Show More
@@ -1,71 +1,148 b'' | |||
|
1 | 1 | #!/usr/bin/env python |
|
2 | 2 | """Run a Monte-Carlo options pricer in parallel.""" |
|
3 | 3 | |
|
4 | #----------------------------------------------------------------------------- | |
|
5 | # Imports | |
|
6 | #----------------------------------------------------------------------------- | |
|
7 | ||
|
8 | import sys | |
|
9 | import time | |
|
4 | 10 | from IPython.kernel import client |
|
5 | 11 | import numpy as np |
|
6 | 12 | from mcpricer import price_options |
|
13 | from matplotlib import pyplot as plt | |
|
14 | ||
|
15 | #----------------------------------------------------------------------------- | |
|
16 | # Setup parameters for the run | |
|
17 | #----------------------------------------------------------------------------- | |
|
18 | ||
|
19 | def ask_question(text, the_type, default): | |
|
20 | s = '%s [%r]: ' % (text, the_type(default)) | |
|
21 | result = raw_input(s) | |
|
22 | if result: | |
|
23 | return the_type(result) | |
|
24 | else: | |
|
25 | return the_type(default) | |
|
26 | ||
|
27 | cluster_profile = ask_question("Cluster profile", str, "default") | |
|
28 | price = ask_question("Initial price", float, 100.0) | |
|
29 | rate = ask_question("Interest rate", float, 0.05) | |
|
30 | days = ask_question("Days to expiration", int, 260) | |
|
31 | paths = ask_question("Number of MC paths", int, 10000) | |
|
32 | n_strikes = ask_question("Number of strike values", int, 5) | |
|
33 | min_strike = ask_question("Min strike price", float, 90.0) | |
|
34 | max_strike = ask_question("Max strike price", float, 110.0) | |
|
35 | n_sigmas = ask_question("Number of volatility values", int, 5) | |
|
36 | min_sigma = ask_question("Min volatility", float, 0.1) | |
|
37 | max_sigma = ask_question("Max volatility", float, 0.4) | |
|
38 | ||
|
39 | strike_vals = np.linspace(min_strike, max_strike, n_strikes) | |
|
40 | sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas) | |
|
41 | ||
|
42 | #----------------------------------------------------------------------------- | |
|
43 | # Setup for parallel calculation | |
|
44 | #----------------------------------------------------------------------------- | |
|
7 | 45 | |
|
8 | 46 | # The MultiEngineClient is used to setup the calculation and works with all |
|
9 | 47 | # engine. |
|
10 |
mec = client.MultiEngineClient(profile= |
|
|
48 | mec = client.MultiEngineClient(profile=cluster_profile) | |
|
11 | 49 | |
|
12 | 50 | # The TaskClient is an interface to the engines that provides dynamic load |
|
13 | 51 | # balancing at the expense of not knowing which engine will execute the code. |
|
14 |
tc = client.TaskClient(profile= |
|
|
52 | tc = client.TaskClient(profile=cluster_profile) | |
|
15 | 53 | |
|
16 | 54 | # Initialize the common code on the engines. This Python module has the |
|
17 | 55 | # price_options function that prices the options. |
|
18 | 56 | mec.run('mcpricer.py') |
|
19 | 57 | |
|
20 | # Define the function that will make up our tasks. We basically want to | |
|
21 | # call the price_options function with all but two arguments (K, sigma) | |
|
22 | # fixed. | |
|
23 | def my_prices(K, sigma): | |
|
24 | S = 100.0 | |
|
25 | r = 0.05 | |
|
26 | days = 260 | |
|
27 | paths = 100000 | |
|
28 | return price_options(S, K, sigma, r, days, paths) | |
|
29 | ||
|
30 | # Create arrays of strike prices and volatilities | |
|
31 | nK = 10 | |
|
32 | nsigma = 10 | |
|
33 | K_vals = np.linspace(90.0, 100.0, nK) | |
|
34 | sigma_vals = np.linspace(0.1, 0.4, nsigma) | |
|
35 | ||
|
36 | # Submit tasks to the TaskClient for each (K, sigma) pair as a MapTask. | |
|
37 | # The MapTask simply applies a function (my_prices) to the arguments: | |
|
38 | # my_prices(K, sigma) and returns the result. | |
|
58 | #----------------------------------------------------------------------------- | |
|
59 | # Perform parallel calculation | |
|
60 | #----------------------------------------------------------------------------- | |
|
61 | ||
|
62 | print "Running parallel calculation over strike prices and volatilities..." | |
|
63 | print "Strike prices: ", strike_vals | |
|
64 | print "Volatilities: ", sigma_vals | |
|
65 | sys.stdout.flush() | |
|
66 | ||
|
67 | # Submit tasks to the TaskClient for each (strike, sigma) pair as a MapTask. | |
|
68 | t1 = time.time() | |
|
39 | 69 | taskids = [] |
|
40 |
for |
|
|
70 | for strike in strike_vals: | |
|
41 | 71 | for sigma in sigma_vals: |
|
42 |
t = client.MapTask( |
|
|
72 | t = client.MapTask( | |
|
73 | price_options, | |
|
74 | args=(price, strike, sigma, rate, days, paths) | |
|
75 | ) | |
|
43 | 76 | taskids.append(tc.run(t)) |
|
44 | 77 | |
|
45 | 78 | print "Submitted tasks: ", len(taskids) |
|
79 | sys.stdout.flush() | |
|
46 | 80 | |
|
47 | 81 | # Block until all tasks are completed. |
|
48 | 82 | tc.barrier(taskids) |
|
83 | t2 = time.time() | |
|
84 | t = t2-t1 | |
|
85 | ||
|
86 | print "Parallel calculation completed, time = %s s" % t | |
|
87 | print "Collecting results..." | |
|
49 | 88 | |
|
50 | 89 | # Get the results using TaskClient.get_task_result. |
|
51 | 90 | results = [tc.get_task_result(tid) for tid in taskids] |
|
52 | 91 | |
|
53 | 92 | # Assemble the result into a structured NumPy array. |
|
54 |
prices = np.empty(n |
|
|
93 | prices = np.empty(n_strikes*n_sigmas, | |
|
55 | 94 | dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)] |
|
56 | 95 | ) |
|
96 | ||
|
57 | 97 | for i, price_tuple in enumerate(results): |
|
58 | 98 | prices[i] = price_tuple |
|
59 | prices.shape = (nK, nsigma) | |
|
60 | K_vals, sigma_vals = np.meshgrid(K_vals, sigma_vals) | |
|
99 | ||
|
100 | prices.shape = (n_strikes, n_sigmas) | |
|
101 | strike_mesh, sigma_mesh = np.meshgrid(strike_vals, sigma_vals) | |
|
61 | 102 | |
|
62 | def plot_options(sigma_vals, K_vals, prices): | |
|
103 | print "Results are available: strike_mesh, sigma_mesh, prices" | |
|
104 | print "To plot results type 'plot_options(sigma_mesh, strike_mesh, prices)'" | |
|
105 | ||
|
106 | #----------------------------------------------------------------------------- | |
|
107 | # Utilities | |
|
108 | #----------------------------------------------------------------------------- | |
|
109 | ||
|
110 | def plot_options(sigma_mesh, strike_mesh, prices): | |
|
63 | 111 | """ |
|
64 |
Make a contour plot of the option price in (sigma, |
|
|
112 | Make a contour plot of the option price in (sigma, strike) space. | |
|
65 | 113 | """ |
|
66 | from matplotlib import pyplot as plt | |
|
67 | plt.contourf(sigma_vals, K_vals, prices) | |
|
114 | plt.figure(1) | |
|
115 | ||
|
116 | plt.subplot(221) | |
|
117 | plt.contourf(sigma_mesh, strike_mesh, prices['ecall']) | |
|
118 | plt.axis('tight') | |
|
68 | 119 | plt.colorbar() |
|
69 |
plt.title( |
|
|
120 | plt.title('European Call') | |
|
121 | plt.ylabel("Strike Price") | |
|
122 | ||
|
123 | plt.subplot(222) | |
|
124 | plt.contourf(sigma_mesh, strike_mesh, prices['acall']) | |
|
125 | plt.axis('tight') | |
|
126 | plt.colorbar() | |
|
127 | plt.title("Asian Call") | |
|
128 | ||
|
129 | plt.subplot(223) | |
|
130 | plt.contourf(sigma_mesh, strike_mesh, prices['eput']) | |
|
131 | plt.axis('tight') | |
|
132 | plt.colorbar() | |
|
133 | plt.title("European Put") | |
|
70 | 134 | plt.xlabel("Volatility") |
|
71 | 135 | plt.ylabel("Strike Price") |
|
136 | ||
|
137 | plt.subplot(224) | |
|
138 | plt.contourf(sigma_mesh, strike_mesh, prices['aput']) | |
|
139 | plt.axis('tight') | |
|
140 | plt.colorbar() | |
|
141 | plt.title("Asian Put") | |
|
142 | plt.xlabel("Volatility") | |
|
143 | ||
|
144 | ||
|
145 | ||
|
146 | ||
|
147 | ||
|
148 |
General Comments 0
You need to be logged in to leave comments.
Login now