8/H09PTxISEqhevTp3\n797Vbu/q6sqcOXPo3r07pUqV0nZL0lf/P//8w/DhwyldujR37txhw4YNObOTJCmX2rt3L7Vr19a+\n9vf313vsQOpjs1OnTmzfvh13d3diYmIYOnSoNvG+0LdvXyZNmkRAQACWlpYkJyeTnJzMypUref/9\n97G0tKRIkSJYW1tnqDzJsBTx6mNxUp6kVqtJSUnBwsKCpKQkzMzMtAfO8+fPKVy4sM72cXFxme4/\n/OTJE4oWLZrp9frqf/r0KXZ2dpmqX5IKGn3Hjj7x8fEUKlRI7w9q0Jwfnj9/jo2NjXbZmjVrGDly\nJIqi8Oabb/LJJ5/QuHHjDJUnGY68As4HVCqVNuFaWFjorNN3AGdl8I7XJd/XrddXv0y+kpS+jCRf\nIN3BcFQqlU7yBU2S7datG0IIHBwcdJ4JkYPr5Bx5BSxJklQApaSkkJKSgqWlpalDKbBkApYkSZIk\nE5At7JIkSZJkAjIBS5IkSZIJyAQsSZIkSSYgE7AkSZIkmYBMwJIkSZJkAjIBS5IkSZIJyAQsSZIk\nSSYgE7AkSZIkmYBMwJIkSZJkAjIBS5IkSZIJyAQsSZIkSSbwf/WrCZmGNOguAAAAAElFTkSuQmCC\n" |
|
555 | 556 | } |
|
556 | 557 | ], |
|
557 | 558 | "prompt_number": 16 |
|
558 | 559 | }, |
|
559 | 560 | { |
|
560 | 561 | "cell_type": "heading", |
|
561 | 562 | "level": 2, |
|
562 | 563 | "metadata": {}, |
|
563 | 564 | "source": [ |
|
564 | 565 | "Passing data back and forth" |
|
565 | 566 | ] |
|
566 | 567 | }, |
|
567 | 568 | { |
|
568 | 569 | "cell_type": "markdown", |
|
569 | 570 | "metadata": {}, |
|
570 | 571 | "source": [ |
|
571 | 572 | "Currently, data is passed through RMagics.pyconverter when going from python to R and RMagics.Rconverter when \n", |
|
572 | 573 | "going from R to python. These currently default to numpy.ndarray. Future work will involve writing better converters, most likely involving integration with http://pandas.sourceforge.net.\n", |
|
573 | 574 | "\n", |
|
574 | 575 | "Passing ndarrays into R seems to require a copy, though once an object is returned to python, this object is NOT copied, and it is possible to change its values.\n" |
|
575 | 576 | ] |
|
576 | 577 | }, |
|
577 | 578 | { |
|
578 | 579 | "cell_type": "code", |
|
579 | 580 | "collapsed": true, |
|
580 | 581 | "input": [ |
|
581 | 582 | "seq1 = np.arange(10)" |
|
582 | 583 | ], |
|
583 | 584 | "language": "python", |
|
584 | 585 | "metadata": {}, |
|
585 | 586 | "outputs": [], |
|
586 | 587 | "prompt_number": 17 |
|
587 | 588 | }, |
|
588 | 589 | { |
|
589 | 590 | "cell_type": "code", |
|
590 | 591 | "collapsed": false, |
|
591 | 592 | "input": [ |
|
592 | 593 | "%%R -i seq1 -o seq2\n", |
|
593 | 594 | "seq2 = rep(seq1, 2)\n", |
|
594 | 595 | "print(seq2)" |
|
595 | 596 | ], |
|
596 | 597 | "language": "python", |
|
597 | 598 | "metadata": {}, |
|
598 | 599 | "outputs": [ |
|
599 | 600 | { |
|
600 | 601 | "output_type": "display_data", |
|
601 | 602 | "text": [ |
|
602 | 603 | " [1] 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9\n" |
|
603 | 604 | ] |
|
604 | 605 | } |
|
605 | 606 | ], |
|
606 | 607 | "prompt_number": 18 |
|
607 | 608 | }, |
|
608 | 609 | { |
|
609 | 610 | "cell_type": "code", |
|
610 | 611 | "collapsed": false, |
|
611 | 612 | "input": [ |
|
612 | 613 | "seq2[::2] = 0\n", |
|
613 | 614 | "seq2" |
|
614 | 615 | ], |
|
615 | 616 | "language": "python", |
|
616 | 617 | "metadata": {}, |
|
617 | 618 | "outputs": [ |
|
618 | 619 | { |
|
619 | 620 | "output_type": "pyout", |
|
620 | 621 | "prompt_number": 19, |
|
621 | 622 | "text": [ |
|
622 | 623 | "array([0, 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, 1, 0, 3, 0, 5, 0, 7, 0, 9], dtype=int32)" |
|
623 | 624 | ] |
|
624 | 625 | } |
|
625 | 626 | ], |
|
626 | 627 | "prompt_number": 19 |
|
627 | 628 | }, |
|
628 | 629 | { |
|
629 | 630 | "cell_type": "code", |
|
630 | 631 | "collapsed": false, |
|
631 | 632 | "input": [ |
|
632 | 633 | "%%R\n", |
|
633 | 634 | "print(seq2)" |
|
634 | 635 | ], |
|
635 | 636 | "language": "python", |
|
636 | 637 | "metadata": {}, |
|
637 | 638 | "outputs": [ |
|
638 | 639 | { |
|
639 | 640 | "output_type": "display_data", |
|
640 | 641 | "text": [ |
|
641 | 642 | " [1] 0 1 0 3 0 5 0 7 0 9 0 1 0 3 0 5 0 7 0 9\n" |
|
642 | 643 | ] |
|
643 | 644 | } |
|
644 | 645 | ], |
|
645 | 646 | "prompt_number": 20 |
|
646 | 647 | }, |
|
647 | 648 | { |
|
648 | 649 | "cell_type": "markdown", |
|
649 | 650 | "metadata": {}, |
|
650 | 651 | "source": [ |
|
651 | 652 | "Once the array data has been passed to R, modifring its contents does not modify R's copy of the data." |
|
652 | 653 | ] |
|
653 | 654 | }, |
|
654 | 655 | { |
|
655 | 656 | "cell_type": "code", |
|
656 | 657 | "collapsed": false, |
|
657 | 658 | "input": [ |
|
658 | 659 | "seq1[0] = 200\n", |
|
659 | 660 | "%R print(seq1)" |
|
660 | 661 | ], |
|
661 | 662 | "language": "python", |
|
662 | 663 | "metadata": {}, |
|
663 | 664 | "outputs": [ |
|
664 | 665 | { |
|
665 | 666 | "output_type": "display_data", |
|
666 | 667 | "text": [ |
|
667 | 668 | " [1] 0 1 2 3 4 5 6 7 8 9\n" |
|
668 | 669 | ] |
|
669 | 670 | } |
|
670 | 671 | ], |
|
671 | 672 | "prompt_number": 21 |
|
672 | 673 | }, |
|
673 | 674 | { |
|
674 | 675 | "cell_type": "markdown", |
|
675 | 676 | "metadata": {}, |
|
676 | 677 | "source": [ |
|
677 | 678 | "But, if we pass data as both input and output, then the value of \"data\" in user_ns will be overwritten and the\n", |
|
678 | 679 | "new array will be a view of the data in R's copy." |
|
679 | 680 | ] |
|
680 | 681 | }, |
|
681 | 682 | { |
|
682 | 683 | "cell_type": "code", |
|
683 | 684 | "collapsed": false, |
|
684 | 685 | "input": [ |
|
685 |
"print |
|
|
686 | "print(seq1)\n", | |
|
686 | 687 | "%R -i seq1 -o seq1\n", |
|
687 |
"print |
|
|
688 | "print(seq1)\n", | |
|
688 | 689 | "seq1[0] = 200\n", |
|
689 | 690 | "%R print(seq1)\n", |
|
690 | 691 | "seq1_view = %R seq1\n", |
|
691 | 692 | "assert(id(seq1_view.data) == id(seq1.data))" |
|
692 | 693 | ], |
|
693 | 694 | "language": "python", |
|
694 | 695 | "metadata": {}, |
|
695 | 696 | "outputs": [ |
|
696 | 697 | { |
|
697 | 698 | "output_type": "stream", |
|
698 | 699 | "stream": "stdout", |
|
699 | 700 | "text": [ |
|
700 | 701 | "[200 1 2 3 4 5 6 7 8 9]\n", |
|
701 | 702 | "[200 1 2 3 4 5 6 7 8 9]\n" |
|
702 | 703 | ] |
|
703 | 704 | }, |
|
704 | 705 | { |
|
705 | 706 | "output_type": "display_data", |
|
706 | 707 | "text": [ |
|
707 | 708 | " [1] 200 1 2 3 4 5 6 7 8 9\n" |
|
708 | 709 | ] |
|
709 | 710 | } |
|
710 | 711 | ], |
|
711 | 712 | "prompt_number": 22 |
|
712 | 713 | }, |
|
713 | 714 | { |
|
714 | 715 | "cell_type": "heading", |
|
715 | 716 | "level": 2, |
|
716 | 717 | "metadata": {}, |
|
717 | 718 | "source": [ |
|
718 | 719 | "Exception handling\n" |
|
719 | 720 | ] |
|
720 | 721 | }, |
|
721 | 722 | { |
|
722 | 723 | "cell_type": "markdown", |
|
723 | 724 | "metadata": {}, |
|
724 | 725 | "source": [ |
|
725 | 726 | "Exceptions are handled by passing back rpy2's exception and the line that triggered it." |
|
726 | 727 | ] |
|
727 | 728 | }, |
|
728 | 729 | { |
|
729 | 730 | "cell_type": "code", |
|
730 | 731 | "collapsed": false, |
|
731 | 732 | "input": [ |
|
732 | 733 | "try:\n", |
|
733 | 734 | " %R -n nosuchvar\n", |
|
734 | 735 | "except Exception as e:\n", |
|
735 |
" print |
|
|
736 | " print(e)\n", | |
|
736 | 737 | " pass" |
|
737 | 738 | ], |
|
738 | 739 | "language": "python", |
|
739 | 740 | "metadata": {}, |
|
740 | 741 | "outputs": [ |
|
741 | 742 | { |
|
742 | 743 | "output_type": "stream", |
|
743 | 744 | "stream": "stdout", |
|
744 | 745 | "text": [ |
|
745 | 746 | "parsing and evaluating line \"nosuchvar\".\n", |
|
746 | 747 | "R error message: \"Error in eval(expr, envir, enclos) : object 'nosuchvar' not found\n", |
|
747 | 748 | "\"\n", |
|
748 | 749 | " R stdout:\"Error in eval(expr, envir, enclos) : object 'nosuchvar' not found\n", |
|
749 | 750 | "\"\n", |
|
750 | 751 | "\n" |
|
751 | 752 | ] |
|
752 | 753 | } |
|
753 | 754 | ], |
|
754 | 755 | "prompt_number": 23 |
|
755 | 756 | }, |
|
756 | 757 | { |
|
757 | 758 | "cell_type": "heading", |
|
758 | 759 | "level": 2, |
|
759 | 760 | "metadata": {}, |
|
760 | 761 | "source": [ |
|
761 | 762 | "Structured arrays and data frames\n" |
|
762 | 763 | ] |
|
763 | 764 | }, |
|
764 | 765 | { |
|
765 | 766 | "cell_type": "markdown", |
|
766 | 767 | "metadata": {}, |
|
767 | 768 | "source": [ |
|
768 | 769 | "In R, data frames play an important role as they allow array-like objects of mixed type with column names (and row names). In bumpy, the closest analogy is a structured array with named fields. In future work, it would be nice to use pandas to return full-fledged DataFrames from rpy2. In the mean time, structured arrays can be passed back and forth with the -d flag to %R, %Rpull, and %Rget" |
|
769 | 770 | ] |
|
770 | 771 | }, |
|
771 | 772 | { |
|
772 | 773 | "cell_type": "code", |
|
773 | 774 | "collapsed": true, |
|
774 | 775 | "input": [ |
|
775 | 776 | "datapy= np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c')],\n", |
|
776 | 777 | " dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])\n" |
|
777 | 778 | ], |
|
778 | 779 | "language": "python", |
|
779 | 780 | "metadata": {}, |
|
780 | 781 | "outputs": [], |
|
781 | 782 | "prompt_number": 24 |
|
782 | 783 | }, |
|
783 | 784 | { |
|
784 | 785 | "cell_type": "code", |
|
785 | 786 | "collapsed": true, |
|
786 | 787 | "input": [ |
|
787 | 788 | "%%R -i datapy -d datar\n", |
|
788 | 789 | "datar = datapy" |
|
789 | 790 | ], |
|
790 | 791 | "language": "python", |
|
791 | 792 | "metadata": {}, |
|
792 | 793 | "outputs": [], |
|
793 | 794 | "prompt_number": 25 |
|
794 | 795 | }, |
|
795 | 796 | { |
|
796 | 797 | "cell_type": "code", |
|
797 | 798 | "collapsed": false, |
|
798 | 799 | "input": [ |
|
799 | 800 | "datar" |
|
800 | 801 | ], |
|
801 | 802 | "language": "python", |
|
802 | 803 | "metadata": {}, |
|
803 | 804 | "outputs": [ |
|
804 | 805 | { |
|
805 | 806 | "output_type": "pyout", |
|
806 | 807 | "prompt_number": 26, |
|
807 | 808 | "text": [ |
|
808 | 809 | "array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c')], \n", |
|
809 | 810 | " dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])" |
|
810 | 811 | ] |
|
811 | 812 | } |
|
812 | 813 | ], |
|
813 | 814 | "prompt_number": 26 |
|
814 | 815 | }, |
|
815 | 816 | { |
|
816 | 817 | "cell_type": "code", |
|
817 | 818 | "collapsed": false, |
|
818 | 819 | "input": [ |
|
819 | 820 | "%R datar2 = datapy\n", |
|
820 | 821 | "%Rpull -d datar2\n", |
|
821 | 822 | "datar2" |
|
822 | 823 | ], |
|
823 | 824 | "language": "python", |
|
824 | 825 | "metadata": {}, |
|
825 | 826 | "outputs": [ |
|
826 | 827 | { |
|
827 | 828 | "output_type": "pyout", |
|
828 | 829 | "prompt_number": 27, |
|
829 | 830 | "text": [ |
|
830 | 831 | "array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c')], \n", |
|
831 | 832 | " dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])" |
|
832 | 833 | ] |
|
833 | 834 | } |
|
834 | 835 | ], |
|
835 | 836 | "prompt_number": 27 |
|
836 | 837 | }, |
|
837 | 838 | { |
|
838 | 839 | "cell_type": "code", |
|
839 | 840 | "collapsed": false, |
|
840 | 841 | "input": [ |
|
841 | 842 | "%Rget -d datar2" |
|
842 | 843 | ], |
|
843 | 844 | "language": "python", |
|
844 | 845 | "metadata": {}, |
|
845 | 846 | "outputs": [ |
|
846 | 847 | { |
|
847 | 848 | "output_type": "pyout", |
|
848 | 849 | "prompt_number": 28, |
|
849 | 850 | "text": [ |
|
850 | 851 | "array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c')], \n", |
|
851 | 852 | " dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])" |
|
852 | 853 | ] |
|
853 | 854 | } |
|
854 | 855 | ], |
|
855 | 856 | "prompt_number": 28 |
|
856 | 857 | }, |
|
857 | 858 | { |
|
858 | 859 | "cell_type": "markdown", |
|
859 | 860 | "metadata": {}, |
|
860 | 861 | "source": [ |
|
861 | 862 | "For arrays without names, the -d argument has no effect because the R object has no colnames or names." |
|
862 | 863 | ] |
|
863 | 864 | }, |
|
864 | 865 | { |
|
865 | 866 | "cell_type": "code", |
|
866 | 867 | "collapsed": false, |
|
867 | 868 | "input": [ |
|
868 | 869 | "Z = np.arange(6)\n", |
|
869 | 870 | "%R -i Z\n", |
|
870 | 871 | "%Rget -d Z" |
|
871 | 872 | ], |
|
872 | 873 | "language": "python", |
|
873 | 874 | "metadata": {}, |
|
874 | 875 | "outputs": [ |
|
875 | 876 | { |
|
876 | 877 | "output_type": "pyout", |
|
877 | 878 | "prompt_number": 29, |
|
878 | 879 | "text": [ |
|
879 | 880 | "array([0, 1, 2, 3, 4, 5], dtype=int32)" |
|
880 | 881 | ] |
|
881 | 882 | } |
|
882 | 883 | ], |
|
883 | 884 | "prompt_number": 29 |
|
884 | 885 | }, |
|
885 | 886 | { |
|
886 | 887 | "cell_type": "markdown", |
|
887 | 888 | "metadata": {}, |
|
888 | 889 | "source": [ |
|
889 | 890 | "For mixed-type data frames in R, if the -d flag is not used, then an array of a single type is returned and\n", |
|
890 | 891 | "its value is transposed. This would be nice to fix, but it seems something that should be fixed at the rpy2 level (See: https://bitbucket.org/lgautier/rpy2/issue/44/numpyrecarray-as-dataframe)" |
|
891 | 892 | ] |
|
892 | 893 | }, |
|
893 | 894 | { |
|
894 | 895 | "cell_type": "code", |
|
895 | 896 | "collapsed": false, |
|
896 | 897 | "input": [ |
|
897 | 898 | "%Rget datar2" |
|
898 | 899 | ], |
|
899 | 900 | "language": "python", |
|
900 | 901 | "metadata": {}, |
|
901 | 902 | "outputs": [ |
|
902 | 903 | { |
|
903 | 904 | "output_type": "pyout", |
|
904 | 905 | "prompt_number": 30, |
|
905 | 906 | "text": [ |
|
906 | 907 | "array([['1', '2', '3'],\n", |
|
907 | 908 | " ['2', '3', '2'],\n", |
|
908 | 909 | " ['a', 'b', 'c']], \n", |
|
909 | 910 | " dtype='|S1')" |
|
910 | 911 | ] |
|
911 | 912 | } |
|
912 | 913 | ], |
|
913 | 914 | "prompt_number": 30 |
|
914 | 915 | }, |
|
915 | 916 | { |
|
916 | 917 | "cell_type": "code", |
|
917 | 918 | "collapsed": true, |
|
918 | 919 | "input": [], |
|
919 | 920 | "language": "python", |
|
920 | 921 | "metadata": {}, |
|
921 | 922 | "outputs": [], |
|
922 | 923 | "prompt_number": 30 |
|
923 | 924 | } |
|
924 | 925 | ], |
|
925 | 926 | "metadata": {} |
|
926 | 927 | } |
|
927 | 928 | ] |
|
928 | 929 | } No newline at end of file |
@@ -1,482 +1,482 | |||
|
1 | 1 | { |
|
2 | 2 | "metadata": { |
|
3 | 3 | "name": "Script Magics" |
|
4 | 4 | }, |
|
5 | 5 | "nbformat": 3, |
|
6 | 6 | "nbformat_minor": 0, |
|
7 | 7 | "worksheets": [ |
|
8 | 8 | { |
|
9 | 9 | "cells": [ |
|
10 | 10 | { |
|
11 | 11 | "cell_type": "heading", |
|
12 | 12 | "level": 1, |
|
13 | 13 | "metadata": {}, |
|
14 | 14 | "source": [ |
|
15 | 15 | "Running Scripts from IPython" |
|
16 | 16 | ] |
|
17 | 17 | }, |
|
18 | 18 | { |
|
19 | 19 | "cell_type": "markdown", |
|
20 | 20 | "metadata": {}, |
|
21 | 21 | "source": [ |
|
22 | 22 | "IPython has a `%%script` cell magic, which lets you run a cell in\n", |
|
23 | 23 | "a subprocess of any interpreter on your system, such as: bash, ruby, perl, zsh, R, etc.\n", |
|
24 | 24 | "\n", |
|
25 | 25 | "It can even be a script of your own, which expects input on stdin." |
|
26 | 26 | ] |
|
27 | 27 | }, |
|
28 | 28 | { |
|
29 | 29 | "cell_type": "code", |
|
30 | 30 | "collapsed": false, |
|
31 | 31 | "input": [ |
|
32 | 32 | "import sys" |
|
33 | 33 | ], |
|
34 | 34 | "language": "python", |
|
35 | 35 | "metadata": {}, |
|
36 | 36 | "outputs": [], |
|
37 | 37 | "prompt_number": 1 |
|
38 | 38 | }, |
|
39 | 39 | { |
|
40 | 40 | "cell_type": "heading", |
|
41 | 41 | "level": 2, |
|
42 | 42 | "metadata": {}, |
|
43 | 43 | "source": [ |
|
44 | 44 | "Basic usage" |
|
45 | 45 | ] |
|
46 | 46 | }, |
|
47 | 47 | { |
|
48 | 48 | "cell_type": "markdown", |
|
49 | 49 | "metadata": {}, |
|
50 | 50 | "source": [ |
|
51 | 51 | "To use it, simply pass a path or shell command to the program you want to run on the `%%script` line,\n", |
|
52 | 52 | "and the rest of the cell will be run by that script, and stdout/err from the subprocess are captured and displayed." |
|
53 | 53 | ] |
|
54 | 54 | }, |
|
55 | 55 | { |
|
56 | 56 | "cell_type": "code", |
|
57 | 57 | "collapsed": false, |
|
58 | 58 | "input": [ |
|
59 | 59 | "%%script python\n", |
|
60 | 60 | "import sys\n", |
|
61 | 61 | "print 'hello from Python %s' % sys.version" |
|
62 | 62 | ], |
|
63 | 63 | "language": "python", |
|
64 | 64 | "metadata": {}, |
|
65 | 65 | "outputs": [ |
|
66 | 66 | { |
|
67 | 67 | "output_type": "stream", |
|
68 | 68 | "stream": "stdout", |
|
69 | 69 | "text": [ |
|
70 | 70 | "hello from Python 2.7.1 (r271:86832, Jul 31 2011, 19:30:53) \n", |
|
71 | 71 | "[GCC 4.2.1 (Based on Apple Inc. build 5658) (LLVM build 2335.15.00)]\n" |
|
72 | 72 | ] |
|
73 | 73 | } |
|
74 | 74 | ], |
|
75 | 75 | "prompt_number": 2 |
|
76 | 76 | }, |
|
77 | 77 | { |
|
78 | 78 | "cell_type": "code", |
|
79 | 79 | "collapsed": false, |
|
80 | 80 | "input": [ |
|
81 | 81 | "%%script python3\n", |
|
82 | 82 | "import sys\n", |
|
83 | 83 | "print('hello from Python: %s' % sys.version)" |
|
84 | 84 | ], |
|
85 | 85 | "language": "python", |
|
86 | 86 | "metadata": {}, |
|
87 | 87 | "outputs": [ |
|
88 | 88 | { |
|
89 | 89 | "output_type": "stream", |
|
90 | 90 | "stream": "stdout", |
|
91 | 91 | "text": [ |
|
92 | 92 | "hello from Python: 3.2.3 (v3.2.3:3d0686d90f55, Apr 10 2012, 11:25:50) \n", |
|
93 | 93 | "[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)]\n" |
|
94 | 94 | ] |
|
95 | 95 | } |
|
96 | 96 | ], |
|
97 | 97 | "prompt_number": 3 |
|
98 | 98 | }, |
|
99 | 99 | { |
|
100 | 100 | "cell_type": "markdown", |
|
101 | 101 | "metadata": {}, |
|
102 | 102 | "source": [ |
|
103 | 103 | "IPython also creates aliases for a few common interpreters, such as bash, ruby, perl, etc.\n", |
|
104 | 104 | "\n", |
|
105 | 105 | "These are all equivalent to `%%script <name>`" |
|
106 | 106 | ] |
|
107 | 107 | }, |
|
108 | 108 | { |
|
109 | 109 | "cell_type": "code", |
|
110 | 110 | "collapsed": false, |
|
111 | 111 | "input": [ |
|
112 | 112 | "%%ruby\n", |
|
113 | 113 | "puts \"Hello from Ruby #{RUBY_VERSION}\"" |
|
114 | 114 | ], |
|
115 | 115 | "language": "python", |
|
116 | 116 | "metadata": {}, |
|
117 | 117 | "outputs": [ |
|
118 | 118 | { |
|
119 | 119 | "output_type": "stream", |
|
120 | 120 | "stream": "stdout", |
|
121 | 121 | "text": [ |
|
122 | 122 | "Hello from Ruby 1.8.7\n" |
|
123 | 123 | ] |
|
124 | 124 | } |
|
125 | 125 | ], |
|
126 | 126 | "prompt_number": 4 |
|
127 | 127 | }, |
|
128 | 128 | { |
|
129 | 129 | "cell_type": "code", |
|
130 | 130 | "collapsed": false, |
|
131 | 131 | "input": [ |
|
132 | 132 | "%%bash\n", |
|
133 | 133 | "echo \"hello from $BASH\"" |
|
134 | 134 | ], |
|
135 | 135 | "language": "python", |
|
136 | 136 | "metadata": {}, |
|
137 | 137 | "outputs": [ |
|
138 | 138 | { |
|
139 | 139 | "output_type": "stream", |
|
140 | 140 | "stream": "stdout", |
|
141 | 141 | "text": [ |
|
142 | 142 | "hello from /usr/local/bin/bash\n" |
|
143 | 143 | ] |
|
144 | 144 | } |
|
145 | 145 | ], |
|
146 | 146 | "prompt_number": 5 |
|
147 | 147 | }, |
|
148 | 148 | { |
|
149 | 149 | "cell_type": "heading", |
|
150 | 150 | "level": 2, |
|
151 | 151 | "metadata": {}, |
|
152 | 152 | "source": [ |
|
153 | 153 | "Capturing output" |
|
154 | 154 | ] |
|
155 | 155 | }, |
|
156 | 156 | { |
|
157 | 157 | "cell_type": "markdown", |
|
158 | 158 | "metadata": {}, |
|
159 | 159 | "source": [ |
|
160 | 160 | "You can also capture stdout/err from these subprocesses into Python variables, instead of letting them go directly to stdout/err" |
|
161 | 161 | ] |
|
162 | 162 | }, |
|
163 | 163 | { |
|
164 | 164 | "cell_type": "code", |
|
165 | 165 | "collapsed": false, |
|
166 | 166 | "input": [ |
|
167 | 167 | "%%bash\n", |
|
168 | 168 | "echo \"hi, stdout\"\n", |
|
169 | 169 | "echo \"hello, stderr\" >&2\n" |
|
170 | 170 | ], |
|
171 | 171 | "language": "python", |
|
172 | 172 | "metadata": {}, |
|
173 | 173 | "outputs": [ |
|
174 | 174 | { |
|
175 | 175 | "output_type": "stream", |
|
176 | 176 | "stream": "stdout", |
|
177 | 177 | "text": [ |
|
178 | 178 | "hi, stdout\n" |
|
179 | 179 | ] |
|
180 | 180 | }, |
|
181 | 181 | { |
|
182 | 182 | "output_type": "stream", |
|
183 | 183 | "stream": "stderr", |
|
184 | 184 | "text": [ |
|
185 | 185 | "hello, stderr\n" |
|
186 | 186 | ] |
|
187 | 187 | } |
|
188 | 188 | ], |
|
189 | 189 | "prompt_number": 6 |
|
190 | 190 | }, |
|
191 | 191 | { |
|
192 | 192 | "cell_type": "code", |
|
193 | 193 | "collapsed": false, |
|
194 | 194 | "input": [ |
|
195 | 195 | "%%bash --out output --err error\n", |
|
196 | 196 | "echo \"hi, stdout\"\n", |
|
197 | 197 | "echo \"hello, stderr\" >&2" |
|
198 | 198 | ], |
|
199 | 199 | "language": "python", |
|
200 | 200 | "metadata": {}, |
|
201 | 201 | "outputs": [], |
|
202 | 202 | "prompt_number": 7 |
|
203 | 203 | }, |
|
204 | 204 | { |
|
205 | 205 | "cell_type": "code", |
|
206 | 206 | "collapsed": false, |
|
207 | 207 | "input": [ |
|
208 |
"print |
|
|
209 |
"print |
|
|
208 | "print(error)\n", | |
|
209 | "print(output)" | |
|
210 | 210 | ], |
|
211 | 211 | "language": "python", |
|
212 | 212 | "metadata": {}, |
|
213 | 213 | "outputs": [ |
|
214 | 214 | { |
|
215 | 215 | "output_type": "stream", |
|
216 | 216 | "stream": "stdout", |
|
217 | 217 | "text": [ |
|
218 | 218 | "hello, stderr\n", |
|
219 | 219 | "\n", |
|
220 | 220 | "hi, stdout\n", |
|
221 | 221 | "\n" |
|
222 | 222 | ] |
|
223 | 223 | } |
|
224 | 224 | ], |
|
225 | 225 | "prompt_number": 8 |
|
226 | 226 | }, |
|
227 | 227 | { |
|
228 | 228 | "cell_type": "heading", |
|
229 | 229 | "level": 2, |
|
230 | 230 | "metadata": {}, |
|
231 | 231 | "source": [ |
|
232 | 232 | "Background Scripts" |
|
233 | 233 | ] |
|
234 | 234 | }, |
|
235 | 235 | { |
|
236 | 236 | "cell_type": "markdown", |
|
237 | 237 | "metadata": {}, |
|
238 | 238 | "source": [ |
|
239 | 239 | "These scripts can be run in the background, by adding the `--bg` flag.\n", |
|
240 | 240 | "\n", |
|
241 | 241 | "When you do this, output is discarded unless you use the `--out/err`\n", |
|
242 | 242 | "flags to store output as above." |
|
243 | 243 | ] |
|
244 | 244 | }, |
|
245 | 245 | { |
|
246 | 246 | "cell_type": "code", |
|
247 | 247 | "collapsed": false, |
|
248 | 248 | "input": [ |
|
249 | 249 | "%%ruby --bg --out ruby_lines\n", |
|
250 | 250 | "for n in 1...10\n", |
|
251 | 251 | " sleep 1\n", |
|
252 | 252 | " puts \"line #{n}\"\n", |
|
253 | 253 | " STDOUT.flush\n", |
|
254 | 254 | "end" |
|
255 | 255 | ], |
|
256 | 256 | "language": "python", |
|
257 | 257 | "metadata": {}, |
|
258 | 258 | "outputs": [ |
|
259 | 259 | { |
|
260 | 260 | "output_type": "stream", |
|
261 | 261 | "stream": "stdout", |
|
262 | 262 | "text": [ |
|
263 | 263 | "Starting job # 0 in a separate thread.\n" |
|
264 | 264 | ] |
|
265 | 265 | } |
|
266 | 266 | ], |
|
267 | 267 | "prompt_number": 9 |
|
268 | 268 | }, |
|
269 | 269 | { |
|
270 | 270 | "cell_type": "markdown", |
|
271 | 271 | "metadata": {}, |
|
272 | 272 | "source": [ |
|
273 | 273 | "When you do store output of a background thread, these are the stdout/err *pipes*,\n", |
|
274 | 274 | "rather than the text of the output." |
|
275 | 275 | ] |
|
276 | 276 | }, |
|
277 | 277 | { |
|
278 | 278 | "cell_type": "code", |
|
279 | 279 | "collapsed": false, |
|
280 | 280 | "input": [ |
|
281 | 281 | "ruby_lines" |
|
282 | 282 | ], |
|
283 | 283 | "language": "python", |
|
284 | 284 | "metadata": {}, |
|
285 | 285 | "outputs": [ |
|
286 | 286 | { |
|
287 | 287 | "output_type": "pyout", |
|
288 | 288 | "prompt_number": 10, |
|
289 | 289 | "text": [ |
|
290 | 290 | "<open file '<fdopen>', mode 'rb' at 0x10a4be660>" |
|
291 | 291 | ] |
|
292 | 292 | } |
|
293 | 293 | ], |
|
294 | 294 | "prompt_number": 10 |
|
295 | 295 | }, |
|
296 | 296 | { |
|
297 | 297 | "cell_type": "code", |
|
298 | 298 | "collapsed": false, |
|
299 | 299 | "input": [ |
|
300 |
"print |
|
|
300 | "print(ruby_lines.read())" | |
|
301 | 301 | ], |
|
302 | 302 | "language": "python", |
|
303 | 303 | "metadata": {}, |
|
304 | 304 | "outputs": [ |
|
305 | 305 | { |
|
306 | 306 | "output_type": "stream", |
|
307 | 307 | "stream": "stdout", |
|
308 | 308 | "text": [ |
|
309 | 309 | "line 1\n", |
|
310 | 310 | "line 2\n", |
|
311 | 311 | "line 3\n", |
|
312 | 312 | "line 4\n", |
|
313 | 313 | "line 5\n", |
|
314 | 314 | "line 6\n", |
|
315 | 315 | "line 7\n", |
|
316 | 316 | "line 8\n", |
|
317 | 317 | "line 9\n", |
|
318 | 318 | "\n" |
|
319 | 319 | ] |
|
320 | 320 | } |
|
321 | 321 | ], |
|
322 | 322 | "prompt_number": 11 |
|
323 | 323 | }, |
|
324 | 324 | { |
|
325 | 325 | "cell_type": "heading", |
|
326 | 326 | "level": 2, |
|
327 | 327 | "metadata": {}, |
|
328 | 328 | "source": [ |
|
329 | 329 | "Arguments to subcommand" |
|
330 | 330 | ] |
|
331 | 331 | }, |
|
332 | 332 | { |
|
333 | 333 | "cell_type": "markdown", |
|
334 | 334 | "metadata": {}, |
|
335 | 335 | "source": [ |
|
336 | 336 | "You can pass arguments the subcommand as well,\n", |
|
337 | 337 | "such as this example instructing Python to use integer division from Python 3:" |
|
338 | 338 | ] |
|
339 | 339 | }, |
|
340 | 340 | { |
|
341 | 341 | "cell_type": "code", |
|
342 | 342 | "collapsed": false, |
|
343 | 343 | "input": [ |
|
344 | 344 | "%%script python -Qnew\n", |
|
345 | 345 | "print 1/3" |
|
346 | 346 | ], |
|
347 | 347 | "language": "python", |
|
348 | 348 | "metadata": {}, |
|
349 | 349 | "outputs": [ |
|
350 | 350 | { |
|
351 | 351 | "output_type": "stream", |
|
352 | 352 | "stream": "stdout", |
|
353 | 353 | "text": [ |
|
354 | 354 | "0.333333333333\n" |
|
355 | 355 | ] |
|
356 | 356 | } |
|
357 | 357 | ], |
|
358 | 358 | "prompt_number": 12 |
|
359 | 359 | }, |
|
360 | 360 | { |
|
361 | 361 | "cell_type": "markdown", |
|
362 | 362 | "metadata": {}, |
|
363 | 363 | "source": [ |
|
364 | 364 | "You can really specify *any* program for `%%script`,\n", |
|
365 | 365 | "for instance here is a 'program' that echos the lines of stdin, with delays between each line." |
|
366 | 366 | ] |
|
367 | 367 | }, |
|
368 | 368 | { |
|
369 | 369 | "cell_type": "code", |
|
370 | 370 | "collapsed": false, |
|
371 | 371 | "input": [ |
|
372 | 372 | "%%script --bg --out bashout bash -c \"while read line; do echo $line; sleep 1; done\"\n", |
|
373 | 373 | "line 1\n", |
|
374 | 374 | "line 2\n", |
|
375 | 375 | "line 3\n", |
|
376 | 376 | "line 4\n", |
|
377 | 377 | "line 5\n" |
|
378 | 378 | ], |
|
379 | 379 | "language": "python", |
|
380 | 380 | "metadata": {}, |
|
381 | 381 | "outputs": [ |
|
382 | 382 | { |
|
383 | 383 | "output_type": "stream", |
|
384 | 384 | "stream": "stdout", |
|
385 | 385 | "text": [ |
|
386 | 386 | "Starting job # 2 in a separate thread.\n" |
|
387 | 387 | ] |
|
388 | 388 | } |
|
389 | 389 | ], |
|
390 | 390 | "prompt_number": 13 |
|
391 | 391 | }, |
|
392 | 392 | { |
|
393 | 393 | "cell_type": "markdown", |
|
394 | 394 | "metadata": {}, |
|
395 | 395 | "source": [ |
|
396 | 396 | "Remember, since the output of a background script is just the stdout pipe,\n", |
|
397 | 397 | "you can read it as lines become available:" |
|
398 | 398 | ] |
|
399 | 399 | }, |
|
400 | 400 | { |
|
401 | 401 | "cell_type": "code", |
|
402 | 402 | "collapsed": false, |
|
403 | 403 | "input": [ |
|
404 | 404 | "import time\n", |
|
405 | 405 | "tic = time.time()\n", |
|
406 | 406 | "line = True\n", |
|
407 | 407 | "while True:\n", |
|
408 | 408 | " line = bashout.readline()\n", |
|
409 | 409 | " if not line:\n", |
|
410 | 410 | " break\n", |
|
411 | 411 | " sys.stdout.write(\"%.1fs: %s\" %(time.time()-tic, line))\n", |
|
412 | 412 | " sys.stdout.flush()\n" |
|
413 | 413 | ], |
|
414 | 414 | "language": "python", |
|
415 | 415 | "metadata": {}, |
|
416 | 416 | "outputs": [ |
|
417 | 417 | { |
|
418 | 418 | "output_type": "stream", |
|
419 | 419 | "stream": "stdout", |
|
420 | 420 | "text": [ |
|
421 | 421 | "0.0s: line 1\n" |
|
422 | 422 | ] |
|
423 | 423 | }, |
|
424 | 424 | { |
|
425 | 425 | "output_type": "stream", |
|
426 | 426 | "stream": "stdout", |
|
427 | 427 | "text": [ |
|
428 | 428 | "1.0s: line 2\n" |
|
429 | 429 | ] |
|
430 | 430 | }, |
|
431 | 431 | { |
|
432 | 432 | "output_type": "stream", |
|
433 | 433 | "stream": "stdout", |
|
434 | 434 | "text": [ |
|
435 | 435 | "2.0s: line 3\n" |
|
436 | 436 | ] |
|
437 | 437 | }, |
|
438 | 438 | { |
|
439 | 439 | "output_type": "stream", |
|
440 | 440 | "stream": "stdout", |
|
441 | 441 | "text": [ |
|
442 | 442 | "3.0s: line 4\n" |
|
443 | 443 | ] |
|
444 | 444 | }, |
|
445 | 445 | { |
|
446 | 446 | "output_type": "stream", |
|
447 | 447 | "stream": "stdout", |
|
448 | 448 | "text": [ |
|
449 | 449 | "4.0s: line 5\n" |
|
450 | 450 | ] |
|
451 | 451 | } |
|
452 | 452 | ], |
|
453 | 453 | "prompt_number": 14 |
|
454 | 454 | }, |
|
455 | 455 | { |
|
456 | 456 | "cell_type": "heading", |
|
457 | 457 | "level": 2, |
|
458 | 458 | "metadata": {}, |
|
459 | 459 | "source": [ |
|
460 | 460 | "Configuring the default ScriptMagics" |
|
461 | 461 | ] |
|
462 | 462 | }, |
|
463 | 463 | { |
|
464 | 464 | "cell_type": "markdown", |
|
465 | 465 | "metadata": {}, |
|
466 | 466 | "source": [ |
|
467 | 467 | "The list of aliased script magics is configurable.\n", |
|
468 | 468 | "\n", |
|
469 | 469 | "The default is to pick from a few common interpreters, and use them if found, but you can specify your own in ipython_config.py:\n", |
|
470 | 470 | "\n", |
|
471 | 471 | " c.ScriptMagics.scripts = ['R', 'pypy', 'myprogram']\n", |
|
472 | 472 | "\n", |
|
473 | 473 | "And if any of these programs do not apear on your default PATH, then you would also need to specify their location with:\n", |
|
474 | 474 | "\n", |
|
475 | 475 | " c.ScriptMagics.script_paths = {'myprogram': '/opt/path/to/myprogram'}" |
|
476 | 476 | ] |
|
477 | 477 | } |
|
478 | 478 | ], |
|
479 | 479 | "metadata": {} |
|
480 | 480 | } |
|
481 | 481 | ] |
|
482 | 482 | } No newline at end of file |
@@ -1,147 +1,148 | |||
|
1 | 1 | { |
|
2 | 2 | "metadata": { |
|
3 | 3 | "name": "Trapezoid Rule" |
|
4 | 4 | }, |
|
5 | 5 | "nbformat": 3, |
|
6 | 6 | "nbformat_minor": 0, |
|
7 | 7 | "worksheets": [ |
|
8 | 8 | { |
|
9 | 9 | "cells": [ |
|
10 | 10 | { |
|
11 | 11 | "cell_type": "heading", |
|
12 | 12 | "level": 1, |
|
13 | 13 | "metadata": {}, |
|
14 | 14 | "source": [ |
|
15 | 15 | "Basic Numerical Integration: the Trapezoid Rule" |
|
16 | 16 | ] |
|
17 | 17 | }, |
|
18 | 18 | { |
|
19 | 19 | "cell_type": "markdown", |
|
20 | 20 | "metadata": {}, |
|
21 | 21 | "source": [ |
|
22 | 22 | "A simple illustration of the trapezoid rule for definite integration:\n", |
|
23 | 23 | "\n", |
|
24 | 24 | "$$\n", |
|
25 | 25 | "\\int_{a}^{b} f(x)\\, dx \\approx \\frac{1}{2} \\sum_{k=1}^{N} \\left( x_{k} - x_{k-1} \\right) \\left( f(x_{k}) + f(x_{k-1}) \\right).\n", |
|
26 | 26 | "$$\n", |
|
27 | 27 | "<br>\n", |
|
28 | 28 | "First, we define a simple function and sample it between 0 and 10 at 200 points" |
|
29 | 29 | ] |
|
30 | 30 | }, |
|
31 | 31 | { |
|
32 | 32 | "cell_type": "code", |
|
33 | 33 | "collapsed": false, |
|
34 | 34 | "input": [ |
|
35 | 35 | "%pylab inline" |
|
36 | 36 | ], |
|
37 | 37 | "language": "python", |
|
38 | 38 | "metadata": {}, |
|
39 | 39 | "outputs": [ |
|
40 | 40 | { |
|
41 | 41 | "output_type": "stream", |
|
42 | 42 | "stream": "stdout", |
|
43 | 43 | "text": [ |
|
44 | 44 | "\n", |
|
45 | 45 | "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", |
|
46 | 46 | "For more information, type 'help(pylab)'.\n" |
|
47 | 47 | ] |
|
48 | 48 | } |
|
49 | 49 | ], |
|
50 | 50 | "prompt_number": 1 |
|
51 | 51 | }, |
|
52 | 52 | { |
|
53 | 53 | "cell_type": "code", |
|
54 | 54 | "collapsed": true, |
|
55 | 55 | "input": [ |
|
56 | 56 | "def f(x):\n", |
|
57 | 57 | " return (x-3)*(x-5)*(x-7)+85\n", |
|
58 | 58 | "\n", |
|
59 | 59 | "x = linspace(0, 10, 200)\n", |
|
60 | 60 | "y = f(x)" |
|
61 | 61 | ], |
|
62 | 62 | "language": "python", |
|
63 | 63 | "metadata": {}, |
|
64 | 64 | "outputs": [], |
|
65 | 65 | "prompt_number": 2 |
|
66 | 66 | }, |
|
67 | 67 | { |
|
68 | 68 | "cell_type": "markdown", |
|
69 | 69 | "metadata": {}, |
|
70 | 70 | "source": [ |
|
71 | 71 | "Choose a region to integrate over and take only a few points in that region" |
|
72 | 72 | ] |
|
73 | 73 | }, |
|
74 | 74 | { |
|
75 | 75 | "cell_type": "code", |
|
76 | 76 | "collapsed": true, |
|
77 | 77 | "input": [ |
|
78 | 78 | "a, b = 1, 9\n", |
|
79 | 79 | "xint = x[logical_and(x>=a, x<=b)][::30]\n", |
|
80 | 80 | "yint = y[logical_and(x>=a, x<=b)][::30]" |
|
81 | 81 | ], |
|
82 | 82 | "language": "python", |
|
83 | 83 | "metadata": {}, |
|
84 | 84 | "outputs": [], |
|
85 | 85 | "prompt_number": 3 |
|
86 | 86 | }, |
|
87 | 87 | { |
|
88 | 88 | "cell_type": "markdown", |
|
89 | 89 | "metadata": {}, |
|
90 | 90 | "source": [ |
|
91 | 91 | "Plot both the function and the area below it in the trapezoid approximation" |
|
92 | 92 | ] |
|
93 | 93 | }, |
|
94 | 94 | { |
|
95 | 95 | "cell_type": "code", |
|
96 | 96 | "collapsed": false, |
|
97 | 97 | "input": [ |
|
98 | 98 | "plot(x, y, lw=2)\n", |
|
99 | 99 | "axis([0, 10, 0, 140])\n", |
|
100 | 100 | "fill_between(xint, 0, yint, facecolor='gray', alpha=0.4)\n", |
|
101 | 101 | "text(0.5 * (a + b), 30,r\"$\\int_a^b f(x)dx$\", horizontalalignment='center', fontsize=20);" |
|
102 | 102 | ], |
|
103 | 103 | "language": "python", |
|
104 | 104 | "metadata": {}, |
|
105 | 105 | "outputs": [ |
|
106 | 106 | { |
|
107 | 107 | "output_type": "display_data", |
|
108 | 108 | "png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD9CAYAAABHnDf0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlclOX+//HXAMMiiKLCoKCigrEI4p7+Tkl6sOykmXo0\ny+KrnXq0mubJrNOinQI8Vi6VnRYzTnVC2xSNSM0wy9SjaCmiKIuyu4zsOzO/P+4ACUQZB+4BPs/H\ng8fc3PfM3B9HfXNx3dd9XRqj0WhECCFEh2KldgFCCCHMT8JdCCE6IAl3IYTogCTchRCiA5JwF0KI\nDkjCXQghOqBmw33+/PnodDoCAwMbHXv99dexsrJCr9fX7YuIiMDHxwdfX1+2b99u/mqFEEJck2bD\nfd68ecTFxTXan5GRwY4dO+jfv3/dvuPHj7Nx40aOHz9OXFwcjz76KAaDwfwVCyGEuKpmw/2mm27C\nxcWl0f6nnnqKf/3rXw32bdmyhTlz5qDVavHy8sLb25sDBw6Yt1ohhBDXpMV97lu2bMHT05OgoKAG\n+7Ozs/H09Kz73tPTk6ysrOuvUAghRIvZtOTJpaWlhIeHs2PHjrp9zc1eoNFormmfEEKIq2vJbDEt\narmnpKSQnp7O0KFDGTBgAJmZmYwYMYK8vDw8PDzIyMioe25mZiYeHh5XLFC+jLz00kuq12ApX/JZ\nyGfRHj6LrCwjWq0RKysjp0+37blbqkXhHhgYSF5eHmlpaaSlpeHp6UlCQgI6nY6pU6cSHR1NZWUl\naWlpnDp1itGjR7e4ICGEsFRvvglVVTB9OgwapHY1zWs23OfMmcO4ceNITk6mb9++bNiwocHxy7tY\n/P39mTVrFv7+/kyePJl169ZJF4wQosMoKoJ//1vZ/vvf1a3lWmiMprT3r+eEGo1Jv2J0RPHx8YSE\nhKhdhkWQz6KefBb1LOmzWLMGFi6EP/0J9uxp+/O3NDsl3IUQ4iqqq8HbG86cgc2b4c47276Glman\nTD8ghBBX8eWXSrD7+MCUKWpXc20k3IUQohlGI9Tes/nUU2DVTlJTumWEEKIZcXEweTLodJCWBg4O\n6tQh3TJCCGFGr76qPC5erF6wm0Ja7kIIcQV79sDNN4OLi9Ln3rWrerVIy10IIcykttW+YIG6wW4K\nabkLIUQTDh2CkSPB0VFptffsqW490nIXQggzCA9XHh95RP1gN4W03IUQ4g+OHYOgILC1VUbI9O6t\ndkXSchdCiOu2fLkyvv3BBy0j2E0hLXchhLjMr79CcDDY2UFqKvTpo3ZFCmm5CyHEdVi2THl8+GHL\nCXZTSMtdCCF+l5AAI0YoNyulpoK7u9oV1ZOWuxBCmKi21f7II5YV7KaQlrsQQgAHD8KoUdCli9Jq\n1+nUrqghabkLIYQJnn1WeXzsMcsLdlNIy10I0ent3AmhodCtm9Jq79FD7Yoak5a7EEK0gMEAS5cq\n2888Y5nBbgppuQshOrVNm2D2bOVmpdOnlT53SyQtdyGEuEZVVfCPfyjbL71kucFuCgl3IUSn9cEH\nSmvdxwfmz1e7GvOSbhkhRKdUWKiE+rlzStfMX/+qdkXNM2u3zPz589HpdAQGBtbte/rpp/Hz82Po\n0KFMnz6dgoKCumMRERH4+Pjg6+vL9u3bTShfCCHaRni4Euxjx8LMmWpXY37Nhvu8efOIi4trsG/S\npEkkJiby66+/MnjwYCIiIgA4fvw4Gzdu5Pjx48TFxfHoo49iMBhar3IhhDBRWhqsWqVsr1oFGo26\n9bSGZsP9pptuwsXFpcG+0NBQrKyUl40ZM4bMzEwAtmzZwpw5c9BqtXh5eeHt7c2BAwdaqWwhhDDd\nkiVQWQlz58KYMWpX0zpsrufFH374IXPmzAEgOzubG2+8se6Yp6cnWVlZTb5uWe0EDkBISAghISHX\nU4YQQlyzPXvgiy+UycF+73iwSPHx8cTHx5v8epPD/dVXX8XW1pZ77rnnis/RXOF3ncvDXQgh2orB\nAIsWKdtLloCnp7r1NOePDd/ly5e36PUmhftHH31EbGws33//fd0+Dw8PMjIy6r7PzMzEw8PDlLcX\nQohWsX69svC1hwc8/bTa1bSuFo9zj4uLY+XKlWzZsgV7e/u6/VOnTiU6OprKykrS0tI4deoUo0eP\nNmuxQghhqosX66cZeO01cHRUt57W1mzLfc6cOezevZsLFy7Qt29fli9fTkREBJWVlYSGhgIwduxY\n1q1bh7+/P7NmzcLf3x8bGxvWrVt3xW4ZIYRoa88+C3o9TJigTDfQ0clNTEKIDm//fmU8u40N/PYb\n+PqqXVHLydwyQghxmZoaePRRMBph8eL2GeymkHAXQnRo69bVkJAAffvC88+rXU3bkW4ZIUSHlZJS\nxZAhUF6u5auv4K671K7IdNItI4QQQHl5BTNnnqO8XEtQ0Kl2HeymkHAXQnQ4paWlPPXUAY4c8aBr\n12qmT/9B7ZLanIS7EKJDKS4u5oMPNvPJJ6MAeOKJszg7l6hcVduTcBdCdBgFBQV89tlnfP75/6Oo\nyJ5RowqZMuW82mWp4romDhNCCEuh1+v5/PPPOX16KD/91B87OwP/+MeZDjmd77WQlrsQot07d+4c\nn332GXZ2/Xn//ZEAPPlkJp6elSpXph4JdyFEu5aTk8PGjRvp39+LDRtupKDAhtGjC5k5s3N2x9SS\nbhkhRLuVkZHBV199xQ033MDevb78+GN3nJyqefHFdKw6edNVwl0I0S6lpqYSExNDQEAApaXuvP56\nXwCWLMnA3b1K5erUJ+EuhGh3Tp48SWxsLEFBQTg6urBo0UBKS62ZMOESkyfr1S7PIki4CyHalWPH\njrFz506GDx+Ok5MTq1f3ITHREXf3Cp5/vvOOjvkjCXchRLuRkJDAjz/+yPDhw3F0dOTnn5355BN3\nrK2NvPpqGs7ONWqXaDEk3IUQ7cIvv/zCgQMHGDVqFPb29pw7p+Wll7wAeOSRLIYO7Xx3oTZHwl0I\nYdGMRiM//fQTR44cYdSoUdjZ2VFdDc89N4D8fC1jxhRy//15apdpcSTchRAWy2g0smvXLk6cOMGo\nUaPQarUArFrVlyNHuuLqWsnLL6d1+mGPTZFwF0JYJIPBwHfffUd6ejojR47ExkaJq2++6cHGjW7Y\n2Bj4179S6dmzWuVKLZOEuxDC4lRXVxMbG0tOTg4jRozA2toagBMnHAgP7w/A009nEBgo/exXIuEu\nhLAoVVVVxMTEcOnSJYYPH47V730uer0NTz89iIoKK+688wLTp19QuVLLJuEuhLAYFRUVfP3115SX\nlxMcHIzm90Hr5eUaFi8eRE6OHQEBJSxZclbGs19Fs5ch5s+fj06nIzAwsG6fXq8nNDSUwYMHM2nS\nJPLz8+uORURE4OPjg6+vL9u3b2+9qoUQHU5ZWRmff/45VVVVBAYG1gW7wQAvv+zF0aNOuLtX8Prr\np7Gzk3WYr6bZcJ83bx5xcXEN9kVGRhIaGkpycjITJ04kMjISgOPHj7Nx40aOHz9OXFwcjz76KAaD\nofUqF0J0GMXFxWzcuBErKyv8/f0bHHv33T5s394DR8caVq8+Ta9ecgH1WjQb7jfddBMuLi4N9sXE\nxBAWFgZAWFgYmzdvBmDLli3MmTMHrVaLl5cX3t7eHDhwoJXKFkJ0FAUFBURHR+Pg4MANN9zQ4NiW\nLT1Zv743VlZGIiJS8fYuV6nK9qfFo0Pz8vLQ6XQA6HQ68vKUmweys7Px9PSse56npydZWVlmKlMI\n0RHp9Xqio6NxcXHB29u7wbEffujOq68qI2OWLDnLuHGFapTYbl3XBVWNRlPXL3al401ZtmxZ3XZI\nSAghISHXU4YQoh06f/48n3/+OR4eHg0ahgAHDzrx3HMDMBg0PPRQNjNndr6RMfHx8cTHx5v8+haH\nu06nIzc3F3d3d3JycnBzcwPAw8ODjIyMuudlZmbi4eHR5HtcHu5CiM4nJyeHL7/8Ei8vL3r37t3g\nWFJSFxYv9qaqyopZs87x4IM5KlWprj82fJcvX96i17e4W2bq1KlERUUBEBUVxbRp0+r2R0dHU1lZ\nSVpaGqdOnWL06NEtfXshRAeXkZHBpk2bGDRoUKNgP3nSgccf96GkxJpbb9Xz979nyJBHEzXbcp8z\nZw67d+/mwoUL9O3bl5dffpmlS5cya9Ys1q9fj5eXF5s2bQLA39+fWbNm4e/vj42NDevWrWu2y0YI\n0fmkpaWxZcsW/P396dmzZ4NjJ0868OijgykosOHmm/NZtkyWyrseGqPR2KYDRjUaDW18SiGEBTh5\n8iTffvstgYGBdO/evcGx5GQHHnmkPthXrEhFqzVPTlRXV7N3714WLVpklvdTS0uzU+5QFUK0usTE\nRHbs2EFwcDBdu3ZtcOzYsS48+aRPXbBHRpov2DszCXchRKs6fPgwu3fvrls96XL793fl738fRFmZ\ndV2w29pKsJuDhLsQotXs27eP/fv3M3LkSBwcHBoc27HDhRde8KK62orbb7/Iiy+mYyOJZDbyUQoh\nzK6p1ZPqj0F0tBtvvOGJ0ajhnnvyWLgwUy6empmEuxDCrK60ehJAdTWsXNmPL790BZS1T+fPz5Xh\njq1Awl0IYTa1qyelpaU1WD0JoLDQmqVLB3LggDO2tgZefDGd2267pGK1HZuEuxDCLGpqaoiNjSU7\nO5uRI0fWrZ4EylDHZ54ZSEaGPT16VPHaaykEBckqSq1Jwl0Icd2utHoSwNatPYmM7EdFhRU+PqW8\n8UYKvXtXqlht5yDhLoS4LhUVFWzevJnS0tIGqyeVlVmxcmVfYmJ6ATB16gWWLDmLvb0MdWwLEu5C\nCJOVlZXx1VdfUVNTQ1BQUN3+o0cdefFFLzIy7LGzM7BkyVnuvPOiipV2PhLuQgiTlJSU8MUXX2Bj\nY0NAQACgjIb54IPefPhhbwwGDd7epfzzn+n4+JSpXG3nI+EuhGixwsJCNm3aRNeuXesW2fj1V0fC\nw/uTkuKARmPk/vtzefjhbLnjVCUS7kKIFrl06RKbNm2iV69eeHl5UVhozVtvefDVV8rYdU/Pcl58\n8QzDhxerXGnnJuEuzMJggHPnICMDsrKgoAAKC5WvoiLlq6am8escHMDJCRwdlUcnJ+jZE9zc6r/+\nMB2JUFHt6kl9+vShd+++bNzoynvv9aGgwAYbGwNhYXnMm5cjF00tgIS7aBG9Ho4cgcREOH4ckpLg\n7Fkl0CtbaXRbly5GPD01eHlR99W/f/12797IHY5tIDc3ly+++IL+/b04dcqXhQs9OXPGHoARI4p4\n5pmzDBwoC1hbCgl3cUVGI5w8Cd9/D7/8Avv3w+nTV35+z57Qty94ekKPHtC1Kzg7K19OTmBtbaCw\nsIhLl/RcuHCB/PwCNJougBPW1s5UVtpSUGDk0iUN+fm2FBTYUVjoQGmpDcnJkJzc9HmdnMDXF/z8\nlMfaL29vsLVtlY+m08nMzOTLL7/i4sX/x9tv+3LihPLrVL9+5SxYkMn48QXyA9bCSLiLBoqLIS4O\ntm2DnTuVFvnl7O0hOBiGDIGAAPD3V1rPnp7QpUvj99Pr9WRlZZGamkp6ejpdu2rp06crvXr1omfP\nnr/fxVgFND1MzmiEwkIjqalVpKcbyciwJjfXgfPnHbhwwQm93oXiYnsOHoSDBxu+1sZGCfygIBg6\ntP7R3d0cn1TnkZycziuvHOfnn/+P1FRnAHr2rGL+/BxmzDgvMzlaKFmJSVBSAl9/DZs2wfbtUFFR\nf8zVFSZOhJtughtvhMBAuGweqEaKi4vJysoiPT2d06dPU1NTg7OzMz169MDV1RVbMzaljUYjJSUl\nZGVVkJxsxZkz9mRkOJGd7cy5cz3R650xGhs3J93cGge+n5+08v/o3DkID7/Ahg32FBY6AeDqWklY\nWC7Tpl1oN/3qnXUlJgn3TspohD174KOP4PPPlRZ7rbFjYdo0uO02pYXe3FSsFRUV5OTkcPbsWVJS\nUsjPz8fZ2Znu3bvj6uraaHGGtlJRUcH586UkJVlx8qQ96enOnD3rQnZ2L8rL7Ro9X6s14u+vYehQ\nJeyDg5XHPyzz2WEYjUYqKyspLy+noqKCiooKysvLKS6uZMcOO2JiXNi3z4WaGuUvf9CgMmbPPsdf\n/nIRO7v29f9Xwr2NSLirq7QU/vtfWLsWjh6t3z92LMydC3fdpVygvJKamhry8vLIyMggJSWF3Nxc\nHB0d6datG66urnTr1s2iF0avrq4hNbWGY8esOXnSri70z5/v3uTz+/QxEBysITi4Pvi9veGyObFU\nZTQa68K5NqAv3y4rK6OkpISysrK67drnWFtbY21tjdFoR3Jyf379dSBHjvSjpES5SGplZWDcuEvc\nc89FRo0qard96hLubUTCXR16PaxZA2+9pWwD6HQwfz6EhcENNzT9OqPRiF6vJyMjg9TUVM6ePYut\nrS3dunWjV69euLi4NJj9r70qLbUiMdHq99B3IC2tKxkZLlRWNu6DcnAw4O9fw7Bh1gwbZoW/v3IB\nV6czfdTO5SH9x4CuDenS0lJKS0vrtsvKyqisrMTa2hobGxusra3RarV1oW1tbY2trS22trZotdrL\ntm3JzOzKwYPO7N/vzP/+15Wysvq/Q2/vUqZMuchtt+np2bPa1I/UYki4txEJ97Z14QKsWgVvvqmM\nNQcYNQqefBL++tem+5mLiorq+s1TUlIwGAwN+s21zXW6dyA1NZCZaceJE3YcO2ZDcrIS+np9011N\nzs41+PjU4Oenwdu7mv79K9DpSnF1LcXOrqxBS7q0tJTy8vJGIX15ONcGto2NTV04a7Va7OzsGnzf\n3G9KRiPo9TacPu1AYqIjx445kpjoyMWLDf8OfX1LuOWWfG65JZ8BA8rbbSu9KRLubUTCvW2UlcHq\n1RARUR/qoaHwwgvKxdHLVVRUkJ2dzdmzZzl16hRFRUV07doVFxcX3Nzc6NLUMJhOLD/fmlOnupCc\nbE9Ski3p6XacPetIaemVr8h26VJJr17FuLmV0bt3Oa6ulfTsaaBXLwNubuDqasDZ2YC9vaFFy81V\nVmooLbXi0iUtubm25OVpycuzJS/PlsxMO1JSHCgoaDycpWfPKkaPLmTUqCJGjy7E3b3KlI+iXeis\n4W7yIKaIiAg++eQTrKysCAwMZMOGDZSUlDB79mzOnDmDl5cXmzZtonv3pvsyReswGJQ+9eeeU+4W\nBbj1VnjpJaVfHZR+89zc3Lp+87y8PJycnOjWrRsDBw6kW7du6v0B2oHu3WsYNaqIUaOK6vbVtpDT\n0+3rvs6csSc315bsbFtKS205e7YHZ89e/f3t7Wvo0sWAg4MBrdbQ6HhVlRXFxdaUllpRVXX1nwSO\njjUMGlSGn18pQ4aUMGRICZ6eFR2qdS4aM6nlnp6ezoQJE0hKSsLOzo7Zs2dz++23k5iYSK9evViy\nZAkrVqzg0qVLREZGNjyhtNxbzfHj8PDDyigYUC7+vfYaTJxo5OLFiw36ze3t7XF2dqZXr1706NGj\nweIKwryMRigosCY7246cHFuysuy4eFHLpUs26PU2XLqkRa+3oajImvLyll2/sLY24uRUQ7du1eh0\nlb9/VaHTVdKnTwUDBpTj5lbVqYNcWu4t4OzsjFarpbS0FGtra0pLS+nTpw8RERHs3r0bgLCwMEJC\nQhqFuzC/sjIID4cVK6CqShnH/dJLZdx8czpnz6bx9tupGI1GnJ2d6dmzJ+PGjWuwtqVoXRqN0trv\n3r0Uf//SZp9rMEB5uRWlpVaUlVlTVaVpFMw2Nkqgd+lSg62tsVMHt7gyk/6H9+jRg8WLF9OvXz8c\nHBy49dZbCQ0NJS8vD51OB4BOpyMvL8+sxYrGDh6E++6DEyeU7++4I4uJE3dSUaHnwIFuuLi4EBwc\njIODg7qFimtiZQVduhjo0sUAtP+RKkI9JoV7SkoKq1evJj09nW7duvHXv/6VTz75pMFzNBrNFa/i\nL1u2rG47JCSEkJAQU8ro1KqrITzcyMsvG6mpscLN7SJhYT8xYkQ5bm79cHYeonaJQojrEB8fT3x8\nvMmvNyncDx48yLhx4+j5++1706dP55dffsHd3Z3c3Fzc3d3JycnBzc2tyddfHu6i5c6cgbvvhn37\nNICGadPO8NRT5+nSxVPt0oQQZvLHhu/y5ctb9HqTrqL5+vqyb98+ysrKMBqN7Ny5E39/f6ZMmUJU\nVBQAUVFRTJs2zZS3F8349lsYPhz27YPu3YtYteo3nn/+Al26SMerEKKeSS33oUOHcv/99zNy5Eis\nrKwYPnw4Dz30EEVFRcyaNYv169fXDYUU5lFTA8uXwyuvKKMvAgPPsnRpEjfc0Evt0oQQFkhuYmoH\niopgzhz45hvlgtu9955gwoQDBAYGqF2aEBZPhkIKi3TmDEyZokzy1aMHRESkUFm5k4CAMWqXJoSw\nYHLnigXbtw9Gj1aC/YYbIDb2IqWlWxk6dKjcdCSEaJYkhIWKjYUJE5QFE/78Z4iPr+Do0a/x9vaW\nuV6EEFcl4W6BPv0U7rxTufN0/nwl6A8d2omtrS29m5tsXQghfifhbmHefFNZNKO6GpYsgQ8+gKSk\n30hLS8PPz0/t8oQQ7YSEuwVZuRIWLFC2//UvZa6YCxfOs2vXLoKCgqSfXQhxzWS0jIV47TWlpQ7w\n3nvw4IPKPOtbtmxh0KBBqq1FKoRonyTcLcBrr8HTTyvbH3wADzygbO/cuROtVkufPn3UK04I0S7J\n7/kqW7Om6WA/evQoqamp0s8uhDCJhLuKPv4YFi5Utt97rz7Yz59X+tmHDh3aIRafFkK0PQl3lXzz\nDcybp2y//rrSxw5QWVlJTEwMAwYMkH52IYTJJNxV8NNPMHOmMhnYs8/CU0/VH9u5cyc2NjZ4eHio\nV6AQot2TcG9jJ08qc8WUlyut9VdfrT927NgxUlJSpJ9dCHHdJNzb0IUL8Je/QH6+cgfqO+9Qt/7l\nhQsX+P777wkKCpJ+diHEdZNwbyMVFXDXXZCSoiy28emnUJvhtf3sXl5eODk5qVuoEKJDkHBvA0aj\nMhLmp5/AwwO2boXLr5V+//33WFtb4+kpy+QJIcxDwr0N/OtfSkvd0RG2bYPL70lKTEzk9OnT0s8u\nhDArCfdWtmMHPPecsv3ppxAcXH/s4sWL0s8uhGgVEu6tKD0d7r4bDAZ44QXlImqtqqoqYmJi6N+/\nv/SzCyHMTsK9lZSVwfTpoNfD7bfDsmUNj3///fdoNBrpZxdCtAoJ91by+ONw+DAMGgSffKIsbF3r\n+PHjJCcn4+/vr16BQogOTcK9FXz6KXz4Idjbw1dfgYtL/bGLFy+yY8cOmTdGCNGqJNzN7PRpePhh\nZXvNGggKqj9W288u49mFEK3N5HDPz89n5syZ+Pn54e/vz/79+9Hr9YSGhjJ48GAmTZpEfn6+OWu1\neBUVMHs2FBfDrFn1k4HV2rVrF4D0swshWp3J4f7kk09y++23k5SUxG+//Yavry+RkZGEhoaSnJzM\nxIkTiYyMNGetFm/pUkhIgAEDlCl8a6cWAEhKSuLkyZMEBASoV6AQotMwKdwLCgrYs2cP8+fPB8DG\nxoZu3boRExNDWFgYAGFhYWzevNl8lVq47dth9WqwsYHoaOjWrf6YXq9n+/bt0s8uhGgzJoV7Wloa\nrq6uzJs3j+HDh/Pggw9SUlJCXl4eOp0OAJ1OR15enlmLtVSXLsHvP+dYvhxGj64/VlVVxdatW+nX\nr5/0swsh2oxJa6hWV1eTkJDAW2+9xahRo1i4cGGjLhiNRoPm8n6Jyyy7bNB3SEgIISEhppRhMZ54\nArKyYOzY+kWua8XHx1NTU0O/fv3UKU4I0S7Fx8cTHx9v8us1RqPR2NIX5ebmMnbsWNLS0gD46aef\niIiIIDU1lR9++AF3d3dycnK45ZZbOHHiRMMTajSYcEqL9fnnysXTLl3gyBHw8ak/duLECbZv386Y\nMWOwsZG1yIVQQ3V1NXv37mXRokVql3JdWpqdJnXLuLu707dvX5KTkwFl9aCAgACmTJlCVFQUAFFR\nUUybNs2Ut283cnLqhz2+9lrDYNfr9Xz33XcEBQVJsAsh2pzJqfPmm29y7733UllZyaBBg9iwYQM1\nNTXMmjWL9evX4+XlxaZNm8xZq8V57DFleoFbb60PeWjYz961a1f1ChRCdFomh/vQoUP53//+12j/\nzp07r6ug9uLLL+Hrr6FrV3j//YbDHnfv3k11dbX0swshVCN3qJrg0iVl7hiAyEjo27f+2IkTJ0hM\nTGTIkCHqFCeEEEi4m+Tvf4fcXPjTnxp2x1y6dEn62YUQFkHCvYW+/16ZFMzWVumOqZ3tsbq6mq1b\nt9K3b1+cnZ3VLVII0elJuLdAeXl9S/3FF8HXt/7Y7t27qaqqon///uoUJ4QQl5Fwb4GVK5VZH/38\n4Omn6/efPHmSY8eOST+7EMJiSLhfo7Q0CA9XttetU7plQPrZhRCWScL9Gi1YoHTL3HMP1M6WUF1d\nzbZt2/Dw8JB+diGERZFwvwZbt8K2beDsrNyJWuvHH3+koqICLy8v1WoTQoimSLhfRVmZ0moHePll\n6N1b2U5OTubo0aMEBgaqV5wQQlyBhPtVvPEGpKdDYKAy3QAoq1DFxcURGBgo/extaNOmTYwfP55j\nx46pXYoQFk/CvRk5ORARoWyvWaMsxFFTU8PWrVvx8PCg2+UrcohW95e//AU7OztZzUqIayDh3ox/\n/ANKSuDOO+GWW5R9e/bskX52lRw8eJBhw4ZdcZ0AIUQ9CfcrSEiAjz4CrVYZ3w5w+vRpfv31V+ln\nV8n+/fvRaDTExcURHh7O6dOn1S5JCIsl4d4EoxEWLVIen3hCmae9oKCAb7/9liFDhkg/exuIjo5m\n4sSJzJ07lzNnzgBKuN97773cdttt3Hzzzaxbt07lKoWwXBLuTdi8GX78EXr2hBdeUPrZt23bRp8+\nfejevbva5XV4Bw8eZNWqVaxevZqSkhL++c9/kpubi9ForPut6eLFi+Tn56tcqRCWS8L9D6qrYelS\nZXv5cujeXVlGsLS0VPrZ28ibb77J2LFjGTx4MEajEZ1OR1JSEsHBwXXP2bdvH+PGjVOxSiEsm4T7\nH3z4ISS6AwJPAAAU/UlEQVQng7c3PPQQpKSkcOTIEYKCgtQurVM4duwYx48fJzQ0FDs7OzZv3syr\nr76Ko6Nj3apWZ8+e5fTp08ydO1flaoWwXBLulykthWXLlO1XXoHS0gJiY2Oln70NxcbGAjRqlY8a\nNQorKyu2bdvGZ599xjvvvIO9vb0aJQrRLkhiXWbtWmVs+4gRMH16DZ9//g29e/eWfvY2tHv3bgYO\nHIiLi0uD/RqNhieffBKAO+64Q43ShGhXpOX+O71eWTIPlMe9e3+ipKSEAQMGqFtYJ3L27FnOnTvX\noG9dCGEaCfffRURAQQH8+c8wcGAqhw8flvHsbax2wXWZF1+I6yfhjtIV89ZbyvbzzxcTGxtLYGAg\nWq1W3cI6mUOHDgHg5+enciVCtH8S7ijdMOXlMG2akaysGHQ6nfSzq+DQoUPY2tpKV5gQZmByuNfU\n1DBs2DCmTJkCgF6vJzQ0lMGDBzNp0qR2c4NJVha8+66yfeedCZSUlDBw4EB1i+qEzpw5g16vx9vb\nG2tra7XLEaLdMznc16xZg7+/f90kTpGRkYSGhpKcnMzEiROJrL06aeEiIqCiAiZPLiE/f4/0s6vk\n8OHDAAwePFjlSoToGEwK98zMTGJjY/nb3/6G0WgEICYmhrCwMADCwsLYvHmz+apsJRkZ8P77oNEY\nCQ7ewpAhQ6SfXSUJCQkAeHt7q1yJEB2DSeG+aNEiVq5ciZVV/cvz8vLQ6XQA6HQ68vLyzFNhKwoP\nh8pKuPHGswQH2zQaWy3aztGjRwHLCPeamhqTX1tdXW3GSoQwXYtvYtq2bRtubm4MGzaM+Pj4Jp+j\n0WianXN7We1toEBISAghtStOt6GzZ2H9eqXVPmnSfgYNGtTmNQjFpUuXyMzMRKPRqP73sGvXLkpK\nSuquJbXUhg0bGD16NEOHDjVzZaKziY+Pv2LGXosWh/vevXuJiYkhNjaW8vJyCgsLue+++9DpdOTm\n5uLu7k5OTg5ubm5XfI/Lw10tK1dCVRUMH57Mbbf1U7ucTu23334DwMXFpU1GKWVkZPD6668zcOBA\nSkpKWLp0KRqNhkOHDnH48GEWL15s8nvPmzePxYsXs3Dhwmse9bNq1Sp27tzJuXPn+Pe//82IESNM\nPr/oOP7Y8F2+fHmLXt/ibpnw8HAyMjJIS0sjOjqaCRMm8PHHHzN16lSioqIAiIqKYtq0aS196zaT\nlwcffKBcK3j4Yb30s6usNtzbokumqqqKxx9/nIkTJ3Lx4kW2bNlCSUkJxcXFrF27lscff/y63t/G\nxoZnn32Wl1566Zq7aBYtWkRYWBi2trZyQV+YzXWPc6/tflm6dCk7duxg8ODB7Nq1i6W18+ZaoDfe\nMFJermHEiCyGD7dVu5xOr3bBax8fn1Y/1y+//EJ2djbDhw9n1qxZrF27FicnJzZs2MDkyZOxs7O7\n7nO4u7szaNAgtm3bds2vOXLkCP7+/tjayr9HYR7XNXHY+PHjGT9+PAA9evRg586dZimqNV26BG+/\nbQCseeKJQrXL6fRqamo4fvw40DbhfujQIVxcXPDw8MDDwwOAsrIyNm/ezNdff22288yePZtnn332\nmn+DPXz4MFOnTjXb+YXodHeovvUWlJRY4++fzZAhpWqX0+mlp6dTXl6ORqNpk3BPTEzE39+/wb6f\nfvqJPn364OzsbLbzDB48mIKCAk6cOHHV52ZmZnLhwgWGDx9utvML0amm/C0uhtWrle077vgNcFW1\nHkFdq93a2rpV7wxetmwZer2eX3/9FS8vLxYsWICHhwfPPPMM+/fvb3YxlqSkJGJjY7GysiInJ4fn\nn3+er776iqKiIs6fP89DDz2Ep6dng9dYWVkRHBzMvn378PX1bXDsf//7H19//TW9e/emqKiIQYMG\nYW1t3WiEjSnnFaJWpwr3995TpvYdOrQUX99cJNzVVxvuAwcObNUFUZYtW0ZWVhbTpk3jscceazAK\nITk5mbvuuqvJ12VmZrJ161aWLFlS9z7z5s1j2bJlGAwGHnzwQW644QbuvffeRq/t168fycnJDfZt\n2bKFdevW8cknn+Dq6kpubi4zZswgICCgweIj13NeIaATdctUVcGqVcr2Qw9dpJlh+KIN1Yb7DTfc\n0OrnOnnyJNB4ioPs7Oy6Jfz+6NNPP+WJJ56o+76srAxnZ2cCAwNxd3dn7ty5VxwT37VrV7Kzs+u+\nT05OJiIigsWLF+PqqjQs3N3dcXBwaNQlcz3nFQI6Ubhv2gSZmeDrC+PHF6tdjkC5mHr69Gmgbab5\nTU5OxsnJiT59+jTYX1xcfMVwv++++3BwcKj7/ujRo4wePRpQ7sResGDBFfvqu3fvTnFx/b+1devW\n4ejoyMSJE+v2paamUlBQ0Cjcr+e8QkAnCXejEV57TdlevBisOsWf2vKlp6dTWVmJRqNps3BvamIy\njUaDwWBo8jWX/yBIT0/n/PnzjBw58prOZzAY6uZeKioq4pdffmHMmDENZr08dOhQXf+8uc4rBHSS\ncN+1C44cATc3mDtX7WpErdr+aBsbmzbplklOTm7yPF27dqWw8OrDYg8ePIhWq21w8TUzM/OKzy8s\nLKz7jSAjIwODwdDowu3Bgwfx8/PDwcGBrKwss5xXCOgk4V7ban/iCbjsmpVQ2alTpwDlztTWvku4\noKCAvLy8Jodb9unTp8n1B8rLy1m7dm1d19H+/fvx8fGpu9HJYDDw8ccfN3vO2rH0jo6OgNLHfvn7\nJyQk1HXJREdHm+W8QkAnGC1z7BjExUGXLvDII2pXIy5XG15tsWZq7cXUpsI9ODiYtLS0Rvt//vln\nPv74Y3x9fbGxsSEjI6NB3/yHH37Y7EXNtLQ0xowZAygjZ3x8fOpa59XV1axYsYKqqio8PT3R6/X0\n6NHDLOcVAjpBuL/+uvI4fz707KluLaKh2nAPCAho9XOdOHGCrl27NtnnPnbsWN54441G+0eMGMGU\nKVM4ceIEJ0+e5KOPPiIyMpLw8HC0Wi3jx4+/4g+m6upqfvvtNxYsWAAo/fqRkZG88cYb5OXlYTAY\neOCBBxgxYgTbtm3jxIkTdaNjrue8QtTSGGuv+LTVCTUa2uqUeXnQrx9UV0NyMtTOJpuUlMT+/ftl\nkiYVFRUVMWHCBDQaDZs2bcLLy6tVz/fcc89RU1PDihUrGh2rrKxk8uTJREdH1w1RvF6//vor4eHh\nbNy40SzvJ0xXXV3N3r17WbRokdqlXJeWZmeH7nN/911lMY6pU+uDXViGlJQUAJydnVst2KOionjs\nsccAZTz95UMQL2dra8vs2bP57LPPzHbu//73v3KDkVBVhw33ykp45x1l+/ffjIUFSU1NBWg0BNCc\nYmNjsbW15dSpU2i12iuGO8D999/P3r17r2nUzNWkp6eTm5sr/eJCVR023L/4AnJzYcgQUGGhJ3EV\nteE+bNiwVjvHfffdh6urKxs2bGDlypUNxpf/kb29PS+88AKvvPLKdXUbVlRUsHLlSl599dVmVyMT\norV12Auqa9cqjwsWIFMNWKDaYZCt2XK/4447uOOOO675+QEBAcyYMYONGzdy9913m3TODRs28Nhj\nj8mEXkJ1HTLc9+9XvlxcQLo9LdOpU6dwcHBoNGOi2saMGVM3fNEUDz/8sBmrEcJ0HbJb5s03lccH\nH1TGtwvLkpOTQ1FREUOGDGm2q0QIYboOF+45OcokYVZW8OijalcjmpKUlAQgC0EL0Yo6XLi//74y\nve+dd0L//mpXI5qSmJgIUDfLoRDC/DpUuFdXK+EO0mq3ZMeOHcPR0bFN7kwVorPqUOH+zTfKnO0+\nPjBhgtrViKaUl5dz7NgxxowZg5XMvSxEq+lQ/7tqb1p6+GGZs91SHTx4kMrKSsaPH692KUJ0aB0m\nAlNS4LvvwM4O/u//1K5G1HrttdeYM2cO1dXVAMTFxeHs7Nzs3aJCiOtnUrhnZGRwyy23EBAQwJAh\nQ1j7+x1Der2e0NBQBg8ezKRJk5qcI7u1vPee8jh7Nvw+c6qwAAcOHKC8vByDwUBubi67du3innvu\nqZubXAjROkwKd61Wy6pVq0hMTGTfvn28/fbbJCUlERkZSWhoKMnJyUycOJHIyEhz19ukigr48ENl\nW+ZstyxDhw5l0qRJFBYW8vLLL9OvXz/CwsLULkuIDs+kcHd3d6+7bdzJyQk/Pz+ysrKIiYmp+48b\nFhbG5s2bzVdpM774Ai5cgOBguI6bC0UreOyxx0hMTGTatGnY2try5ptvYmPT9I3R1dXVvPPOO3z5\n5Zds3LiRRYsWyXJyQpjouqcfSE9P5/Dhw4wZM4a8vDx0Oh2grNCel5d33QVei3ffVR4ffljmkbE0\n3bt356233rqm50ZERODj48OMGTPIz8/n3XfflTlahDDRdYV7cXExM2bMYM2aNQ2WAQNlYvkrzYq3\nbNmyuu2QkBBCrmPaxuRk2LMHHB3hnntMfhuhslOnTrFjxw6eeeYZQFmlqXZtUSE6o/j4eOLj401+\nvcnhXlVVxYwZM7jvvvuYNm0aoLTWc3NzcXd3JycnBzc3tyZfe3m4X6/165XHWbPgDz9fRDty4MAB\ngoODsbW1rft+1KhRFBUVNWo4CNEZ/LHhu3z58ha93qQ+d6PRyAMPPIC/vz8LFy6s2z916lSioqIA\nZRWc2tBvLVVV8Pvp+NvfWvVUopU5OzvTq1cvAEpLS/nhhx8ICgri22+/VbkyIdonk1ruP//8M598\n8glBQUF1iy1ERESwdOlSZs2axfr16/Hy8mLTpk1mLfaPvvlGWSfVzw/Gjm3VU4lWduutt3LkyBG+\n++47Kisrue2229i7d6/FTQksRHthUrj/6U9/wmAwNHls586d11VQS9R2yTzwgFxIbe9sbW154YUX\n1C5DiA6j3d6hmpUFsbGg1cJ996ldjRBCWJZ2G+5RUWAwwNSpcIXrtkII0Wm1y3A3GOq7ZORCqhBC\nNNYuw/3nnyE1FTw9ITRU7WqEEMLytMtw/89/lMe5c0GW4BRCiMbaXbiXlSlrpIJcSBVCiCtpd+G+\ndSsUFsLIkeDvr3Y1QghhmdpduNd2yUirXQghrqxdhXteHsTFgY0N3H232tUIIYTlalfhHh0NNTUw\nebKMbRdCiOa0q3Cv7ZK5/3516xBCCEvXbsL92DFISIBu3eCOO9SuRgghLFu7CfePP1YeZ88Ge3t1\naxFCCEvXLsK9pgY+/VTZli4ZIYS4unYR7j/8oMwCOXAgjBundjVCCGH52kW4Xz62XeZtF0KIq7P4\ncC8pga++UrblxiUhhLg2Fh/uW7cqAX/jjTBokNrVCCFE+2Dx4b5xo/Iod6QKIcS1s+hwLyiAb79V\n+tn/+le1qxFCiPbDosN9yxaoqICbb4Y+fdSuRggh2g+LDnfpkhFCCNNYbLhfvAjbtysrLc2YoXY1\nQgjRvpg93OPi4vD19cXHx4cVK1aY/D5ffw3V1TBhAri6mrFAC3Lo0CG1S7AY8lnUk8+innwWpjNr\nuNfU1PD4448TFxfH8ePH+eyzz0hKSjLpvTpDl4z8w60nn0U9+SzqyWdhOrOG+4EDB/D29sbLywut\nVsvdd9/Nli1bWvw+eXmwaxdotXDXXeasUAghOgcbc75ZVlYWffv2rfve09OT/fv3t/h9vvwSDAZl\nUQ4XF3NWqNBoNOj1ehISEsz/5i2Qk5Ojeg2WQj6LevJZ1DPHZ2EwGLCxMWvUtQtm/RNrrnHil2t9\n3jffdPy5ZLZu3ap2CRZDPot68lnUM9dnsWDBArO8T3th1nD38PAgIyOj7vuMjAw8PT0bPMdoNJrz\nlEIIIZpg1j73kSNHcurUKdLT06msrGTjxo1MnTrVnKcQQghxDczacrexseGtt97i1ltvpaamhgce\neAA/Pz9znkIIIcQ1MPs498mTJ3Py5ElOnz7Ns88+W7ffXOPfO4KMjAxuueUWAgICGDJkCGvXrlW7\nJFXV1NQwbNgwpkyZonYpqsrPz2fmzJn4+fnh7+/Pvn371C5JNREREQQEBBAYGMg999xDRUWF2iW1\nmfnz56PT6QgMDKzbp9frCQ0NZfDgwUyaNIn8/Pyrvk+b3KFqzvHvHYFWq2XVqlUkJiayb98+3n77\n7U79eaxZswZ/f/9rvtDeUT355JPcfvvtJCUl8dtvv3Xa33rT09N5//33SUhI4OjRo9TU1BAdHa12\nWW1m3rx5xMXFNdgXGRlJaGgoycnJTJw4kcjIyKu+T5uEu7nGv3cU7u7uBAcHA+Dk5ISfnx/Z2dkq\nV6WOzMxMYmNj+dvf/tapL7YXFBSwZ88e5s+fDyhdnN26dVO5KnU4Ozuj1WopLS2lurqa0tJSPDw8\n1C6rzdx00024/GEMeExMDGFhYQCEhYWxefPmq75Pm4R7U+Pfs7Ky2uLUFi89PZ3Dhw8zZswYtUtR\nxaJFi1i5ciVWVhY7zVGbSEtLw9XVlXnz5jF8+HAefPBBSktL1S5LFT169GDx4sX069ePPn360L17\nd/785z+rXZaq8vLy0Ol0AOh0OvLy8q76mjb5H9XZf92+kuLiYmbOnMmaNWtwcnJSu5w2t23bNtzc\n3Bg2bFinbrUDVFdXk5CQwKOPPkpCQgKOjo7X9Kt3R5SSksLq1atJT08nOzub4uJiPv30U7XLshga\njeaaMrVNwv1axr93NlVVVcyYMYO5c+cybdo0tctRxd69e4mJiWHAgAHMmTOHXbt2cf/996tdlio8\nPT3x9PRk1KhRAMycObPT3qV68OBBxo0bR8+ePbGxsWH69Ons3btX7bJUpdPpyM3NBZS7dt3c3K76\nmjYJdxn/3pDRaOSBBx7A39+fhQsXql2OasLDw8nIyCAtLY3o6GgmTJjAf/7zH7XLUoW7uzt9+/Yl\nOTkZgJ07dxIQEKByVerw9fVl3759lJWVYTQa2blzJ/7+/mqXpaqpU6cSFRUFQFRU1LU1CI1tJDY2\n1jh48GDjoEGDjOHh4W11Wou0Z88eo0ajMQ4dOtQYHBxsDA4ONn777bdql6Wq+Ph445QpU9QuQ1VH\njhwxjhw50hgUFGS86667jPn5+WqXpJoVK1YY/f39jUOGDDHef//9xsrKSrVLajN33323sXfv3kat\nVmv09PQ0fvjhh8aLFy8aJ06caPTx8TGGhoYaL126dNX30RiNnbyzUwghOqDOPURBCCE6KAl3IYTo\ngCTchRCiA5JwF0KIDkjCXQghOiAJdyGE6ID+P77cvv/6VvTLAAAAAElFTkSuQmCC\n" |
|
109 | 109 | } |
|
110 | 110 | ], |
|
111 | 111 | "prompt_number": 4 |
|
112 | 112 | }, |
|
113 | 113 | { |
|
114 | 114 | "cell_type": "markdown", |
|
115 | 115 | "metadata": {}, |
|
116 | 116 | "source": [ |
|
117 | 117 | "Compute the integral both at high accuracy and with the trapezoid approximation" |
|
118 | 118 | ] |
|
119 | 119 | }, |
|
120 | 120 | { |
|
121 | 121 | "cell_type": "code", |
|
122 | 122 | "collapsed": false, |
|
123 | 123 | "input": [ |
|
124 | "from __future__ import print_function\n", | |
|
124 | 125 | "from scipy.integrate import quad, trapz\n", |
|
125 | 126 | "integral, error = quad(f, 1, 9)\n", |
|
126 |
"print |
|
|
127 |
"print |
|
|
127 | "print(\"The integral is:\", integral, \"+/-\", error)\n", | |
|
128 | "print(\"The trapezoid approximation with\", len(xint), \"points is:\", trapz(yint, xint))" | |
|
128 | 129 | ], |
|
129 | 130 | "language": "python", |
|
130 | 131 | "metadata": {}, |
|
131 | 132 | "outputs": [ |
|
132 | 133 | { |
|
133 | 134 | "output_type": "stream", |
|
134 | 135 | "stream": "stdout", |
|
135 | 136 | "text": [ |
|
136 | 137 | "The integral is: 680.0 +/- 7.54951656745e-12\n", |
|
137 | 138 | "The trapezoid approximation with 6 points is: 621.286411141\n" |
|
138 | 139 | ] |
|
139 | 140 | } |
|
140 | 141 | ], |
|
141 | 142 | "prompt_number": 5 |
|
142 | 143 | } |
|
143 | 144 | ], |
|
144 | 145 | "metadata": {} |
|
145 | 146 | } |
|
146 | 147 | ] |
|
147 | 148 | } No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now