##// END OF EJS Templates
update nbconvert to nbformat 4
MinRK -
Show More
@@ -5,7 +5,7 b''
5
5
6 from functools import wraps
6 from functools import wraps
7
7
8 from IPython.nbformat.v3.nbbase import NotebookNode
8 from IPython.nbformat.current import NotebookNode
9 from IPython.utils.decorators import undoc
9 from IPython.utils.decorators import undoc
10 from IPython.utils.py3compat import string_types
10 from IPython.utils.py3compat import string_types
11
11
@@ -1,177 +1,168 b''
1 {
1 {
2 "metadata": {
2 "cells": [
3 "name": "notebook2"
4 },
5 "nbformat": 3,
6 "nbformat_minor": 0,
7 "worksheets": [
8 {
3 {
9 "cells": [
4 "cell_type": "heading",
5 "level": 1,
6 "metadata": {},
7 "source": [
8 "NumPy and Matplotlib examples"
9 ]
10 },
11 {
12 "cell_type": "markdown",
13 "metadata": {},
14 "source": [
15 "First import NumPy and Matplotlib:"
16 ]
17 },
18 {
19 "cell_type": "code",
20 "metadata": {
21 "collapsed": false
22 },
23 "outputs": [
10 {
24 {
11 "cell_type": "heading",
12 "level": 1,
13 "metadata": {},
25 "metadata": {},
14 "source": [
26 "name": "stdout",
15 "NumPy and Matplotlib examples"
27 "output_type": "stream",
16 ]
28 "text": "\nWelcome to pylab, a matplotlib-based Python environment [backend: module://IPython.kernel.zmq.pylab.backend_inline].\nFor more information, type 'help(pylab)'.\n"
17 },
29 }
30 ],
31 "prompt_number": 1,
32 "source": [
33 "%pylab inline"
34 ]
35 },
36 {
37 "cell_type": "code",
38 "metadata": {
39 "collapsed": false
40 },
41 "outputs": [],
42 "prompt_number": 2,
43 "source": [
44 "import numpy as np"
45 ]
46 },
47 {
48 "cell_type": "markdown",
49 "metadata": {},
50 "source": [
51 "Now we show some very basic examples of how they can be used."
52 ]
53 },
54 {
55 "cell_type": "code",
56 "metadata": {
57 "collapsed": false
58 },
59 "outputs": [],
60 "prompt_number": 6,
61 "source": [
62 "a = np.random.uniform(size=(100,100))"
63 ]
64 },
65 {
66 "cell_type": "code",
67 "metadata": {
68 "collapsed": false
69 },
70 "outputs": [
18 {
71 {
19 "cell_type": "markdown",
20 "metadata": {},
72 "metadata": {},
21 "source": [
73 "output_type": "execute_result",
22 "First import NumPy and Matplotlib:"
74 "prompt_number": 7,
75 "text/plain": [
76 "(100, 100)"
23 ]
77 ]
24 },
78 }
25 {
79 ],
26 "cell_type": "code",
80 "prompt_number": 7,
27 "collapsed": false,
81 "source": [
28 "input": [
82 "a.shape"
29 "%pylab inline"
83 ]
30 ],
84 },
31 "language": "python",
85 {
32 "metadata": {},
86 "cell_type": "code",
33 "outputs": [
87 "metadata": {
34 {
88 "collapsed": false
35 "output_type": "stream",
89 },
36 "stream": "stdout",
90 "outputs": [],
37 "text": [
91 "prompt_number": 8,
38 "\n",
92 "source": [
39 "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.kernel.zmq.pylab.backend_inline].\n",
93 "evs = np.linalg.eigvals(a)"
40 "For more information, type 'help(pylab)'.\n"
94 ]
41 ]
95 },
42 }
96 {
43 ],
97 "cell_type": "code",
44 "prompt_number": 1
98 "metadata": {
45 },
99 "collapsed": false
46 {
100 },
47 "cell_type": "code",
101 "outputs": [
48 "collapsed": false,
49 "input": [
50 "import numpy as np"
51 ],
52 "language": "python",
53 "metadata": {},
54 "outputs": [],
55 "prompt_number": 2
56 },
57 {
102 {
58 "cell_type": "markdown",
59 "metadata": {},
103 "metadata": {},
60 "source": [
104 "output_type": "execute_result",
61 "Now we show some very basic examples of how they can be used."
105 "prompt_number": 10,
106 "text/plain": [
107 "(100,)"
62 ]
108 ]
63 },
109 }
64 {
110 ],
65 "cell_type": "code",
111 "prompt_number": 10,
66 "collapsed": false,
112 "source": [
67 "input": [
113 "evs.shape"
68 "a = np.random.uniform(size=(100,100))"
114 ]
69 ],
115 },
70 "language": "python",
116 {
71 "metadata": {},
117 "cell_type": "markdown",
72 "outputs": [],
118 "metadata": {},
73 "prompt_number": 6
119 "source": [
74 },
120 "Here is a cell that has both text and PNG output:"
75 {
121 ]
76 "cell_type": "code",
122 },
77 "collapsed": false,
123 {
78 "input": [
124 "cell_type": "code",
79 "a.shape"
125 "metadata": {
80 ],
126 "collapsed": false
81 "language": "python",
127 },
82 "metadata": {},
128 "outputs": [
83 "outputs": [
84 {
85 "metadata": {},
86 "output_type": "pyout",
87 "prompt_number": 7,
88 "text": [
89 "(100, 100)"
90 ]
91 }
92 ],
93 "prompt_number": 7
94 },
95 {
96 "cell_type": "code",
97 "collapsed": false,
98 "input": [
99 "evs = np.linalg.eigvals(a)"
100 ],
101 "language": "python",
102 "metadata": {},
103 "outputs": [],
104 "prompt_number": 8
105 },
106 {
107 "cell_type": "code",
108 "collapsed": false,
109 "input": [
110 "evs.shape"
111 ],
112 "language": "python",
113 "metadata": {},
114 "outputs": [
115 {
116 "metadata": {},
117 "output_type": "pyout",
118 "prompt_number": 10,
119 "text": [
120 "(100,)"
121 ]
122 }
123 ],
124 "prompt_number": 10
125 },
126 {
129 {
127 "cell_type": "markdown",
128 "metadata": {},
130 "metadata": {},
129 "source": [
131 "output_type": "execute_result",
130 "Here is a cell that has both text and PNG output:"
132 "prompt_number": 14,
133 "text/plain": [
134 "(array([95, 4, 0, 0, 0, 0, 0, 0, 0, 1]),\n",
135 " array([ -2.93566063, 2.35937011, 7.65440086, 12.9494316 ,\n",
136 " 18.24446235, 23.53949309, 28.83452384, 34.12955458,\n",
137 " 39.42458533, 44.71961607, 50.01464682]),\n",
138 " <a list of 10 Patch objects>)"
131 ]
139 ]
132 },
140 },
133 {
141 {
134 "cell_type": "code",
142 "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAD9CAYAAAC2l2x5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEhdJREFUeJzt3X1olfX/x/HXtVbT8CZDmsK6KmrubEu3U2xnZOpxLBnG\nOqsIE7RoE3QRZkT/yEAjcIh/LIs6i/BEGSU1CkxT0+pkFp1zMmsxZ5uUTIXoxm95lmdlef3+8Nep\ndbtz7exs16fnAw7sXNs5n/c14nmurl3naDmO4wgAYJy8sR4AADA6CDwAGIrAA4ChCDwAGIrAA4Ch\nCDwAGOofA9/U1KTCwkLNnj07vS2ZTCoUCsm2bTU2NmpgYCD9vccee0zFxcUqKyvTgQMHRm9qAMC/\n+sfA33PPPdq9e/eQbeFwWLZtq6+vT0VFRero6JAkffXVV3ryySf15ptvKhwOa/Xq1aM3NQDgX/1j\n4OfNm6dp06YN2RaPx9Xc3KyCggI1NTUpFotJkmKxmOrr62XbthYsWCDHcZRMJkdvcgDAP8r4HHwi\nkZDP55Mk+Xw+xeNxSecDX1pamv65kpKS9PcAALmXn+kDMvlkA8uyhrUNAPDvMv1kmYyP4KuqqtTT\n0yNJ6unpUVVVlSQpEAjo8OHD6Z87cuRI+nt/NaRXb+vWrRvzGZh/7Odgfu/dvDy747j7yLCMAx8I\nBBSJRJRKpRSJRFRTUyNJqq6u1p49e9Tf369oNKq8vDxNnjzZ1VAAgJH7x8AvXbpUN9xwg3p7e3X5\n5ZfrmWeeUUtLi/r7+1VSUqKTJ09q1apVkqTCwkK1tLSotrZW9957rzZv3pyTHQAA/DXLcXvs73ZB\ny3L9vxvjQTQaVTAYHOsxXGP+scX8Y8fLs0vu2kngAcAD3LSTjyoAAEMReAAwFIEHAEMReAAwFIEH\nAEP9ZwM/Zcqlsixr1G9Tplw61rsK4D/qP3uZ5PnPxMnFHONjfwF4G5dJAgDSCDwAGIrAA4ChCDwA\nGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrA\nA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChXAf+6aef1g03\n3KDrr79ea9askSQlk0mFQiHZtq3GxkYNDAxkbVAAQGZcBf7UqVPasGGD9u7dq0Qiod7eXu3Zs0fh\ncFi2bauvr09FRUXq6OjI9rwAgGFyFfiJEyfKcRx9//33SqVSOnPmjC655BLF43E1NzeroKBATU1N\nisVi2Z4XADBMrgMfDod15ZVXasaMGZo7d64CgYASiYR8Pp8kyefzKR6PZ3VYAMDw5bt50Ndff62W\nlhYdPnxY06ZN0x133KEdO3bIcZxhPX79+vXpr4PBoILBoJsxAMBY0WhU0Wh0RM9hOcOt8u/s3LlT\nW7du1bZt2yRJ4XBYx44d09GjR9Xa2iq/36+DBw+qra1NnZ2dQxe0rGG/EIwmy7Ik5WKO8bG/ALzN\nTTtdnaKZN2+ePvzwQ506dUo//vijdu3apUWLFikQCCgSiSiVSikSiaimpsbN0wMAssBV4KdMmaLW\n1lbdeuutuvHGG1VRUaGFCxeqpaVF/f39Kikp0cmTJ7Vq1apszwsAGCZXp2hGtCCnaAAgYzk7RQMA\nGP8IPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEI\nPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAY\nisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYynXgf/jhB919992a\nNWuWysrKFIvFlEwmFQqFZNu2GhsbNTAwkM1ZAQAZcB34devWybZtdXV1qaurSz6fT+FwWLZtq6+v\nT0VFRero6MjmrACADLgO/L59+7R27VpNmDBB+fn5mjp1quLxuJqbm1VQUKCmpibFYrFszgoAyICr\nwJ84cUKDg4NqaWlRIBDQxo0blUqllEgk5PP5JEk+n0/xeDyrwwIAhi/fzYMGBwfV29urTZs2qa6u\nTitXrtRLL70kx3GG9fj169envw4GgwoGg27GAABjRaNRRaPRET2H5Qy3yn9QWlqqnp4eSdKuXbv0\n3HPP6aefflJra6v8fr8OHjyotrY2dXZ2Dl3Qsob9QjCaLMuSlIs5xsf+AvA2N+10fQ6+uLhYsVhM\n586d086dO1VXV6dAIKBIJKJUKqVIJKKamhq3Tw8AGCHXR/C9vb266667NDg4qLq6Oj388MM6d+6c\nli1bpkOHDum6667T888/r0mTJg1dkCN4AMiYm3a6DrxbBB4AMpfTUzQAgPGNwAOAoQg8ABiKwAOA\noQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8\nABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiK\nwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoVwH/pdffpHf71dDQ4MkKZlMKhQKybZtNTY2\namBgIGtDAgAy5zrwmzdvVllZmSzLkiSFw2HZtq2+vj4VFRWpo6Mja0MCADLnKvAnTpzQ66+/rhUr\nVshxHElSPB5Xc3OzCgoK1NTUpFgsltVBAQCZcRX4Bx54QJs2bVJe3m8PTyQS8vl8kiSfz6d4PJ6d\nCQEAruRn+oAdO3bosssuk9/vVzQaTW//9Uh+ONavX5/+OhgMKhgMZjoGABgtGo0OaawblpNJmSWt\nXbtWW7duVX5+vgYHB3X69GnddtttOnPmjFpbW+X3+3Xw4EG1tbWps7PzzwtaVkYvBqPl/N8OcjHH\n+NhfAN7mpp0Zn6LZsGGDjh8/ri+++ELbtm1TbW2ttm7dqkAgoEgkolQqpUgkopqamkyfGgCQRSO+\nDv7Xq2haWlrU39+vkpISnTx5UqtWrRrxcAAA9zI+RTPiBTlFAwAZy8kpGgCANxB4ADAUgQcAQxF4\nADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAU\ngQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcA\nQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQ7kK/PHjx7Vw4UKVl5crGAzqhRdekCQlk0mFQiHZ\ntq3GxkYNDAxkdVgAwPC5CvyFF16o9vZ2dXd3q7OzU62trUomkwqHw7JtW319fSoqKlJHR0e25wUA\nDJOrwM+YMUOVlZWSpOnTp6u8vFyJRELxeFzNzc0qKChQU1OTYrFYVocFAAzfiM/BHz16VN3d3aqu\nrlYikZDP55Mk+Xw+xePxEQ8IAHAnfyQPTiaTWrJkidrb2zVp0iQ5jjOsx61fvz79dTAYVDAYHMkY\nAGCcaDSqaDQ6ouewnOFW+Q/Onj2rm2++WYsXL9aaNWskSbfffrtaW1vl9/t18OBBtbW1qbOzc+iC\nljXsF4LRZFmWpFzMMT72F4C3uWmnq1M0juOoublZ1157bTrukhQIBBSJRJRKpRSJRFRTU+Pm6QEA\nWeDqCP7AgQOaP3++5syZ8/9HwlJbW5vmzp2rZcuW6dChQ7ruuuv0/PPPa9KkSUMX5AgeADLmpp2u\nT9G4ReABIHM5O0UDABj/CDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrA\nA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4Ch\nCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4Ch8sd6APPly7KsUV1h8uRpOn361Kiu\nAcB7LMdxnJwuaFnK8ZJ/O4eUizlysc74+J0CGD1u2skpGgAwFIEHAEMReAAwVNYDv3//fpWWlqq4\nuFiPP/54tp9+HIiO9QAjEo1Gx3qEEWH+seXl+b08u1tZD/z999+vp556Svv27dMTTzyhb775JttL\njLHoWA8wIl7/j5z5x5aX5/fy7G5lNfDff/+9JGn+/Pm64oortGjRIsVisWwuAcBAU6ZcKsuyRvXW\n1rZxrHcz57Ia+EQiIZ/Pl75fVlamDz74IJtLADBQMvk/nb+cePRuP/00mLsdGieyeh38vn37tGXL\nFr344ouSpI6ODp08eVKPPPLIbwuO8pt+AMBUmeY6q+9kraqq0kMPPZS+393drfr6+iE/wxtyACA3\nsnqKZurUqZLOX0lz7Ngx7d27V4FAIJtLAACGKeufRfPoo49q5cqVOnv2rFavXq3p06dnewkAwDBk\n/TLJBQsWqKenR0ePHtXq1aslSS+//LLKy8t1wQUX6KOPPhry84899piKi4tVVlamAwcOZHucrPHa\n9f1NTU0qLCzU7Nmz09uSyaRCoZBs21ZjY6MGBgbGcMJ/dvz4cS1cuFDl5eUKBoN64YUXJHlnHwYH\nBxUIBFRZWamamhq1t7dL8s78kvTLL7/I7/eroaFBkrdmv/LKKzVnzhz5/X5VV1dL8tb8P/zwg+6+\n+27NmjVLZWVlisVirubPyTtZZ8+erVdffVXz588fsv2rr77Sk08+qTfffFPhcDj9gjAeee36/nvu\nuUe7d+8esi0cDsu2bfX19amoqEgdHR1jNN2/u/DCC9Xe3q7u7m51dnaqtbVVyWTSM/swYcIEvf32\n2/r444/1zjvvaMuWLerr6/PM/JK0efNmlZWVpS+M8NLslmUpGo3q0KFDisfjkrw1/7p162Tbtrq6\nutTV1SWfz+dq/pwE3ufzadasWX/aHovFVF9fL9u2tWDBAjmOo2QymYuRMuLF6/vnzZunadOmDdkW\nj8fV3NysgoICNTU1jet9mDFjhiorKyVJ06dPV3l5uRKJhKf24eKLL5YkDQwM6Oeff1ZBQYFn5j9x\n4oRef/11rVixIn1hhFdm/9UfL+jw0vz79u3T2rVrNWHCBOXn52vq1Kmu5h/Tz6KJx+MqLS1N3y8p\nKUm/2o4nplzf//v98Pl84/J3/VeOHj2q7u5uVVdXe2ofzp07p4qKChUWFuq+++6Tbduemf+BBx7Q\npk2blJf3WyK8Mrt0/gi+trZWjY2N2r59uyTvzH/ixAkNDg6qpaVFgUBAGzduVCqVcjV/1v7IetNN\nN+nLL7/80/YNGzakz+H90V9dMsl18qPHi5eoJpNJLVmyRO3t7Zo0aZKn9iEvL0+ffPKJjh07psWL\nF2vu3LmemH/Hjh267LLL5Pf7h7y93wuz/+q9997TzJkz1dPTo4aGBlVXV3tm/sHBQfX29mrTpk2q\nq6vTypUr9dJLL7maP2tH8Hv37tWnn376p9vfxV2SAoGADh8+nL5/5MgRVVVVZWukrKmqqtKRI0fS\n97u7u1VTUzOGE7lTVVWlnp4eSVJPT8+4/F3/3tmzZ3X77bdr+fLlCoVCkry3D9L5P/gtXrxYsVjM\nE/O///772r59u6666iotXbpUb731lpYvX+6J2X81c+ZMSVJpaaluueUWvfbaa56Z/5prrlFJSYka\nGho0ceJELV26VLt373Y1f85P0fz+Vai6ulp79uxRf3+/otGo8vLyNHny5FyP9K9Mub4/EAgoEoko\nlUopEomM6xcpx3HU3Nysa6+9VmvWrElv98o+fPPNN/ruu+8kSd9++63eeOMNhUIhT8y/YcMGHT9+\nXF988YW2bdum2tpabd261ROzS9KZM2fSf8v7+uuvtWfPHtXX13tmfkkqLi5WLBbTuXPntHPnTtXV\n1bmb38mBV155xSkqKnImTJjgFBYWOvX19envPfroo87VV1/tlJaWOvv378/FOK5Eo1HH5/M5V199\ntbN58+axHudf3Xnnnc7MmTOdiy66yCkqKnIikYhz+vRp55ZbbnEuv/xyJxQKOclkcqzH/Fvvvvuu\nY1mWU1FR4VRWVjqVlZXOrl27PLMPXV1djt/vd+bMmeMsWrTIefbZZx3HcTwz/6+i0ajT0NDgOI53\nZv/888+diooKp6KiwqmtrXW2bNniOI535nccx/nss8+cQCDgVFRUOA8++KAzMDDgav6c/5usAIDc\n4F90AgBDEXgAMBSBBwBDEXgAMBSBBwBDEXgAMNT/AQKseNIf7mhWAAAAAElFTkSuQmCC\n",
135 "collapsed": false,
136 "input": [
137 "hist(evs.real)"
138 ],
139 "language": "python",
140 "metadata": {},
143 "metadata": {},
141 "outputs": [
144 "output_type": "display_data",
142 {
145 "text/plain": [
143 "metadata": {},
146 "<matplotlib.figure.Figure at 0x108c8f1d0>"
144 "output_type": "pyout",
147 ]
145 "prompt_number": 14,
146 "text": [
147 "(array([95, 4, 0, 0, 0, 0, 0, 0, 0, 1]),\n",
148 " array([ -2.93566063, 2.35937011, 7.65440086, 12.9494316 ,\n",
149 " 18.24446235, 23.53949309, 28.83452384, 34.12955458,\n",
150 " 39.42458533, 44.71961607, 50.01464682]),\n",
151 " <a list of 10 Patch objects>)"
152 ]
153 },
154 {
155 "metadata": {},
156 "output_type": "display_data",
157 "png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAD9CAYAAAC2l2x5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEhdJREFUeJzt3X1olfX/x/HXtVbT8CZDmsK6KmrubEu3U2xnZOpxLBnG\nOqsIE7RoE3QRZkT/yEAjcIh/LIs6i/BEGSU1CkxT0+pkFp1zMmsxZ5uUTIXoxm95lmdlef3+8Nep\ndbtz7exs16fnAw7sXNs5n/c14nmurl3naDmO4wgAYJy8sR4AADA6CDwAGIrAA4ChCDwAGIrAA4Ch\nCDwAGOofA9/U1KTCwkLNnj07vS2ZTCoUCsm2bTU2NmpgYCD9vccee0zFxcUqKyvTgQMHRm9qAMC/\n+sfA33PPPdq9e/eQbeFwWLZtq6+vT0VFRero6JAkffXVV3ryySf15ptvKhwOa/Xq1aM3NQDgX/1j\n4OfNm6dp06YN2RaPx9Xc3KyCggI1NTUpFotJkmKxmOrr62XbthYsWCDHcZRMJkdvcgDAP8r4HHwi\nkZDP55Mk+Xw+xeNxSecDX1pamv65kpKS9PcAALmXn+kDMvlkA8uyhrUNAPDvMv1kmYyP4KuqqtTT\n0yNJ6unpUVVVlSQpEAjo8OHD6Z87cuRI+nt/NaRXb+vWrRvzGZh/7Odgfu/dvDy747j7yLCMAx8I\nBBSJRJRKpRSJRFRTUyNJqq6u1p49e9Tf369oNKq8vDxNnjzZ1VAAgJH7x8AvXbpUN9xwg3p7e3X5\n5ZfrmWeeUUtLi/r7+1VSUqKTJ09q1apVkqTCwkK1tLSotrZW9957rzZv3pyTHQAA/DXLcXvs73ZB\ny3L9vxvjQTQaVTAYHOsxXGP+scX8Y8fLs0vu2kngAcAD3LSTjyoAAEMReAAwFIEHAEMReAAwFIEH\nAEP9ZwM/Zcqlsixr1G9Tplw61rsK4D/qP3uZ5PnPxMnFHONjfwF4G5dJAgDSCDwAGIrAA4ChCDwA\nGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrA\nA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChXAf+6aef1g03\n3KDrr79ea9askSQlk0mFQiHZtq3GxkYNDAxkbVAAQGZcBf7UqVPasGGD9u7dq0Qiod7eXu3Zs0fh\ncFi2bauvr09FRUXq6OjI9rwAgGFyFfiJEyfKcRx9//33SqVSOnPmjC655BLF43E1NzeroKBATU1N\nisVi2Z4XADBMrgMfDod15ZVXasaMGZo7d64CgYASiYR8Pp8kyefzKR6PZ3VYAMDw5bt50Ndff62W\nlhYdPnxY06ZN0x133KEdO3bIcZxhPX79+vXpr4PBoILBoJsxAMBY0WhU0Wh0RM9hOcOt8u/s3LlT\nW7du1bZt2yRJ4XBYx44d09GjR9Xa2iq/36+DBw+qra1NnZ2dQxe0rGG/EIwmy7Ik5WKO8bG/ALzN\nTTtdnaKZN2+ePvzwQ506dUo//vijdu3apUWLFikQCCgSiSiVSikSiaimpsbN0wMAssBV4KdMmaLW\n1lbdeuutuvHGG1VRUaGFCxeqpaVF/f39Kikp0cmTJ7Vq1apszwsAGCZXp2hGtCCnaAAgYzk7RQMA\nGP8IPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEI\nPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAY\nisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYisADgKEIPAAYynXgf/jhB919992a\nNWuWysrKFIvFlEwmFQqFZNu2GhsbNTAwkM1ZAQAZcB34devWybZtdXV1qaurSz6fT+FwWLZtq6+v\nT0VFRero6MjmrACADLgO/L59+7R27VpNmDBB+fn5mjp1quLxuJqbm1VQUKCmpibFYrFszgoAyICr\nwJ84cUKDg4NqaWlRIBDQxo0blUqllEgk5PP5JEk+n0/xeDyrwwIAhi/fzYMGBwfV29urTZs2qa6u\nTitXrtRLL70kx3GG9fj169envw4GgwoGg27GAABjRaNRRaPRET2H5Qy3yn9QWlqqnp4eSdKuXbv0\n3HPP6aefflJra6v8fr8OHjyotrY2dXZ2Dl3Qsob9QjCaLMuSlIs5xsf+AvA2N+10fQ6+uLhYsVhM\n586d086dO1VXV6dAIKBIJKJUKqVIJKKamhq3Tw8AGCHXR/C9vb266667NDg4qLq6Oj388MM6d+6c\nli1bpkOHDum6667T888/r0mTJg1dkCN4AMiYm3a6DrxbBB4AMpfTUzQAgPGNwAOAoQg8ABiKwAOA\noQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8\nABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiK\nwAOAoQg8ABiKwAOAoQg8ABiKwAOAoQg8ABiKwAOAoVwH/pdffpHf71dDQ4MkKZlMKhQKybZtNTY2\namBgIGtDAgAy5zrwmzdvVllZmSzLkiSFw2HZtq2+vj4VFRWpo6Mja0MCADLnKvAnTpzQ66+/rhUr\nVshxHElSPB5Xc3OzCgoK1NTUpFgsltVBAQCZcRX4Bx54QJs2bVJe3m8PTyQS8vl8kiSfz6d4PJ6d\nCQEAruRn+oAdO3bosssuk9/vVzQaTW//9Uh+ONavX5/+OhgMKhgMZjoGABgtGo0OaawblpNJmSWt\nXbtWW7duVX5+vgYHB3X69GnddtttOnPmjFpbW+X3+3Xw4EG1tbWps7PzzwtaVkYvBqPl/N8OcjHH\n+NhfAN7mpp0Zn6LZsGGDjh8/ri+++ELbtm1TbW2ttm7dqkAgoEgkolQqpUgkopqamkyfGgCQRSO+\nDv7Xq2haWlrU39+vkpISnTx5UqtWrRrxcAAA9zI+RTPiBTlFAwAZy8kpGgCANxB4ADAUgQcAQxF4\nADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAU\ngQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcA\nQxF4ADAUgQcAQxF4ADAUgQcAQxF4ADAUgQcAQ7kK/PHjx7Vw4UKVl5crGAzqhRdekCQlk0mFQiHZ\ntq3GxkYNDAxkdVgAwPC5CvyFF16o9vZ2dXd3q7OzU62trUomkwqHw7JtW319fSoqKlJHR0e25wUA\nDJOrwM+YMUOVlZWSpOnTp6u8vFyJRELxeFzNzc0qKChQU1OTYrFYVocFAAzfiM/BHz16VN3d3aqu\nrlYikZDP55Mk+Xw+xePxEQ8IAHAnfyQPTiaTWrJkidrb2zVp0iQ5jjOsx61fvz79dTAYVDAYHMkY\nAGCcaDSqaDQ6ouewnOFW+Q/Onj2rm2++WYsXL9aaNWskSbfffrtaW1vl9/t18OBBtbW1qbOzc+iC\nljXsF4LRZFmWpFzMMT72F4C3uWmnq1M0juOoublZ1157bTrukhQIBBSJRJRKpRSJRFRTU+Pm6QEA\nWeDqCP7AgQOaP3++5syZ8/9HwlJbW5vmzp2rZcuW6dChQ7ruuuv0/PPPa9KkSUMX5AgeADLmpp2u\nT9G4ReABIHM5O0UDABj/CDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrA\nA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4Ch\nCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4ChCDwAGIrAA4Ch8sd6APPly7KsUV1h8uRpOn361Kiu\nAcB7LMdxnJwuaFnK8ZJ/O4eUizlysc74+J0CGD1u2skpGgAwFIEHAEMReAAwVNYDv3//fpWWlqq4\nuFiPP/54tp9+HIiO9QAjEo1Gx3qEEWH+seXl+b08u1tZD/z999+vp556Svv27dMTTzyhb775JttL\njLHoWA8wIl7/j5z5x5aX5/fy7G5lNfDff/+9JGn+/Pm64oortGjRIsVisWwuAcBAU6ZcKsuyRvXW\n1rZxrHcz57Ia+EQiIZ/Pl75fVlamDz74IJtLADBQMvk/nb+cePRuP/00mLsdGieyeh38vn37tGXL\nFr344ouSpI6ODp08eVKPPPLIbwuO8pt+AMBUmeY6q+9kraqq0kMPPZS+393drfr6+iE/wxtyACA3\nsnqKZurUqZLOX0lz7Ngx7d27V4FAIJtLAACGKeufRfPoo49q5cqVOnv2rFavXq3p06dnewkAwDBk\n/TLJBQsWqKenR0ePHtXq1aslSS+//LLKy8t1wQUX6KOPPhry84899piKi4tVVlamAwcOZHucrPHa\n9f1NTU0qLCzU7Nmz09uSyaRCoZBs21ZjY6MGBgbGcMJ/dvz4cS1cuFDl5eUKBoN64YUXJHlnHwYH\nBxUIBFRZWamamhq1t7dL8s78kvTLL7/I7/eroaFBkrdmv/LKKzVnzhz5/X5VV1dL8tb8P/zwg+6+\n+27NmjVLZWVlisVirubPyTtZZ8+erVdffVXz588fsv2rr77Sk08+qTfffFPhcDj9gjAeee36/nvu\nuUe7d+8esi0cDsu2bfX19amoqEgdHR1jNN2/u/DCC9Xe3q7u7m51dnaqtbVVyWTSM/swYcIEvf32\n2/r444/1zjvvaMuWLerr6/PM/JK0efNmlZWVpS+M8NLslmUpGo3q0KFDisfjkrw1/7p162Tbtrq6\nutTV1SWfz+dq/pwE3ufzadasWX/aHovFVF9fL9u2tWDBAjmOo2QymYuRMuLF6/vnzZunadOmDdkW\nj8fV3NysgoICNTU1jet9mDFjhiorKyVJ06dPV3l5uRKJhKf24eKLL5YkDQwM6Oeff1ZBQYFn5j9x\n4oRef/11rVixIn1hhFdm/9UfL+jw0vz79u3T2rVrNWHCBOXn52vq1Kmu5h/Tz6KJx+MqLS1N3y8p\nKUm/2o4nplzf//v98Pl84/J3/VeOHj2q7u5uVVdXe2ofzp07p4qKChUWFuq+++6Tbduemf+BBx7Q\npk2blJf3WyK8Mrt0/gi+trZWjY2N2r59uyTvzH/ixAkNDg6qpaVFgUBAGzduVCqVcjV/1v7IetNN\nN+nLL7/80/YNGzakz+H90V9dMsl18qPHi5eoJpNJLVmyRO3t7Zo0aZKn9iEvL0+ffPKJjh07psWL\nF2vu3LmemH/Hjh267LLL5Pf7h7y93wuz/+q9997TzJkz1dPTo4aGBlVXV3tm/sHBQfX29mrTpk2q\nq6vTypUr9dJLL7maP2tH8Hv37tWnn376p9vfxV2SAoGADh8+nL5/5MgRVVVVZWukrKmqqtKRI0fS\n97u7u1VTUzOGE7lTVVWlnp4eSVJPT8+4/F3/3tmzZ3X77bdr+fLlCoVCkry3D9L5P/gtXrxYsVjM\nE/O///772r59u6666iotXbpUb731lpYvX+6J2X81c+ZMSVJpaaluueUWvfbaa56Z/5prrlFJSYka\nGho0ceJELV26VLt373Y1f85P0fz+Vai6ulp79uxRf3+/otGo8vLyNHny5FyP9K9Mub4/EAgoEoko\nlUopEomM6xcpx3HU3Nysa6+9VmvWrElv98o+fPPNN/ruu+8kSd9++63eeOMNhUIhT8y/YcMGHT9+\nXF988YW2bdum2tpabd261ROzS9KZM2fSf8v7+uuvtWfPHtXX13tmfkkqLi5WLBbTuXPntHPnTtXV\n1bmb38mBV155xSkqKnImTJjgFBYWOvX19envPfroo87VV1/tlJaWOvv378/FOK5Eo1HH5/M5V199\ntbN58+axHudf3Xnnnc7MmTOdiy66yCkqKnIikYhz+vRp55ZbbnEuv/xyJxQKOclkcqzH/Fvvvvuu\nY1mWU1FR4VRWVjqVlZXOrl27PLMPXV1djt/vd+bMmeMsWrTIefbZZx3HcTwz/6+i0ajT0NDgOI53\nZv/888+diooKp6KiwqmtrXW2bNniOI535nccx/nss8+cQCDgVFRUOA8++KAzMDDgav6c/5usAIDc\n4F90AgBDEXgAMBSBBwBDEXgAMBSBBwBDEXgAMNT/AQKseNIf7mhWAAAAAElFTkSuQmCC\n",
158 "text": [
159 "<matplotlib.figure.Figure at 0x108c8f1d0>"
160 ]
161 }
162 ],
163 "prompt_number": 14
164 },
165 {
166 "cell_type": "code",
167 "collapsed": false,
168 "input": [],
169 "language": "python",
170 "metadata": {},
171 "outputs": []
172 }
148 }
173 ],
149 ],
174 "metadata": {}
150 "prompt_number": 14,
151 "source": [
152 "hist(evs.real)"
153 ]
154 },
155 {
156 "cell_type": "code",
157 "metadata": {
158 "collapsed": false
159 },
160 "outputs": [],
161 "prompt_number": null,
162 "source": []
175 }
163 }
176 ]
164 ],
165 "metadata": {},
166 "nbformat": 4,
167 "nbformat_minor": 0
177 } No newline at end of file
168 }
@@ -1,84 +1,77 b''
1 {
1 {
2 "metadata": {
2 "cells": [
3 "name": ""
4 },
5 "nbformat": 3,
6 "nbformat_minor": 0,
7 "worksheets": [
8 {
3 {
9 "cells": [
4 "cell_type": "raw",
10 {
5 "metadata": {
11 "cell_type": "raw",
6 "raw_mimetype": "text/html"
12 "metadata": {
7 },
13 "raw_mimetype": "text/html"
8 "source": [
14 },
9 "<b>raw html</b>"
15 "source": [
10 ]
16 "<b>raw html</b>"
11 },
17 ]
12 {
18 },
13 "cell_type": "raw",
19 {
14 "metadata": {
20 "cell_type": "raw",
15 "raw_mimetype": "text/markdown"
21 "metadata": {
16 },
22 "raw_mimetype": "text/markdown"
17 "source": [
23 },
18 "* raw markdown\n",
24 "source": [
19 "* bullet\n",
25 "* raw markdown\n",
20 "* list"
26 "* bullet\n",
21 ]
27 "* list"
22 },
28 ]
23 {
29 },
24 "cell_type": "raw",
30 {
25 "metadata": {
31 "cell_type": "raw",
26 "raw_mimetype": "text/restructuredtext"
32 "metadata": {
27 },
33 "raw_mimetype": "text/restructuredtext"
28 "source": [
34 },
29 "``raw rst``\n",
35 "source": [
30 "\n",
36 "``raw rst``\n",
31 ".. sourcecode:: python\n",
37 "\n",
32 "\n",
38 ".. sourcecode:: python\n",
33 " def foo(): pass\n"
39 "\n",
34 ]
40 " def foo(): pass\n"
35 },
41 ]
36 {
42 },
37 "cell_type": "raw",
43 {
38 "metadata": {
44 "cell_type": "raw",
39 "raw_mimetype": "text/x-python"
45 "metadata": {
40 },
46 "raw_mimetype": "text/x-python"
41 "source": [
47 },
42 "def bar():\n",
48 "source": [
43 " \"\"\"raw python\"\"\"\n",
49 "def bar():\n",
44 " pass"
50 " \"\"\"raw python\"\"\"\n",
45 ]
51 " pass"
46 },
52 ]
47 {
53 },
48 "cell_type": "raw",
54 {
49 "metadata": {
55 "cell_type": "raw",
50 "raw_mimetype": "text/latex"
56 "metadata": {
51 },
57 "raw_mimetype": "text/latex"
52 "source": [
58 },
53 "\\LaTeX\n",
59 "source": [
54 "% raw latex"
60 "\\LaTeX\n",
55 ]
61 "% raw latex"
56 },
62 ]
57 {
63 },
58 "cell_type": "raw",
64 {
59 "metadata": {},
65 "cell_type": "raw",
60 "source": [
66 "metadata": {},
61 "# no raw_mimetype metadata, should be included by default"
67 "source": [
62 ]
68 "# no raw_mimetype metadata, should be included by default"
63 },
69 ]
64 {
70 },
65 "cell_type": "raw",
71 {
66 "metadata": {
72 "cell_type": "raw",
67 "raw_mimetype": "doesnotexist"
73 "metadata": {
68 },
74 "raw_mimetype": "doesnotexist"
69 "source": [
75 },
70 "garbage format defined, should never be included"
76 "source": [
71 ]
77 "garbage format defined, should never be included"
78 ]
79 }
80 ],
81 "metadata": {}
82 }
72 }
83 ]
73 ],
84 }
74 "metadata": {},
75 "nbformat": 4,
76 "nbformat_minor": 0
77 } No newline at end of file
@@ -86,10 +86,8 b' class TestLatexExporter(ExportersTestsBase):'
86
86
87 notebook_name = "lorem_ipsum_long.ipynb"
87 notebook_name = "lorem_ipsum_long.ipynb"
88 nb = current.new_notebook(
88 nb = current.new_notebook(
89 worksheets=[
89 cells=[
90 current.new_worksheet(cells=[
90 current.new_markdown_cell(source=large_lorem_ipsum_text)
91 current.new_text_cell('markdown',source=large_lorem_ipsum_text)
92 ])
93 ]
91 ]
94 )
92 )
95
93
@@ -20,9 +20,6 b' from .base import ExportersTestsBase'
20 from ..rst import RSTExporter
20 from ..rst import RSTExporter
21 from IPython.testing.decorators import onlyif_cmds_exist
21 from IPython.testing.decorators import onlyif_cmds_exist
22
22
23 #-----------------------------------------------------------------------------
24 # Class
25 #-----------------------------------------------------------------------------
26
23
27 class TestRSTExporter(ExportersTestsBase):
24 class TestRSTExporter(ExportersTestsBase):
28 """Tests for RSTExporter"""
25 """Tests for RSTExporter"""
@@ -56,8 +53,8 b' class TestRSTExporter(ExportersTestsBase):'
56
53
57 (output, resources) = exporter.from_notebook_node(nb)
54 (output, resources) = exporter.from_notebook_node(nb)
58 # add an empty code cell
55 # add an empty code cell
59 nb.worksheets[0].cells.append(
56 nb.cells.append(
60 current.new_code_cell(input="")
57 current.new_code_cell(source="")
61 )
58 )
62 (output2, resources) = exporter.from_notebook_node(nb)
59 (output2, resources) = exporter.from_notebook_node(nb)
63 # adding an empty code cell shouldn't change output
60 # adding an empty code cell shouldn't change output
@@ -66,9 +66,8 b' class Preprocessor(NbConvertBase):'
66 Additional resources used in the conversion process. Allows
66 Additional resources used in the conversion process. Allows
67 preprocessors to pass variables into the Jinja engine.
67 preprocessors to pass variables into the Jinja engine.
68 """
68 """
69 for worksheet in nb.worksheets:
69 for index, cell in enumerate(nb.cells):
70 for index, cell in enumerate(worksheet.cells):
70 nb.cells[index], resources = self.preprocess_cell(cell, resources, index)
71 worksheet.cells[index], resources = self.preprocess_cell(cell, resources, index)
72 return nb, resources
71 return nb, resources
73
72
74
73
@@ -4,6 +4,7 b''
4 # Distributed under the terms of the Modified BSD License.
4 # Distributed under the terms of the Modified BSD License.
5
5
6 import re
6 import re
7 from IPython.utils.log import get_logger
7
8
8 def cell_preprocessor(function):
9 def cell_preprocessor(function):
9 """
10 """
@@ -21,14 +22,11 b' def cell_preprocessor(function):'
21 """
22 """
22
23
23 def wrappedfunc(nb, resources):
24 def wrappedfunc(nb, resources):
24 from IPython.config import Application
25 get_logger().debug(
25 if Application.initialized():
26 Application.instance().log.debug(
27 "Applying preprocessor: %s", function.__name__
26 "Applying preprocessor: %s", function.__name__
28 )
27 )
29 for worksheet in nb.worksheets:
28 for index, cell in enumerate(nb.cells):
30 for index, cell in enumerate(worksheet.cells):
29 nb.cells[index], resources = function(cell, resources, index)
31 worksheet.cells[index], resources = function(cell, resources, index)
32 return nb, resources
30 return nb, resources
33 return wrappedfunc
31 return wrappedfunc
34
32
@@ -60,7 +58,7 b' def coalesce_streams(cell, resources, index):'
60 for output in outputs[1:]:
58 for output in outputs[1:]:
61 if (output.output_type == 'stream' and
59 if (output.output_type == 'stream' and
62 last.output_type == 'stream' and
60 last.output_type == 'stream' and
63 last.stream == output.stream
61 last.name == output.name
64 ):
62 ):
65 last.text += output.text
63 last.text += output.text
66
64
@@ -13,7 +13,7 b' except ImportError:'
13
13
14 from IPython.utils.traitlets import List, Unicode
14 from IPython.utils.traitlets import List, Unicode
15
15
16 from IPython.nbformat.current import reads, NotebookNode, writes
16 from IPython.nbformat.current import reads, writes, new_output
17 from .base import Preprocessor
17 from .base import Preprocessor
18 from IPython.utils.traitlets import Integer
18 from IPython.utils.traitlets import Integer
19
19
@@ -25,25 +25,6 b' class ExecutePreprocessor(Preprocessor):'
25 timeout = Integer(30, config=True,
25 timeout = Integer(30, config=True,
26 help="The time to wait (in seconds) for output from executions."
26 help="The time to wait (in seconds) for output from executions."
27 )
27 )
28 # FIXME: to be removed with nbformat v4
29 # map msg_type to v3 output_type
30 msg_type_map = {
31 "error" : "pyerr",
32 "execute_result" : "pyout",
33 }
34
35 # FIXME: to be removed with nbformat v4
36 # map mime-type to v3 mime-type keys
37 mime_map = {
38 "text/plain" : "text",
39 "text/html" : "html",
40 "image/svg+xml" : "svg",
41 "image/png" : "png",
42 "image/jpeg" : "jpeg",
43 "text/latex" : "latex",
44 "application/json" : "json",
45 "application/javascript" : "javascript",
46 }
47
28
48 extra_arguments = List(Unicode)
29 extra_arguments = List(Unicode)
49
30
@@ -68,14 +49,14 b' class ExecutePreprocessor(Preprocessor):'
68 outputs = self.run_cell(self.kc.shell_channel, self.kc.iopub_channel, cell)
49 outputs = self.run_cell(self.kc.shell_channel, self.kc.iopub_channel, cell)
69 except Exception as e:
50 except Exception as e:
70 self.log.error("failed to run cell: " + repr(e))
51 self.log.error("failed to run cell: " + repr(e))
71 self.log.error(str(cell.input))
52 self.log.error(str(cell.source))
72 raise
53 raise
73 cell.outputs = outputs
54 cell.outputs = outputs
74 return cell, resources
55 return cell, resources
75
56
76 def run_cell(self, shell, iopub, cell):
57 def run_cell(self, shell, iopub, cell):
77 msg_id = shell.execute(cell.input)
58 msg_id = shell.execute(cell.source)
78 self.log.debug("Executing cell:\n%s", cell.input)
59 self.log.debug("Executing cell:\n%s", cell.source)
79 # wait for finish, with timeout
60 # wait for finish, with timeout
80 while True:
61 while True:
81 try:
62 try:
@@ -104,7 +85,6 b' class ExecutePreprocessor(Preprocessor):'
104 msg_type = msg['msg_type']
85 msg_type = msg['msg_type']
105 self.log.debug("output: %s", msg_type)
86 self.log.debug("output: %s", msg_type)
106 content = msg['content']
87 content = msg['content']
107 out = NotebookNode(output_type=self.msg_type_map.get(msg_type, msg_type))
108
88
109 # set the prompt number for the input and the output
89 # set the prompt number for the input and the output
110 if 'execution_count' in content:
90 if 'execution_count' in content:
@@ -116,26 +96,37 b' class ExecutePreprocessor(Preprocessor):'
116 break
96 break
117 else:
97 else:
118 continue
98 continue
119 elif msg_type in {'execute_input', 'pyin'}:
99 elif msg_type in {'execute_input'}:
120 continue
100 continue
121 elif msg_type == 'clear_output':
101 elif msg_type == 'clear_output':
122 outs = []
102 outs = []
123 continue
103 continue
124
104
125 if msg_type == 'stream':
105 # set the prompt number for the input and the output
126 out.stream = content['name']
106 if msg_type == 'execute_result':
127 out.text = content['text']
107 cell['prompt_number'] = content['execution_count']
128 elif msg_type in ('display_data', 'execute_result'):
108 out = new_output(output_type=msg_type,
129 out['metadata'] = content['metadata']
109 metadata=content['metadata'],
130 for mime, data in content['data'].items():
110 mime_bundle=content['data'],
131 # map mime-type keys to nbformat v3 keys
111 prompt_number=content['execution_count'],
132 # this will be unnecessary in nbformat v4
112 )
133 key = self.mime_map.get(mime, mime)
113
134 out[key] = data
114 elif msg_type == 'stream':
115 out = new_output(output_type=msg_type,
116 name=content['name'],
117 data=content['data'],
118 )
119 elif msg_type == 'display_data':
120 out = new_output(output_type=msg_type,
121 metadata=content['metadata'],
122 mime_bundle=content['data'],
123 )
135 elif msg_type == 'error':
124 elif msg_type == 'error':
136 out.ename = content['ename']
125 out = new_output(output_type=msg_type,
137 out.evalue = content['evalue']
126 ename=content['ename'],
138 out.traceback = content['traceback']
127 evalue=content['evalue'],
128 traceback=content['traceback'],
129 )
139 else:
130 else:
140 self.log.error("unhandled iopub msg: " + msg_type)
131 self.log.error("unhandled iopub msg: " + msg_type)
141
132
@@ -1,17 +1,9 b''
1 """Module containing a preprocessor that extracts all of the outputs from the
1 """A preprocessor that extracts all of the outputs from the
2 notebook file. The extracted outputs are returned in the 'resources' dictionary.
2 notebook file. The extracted outputs are returned in the 'resources' dictionary.
3 """
3 """
4 #-----------------------------------------------------------------------------
5 # Copyright (c) 2013, the IPython Development Team.
6 #
7 # Distributed under the terms of the Modified BSD License.
8 #
9 # The full license is in the file COPYING.txt, distributed with this software.
10 #-----------------------------------------------------------------------------
11
4
12 #-----------------------------------------------------------------------------
5 # Copyright (c) IPython Development Team.
13 # Imports
6 # Distributed under the terms of the Modified BSD License.
14 #-----------------------------------------------------------------------------
15
7
16 import base64
8 import base64
17 import sys
9 import sys
@@ -22,9 +14,6 b' from IPython.utils.traitlets import Unicode, Set'
22 from .base import Preprocessor
14 from .base import Preprocessor
23 from IPython.utils import py3compat
15 from IPython.utils import py3compat
24
16
25 #-----------------------------------------------------------------------------
26 # Classes
27 #-----------------------------------------------------------------------------
28
17
29 class ExtractOutputPreprocessor(Preprocessor):
18 class ExtractOutputPreprocessor(Preprocessor):
30 """
19 """
@@ -35,7 +24,7 b' class ExtractOutputPreprocessor(Preprocessor):'
35 output_filename_template = Unicode(
24 output_filename_template = Unicode(
36 "{unique_key}_{cell_index}_{index}{extension}", config=True)
25 "{unique_key}_{cell_index}_{index}{extension}", config=True)
37
26
38 extract_output_types = Set({'png', 'jpeg', 'svg', 'application/pdf'}, config=True)
27 extract_output_types = Set({'image/png', 'image/jpeg', 'image/svg+xml', 'application/pdf'}, config=True)
39
28
40 def preprocess_cell(self, cell, resources, cell_index):
29 def preprocess_cell(self, cell, resources, cell_index):
41 """
30 """
@@ -71,7 +60,7 b' class ExtractOutputPreprocessor(Preprocessor):'
71 data = out[out_type]
60 data = out[out_type]
72
61
73 #Binary files are base64-encoded, SVG is already XML
62 #Binary files are base64-encoded, SVG is already XML
74 if out_type in {'png', 'jpeg', 'application/pdf'}:
63 if out_type in {'image/png', 'image/jpeg', 'application/pdf'}:
75
64
76 # data is b64-encoded as text (str, unicode)
65 # data is b64-encoded as text (str, unicode)
77 # decodestring only accepts bytes
66 # decodestring only accepts bytes
@@ -4,17 +4,8 b' so that the appropriate highlighter can be used in the `highlight`'
4 filter.
4 filter.
5 """
5 """
6
6
7 #-----------------------------------------------------------------------------
7 # Copyright (c) IPython Development Team.
8 # Copyright (c) 2013, the IPython Development Team.
9 #
10 # Distributed under the terms of the Modified BSD License.
8 # Distributed under the terms of the Modified BSD License.
11 #
12 # The full license is in the file COPYING.txt, distributed with this software.
13 #-----------------------------------------------------------------------------
14
15 #-----------------------------------------------------------------------------
16 # Imports
17 #-----------------------------------------------------------------------------
18
9
19 from __future__ import print_function, absolute_import
10 from __future__ import print_function, absolute_import
20
11
@@ -24,10 +15,6 b' import re'
24 from .base import Preprocessor
15 from .base import Preprocessor
25 from IPython.utils.traitlets import Dict
16 from IPython.utils.traitlets import Dict
26
17
27 #-----------------------------------------------------------------------------
28 # Classes
29 #-----------------------------------------------------------------------------
30
31
18
32 class HighlightMagicsPreprocessor(Preprocessor):
19 class HighlightMagicsPreprocessor(Preprocessor):
33 """
20 """
@@ -106,8 +93,8 b' class HighlightMagicsPreprocessor(Preprocessor):'
106 """
93 """
107
94
108 # Only tag code cells
95 # Only tag code cells
109 if hasattr(cell, "input") and cell.cell_type == "code":
96 if cell.cell_type == "code":
110 magic_language = self.which_magic_language(cell.input)
97 magic_language = self.which_magic_language(cell.source)
111 if magic_language:
98 if magic_language:
112 cell['metadata']['magics_language'] = magic_language
99 cell['metadata']['magics_language'] = magic_language
113 return cell, resources
100 return cell, resources
@@ -1,23 +1,11 b''
1 """Module that pre-processes the notebook for export via Reveal.
1 """Module that pre-processes the notebook for export via Reveal."""
2 """
3 #-----------------------------------------------------------------------------
4 # Copyright (c) 2013, the IPython Development Team.
5 #
6 # Distributed under the terms of the Modified BSD License.
7 #
8 # The full license is in the file COPYING.txt, distributed with this software.
9 #-----------------------------------------------------------------------------
10
2
11 #-----------------------------------------------------------------------------
3 # Copyright (c) IPython Development Team.
12 # Imports
4 # Distributed under the terms of the Modified BSD License.
13 #-----------------------------------------------------------------------------
14
5
15 from .base import Preprocessor
6 from .base import Preprocessor
16 from IPython.utils.traitlets import Unicode
7 from IPython.utils.traitlets import Unicode
17
8
18 #-----------------------------------------------------------------------------
19 # Classes and functions
20 #-----------------------------------------------------------------------------
21
9
22 class RevealHelpPreprocessor(Preprocessor):
10 class RevealHelpPreprocessor(Preprocessor):
23
11
@@ -43,31 +31,30 b' class RevealHelpPreprocessor(Preprocessor):'
43 preprocessors to pass variables into the Jinja engine.
31 preprocessors to pass variables into the Jinja engine.
44 """
32 """
45
33
46 for worksheet in nb.worksheets:
34 for index, cell in enumerate(nb.cells):
47 for index, cell in enumerate(worksheet.cells):
35
48
36 #Make sure the cell has slideshow metadata.
49 #Make sure the cell has slideshow metadata.
37 cell.metadata.slide_type = cell.get('metadata', {}).get('slideshow', {}).get('slide_type', '-')
50 cell.metadata.slide_type = cell.get('metadata', {}).get('slideshow', {}).get('slide_type', '-')
38
51
39 # Get the slide type. If type is start, subslide, or slide,
52 #Get the slide type. If type is start of subslide or slide,
40 # end the last subslide/slide.
53 #end the last subslide/slide.
41 if cell.metadata.slide_type in ['slide']:
54 if cell.metadata.slide_type in ['slide']:
42 nb.cells[index - 1].metadata.slide_helper = 'slide_end'
55 worksheet.cells[index - 1].metadata.slide_helper = 'slide_end'
43 if cell.metadata.slide_type in ['subslide']:
56 if cell.metadata.slide_type in ['subslide']:
44 nb.cells[index - 1].metadata.slide_helper = 'subslide_end'
57 worksheet.cells[index - 1].metadata.slide_helper = 'subslide_end'
45 # Prevent the rendering of "do nothing" cells before fragments
58 #Prevent the rendering of "do nothing" cells before fragments
46 # Group fragments passing frag_number to the data-fragment-index
59 #Group fragments passing frag_number to the data-fragment-index
47 if cell.metadata.slide_type in ['fragment']:
60 if cell.metadata.slide_type in ['fragment']:
48 nb.cells[index].metadata.frag_number = index
61 worksheet.cells[index].metadata.frag_number = index
49 i = 1
62 i = 1
50 while i < len(nb.cells) - index:
63 while i < len(worksheet.cells) - index:
51 nb.cells[index + i].metadata.frag_helper = 'fragment_end'
64 worksheet.cells[index + i].metadata.frag_helper = 'fragment_end'
52 nb.cells[index + i].metadata.frag_number = index
65 worksheet.cells[index + i].metadata.frag_number = index
53 i += 1
66 i += 1
54 # Restart the slide_helper when the cell status is changed
67 #Restart the slide_helper when the cell status is changed
55 # to other types.
68 #to other types.
56 if cell.metadata.slide_type in ['-', 'skip', 'notes', 'fragment']:
69 if cell.metadata.slide_type in ['-', 'skip', 'notes', 'fragment']:
57 nb.cells[index - 1].metadata.slide_helper = '-'
70 worksheet.cells[index - 1].metadata.slide_helper = '-'
71
58
72 if not isinstance(resources['reveal'], dict):
59 if not isinstance(resources['reveal'], dict):
73 resources['reveal'] = {}
60 resources['reveal'] = {}
@@ -1,27 +1,13 b''
1 """
1 """utility functions for preprocessor tests"""
2 Module with utility functions for preprocessor tests
3 """
4
2
5 #-----------------------------------------------------------------------------
3 # Copyright (c) IPython Development Team.
6 # Copyright (c) 2013, the IPython Development Team.
7 #
8 # Distributed under the terms of the Modified BSD License.
4 # Distributed under the terms of the Modified BSD License.
9 #
10 # The full license is in the file COPYING.txt, distributed with this software.
11 #-----------------------------------------------------------------------------
12
13 #-----------------------------------------------------------------------------
14 # Imports
15 #-----------------------------------------------------------------------------
16
5
17 from IPython.nbformat import current as nbformat
6 from IPython.nbformat import current as nbformat
18
7
19 from ...tests.base import TestsBase
8 from ...tests.base import TestsBase
20 from ...exporters.exporter import ResourcesDict
9 from ...exporters.exporter import ResourcesDict
21
10
22 #-----------------------------------------------------------------------------
23 # Class
24 #-----------------------------------------------------------------------------
25
11
26 class PreprocessorTestsBase(TestsBase):
12 class PreprocessorTestsBase(TestsBase):
27 """Contains test functions preprocessor tests"""
13 """Contains test functions preprocessor tests"""
@@ -30,22 +16,21 b' class PreprocessorTestsBase(TestsBase):'
30 def build_notebook(self):
16 def build_notebook(self):
31 """Build a notebook in memory for use with preprocessor tests"""
17 """Build a notebook in memory for use with preprocessor tests"""
32
18
33 outputs = [nbformat.new_output(output_type="stream", stream="stdout", output_text="a"),
19 outputs = [nbformat.new_output(output_type="stream", name="stdout", text="a"),
34 nbformat.new_output(output_type="text", output_text="b"),
20 nbformat.new_output(output_type="display_data", mime_bundle={'text/plain': 'b'}),
35 nbformat.new_output(output_type="stream", stream="stdout", output_text="c"),
21 nbformat.new_output(output_type="stream", name="stdout", text="c"),
36 nbformat.new_output(output_type="stream", stream="stdout", output_text="d"),
22 nbformat.new_output(output_type="stream", name="stdout", text="d"),
37 nbformat.new_output(output_type="stream", stream="stderr", output_text="e"),
23 nbformat.new_output(output_type="stream", name="stderr", text="e"),
38 nbformat.new_output(output_type="stream", stream="stderr", output_text="f"),
24 nbformat.new_output(output_type="stream", name="stderr", text="f"),
39 nbformat.new_output(output_type="png", output_png='Zw==')] # g
25 nbformat.new_output(output_type="display_data", mime_bundle={'image/png': 'Zw=='})] # g
40 out = nbformat.new_output(output_type="application/pdf")
26 out = nbformat.new_output(output_type="display_data")
41 out['application/pdf'] = 'aA==' # h
27 out['application/pdf'] = 'aA=='
42 outputs.append(out)
28 outputs.append(out)
43
29
44 cells=[nbformat.new_code_cell(input="$ e $", prompt_number=1,outputs=outputs),
30 cells=[nbformat.new_code_cell(source="$ e $", prompt_number=1, outputs=outputs),
45 nbformat.new_text_cell('markdown', source="$ e $")]
31 nbformat.new_markdown_cell(source="$ e $")]
46 worksheets = [nbformat.new_worksheet(cells=cells)]
47
32
48 return nbformat.new_notebook(name="notebook1", worksheets=worksheets)
33 return nbformat.new_notebook(cells=cells)
49
34
50
35
51 def build_resources(self):
36 def build_resources(self):
@@ -1,46 +1,38 b''
1 {
1 {
2 "metadata": {
2 "cells": [
3 "name": ""
4 },
5 "nbformat": 3,
6 "nbformat_minor": 0,
7 "worksheets": [
8 {
3 {
9 "cells": [
4 "cell_type": "code",
10 {
5 "metadata": {
11 "cell_type": "code",
6 "collapsed": false
12 "collapsed": false,
7 },
13 "input": [
8 "outputs": [],
14 "from IPython.display import clear_output"
9 "prompt_number": 1,
15 ],
10 "source": [
16 "language": "python",
11 "from IPython.display import clear_output"
17 "metadata": {},
12 ]
18 "outputs": [],
13 },
19 "prompt_number": 1
14 {
20 },
15 "cell_type": "code",
16 "metadata": {
17 "collapsed": false
18 },
19 "outputs": [
21 {
20 {
22 "cell_type": "code",
23 "collapsed": false,
24 "input": [
25 "for i in range(10):\n",
26 " clear_output()\n",
27 " print(i)"
28 ],
29 "language": "python",
30 "metadata": {},
21 "metadata": {},
31 "outputs": [
22 "name": "stdout",
32 {
23 "output_type": "stream",
33 "output_type": "stream",
24 "text": "9\n"
34 "stream": "stdout",
35 "text": [
36 "9\n"
37 ]
38 }
39 ],
40 "prompt_number": 2
41 }
25 }
42 ],
26 ],
43 "metadata": {}
27 "prompt_number": 2,
28 "source": [
29 "for i in range(10):\n",
30 " clear_output()\n",
31 " print(i)"
32 ]
44 }
33 }
45 ]
34 ],
35 "metadata": {},
36 "nbformat": 4,
37 "nbformat_minor": 0
46 } No newline at end of file
38 }
@@ -1,55 +1,38 b''
1 {
1 {
2 "metadata": {
2 "cells": [
3 "name": ""
4 },
5 "nbformat": 3,
6 "nbformat_minor": 0,
7 "worksheets": [
8 {
3 {
9 "cells": [
4 "cell_type": "code",
10 {
5 "metadata": {
11 "cell_type": "code",
6 "collapsed": false
12 "collapsed": false,
7 },
13 "input": [
8 "outputs": [],
14 "i, j = 1, 1"
9 "prompt_number": 1,
15 ],
10 "source": [
16 "language": "python",
11 "i, j = 1, 1"
17 "metadata": {},
12 ]
18 "outputs": [],
13 },
19 "prompt_number": 1
14 {
20 },
15 "cell_type": "code",
16 "metadata": {
17 "collapsed": false
18 },
19 "outputs": [
21 {
20 {
22 "cell_type": "code",
23 "collapsed": false,
24 "input": [
25 "for m in range(10):\n",
26 " i, j = j, i + j\n",
27 " print(j)"
28 ],
29 "language": "python",
30 "metadata": {},
21 "metadata": {},
31 "outputs": [
22 "name": "stdout",
32 {
23 "output_type": "stream",
33 "output_type": "stream",
24 "text": "2\n3\n5\n8\n13\n21\n34\n55\n89\n144\n"
34 "stream": "stdout",
35 "text": [
36 "2\n",
37 "3\n",
38 "5\n",
39 "8\n",
40 "13\n",
41 "21\n",
42 "34\n",
43 "55\n",
44 "89\n",
45 "144\n"
46 ]
47 }
48 ],
49 "prompt_number": 2
50 }
25 }
51 ],
26 ],
52 "metadata": {}
27 "prompt_number": 2,
28 "source": [
29 "for m in range(10):\n",
30 " i, j = j, i + j\n",
31 " print(j)"
32 ]
53 }
33 }
54 ]
34 ],
35 "metadata": {},
36 "nbformat": 4,
37 "nbformat_minor": 0
55 } No newline at end of file
38 }
@@ -1,33 +1,25 b''
1 {
1 {
2 "metadata": {
2 "cells": [
3 "name": ""
4 },
5 "nbformat": 3,
6 "nbformat_minor": 0,
7 "worksheets": [
8 {
3 {
9 "cells": [
4 "cell_type": "code",
5 "metadata": {
6 "collapsed": false
7 },
8 "outputs": [
10 {
9 {
11 "cell_type": "code",
12 "collapsed": false,
13 "input": [
14 "print(\"Hello World\")"
15 ],
16 "language": "python",
17 "metadata": {},
10 "metadata": {},
18 "outputs": [
11 "name": "stdout",
19 {
12 "output_type": "stream",
20 "output_type": "stream",
13 "text": "Hello World\n"
21 "stream": "stdout",
22 "text": [
23 "Hello World\n"
24 ]
25 }
26 ],
27 "prompt_number": 1
28 }
14 }
29 ],
15 ],
30 "metadata": {}
16 "prompt_number": 1,
17 "source": [
18 "print(\"Hello World\")"
19 ]
31 }
20 }
32 ]
21 ],
22 "metadata": {},
23 "nbformat": 4,
24 "nbformat_minor": 0
33 } No newline at end of file
25 }
@@ -1,36 +1,29 b''
1 {
1 {
2 "metadata": {
2 "cells": [
3 "name": ""
4 },
5 "nbformat": 3,
6 "nbformat_minor": 0,
7 "worksheets": [
8 {
3 {
9 "cells": [
4 "cell_type": "code",
10 {
5 "metadata": {
11 "cell_type": "code",
6 "collapsed": false
12 "collapsed": false,
7 },
13 "input": [
8 "outputs": [],
14 "from IPython.display import Image"
9 "prompt_number": 1,
15 ],
10 "source": [
16 "language": "python",
11 "from IPython.display import Image"
17 "metadata": {},
12 ]
18 "outputs": [],
13 },
19 "prompt_number": 1
14 {
20 },
15 "cell_type": "code",
21 {
16 "metadata": {
22 "cell_type": "code",
17 "collapsed": false
23 "collapsed": false,
18 },
24 "input": [
19 "outputs": [],
25 "Image('../input/python.png');"
20 "prompt_number": 2,
26 ],
21 "source": [
27 "language": "python",
22 "Image('../input/python.png');"
28 "metadata": {},
23 ]
29 "outputs": [],
30 "prompt_number": 2
31 }
32 ],
33 "metadata": {}
34 }
24 }
35 ]
25 ],
26 "metadata": {},
27 "nbformat": 4,
28 "nbformat_minor": 0
36 } No newline at end of file
29 }
@@ -1,53 +1,46 b''
1 {
1 {
2 "metadata": {
2 "cells": [
3 "name": ""
4 },
5 "nbformat": 3,
6 "nbformat_minor": 0,
7 "worksheets": [
8 {
3 {
9 "cells": [
4 "cell_type": "code",
10 {
5 "metadata": {
11 "cell_type": "code",
6 "collapsed": false
12 "collapsed": false,
7 },
13 "input": [
8 "outputs": [],
14 "from IPython.display import SVG"
9 "prompt_number": 1,
15 ],
10 "source": [
16 "language": "python",
11 "from IPython.display import SVG"
17 "metadata": {},
12 ]
18 "outputs": [],
13 },
19 "prompt_number": 1
14 {
20 },
15 "cell_type": "code",
16 "metadata": {
17 "collapsed": false
18 },
19 "outputs": [
21 {
20 {
22 "cell_type": "code",
21 "image/svg+xml": [
23 "collapsed": false,
24 "input": [
25 "SVG(data='''\n",
26 "<svg height=\"100\" width=\"100\">\n",
22 "<svg height=\"100\" width=\"100\">\n",
27 " <circle cx=\"50\" cy=\"50\" r=\"40\" stroke=\"black\" stroke-width=\"2\" fill=\"red\" />\n",
23 " <circle cx=\"50\" cy=\"50\" fill=\"red\" r=\"40\" stroke=\"black\" stroke-width=\"2\"/>\n",
28 "</svg>''')"
24 "</svg>"
29 ],
25 ],
30 "language": "python",
31 "metadata": {},
26 "metadata": {},
32 "outputs": [
27 "output_type": "execute_result",
33 {
28 "prompt_number": 2,
34 "metadata": {},
29 "text/plain": [
35 "output_type": "pyout",
30 "<IPython.core.display.SVG object>"
36 "prompt_number": 2,
31 ]
37 "svg": [
38 "<svg height=\"100\" width=\"100\">\n",
39 " <circle cx=\"50\" cy=\"50\" fill=\"red\" r=\"40\" stroke=\"black\" stroke-width=\"2\"/>\n",
40 "</svg>"
41 ],
42 "text": [
43 "<IPython.core.display.SVG at 0x10428e150>"
44 ]
45 }
46 ],
47 "prompt_number": 2
48 }
32 }
49 ],
33 ],
50 "metadata": {}
34 "prompt_number": 2,
35 "source": [
36 "SVG(data='''\n",
37 "<svg height=\"100\" width=\"100\">\n",
38 " <circle cx=\"50\" cy=\"50\" r=\"40\" stroke=\"black\" stroke-width=\"2\" fill=\"red\" />\n",
39 "</svg>''')"
40 ]
51 }
41 }
52 ]
42 ],
43 "metadata": {},
44 "nbformat": 4,
45 "nbformat_minor": 0
53 } No newline at end of file
46 }
@@ -1,57 +1,51 b''
1 {
1 {
2 "metadata": {
2 "cells": [
3 "name": "",
4 "signature": "sha256:9d47889f0678e9685429071216d0f3354db59bb66489f3225bcadfb6a1a9bbba"
5 },
6 "nbformat": 3,
7 "nbformat_minor": 0,
8 "worksheets": [
9 {
3 {
10 "cells": [
4 "cell_type": "code",
5 "metadata": {
6 "collapsed": false
7 },
8 "outputs": [
11 {
9 {
12 "cell_type": "code",
10 "ename": "Exception",
13 "collapsed": false,
11 "evalue": "message",
14 "input": [
15 "raise Exception(\"message\")"
16 ],
17 "language": "python",
18 "metadata": {},
12 "metadata": {},
19 "outputs": [
13 "output_type": "error",
20 {
14 "traceback": [
21 "ename": "Exception",
15 "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
22 "evalue": "message",
16 "\u001b[1;31mException\u001b[0m Traceback (most recent call last)",
23 "output_type": "pyerr",
17 "\u001b[1;32m<ipython-input-1-335814d14fc1>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mException\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"message\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
24 "traceback": [
18 "\u001b[1;31mException\u001b[0m: message"
25 "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
19 ]
26 "\u001b[1;31mException\u001b[0m Traceback (most recent call last)",
20 }
27 "\u001b[1;32m<ipython-input-1-335814d14fc1>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mException\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"message\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
21 ],
28 "\u001b[1;31mException\u001b[0m: message"
22 "prompt_number": 1,
29 ]
23 "source": [
30 }
24 "raise Exception(\"message\")"
31 ],
25 ]
32 "prompt_number": 1
26 },
33 },
27 {
28 "cell_type": "code",
29 "metadata": {
30 "collapsed": false
31 },
32 "outputs": [
34 {
33 {
35 "cell_type": "code",
36 "collapsed": false,
37 "input": [
38 "print('ok')"
39 ],
40 "language": "python",
41 "metadata": {},
34 "metadata": {},
42 "outputs": [
35 "name": "stdout",
43 {
36 "output_type": "stream",
44 "output_type": "stream",
37 "text": "ok\n"
45 "stream": "stdout",
46 "text": [
47 "ok\n"
48 ]
49 }
50 ],
51 "prompt_number": 2
52 }
38 }
53 ],
39 ],
54 "metadata": {}
40 "prompt_number": 2,
41 "source": [
42 "print('ok')"
43 ]
55 }
44 }
56 ]
45 ],
46 "metadata": {
47 "signature": "sha256:9d47889f0678e9685429071216d0f3354db59bb66489f3225bcadfb6a1a9bbba"
48 },
49 "nbformat": 4,
50 "nbformat_minor": 0
57 } No newline at end of file
51 }
@@ -1,33 +1,25 b''
1 {
1 {
2 "metadata": {
2 "cells": [
3 "name": ""
4 },
5 "nbformat": 3,
6 "nbformat_minor": 0,
7 "worksheets": [
8 {
3 {
9 "cells": [
4 "cell_type": "code",
5 "metadata": {
6 "collapsed": false
7 },
8 "outputs": [
10 {
9 {
11 "cell_type": "code",
12 "collapsed": false,
13 "input": [
14 "print('\u2603')"
15 ],
16 "language": "python",
17 "metadata": {},
10 "metadata": {},
18 "outputs": [
11 "name": "stdout",
19 {
12 "output_type": "stream",
20 "output_type": "stream",
13 "text": "\u2603\n"
21 "stream": "stdout",
22 "text": [
23 "\u2603\n"
24 ]
25 }
26 ],
27 "prompt_number": 1
28 }
14 }
29 ],
15 ],
30 "metadata": {}
16 "prompt_number": 1,
17 "source": [
18 "print('\u2603')"
19 ]
31 }
20 }
32 ]
21 ],
22 "metadata": {},
23 "nbformat": 4,
24 "nbformat_minor": 0
33 } No newline at end of file
25 }
@@ -5,19 +5,12 b' Module with tests for the clearoutput preprocessor.'
5 # Copyright (c) IPython Development Team.
5 # Copyright (c) IPython Development Team.
6 # Distributed under the terms of the Modified BSD License.
6 # Distributed under the terms of the Modified BSD License.
7
7
8 #-----------------------------------------------------------------------------
9 # Imports
10 #-----------------------------------------------------------------------------
11 from IPython.nbformat import current as nbformat
8 from IPython.nbformat import current as nbformat
12
9
13 from .base import PreprocessorTestsBase
10 from .base import PreprocessorTestsBase
14 from ..clearoutput import ClearOutputPreprocessor
11 from ..clearoutput import ClearOutputPreprocessor
15
12
16
13
17 #-----------------------------------------------------------------------------
18 # Class
19 #-----------------------------------------------------------------------------
20
21 class TestClearOutput(PreprocessorTestsBase):
14 class TestClearOutput(PreprocessorTestsBase):
22 """Contains test functions for clearoutput.py"""
15 """Contains test functions for clearoutput.py"""
23
16
@@ -38,5 +31,5 b' class TestClearOutput(PreprocessorTestsBase):'
38 res = self.build_resources()
31 res = self.build_resources()
39 preprocessor = self.build_preprocessor()
32 preprocessor = self.build_preprocessor()
40 nb, res = preprocessor(nb, res)
33 nb, res = preprocessor(nb, res)
41 assert nb.worksheets[0].cells[0].outputs == []
34 assert nb.cells[0].outputs == []
42 assert nb.worksheets[0].cells[0].prompt_number is None
35 assert nb.cells[0].prompt_number is None
@@ -17,44 +17,42 b' class TestCoalesceStreams(PreprocessorTestsBase):'
17 nb = self.build_notebook()
17 nb = self.build_notebook()
18 res = self.build_resources()
18 res = self.build_resources()
19 nb, res = coalesce_streams(nb, res)
19 nb, res = coalesce_streams(nb, res)
20 outputs = nb.worksheets[0].cells[0].outputs
20 outputs = nb.cells[0].outputs
21 self.assertEqual(outputs[0].text, "a")
21 self.assertEqual(outputs[0].text, "a")
22 self.assertEqual(outputs[1].output_type, "text")
22 self.assertEqual(outputs[1].output_type, "display_data")
23 self.assertEqual(outputs[2].text, "cd")
23 self.assertEqual(outputs[2].text, "cd")
24 self.assertEqual(outputs[3].text, "ef")
24 self.assertEqual(outputs[3].text, "ef")
25
25
26 def test_coalesce_sequenced_streams(self):
26 def test_coalesce_sequenced_streams(self):
27 """Can the coalesce streams preprocessor merge a sequence of streams?"""
27 """Can the coalesce streams preprocessor merge a sequence of streams?"""
28 outputs = [nbformat.new_output(output_type="stream", stream="stdout", output_text="0"),
28 outputs = [nbformat.new_output(output_type="stream", name="stdout", text="0"),
29 nbformat.new_output(output_type="stream", stream="stdout", output_text="1"),
29 nbformat.new_output(output_type="stream", name="stdout", text="1"),
30 nbformat.new_output(output_type="stream", stream="stdout", output_text="2"),
30 nbformat.new_output(output_type="stream", name="stdout", text="2"),
31 nbformat.new_output(output_type="stream", stream="stdout", output_text="3"),
31 nbformat.new_output(output_type="stream", name="stdout", text="3"),
32 nbformat.new_output(output_type="stream", stream="stdout", output_text="4"),
32 nbformat.new_output(output_type="stream", name="stdout", text="4"),
33 nbformat.new_output(output_type="stream", stream="stdout", output_text="5"),
33 nbformat.new_output(output_type="stream", name="stdout", text="5"),
34 nbformat.new_output(output_type="stream", stream="stdout", output_text="6"),
34 nbformat.new_output(output_type="stream", name="stdout", text="6"),
35 nbformat.new_output(output_type="stream", stream="stdout", output_text="7")]
35 nbformat.new_output(output_type="stream", name="stdout", text="7")]
36 cells=[nbformat.new_code_cell(input="# None", prompt_number=1,outputs=outputs)]
36 cells=[nbformat.new_code_cell(source="# None", prompt_number=1,outputs=outputs)]
37 worksheets = [nbformat.new_worksheet(cells=cells)]
37
38
38 nb = nbformat.new_notebook(cells=cells)
39 nb = nbformat.new_notebook(name="notebook1", worksheets=worksheets)
40 res = self.build_resources()
39 res = self.build_resources()
41 nb, res = coalesce_streams(nb, res)
40 nb, res = coalesce_streams(nb, res)
42 outputs = nb.worksheets[0].cells[0].outputs
41 outputs = nb.cells[0].outputs
43 self.assertEqual(outputs[0].text, u'01234567')
42 self.assertEqual(outputs[0].text, u'01234567')
44
43
45 def test_coalesce_replace_streams(self):
44 def test_coalesce_replace_streams(self):
46 """Are \\r characters handled?"""
45 """Are \\r characters handled?"""
47 outputs = [nbformat.new_output(output_type="stream", stream="stdout", output_text="z"),
46 outputs = [nbformat.new_output(output_type="stream", name="stdout", text="z"),
48 nbformat.new_output(output_type="stream", stream="stdout", output_text="\ra"),
47 nbformat.new_output(output_type="stream", name="stdout", text="\ra"),
49 nbformat.new_output(output_type="stream", stream="stdout", output_text="\nz\rb"),
48 nbformat.new_output(output_type="stream", name="stdout", text="\nz\rb"),
50 nbformat.new_output(output_type="stream", stream="stdout", output_text="\nz"),
49 nbformat.new_output(output_type="stream", name="stdout", text="\nz"),
51 nbformat.new_output(output_type="stream", stream="stdout", output_text="\rc\n"),
50 nbformat.new_output(output_type="stream", name="stdout", text="\rc\n"),
52 nbformat.new_output(output_type="stream", stream="stdout", output_text="z\rz\rd")]
51 nbformat.new_output(output_type="stream", name="stdout", text="z\rz\rd")]
53 cells=[nbformat.new_code_cell(input="# None", prompt_number=1,outputs=outputs)]
52 cells=[nbformat.new_code_cell(source="# None", prompt_number=1,outputs=outputs)]
54 worksheets = [nbformat.new_worksheet(cells=cells)]
53
55
54 nb = nbformat.new_notebook(cells=cells)
56 nb = nbformat.new_notebook(name="notebook1", worksheets=worksheets)
57 res = self.build_resources()
55 res = self.build_resources()
58 nb, res = coalesce_streams(nb, res)
56 nb, res = coalesce_streams(nb, res)
59 outputs = nb.worksheets[0].cells[0].outputs
57 outputs = nb.cells[0].outputs
60 self.assertEqual(outputs[0].text, u'a\nb\nc\nd')
58 self.assertEqual(outputs[0].text, u'a\nb\nc\nd')
@@ -30,10 +30,8 b' class TestExecute(PreprocessorTestsBase):'
30 output = dict(output)
30 output = dict(output)
31 if 'metadata' in output:
31 if 'metadata' in output:
32 del output['metadata']
32 del output['metadata']
33 if 'text' in output:
33 if 'text/plain' in output:
34 output['text'] = re.sub(addr_pat, '<HEXADDR>', output['text'])
34 output['text/plain'] = re.sub(addr_pat, '<HEXADDR>', output['text/plain'])
35 if 'svg' in output:
36 del output['text']
37 if 'traceback' in output:
35 if 'traceback' in output:
38 tb = []
36 tb = []
39 for line in output['traceback']:
37 for line in output['traceback']:
@@ -44,8 +42,8 b' class TestExecute(PreprocessorTestsBase):'
44
42
45
43
46 def assert_notebooks_equal(self, expected, actual):
44 def assert_notebooks_equal(self, expected, actual):
47 expected_cells = expected['worksheets'][0]['cells']
45 expected_cells = expected['cells']
48 actual_cells = actual['worksheets'][0]['cells']
46 actual_cells = actual['cells']
49 assert len(expected_cells) == len(actual_cells)
47 assert len(expected_cells) == len(actual_cells)
50
48
51 for expected_cell, actual_cell in zip(expected_cells, actual_cells):
49 for expected_cell, actual_cell in zip(expected_cells, actual_cells):
@@ -82,7 +80,7 b' class TestExecute(PreprocessorTestsBase):'
82 res = self.build_resources()
80 res = self.build_resources()
83 preprocessor = self.build_preprocessor()
81 preprocessor = self.build_preprocessor()
84 cleaned_input_nb = copy.deepcopy(input_nb)
82 cleaned_input_nb = copy.deepcopy(input_nb)
85 for cell in cleaned_input_nb.worksheets[0].cells:
83 for cell in cleaned_input_nb.cells:
86 if 'prompt_number' in cell:
84 if 'prompt_number' in cell:
87 del cell['prompt_number']
85 del cell['prompt_number']
88 cell['outputs'] = []
86 cell['outputs'] = []
@@ -1,27 +1,12 b''
1 """
1 """Tests for the extractoutput preprocessor"""
2 Module with tests for the extractoutput preprocessor
3 """
4
2
5 #-----------------------------------------------------------------------------
3 # Copyright (c) IPython Development Team.
6 # Copyright (c) 2013, the IPython Development Team.
7 #
8 # Distributed under the terms of the Modified BSD License.
4 # Distributed under the terms of the Modified BSD License.
9 #
10 # The full license is in the file COPYING.txt, distributed with this software.
11 #-----------------------------------------------------------------------------
12
13 #-----------------------------------------------------------------------------
14 # Imports
15 #-----------------------------------------------------------------------------
16
5
17 from .base import PreprocessorTestsBase
6 from .base import PreprocessorTestsBase
18 from ..extractoutput import ExtractOutputPreprocessor
7 from ..extractoutput import ExtractOutputPreprocessor
19
8
20
9
21 #-----------------------------------------------------------------------------
22 # Class
23 #-----------------------------------------------------------------------------
24
25 class TestExtractOutput(PreprocessorTestsBase):
10 class TestExtractOutput(PreprocessorTestsBase):
26 """Contains test functions for extractoutput.py"""
11 """Contains test functions for extractoutput.py"""
27
12
@@ -29,7 +14,7 b' class TestExtractOutput(PreprocessorTestsBase):'
29 def build_preprocessor(self):
14 def build_preprocessor(self):
30 """Make an instance of a preprocessor"""
15 """Make an instance of a preprocessor"""
31 preprocessor = ExtractOutputPreprocessor()
16 preprocessor = ExtractOutputPreprocessor()
32 preprocessor.extract_output_types = {'text', 'png', 'application/pdf'}
17 preprocessor.extract_output_types = {'text/plain', 'image/png', 'application/pdf'}
33 preprocessor.enabled = True
18 preprocessor.enabled = True
34 return preprocessor
19 return preprocessor
35
20
@@ -47,17 +32,17 b' class TestExtractOutput(PreprocessorTestsBase):'
47 nb, res = preprocessor(nb, res)
32 nb, res = preprocessor(nb, res)
48
33
49 # Check if text was extracted.
34 # Check if text was extracted.
50 output = nb.worksheets[0].cells[0].outputs[1]
35 output = nb.cells[0].outputs[1]
51 assert 'text_filename' in output
36 assert 'text/plain_filename' in output
52 text_filename = output['text_filename']
37 text_filename = output['text/plain_filename']
53
38
54 # Check if png was extracted.
39 # Check if png was extracted.
55 output = nb.worksheets[0].cells[0].outputs[6]
40 output = nb.cells[0].outputs[6]
56 assert 'png_filename' in output
41 assert 'image/png_filename' in output
57 png_filename = output['png_filename']
42 png_filename = output['image/png_filename']
58
43
59 # Check that pdf was extracted
44 # Check that pdf was extracted
60 output = nb.worksheets[0].cells[0].outputs[7]
45 output = nb.cells[0].outputs[7]
61 assert 'application/pdf_filename' in output
46 assert 'application/pdf_filename' in output
62 pdf_filename = output['application/pdf_filename']
47 pdf_filename = output['application/pdf_filename']
63
48
@@ -1,27 +1,9 b''
1 """
1 """Tests for the HighlightMagics preprocessor"""
2 Module with tests for the HighlightMagics preprocessor
3 """
4
5 #-----------------------------------------------------------------------------
6 # Copyright (c) 2013, the IPython Development Team.
7 #
8 # Distributed under the terms of the Modified BSD License.
9 #
10 # The full license is in the file COPYING.txt, distributed with this software.
11 #-----------------------------------------------------------------------------
12
13 #-----------------------------------------------------------------------------
14 # Imports
15 #-----------------------------------------------------------------------------
16
2
17 from .base import PreprocessorTestsBase
3 from .base import PreprocessorTestsBase
18 from ..highlightmagics import HighlightMagicsPreprocessor
4 from ..highlightmagics import HighlightMagicsPreprocessor
19
5
20
6
21 #-----------------------------------------------------------------------------
22 # Class
23 #-----------------------------------------------------------------------------
24
25 class TestHighlightMagics(PreprocessorTestsBase):
7 class TestHighlightMagics(PreprocessorTestsBase):
26 """Contains test functions for highlightmagics.py"""
8 """Contains test functions for highlightmagics.py"""
27
9
@@ -41,7 +23,7 b' class TestHighlightMagics(PreprocessorTestsBase):'
41 nb = self.build_notebook()
23 nb = self.build_notebook()
42 res = self.build_resources()
24 res = self.build_resources()
43 preprocessor = self.build_preprocessor()
25 preprocessor = self.build_preprocessor()
44 nb.worksheets[0].cells[0].input = """%%R -i x,y -o XYcoef
26 nb.cells[0].source = """%%R -i x,y -o XYcoef
45 lm.fit <- lm(y~x)
27 lm.fit <- lm(y~x)
46 par(mfrow=c(2,2))
28 par(mfrow=c(2,2))
47 print(summary(lm.fit))
29 print(summary(lm.fit))
@@ -50,19 +32,19 b' class TestHighlightMagics(PreprocessorTestsBase):'
50
32
51 nb, res = preprocessor(nb, res)
33 nb, res = preprocessor(nb, res)
52
34
53 assert('magics_language' in nb.worksheets[0].cells[0]['metadata'])
35 assert('magics_language' in nb.cells[0]['metadata'])
54
36
55 self.assertEqual(nb.worksheets[0].cells[0]['metadata']['magics_language'], 'r')
37 self.assertEqual(nb.cells[0]['metadata']['magics_language'], 'r')
56
38
57 def test_no_false_positive(self):
39 def test_no_false_positive(self):
58 """Test that HighlightMagicsPreprocessor does not tag false positives"""
40 """Test that HighlightMagicsPreprocessor does not tag false positives"""
59 nb = self.build_notebook()
41 nb = self.build_notebook()
60 res = self.build_resources()
42 res = self.build_resources()
61 preprocessor = self.build_preprocessor()
43 preprocessor = self.build_preprocessor()
62 nb.worksheets[0].cells[0].input = """# this should not be detected
44 nb.cells[0].source = """# this should not be detected
63 print(\"""
45 print(\"""
64 %%R -i x, y
46 %%R -i x, y
65 \""")"""
47 \""")"""
66 nb, res = preprocessor(nb, res)
48 nb, res = preprocessor(nb, res)
67
49
68 assert('magics_language' not in nb.worksheets[0].cells[0]['metadata']) No newline at end of file
50 assert('magics_language' not in nb.cells[0]['metadata']) No newline at end of file
@@ -1,27 +1,12 b''
1 """
1 """Tests for the latex preprocessor"""
2 Module with tests for the latex preprocessor
3 """
4
2
5 #-----------------------------------------------------------------------------
3 # Copyright (c) IPython Development Team.
6 # Copyright (c) 2013, the IPython Development Team.
7 #
8 # Distributed under the terms of the Modified BSD License.
4 # Distributed under the terms of the Modified BSD License.
9 #
10 # The full license is in the file COPYING.txt, distributed with this software.
11 #-----------------------------------------------------------------------------
12
13 #-----------------------------------------------------------------------------
14 # Imports
15 #-----------------------------------------------------------------------------
16
5
17 from .base import PreprocessorTestsBase
6 from .base import PreprocessorTestsBase
18 from ..latex import LatexPreprocessor
7 from ..latex import LatexPreprocessor
19
8
20
9
21 #-----------------------------------------------------------------------------
22 # Class
23 #-----------------------------------------------------------------------------
24
25 class TestLatex(PreprocessorTestsBase):
10 class TestLatex(PreprocessorTestsBase):
26 """Contains test functions for latex.py"""
11 """Contains test functions for latex.py"""
27
12
@@ -45,7 +30,7 b' class TestLatex(PreprocessorTestsBase):'
45 nb, res = preprocessor(nb, res)
30 nb, res = preprocessor(nb, res)
46
31
47 # Make sure the code cell wasn't modified.
32 # Make sure the code cell wasn't modified.
48 self.assertEqual(nb.worksheets[0].cells[0].input, '$ e $')
33 self.assertEqual(nb.cells[0].source, '$ e $')
49
34
50 # Verify that the markdown cell wasn't processed.
35 # Verify that the markdown cell wasn't processed.
51 self.assertEqual(nb.worksheets[0].cells[1].source, '$ e $')
36 self.assertEqual(nb.cells[1].source, '$ e $')
@@ -16,19 +16,18 b' class Testrevealhelp(PreprocessorTestsBase):'
16 """Build a reveal slides notebook in memory for use with tests.
16 """Build a reveal slides notebook in memory for use with tests.
17 Overrides base in PreprocessorTestsBase"""
17 Overrides base in PreprocessorTestsBase"""
18
18
19 outputs = [nbformat.new_output(output_type="stream", stream="stdout", output_text="a")]
19 outputs = [nbformat.new_output(output_type="stream", name="stdout", text="a")]
20
20
21 slide_metadata = {'slideshow' : {'slide_type': 'slide'}}
21 slide_metadata = {'slideshow' : {'slide_type': 'slide'}}
22 subslide_metadata = {'slideshow' : {'slide_type': 'subslide'}}
22 subslide_metadata = {'slideshow' : {'slide_type': 'subslide'}}
23
23
24 cells=[nbformat.new_code_cell(input="", prompt_number=1, outputs=outputs),
24 cells=[nbformat.new_code_cell(source="", prompt_number=1, outputs=outputs),
25 nbformat.new_text_cell('markdown', source="", metadata=slide_metadata),
25 nbformat.new_markdown_cell(source="", metadata=slide_metadata),
26 nbformat.new_code_cell(input="", prompt_number=2, outputs=outputs),
26 nbformat.new_code_cell(source="", prompt_number=2, outputs=outputs),
27 nbformat.new_text_cell('markdown', source="", metadata=slide_metadata),
27 nbformat.new_markdown_cell(source="", metadata=slide_metadata),
28 nbformat.new_text_cell('markdown', source="", metadata=subslide_metadata)]
28 nbformat.new_markdown_cell(source="", metadata=subslide_metadata)]
29 worksheets = [nbformat.new_worksheet(cells=cells)]
30
29
31 return nbformat.new_notebook(name="notebook1", worksheets=worksheets)
30 return nbformat.new_notebook(cells=cells)
32
31
33
32
34 def build_preprocessor(self):
33 def build_preprocessor(self):
@@ -59,7 +58,7 b' class Testrevealhelp(PreprocessorTestsBase):'
59 res = self.build_resources()
58 res = self.build_resources()
60 preprocessor = self.build_preprocessor()
59 preprocessor = self.build_preprocessor()
61 nb, res = preprocessor(nb, res)
60 nb, res = preprocessor(nb, res)
62 cells = nb.worksheets[0].cells
61 cells = nb.cells
63
62
64 # Make sure correct metadata tags are available on every cell.
63 # Make sure correct metadata tags are available on every cell.
65 for cell in cells:
64 for cell in cells:
@@ -1,18 +1,7 b''
1 """
1 """Tests for the svg2pdf preprocessor"""
2 Module with tests for the svg2pdf preprocessor
3 """
4
2
5 #-----------------------------------------------------------------------------
3 # Copyright (c) IPython Development Team.
6 # Copyright (c) 2013, the IPython Development Team.
7 #
8 # Distributed under the terms of the Modified BSD License.
4 # Distributed under the terms of the Modified BSD License.
9 #
10 # The full license is in the file COPYING.txt, distributed with this software.
11 #-----------------------------------------------------------------------------
12
13 #-----------------------------------------------------------------------------
14 # Imports
15 #-----------------------------------------------------------------------------
16
5
17 from IPython.testing import decorators as dec
6 from IPython.testing import decorators as dec
18 from IPython.nbformat import current as nbformat
7 from IPython.nbformat import current as nbformat
@@ -21,10 +10,6 b' from .base import PreprocessorTestsBase'
21 from ..svg2pdf import SVG2PDFPreprocessor
10 from ..svg2pdf import SVG2PDFPreprocessor
22
11
23
12
24 #-----------------------------------------------------------------------------
25 # Class
26 #-----------------------------------------------------------------------------
27
28 class Testsvg2pdf(PreprocessorTestsBase):
13 class Testsvg2pdf(PreprocessorTestsBase):
29 """Contains test functions for svg2pdf.py"""
14 """Contains test functions for svg2pdf.py"""
30
15
@@ -62,10 +47,9 b' class Testsvg2pdf(PreprocessorTestsBase):'
62 slide_metadata = {'slideshow' : {'slide_type': 'slide'}}
47 slide_metadata = {'slideshow' : {'slide_type': 'slide'}}
63 subslide_metadata = {'slideshow' : {'slide_type': 'subslide'}}
48 subslide_metadata = {'slideshow' : {'slide_type': 'subslide'}}
64
49
65 cells=[nbformat.new_code_cell(input="", prompt_number=1, outputs=outputs)]
50 cells=[nbformat.new_code_cell(source="", prompt_number=1, outputs=outputs)]
66 worksheets = [nbformat.new_worksheet(name="worksheet1", cells=cells)]
67
51
68 return nbformat.new_notebook(name="notebook1", worksheets=worksheets)
52 return nbformat.new_notebook(cells=cells)
69
53
70
54
71 def build_preprocessor(self):
55 def build_preprocessor(self):
@@ -87,4 +71,4 b' class Testsvg2pdf(PreprocessorTestsBase):'
87 res = self.build_resources()
71 res = self.build_resources()
88 preprocessor = self.build_preprocessor()
72 preprocessor = self.build_preprocessor()
89 nb, res = preprocessor(nb, res)
73 nb, res = preprocessor(nb, res)
90 assert 'svg' in nb.worksheets[0].cells[0].outputs[0]
74 assert 'svg' in nb.cells[0].outputs[0]
@@ -46,14 +46,14 b' In&nbsp;[&nbsp;]:'
46 {% block input %}
46 {% block input %}
47 <div class="inner_cell">
47 <div class="inner_cell">
48 <div class="input_area">
48 <div class="input_area">
49 {{ cell.input | highlight_code(metadata=cell.metadata) }}
49 {{ cell.source | highlight_code(metadata=cell.metadata) }}
50 </div>
50 </div>
51 </div>
51 </div>
52 {%- endblock input %}
52 {%- endblock input %}
53
53
54 {% block output %}
54 {% block output %}
55 <div class="output_area">
55 <div class="output_area">
56 {%- if output.output_type == 'pyout' -%}
56 {%- if output.output_type == 'execute_result' -%}
57 <div class="prompt output_prompt">
57 <div class="prompt output_prompt">
58 {%- if cell.prompt_number is defined -%}
58 {%- if cell.prompt_number is defined -%}
59 Out[{{ cell.prompt_number|replace(None, "&nbsp;") }}]:
59 Out[{{ cell.prompt_number|replace(None, "&nbsp;") }}]:
@@ -94,13 +94,13 b' In&nbsp;[&nbsp;]:'
94 unknown type {{ cell.type }}
94 unknown type {{ cell.type }}
95 {% endblock unknowncell %}
95 {% endblock unknowncell %}
96
96
97 {% block pyout -%}
97 {% block execute_result -%}
98 {%- set extra_class="output_pyout" -%}
98 {%- set extra_class="output_execute_result" -%}
99 {% block data_priority scoped %}
99 {% block data_priority scoped %}
100 {{ super() }}
100 {{ super() }}
101 {% endblock %}
101 {% endblock %}
102 {%- set extra_class="" -%}
102 {%- set extra_class="" -%}
103 {%- endblock pyout %}
103 {%- endblock execute_result %}
104
104
105 {% block stream_stdout -%}
105 {% block stream_stdout -%}
106 <div class="output_subarea output_stream output_stdout output_text">
106 <div class="output_subarea output_stream output_stdout output_text">
@@ -174,13 +174,13 b" height={{output.metadata['jpeg']['height']}}"
174 </div>
174 </div>
175 {%- endblock data_latex %}
175 {%- endblock data_latex %}
176
176
177 {% block pyerr -%}
177 {% block error -%}
178 <div class="output_subarea output_text output_pyerr">
178 <div class="output_subarea output_text output_error">
179 <pre>
179 <pre>
180 {{- super() -}}
180 {{- super() -}}
181 </pre>
181 </pre>
182 </div>
182 </div>
183 {%- endblock pyerr %}
183 {%- endblock error %}
184
184
185 {%- block traceback_line %}
185 {%- block traceback_line %}
186 {{ line | ansi2html }}
186 {{ line | ansi2html }}
@@ -140,11 +140,11 b' This template does not define a docclass, the inheriting class must define this.'
140 ((* endblock data_text *))
140 ((* endblock data_text *))
141
141
142 % Display python error text as-is
142 % Display python error text as-is
143 ((* block pyerr *))
143 ((* block error *))
144 \begin{Verbatim}[commandchars=\\\{\}]
144 \begin{Verbatim}[commandchars=\\\{\}]
145 ((( super() )))
145 ((( super() )))
146 \end{Verbatim}
146 \end{Verbatim}
147 ((* endblock pyerr *))
147 ((* endblock error *))
148 ((* block traceback_line *))
148 ((* block traceback_line *))
149 ((( line | indent | strip_ansi | escape_latex )))
149 ((( line | indent | strip_ansi | escape_latex )))
150 ((* endblock traceback_line *))
150 ((* endblock traceback_line *))
@@ -206,12 +206,12 b' This template does not define a docclass, the inheriting class must define this.'
206
206
207 ((* endblock headingcell *))
207 ((* endblock headingcell *))
208
208
209 % Redirect pyout to display data priority.
209 % Redirect execute_result to display data priority.
210 ((* block pyout scoped *))
210 ((* block execute_result scoped *))
211 ((* block data_priority scoped *))
211 ((* block data_priority scoped *))
212 ((( super() )))
212 ((( super() )))
213 ((* endblock *))
213 ((* endblock *))
214 ((* endblock pyout *))
214 ((* endblock execute_result *))
215
215
216 % Render markdown
216 % Render markdown
217 ((* block markdowncell scoped *))
217 ((* block markdowncell scoped *))
@@ -9,37 +9,33 b''
9
9
10 ((*- block data_priority scoped -*))
10 ((*- block data_priority scoped -*))
11 ((*- for type in output | filter_data_type -*))
11 ((*- for type in output | filter_data_type -*))
12 ((*- if type in ['application/pdf']*))
12 ((*- if type == 'application/pdf' -*))
13 ((*- block data_pdf -*))
13 ((*- block data_pdf -*))
14 ((*- endblock -*))
14 ((*- endblock -*))
15 ((*- endif -*))
15 ((*- elif type == 'image/svg+xml' -*))
16 ((*- if type in ['svg']*))
17 ((*- block data_svg -*))
16 ((*- block data_svg -*))
18 ((*- endblock -*))
17 ((*- endblock -*))
19 ((*- endif -*))
18 ((*- elif type == 'image/png' -*))
20 ((*- if type in ['png']*))
21 ((*- block data_png -*))
19 ((*- block data_png -*))
22 ((*- endblock -*))
20 ((*- endblock -*))
23 ((*- endif -*))
21 ((*- elif type == 'text/html' -*))
24 ((*- if type in ['html']*))
25 ((*- block data_html -*))
22 ((*- block data_html -*))
26 ((*- endblock -*))
23 ((*- endblock -*))
27 ((*- endif -*))
24 ((*- elif type == 'image/jpeg' -*))
28 ((*- if type in ['jpeg']*))
29 ((*- block data_jpg -*))
25 ((*- block data_jpg -*))
30 ((*- endblock -*))
26 ((*- endblock -*))
31 ((*- endif -*))
27 ((*- elif type == 'text/plain' -*))
32 ((*- if type in ['text']*))
33 ((*- block data_text -*))
28 ((*- block data_text -*))
34 ((*- endblock -*))
29 ((*- endblock -*))
35 ((*- endif -*))
30 ((*- elif type == 'text/latex' -*))
36 ((*- if type in ['latex']*))
37 ((*- block data_latex -*))
31 ((*- block data_latex -*))
38 ((*- endblock -*))
32 ((*- endblock -*))
39 ((*- endif -*))
33 ((*- elif type == 'application/javascript' -*))
40 ((*- if type in ['javascript']*))
41 ((*- block data_javascript -*))
34 ((*- block data_javascript -*))
42 ((*- endblock -*))
35 ((*- endblock -*))
36 ((*- else -*))
37 ((*- block data_other -*))
38 ((*- endblock -*))
43 ((*- endif -*))
39 ((*- endif -*))
44 ((*- endfor -*))
40 ((*- endfor -*))
45 ((*- endblock data_priority -*))
41 ((*- endblock data_priority -*))
@@ -28,69 +28,67 b' consider calling super even if it is a leave block, we might insert more blocks '
28 ((*- block header -*))
28 ((*- block header -*))
29 ((*- endblock header -*))
29 ((*- endblock header -*))
30 ((*- block body -*))
30 ((*- block body -*))
31 ((*- for worksheet in nb.worksheets -*))
31 ((*- for cell in nb.cells -*))
32 ((*- for cell in worksheet.cells -*))
32 ((*- block any_cell scoped -*))
33 ((*- block any_cell scoped -*))
33 ((*- if cell.cell_type == 'code' -*))
34 ((*- if cell.cell_type in ['code'] -*))
34 ((*- block codecell scoped -*))
35 ((*- block codecell scoped -*))
35 ((*- block input_group -*))
36 ((*- block input_group -*))
36 ((*- block in_prompt -*))((*- endblock in_prompt -*))
37 ((*- block in_prompt -*))((*- endblock in_prompt -*))
37 ((*- block input -*))((*- endblock input -*))
38 ((*- block input -*))((*- endblock input -*))
38 ((*- endblock input_group -*))
39 ((*- endblock input_group -*))
39 ((*- if cell.outputs -*))
40 ((*- if cell.outputs -*))
40 ((*- block output_group -*))
41 ((*- block output_group -*))
41 ((*- block output_prompt -*))((*- endblock output_prompt -*))
42 ((*- block output_prompt -*))((*- endblock output_prompt -*))
42 ((*- block outputs scoped -*))
43 ((*- block outputs scoped -*))
43 ((*- for output in cell.outputs -*))
44 ((*- for output in cell.outputs -*))
44 ((*- block output scoped -*))
45 ((*- block output scoped -*))
45 ((*- if output.output_type == 'execute_result' -*))
46 ((*- if output.output_type in ['pyout'] -*))
46 ((*- block execute_result scoped -*))((*- endblock execute_result -*))
47 ((*- block pyout scoped -*))((*- endblock pyout -*))
47 ((*- elif output.output_type == 'stream' -*))
48 ((*- elif output.output_type in ['stream'] -*))
48 ((*- block stream scoped -*))
49 ((*- block stream scoped -*))
49 ((*- if output.name == 'stdout' -*))
50 ((*- if output.stream in ['stdout'] -*))
50 ((*- block stream_stdout scoped -*))
51 ((*- block stream_stdout scoped -*))
51 ((*- endblock stream_stdout -*))
52 ((*- endblock stream_stdout -*))
52 ((*- elif output.name == 'stderr' -*))
53 ((*- elif output.stream in ['stderr'] -*))
53 ((*- block stream_stderr scoped -*))
54 ((*- block stream_stderr scoped -*))
54 ((*- endblock stream_stderr -*))
55 ((*- endblock stream_stderr -*))
55 ((*- endif -*))
56 ((*- endif -*))
56 ((*- endblock stream -*))
57 ((*- endblock stream -*))
57 ((*- elif output.output_type == 'display_data' -*))
58 ((*- elif output.output_type in ['display_data'] -*))
58 ((*- block display_data scoped -*))
59 ((*- block display_data scoped -*))
59 ((*- block data_priority scoped -*))
60 ((*- block data_priority scoped -*))
60 ((*- endblock data_priority -*))
61 ((*- endblock data_priority -*))
61 ((*- endblock display_data -*))
62 ((*- endblock display_data -*))
62 ((*- elif output.output_type == 'error' -*))
63 ((*- elif output.output_type in ['pyerr'] -*))
63 ((*- block error scoped -*))
64 ((*- block pyerr scoped -*))
64 ((*- for line in output.traceback -*))
65 ((*- for line in output.traceback -*))
65 ((*- block traceback_line scoped -*))((*- endblock traceback_line -*))
66 ((*- block traceback_line scoped -*))((*- endblock traceback_line -*))
66 ((*- endfor -*))
67 ((*- endfor -*))
67 ((*- endblock error -*))
68 ((*- endblock pyerr -*))
68 ((*- endif -*))
69 ((*- endif -*))
69 ((*- endblock output -*))
70 ((*- endblock output -*))
70 ((*- endfor -*))
71 ((*- endfor -*))
71 ((*- endblock outputs -*))
72 ((*- endblock outputs -*))
72 ((*- endblock output_group -*))
73 ((*- endblock output_group -*))
73 ((*- endif -*))
74 ((*- endif -*))
74 ((*- endblock codecell -*))
75 ((*- endblock codecell -*))
75 ((*- elif cell.cell_type in ['markdown'] -*))
76 ((*- elif cell.cell_type in ['markdown'] -*))
76 ((*- block markdowncell scoped-*))
77 ((*- block markdowncell scoped-*))
77 ((*- endblock markdowncell -*))
78 ((*- endblock markdowncell -*))
78 ((*- elif cell.cell_type in ['heading'] -*))
79 ((*- elif cell.cell_type in ['heading'] -*))
79 ((*- block headingcell scoped-*))
80 ((*- block headingcell scoped-*))
80 ((*- endblock headingcell -*))
81 ((*- endblock headingcell -*))
81 ((*- elif cell.cell_type in ['raw'] -*))
82 ((*- elif cell.cell_type in ['raw'] -*))
82 ((*- block rawcell scoped -*))
83 ((*- block rawcell scoped -*))
83 ((* if cell.metadata.get('raw_mimetype', '').lower() in resources.get('raw_mimetypes', ['']) *))
84 ((* if cell.metadata.get('raw_mimetype', '').lower() in resources.get('raw_mimetypes', ['']) *))
84 ((( cell.source )))
85 ((( cell.source )))
85 ((* endif *))
86 ((* endif *))
86 ((*- endblock rawcell -*))
87 ((*- endblock rawcell -*))
87 ((*- else -*))
88 ((*- else -*))
88 ((*- block unknowncell scoped-*))
89 ((*- block unknowncell scoped-*))
89 ((*- endblock unknowncell -*))
90 ((*- endblock unknowncell -*))
90 ((*- endif -*))
91 ((*- endif -*))
91 ((*- endblock any_cell -*))
92 ((*- endblock any_cell -*))
93 ((*- endfor -*))
94 ((*- endfor -*))
92 ((*- endfor -*))
95 ((*- endblock body -*))
93 ((*- endblock body -*))
96
94
@@ -7,7 +7,7 b''
7 %===============================================================================
7 %===============================================================================
8
8
9 ((* block input scoped *))
9 ((* block input scoped *))
10 ((( add_prompt(cell.input, cell, 'In ') )))
10 ((( add_prompt(cell.source, cell, 'In ') )))
11 ((* endblock input *))
11 ((* endblock input *))
12
12
13
13
@@ -15,7 +15,7 b''
15 % Output
15 % Output
16 %===============================================================================
16 %===============================================================================
17
17
18 ((* block pyout scoped *))
18 ((* block execute_result scoped *))
19 ((*- for type in output | filter_data_type -*))
19 ((*- for type in output | filter_data_type -*))
20 ((*- if type in ['text']*))
20 ((*- if type in ['text']*))
21 ((( add_prompt(output.text, cell, 'Out') )))
21 ((( add_prompt(output.text, cell, 'Out') )))
@@ -23,7 +23,7 b''
23 \verb+Out[((( cell.prompt_number )))]:+((( super() )))
23 \verb+Out[((( cell.prompt_number )))]:+((( super() )))
24 ((*- endif -*))
24 ((*- endif -*))
25 ((*- endfor -*))
25 ((*- endfor -*))
26 ((* endblock pyout *))
26 ((* endblock execute_result *))
27
27
28
28
29 %==============================================================================
29 %==============================================================================
@@ -8,6 +8,6 b''
8
8
9 ((* block input scoped *))
9 ((* block input scoped *))
10 \begin{verbatim}
10 \begin{verbatim}
11 ((( cell.input | add_prompts )))
11 ((( cell.source | add_prompts )))
12 \end{verbatim}
12 \end{verbatim}
13 ((* endblock input *))
13 ((* endblock input *))
@@ -20,7 +20,7 b''
20 %===============================================================================
20 %===============================================================================
21
21
22 ((* block input scoped *))
22 ((* block input scoped *))
23 ((( add_prompt(cell.input | highlight_code(strip_verbatim=True), cell, 'In ', 'incolor') )))
23 ((( add_prompt(cell.source | highlight_code(strip_verbatim=True), cell, 'In ', 'incolor') )))
24 ((* endblock input *))
24 ((* endblock input *))
25
25
26
26
@@ -28,7 +28,7 b''
28 % Output
28 % Output
29 %===============================================================================
29 %===============================================================================
30
30
31 ((* block pyout scoped *))
31 ((* block execute_result scoped *))
32 ((*- for type in output | filter_data_type -*))
32 ((*- for type in output | filter_data_type -*))
33 ((*- if type in ['text']*))
33 ((*- if type in ['text']*))
34 ((( add_prompt(output.text | escape_latex, cell, 'Out', 'outcolor') )))
34 ((( add_prompt(output.text | escape_latex, cell, 'Out', 'outcolor') )))
@@ -36,7 +36,7 b''
36 \texttt{\color{outcolor}Out[{\color{outcolor}((( cell.prompt_number )))}]:}((( super() )))
36 \texttt{\color{outcolor}Out[{\color{outcolor}((( cell.prompt_number )))}]:}((( super() )))
37 ((*- endif -*))
37 ((*- endif -*))
38 ((*- endfor -*))
38 ((*- endfor -*))
39 ((* endblock pyout *))
39 ((* endblock execute_result *))
40
40
41
41
42 %==============================================================================
42 %==============================================================================
@@ -16,6 +16,6 b''
16
16
17 ((* block input scoped *))
17 ((* block input scoped *))
18 \begin{Verbatim}[commandchars=\\\{\}]
18 \begin{Verbatim}[commandchars=\\\{\}]
19 ((( cell.input | highlight_code(strip_verbatim=True) | add_prompts )))
19 ((( cell.source | highlight_code(strip_verbatim=True) | add_prompts )))
20 \end{Verbatim}
20 \end{Verbatim}
21 ((* endblock input *))
21 ((* endblock input *))
@@ -8,23 +8,23 b''
8 {%- endblock output_prompt %}
8 {%- endblock output_prompt %}
9
9
10 {% block input %}
10 {% block input %}
11 {{ cell.input | indent(4)}}
11 {{ cell.source | indent(4)}}
12 {% endblock input %}
12 {% endblock input %}
13
13
14 {% block pyerr %}
14 {% block error %}
15 {{ super() }}
15 {{ super() }}
16 {% endblock pyerr %}
16 {% endblock error %}
17
17
18 {% block traceback_line %}
18 {% block traceback_line %}
19 {{ line | indent | strip_ansi }}
19 {{ line | indent | strip_ansi }}
20 {% endblock traceback_line %}
20 {% endblock traceback_line %}
21
21
22 {% block pyout %}
22 {% block execute_result %}
23
23
24 {% block data_priority scoped %}
24 {% block data_priority scoped %}
25 {{ super() }}
25 {{ super() }}
26 {% endblock %}
26 {% endblock %}
27 {% endblock pyout %}
27 {% endblock execute_result %}
28
28
29 {% block stream %}
29 {% block stream %}
30 {{ output.text | indent }}
30 {{ output.text | indent }}
@@ -9,7 +9,7 b''
9 {% endblock in_prompt %}
9 {% endblock in_prompt %}
10
10
11 {% block input %}
11 {% block input %}
12 {{ cell.input | ipython2python }}
12 {{ cell.source | ipython2python }}
13 {% endblock input %}
13 {% endblock input %}
14
14
15 {% block markdowncell scoped %}
15 {% block markdowncell scoped %}
@@ -8,28 +8,28 b''
8 {% endblock output_prompt %}
8 {% endblock output_prompt %}
9
9
10 {% block input %}
10 {% block input %}
11 {%- if cell.input.strip() -%}
11 {%- if cell.source.strip() -%}
12 .. code:: python
12 .. code:: python
13
13
14 {{ cell.input | indent}}
14 {{ cell.source | indent}}
15 {%- endif -%}
15 {%- endif -%}
16 {% endblock input %}
16 {% endblock input %}
17
17
18 {% block pyerr %}
18 {% block error %}
19 ::
19 ::
20
20
21 {{ super() }}
21 {{ super() }}
22 {% endblock pyerr %}
22 {% endblock error %}
23
23
24 {% block traceback_line %}
24 {% block traceback_line %}
25 {{ line | indent | strip_ansi }}
25 {{ line | indent | strip_ansi }}
26 {% endblock traceback_line %}
26 {% endblock traceback_line %}
27
27
28 {% block pyout %}
28 {% block execute_result %}
29 {% block data_priority scoped %}
29 {% block data_priority scoped %}
30 {{ super() }}
30 {{ super() }}
31 {% endblock %}
31 {% endblock %}
32 {% endblock pyout %}
32 {% endblock execute_result %}
33
33
34 {% block stream %}
34 {% block stream %}
35 .. parsed-literal::
35 .. parsed-literal::
@@ -5,37 +5,33 b''
5
5
6 {%- block data_priority scoped -%}
6 {%- block data_priority scoped -%}
7 {%- for type in output | filter_data_type -%}
7 {%- for type in output | filter_data_type -%}
8 {%- if type in ['application/pdf']%}
8 {%- if type == 'application/pdf' -%}
9 {%- block data_pdf -%}
9 {%- block data_pdf -%}
10 {%- endblock -%}
10 {%- endblock -%}
11 {%- endif -%}
11 {%- elif type == 'image/svg+xml' -%}
12 {%- if type in ['svg']%}
13 {%- block data_svg -%}
12 {%- block data_svg -%}
14 {%- endblock -%}
13 {%- endblock -%}
15 {%- endif -%}
14 {%- elif type == 'image/png' -%}
16 {%- if type in ['png']%}
17 {%- block data_png -%}
15 {%- block data_png -%}
18 {%- endblock -%}
16 {%- endblock -%}
19 {%- endif -%}
17 {%- elif type == 'text/html' -%}
20 {%- if type in ['html']%}
21 {%- block data_html -%}
18 {%- block data_html -%}
22 {%- endblock -%}
19 {%- endblock -%}
23 {%- endif -%}
20 {%- elif type == 'image/jpeg' -%}
24 {%- if type in ['jpeg']%}
25 {%- block data_jpg -%}
21 {%- block data_jpg -%}
26 {%- endblock -%}
22 {%- endblock -%}
27 {%- endif -%}
23 {%- elif type == 'text/plain' -%}
28 {%- if type in ['text']%}
29 {%- block data_text -%}
24 {%- block data_text -%}
30 {%- endblock -%}
25 {%- endblock -%}
31 {%- endif -%}
26 {%- elif type == 'text/latex' -%}
32 {%- if type in ['latex']%}
33 {%- block data_latex -%}
27 {%- block data_latex -%}
34 {%- endblock -%}
28 {%- endblock -%}
35 {%- endif -%}
29 {%- elif type == 'application/javascript' -%}
36 {%- if type in ['javascript']%}
37 {%- block data_javascript -%}
30 {%- block data_javascript -%}
38 {%- endblock -%}
31 {%- endblock -%}
32 {%- else -%}
33 {%- block data_other -%}
34 {%- endblock -%}
39 {%- endif -%}
35 {%- endif -%}
40 {%- endfor -%}
36 {%- endfor -%}
41 {%- endblock data_priority -%}
37 {%- endblock data_priority -%}
@@ -24,69 +24,67 b' consider calling super even if it is a leave block, we might insert more blocks '
24 {%- block header -%}
24 {%- block header -%}
25 {%- endblock header -%}
25 {%- endblock header -%}
26 {%- block body -%}
26 {%- block body -%}
27 {%- for worksheet in nb.worksheets -%}
27 {%- for cell in nb.cells -%}
28 {%- for cell in worksheet.cells -%}
28 {%- block any_cell scoped -%}
29 {%- block any_cell scoped -%}
29 {%- if cell.cell_type == 'code' -%}
30 {%- if cell.cell_type in ['code'] -%}
30 {%- block codecell scoped -%}
31 {%- block codecell scoped -%}
31 {%- block input_group -%}
32 {%- block input_group -%}
32 {%- block in_prompt -%}{%- endblock in_prompt -%}
33 {%- block in_prompt -%}{%- endblock in_prompt -%}
33 {%- block input -%}{%- endblock input -%}
34 {%- block input -%}{%- endblock input -%}
34 {%- endblock input_group -%}
35 {%- endblock input_group -%}
35 {%- if cell.outputs -%}
36 {%- if cell.outputs -%}
36 {%- block output_group -%}
37 {%- block output_group -%}
37 {%- block output_prompt -%}{%- endblock output_prompt -%}
38 {%- block output_prompt -%}{%- endblock output_prompt -%}
38 {%- block outputs scoped -%}
39 {%- block outputs scoped -%}
39 {%- for output in cell.outputs -%}
40 {%- for output in cell.outputs -%}
40 {%- block output scoped -%}
41 {%- block output scoped -%}
41 {%- if output.output_type == 'execute_result' -%}
42 {%- if output.output_type in ['pyout'] -%}
42 {%- block execute_result scoped -%}{%- endblock execute_result -%}
43 {%- block pyout scoped -%}{%- endblock pyout -%}
43 {%- elif output.output_type == 'stream' -%}
44 {%- elif output.output_type in ['stream'] -%}
44 {%- block stream scoped -%}
45 {%- block stream scoped -%}
45 {%- if output.name == 'stdout' -%}
46 {%- if output.stream in ['stdout'] -%}
46 {%- block stream_stdout scoped -%}
47 {%- block stream_stdout scoped -%}
47 {%- endblock stream_stdout -%}
48 {%- endblock stream_stdout -%}
48 {%- elif output.name == 'stderr' -%}
49 {%- elif output.stream in ['stderr'] -%}
49 {%- block stream_stderr scoped -%}
50 {%- block stream_stderr scoped -%}
50 {%- endblock stream_stderr -%}
51 {%- endblock stream_stderr -%}
51 {%- endif -%}
52 {%- endif -%}
52 {%- endblock stream -%}
53 {%- endblock stream -%}
53 {%- elif output.output_type == 'display_data' -%}
54 {%- elif output.output_type in ['display_data'] -%}
54 {%- block display_data scoped -%}
55 {%- block display_data scoped -%}
55 {%- block data_priority scoped -%}
56 {%- block data_priority scoped -%}
56 {%- endblock data_priority -%}
57 {%- endblock data_priority -%}
57 {%- endblock display_data -%}
58 {%- endblock display_data -%}
58 {%- elif output.output_type == 'error' -%}
59 {%- elif output.output_type in ['pyerr'] -%}
59 {%- block error scoped -%}
60 {%- block pyerr scoped -%}
60 {%- for line in output.traceback -%}
61 {%- for line in output.traceback -%}
61 {%- block traceback_line scoped -%}{%- endblock traceback_line -%}
62 {%- block traceback_line scoped -%}{%- endblock traceback_line -%}
62 {%- endfor -%}
63 {%- endfor -%}
63 {%- endblock error -%}
64 {%- endblock pyerr -%}
64 {%- endif -%}
65 {%- endif -%}
65 {%- endblock output -%}
66 {%- endblock output -%}
66 {%- endfor -%}
67 {%- endfor -%}
67 {%- endblock outputs -%}
68 {%- endblock outputs -%}
68 {%- endblock output_group -%}
69 {%- endblock output_group -%}
69 {%- endif -%}
70 {%- endif -%}
70 {%- endblock codecell -%}
71 {%- endblock codecell -%}
71 {%- elif cell.cell_type in ['markdown'] -%}
72 {%- elif cell.cell_type in ['markdown'] -%}
72 {%- block markdowncell scoped-%}
73 {%- block markdowncell scoped-%}
73 {%- endblock markdowncell -%}
74 {%- endblock markdowncell -%}
74 {%- elif cell.cell_type in ['heading'] -%}
75 {%- elif cell.cell_type in ['heading'] -%}
75 {%- block headingcell scoped-%}
76 {%- block headingcell scoped-%}
76 {%- endblock headingcell -%}
77 {%- endblock headingcell -%}
77 {%- elif cell.cell_type in ['raw'] -%}
78 {%- elif cell.cell_type in ['raw'] -%}
78 {%- block rawcell scoped -%}
79 {%- block rawcell scoped -%}
79 {% if cell.metadata.get('raw_mimetype', '').lower() in resources.get('raw_mimetypes', ['']) %}
80 {% if cell.metadata.get('raw_mimetype', '').lower() in resources.get('raw_mimetypes', ['']) %}
80 {{ cell.source }}
81 {{ cell.source }}
81 {% endif %}
82 {% endif %}
82 {%- endblock rawcell -%}
83 {%- endblock rawcell -%}
83 {%- else -%}
84 {%- else -%}
84 {%- block unknowncell scoped-%}
85 {%- block unknowncell scoped-%}
85 {%- endblock unknowncell -%}
86 {%- endblock unknowncell -%}
86 {%- endif -%}
87 {%- endif -%}
87 {%- endblock any_cell -%}
88 {%- endblock any_cell -%}
89 {%- endfor -%}
90 {%- endfor -%}
88 {%- endfor -%}
91 {%- endblock body -%}
89 {%- endblock body -%}
92
90
@@ -1,17 +1,7 b''
1 """
1 """Base test class for nbconvert"""
2 Contains base test class for nbconvert
2
3 """
3 # Copyright (c) IPython Development Team.
4 #-----------------------------------------------------------------------------
4 # Distributed under the terms of the Modified BSD License.
5 #Copyright (c) 2013, the IPython Development Team.
6 #
7 #Distributed under the terms of the Modified BSD License.
8 #
9 #The full license is in the file COPYING.txt, distributed with this software.
10 #-----------------------------------------------------------------------------
11
12 #-----------------------------------------------------------------------------
13 # Imports
14 #-----------------------------------------------------------------------------
15
5
16 import io
6 import io
17 import os
7 import os
@@ -29,10 +19,6 b' from IPython.testing.tools import get_ipython_cmd'
29 # a trailing space allows for simpler concatenation with the other arguments
19 # a trailing space allows for simpler concatenation with the other arguments
30 ipy_cmd = get_ipython_cmd(as_string=True) + " "
20 ipy_cmd = get_ipython_cmd(as_string=True) + " "
31
21
32 #-----------------------------------------------------------------------------
33 # Classes and functions
34 #-----------------------------------------------------------------------------
35
36
22
37 class TestsBase(unittest.TestCase):
23 class TestsBase(unittest.TestCase):
38 """Base tests class. Contains useful fuzzy comparison and nbconvert
24 """Base tests class. Contains useful fuzzy comparison and nbconvert
@@ -116,7 +102,6 b' class TestsBase(unittest.TestCase):'
116
102
117 def create_empty_notebook(self, path):
103 def create_empty_notebook(self, path):
118 nb = current.new_notebook()
104 nb = current.new_notebook()
119 nb.worksheets.append(current.new_worksheet())
120 with io.open(path, 'w', encoding='utf-8') as f:
105 with io.open(path, 'w', encoding='utf-8') as f:
121 current.write(nb, f, 'json')
106 current.write(nb, f, 'json')
122
107
@@ -1,149 +1,143 b''
1 {
1 {
2 "metadata": {
2 "cells": [
3 "name": "notebook1"
4 },
5 "nbformat": 3,
6 "nbformat_minor": 0,
7 "worksheets": [
8 {
3 {
9 "cells": [
4 "cell_type": "heading",
10 {
5 "level": 1,
11 "cell_type": "heading",
6 "metadata": {},
12 "level": 1,
7 "source": [
13 "metadata": {},
8 "A simple SymPy example"
14 "source": [
9 ]
15 "A simple SymPy example"
10 },
16 ]
11 {
17 },
12 "cell_type": "markdown",
13 "metadata": {},
14 "source": [
15 "First we import SymPy and initialize printing:"
16 ]
17 },
18 {
19 "cell_type": "code",
20 "metadata": {
21 "collapsed": false
22 },
23 "outputs": [],
24 "prompt_number": 2,
25 "source": [
26 "from sympy import init_printing\n",
27 "from sympy import *\n",
28 " init_printing()"
29 ]
30 },
31 {
32 "cell_type": "markdown",
33 "metadata": {},
34 "source": [
35 "Create a few symbols:"
36 ]
37 },
38 {
39 "cell_type": "code",
40 "metadata": {
41 "collapsed": false
42 },
43 "outputs": [],
44 "prompt_number": 4,
45 "source": [
46 "x,y,z = symbols('x y z')"
47 ]
48 },
49 {
50 "cell_type": "markdown",
51 "metadata": {},
52 "source": [
53 "Here is a basic expression:"
54 ]
55 },
56 {
57 "cell_type": "code",
58 "metadata": {
59 "collapsed": false
60 },
61 "outputs": [
18 {
62 {
19 "cell_type": "markdown",
63 "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKMAAAAZBAMAAACvE4OgAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEHarIkSJZt3NVLsy\nme8Q6PJIAAACz0lEQVRIDa1UTWjUQBT+ZpvdzW7TGlrxItjYSg/C6vbiDwjmoCgUpHioPYhdqig9\nFJYiPYmW4klB14NgFGnw4EHpj7UgUtTFXhSEBgVBxIOFggWVrrUqiMY3mZkkLNIK7oN575vvvfky\n8yYJIGzgkSlRrULKrivVSkvq6LbxtcaSjV3aSo0lgWyl5pK69V+SRlEsPxNTGYhhDrV3M2Ue2etc\nEDmuMmM+IjolrCuHXNoLoQDNSAXdzbjsfFVKTY1vCgFXFIxenG4cFSSzRewAPnN0FugXjPDr45MQ\nJwoKtitgXL9zT+CsJeIHYG+Z4H1gwhRU4G/FcAQbbYU3KdDo+0sCK8lRU0guA72uKqMYk9RehHxP\niDIu0NS2v90KGShJYi7T7tgvkrQ2vIT2XtRISWNra6lzGc8/PW3ji4PL7Vmge095YIX0iB71NCaZ\n5N3XyM0VCuNIyFNIyY3AMG/KDUvjn90DGmwq9wpIl5AyU5WsTYy0aJf6JFGB5An3Der5jExKHjNR\n4JKPge/EXqDBoOXpkxkmkJHFfAFRVhDIveWA0S57N2Me6yw+DSX1n1uCq3sIfCF2IcjNkjeWyKli\nginHubboOB4vSNAjyaiXE26ygrkyTfod55Lj3CTE+n2P73ImJpnk6wJJKjYJSwt3OQbNJu4icM5s\nKGGbzMuD70N6JSbJD44x7pLDyJrbkfiLpOEhYVMJSVEj83x5YFLyNrAzJsmvJ+uhLrieXvcJDshy\nHtQuD54c2IWWEnSXfUTDZJJfAjcpOW5imp9aHvw4ZZ4NDV4FGjw0tzadKgbFwinJUd//AT0P1tdW\nBtuRU39oKdk9ONQ163fM+nvu/s4D/FX30otdQIZGlSnJKpq6KUxKVqV1WxGHFIhishjhEO1Gi3r4\nkZCMg+hH1henV8EjmFoly1PTMs/Uadaox+FceY2STpmvt9co/Pe0Jvt1GvgDK/Osw/4jQ4wAAAAA\nSUVORK5CYII=\n",
20 "metadata": {},
64 "metadata": {},
21 "source": [
65 "output_type": "execute_result",
22 "First we import SymPy and initialize printing:"
66 "prompt_number": 6,
23 ]
67 "text/latex": [
24 },
68 "$$x^{2} + 2.0 y + \\sin{\\left (z \\right )}$$"
25 {
26 "cell_type": "code",
27 "collapsed": false,
28 "input": [
29 "from sympy import init_printing\n",
30 "from sympy import *\n",
31 " init_printing()"
32 ],
69 ],
33 "language": "python",
70 "text/plain": [
34 "metadata": {},
71 " 2 \n",
35 "outputs": [],
72 "x + 2.0\u22c5y + sin(z)"
36 "prompt_number": 2
37 },
38 {
39 "cell_type": "markdown",
40 "metadata": {},
41 "source": [
42 "Create a few symbols:"
43 ]
73 ]
44 },
74 }
45 {
75 ],
46 "cell_type": "code",
76 "prompt_number": 6,
47 "collapsed": false,
77 "source": [
48 "input": [
78 "e = x**2 + 2.0*y + sin(z); e"
49 "x,y,z = symbols('x y z')"
79 ]
50 ],
80 },
51 "language": "python",
81 {
52 "metadata": {},
82 "cell_type": "code",
53 "outputs": [],
83 "metadata": {
54 "prompt_number": 4
84 "collapsed": false
55 },
85 },
56 {
86 "outputs": [
57 "cell_type": "markdown",
58 "metadata": {},
59 "source": [
60 "Here is a basic expression:"
61 ]
62 },
63 {
64 "cell_type": "code",
65 "collapsed": false,
66 "input": [
67 "e = x**2 + 2.0*y + sin(z); e"
68 ],
69 "language": "python",
70 "metadata": {},
71 "outputs": [
72 {
73 "latex": [
74 "$$x^{2} + 2.0 y + \\sin{\\left (z \\right )}$$"
75 ],
76 "metadata": {},
77 "output_type": "pyout",
78 "png": "iVBORw0KGgoAAAANSUhEUgAAAKMAAAAZBAMAAACvE4OgAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEHarIkSJZt3NVLsy\nme8Q6PJIAAACz0lEQVRIDa1UTWjUQBT+ZpvdzW7TGlrxItjYSg/C6vbiDwjmoCgUpHioPYhdqig9\nFJYiPYmW4klB14NgFGnw4EHpj7UgUtTFXhSEBgVBxIOFggWVrrUqiMY3mZkkLNIK7oN575vvvfky\n8yYJIGzgkSlRrULKrivVSkvq6LbxtcaSjV3aSo0lgWyl5pK69V+SRlEsPxNTGYhhDrV3M2Ue2etc\nEDmuMmM+IjolrCuHXNoLoQDNSAXdzbjsfFVKTY1vCgFXFIxenG4cFSSzRewAPnN0FugXjPDr45MQ\nJwoKtitgXL9zT+CsJeIHYG+Z4H1gwhRU4G/FcAQbbYU3KdDo+0sCK8lRU0guA72uKqMYk9RehHxP\niDIu0NS2v90KGShJYi7T7tgvkrQ2vIT2XtRISWNra6lzGc8/PW3ji4PL7Vmge095YIX0iB71NCaZ\n5N3XyM0VCuNIyFNIyY3AMG/KDUvjn90DGmwq9wpIl5AyU5WsTYy0aJf6JFGB5An3Der5jExKHjNR\n4JKPge/EXqDBoOXpkxkmkJHFfAFRVhDIveWA0S57N2Me6yw+DSX1n1uCq3sIfCF2IcjNkjeWyKli\nginHubboOB4vSNAjyaiXE26ygrkyTfod55Lj3CTE+n2P73ImJpnk6wJJKjYJSwt3OQbNJu4icM5s\nKGGbzMuD70N6JSbJD44x7pLDyJrbkfiLpOEhYVMJSVEj83x5YFLyNrAzJsmvJ+uhLrieXvcJDshy\nHtQuD54c2IWWEnSXfUTDZJJfAjcpOW5imp9aHvw4ZZ4NDV4FGjw0tzadKgbFwinJUd//AT0P1tdW\nBtuRU39oKdk9ONQ163fM+nvu/s4D/FX30otdQIZGlSnJKpq6KUxKVqV1WxGHFIhishjhEO1Gi3r4\nkZCMg+hH1henV8EjmFoly1PTMs/Uadaox+FceY2STpmvt9co/Pe0Jvt1GvgDK/Osw/4jQ4wAAAAA\nSUVORK5CYII=\n",
79 "prompt_number": 6,
80 "text": [
81 " 2 \n",
82 "x + 2.0\u22c5y + sin(z)"
83 ]
84 }
85 ],
86 "prompt_number": 6
87 },
88 {
87 {
89 "cell_type": "code",
88 "image/png": "iVBORw0KGgoAAAANSUhEUgAAABQAAAAOBAMAAADd6iHDAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAIpm7MhCriUTv3c12\nVGZoascqAAAAgElEQVQIHWNgVDJ2YICAMAb2H1BmKgPDTChzFgNDvgOEvT8AzgQKrA9gPZPYUwNk\ncXxnCGd4dWA1kMllwFDKUB9wEchUZmAIYNgMZDDwJIDIPyDiEgOjAAPLFwZWBhYFBh6BqzwfGI4y\nSJUXZXH8Zf7A+IBh////v1hzjh5/xwAAW80hUDE8HYkAAAAASUVORK5CYII=\n",
90 "collapsed": false,
91 "input": [
92 "diff(e, x)"
93 ],
94 "language": "python",
95 "metadata": {},
89 "metadata": {},
96 "outputs": [
90 "output_type": "execute_result",
97 {
91 "prompt_number": 7,
98 "latex": [
92 "text/latex": [
99 "$$2 x$$"
93 "$$2 x$$"
100 ],
101 "metadata": {},
102 "output_type": "pyout",
103 "png": "iVBORw0KGgoAAAANSUhEUgAAABQAAAAOBAMAAADd6iHDAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAIpm7MhCriUTv3c12\nVGZoascqAAAAgElEQVQIHWNgVDJ2YICAMAb2H1BmKgPDTChzFgNDvgOEvT8AzgQKrA9gPZPYUwNk\ncXxnCGd4dWA1kMllwFDKUB9wEchUZmAIYNgMZDDwJIDIPyDiEgOjAAPLFwZWBhYFBh6BqzwfGI4y\nSJUXZXH8Zf7A+IBh////v1hzjh5/xwAAW80hUDE8HYkAAAAASUVORK5CYII=\n",
104 "prompt_number": 7,
105 "text": [
106 "2\u22c5x"
107 ]
108 }
109 ],
94 ],
110 "prompt_number": 7
95 "text/plain": [
111 },
96 "2\u22c5x"
97 ]
98 }
99 ],
100 "prompt_number": 7,
101 "source": [
102 "diff(e, x)"
103 ]
104 },
105 {
106 "cell_type": "code",
107 "metadata": {
108 "collapsed": false
109 },
110 "outputs": [
112 {
111 {
113 "cell_type": "code",
112 "image/png": "iVBORw0KGgoAAAANSUhEUgAAALsAAAAZBAMAAACbakK8AAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEHarIkSJZt3NVLsy\nme8Q6PJIAAADAklEQVRIDbVVS2gTURQ90/wmk0k6tCJCsR1SKShIsxE3CgNWBKUxq9qFmqFqShfF\nUKQrkaDiF0pcCKYgBBcuBLV+wIWKARe6kQ4UhNKKWdiF4KIptmA/xPvmzZuMxdYUzIPcd+655568\nvLlJAL6G32oOasQWNHz5Rvg6nrKh/mygfSzlX2ygPaBUGmov6//NXs1yq4sex2EPrsHemTd2snNg\ntkb+Cx1zBL6SqwxZLvQAKYHzKZaPY4fh4TeHd0S5Nox9OClItm/jiU9DrEwwVEawpiVis9VkimqX\nAOr4o2cCs/0BT2I5+FYJRhJbePQxgzcD7QLEqtV5gdnu2Icr3L45gcCyt74Z7neL4SLQ0nm4S+dM\nYCz1gSPHnhKZDWyHhcCCNKwjqaF/TkwGl0L6nClie/wc1D1xdoNsSLhT0IJkhi7Lzr22xb8keE/N\nPm0Sc9yEuhRUyuiG9HzvFNeImCyq39SriOhtQI7IV/TiTqE8glqwohjE0NJwiANxOZTdZoxtfzSa\nx2tI8DtHcKQoQFmV6f1XT2swibxFL+6k5EgenhBCqKLTPX3ULnaYdDlaTMcCSd8zuXTvBq2bJUJr\nlE4WgSV5ZRdBzLFgO6nzhJp1ltvrlB2HCoWxQuG+jTvt2GxBWUZaU2mMApZNuSHA3vJpCliRhqqs\nZtvbTrb9ZIk+i70Ut1OcnpgeKskTCFUwjaYy8Jhr3eiefq0HIfa7yC6HOwVyULRuNDn21JngbcL+\nE8A+MNnSxb+w59+Cj2tELJBbjEZr8SGwn0j2aLkTPdp08R2OcKV6fXB3ikPH3n8tM5WTfrETtZcw\ng3QWH0dH7nKNiMkszqo/EDafaHhJ5Bm6ee4UtdAabxnMcmUUl0SnYx+uVqs5XAGN9QGgdeCrASv0\n3TmCsJcOdhnozexD38goK9HXynEKr1OKDs9guhQD039kGySyIQpJAdbvJ9YTlPvyUl3/aLUf34G/\nuGxIyXpE37DoLbAHwJaU53t9MRCfrU8o/k4iRn36Lar8Wd5wAfgN4R6xelyy/ssAAAAASUVORK5C\nYII=\n",
114 "collapsed": false,
115 "input": [
116 "integrate(e, z)"
117 ],
118 "language": "python",
119 "metadata": {},
113 "metadata": {},
120 "outputs": [
114 "output_type": "execute_result",
121 {
115 "prompt_number": 8,
122 "latex": [
116 "text/latex": [
123 "$$x^{2} z + 2.0 y z - \\cos{\\left (z \\right )}$$"
117 "$$x^{2} z + 2.0 y z - \\cos{\\left (z \\right )}$$"
124 ],
125 "metadata": {},
126 "output_type": "pyout",
127 "png": "iVBORw0KGgoAAAANSUhEUgAAALsAAAAZBAMAAACbakK8AAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAEHarIkSJZt3NVLsy\nme8Q6PJIAAADAklEQVRIDbVVS2gTURQ90/wmk0k6tCJCsR1SKShIsxE3CgNWBKUxq9qFmqFqShfF\nUKQrkaDiF0pcCKYgBBcuBLV+wIWKARe6kQ4UhNKKWdiF4KIptmA/xPvmzZuMxdYUzIPcd+655568\nvLlJAL6G32oOasQWNHz5Rvg6nrKh/mygfSzlX2ygPaBUGmov6//NXs1yq4sex2EPrsHemTd2snNg\ntkb+Cx1zBL6SqwxZLvQAKYHzKZaPY4fh4TeHd0S5Nox9OClItm/jiU9DrEwwVEawpiVis9VkimqX\nAOr4o2cCs/0BT2I5+FYJRhJbePQxgzcD7QLEqtV5gdnu2Icr3L45gcCyt74Z7neL4SLQ0nm4S+dM\nYCz1gSPHnhKZDWyHhcCCNKwjqaF/TkwGl0L6nClie/wc1D1xdoNsSLhT0IJkhi7Lzr22xb8keE/N\nPm0Sc9yEuhRUyuiG9HzvFNeImCyq39SriOhtQI7IV/TiTqE8glqwohjE0NJwiANxOZTdZoxtfzSa\nx2tI8DtHcKQoQFmV6f1XT2swibxFL+6k5EgenhBCqKLTPX3ULnaYdDlaTMcCSd8zuXTvBq2bJUJr\nlE4WgSV5ZRdBzLFgO6nzhJp1ltvrlB2HCoWxQuG+jTvt2GxBWUZaU2mMApZNuSHA3vJpCliRhqqs\nZtvbTrb9ZIk+i70Ut1OcnpgeKskTCFUwjaYy8Jhr3eiefq0HIfa7yC6HOwVyULRuNDn21JngbcL+\nE8A+MNnSxb+w59+Cj2tELJBbjEZr8SGwn0j2aLkTPdp08R2OcKV6fXB3ikPH3n8tM5WTfrETtZcw\ng3QWH0dH7nKNiMkszqo/EDafaHhJ5Bm6ee4UtdAabxnMcmUUl0SnYx+uVqs5XAGN9QGgdeCrASv0\n3TmCsJcOdhnozexD38goK9HXynEKr1OKDs9guhQD039kGySyIQpJAdbvJ9YTlPvyUl3/aLUf34G/\nuGxIyXpE37DoLbAHwJaU53t9MRCfrU8o/k4iRn36Lar8Wd5wAfgN4R6xelyy/ssAAAAASUVORK5C\nYII=\n",
128 "prompt_number": 8,
129 "text": [
130 " 2 \n",
131 "x \u22c5z + 2.0\u22c5y\u22c5z - cos(z)"
132 ]
133 }
134 ],
118 ],
135 "prompt_number": 8
119 "text/plain": [
136 },
120 " 2 \n",
137 {
121 "x \u22c5z + 2.0\u22c5y\u22c5z - cos(z)"
138 "cell_type": "code",
122 ]
139 "collapsed": false,
140 "input": [],
141 "language": "python",
142 "metadata": {},
143 "outputs": []
144 }
123 }
145 ],
124 ],
146 "metadata": {}
125 "prompt_number": 8,
126 "source": [
127 "integrate(e, z)"
128 ]
129 },
130 {
131 "cell_type": "code",
132 "metadata": {
133 "collapsed": false
134 },
135 "outputs": [],
136 "prompt_number": null,
137 "source": []
147 }
138 }
148 ]
139 ],
140 "metadata": {},
141 "nbformat": 4,
142 "nbformat_minor": 0
149 } No newline at end of file
143 }
@@ -1,224 +1,215 b''
1 {
1 {
2 "metadata": {
2 "cells": [
3 "name": "",
4 "signature": "sha256:9fffd84e69e3d9b8aee7b4cde2099ca5d4158a45391698b191f94fabaf394b41"
5 },
6 "nbformat": 3,
7 "nbformat_minor": 0,
8 "worksheets": [
9 {
3 {
10 "cells": [
4 "cell_type": "heading",
5 "level": 1,
6 "metadata": {},
7 "source": [
8 "NumPy and Matplotlib examples"
9 ]
10 },
11 {
12 "cell_type": "markdown",
13 "metadata": {},
14 "source": [
15 "First import NumPy and Matplotlib:"
16 ]
17 },
18 {
19 "cell_type": "code",
20 "metadata": {
21 "collapsed": false
22 },
23 "outputs": [
11 {
24 {
12 "cell_type": "heading",
13 "level": 1,
14 "metadata": {},
25 "metadata": {},
15 "source": [
26 "name": "stdout",
16 "NumPy and Matplotlib examples"
27 "output_type": "stream",
17 ]
28 "text": "module://IPython.kernel.zmq.pylab.backend_inline\n"
18 },
29 }
30 ],
31 "prompt_number": 1,
32 "source": [
33 "%matplotlib inline\n",
34 "import matplotlib\n",
35 "import matplotlib.pyplot as plt\n",
36 "print(matplotlib.backends.backend)"
37 ]
38 },
39 {
40 "cell_type": "code",
41 "metadata": {
42 "collapsed": false
43 },
44 "outputs": [],
45 "prompt_number": 2,
46 "source": [
47 "from IPython.display import set_matplotlib_formats\n",
48 "set_matplotlib_formats('png', 'pdf')\n",
49 "matplotlib.rcParams['figure.figsize'] = (2,1)"
50 ]
51 },
52 {
53 "cell_type": "code",
54 "metadata": {
55 "collapsed": false
56 },
57 "outputs": [
19 {
58 {
20 "cell_type": "markdown",
21 "metadata": {},
59 "metadata": {},
22 "source": [
60 "output_type": "execute_result",
23 "First import NumPy and Matplotlib:"
61 "prompt_number": 3,
62 "text/plain": [
63 "{matplotlib.figure.Figure: <function IPython.core.pylabtools.<lambda>>}"
24 ]
64 ]
25 },
65 }
26 {
66 ],
27 "cell_type": "code",
67 "prompt_number": 3,
28 "collapsed": false,
68 "source": [
29 "input": [
69 "ip.display_formatter.formatters['application/pdf'].type_printers"
30 "%matplotlib inline\n",
70 ]
31 "import matplotlib\n",
71 },
32 "import matplotlib.pyplot as plt\n",
72 {
33 "print(matplotlib.backends.backend)"
73 "cell_type": "code",
34 ],
74 "metadata": {
35 "language": "python",
75 "collapsed": false
36 "metadata": {},
76 },
37 "outputs": [
77 "outputs": [],
38 {
78 "prompt_number": 4,
39 "output_type": "stream",
79 "source": [
40 "stream": "stdout",
80 "import numpy as np"
41 "text": [
81 ]
42 "module://IPython.kernel.zmq.pylab.backend_inline\n"
82 },
43 ]
83 {
44 }
84 "cell_type": "markdown",
45 ],
85 "metadata": {},
46 "prompt_number": 1
86 "source": [
47 },
87 "Now we show some very basic examples of how they can be used."
48 {
88 ]
49 "cell_type": "code",
89 },
50 "collapsed": false,
90 {
51 "input": [
91 "cell_type": "code",
52 "from IPython.display import set_matplotlib_formats\n",
92 "metadata": {
53 "set_matplotlib_formats('png', 'pdf')\n",
93 "collapsed": false
54 "matplotlib.rcParams['figure.figsize'] = (2,1)"
94 },
55 ],
95 "outputs": [],
56 "language": "python",
96 "prompt_number": 5,
57 "metadata": {},
97 "source": [
58 "outputs": [],
98 "a = np.random.uniform(size=(100,100))"
59 "prompt_number": 2
99 ]
60 },
100 },
61 {
101 {
62 "cell_type": "code",
102 "cell_type": "code",
63 "collapsed": false,
103 "metadata": {
64 "input": [
104 "collapsed": false
65 "ip.display_formatter.formatters['application/pdf'].type_printers"
105 },
66 ],
106 "outputs": [
67 "language": "python",
68 "metadata": {},
69 "outputs": [
70 {
71 "metadata": {},
72 "output_type": "pyout",
73 "prompt_number": 3,
74 "text": [
75 "{matplotlib.figure.Figure: <function IPython.core.pylabtools.<lambda>>}"
76 ]
77 }
78 ],
79 "prompt_number": 3
80 },
81 {
82 "cell_type": "code",
83 "collapsed": false,
84 "input": [
85 "import numpy as np"
86 ],
87 "language": "python",
88 "metadata": {},
89 "outputs": [],
90 "prompt_number": 4
91 },
92 {
107 {
93 "cell_type": "markdown",
94 "metadata": {},
108 "metadata": {},
95 "source": [
109 "output_type": "execute_result",
96 "Now we show some very basic examples of how they can be used."
110 "prompt_number": 6,
111 "text/plain": [
112 "(100, 100)"
97 ]
113 ]
98 },
114 }
99 {
115 ],
100 "cell_type": "code",
116 "prompt_number": 6,
101 "collapsed": false,
117 "source": [
102 "input": [
118 "a.shape"
103 "a = np.random.uniform(size=(100,100))"
119 ]
104 ],
120 },
105 "language": "python",
121 {
106 "metadata": {},
122 "cell_type": "code",
107 "outputs": [],
123 "metadata": {
108 "prompt_number": 5
124 "collapsed": false
109 },
125 },
110 {
126 "outputs": [],
111 "cell_type": "code",
127 "prompt_number": 7,
112 "collapsed": false,
128 "source": [
113 "input": [
129 "evs = np.linalg.eigvals(a)"
114 "a.shape"
130 ]
115 ],
131 },
116 "language": "python",
132 {
117 "metadata": {},
133 "cell_type": "code",
118 "outputs": [
134 "metadata": {
119 {
135 "collapsed": false
120 "metadata": {},
136 },
121 "output_type": "pyout",
137 "outputs": [
122 "prompt_number": 6,
123 "text": [
124 "(100, 100)"
125 ]
126 }
127 ],
128 "prompt_number": 6
129 },
130 {
131 "cell_type": "code",
132 "collapsed": false,
133 "input": [
134 "evs = np.linalg.eigvals(a)"
135 ],
136 "language": "python",
137 "metadata": {},
138 "outputs": [],
139 "prompt_number": 7
140 },
141 {
142 "cell_type": "code",
143 "collapsed": false,
144 "input": [
145 "evs.shape"
146 ],
147 "language": "python",
148 "metadata": {},
149 "outputs": [
150 {
151 "metadata": {},
152 "output_type": "pyout",
153 "prompt_number": 8,
154 "text": [
155 "(100,)"
156 ]
157 }
158 ],
159 "prompt_number": 8
160 },
161 {
138 {
162 "cell_type": "heading",
163 "level": 2,
164 "metadata": {},
139 "metadata": {},
165 "source": [
140 "output_type": "execute_result",
166 "Here is a very long heading that pandoc will wrap and wrap and wrap and wrap and wrap and wrap and wrap and wrap and wrap and wrap and wrap and wrap"
141 "prompt_number": 8,
142 "text/plain": [
143 "(100,)"
167 ]
144 ]
168 },
145 }
146 ],
147 "prompt_number": 8,
148 "source": [
149 "evs.shape"
150 ]
151 },
152 {
153 "cell_type": "heading",
154 "level": 2,
155 "metadata": {},
156 "source": [
157 "Here is a very long heading that pandoc will wrap and wrap and wrap and wrap and wrap and wrap and wrap and wrap and wrap and wrap and wrap and wrap"
158 ]
159 },
160 {
161 "cell_type": "markdown",
162 "metadata": {},
163 "source": [
164 "Here is a cell that has both text and PNG output:"
165 ]
166 },
167 {
168 "cell_type": "code",
169 "metadata": {
170 "collapsed": false
171 },
172 "outputs": [
169 {
173 {
170 "cell_type": "markdown",
171 "metadata": {},
174 "metadata": {},
172 "source": [
175 "output_type": "execute_result",
173 "Here is a cell that has both text and PNG output:"
176 "prompt_number": 9,
177 "text/plain": [
178 "(array([97, 2, 0, 0, 0, 0, 0, 0, 0, 1]),\n",
179 " array([ -2.59479443, 2.67371141, 7.94221725, 13.21072308,\n",
180 " 18.47922892, 23.74773476, 29.0162406 , 34.28474644,\n",
181 " 39.55325228, 44.82175812, 50.09026395]),\n",
182 " <a list of 10 Patch objects>)"
174 ]
183 ]
175 },
184 },
176 {
185 {
177 "cell_type": "code",
186 "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+\nCmVuZG9iago4IDAgb2JqCjw8IC9YT2JqZWN0IDcgMCBSIC9QYXR0ZXJuIDUgMCBSCi9Qcm9jU2V0\nIFsgL1BERiAvVGV4dCAvSW1hZ2VCIC9JbWFnZUMgL0ltYWdlSSBdIC9FeHRHU3RhdGUgNCAwIFIK\nL1NoYWRpbmcgNiAwIFIgL0ZvbnQgMyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Hcm91cCA8\nPCAvQ1MgL0RldmljZVJHQiAvUyAvVHJhbnNwYXJlbmN5IC9UeXBlIC9Hcm91cCA+PiAvUGFyZW50\nIDIgMCBSCi9NZWRpYUJveCBbIDAgMCAxNTIuMzk4NDM3NSA4Ny4xOTIxODc1IF0gL1Jlc291cmNl\ncyA4IDAgUiAvVHlwZSAvUGFnZQovQ29udGVudHMgOSAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwg\nL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnicxZi/btwwDMYz\na+wTCJ3aRSEpiZLGHtAG6FbkgL5AmwTBXYCmQ16/dJycRcWq7SV3k81Pf76fzyZpo703l1/Q3v61\nZL9bsE8W7ZUBOTpajOR8ycGnKOcHdZ6Tw0KY5fAgojq9Mw+yKA2Lgiv+9WdvZeCVoewCR6ZoCVyk\njHIkewVw0IYPdTix8y/hao0qKvveiHOhcF5t6qJgqWDPRRXlkwmzm92vHp1g8rYzzf5on8xuby+/\noUWw+xsjO2L0w+gk06Ld/zKfPn64wAv4bPf39uu+XeGZwITgAuSQCQMVZbtRlHWt1fYbZRNCIAdA\n5F/mnjAWEFiiEb0vlGNSCI2iELRWIzTKJoQYXSglJU7PcyeEpf9BDFAJWDhQZgXRKApCazVEo2yC\nSOiQ0efhCnANQQsQhRz5BNHHhEFBNIqC0FoN0SibICR5QCjxde4E4RcgELLDVAqCTPQ6nzSSwmjE\nmqOVNoEgkCuFwuvkiSQskVBwSDTejKhJGkmTaFGRNNI2Esyu5PLyp9QkcYlkLpHr/K4J5jK8Gr/R\nuQ9Sc8bxlW1esL1YD6BjermIrTGdHI8VAXm47sDr8unkz6Pj/Mb1FG1c18Nnw6tcyzM/bIahMryU\neCZzUkOk+rSWp2hjuR4+G15pGUazvjgPle+lJ3RyGIPUvje+p2jjux4+G159qSPIZpXl9fc0RykT\nbyxP0cZyPXw2vNby8yy5p6hynVe77vRaXKeDFemDNxVUuc6JXKqfQWkIJs9/ZpMColBaaSmyffxt\nf9qHsZ12BFKZMbIUZxkbEBOHBCw20unEPk49atUtXxlhoITscwhNv5cdJ5TWC1TVO2ghBUkqYQRX\nS1WC9Mw788O+J9S896ON0gXIxBDZqwp4aBUxFQb3puE9CefA6rk/Dk+NzJQcSZLgFZdSzH+IK+Xd\nwXr2pW/1LnNhOaeowZRiusjnBevZP9o8ZK4i60pTrp8vpZgu8nnBevalSQfHsiYDSJekTCrFdJHP\nC9azL2BFsn2W/MaQGrBaMV3kM4N17A+vI0k8JOZEgM2nESWZLvR50boAwoaylaTvBEneMzSbkkwf\n+8xwPYLx7YtYXAafC2s4JRkpW5B5jtvW0gg3mk4+UZSmm9SHrBX9z/WKNxc9fsvXuu7w+ebt2ph/\nACMXFgplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjg3MAplbmRvYmoKMTYgMCBvYmoKPDwgL0Zp\nbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aDEgMTkgMCBSIC9MZW5ndGggMjAgMCBSID4+CnN0cmVh\nbQp4nNS9eYAdVZ0vfurudavq3rr7vvftvdOdTtIJi6QTsnQATdhCgsYECRAWIVFAwAUGWQL6JjDj\nAEEQRJYAvsnNnbZZxjfkzVMExhl7HImgeZBRCIn6BnUcRudB8vt8zqm66QScef/+DqnvreXUWb6f\n73pO2QpNCBEH8Ynq8iVLlwleawdAhLl81cozz//y80lcm0LoZyw/8+zFIiXCQvvNBj5feebw6M3v\n9H4RL+zA9YbzP3ne5v959xPrhTj9QSEC2fOvvrIaXKRVhTj3RDyvXrj5ok9etDjUI8Q5T+Od0y+6\n7NoLR5ee8b+EWLdJaGdt2LTxk9fkfn3RLCFCWSFWbN10wXkbn8ze+XPUHcT7Y5twIzjoXYPrjbju\n2vTJK68pvnny6UJ4QujPvvSCT12+7NTTbxHarheEqC+57Irzz1v629+uRv8fE8Ib/uR512z23hfG\n2LWtHM/l533ygq985Ml/EdqPMD/jbzdf8ekr77zla3cJ7fVpjGHW5k9dsPmkX106T4i1eK4NKd6I\nxZenf/fv66Mn/psoeCWjPtds3cDf7994/87Daw/t8x7wfhOXuvAIVfCe98ChPyM9vPbwWryliaOK\ndhPvgG4UQXE2sFDPw5iZ0B8B0YTXE9XuEH7h89zuAQfEqepX+7gY1bKs5/d6+OPFUHauEtVT3LZP\nW/GRlWJcVP+vB2P4a45BW4rbX5X9/sh7j6jiPw+Hqv3OGU0aDf3lBxxXiw2e3WJEHm+K1Z7TcX3s\n8aawPINigzeMOj8UG7SQPJZrocNv4/gNzj3az0SEbaE/HhHvdbK+OhaLEW9LLJS/H3B4TlJ1ZF+D\nYlQeJ6E93McYz3rfcf7h99Aexx7wnHT4t51jUGTkEURbziF+LU7gr/cs595u5/desQrHWu3bouKt\nigF573wxoX0KeLwmTtd8wtR8h/8Vv4tw1MSvD78p7/9OrMBc0e7hn6tfjHNQfERep8XZOBahvRzu\nldFeL377OB/gPIdtoM+P4HoA7y3FcQ7ORz7gGIM8baEkEj/5zulixGn/bK0XfeZkvyPOr8DRLXYc\nXos+ycez0Nc7fA9jnIvjQ9oJ4gQcS1FvAs8mtQ+j/q95Lk7g2OX88A6Of0b9CTk29nsv5yYC4N/J\nePYbZ/wT+L0Jvyc74+Vvg2OceXjvlfwpy+tBsQkY9+AY1y4WY9rpoqL9iajgWa98Dt5D9kfA6zEc\nIe8i0e3OF3zIuWMhTzG+YRyDwOx+HOvdA+8tmHFs1E4TpxILjCGrPSFqPDCOk4gRecyxE2+pB4Pi\nLNSPyHGAlxjnIMZZx5z3oP8JWRfXcu7HHMRIyv8PRQS/PLfdwzN4+BD6zfBgu5RPxecO33GI1ezH\nweA3zvEmx43fFxxZIS83eL4movI4IIblwTHMEVWMYcLzMfDkTdGn/Rp8rYgLtP9z+Pe4l/N8TywH\nj9fTHoCHZ+BY7vyeQZkhj4+yCa49mGkXaAM+wDbQJsw8aB+UjYA+hA6/C9twBo7EMfahc3RshGsn\nXJswsx/XJhxtG44cH2QjcEgb8UfsAnV35iF1Venr+/Xx/GMOhbsJbF7B8VvgEqLezNQd58jDy53j\n6Id7xGfqCGUURxJH2ZXRzgF5nHl8kOzJQ8md3ZGzFnj7U8jlh6UOSUzJC5QR+kld9/uFN+CUoJ8l\n6A8GPSy+gN8fCgZDekgWf0g+VlX1gN8pHtwP4K4v6A94vfJFr9/n8Xn8Hq8X9/y4CPg9HlUbHQb9\nXq9XvYr7QZ8PV6iuuvSg75BHvqZKCC+GQvINtoIzHd37fPJ99hX04AJPvQH+C3k9ul+17vehbTxj\nXVnT4xQvJhyUcw3iKYYu5+Rx2RB02CCLywd5TSYcKQ4jnL5QAoHOfdWjnJUzGE6albzu5P0cHSbi\nDegIBcLEQfYY4CHHEQgFvbI6miMGDg6BkDNMVtTVKCQOuoTOBzhkL152DRQwM698BcwNeDzqBXQY\nDKi2MXX8C3KEAY8aN36CIY+O+kFXNnRUCoV8Xh8v0KDXG0b3nanhDnAIeCkHpCGfJxzwOWOTDA2Q\nQcfgQJaS/ayAriTPPYoNQZcNnHIw6PKBwiCZcKSounogEDgKGKc40/F04J2Bgyv1Ph9nHwQOhhEI\nCK/sISj7JeoBPaRwgFiGdV3ngRLQg+74QsFwh1HAEwhBiPRAUOHgpWhCOL2UXdTzecl6VRsdSpTV\nWDHPkMTBq3iKH8i+DviC7kzDeFnXMQFeoEGv1whSYp2peX06NYU4hAiF7vMaDg4BpcAB1vUeXcA+\n8i9ITcZ8A5y8R7Eh5LKBU5aK6FV4Kia4KLmMCIU7Aul35VjWcabjTBW3fEqHleLI9wkuZh9CXGxa\nxEH2EFK9YADBsK64iREaum6YhiyhMAcYUsMxJGK84cU5Xgz5wzhcHMAYL7jmM4Kogq5wrmZomgE5\nuQD1z4P7IRqZoItDgDgYXsUJSkaIF1AiH+URrYS9XgtjVTOhdPkMWhlw1qdDJYNhv9cM+h0F1/1S\nvQNKrGcU6LguK3AYEC925PEqHrhsCKPoussHKCY4ASY4KDlA6SFDckExNujKs6NIUhR9zkyU4Qr4\nHJFSmhSCxOqGEJYVDAqfahH9KoRDR3AIGuGwYTk4yEE4Q7X0o3EAa4wjOODuDBwCXr2DAzrUQ+5Q\nPBT+4NE4YOoGbuouDhZwMAyFAwA0vD6Jg+QzrBVxkIOAPhIHw++1HBwoUR+MAyYcDrP9MI2wrljq\nIRvCsig2HIMDLhUOZEIHB90KdpAJhf4LHOSYj8IBbtanW0JEoh0cdLcXMDysHAlGCBzMiClLyJS+\nQo4UOLiS4w2asFI4NSF/jgnkXZpyn0nnAubSvUqwo5EgJ+eTPXl04gCtD3kdyxEkDhbqS5/ENyK4\nME1lFzAXy+uNuBKr3LBJa4/24Mrwzwx4IyHHdjpKSy5I7s/EgXMFDkGSkMIBXYcdiZNsQKH7hLvX\nHf0gE1Rx5BbF6ozGASZ0xKBRFNVUdQZENFzBI66Go4N59+kRIaJ2KCR8snPioPAImR0cQtAFK2rJ\n4vBe4RB1OgXOIQvQhYFDSA9IHHyQfcQqIQQjlsTBBw66OERRFXOTI8E9X1ji4OvgEA57LV94Bg54\n2bJg43kBHPx+G91L5hIHr9/y0SiiFyPEqgFf1MEByuHIphTGIwXWLSyZrVNdMV/JUq8ffFc4yKFS\n9MLGERxwn0zosNrRnajigjvcGThQ8OkjjsaBouPgEFI4GFEh7FgHB4P9spi6lD9wBwpKDBwcwpZ0\n2lI39KghRyJxiEgVClpQcxcHHSjoxIFOPugzdAcH3bZDUshCHC/4AZbDV+kuDiEHB91wZxrFRSQC\n28ILhQP4pWYi9cECpjq0Ba4MUUUk4IvpAcWQoOVEe9LPzyh+TpYSTXUNozUcEgdDab6UNHVKHEKy\nO4cJYSdqUUCZRlRxQQ23g4/UeZ9PxtvOPakHDAoCjsu3JBbAwRYiFtN14XdxUI4Agm+pWB/MAAaR\nWESWcASj1cNyOEbMcIfjg26YcOahiN7BQXdw8Ec6OPiVHqFDafXCfOANGz7DwcFJLzAWfxT1OzjY\nR+MQ8ftjEgelHuzij+FAJzYTB/9MHCxKSJjqGjalKTC8fgcGS7JBzVPioAaDKzBBGisZQToVYnqn\nKAVxcJCRke4GWkfhEDiCgwlHbcSEiMeJg2It+pE4gOEKhzD6BwbRWFSWcJRO23BxcDXYp9uYsGmF\nolBzmaJIHGBxwKQoJQ04hB0cwujQoLLLC68BHBhBhn0qd/KHXRxMsok9xPByNAqF5gUa9PvjkEJH\nBNBDIAocwmgvaIUDqBr0xcPBDg66jLoJ4FE4kNl4YChiyJAQFs4yLcltxQYUJZBh2R0uwQSJg/TY\nLg6uHaPPCTvPpGNBR2EXB4MJQsBNQBRqHJ2pB/0WcEgkwmEHBxMdSXmIGNGIEk4oKDCw47Yshm26\n44sYCUtqEHEO27BYFnAImw43wRVKNphkc4Yhv4VzBRw6NPkgTFvsxalJHAx/0NUHmIKY33RjNMOI\n40Xbho1Hd3jR9vsTGKtKaqQTsyFmBvKSoGUETMMO+hOGxMxwgglG3ob/qBJQzA4bVFcjYkqWEgdL\nab4yOCiRiMsHGEhwwrb5xCmyqpUwHHNON+7ad9PpkSMMONWdgEolUcruyLDTbyWESCaBQ0CZPuAt\ncYi6OIQdHBIKB1PiYKqRzsQhFo6ErYgOOGbgEHZwsI7GAR1GTEaBEgfofSSMTMj0d/QBU4/5I6Zl\ngu0cTRygxGKYA2QYViLm9yeVmVaqThzAaIUD/sWC/qQRVFZep+0Od3AIzMQhGjWNsEl1RTgIAxCJ\nEAc5t6jDhg4O4f8Eh8gMHCz1SAq14UwHnSlHYzoBFV2+41kgShE4auKQShmGCEizg6E5AzDtqGrF\nChvAIJaMyWLGaDxNVTkhe2PHfiNuRDEoPWZY7vKLQRxMZFExvGACB9PBwUSHUeIguezD/Sgj+Rk4\nQAYS/qgbK5tmAhoSj4ckDrAScb8/BSlU2i9xiAEHE5MNRc2gZcZD/hQibDlR4MAuKajH4KCYbVg2\ncLCACBnq84PvygLL1yl6UTIiEJaw45JMMB0f4jAiklBckDhIJTYVZ/5LHEyaeeIQTQqRTndwwBhs\nqRe2GVM4GNBd4BBPxWWx4hYHoHBIKR1iRGEmAB3cR9yMhJxFLqIjcYiToTr46verztFh1GIUKHGA\nI4pSYy1nDRFvYerAATGaqax1CiBKHCCtSP4TgWAaY1USKZPYOLTPxSFCHNKmim0MI2r8ERwo2hZx\nMEgsaYN8QQUCH7FQ9KK2NCyyO+BAJsg5y5Gp2ilXHqEglrLrNFemMx0IiuKUJVNDnemjuiNxiIZD\ngWhKiEzGNF0cgLfUtJgVt2Vegv7NRCwWTzs4JCISJhYrFZWWDN0GgIPt4KCrtS4/7wYsJKtxMM/S\nA1EroHCw0KFNHCSXfQiEbIlDoIMDdDERsN1YGTjAiCQSiHnYHXAIBjMKB0xe4YBM18LUENqFYK5D\ngYylcDBVMGFRUI9agnNwgEeMAYcIELFxTRzk3GKKDZyyHWPernAALLgjnbcqylqnrIiru+rEch08\ntf5YHMIzQuAYcLARuEbTQmSzwCEoG4yiHzUAKxGT44WYm9CFZCYpSyQZIS+kjYpkbOWmMEUracUw\nKLiMqLMKG3BxCCbI0DD4GnCcEDq0I65I+KLAgTlqxFnLxVu2HUgG7IgNky1nlA5ErGQS2QZsCXBI\nBoNZjFVNXOKQcHGwESpYST2QtXTH28Ypp8xEj8WBoo0K0TjtbCwibZAvqCxPLK7YkECJxVw+0DjG\nyQSFg5RXFjsj7zgexXL1JGI500HArfxIZAYOinVxgotkzs4IkctZlghKcafWScWIR1wcbNNKJRLJ\nrItD9Ej32Rk4pGCxYraRJA5qsRF3zUAEF0kwLwIcIg4OEXQYkziQy75oFB7kaBww9XQg5uYskUgG\nxjyVQphPmx4MpoLBHOyFsgxcOdKT8NERTFaPR0LRSEoP5CIKB9gzFf4ZVKSZOAQVs61owiQYEWmD\nfGBDTGm+ZIPEIU5GmrZ0VOBEMimdtyrKa2aPaIjCIaIcfAeHkFNdRa9GB4cIpSRmhoLxnBD5/Ewc\nEmoAkWRcpqsWeJRJJFK5lCzRNIcQVZVzMenGcCMQSUfiGJSZitjhIzhYEgfcIw4xDEt1jg5jUXco\nPhs4UGMj7n6GFcDUOzhwNNlANJJOI06l1QgG08FgHmKgJFIu6qQcHMJxhGyRtB7Iz8DBkknRMTgE\ngAPEKmrZCYiDHY92cJAlodhA0Ysn5NpkzMGBTOjgoBgRzykuKEMlH1C5nB4tFwe85uDgpCLS7iAq\nRwJBHAqFSESEZIMx4C0NVDKaSjo4RCLZVCqdS8tiZ2zy4oNwSETiMTMdibk4RIhDFHlLmkmgEYhH\nA8oJRdFhXOLAuMAPIxTnmk30CA5x4hCPxh2nGc3hxUwGDs5WOIRCBXQ/A4c0rGA0RP8U1WPRTDhQ\niIaVw5OGFOEQDEZALbw6MIDj5GjEhgoDjJj0Bf4QIZBSrww/SjKpcGBnuCQTOGvlSBRoM3CIxaLu\nM9WjwsGZiLMSQhzUjSSsWQIpP3EoFomDNDuwfimpaSk7rXCAmEegC5l8RhY7A97HbDnWeF4ld2gu\nGM1Gk9FE3ATPwwG5CAzZD0aCNvKWDF6wjWACHFRuDR3GY/C6UbLVj8QgTo21g86aZSQYTwRzwbjK\nWTiafBA2GDjAT8bhNTOhUBH2QumKxCGDMNAO2XY4aeuoGg4W7bCtZDIlxZMhaPCoEqJoo0IsBXFA\nWB6JJ4hDMknLk0wpNlD0FA6RuIMDmECbrEamGJHIKy4oQ2W7o3Z6pKSEnHszcHA8fEThkMwLUSpF\no+/HIZNycIhGgUGukEPJ5mLZOBtUlQszcMgRh6SVicYNtZsIU9LBAfVM4hBQnaPDhA0c5IU/Hg8m\nHByUqEYCiUQgh/oJV+IKACWbRb4A2w0As6FQCWLg4gDf5+JgJO0wqoaDJQeHaCRp/VEcKNnROM0m\nwnLpC/yKDR0cKHqplMsHKmUGbKAtcHitaheO4KAeyVFD0WkaaJ10555aNzedVIR2BzgkI8ChIES5\nTByk+U+kUypATcdcHGAoC+i9mJMllotTJhUOpQRNGQUgaOftlJ1MWVk70cEB6ARj4FI2hpjDDCYh\nycqtocNEnDjEMBd/wsEhFgy7+pBIBvPBhModOZpiMB7L5ZD2wgbgxVwoVEb3ygpzoSCcRawUC8Vi\nRioWRlUjWI4ZsqtoNK3CcIv5eDAYOoJDMknJjsbTUYIBHJLEQVkeFMkGiUPa5cMMHJyRKUakSooL\n0rHKRzEVaHX0QXfqy0RPrQQoVqRhzFKRcChVFKJSsW2hSxyS6XRGDSCWld2HIOZ2MZvNl/KywBax\nQQVaKTkThzSsaSQHHJwdKdwlDrqeUzikOjigw2QcqikviAMiEAzMxSEaTBKHZCzl4lACDvm8wgFe\nM6/rFXSvrLDcNssRB13hkIjljWDFwcFGYIHyfhxCIZoYWpYM3FcinZC+wK87OGQUG7Io6bTDBwYM\n4ASY0MFBMcLFgYXsPxqH6H+KA8KrVDSsp0pCVKvEQQoBRCQrLV42nss4OMCe53KFckGWeCEh1UVW\nLieVc49BFAuxTCyVjuRjSXe7CiyKhuIhXc/HUc8KpSDJKrxAh+kEcWCM6E8m4MmBQzzk7ChEQ5h6\nIZRWOTxHUw4l4oUCsm84UOBQ0PUqZAbsZddcwc8jIInrcfinuAF7aYaqcVPFEtGMCsNhMEJHl1Qq\nm0WFRJb+LpOwYQrSfl1iAC4oNtAEZDIuH2wbl2ACfaNTlO6UFRekoVE8kfYi7kwHguLMxFmRkmuX\nSt5hzNLAIV0WolaLxYQu3TBERCUK2Xg+q/ZsUnYMulCsFGVJFJNsUFZOVlJyRBKHInBIp6MSB7UZ\nFYPBnolDuoMDOswkEYXKiwD8YAYe9ggOdghTL4YyKofnaMqhZLxYNA2LF7oOHGoQA2Wh5XJqB4cM\ncSiaoZqDA5McmuYPwCGdBg4wflm4r2QmIX1yQLGBOEg20ARksw4fUHAJJiQVswmUql1J/Cc42C4O\nuPU+HJiCZeywnqkIUa8fwSGbzckB5BL5nIMD7Dl6ryocksUkgzpVuYqYLillIxQvxbOwptFCPGXN\nxCGBi0ICeEVCGUiyCi/QocIhgbkEUhIHw0iEjBk4lFA/oyLIZLISSiYcHFJ4sajrdXSvvKHEoQAc\nEnoiYWUSRioBHOoJU3YVs3PSWjA1DoU6n2HxjKYeFVI5qGUqm5Q+WeJAY5TLdXDI5Vw+IHBzcXBH\npnCoKi6oSFf2K+124ggOTv0ZOChW5CQOhp6pCtFoxOMinJW2MJfLS4uXTxQUDrF0LF4pFEq1kizJ\nEpPrpKycqqWP4FCO54CDXTyCAyKbGHAIh4vH4oAOsymYSHkRQDyShWU/gkMslM2GyqGswoGjqYbg\njEoWMnsUXS+Fww3goCy03J0sIkBPoD0rmzBR1Qo1EpaKrWM5aa6ZGh+Fgw6O5/OJZDyVjxGMZDwL\nAAJhiQG4oNhAU6xwAB9QcAkmpBSzpd2Qpaa4IAPN9+FAy2k495yldCclJA6IJLIxI5ytCdHVRRxk\nOAQRKagBJIt5uZ4OcxOHLpTrZVlS5RSDOlk5Xc/INAfN6YlKIpfIZu1SIq1wQGoCx6kn9XC4lARe\nET0LSVZhHjokDkaCsXogndIlDknd2dOK6TAFFdTPqggylarpqWS5bJkROlFdL4fDXZAZ5Q0lDiWk\nRclwMmnlkib8lqV3JS0V08XyMrxkaqwfXehyUSFdgNlM51PSJwcUG+gFJBtoAvJ5hw8ouCQTOGs1\nMlW7rrigMg7Zr0o8nOlAYZ36M3BQrMgDhxxwyNWFaDYTCReHfL4gPU8hVSqoPUwIJXSh0qjIkqqk\nO91nGhkVNxGHaiKfyGXtciITUV/9wLXqcT0FHMop1IvqOUiyCi/QYS4NHGBkUqlAJq0jEjTNlG4q\nBsV1iGAV9eVaCkdT19OpSgU4wInixUo43ET3ykLLTbAyAvRUmPFaysykKpbeTFlqbEhyGNbQYBwN\nAyZcLDJSVzikpU+WONAYFRQbaAIKBZcPCShlCUzAg5RTFA4NxQUV6cr7KvFwpgMcnJk4WxrEQb3P\nFCwXN8O5hhDd3cDBkGFptlAoSotXTJUdHBA4QBeqXVVZ0tUMG5SVM11ZOSL6zmQ1WUgivSgnj8XB\nMN6HAzrMZbgvp3DI/Kc4cDQNHc6oGrEYv2fC4aphdEscKFFy80XigMlG8ikLVSN6dyry/4hDhmYz\nU8goHAyJAbig2EAT4OAgAyhcggkZxWwCpaL5LsWF/wIH3HJWyuVafgeHfNw08l1C9PQkk8KQYSn0\nsSQHUEqXixKHBBxWo1yuNWuypGsZqS4s2aZadJI41IBDPherJLMuDkloiZ4GDpU08LL1PCyKCvPQ\nYT7DfTmGisFsRs8nEqaZdnFI6Pm8XkP9fNqJIrv0TLpWkzhkFQ49kBlloSUOFQToaSOdjhTSVjZd\ni+g96YgaW6JI/qVpMI7BIZ8vlVAhWwIO2WJW+uSgYgO9QAeHYtHlAwI3cKJWw4O0U1TtpuKCDPiz\n8r5KPJzpwHA6M3G2loiDer8IY1ZImEahKURv7xEcYP+k5ymnKyW1p4/+uyqVWrfCIVPLskGFQ3dO\njgiwhlP1VDFVKMarqWxUfeQGHMKJcDpsGFWJQ7gAi6I6R4f57BEcsmHggIGFI2qLNwEWhevhfLrg\nzqgZzioceBEO1wyjF90rbyhxqIYVDlEHh3BvB4dSB4fwzKKHC4VyOZ1JZstwXxKHgoNDUXoByQaa\n4lLJ5QMCN3CiVssqZhMohUO34sL7cHCmA8Pp3HsfDiXgUExEjEK3EH19qZQwZFgKEXFwyFTLak8/\nn0zBJtV76rJk61kGdrJyrgexdVYqYjjVSJWIQy2Vi6qvEUMpOM5wBjjUMsALOECSVZiHDgvEAcY+\nkwnmsuECPKyVCUcVi5LhQj7cQP1Cxokiu8PZTL0ejdgMZgyjbhh9kBnlKeVmZA04ZAzEzcVMJJep\nR8N9maiKrZFsMrzkUtEH4IAKOeKQK+VkbBQkG+gUHBxoistlhw8ouCQTOGs1MhXN9yguyIA/J/tV\nCaAzHeDg1Hd2LOSeilK4JHGIGsUeIfr70ylhyrA0Xy5XpOepZGouDvCrtVqjtyFLtpFjg6pyr8IB\nsIbTXelyulhK1NN5W1cfrDg4mGadi7WxcLGDQ39/qpCDq5IXwXzu/TgUw13AoejOqCeMoKABHOBE\ngUPDNPshMyoqkTjUkShl0J5dykTymUY03H8MDjTcR+EQBscrlUw2laukCEYuXSgCB1NiAC4oNtAE\nuDjIwA2caDRyitnEQUXzvYoLKuOQ/Ur/eQQHy5mJs9U6E4d4vJSMmqVeIQYG0mlhyrAUIlKVnqea\nrVUkDqlCKg2b1NXXJUuuK0+ZlJXzfVyElYoYTjeBQ+koHNLQknCWOGTxTixcgkVR4TY6LOa5T82Q\nPQgjBH8ZiWRdHFJhmORmuJgtZdV6Tr43nM92ddkR5lF5w+gyzQGIgfKUHRyyJuLmcjaCqnZ4IGur\nhChVIf+yXCqS3O/AYJRKtDDpfBU45Cs5GRsFFRvojSUbiEOl4vBB4QAmyCRb5Rmqdp/igky85KOs\nSsSd6QAH594MHBQrKql4vAwcyn1CDA5mXBwgIjU1gGy9KvdbU0X41Xq92d+UJdc8gkOhvyhxAKxG\nppmpZJDmNTIF2/m0J40AxsgaptnIFrLZuFGCKVKdDw4qHORFsJA3FA7q0wpM2SiWjKYxA4c+I59t\nNu0ocEBto2mag4gnVVTCN6INJEoODlHED7Yx2MGhKnGg4TaOLhIHqEEN7qtQyWfKUASJQ0V6AckG\nmuJq1eUDAmhwotl8Hw79igsq85P9Sv+ZdaZjGC4Ozlars2RIwwenUk4Bh34hhoYyGWHJ9KBYrdak\n56nlGgqHdDGdgU3q7u+WJd9dYICtKvcXZdovcejOVBFdJLsyxZjzMVsGjtPIGZbVxUXzuFGGRVHh\nNjqsFPi9QA5zCRULiKjSkUjOcBBMGxDBbqMCY6HW1Qp9RiHX3Q0c4EQLptm0rCHIjPKUcnO+Czjk\nLMTNlVy0mOu2jaGcrXKcdJX8y3HJ7hgcyuV6HRUUDtW8jI1CZAOdQk2xgaZY4ZCWOOASTJBJtsoz\nVFbVr7ggAyC1QSD9Z86ZDhTWmckMHBQrqulEopKyrQpwmDUrCxxkelCCH5IDqOe7agqHUjoDm9Q9\n0MFBmi2W4oBaDAesRrYnW81Wyslm9mgc8sChmQdecaMCSVbh9qxZEocIjH0+38EhPwOHqtGD+pW8\nE833G4V8d3fMjjOYMc1uy5oFMVBRicShiYQ1b+XzsWo+Wsx3x4xZ+ZjKcdI1GebTcB+DQ6VSr6NC\nsY4wolgryNgopNhAbyzZQFNcqzl8QMGlwiHvFFV7QHFB4SDvq0T8CA7OTJwtb+Kg3ufSUDVtW9UB\nIYaHs1kHB0THDRkBNPLNusQhg8ABNqlnsEeWQk+RDSrQBstyRBKH3mwNM0l1Z0suDlloicShm5sX\niRk4oMNqsYNDqWggM8LAXBwyRrVq9BpVhQNHM2AU8z09wAHBDHDosaxhxJPKU8rP7rqP4GCX8j0x\nY9jBAXGWdJvvx8GsVBoNVCg2EEYQhyoUQeJQk95YsoGmuF53+YAAGpzo6SkqZhMohcOg4oJMvJRs\nyjgm70zHwQGvyQVZtfetWFHPODgMCjEykgMOMj2AqnbJAXQVmg35HQj7H2g2e4d6ZSn2FimTsnJp\nCDlOUeqomevL1XNV4JArxdWX68DBzJgFEzgUSgXkKlVYFBVuj4woHGDsCwXgYEocCurTFEzZrNbM\nPtSvFpxoftAsFnp7FQ4l0+y1rBGIgYqlFA5mMlmwCoV4rWCXCr0xc6QQUzlOpiHDfDwuyFG5n2oa\nZrXa1YUKpS6EEaV6KUeGhsgGOoWurg4OjYbLB4kDmcBZq5GprGpIcUHh4OSBPHGmY5oRp/4MHBQr\nGsChlrGt2pAQs2fnciIi0wOISJeMxLoK3QqHLAK4we7uvll9shT7SmxQVi7PqhzBoT/XyNWq6Z5c\nOe58ZJuD4wQOkUgPN5GSZq2DAzqslSKRqMKhXDIRtxAH58PRrAlT0I/6NXdGQ2ap0NcXjyUQVJYs\nqy8SmQ2ZUZ5SfqzSY8JDYrLxesEuF/ri5uxCXCWm2YZ0m3Sg5tGFoU+hmCt3IYwoN8oyRg2RDXQK\nXYoNNMUKh6wMZHEJJpQUs4mDyqpmKS7IxEttmKkFEWc6MJzOTJxPQGbgkE2l6plYpD5LiNHRvItD\ntdFoygigWezpUjhU4Vd7evqH+2Up9Zcpkwq04Sqaljpq5gfyjTxw6M1XEjNxKAKHXm4iAQdYFJX2\njI7m6mXgAKdbLIYqZUS2WdsuHsEBpmDArBdrKrMtl2eZ5WJ/P3BAMFO2rP5IZBTxpIql5McqvcCh\nGCkWE/ViDPFD3BwtxlWume2S6RaXTo+GwWLogwrlZq4AMMr5o3BoKjbQFHd1uXxAIgNO9PfLxQ6V\n7ykchhUXVAYu+5VxTPEIDs5M5MK4+gZBsaKLOGSBw7AQc+bk8yIi0zSoarccQHextylxyCGQhk0a\nGBmQpTQgcZCVKyNH4dCVrzcyfUdwyENLJA59Cod6Bwd0eAQHnTjkcjNwyLk41F0choHDwEA8lmRQ\nKXGYAzFQEYvEoc+EhyQODeIwEDfnODjkc00ZvtCBvg+H7u5iKV/pRjhX6arIGFWPSF2gN5ZsoClu\nNl0+IJEBJwYGZuCgstsRxQWZAL8Ph9zRONCZH8GBS3QN4NAYEWLu3AJwkGlaDX5IRmI9pd5u+cFZ\nDoH0LPQ+W+FQHqgw4ZSVq7ORa5aljpqFwUITUV6mv1BNyC0nB4cScOgvAa+U2YBlV+nn3Ln5RgU4\nwOmWSnq1YjaIQ+kIDo26OYj6jZJaZ66MmJXSwEAinkRQiRcHIpG5kBkV08rPMfqBQymCPLKrFKuW\nBhLm3FJC5fy5bnKnxCXsY3BgCIoKlR6Ec5VmpVBvEAfMqym9sWQDcejudvng4iAXnVTerbLb2YoL\nMhCtyn5lHFPq4GA7M5mBg2JFN3DoysUiXbOFmDevUBDRY3HoUzjka/nCcF/f4OigLOXBGTiMKhwA\nq1UcKjaLja5sf7GaVP9rJoSaVt4qWdGowsFqwLKrztFhoxKN2i4OFuIWDMyKq09E82CRNWTNwGG2\nVSkNDiocqpHIYDQ6DzioWEp+NNRvwUNGkUd2leKI4xLWPAcHxLsyfKEDtY4uXV29vaVyodqDcK7a\nXZG5gh49Gge6RIVDXuKASzDhfTiMKi6oQHYGDs504MCcmTif4shvUBQO+UymKxePdo0KMTZWBA4y\nXYaq9spIrLfc36NwQCA90t8/NGdIlspQlbZBVq7NqaNpqaNWcVaxu9jVlR0o1o7CoQwcBsrAK211\nwbKr9HNsrNBVBQ4lprB6rWp1EYfyERy6GtYs1O9SKwzV6qhVLQ8NJeMpBJXAYSgaHYPMzMBhADiU\no8gjm+V4rTyUtMbKSZXz53vInTKXsD8AB1So9SKcq3VXIUXEAfOic+5VbKBL7Olx+YBEBpwYGpKL\nfyrvVqsMcxQX1EqI7FctTB3BwZnJDBwUK3qAQzMfjzbnCDF/frEoojJNa/T09MlIrK8y0Ku+RW0U\nirBJs+bOkqU6q0aZlJXrc5FrVqVsWKXhUk+p2cwOluouDkUEklYFOAxWgFfaasKyq/QTHXbVgAOc\nbqWi12sW4sdYrOLiUACLrGGrC8ZCrTPX5li1yqxZyUQKQWUtEpkVjc6HzKhYSuIwCBwq0Uol2V2J\n1yuzktb8SlLl/IVe8q+Cx5VjcGg2+/pQodaHcK7WU5Uxqk420Dn3KTbQFPf2OnxAwSWYIBedVN6t\nstu5igsyAa7LfmUcU3GmAwfmzGQGDooVvYVMphs4dM8VYsGCUlHYLg79cgD9lUEXB8Q3g4PD84Zl\nqQ7PwGHeDBxGJA65oVI9JT/+tywHB9seOhaHBQuKzZptxzo4NBFxxmfg0OyyRlC/g8Nc4DA8nEyk\nGdxHo8O2vaCDg/yIbshCpGIzj6wkEMclrQXH4MBA5mgYIgxBK9Vivb9YLtZ7a6VuKIJuOzj0KzbQ\nFLs4yEQGnBgefh8O8/5fcZAbFOrbKBeHbLanELe758m/w+R1jqL6q4C+j+BKk9c+HyyXWCPGhV9k\nxRe0AW2+tkL7gvZnnoLne54XPf/b+xXv495ve3dXk9V8tVytV7urI9Xjq0uq36wlIL3dtVl1Tz1Q\nj9bj9VQdcVJ9oD5R31C/oPnSvj0/t35/+P96Dh/mX0oUD2qztOO009By1vM8Wn6l03KiiryPk0bL\nx31AyzG0nOu0vFG2LNCyJlt2yiH5dxQPNYV47xPvrXzvQ+8dL8S+h3lv34p9N+47Zd+Cfce9fuD1\n1uv/+Po/vPbua2+/9q9CvPY7HK+/9qPX/ua1R177xk+Pq94sRMgv/9riGi3p6fec6PmYEJ6/8XwH\n9DtuT57neXheEn+keKbUcdS9J3D8rUThSvG0+Kq4UOwUS8Vz4r+LvxQrxF+JdeJW0RIvijfEN8Q/\niX8QnxXXiBfE98TlYrv4mHhe3CE+JW4QU+IU7Uahi7AwhSUSIilSIi0KwLEkKuBxXfSLATEohsSw\nmC3GxHyxQBwnThSniw+LM8Ry8RNxvThJnCZWiw3iYnG1+Ly4WWwV/038qdgm/lzcI+4TT4pvid3i\nf4nvi5fFT8Ve8b/Fa+JnYqX4iFglJrQ/EVeJc8XfifXin8VZ4rtio/i4eEz8ibhTu0H8T/EVcb6Y\nFD8S02KRuEt8U+wSa8WjYoe4UTwiHhY/EE+JgHhJ+EQIshbUvigMERMRERW2yIsMpC8n4qImekSX\naIo+0S3uFr1inhgVc8RccbwYEV8QS8RCSOqpYrFYJk6G1H5SXCIuFZeJL4vbxO3iS+LT4l7xkLhf\nfE08IR4QF4jHxatij/ixeEW8Lv5e7NMMbYlmaks1S1umRbTlWlSb0GLaKZoNmY9rp2oJyGdK+4iW\n1lZqGW2VltVO15Lah7WcdoaW187UCtpZWlE7Wytpq7Wydo5W0dZoVW2tVtfO1WpiE/Tmeq2hfUzr\n0tZpTe3jWo+2QevW1mu92nmiLP5M69M+AQ3bqPVr52sXaIPahdqQdhH0YpNoQD+GtYu12dol2oh2\nqTaqXabN0T6pzdUuF7PEd6CVW7QxbTM06NPa8dqV2gnaVdqJ2tXah7TPaCdp12gLtWu1ce06bZH2\nWXGCtlj7nHay9nnxIfFzbZ52hbZA+5T4qDhHnCkuEn8rvi7+UdwitojN4lnx1+IZcZ74hDhb08Rf\naGEYhf3iLXFAHBS/FL8S/0e8LX4tfiN+K34h/lX8TnxGXCsC2ktSn/f9/1uWMQdIIWQwApnrhoQt\nhHSNQ7JOhWytgVx9UkrWbZAtSta9kKqHIFcPQLL2QKooU+dB3qkN3xVnQ9q/AA34uPghZH+j5od0\n94r3xKQW1ELQlbvEIU3TPOI/xGHoyw7x75Dex6EPV0FzhLhOC4h/gxbdKK6AhgWgH32Uhw5C3xb/\nQ1ygecHxE8TnxJvii+ImicQnoGF/A/za0KkoNMuGPik9ylOHNB90idozT2wC+v8I/VT4rwX6Xxfn\ntMTgqS191Zpdmvana5/WDt/cWlLapXvXf3yopQ1Wq0svXtLSNgy1PIMtrb821PIOVpe1vM1lZ6xp\nrK3eXr19xcbbq8uqm87b2PI15S8eXHD72uFqS5y55mLQs9bUWuNrC53TC9auPX6o5WMzPtnM7WvR\nwCVOA5fIBvD+e0Mt/+Cp1Za3e9Wa09e0blhSaI0vWVuo1apLW7tXrWntXlKorV071Ap0xojfz1+c\nVaMNDrYC/UOtkGrhTLyP19fefru6atRau2+/vXA7ZuBcP62JY2+Mz7yBGS99WrthlXxyQ6NW4I1G\nrVHDiNYuGWrpg6eeuWYphlRbOwSRakFk25rHM6C1vV7QKe/yRfOa2dDAlO/Dzon/LHUipjTnbMrz\nsWVj8lY74A8OtISaT3tDSPt0+/owyAMkz5G8TnKYpBLWrmwvJFlPso1kJ8kPSN4miYa1q9rDJCtJ\nriDZaeLdt0kqJqoMk6wn2UbyAMlzJD8gOUwSNdkKyUKSlSRXkLztVPk0q2BovLQjOBsnWUWyk+Rt\nkuEIhxvBa4d5eQUu6RhT0LgToZET+BUifrgoTO1HIg5vG/f8DpZBQLvVf1+Gb3kFVnuWp9/7qP+l\nwNbADwO/DWaDZwWvCV0e+qb+2/Bp4S+EHwq/ZAij23jUfNictiYin4rmo2P2JbGJ2ObY12J/EzuQ\n/I9UOvX99O8ze3KX5LbmXshfXjilcGHh9sJkYbq4oXRLRVS+VvmbyhvVrdUdtQOIQOr1c+vXdd3e\n9WhPqOfcnlbvpr5Ng/cOTg1tHTowy5z1w+EHh58f/tXIZSMPjbw02jV65ZzpudV5l8z79lh17KwF\nXz7u9uM3H986IXLCwyf8/sSNJ3lOGj3pEwu/sPDBhd9euH9cLJpYNL3oXxaHFy9Y8u2l6aVXLn13\n2e7lkxNLVixbsXvFj05dctrVp019OPThlz5yw0cOrFy18oerxlatXrV71U9W/fr09OmDp0+ecd8Z\n3z+zfOaSM58/69dnB86unv3s6jWrD63pXjO+dvTckXMnzr3w3C987NmPHVqXXHf1+lkbzt2w47w1\n5x3aGN7YfUHgglUXvHHhZZs8myY23XjJpksevuS3lz592QuXhy5fdvm9l//HFR+/4r4r3tic3Lxg\nc+tTOz5911Weq+KfyX7mK9f4ru2/9t5rv3Pdjs+e9Lmxz09d/+ANX/uTxTce/8W5N+Vv+sub/vam\nvTcdutm+uf/m3bc8sXXktk/dduNtk7d/4kuXfelzX/7Uf3vov/3sT/N/etmffvtPX9n2uW3T2/Zv\ne/eO+p32nVfe+fCdu+985c5Df9b1Zz/88xu+kv/K1r84/i+uu2vwbnH3GXdfdvef3f303b+455R7\n7tpe3X7a9s9tv2P7S9v3bP/ZvcvuPePej997yb1X33vjV6/56k1fveOr9311x32R+/L3dd83et9J\n951y30P3/eV9z973/P3x+8v3998/dv/i+z9y/7n3X3j/p+7/wv2333/X/Q/d/5f3P3v/8/f/8P7X\nvrb7a9//2itfe+Nrv35g9IGTHjjlgdUPfOKByx+MPJh/sPvB0QdPevCUB1d/fcnXV339Y1/f9PUr\nv37DQ2se2vjQ5oc+99DWb4x848RvTHzjrG9s+MZl3/jdw+Jh8+GtD08/vPfhAw//7hHxiPlI9pGu\nR0YeOfGRiUfOemTDI5c9cs0jNz1yxyP3PbLj0Tseve/RHY9OPrr7sfHHTntszWMbH9v82Od29O6Y\nu2N8x2k71uzYuGPzjjt23PH4xidGGLbLSFJ4/gGetwHbPiBGW4PDraHh1qDd6p5udQ/vSvvebQ3Z\nrebeXUXfu+KvvFqXb+CvmloO1KdpvoGR2fPnzUn19MydPzY2/yTvvLndjXog2DM2Nmc0nUryLwIG\nUplYLabheG3BPI8VTMfsZNg3VKkMBUaDp4yNLct1NwOB5w5t1P7hkLjq5JOvii3IWaVYNJOI6V2z\nB+eEJhYtP7E6r1FLJOc+7bn4vbs99703iiELoaJ1z196P+3phucXWhBe6XXEDh9qX2Fo6yYXGisN\nzxbajS2TO6PPRT3rpnZHp6P7ot51grZmHe3UOhqhdbQruETNkdlH2r240+5G2e6YbLe90NC2jFsP\nGDuN54wfGK8bbxuBde0rSnxSkk9KO0vPlX5Qer30dimwbmT2B4zzetneQPsKC29xgKJ9mKdvcxgL\n3bF0RoVGZs73nk47fyvbWdleFUPtK2KofQPIlIjZsWrMu2Vqd2w6ti/mxZ2aXavWvKhUY481Dc9q\n07V9NS9ewS3RXp9kX8Vj+/pop69/lH012wvz6Atk3dQD+Z355/Jo4Yq8bKGCFg73qha8sLDCczzs\nbhgxxID22XZzwDvQHhnAyzZIa8DeJXzvtu9o4qWRJu+CtJr2roD33ZawW8Y0Llrl6VZ5uL2qrK3b\nFfO+264ZzVj8uPbmQfTXEkvXtHLDhV0586S18qIfF/2Bk9YiAHm3beT6UbVlDO8Ke95t5exdaY3v\nh/n+wRoHqU3u8D7t9axrT3jR/R+8GIgewtm9CQjPNcmtSTw6QK5cTHIvyYEUL0nGiqh5C2Y8eWH1\n6ipqrq7ixltVPHqzAbKH5EddvASZWt11YdfVXQBidc+FPVf3gGcv95JnZ7Hrb7HrpTx7lGfvkAR4\nGeZw9kdxuYm93wMyeW3yNg7sIG9sSrlj2s+ON5G83HD6bP+Y5BV0M3/O6EkeqmZjnjqb5Wk0euaM\nlj1U0VQamhrBnR239ywZLZ17zp/fmZ/Tl9crJ865feKfBs8Y71504qlnx8YuPPuVxXZttLFsyYlW\nebhu9PaWFsf7l4wef2bEE1j3kdjiRSMy0x05/C+exzx7RI/nlnY87B1oxe2WmG6J4fa4wHSmhbau\nFbZ3lQDnql6qXh8Frw9KurBvZR+mdn2fi24UgEZddP248APddiLqJ7KJ4VbU3pXV3m357V11gNvj\nj/J+z3B7ugdNbuiRILff1HBxWxBkbYhnJG9S59eS3Ebysk2wqD5XkXyX5FaSt0im43wAMnlbYnsC\nA3wGAtJ+ieQXJE9SXp5JvkhYniQsv+xgs5ZkO8mLJM+S/ILkSfkgDfIMyRMkvyJJ58CjN/KUMJK7\nSPaQvAMyGcin8zBpy+XzAm48WpgqoNv9Bb5awKvLebacZ29SOMcqyyp4flfVlZE0xXQ5zw5SPFZ0\n4XIHdXAtyXaSHLVxBcmzvHy8G+082/1SN9r5aTdvkLu/6qH4HiRvD5CFK2i+9pCPL4Nnk1fHbolx\nXOTfleTfGyQvk3yPPJN69aLLp8lnUi+mUH1H+iiuHCS5hnM9QHIKiZzpAVoaOQmpcPs5kwuaZEdz\nqol2pjjMPSQHMMxmxNuoz4LYn+SBV8oEZ+EyAtEve6gN8z2PxectWTm48tbzFyw4/9aVi28aXmh0\nz15QXHLZqb29p162pDh/3nByc2GkkVxw/tbTT996/oK5Jw7H6nl79KwrPvShK84aDWf7KlLue6Tc\nr/B+rj3YBVsX7BqkPAYhj5C+VmRvexvt+esgraDdSu5t/5oMKEeCqDZufLX8ZPmvy39X/mnZD7GE\nxWv3gbS67F3zYRHhkRdPtxYPT44vXrUYIjC9GM/KdmvF3vaqU6hFp9LjnbryVCrQqa4C9UFn+lwF\nWoGLFVCglrm3PQLMWrG9rRU0se2hvhUcKRx/n71rFBq1wt51IjRq0Yo+3l803N6wiIqwSGnU3Vnq\nRw4dXly6toQOl9Op7KhTikjWkPPLwfnJH/e/1Y/nPxogSiS3knyP5J8GiTDI1L1DTww9OwST+HdD\nFCySF2bh5SdmPTsLL/9yFqVkmD2QvECylmQ7yTMk15H8gmT/XLw4f+7yuXD2n5l769y756Ldb82j\nJsxbNg+tPTqPtUhuJfkxydhxHC/JrSS3HM8qJMtJ7ia5ZyGaWLvw4oU0vQupwCTf5t0Xx18dp2qQ\nQ78iufpkvk9yN8ktSyinJHuWcvJLqTiPgIWT382+nPWsm7wlexd+2reAoe0pcvXu3GM5j6P73yO5\nDm65fTEjjM+SHMPuZ0jOIc9vo2aeQsbv6d9Pxr9BTr9MckuH8W+S8XtIXiCrd5DVz856iaz+RYfV\nB0iu7XD5RZJzhwnK8LPDqLlgLplCcoBkBdl+7dzbwPb2VrL0aZIVJK+SvLWAsBy3/DiPw+M3XfZO\n3nr83cfj7pvk510kU2TqOQsvIqsf442Xxzl0krfI3mvI1AMk20m2krMHlxCIpa8u9azzZ5zgEy6t\n3jM/PWd0TDo8hqXzu3v+uB3I0Ez0aJd6QjGjPJyq9SXnDtn13nSvL5yMRtLh+Nyh/pP/MxtxgrQj\nhnGi5vX1dGXqqXC2K57M+SKWHvDHlgdixT9uP/ppXzQZjq8G+RbiJlPktMF2IgdLspOicT0I4xhG\nTbthQ1sJGSu119MiPkAiaPZ3F1zlj0DfI67yZ3GRdWKjVsTeZWjvUpWfZqxxHMnjJK/KIIihx708\ne9pHFEEmt/se9wGPp+k8V4R4I/R4CDde5Q0ZNT2l42yCZAfJcSTbSV4l0XVWoXtYTZcg/cKt9Aa3\n0gSuliEMyRRN/kSaKiKjomUkMipaJsfCtp4g+WuSFWzwGZJl6U6YMyO4YVTztS+f/pmV3d0rP3P6\nlyd+ufjmSxcvvvTmxb9cPPv0i+bPv+j02YsH1968Zu1Nawdl7MKYtQHeG+LClne4bYMT5HfLa7e0\nva3AdCswzNg0NN3S7FZ4b3snvN7k9dY2y+PwXAYpLs89uPC4PEeQEoBJ1f0emlQdYSkRmF9L1WI4\n+N8O7bOHPqQ9dehO7ZxDjy9e7PnO4t8sRhwux8TcQVgyDl8kdiEOb3DhZZ2YfNs8bHqcJAbpzBZ5\nWyY2bhx/7Psfle/Pbm8D36aG7YX2StuLBMl+zvYwiKcf57TaCxl3ro+iybejsrVOWxd32too21o3\nrg+bC82V5nrTt2Vc32Y+YO40nzN966ZeNzk+mOAoh7YBo5p6Pft29nCWt7JIlvTh7MLsyuz6rG/L\n5APZnbSDG+hdttH/PVc+ut8jc7he9jugHOqGKMVFZk0yf5JjXs/RHybZGXV4Ad2yHN2yRU27vV2o\nUbdoTK8HadUc3YICtQqdPMSaJo3sxeNWXNLkdHs9g+wHSEQDyZtEOw200y70VVxUXejTUt3aVrpK\n6K3hXTYykth0y2Jb1MIc5GzyOO8Kr8dRvJ+SfJNkAcX+HpJnSHI+1FwQmoDuTd4T2kEVfIYqmDta\nBaXi/ZTkmyRPZ6hkWSYTtCTdjDHP4dmt9C6r6VP2k3Qjf23fyrPVZbZHEHY3yN3JjjLOl8kKx3IX\nyQL2vp3kFJInSBawz1NIniV5hr2fxd5XEFrZ8RSbXk7yUfQ0Q3OpCMxTYh+owZrn0KGJFSs+QI9/\nMzamzXmfLhvAWhdntzTosuboMjTXu5eYQp2h18G97ZWGazK9gM3rYihwIRgvee1dPuAX9AoVz+0K\nUXXnNDqKO6E9eeh+7ZRDU1JnnRzovyMWbHpK7WQJOVDJ3hWCrR5OgguHafJaIK2kvSuGESXtVhPZ\n7nB7hE681eOOpo4B1I814G1Rz3IYYrhVt3d5IV5Ze5eF4SXU/cRwex+8w664MvAvIt2a/Kp4UjBE\nwXn72yQXMW5fQ3INyNRt2nbtcQ06+SJv/YHkpyTfJnncA/J3JHf5Qd4hCfghhvP9y/0Qw7HAsgAa\nfyfA+wHMbxnJVJgeP7w8TC8e5stcOtlD8g5JwEALy4zVhgcNGcsNtkDLtZqG4i2KZR/XGQ7Qr/XR\nr/VVQNaSrGHM38c8Zi2JTLffYArwsky3mQfc1XyUecDzzF+ealKA7+a0d5C8Kty57yB5gQy4WLtW\nu40MeIa3fiIfcsYvgkwe51+BebaXcRbzScY6U1lOspajPSjTFI52dSfXeqOThf+MA/kuyaMke9xx\nad3dR2KQsfnzKPiBwMxsxXNp18bFbpgx/4Lex39z4rZFbq5y9mdHPIu7B91AopD5P4sPPdJounnK\n8IirB5+SPu3mlgE9AOPbq0hGQHaFIX+e6ZYhFWE98xTvNLKTXQHfu5PCsi1YpG10ctPWPji59iqL\ndtxyJVSDUGquhIZxEaaEejSussD9Udd808j2W8HplsfepVMmE3NitdicGLQn1tgwod04MXHoCxOe\n7xz6e23OeydqKw/tUmMWOzBmrzgNfUizvI9hyCrfBoQhk9f7twGRqYp/2L/QD+e12z9NhITftcVH\n6bEcJMYlVXbOjgl0Rp+yHMwJSJ+SdvyqCZ8ya/IB/86ZjcPF+g4z9llIc7feRxfrnMm1vcNv4+3c\njHY+KtuZO3l9cFsQrz0HiziuV0LDoYWhlSHfFngqatBOkvUkb3NpApzn0iPGdfg3aCUjfWza8bGm\nXOO7Hh2ORx/w7fQ95/uB73UfhxVcN25EfRXfsG+hb6XPv6W90sb4rk/Lmumd6efSP0i/nn47fTiN\nmno0XUkPpxemfVvc2ID/l2r/c8bYr5d9DbtjFxhVezMImBA4TC1fSC1fTwXf6Zw5vlUTkcP/on0Z\nrE2Iv2mFhuW8J18PvQ0X1UrslZY3BD/IJT/av20pV4ak2LhY2biwpZWzw8rKyQWj9g1cNbKlvaNV\n6wXS7YvJvetINnEsB0CmQoFsoDfg3dK+hSHMLQwH7kGYOfVM/MX4q3Eo+BNxWoML+daFfGsr693m\n1ms/DTI/nZb+CEIqk4junnPCYyM9swvhicTwacet+IR559DcyuyFNe2N9w51nfqh3lNXuHp2HeYf\n0f5HyxymOp1MZP+K5DDJn5NsJhkHS6lnCDHPhDud/Ib3r7gO+T261rWMvu/xUmhS3qZ3nnepF7HR\nP3l/zhpfZI1fkwhUa/n2Tp7v+zQ1IuVr+qCqf6BkjlFGl5J4QcajN/ju8D3oa/l2+6Z9+yAyLVPi\nwDWIwN72z8i28wOfDnwxAPb8L/LkX0m8AHnqjsCDgRbvT/OW3whw9XQZjX+vf4EfpvtW/93UvEfJ\nz2+B0JBEptsVimHL/sBM5CjdNHBhBJyLIC6CEnyv4bg4fW97KVMHv9DZdQ9xf4qdcRDtFEkiRNXR\n2j+hwf4Vyd+TfIdc+g758Sbrf48kxPovMkTZG2Lw/LLnTQ9G/12/W4vpTGLOHG2OpjW0RiNGe6Hp\n2ocvOvRV7dpLDj1saBMT2p3anEPPHfq89slDf64+4pHYa7/FhV8cd2ze4NlL4xcc/oD8QHKCQaLo\npALo7pRDl08w+pc65bRrib9GE60omqbowD770LqYbvnYQdtGxNuK2k6CAlz1vaTGtIDxg4LJ3iz0\nZpnHsnobfV1FY5QP1zZurA9fEb4+vC38QNgPSQurtVrY7bbQiMDU82KP2C+862Dad3lwO6RrBMYr\nQjI2UpGSIa8mbzHugl+HxZ+fCjJOmhecNx8zfOUVzvGMMya0S55d9uzPFu9ftmyZdo/LR2+eOuTJ\nt4MhROcrGdeupBkSoaDqAdFbex/BvYFkFUkLRHJE29teyAmtJ5G+/FUQGB6ueT3H+ELu+2xzcySp\nB5G97T00AFMkZ5KMkEQ7aQTzHynN7etJHiCZJhn/YAkP4SIk5ThCPrQ/RQv2TyRnMxobE8sQjU2e\nLM4UUNm/4v19JLtp4yLINKc5YN902x+K8PXvQzInv+y/j4r2WUrpkyR7qZG67GDyy/p9Olr8vr5X\nZx0G3U/qat7GdHuNrZbtnmInF5Mp2zWuuWovalzN4o0nSG5Ci5M/CrwBOz95QeAq/Ew9EvhW4LvU\n/7uCNEhTweeDe4L7gz5EkLRjj5Fsoj7tcNOAcf2Z0IuhV0MHQ6j0uM5lGf1VjGrqEv06/Xbd62Tu\nvyR5hGy+kOQukudJ9pOcE6GRfpDjvZPkRyRTJPtBmglGDw1qKBVU+x9vXz7hOSy64c4mLr/JM/7e\niZ6N790nj+84dvkJxj9aue3VIVNVWthVTLlu8N5BqzrtyhAjfQ8kwj8NRR2PrfSv91/hZ7DBmOA5\nf2hLS0ccjwoGIqbh8cSIMW6sMjYYm40bjDuMB42WoW9hKr6F30JsmVxlbWDMdD1czBTjp19bmH6r\nEzxJ2/e+3Q3hp+2bukBcJW6GnrX/gBmPW7rIiT5xnFgh1orAlvZXeNN4EO3sFtNin/BLw+uZRljN\nvZGpHwReD7wN3MatSwLXBW4P3Bt4IvBsILCu/W8BtuYPpALNwLzA0sDZgcCWlp8rGiOzm3MYlimm\nejZ4Js49dC7IZZ41YOjH33tI2jonF3+C+4KiqvYFNQsxQ7l9PfRpknk/pjxuyg1B7uwc7pMhgoc5\nkTeOnCgherTftMowSnvbgjtCmwnsuJDr2bvCMuvelUSyNN4LHrb6dnNPaCGb2tfHvc0+u6/a53UC\nvQbY1nB5KDcD6Uwa9i6/Jjf9oipemKBHANnSPo5n20kOMrbXPTkPlHABJeAAyQqS7Z21MGbm7f+Q\nZ3SoaUY+1IUpqsE7QeCTDjIVCi5nvDRGLXiUZD+jn0AoHeJuDW88RbKc1mwZjc+jJPtJ0hSXp3i2\nnDIzZi2jzNxFmdlj7bfegcxMBqw0A/F3qBtpbgzn6F8XcBFtBcl2bvq+GjsY+0MMtfVYLobaE4xn\nQDBnnh0kyfFyNdfYbiVZzcz8VpK1zFy2cpl5LclWpi9rJeHyyGrmK7eSrGaGems30SVPJxd4J6BB\nkwuCE5j/5Hxzuckfa7nFn9jyGH/iy+OedZpcg52x3CpDKzfPKXs832GC4yY6/P0IMxw30+Gv9gkm\nOW6yw18mOW6yg1+1xrMQPuRG+hDR0FbBMLcKeyd3Fp7jNtnbmKVc14nYuxJQ4+g07W1yr9r83paU\neyLt62MyNW/Vp5GBj+sLmyub65tXNGHPtjVd3a1B1Gqu3KVwkaLc1eRGJP1yCiLMhdbptl1L0W/Z\nw7tiShb3UJqWM+y7yPsZMm++bznzi7tl7Ea7KDPNu0lkfvkYV03WSMKlmR1yC4BLJ0+XicM1bO8V\nkt+ThCixUoov7qwfbSc5hWQZ25+vu+0vZfty/+6AlAJ28jjJQRK5JrTf7am9AkRzMPTNmZNwli5d\nEHHqCR239OrVs8O5gaUbFi2f0PKH9mujhxZd+ufr+k7+5JeWa9869BPPjc0Vn1yeOmHhwtkVbeXi\nQ/+6eMmmLxy39uY1A1zrlDZC5iN1lZNpfcyl2pt7wa71vVf00rb0chdZ7p7v5P7xepqJt3sP89l6\n3ljofILwAe19VLY33r6C5mQVv0XYPICW7YHqgGfL1O6B6YF9A9Dp8UF+kaE2pllpIfdN3h5Ql0e3\nfXGn7Y2y7S6Ob93keO+qXuggx90e5+bI+NxVc3nj+D86tuvl+wva4+hx8sGB1gCcphjg0JDOTA/I\n+TpDwHwHDg941HDk6GQS5u3YWENkxBz/1nahjzGUnGwfQsQ+Z6GpNbq3PTLKmG+U4yMRvNwsz5qj\njCleEj/hmtFlNM7XkjxDC92n1rEMWaf9Y4rPfpKrQPi9Rtfe1qjdmrO3bXbNYY2rXDs3+V3zZXqG\nT/DGPm5dby7cQJ1s0fKMcIVnFQgXXmn7M+r1VyiVnyWRS5j7SbLq0XXcQZvKPs8l43+mtDbU/a1c\nDjpAspGkW430Rdqtq0hmqxuXzGZ7s+lQ5tnzqvPA44XcJmzN281twn3zXE2fBeWe5Wr6KC5Gj13j\nlRdduOjixSy1KFeVvgeZDL9JmHxavEBmXkI+XkPyBokR9XIoL5OBt5BcSfIzElM9+h65tdV0lfRq\nko0kGdlu+1Uy5DqSZ47wZxaXmSefyn6PrPm5ZE11Fmt/iQw5SHKBZI26+8IR1sg3FWt+PlsFjQs4\n0BUMW7eLxzmHAwwVT2EA2a8dr0Gk5zGpkkuDexioOquCQX8G+WH7akapexhYzg8s5wLCvDBqd4NM\nPhZ+iouDTS5FPcU5L+XE/oJkzFkJXDf5qDlFqemmk1xAMs864iSXcTHqMSbwb5EEeXm86xknD8R+\nz08Qsvw0SnrJV0mO4yWz/PbvSbJxrrzHV8Q9joc8TjrMBMhWesjHSf5A0p/m0mPGtcdvkfyeJMSV\n7WVcUv8FV7abXEOXS+pyIb3JhfRz6hjPssbqBnr5PVnfz88u3uFKZaCZboJPY/zcYjlJoBvkGcLx\nJMkabulme/iBEs/WUOG3khwg6ad1WsO93P5BJv0jnPwIxYkYZudws2DOxByuDMzBDR032v1zaNxu\nJq5yUXSC5DgivECbYEbwOME9qP2B57rGJvwTzD10Ap1n8r8gMEEsZ8I4RQR7ieXZBE8GORK1+YTx\nbvMxwng2YVpKBB+1pojgft4I8IaKGdoX8UaaGP2YaP07yV8Ql38jSREtFU+0byMoa4mHnwA8SnPw\nVvbfKfMSjK3k/lb6rbVlcr++uo5H87lX/pbcMCcOEoztIJOhZpY4/IFBzg4yPtTB4fdk/FqSHHE4\np/Mdw1skq8n9/SS3cjt9WQeCU0Amb579F7M9R5Z50/yjMs7XWD3znQ+v6t093Jrudpd852c867o+\nfjxjoEat0TkbnTXKSGjpNcOnNU9zzj8zclrTc3q1wWDouE19Tefsov6x2Td+mFHRQPfp9TOc8/6e\n0+sdv/PRjt/5R+l3CuOGvbS6dGTp+NJVS/0QkPX8WOHw0iN7Z4z7M3JfOqPV2rEMPIudgcXO2PIr\nUTHdXsjAKaZ2pZ/jhwwLcyv5IQN3rj8gTZYbZkx5UpE0Q6TUcPt17gHfAMIlkRnb1Ecim16SFzuh\n+SWd3bJNDG96GaRfy7OD7m6Zyk97GXkfZFB+QP8909GQntV7dVj9axkMvUhyK1P6W+T6YDfb/rFX\nGlqcXc3GLiK5lo31sbFLeHYN3+vTIZU/0X/B3LvAxapbbK4izdyM5rewXE7aceXIyb3xeO/JI1dO\n/MNln//8ZbdMaF9K1obyuaF6YvHH169ff+gp8noEznwAfjwl+rTX2nYAvJYrr6uYfxzmOIdp5xIB\nW8aWdiu1txUADghtbXtX1fvuZGtgNwMEMeAuiR+VbbpL4rsKYHOCy/+7morTa+UaJKe6lROUn8xt\n5SzXkqymet5Kspq5yEEujDxPHf2Wq57tR3nWzTO5v7+C5FF+ITeWXUbl3E+bmabKnuMYTmQ7OWY7\nuf25d3LMdnLpnGfL5PLcOfhpp/Pg7qvFg0W8+2Pq9Aska2hlV/Bse4nWqvQHfoek4+7kRHlNGa8f\nV15Rhh96tXwQP+013DiaqPMl2uKD9T/QGuTkjY4NeLVxEBZ6Um/kGug4RxudphVYRt2/q4dj7Nnf\n804Px9iT7kGdc2gQljHI20+SZii6vPcchH6i/T3yRXqa/UypfkzyFY74RyRvkjwPUqvNyILk95hz\nNCdHmufkTN6BQ5d++IsbxsY2fPHDp+F35Tl73juze2LT4kWbJrrxu2gxfsfOu3nlypvPG+Pvhu2z\nPFrfCZeeMXv2GZee4Py6Ony81OG8diG0kf/zii27LLWWGJHrwc9RzihsuxKQpoDdyk63ssPtP9C+\nhrLZrGdLK7e3naeJ/SZ1fGVuPXRc/Wxpv0s4TT48nqQPREpl1m5l9rZvgLkej41nVmU2ZDZnbsjc\nkXkw08qEtrRX8mvaneTQwiK/qChuK7pfVMgdAVdu5Rqm2h6wnBViWxoJrhnkudUud9Wzclc9T9U9\nwG2ji0PXcqf8dgpznhoql5+66WbGKKkX8MPaq5O38AvO5SkqPHdQLDW83ZnpzL5MAAbAzZZF+0DI\ntQWyzUtJDrDNiwj6VjQ31Z86PnVKyrtlhiHgwor6LD7R8DZ23ODaghsmfnLZ59et+f6av73miDV4\n7wue73x8/SkXhA61NLm/MHr4X7T/gE0Y8TzQjvR6B1q9dmtkb3snfc1hkitIXifZNkIL6n8XVXYF\nYYz5HTnhTe9t/wAz25XxS+NawaOVDPmvINk26lrpIXB5yGV5AhcJyfKhhMPyIbX0G1Y3wsPtTGKI\nZ5lhfpNEGMJ2q7F33NjZeK7xg8brjbcbfhlMbu0kE9vlAtaT4q/F34mfil8K/7r2e7y/yV2elOuS\nk89qLzEKeZWB5TJ9NS2sTF5Xd9ZQHqExesPmd9j21bbH+QZ1D2G4h87k8RTXJJ9NvZT6SeoXKd+6\nqQuzV2dvyXJp7NEs04c92f3Zd7KA10eBZYY9uaA2UfNwJbP2Yu3V2sGab93kpu5r+P3rq4wHXqE5\n+AmTqq39FK7+a/mp3cF+eiKSixkWHJRf3vGzuX8HmXpk5Fsj3x1BavnmCOXndwy3psTzDKi5pKk4\nw53pqae072k/5lb0L8mFPXKvQ3dnew7JDhnxcsqb7Gsw5XFjR+rp1AupV1IHUn7nc+Pf0cpenSWT\nj0wTDy+Sn26SBHNunLqgRhY9XXuh9krtACbbXsE1n2s41YtJftKZ9B5O+mXO8UKSt+QZJ/pjd6Lt\nx0a4q+2uErjxjbulNndWwI1ytJ3D5xbHBvJjq9avGus7+cz+RVf1LcqcsaAwNlCszFm0dNGcSs+i\nMwZO/ES/Z+XSaGV2bWRevTB0yvjIh+cWZy8Y7hmO1UYqzdm1dLo4sGj2nNNGs90jMq+WeiLz6iEZ\n35zz/zH2JvBtXdeZ+FuwcwMJYuUCkCAAghQJkCABQqJIiBJJUCtta7cZsrUtWf05lZjEizLJSP80\nsSVPMtK0iSylnUj/NNqcTgU+w9DSzkitLWpJfyMktTYbrdjakiU5E6mNrcWVybnfeXggKSnTOtHB\ne49vue++e88963e4nzD5poqUW6ZCQzC+BdKJQT8ItZcRknLI3yIEGX/Ucs+8rVUJqvqEQNEisqvs\nHL7DIEgnmMju7O6wtBlbRr2y1KrYlFE9EkWikhVDLeNNVYwVtFaZ3fzc+P8Rqv+P8J2urodlrAru\nTqKC8We2oiH1Bvy5Asu81InP62RMSglQKkpLuxEPvQnkOIK+O51LnMLjJK5ytlOOuVxWDs9Coiyg\nWMYoiDBQBrcVm9lFheX4c1FA2sZW+JF8WTS4kbUnDUvrFAkr+YLuVXBW4odyPJ8pO8A46RrOfznn\nkST56YUc47wJMlOnyAl03VbbQ1F85skoIDMTnso7mquqmjvKvxGP75mxMOJyRRbO2BO/pbE319c3\n2TX/+GfWQG8w2Bu0/g/2LZdO/EZYzfqygh9E3MMSJe5hJB8GfGOiPEPpLtK57LIzLN3CFq1Cg9jF\nUjRSoXqQ3FC5GaLEbuchxNJ3UpoLyDmQfkgWLqfy7fNZF+c/bNQnW2A+eyTWpeQ+IQWvY0QxQqf2\niSlxVGRSRUTsnbSmpg5qj2rPwMRMxuSDuqPo6R3sgySvFd1BNpOmyFLkLWIy7PIiJne8ZtwB/ncV\nrG8HFGBLsRd2YAtWuFomqUu7sIDdALFjdwvYwC6s63abn63ryRv2+2wpT+ntdrvfzm67yg5N0Qs/\nGMnGtGBSSoQH139izX5qXrHlwmNeqWIfUMU2hdXmmc8v6X9upjleWuX3ewsLgBpSGud1M55dGoks\nfXYG/9fjC0N9zRVGtdpY0dwX4pOYv/TdaP42ZeMykHdUySVvVU5AlOuETjcItfpQdkvOsXr4OjkX\nrCF5qPI4LluCKzZU5xKVboEcAukEuxusUnK/5Pusy91Hzv2aGSvaXYlbnau8UomWaJVbohFL6rBV\nR2EXwUPB48FzwSvBW8GJoPbxbduUfSfpkCv7bGpF8lbVRJVAB8CQ+IkvGT9YQ/zo7tsoIl8vcWoV\npqaK3KAxWJET4gk4scgbGoTIk4sPGBFExJ2CdXVCcSgCWQL5bhvIOQh5EA+CmIUxzEcXuFkRyDaw\ntD0gG+DEG9Pf1isshXzHyhAnXkfigQr+2eRT3LNY1JbBsdML8jJWtu9ivftj7qccllXFaaWiNAiB\nZDXSOJar8XWu4oLlIMjc8YRMId7Nh/hG4fri8V/Hx3/bL3ukyD8Oo2eCbRYJ+ZLI5GTpCibVcUbA\nuAsyUhFsC3KArnSOoloLwNDYS3MF+TB23aNoMJDXQUbJEYsOhIs5uV3cw/oWbnxdBt00kNyg24xp\neIJtj+jZbVR6cvGeZu1PtaniqpUqNmG34G3ugmjB+XyMwBerZUsIPKa9WtkNIRkEWPlSKw0vGF41\niAMQXQszUhyq1QlGRorYOXsw8wYx85Zg5lGS3zaQEyBjxY8NXSQuRF8ln+yI31NsPNJ7IP8MopL/\n9F00cxYImilHTPyzinyhiCdgXEuflgwiddZN+Ax+QSFwjKTMBo+h1SAO49Qi+ox3cWMrPjtZleIQ\nYXQILriD76KBA+4TdO79XJx5BA8lJ0UbRJ17uTANCvEhh9o9WlwwFGeB3MPzdTAj3sUHjYNEQWxF\nYFd4eoQNGvxPdNP/Ql8I0nJJOND/y6WSIC39Zf8a8md+ZYpfk40lDZtrG+AnFo6Qnzh5SH8cAudx\nTIdbmASb9Ntw4E204r9heJwQ05h6nB49KQd7yGEob4HsBAmyd07wmVjRNn43f4g/zp/jr/C3eO1A\nzNTJL+EH+fX8Jl75m569E7pMy/PUqaqM1I+uuYTQrwJOZVS5VEFVTNWv0gxL2/GR1JlY8aSD+pz6\nivqWWjcQMyN27WH3tWFY0sgt1WM8x/KUoLRBnZpJM+jlQZCLOiQoZWKmoDam7dcOaTdoN2u3a/do\nE1o9womy2ye0ae2YVjuAuxkysj+pE5/lArb2InQkj7Vu0jd+Ii+dN5bHWmc15rnyHvWd5w3Lgefw\nl0tLEHR4q2ACE9cJw24aR4OPd55PBg7lgQlJpRiB58Fz1nAvgx3tx2i8A6LBn1pBvpezw8ObDomA\nT0saLbzvUh/jlMkPNZ/CyvlzWK+Pac5i2w8OuoLCozhNNhxFnZb0tIMJ0IvB3oOBfXj6OF+Bca5H\n9HavegUs42RN1cB5HNeu1LIDGnDhVSB3MMA0GHZtIEcp1QFb5G+J52GYezjEz3LLEUJiQ6ueZoRn\nQ553i6KbF0N8++jq27xq8NLl1bx46/f4g3zZeGL8+/yc8eP8N/h+GvMT/8rG/EI25nV8YUIISOfA\nONm6sg2xECqMABpsQ6oNKiWITP+4gDKBoiIktSAHATFFH4GkGnaDTs0SzaBmvWaTZptmt+aQ5rgG\nN1C25TAFtpLuxpAZBDmX3RoGHgVblUA2G5Sv/ljJWlKrEJgtdaNHl6mxCH9P/SP1XvU76pPq8+qr\navaApWqEy4Gj4St9gkmFeEGOqUfqlHpUfUF9Ta2W45qlN9ktmITOh0xs6WEi+vjd1X//96vH7/JN\n/J+MS/zi8a9SnCb1Ha3p0aycsp/yMvAaTFjRT4BXdOZ0hEOK8pCNvcxevy53/XN0fTDLdlJX9LgF\nEwqL9E49E84OmY+bcdh8yzxhxmGz0yzIgZw8Z2X3MiPWnbcwCYGtg+vBRwN4myXYWoLXVyOJhX1T\nPsb380P8Bn4zv53fwyd4+qbZ7RN8mh9j7AmahZBGDC8i5f/DXxIPoXA3aQM+ZD9IEGQMC8Z2wx5D\ngi100hUM5AkQJ8RySqufjMKn+KmHg+QQPaol57qkzQkXPhDMa4rcQZZNWl447CBxECwm7JvziD/j\nq1qrhKLxZ/k/Hxf4n4y/wP+rsOXLY13tQk+XHNtC/UjftH2K7uiltkkb8kh4xIjszI1XRM0BJkWJ\ncfmM/1/8GGfkWvh/kSoDYn0iYBxRs7kxATHRyQRGBLmUqB8kjGn2p4Q1nbAGpFtMkkaatDstBZEu\ndyWM7glPS3I3PJTkPhn+ginQIme7twSS6ZaxFmFghBMeJOqMSu57qfBAssinWNjjLIyjBS0xC3w4\ndS0Q2z70fuoVyEbzEha2i+InUETe0Z5EWMsdCC3Eqi4WfAKGvAXK2veQuPuO+SQblckd5n3I36UU\nrosgv4V35im4zE7ClJansVgsXkvY0mNRs7tYPsGj4dxN7ijbB/1zH7SuN8lOCkPqZbhSboLUBvnh\n1NbgruBBWE/s8K7YmnCoaVfTwSZ2yM/2kkeaTzezyeFvjjb3NYvD2aCI67kwHnqDD7CCfApC7f8c\n7YSNKAnDCRJpcGCFBeZmyw008IJVaRSy6KUbcOxfbrjRIGT9a1Y8OtU8yh4tWZr5Yc+U+JbZYou7\nWusLkwILx4/b6211T4nt55+0L+huMrl8pTWtNcWvPjm7tuu71Z2N5WoxJopCxZKoc2ZD2axVz9fd\nUJtq3dYqs97mjzirw/kbI4F5pf6O+l+WzTIV15oC/mJ3qDo6x6Uj3w4bf8J7bPx2ZHnS99nAtklc\nmPVbMAxtIXwizJq7PTwlDmH6NU/TNW6Ji+IaJGv2Y+tEFPJwdE8UWWK3WyfjvmcJLdwXFKu/FGtI\nERN4kseFc0zFBbvRK1KOajglizpMzuUysl2FsR0RIjZUmLQ4JmoHuG8xtm5jclSySHAKFDzqjoRe\nnvXc00LLdm5Ke4/l2vsctbdG2gb3/ZXWW3Df0ywKIlt0Wy+O9t7qFSZjJD4Ta9gcNXBl3FKxTXoq\nzPhl7Ck2A58ywmgqDWL2tYefwmxpD4wY2GQNG0eMqgeJdmOijNIZytPs5ERtOlEbSPgyUmM7TpZW\nNbKbhI2J7nSiOxAr7u8e6t7Qvbl7e/ee7kT3iW7dQGJeJrlnXmIea+GC7CULMAhB9iOBe9vy3cux\naiyHLrac9frYcoUJLGZTfbHCBOJsJ67sNLGdJoUj1LOdeuwsZnyHzfr2xU3yeyQ725e0s6nqbA+0\nC8MJQzrRZBwxC3ipkTL2w16p3jhSzS7xLa7P4ig01i9GI3+NtOAP8XJx40gXO2NenG46L5AMzovR\n29Al0s/wIssYSb234P0FHy9g0/OPF8hxBCshDK+FeHkS5p4UyDHYHg47T8GqsgaK8CjIVgIdANkI\nw+MukKRfYQpkabyEnONPQW5E2MPeiPw48laEPexSG3jN1rZdbQfbjradaWMr+gEM4NMgx0BOImWY\nErTXgrwOchIZxDtAXge5BMfnpR7IsEisPwxyeiHYCchlkAv9uAHIJ/3glk988gRmBb3jOiJ40STe\ncRQkCUYyCnISNpfDICmYHk4RwVvvxQu/BvIjvPArIEf8kwznBt77Q2RgX2q5juz21yI7Ivvw0p+w\nLpB+xt5ceh/kHaRav9a2ow35TziQxHt/D2Qv9QDIVuRVv8BePrll3k72AZPnu692s58LPdd62HXv\n4J3fw5tepdddiIzy/mv9MC89gQOM5AL6tFO4XmtraDKfGszO65vC8kKtSLnOogNRmjZ4o/DPpd7W\nqsqQ1/ILc6PXThxxpt/SZXKHXJUN1Y68Fu/aSOuQw/3sfLDEuq4nfOv5cm9twVOz/NWD0fDSYutA\nqGVJuIwvrIrUWqy1EVdYZ3LaiGXWzXTr9a6Z9Y58c3mRv6mxJdreBH4ZiDoNFZ5AmaEt6Kpp8dYF\nazqXN1U+lh9uIv5SnnS1BduYsB1En3JtSI5o29OWaBOnxF4JCeECV8Q5uW7x39hMTIQyieqMdALh\nBlyoGjPkc+gbH0FgYZNNzdT7Ivn4n8KTehNkKyOJkDExOyNtmM0PEN8JkYtdOuBgf6o2JqoysYKv\nV/1R1Z9U/XnV21XvVmmYOgIT0hcwZH0E8iuQIZAySxXu/yrsuztB1oK46Ghy1HUB0DVuuQ2RHG5N\nUD7wFnxJoyBd8l1OdmFpB5krH7iE+bMT5A6IZi6Tb2YzBpihyAGpn5GReewtO3sVNtbG+FObItt5\n2Y5X4VyU7UhKnLcNjUOwMzAJ0GNkV4DKk/AakTgtaSGFuelEKYomXwaZ2+bFgffRls9B1KxB0kvY\n+iHI34IUuefipDfR2VfR2W3GERO75V5k8JXJd3gOnfQyyA9B3kW82q/K/hmSimuumyKvMGlfRw8H\nuTIc6CojJeQueof6aR7dijFJsL/XoNYfJr8WwmbXaF+GYNUKNvG5DvhAujW6l3VsNpMW2Kuo4VNi\nv85QKBikl1UgFL30Y5A7iF19E7LLXZAtIF641ntBTsIhexiEhsANkJsQaXqRl3gdfPUF8NWDIGcU\nsSv5QuOrAIQ4CM5/BuQGyLFJKA4ssEdBDgPJYe8sjBSQwyDaTsjmRGJoCIhvDiM350KE3pLLzvgE\nzPIlCGcX8LZ3QLTogdFcfPTrIO9QNhfIfQrdgr92q3kXpLYvcu/bA3IKr/ox3vIlkI/wquTh78P7\n3iA5Di+9F6+6BmQU5BO89JrGl9lLp/Y1phpHG2F3x+uuIa8W3nTfLCxXs07NQqQBXs5PBC/XB+LH\nG37E3tBUKOa4oEiIaNi1dogmq3sKP8yF/MguDq01Ehp3N1UW2mpbKioC/ppiX9TfMLvYateXNvrs\nm3aveW7Gc/EZT8yucTTMdLlCZcGY190RKCtvaCv78997gn+m1O2bUVbZ7C41lnst/O66UFuwxFdd\noc23u+rGt/zsheicspYFQV8sVFtU/VRTbUe9xVw7y+eONLgLDxyYKlvdyPG+vyXe94bEzYIsiE+7\nCSSI3RPoju2z9qA7NkHU2oNVI7hAJsMSB3ICu9uBRyO5OnCPDrAFtpUc67jdAdsZtrd37GHbybGe\n21h9uB54akBcPfhjzx4cDfbINnGunzcJ85m8qeFek3iOaVg87G5JlxCEyClmpN9C4ldxPHmrobwm\nA5pOjQBjmfQA2jAMudykCQHcSJ1JiGl2EbInYvq/Vv2dKqP6tUo1IH1GWZdTTW9DKi3lm93F2L2n\nYSthyEQ2l9bg1Y7jxzuE98aX8OvG34RsvIr7VJjDf53zcF8yZpcwZSD6mgAkIMfJILQNbfRkpB8r\nYg/2fRkuoQ4kCjLQp0vSiRK2bRyxCQQj4RIonoIieVlDYvp3hJMCUtlUAzH9YfGUCO2NNX0nLA47\nDeTczbqHccYRy2nLJct1CzsD0W6xAoPH4anzzPTM96z2aIa5mP6ocEa4zEYBzj4qnhEvizdwP4AK\nJHcaDhhgxE+ZR80XzNfoju9YTlrOW67ijvdwxzwE09V62jxxj3oYwFLDvAzB5JPj4LS+DhGjPhsL\nFxHm5JVV+W1Gi8VRYg+XF1c6TNq6Rw/xcWNVWTGvyTcUVhVZ7Yba6bvobyc/xP93ysEchem7nqwY\nmVRQiAn9gjic3CBshuvtNtCP8mG2TCLXjc35TsMSw6BBHJZEA/A5krPEBQBjQAgY7qHKSFdkc6vU\nDKPCv2IY1WBrN7b+AWQudp8EKQHhyL6XT4vCZQ3l0cHoqu/XDengRGCd1a9DLl9GqkN+2wNwwdlQ\nsou0TtgDF+Lo0yC/wp+2g+ipddI/5DAeWmBauk1IHY/momkzSiLvElz8JghHaFNs4CfhgoGOlkaO\noJCRzLDOU2bMN0Ei2P0cWypsQY3OWjt76c3oPtKPYQv9TyB4R2mZhr0RU+0MBJCSR9AZ+WRyO0wW\ncZhSj2hOayAtU4L9aZBjlJODPFRkKZ3ViAOpg4ajhjMGccAUsWqtWsRH+iLW1tCD75t/sDr4zDPB\n1T8wf79daG1oa9hY861v1WxkG9s4gatnMtjnTAZbyH1FvU5qqWMjoM6YmJuRtmHln5iLr5mRbisJ\nR9J2SGI8Ywu8/J3bM9LediazqJkaGGhhr7mHKRmJFuNIgZrMKQicaTEmXOmEKyBthwgwxMiIk52+\nkGtHhyxqJ5CIucaRFezgAB1MLhkaHGJfYfeQ8okC7BMFFCmIiaEjHkhBAWMinpHScdwW5HYcrQJ0\nHkLrY5lEND2iY5M/QAzkNvKauRJjiatEBHAiHNoTbLlLFZU7ywPlbCw7PQG0xRmQhqBntMfiaOGC\neAxHmSr3JLtXzDiyWpDzUmDJuk8E1q7TcDQfLDpahLAXDLD7IKvgDF6NLQO2PsUW8gslHcVdg9zH\n7o9BzoKU4ZgVAdWfQ1DZh6X7ldLXSxEjXmotZQOdsA1PYhknk8wamGT2mVNY3DUIxgqDvKKYlpIn\n7efhpVbbzXYPvNRrEIW2z55CpOkrWP3fBDkJae5zkDUg+xxgg4DP8zrCDtVw8nXHmw5EFOKPZmQf\n7IO40IOtNrh1v4C97h1I7oCQk/oAqtVWG6+Fe35GfAY6BTG/KyE8XAfpAyEVdSZIaTObyWuaX4Zt\n6HVEmphb2V3fh2lhB8h+kPNQ3faDLO9At3S8jiXxNBbTPpDLIFEIk2dAbnYBjaK7rxtiDxOtkwd6\njmBptGGZjPb0YfsLKK5tvbgDSLgPEg7IfkZS5+dfnf/5fCbajGKt7gXZD3JsCZq8DF6TZWghyCiI\ndSU79tkqtpUCWf4MlMtndjyDvn4Gr/4MlvYPMGpWYixcBzkKosf4oOFyFruUsRYFWZ0bHwbs7sLX\n95cyfeoPSr9Z+kYpa5wDKCkzQfJBCEnxMkgUI+Gb2PpTkHzs/ghf+3OQl0HWKvJuSmu32n0YID/K\nDYVuxJK+7HgNX55AFTXAGAmDrKWTMAa6MQZaMQa8IEcwBrq96GFfnw8KCYZCtLYPQyEyoxdD4SKG\nwnmIkOGGHmjr1zAEVoC8jG8P46C0Fls0FKwYCltgjftx+C1Y4z7AYDiIcfAByCoISRtB3uhQhsJZ\nEMKYO92lDIobIL1QtLrx1d8B2QdyB8QCCSrSg0b19vSyp/wMw6AV5Cq+eQ/IPpALIHdAjmIc3FwK\nVo2vb8OIMGMI3MXX/whffAvIRpBdIKufgQAkapiIa5kas6pAmoSmgi9mY3mqvT6yhOYi3kNaXAWp\nme4hBNuWqtT5eY5wfXlwyfMtc762rLl52dfmLNjq77TNe3KgadGWNbNmrdmyqPtbA+FAd391ZY1K\nsM6cEVtc1bG81TPbyO5lqTDWdDTYW/1VbXU2wTt+raAsT5fvmb24LvqVed7WlV/v6Pj6ytZY1D+n\nwRZ9fsvixVuejzY8OTx3zgvzfeVOm/upuS3P9zfVNC42e8qKBH/nAndduD42Pycj/0VORv4lyciV\nEoevGoOicAKWyO2te1qxzAX7sr6B+MRnwizhM87ENfIVUlUjW5tkxCmkDDWwhYUtmg3GhDktJaBy\nUCBnJ8hgUAkuokTDwqnBXIoNkEI2NQ+r1eVkA4TOXAQHQDnpthdg/YfIBmsOzPT1XkR7JY/Vn0XE\n+E3E812ulwFydwkHmbwkQ1MNJHeJB/GzQ7sPyZ47dPuAQrUjfx9yPncU7EPOZ7S4Dzmfu4oPIvdm\nFcIWkH2a3FVyEEkbgH1KRip7EaCdco462akp9yiCriM1vTWImkYmruehXFE+VBySJUZzNtLI5za7\n+d/aG+f4/fOay8ub5/n9cxrt48u6BOOMYMgaebrL4+l6OmINBWcYha6bwLWtaJ7ny/4KTeN/bKu2\nGDxdq1tbV3d5DJZq22KyZasnfsN/lckPIvfThIgMZQgHE4hELeKdvDCc9fFPQGCBoZuwXB4DhaM4\nrZQMquQqbh2MGVsp7PUgd5Q7w13mbiDs9U3owW0CjvcJq4R1wkZhq6BmS69wlHV9zI6+XyWuEzeK\nW0V8AEUgz2eyEa9VR/nATOFvS7+sN6H9T0z8hvsBG2Mi15hQBRC5mG0tk1ynNFMZQgpAHYHyuJ9o\nbxc+e/AF7pM/8RxfLGS4AJ+XmBFIDs3YMEMgZKAZlOKXh42RCjZmS+hQgMm12wK7A4cCxwNMrrUF\nKjDQOpswbg0BIFtxBk8WzmUwi/+bJ1DQdoANTBtHcorHOFJDokhMr+ftvJ+P8iq2EBMkFfpHj2Rt\nvxAV2NF1kDa/aMBRQ4Ojoa5hZgOg5/SN9kZ/Y7QR1zViZUI4RUyv5a28j4/wOEUjWASvEMZNSIMj\nFJh1MAncpdvpG+wN/oYou510r5EO5O5pag63yoZMMw1P0trNlaKZBioOMkYHnOX86khJpc8caysx\n6wVzRaVeX1lhFvTmkraY2VdZEqnmO2a2Su5gRUF7ka2y8C9qmioKeIEvqGiq+YvCSltRe0FF0C21\nziQf/W8nnuPu0bdwsHGVHBTXK+FebHzG9Ju57RyAAFQUsWPIwBNawkRPK1eCTq0gf0UNQZ3NSE/7\nJgEPQewE2DcJ8LLHUP4u7ANy0z6I9PlD3SjVCNmgniT6EwlsOLAWfblmsi+1DdYGX0OEPo260dzo\naWzFp7mDTzPtI9/DnXSCDXfy404zQQjWZ60fd1I3mBs8Da34Krg13YLdv9Ha6GuM4NNUa8xynKgM\ncU32ldZGsVWOJG1V3HChe//upxH+o5+GzZM57Nt8xL6NlvNBXweuXBoquqB+wAGwRQU0FupZRP+i\nL03uYjZQikMfDQ399KfCvgefhcVX5XtVsXu9S/fyJzQBKYboPF5NKRhaWCc4ultg2t2sbNq2sn9V\nuNsaMT/8YAuNmatCjM8j3JgzEqdBLBN3HJgjJzRpGELkWwLcMMN9iw0qG7RQYBRldc8UfgJaMTuk\nUB+EqRUGpyGAaC8tQBFpmqb4Uf4Cf41nc34/RkjefuGwcEq4KHzCOFhMf0R1WnVJdV2lQoi6+oj6\ntPqS+rpaDd2PzgaLky0N08+WDqrIaJG9AAcYm+Vlf0IIRoNwhM9TPdHR8YRqhnam1ztTK7zX2d3d\niYpoFEc9yQe1XE9CBzQmREFOaGSFSksgKxrg5EwJnlO4oobtaGTcP6wA7DR1Rv5wIuvqH7TjP/bi\njeO1479i362PG+F/LpjYul4gGTixnpOK1GI9u2CayNMo9JUHYx5PLFiu/PK/P3WP/XJZ/PTf8n/P\n/xNXJXRLVUB/XW9nSrVdDrFZDzt/Ech2GbIyUZxOrXdvcm9zM8H5Fgydg25Em2BrCcimHEBlJXuv\nSkVgKGU7pWRtryyVOXPKxQW5GKB9Kml0AZ2wgDEDY2mlDGCQBFSoHCRwDMrzv4H8GmQ9wjAITe8Y\nyM0cgOBNzOuwugfpo/thJNmHKY3YMKkVSmYPyD6QA1ASjuW8IF8gveFD46eIaF4PNeFdRDRfKL4G\n6aK3eAUCm9+FBW0popuvYes6ZJljIF+AGBB8MB/e/LPWD6zsNn0Q8+/Dkn+s7Cws+QYI+kdhIL4M\nch/EgMDv+SCE50+uuXdh5V+BPv8AW0Xo3/XoVUqJly4p2Soyig6GqnQAr0ngDfvwNgThj4wNKY53\n6StGwmDxTYhI+RCRKLxzJd7kJoSlG5b7EM7oXQ5DJblLuiladTiXSnYXiVInXedztQeeQgtPooVX\nQdTYvVglYwx6ZWEqwiaOVaPRamSB3GqxWPn/Xjzbx4Qnm40JU77ZxWH3ymD0mTnV1XOeiQZXuvk1\njhq+vLm7tra7uZyvcfj9Pp5nolVrKxOxeN7nl+PIPhJa+AKyyW6SOJ6N2U0E2garCllnpVu0gA8K\n64VNwjZBNZADcVLxXM5OK40BnUbfrxnSbNBs1qjI3nYLEta3mNxiI0EMF04gRKVIdGId3IDgOhVP\nYY3qNKapj8l/oT39X+166qkuoWX7iy/K2Ow0p7r4L2Rs9hPQ2LYzAvGlIy1pazpkbE8Fpn0KQjsy\npyoyWZx26U9hGHgLcuzRyjOVAgG0tzIhvtKY6GKthQd5cJ4y5Qh/XZlyXWyn6yH89a4s/nqXjL+e\nDDbEmP4ImIUgm4FdxpGZbAbO7iIY9tlsBs5eMptmYBLpOuz1oZ0mz1RfRjbjEfiMzzKSOuI77buE\nIhPIS05+2PApu2fyQOORHMb3LwD6HW7ugXViPzLDW6F39uTMEfvg5OwFOdKOMQ1yE+QXtDUb8xvk\nr0GuQkm92AFxi5Txk1MMMkcxFM+CTG0p4fOfAklRWhHIKZCPJ7HJ0czraObBxqONsLo0x9HaA1Cg\nD4SUhvagjfvJ742WXQXZBzIK8gmadxnN+5QR638EGRxzQvvojHE/+J2w4JFKR2NuvoQfnU26x+OB\nL1AZTFPmkf/ReUaYij7un9kMc3KdkraQaYy/Y1QCTsmZmcLm5WGWKMrAzF3Mlq//58uH1v/Ot+vw\nP775S2mdXTxxhP8XoZyr5PyCSVIVAU+Z8bqUHC/KBiBQO6UTIPoilQx8nUzrx4BWFtTH8LNdv4f9\nJHQkOumNCX86UUp2Yyuh2znSqPJRo3ogv5yVvZzV8FDYL4lEMjDciayZWpchGHJsMrXaCqBlUEsG\ntCwjnQPIs9U4UsmudNLj/GSmpqULgdvJ08IlqL6yGpb8QLwJbrMSgIr6I/mn8y/lX8+HB4V8kojE\n14OpXyq5ztTcJNAm2c8R02mUC7mHaDM9LKB3YYUs0DqsDp8j4uh1rHBohqVdWJI+LPu0DFeUn0ae\n80Ew+BvllEQF5RPuHWEgtUNA6hBCPrJJ2my9QNc+gLiUl68qV81QtasWAgcUGZPSDeBtH8s/m/8B\nILiPUlMJKIM1NXWy5HzJVSBiUijOSbRRjTamsHUX5O9hEvstNVl0mBxuR8gx1/EUmoz6JMlLZdex\niv4Ya9MBNHhyKT0LAi+zJyxPH7MbsjjJ5CGzPMN8WtlLauX7a9qKwq6lDcGmxeGKivDipmDDUle4\nqK0m6ArVmEw1IVeT4Lb5vbXC7E61f87SYHDpHL+6c7ZQ6/Xb3IKgcQU73O6OoEvz0Fr0HUmDWNhN\nkPo0kOUIZ48tMNwQt4HbDJWJqfe38Mk3o78ENcV0q8nfc4tk0EHVetUm1TbV5IolC8y0BkGIFCEd\nJovUTog4E7jLBrhHBFEtR4S7fVp3JMQXYDX6ar/Q8uKL29m8WTbxBfc3/GXC6fkWSehSP1ZMeCaS\nHGfkhOFYnqzXIVdGPZCSA28h42lkV0U+CbAlaekW2O16+yaw2wS2Y/Z+u5KrQxYjw8OhtPpMwmxk\nzCHYFCmV7XDgDcVTtv+m0marnPovaK6qMrN//FeyG1n95xvceW6QydmLCO43IwMr3wOmso638bW8\nOJys5dt4Nnrl2GJRTkwWmIiJuBAFCpejSOMMYbWxi62sz747d+4T3/+UUnw4+8RvRK2MHcctEH8i\nVZaK9alNpdtKd8Ne7CxlU+9c6RX4FJaUDiKLe0yG18Y3nyBvD0y5Y1i6E5Vy4RSm1hC8ZSmyqJND\nwQ1BBHcE2Z1OBNPYjrHtxMyM1I8qFRtmbp7JuFRtOjHTmJjFLoXzm5tlnCUMJ4LkYSLn0ixjYkFa\nGkLQVBBBU0sWDS5C5uCiQ4sQ1rdIkQumla1Sgngh7WAEpTCaAmoRQj/7SOTeS3FFxiJXETvmNibq\nmYgCK91EPVWESLRmkmOttxH3OKuVQvdmBRKtTKxhl3bg0g5jh6tDRMkt+Jcm4nhE3BkPxMVhaUF9\nK65YAE/yJIO5AMtIL8jnkLUARAsdn22ndohIV8Q5uTJVADOT4kDF26VF0iL742X4Gr+ARunQ1jGN\nMotZn0LZiKOIc6HCEV8g9MWgc+jqdKwpUbCrXfkH84+CXV1G3Md8pbRQalfBwYKjwE+8DA72BQ4Z\nChwFdQXsQhXE58+hIJiLPUwzSO0o3lecKhazeeAREDWk6zBcZjtK9pWkwPgugPH1gqzMJUYuB+ci\nvAaC8V4OyeUayA0C44GJ/3TDJZj4VzLZJHWp8XrjPYSKUIzMq5BNVoFcBjkLchNkJeSVLSFcHLoU\nwpKAAxtBboCsQCjja5BnXmtD8kBY6IGbWoXOJdD9HiUCW4qgTyO6Xphe2wriiMYmHEBdDuaIcP90\neN2Z2CKMvxUE5UdlnvAKZxou4xUowHpVLsTnPgiJhyvQ6FcYSZ5qvgip63shxCiF1oReDsF5hDbf\nwetcDH2C11mWa//rrP2mh+ArtA8pwp6pCOdsAXBPB0Ff1rT8a11dX1vepPy2t6/Zsmjh1jXsd+vC\nRVvWtAtzip/vDj0501UZfTJUE2uuVrPR1eJt91us9e2elh4dPzT368vY9S/Nm/uNZcGmZS919299\nLhp99vUl2V99fKl79lNNTUvbq03eqLeurayxo8bd2VQxq57kmkpunVAoPM34TYTvl6xAUUNVMmkI\nJOaXgdAYH0sCw4J1QBqdnAAZAolZZenCoH7ASa5m5CWyDwBMMITkJpohITVvbt7ezJTtZjLOQ6SP\nlPaCg8muz2TE3IufsL0HjH2f4taSredZcTrq7oPtvM0bBzgBwIoUJ9Vb5K+sj8OifxS84gA0gbZA\nPACZJnAUNXxScFNEWnvhplAeHjb3wO96GO61I3hcFkblrcpjylOlg3h0mzs+5dGkehzAMyP1vXjm\nfjwuEujFc/ZNPkc63Pro+PBYLFqLBm5+2cJDYEgRbxgufzlUNGL9vfLmLq+nq6m8vKnL4+1iMvIr\njnKeL3e0zmitWlRbu6iKbTxyhP99X3eosjLU7cv+DlctqquTzy0rk8+cto9vXzvxmVCW9dPEpdKq\nST9NqXHELPtp2OrZkJaCOT8NXDTS8aDiCyAHzDTXzDSnjeKnyeFGPs5PE9Mfs5y1fGC5ibAa2UUT\n079Tf7L+fP3VehXpgD8S9kI2/ZG4F26ZsNhDThrGggWlPk8S7BSnFO+F4SRc3IOfH5XshTMGaDmS\nvpLPYuUMJ486zyAUW4+MdiBjJY+6zwCyTA+LRxQkDkyco4ikuw+ix24UBHE/kt4DpHhwaoUrzcQj\nTjv5gchD35x3t7qnewatoeLQBnh0oAFBE4JHh//5f8yjM35r8cMOHf4PmXzin/iOIFLtgyffFtUa\nVT3Z9NJZN85tgc/aQsn4SQZB2cw6NcNQ4vJUsoWMrGIa0hb00BZgyAWSQ6g1xEf+7u+62P/5e+1f\njgoz2/9OtuU1T3yH/4Iw8f8ze37h456vlquQEPyOgShb8lG4BhJeIex7HAyYOSgWapFJN9kiSaUj\nHBZVYEQr0OhUUdUaEUjsaGux0lb2jwniZDCW2/wu+6+LiKBqH0+1nzjRzs9vPyFjUYT4ffyAkCaZ\nKyWVVkJGZYJWVqpaIqcyQYwifMnJoo05SF51BsKKPZPFBiJ5k6ewnyTsvuAMWNZGQQgelyBOTiLx\nMwsPdxRj6CBWsTOA5coqY3IxkgO47DQICuAkDxecwhWHccVeKjNYwv+7oLN8g7HMYzZ7yozKb9BS\nC1iJWovyK8ya+mf8Tv0r+0VfTVwVlvJ5wjGS5weA/g+7cSZmkg1ZMoo+bO9jGj0TGzVGDeuOfETx\nJBHAw4R901DJhpLNJdtL9pQkSk6UpEvGSvRQNcwBG5R4kVgOBp2pJVtaF5xyyvbecqu1HP9OKBvC\n66VOZ+mUf0yOXsytEBYKWmpnGbdZ1jygFCWhEwmK7pGE2sH24FtinXoF1kzYzuWiD5se0kCwbSM7\nuZ0p4ECUGQLhMPe3V0CJtTsYE7UTkgpTPRwEV4bR4Pkd2oe1qrWK/6OHVZAz4wI//gNFDwlkN863\ns/eqn/gL/r5o4xq4MDdH+LZUDr1vDKhB6fIxaNQxiHSbQYZA3GoCOHEHpH7G5xgvT8xJY+aw8Vqd\nSTSmYXxgU6g8G3w5YlITkIIvnfAFRmrZDuPYIRVFY7Yrpolp+PqEDwzz+pwCBMqjhOLEnKzH7jh3\njrvC3YL6WUBzvgDw9KAmUBSqTcwhvKw6K1PUB63rrZusItMirIeYrJE1Zyf7rKusbBRVUYuryMXH\naG0mubl2e61A1awa2Y0ayO4RxmPD58JXwrfC7LEWYyICppCS3criQGqddqN2KwT3F3I1UrWI3dHA\nXr0flcJSxaPFFyBTixAtyWhAZve7sFifNX1gYm36uemvYPDYSYFekFgoGhuxV9LH0L1+BPI5bKcv\nV74GseJl52tYcQhw8TmAKb1WtwNgSheALPQKDhyuO4UDVyHDrGwCE0CbEX6EqU8JRRo0dC+s69Ra\nqt5Kgj8xg9+ikQRPdxVEi9ZTCdLLILty9Vr3o6n7qYoPWvkqIuZQ+lQ6yZqRerkOLYO1BC2j5q0F\noaKWK5AM+A5SakYZMU1aOrCsab1ebXGlKPuK3a1ery9SKYYiWAvDXp+YNYKMV3dH3FXhbk+wpm2G\nu7DNHK/xxGfWOCPz64M96yvbjbW1PmPQ1Ogr4xdEg2UzXCWmqhl2Pm5wNnY11vc0V4g98wptTmPQ\nXcWPf15Q1dTdVNfdXCnO61J11tebXZY8Pr+yyROaW8KvEMzVDQ6Ht8KipzWqW/gK93NaI5slDcf0\n6t0cvIVsUMjcS1Q4VkrmYCL4kp7xJTEznR115zjPf1M4Du6/gtFd/PtslvYwJT+JSFxheERUP5A2\nw3gVU6Jok0PqDTCijKmnQVooYpSS7S1X8dnV1cVuSesU4nEe8GOcjvPwp6QaB2Y+hJMTIBwTTmCh\nRwWhfqTPOGQAf32aoLbZn+QZLg2ycQHwbyrB1Q+yHgbpbSBjICdyZbmcrCVOw8MynJOcZkx4Mstm\nTuk24nM5PT9MMZtm40gh+3Ox2Yk/Fwek7cVyYhyVTqGQ2v1grqug5Mmw3yCEDt8Dsh+Low9bvYBD\nIOjF1cD9WWl8wcim0hbjTjjLVmIKbMRkiFiRGGs9DWYRsfUC4Odo+ZlyWBkrTgMtMQoGTcot3EQS\nByzDJVTW9wChjuH5kVxLsDgnw/k9+ew+1nwf+5Hxdz9BQ1ZgCu4g5DWq8WiEmXSFca3xFePrRlW2\nLUetZ6ArUZoG+bEAfygdBtGiKRGgN16oulYFtHhZJdSyqSJb4KcFkZn5ZH/c1d5QJojlje3u1kWl\nobrnZ7asinlqYsubW5dGK/nCuU/Z68IVYXdHg6PJVdfaqMiG3s5lwUol1+EB5Xmty+bK/oSNJx8+\n/rC0HiNgCUgAuzQqOAQBbvBu9gq52ooP3+NpukclXZ4MeDu9rJe2g0+M1aFfb/uzWEXydcdy1z1H\n17XRc2L6Q97j3nPeK17WcRtywzEInRwYZuzvbcfbzrVdaUMIedu0PN6pbdlE93RI27M663ByzH/b\njzXeb/QTcoDIhdk1d7Iy3iL+r6XYfDZ79qDUahEyWjZjawgkxghihaEGzTdS1bAYFpFEJDBSSsew\n0jQEpD0N/MBIJZtt7fNjlDIGP8wiefvsImUKTcPR7mY73Vgr3c3d8qpM2lA3IWhDP7bzD6RaNaVd\ntbuzdlVJi1D5FflrgSsMmOzkioK1kACBAp1cWfwCnKuwyUtnYRhaWfICVB6IkdILYOjrAhsDWwNY\n8KC/rW1hh9a0vtz6Wis7tBYpTadms8vOd1xFYsqKjrUIzD0FT9L5yfK0yfNdV7vY8ZcRh3keEeYf\nIOZ2Y5yd8UH8ZpydsXLBC6jI/AGSe1cufGEh2gDD4AcLby5EdCBhg+gx50/m8P2AhyydgplrBRYw\nWOvlNNIVIGuU9kqj8G6Nok0nFz4aNCc+tK+Vl6VctpFS9p3mVTjC/6XFF612t/ksFl+buzrqszhM\n1Y1lZY3VJuX3A6uv3OgKx2tr42GXsdxnbY97Zj/R0PDEbE+8/ZSzFZe2OrO//LqyxiqTqQqX0u+3\ndc665rK67qDDEeyuK2uuc+oE43M9jfNby8tb5zf2PGdk43F44gvxFW4Nyadu7qdwa5VAkobcZFXM\n9pN28THuNpenCK0AUMjHaflD+RvyN+dvz9+Tn8g/kZ/OH8u/nY/T8o2Ma0FpseE025Btg22zbbtt\njy1hO2FL28Zst204zWZkvFIazNV6KGPjswwsvigNQbwMCZgJc5rE8akSrPp3bIuvKBLs+NuPbimG\n9Yf/cTK+1TnxOl/MesaJ+CKmmaqN2bJPfJqTBLjaxwSwAA8TmcXrD2zi9XNdnHIt/xldW04XBqZc\nyAvTLuQ/G8/nP6MLBaYjjAoL+Z0UO9MC1VNAFCT0VIEQoXg5bEarhBeSFisDJN6mcnC8uarVw/4J\nCyGws39Ce/uO9vbsWi1Ui3mcn5utegKJCeoisT65ybmNSYFsBU34MxLn9FOUKpSS+dxq4Nu8hu23\nuXehi3ydEKaK1FQYCba2X4P8HORDEJd8+acweD6NsIgPsFXhojwc4Acn91WkKuSnudPQABAvkwRG\nKbu7Tz6PfNGvMQLfY50s57cwnrYEKWwBkEFIe50gm0A4ZAKOdWLE1AQACuAMTEbZKKJCrj6irxZC\ngPQynvIeyB+BVDhrcTSD9fAmGvpWxTEs05yPoikJnsxaipA96T16U/n4dbzfJibrIJQSJqqoHLL3\nPM6PIDBnK9Tlb0Pt7hGXQ3TeAZMyme+1YD+ElbEV5CbIUkhlpJQTasZbIK061kejuguAPqMkzR6q\nN4stNTKQWkEAW5SM5vXlAUcdjEyPgjbR/D7ICmdy3sczYGo5l6mMkEx8mVI79ZDP78D8eAfhLyhL\nkvym7Q0gR6+0s9tttG+FPfQgpPU/gIFyl+Mgwvmp/iZCfJJtFfEK9sCVkOJ3onPeAtkFEecuAqK0\nMGT5yJoFkoSY+DxVDgXpqUF9AW8PrJphLP1hiEURfKBaFB5ZhQzSd7GkvjljMt7/TcoAgRqwC+St\nJvREc18zLHDNB/HTFo4j0v8AIv13gRwFOQCb+S4KZEBeZQRepTdn7Z/FLnizfX87Voi1GPyvCltg\n+CBHC8GSrwShD0c1uI7hSxyjNGF0MWlnyxEAdZWcGkBrfBVgC6/at9izPSnFEQ91Jle7NF422Xe7\nsiWAWetdBxFgdAC992MQB/rs39CP9dhaANIO8gxIIUgvDIJhyCzUgb205QNyv68Xtuk69OPT6MfT\n6Mc+JppIBpB9CPzYj67cj15shcSzn+I90FfRXK/Nz3XdAfRaFOQAkzP4SlE7zcJjsUYaRdmeDAha\nKxNDH7ZDDjXGmx28LToUD8smxvCMnhqh1OP1W/+w5kVHwNLuCFrX1I6P2BvmUJA5BZ3PabALP2z8\nyrMvzmr4yuImRbQsrxQ80WBdabSmzVZb5DH7za3ucddDpkriseT/JZ2riPvm2/mqAlU99H+q3xfT\nK0BLquH/yLqXvFJ8C8KOEwEI64s3Ybs/BwtYxJhO0SNYSvoMWyqne399TKvKeX1L4nFlXfpPgorL\ntrmc+xv+GrX5/3u7QJXP2pxvlPPTkku4QSzBGjRX86jV67YmDwB2TI10aYKamKZfo/l32j1N96OX\n0MkRmdmmT1U8EQW7bErT+YTS9i8fZGuTMtIrcpydO/E2r1ap6pNAwEImKNzVHEDbTmSD1WDbJFc8\n2CAHwDa56CxFsWD9VGdAtXJZ8HSikH2w/sKhwg2FmwtVdAdbWupEaGGwbBpYneICoELOhoci8FHE\nmUdgbxqpvVpC5C+RGXlcQd/npOV6VGDK2pxlS5k26zwzh/jq9V3PPru8t7CiMD/fUVBWXaJZz+8c\nf4Hf2b55YIlKbBdVJVUz7K/Cn47++CXrD3xLP58HDKrb4BQcCjoUZlAAcVgpdw8Mv4dGn459TCMn\nx4tidGqGASdepH4ApxfMY8WPxNxUZpInKtPwIQXhgK+ltd6F8iXkykYZJipyJCXqp8ldSq/Vsp1a\npddK2E4Jeq0M4yF1Tg+wNHEgltepX6If1K/Xb9KrEbABkbAgjYcVgo4UY4WkfSvkOKDdwI8St69E\nwITUaweW7RTBjU0J7e/s7l9WlpRU4l9RV9eeR7te2GIuKzOzf18+y7/f/rjPQHGJn/E3GR/w8F+X\nDCViPRpck2YyxAjPpI6arIiCmoTSEIJmgYQHTDyghVEFM4NxpIx+shXEEzmplbJK86dOIHSYx0gA\nz2pPEUW6BCRBTYWEPoKMYCKxSqkgDtkHpkhknLNL3HQiaw3G5HksOstz1nsqBnkY5B3Y4gFmwT70\nKIHgYFFCSZjkaP6FXA2YNSCjBMUFQeBrMMWdx6L/CQiViZ8JcgDLvB6r1UEsSVGs6fNBrhOQ7ztw\nhi/XrkGKM61+W3G3V1Ft4qL5Ezgy1VkgjAFpL26lwa3ewq1QA4av0mZBaB6BKafAOFMV/8vxf1RZ\ng7bmJ2dV1cRWhOa+WNFbGg9Uz6y3OxpjXu+Cai2/TvjOeb2uevZTTaFls6tjHc66JnvdzCpPR4PN\nXMKvJ96J+fa3ImZeBfceqiPfRt9wOsIGlYJUml5NBZLV7EeVAVqsPiPX7wQtYSfBzgrPgEAge+Vp\naQNMlNtAEiDAoJbSTuX7E2cpnPr9H5s4lgt259OKG1JHhu88CryzZHmQgjvCJXsLVjA1uwrR8L9z\navzt42fEZ+M/+x3zgJt4SdAIaa6O/w4bfkifyAIl2DLSEL4ex74jOAvTXGppjJLnqdRky+4wdcyM\nOgS0zzioMyON5TrFT9dwCT/yJ+itK9hbV2By+GW2qyXrHJg3Yw9+Yg8VxhE3vXwqwvfyK3hxCoht\n8hXhdXherYJPEIZTO40HjEeM4oBky+U/67F1D5YHXbENweorEVt3D4KWDkJqraPNgRojbDt1pOx0\n2aUydvlBAmcBISCotSBvgkRQGGqFB+Ch3hVeYZhL7TDuM6bwSAsedBeP1LKtpKbYgqdR3SSKNtQr\n0YaqYekd3HoU5BrIfpCLBAyEh6wDAfgW7xbhms1Nh4iJfeQIEvCUb6zVhvj9r8xVl7ojtZb6Ylde\neYG10pQndr74SpmmtKbF21JfXVBRZHeVGkTLi/xXx/eUhWeU5RUENRpTpdfEPxne7myb4agI6vS2\nmlrjt2mOeBnREI5cIfc/UVViCfhcfkbajZm9HqQTJXsxOBi/E5HYNKJV0ZpJ6ieOMm5fEJDEAiXQ\n6vF1ebWFMlBpIAuHIPmziJIDKF+MW8txo6KCXnAeX/4aSA8Sk1ZQJVHYYslW0wZih92pr2BVgTDM\nOnCWQL7WqlY+xK8UPrsTX7MmPv6/+cpnhG+N/2HXgQNP8mcRq7hqYoxfInzM3llPpZpFxl3dvJXf\nz78bGu8QPnZ+WZa1cRsFKz/Gmbh2ISK1eFHVzyujIcGyvaSFbbcYR8rl6AQ2e5vT7G+J9nSinSm4\nUFivwE7UCXIcBGAs3CRgnMINyC5neMiHRTtRthPVyTUuwSTq5ViF0igCzpInS88j6i4FR8rHyPDf\nXrqHHUhEjSNWdlZFVb2i2ib/quIX0Go/BRMO1sM5lkoG3wu+HxQppgEhaOzPrRT1BELK6n5Eoe3U\nHgCj34klZmf+AcQ17Cw4AJtfK4b7PpBekDcx7xDmJWTju17DqkIwAmuxFceiEMdS0EaaDxShI1D+\nzoCchmYC6DUpDqUkCpJCsvaK8FqocKewfT5yNcKefzhyiv2kzrRfbr/RLiKMRkbwf1PcD0WbdLMd\nVBoZwzdO7myQH4N8A215H+R5kKsgrWgkmpsEwApeDS3sATmNxh0DSaFxp0BWQBO6BE3oDMgxkKNQ\nhy7B7HoG5AbIsfbJEAyfUlUou9hNQ6WkQIzWXOH7V8sCnZ6aOc1lvK2xy+/pDJTlVwxEm3vqTYLr\nmVBoVZe3pnNFizkQaCwVukyR31/S84cNtz1zmiocAXY6+61omjP+A1+gonmud2mwtqZzZSi0ssuj\nK3WXLR4PepfHg41Bjmo1fCZUsPWxhb8olcKodUiWxgmPEbGc0olsQGd+Gu71Usac2bj3cjAKJ7wB\nqdBbStZmQKdXyEcrAih0PwP1G1o3I/ZoSVgZ8xQ4XviQY2laCWHJp7XLIIgjXjaAi3yE5WWXwXe0\nlLaK0bpOtRGqwavwl6wDATZ48k3DfpTEewmLJvlDoiDkl+yGsiOnMUlhmD96cobdHghB78PoQZYP\nDdT3s9haicoA66o2It8DqRTJldUvVCvBWN8EOQuyEjUI5oNshAp9LYh6VU3Xmu4AJdUCzNQLzdea\n7zSjelWzpZmtIsm1qlfQ/OfR8lcoPQu6xsYCpcko7SWX8R1G4UTWfII0RKNGs0lRA8lk9XtozUto\nwxqqrIf4sO66ZXVCtilvMBJyF+esz5Qzmx1hrRY5FcHrbpXL4pEMsaPL3PREe21PqPIbM+bUlVZ3\nrmgtrCzMt+X3D744UBn2WeOh2nBVoeCa8USHx9bQVfdSnaCqifb6Wld0VInqqCg8s/Tppe0FFYHq\n9q7KxjYH47V3hBbuHVpfngOiCjDZHwd6LGZieZOIpOoBqUjkh2MFQTEm9otD4gZxs6hhmoZLVI6o\nhxOCkkbJZ+REccbKxJDVbXj6uVnCe9tlHXQxVycsZG3QcN+eNJ6qRQD6xIr+i/pP1T9X/5X6F+oP\n1Z+qtewBZrVH3aruVi9Tq4elz9Q5QH4ByQ2yBVdWV7MlalQZaQIqq5oXJhOqZINs8hR3EeEcp8VL\njCuZ1GZ1q8ezmEyz/2P8KaHlN42/aT9zButMC+fk9/J/w6m5PH7R2xqVXlX/NqcSmb5MCv5Acok4\nmC2IkA1WhtyoZ9JihuCcmeZKyO2cpDOgZh2shLfA/4AuD0FWSKeMBpchaBCHUycMacMYyh4YUO0e\nkpZc4ZwN1+XQyO9T0rGcI9yHLGEDHaVMMjkRvA9Z3AYsxvcpWt+u8quiqj4VjiI74r6ajqr96qi6\nT42jajYN/Jqopg+h9Mvhd7lPle3tWr82qu3T4hw6SqXs7Tq/Lqrr0+EoXuU+gWnZDX5D1NBnwFHA\nEK4EhDUwc9if8vx5sIDiTwTT/jQcu0+zTY9V64tY1UT55q8Hvv/9wPhF+rmdqPrlL6sSRPENZrNv\n8JfZb9D6tl6lYd9AVHGqemkIdok9RLAoDskV66FBwIwBaCYq3uYEHLwTFtnjcHHrKcDtNgLc8tIc\nexGxPnVCl9aN6cSBlFHn0gV14rD8bWT8foK0BiJ77sNIdyhfV8NbeC8f5nt4NiRXKmUdpqXU36Hv\noFFZVF5VGN/hjpquVFvUXjUSQdmVMCuzQ1qL1qsNa3u0uBn6/A71OYqme3Vh9Pkd6m6NwWLwGsLo\n7jt5dGWeJc+bF87ryUOdytVoxzLqZtxkGetrBI5qfR6iCepj3v+YrgZ2Mefk7lBf/+XbaqXeU3Ym\nAWl8UIuxzIsYy3gO5YrsRnaDzB7QgyJYgUiQcPcpvcTOyeMYg4DLjuOUPIxFZRAjkt4u+sWoiEO5\nAgGPHcYpefgy8UIuq7KaHYtgHGnv4KW+HqOXkmM52Njh6H0OvS1QvZiJbC2ULOwV+55ylor8ZiKP\nwUDcD6/Cu/gg2rgbw6sTrbolylEKd+jNLExID3M9eDPCYFfTGMDryQODXarGVXfwehbRK4bxemq8\nmTww5GHRw96MTQ3cAZUupOXsBAB9+SLd9EL8HvmNeC7OXuqy8Bln445I+TbIBUwZhK0MQFxsvG6S\ngdwAzyWloeAjAUaacEwD5SicKv4rwi0lkmGhF3RWSA4k3JOY/y7I25hbBdC9YTRCDyzHhDpFxecw\nSbYU4X02GrcadxkPGlVM9DusPwXEf/xB2gjwrF1FB4sYu82Cl1jMTFvOLm9md7xLyKuuC1hXL+8K\n96kbQ7VdTDv+kcllLRhcOX6RFxc/pauJx24jtjAptPDttG5puZ8CGWCTUqExCex9xo2FTHJMuC0D\nbudAtqcib/8/ALfl9PaUXCeErsrWDWFXqTJydOyjNT/YcqfCckcORQ1b9DROakhaxutWs39HZj33\n9Pjbs54HcPf27exberlzvI/8kW74I3nCQlRnsl7MTsysTnT9FLekb3yC589la6OxscAdEI6QzXIX\nU+ySscL+QuHfMVMWTzVT4u86xVQpbUaK+VDxBohiu5VaOlKsGEKiPjBpNlFGjFJTJwljo5At7UBV\nHdZn2SwFRD1kPzwwxUo4zSRIMRuz2Dt9QTEbL7CRruHmUMTGblRWQwqlINdwSMbU/Wq51sPExMRH\n7MyCKdc8za4pTR5SHcfp/SqsOrfVcpzJxFV2Rh7FmcjnPsfObYkV7Vbh9HOqK6pbqgmVdiBZpHKq\nhGH2B8shy3HLOcsVyy3LhAV/sDgteDK71x127TtTnruJ7ZekOK1R69KKrI3afm22HoUw8U8Txuy3\ncnJ/kbCwb2Xpt0z9VnmT30U9/Lgvl7DQJJc2u/CVqjZA+N0NmTOGvPaxKszw7FealhNKlh2mp9KX\nUT7V+mzNvuxXgm3HKAvwPWXLy4QBLhUvW1n2Qpk4MO3zKbWai7P6kC/3Mf+XqDPpbBWFqi7BGmkp\nt+W+7IMUL6hKKqqLBe+X5wxNzV4D8WXwsY8YHzPwf87YUPKQ7rhOGBjRqqmuH1u/RbDBFkyBHhCC\nFLDRwgbyR9h9F+RrWOeZ2FjCZJ6UWwgJcwXGYJdBAgpj7swD+SlqygHpcruACZ0QTghpYQxJ9zoS\n294C/8cikPxAfRMRd3+MA7+vppov0tcgRH5BGaWiyqRyq0KqucgoHSIg1IdLv0gih+D4JArYCXJi\nanKt+Aq2qXLyXqwkP8RRVPlRshLJE66wZeLRyudTKuY9VNaHh2E6eZH7BCEAq7FwWECACM36joIB\n1uJJlBi7EYRKRB/Bg7O6OJV0NoNo5Auu51ArCa3BA6mpVINiIaZISKt2+xAx/8Y/PHuDF9b8tquL\n5//+wvidO+wjKjGNhC8SZ+2XtiFJF1VVBLLjUkxjEmWXhN8V1fiw8pmLapTvP6krfItgZMArJZ7K\n3MT0dfxMfj6/GhLxv+HBwNHB5P0u/0P+Z3ySf49/n/8Y2oxAPipoC2oV0xaoElwO/5KfUkhOQYli\nqoKsIyRPaS4yhs6r1WZPq0dYOP4U0xQEfpy/d+ZMO1MX5DZ+h+JE1FwDJvWUYBBFNdBmuCynl8vV\n3SZhwgOzWJWwsH28gx//zgft2dpb3E326nnceXavJByEcoxoLlkii1lDKRrSZlhTYrC67YauOoaU\ngaGCDQUYX3xASZeYNsqUOnWxoun1b5iqpYfUg2OsQ1EAK4mKWEjAPa47p7uiu6Wb0KkHUkU6lMti\nassm3TbdbiY7ZwvSsMFJGfi8XBRXowXucLY8VK4wlCli1rLlX9saYR/5iSe62P/5s0v7nhr/z/zs\np/qe5NezPpjLcaLAj3Ez+PcTMwLS8Rn8wEi9msybMxByRFUBpW0gt0FcjBGOuFDJlyK/LewEKObb\nQG6DuCzsBDMbjojJkzYgsa+zkfXZOWwNgmwDKcKxTmy5sDXWqAxUPesyvTIxi9lOsWFqZyo7SsUJ\nSa2XbYHq8xjwaojk/wTOUlhM1j91IZsU7xd+XIjg9DQqNRcbRxzCA8aTRzyyjEXpHCl83Esw5MRz\niJKXc4iScdglKL6BylceRFTDLvtBRDXEYcq+BBIFiSPEVFc+WT38OkyOB5HXtKvmYA0iWWohA49O\nZlRK5/HYHghvF4quAfmUguDDeGYvyBt45k7ImK1ZuNAB6QLIVTzsAuGqg2iB1XINz/svCJXYWcMP\nmFq8qGcqO5yyYAxTJcIpsqEo9Aq2ZXWm+lp3fumKAJMRm+d5mp2F7EdT3+jp4l90tDh6/XU6s7ey\noYUExuLehRXB2VX3sZGVHGFf/hdhJTch/FfGp4yEy5Itr0KCCpuEE+P/yhcKK8OyfYIvZvN5EbKt\np8tnFCwGDZN9Ipq5xAmK27GuTZTz/8hkmXLuH6R8DvI5R7khAK7KCed55BCWLpbIDnZHWkqjZxIg\nVBZpe+U0ed0w1VGumTr+lB3yDOtkr7la9tvkpaUSG029DAYHcHQkh40Y/bdhPf2vIH/moKrTjr9y\n/MLxoeNTB1WlTh7VndFRFWX7Eftp+yX7dbsahcHesh+zn7V/YL/JdpkQn4W3hG3UYs1mr/kgyEfi\nlS1eSxc+Gon03f4u/v3xL5cvsDXOrb89/ieOkGNhictWWPG5bAf6Lve8YOHvM+1eQ3UG5fJgV3Jl\nhQkWpx8LlVxXULok17cCE2Ta22QJP0MmoUtTSTxpiGwuiN5PQqQShlOIDXFxTC7LwjxzsNGgwt3E\nlOp1Mk9FATsNlw2rnQmB42mQXkgVVMQyDgVuFqnYIGQ2uQurTi+MIndhLlhO1o4VWI/bFCuNtBB3\nmIeLI7huFVbYz3Bdt2JMkeYzXYqfgvHML/pJ/e7d9T/ZXbd7dx2/enfdnt3Y372njvpuLvRBxiMr\nuNtSAbCxDtkpBX7ERksFlQ5ECk0h9EEl218u1rvd+Vi+RgvwwyNOUunhSExeUF2DUH0SnZCESaAQ\nxi4lMOM0mFs3lMGUQVELT2GrGwYh9IjkA9mZNQGzLWgYG0HeAHkL5LQZn+4U7jWKi7fgbArgJ9f4\nLpBRdo7JYjE/RpFkW77XBf5hbZKtJO+bPKZHFEr+q6aZjmzeBOvLBxT7PYP/O8lXwXpzM8LcYiB7\nEPzok71LnWyiQmRG0LfPmKjLSPY6trKUig+kg6V0GhAJBhG8sZuRkRliNiOKKnrkP7RMJKrZnGUL\npa2+mny1TBq2HbcxabiIHTTbcDCJYu3CZNkgCnZbgbVhBUYPBUmvKFB6cSWm+laQI3AUIIIgqbVY\nmboh3QOnvo+ZfwZM+gzGwWkoFDdc9xHWdj8XFHgBfpWT8IBeALkKH9AoyH4Qqkl2EtV49vlTfnbh\nNThfLoKcnsErlX9WaZV2vYZ2LSfPEzEjeHYc8Oxcxrp8H8QO8z5hlFEjLzumtXQULT2PuMU7IARD\n9gntosWfocUX0eJRNPYayAEUJzvgP+IXHsl61PoeSp8o1WhFN5+01s10u2fWWZXfuFActTUumVlV\n3bG0uXlpR7XbcXwZ/3l1W63VWttWXd3mt1j8bX8u5OdXzewPNvXPdLlm9jfNWlk/fga6LM1NwsXd\nmcXFRf6BFdAbWfyN/llgEsFmpXaYwLkZ0ZNtw8l/F/HAKKmd7HcOISvsNrY5p9GJoO0MLRWI2s3P\nSBuwshSwQ+hsrrKAUM4J1+cWem83wH2M7DTMIr7MCCYqGKlKy0Z8qBdAxALA2kkqZ372aia1avMp\nMFcn/1CZcuTDMZETCT158uFC+cIiumHCCHglaYJ9cAQjOTJkfJJKih00uDOIJygNSGbalyyOYvzY\n5Z9yuWUV1P7H5BAqQE4SR08EeGonJHe5AYlCtlsoA6LdzpYpqGCbFWTkw56WRGcdZRHnUZahkbZL\n6LiZzrFQWXl7GlHxZbDehCJuLdz9+BfS0j+zm/658Zf//T3L955e84eWF1+qmF3xPfZv9bOWwbWV\nsyu/VzmbL/npP7b/tP199h/7uXDhQi4/S6gi37WPf13OI3bJecTEXVzZmogGbMPXugSE0BYGQTpB\nxkA4v+K/oxRjw0Muu4RbFgbsOUAFGb1YioN9RKEKTgcwjmh7H8UxDhf0FEzCGcs4xsm2kjjwnGQQ\nYxkjYTiZsowCpS/nrEumrKPIb7qDQDoNJTyVnQFCEjAHJT3Ca+X8KxlpUA/JNFrRV8FuFXX2OZGe\n5TpDXAkTnSkl7EDVmSqFTemr8AjPqAePwIzXIB4k5R1FpPIdxNhqkJ8U9vX44NprE+OTpeSTkYJe\n+MnDCuLJw8kijyRGX1bCXJWw1ziy75UQWWTjP5yC70MErBIJy36VnCShimxGf5bNsRphY8IkDYJb\n7a49VAuTlZ8fnpJPNe38p+l8F50vLanlh1Mn6tP1Y/XigGSsJ0tX/dT8J3btsdy1z9G1FukQrnUh\n5vgQ8npcM3k59wl1AP+A6gBWcgvFvdKCWcDpQL2aACrXUCGbBCOJBbIbOm/WAky7vIB0Ow81H1QU\nazHLOGJmWwvYGphGyS+2OjblEZ84jRjmuXkI2E/GFvUDAOjKYkUGibFBG1NGcA/b6VF2wmwnrAi6\njWynETs9MnSIs6cxW9EBzFFiXHOYSnzGyKCFMoVQqBpJoZLq5JPrAtIhpKA1hZGElbzSdKuJNWVx\nEzwJ1MRYGM1divyluXPZEErPHZs7ZfWVC9phDq3BAncKxAcRcA3442mwYAqAIXyxA1Cg+kDOgBwD\noUo3vfBu78PU2A8dqg9z4ihIH3AsD5YfxcT4BSbGAegFbcgFPFpxBqEiJ3Oe5RQ8y5HqXvib12AR\n7IU2t7F2ay2CMGov196oZSNjJ5gFFXk6C/IhyK/RA/8AMgo5ZS8izVMgd0FsAbjxQM4gsUrbhoAQ\ngAreo4KCR6Kno5ei16P3ouqB5JHZp2cDwQfJV/rZ7MTTiKc5CnIfRI9om/tICrkDtP6VqNNwMf5J\nPFcgEEpuEv5GNuOPFJzGvDyYrWE+TF2XOlh4tPBMoZiF8jkAEkf3HQDZiz7sAdmLjiR1cz/IKZCT\n6DwkUlJfSRGQk0pPST/CtDtfexXTjqSbH6JvroKM5iSaS+ilX9Tjq8w4iuoGX1ChC2Cd3Ef9QXvA\nH2Cy1Sp01yl0132qWRBB76HP7Oi9Y9j6AsSA3XsoOniUkdTZ6AfRm1H2bnfQgZrZ4GEdo8iuu4Pe\n06D37uZ6bzmKG0S6ETMRvxafItpoH2ZgD5cdnAouMllrUKxVag3GLXUdtTWzZ9hsM2bX1HbUWeLT\n6g1Gf6+8tKmlxRJe0VFdE1vRHH2xquqpzulVBms880KVCgesDM0tnVZoMFxRa89X+GFTWygsVxjk\nucoJH/crTsNZuVlvF6t1qvpYGaL2vMVAZ1levKb45eLXimUEq9HiAva9iq8Ww7AlBhDaZhULSFOb\nkhIbCWWrL4QjvyoO2ktc9iKjw1UU9NRWlhaWGd4pNuVbnSazz+3M90QqzGV5eY/ltZuIXxopADvF\n1RvrXfWiUl8aFv9nCFPv/4e98xBB5vEADVeR9q3KSAHoeeeYkpSSEfNEUvbVaW4yzDR/qsWXfG8a\n2VhGPxT8xlNJuOT74sciqky9qdqvOqw6pVKxyQMsYdLCku+rPmZqWVKlKlWxgfg5Du1Q7YOmNqqi\n0t2AtOSfiW9qSMaEP9gQ/iFhyPkmxsQy4WPG7T2cX/gEUUNOF2P5Vpg3gE+b3GNNsAUc0erZ0Ak4\nzYrSiSKgwmK7Qg5lZ9JSgJTKhMuYcGdiBYNuGYJ5t/uQWzOQvOWecAv0x5q0VKTkDyMgz5eRzkG9\nupVTtIagaNVm8Ed/RtpU/9jw7VyIUlYMThVVOisDleIwfKAISJWWo/2jwgWUDNDDF98jLBdUwwpE\n0MfCZ4JsBCjJIFYDK1iKyzPmufLEYamwhJMFSlQRcmakGIJmKXK2ykNLWTX9MH0OJxAIhoyYmfDT\nJ7uBxaEPFosD0JR3gXwKYkPaGCG/DUu1sG18Con8KtQ0NSq79GBrBchdEKr8c818x4yX0JgtZq85\nbFYNSyuoNhDkLC0UpjYIO69SgVSQdci13uU96MUa4L3sveFl3GUVen0+SBt6eQvIEZB1AKna5Tvo\nw9m+y74bgMldhRyv5WCIr9XCrZuqHa29UHutVjWAo8NSL/70Sk4dvAc2qqu11bLX6vYj1T3lH/Vf\n8F/z4wJkWvf6VyDT+hX/637w/ecxdK+il3rRS/up/DzIVaj9UVhDHCDzQerQUVcReXW19HNEVU72\nkhadRslxFjOyn81rESJIMfNaqJc+kKu5EDL0VlVVayQ8CfU6Ge+u1YY88kwReSsvlo1/+PNSb6G5\nvKAqoGszLAqXN3utRkd18Xc++vJw+5MVL4WfpJjU6M9KAxX5lmJ9lVXf1FJYVldmq6txGV/6lP/q\nXO+qL8NKzKqKi7H5JlBsayFn5uz8Fyg9rkVYUJERBsVsgAlT55YgknZJvuzagh8iheLPAYGNbznQ\nV2t8TJAv4owIbZbQkqRDRih9wFBJ3jJNmNgQKhg0rTdtMm0z7TYdMmnoj6VpaT16ZjNIP+seQKFY\n2aTEenprOn4bU94sBGmzKZfHQ2APyqQkMxImZSF7g0L2BgEQrlCPGTMXippWX5gFlc6GlKTgZw2o\n2HtNDzGW0TglF4zNMZBiM2VllNAPqv+Zs6XiYfdj2pqd5l0bKrm8atkCNeQI3mgdDuyyHLRgcFtQ\nxRyDm+YMXutVkCMg65BWuct60IoTrZetN6w4EWmCyyFUvGajWWAbtV2wXbNhUOfSKF6xKSLcPZje\ndTYbkqVfQyZmyj4KM/w12DOWI7oW+TTSRSTVuLXZgGh3qymknhx2whvCljeAp3/i7b5xz5Rhxn/1\ncvgrX+ngC7Y8NK54LsxXcf8knGVr0atw9mQRPuVVKAl/tjDZz2wMZAFc4fLWZJekFAKRlqsZ5+vM\nVYKcXKAyKA3H+B+IQHZRyQUWK9I2rVIm+Q3+iRrMV1ETSdd18gd4j5DmCrgm7n2p1iTWJzEI4btG\nRo0pFzYnpWvlLCgHY8YOOdbElC0sB4CkhrS0CSiLh0KPwGqx4WZzF8q2M9balBzbICKuIaHLpOC8\nWq+TgULL2V/L+8uHqBicfI0zgPNkrIbGQgTKJj9ovAlgcMA/Qmu+WPkJ0rR2IJMoeb3yHnY+gA0H\nqQgmkrlkU7h2sq5zy1TmQtXuUeHpYkFdbYXH4nAa1c+UeitKSmrnNltiZTNKXI7ZLk9TRZ4ohEW+\nsJlNdX1pSWlJscNZ8LrB7DRbPY5CXdRY6LEbTWWu/K3FVQU1pZZs//4+698izs2NSUZgvfTDsHoC\n60p/lgMoHs7dsMSsl0FfAAg9AX3lEFTnTbksKcJykcHKUoiyGALsqpMAqvJYX+YN5q3Po9iu5AHh\nCIwJZwh7LOdhHoU1nYBb3sllQ1HU9yjs+e/AoLsPBKbd5NGCM5D2oSNlyx8ezd2NfNAH6XK6qFBB\nL1MKaz2ionuLyryWhra2Bou3rKjdVj+rxj2r/v+y9ybgbVVn/vA9V6styZKszZYX2ZYsyUss2Yol\nWzKxvMXOQhYSHCclk/wLZGEZyAwkAdqGYUqWzrSkLc3CAGHakm06g3yjOEthyMyQhbRT3CkJCbhN\nuiQkYWhoSymlwf6f33uvZDsLMDPf9z3P9zxTmp+vjq7OOfe9Z3vPed/fW8D/en38r5hw+Iotieqq\nuKXIZy9rBFdZ4xjOMpUQHPmVWMXeE4r4eiisekxSWVU1KasyuqJdLoJdfCuHpDnsTrpnuRe773c/\n6t7o1i3EVtt/QHs7y2HguaJU0aEi1UKZyEoSirClJkeGeBOgRVcyGLFflv6W4XkDl8E6LEBihm7D\nPAP4rEEwsxJwwgCLYsMruCfPRJtmr0OH/Dmg0G0iBv7CUU/mJgwxxfKND0MBegZAeuRBwIZi8OzL\n1uKV8m3kUbO9EtxglWexm+KXa/ak/7vYSlmJNcXjWFNI/n/lCekf+3/uJ5PX/jqeSZhuln4KFo5f\nAyhI9hYK1gVX5TWARYCzAKEhs2fl5C3NmVHys54oghOeKNJpiOnCqKz0TjrpbzL0GPoMywx8BL4A\n6ayHdAYMR7h0ZEN4KY/ulM5BPD8hGckZzoNcKDKiTCCKqcw9mHKHYFcD0nO9pb9KvCIVlxJdwlNQ\nwlcXry8e5SCvpG/S36p8HjL6JYQ2CPBX0fbnWkjoDf/bEBkFq9+OhL3+w0igEPZhOYOfht8Fm/JW\nSGhnWB5iGoUu8DpQVO8BjIZHsyRIH6AfTNZidaNdquU/jOG6z74M7KT77cewIKIwgB9g+omVdZfB\n3aJsBzbOTsAcfVP5duyZEa/RFuj6u6DKKjEbt0CV3QXH/dO1F3lCemK4M4ywY10Q+wcZyoQ0Qs/w\n2ykA0TFAD86u/oirZlz1YP+jGQCXl/Q8+1LU6yjWaORmgrlRairLOtCnN9fsAC3qZJQfIzd3wAVA\nF7hDYxxYhpFFoUDN+rC7dApBritjkTQxwN4u8mBLLjyztKOsvbgU23KhWWXtZRsndGLfrqLU2VSB\njbsK9lXPnHpyTy/o9HSWzQnjuqiw0zM3AOW1s64i346LtnF7cN/L6oU/Jr2wSGqFmr+Iw4AlVhYL\nx1TYy28Z3cvvGT4rJmift441fXp8u1Y8NsW3G2VQLaNIdxNC17opjuMx/+T4diewEjoP2Av4VwAF\ntTsIqJWD3R2vfbNW/G+FuJOJTcG0nIly14QNmilXR7mTw9tJkz3Y4aAYd8QtIe3H9sp+6HkU606K\n0clVJvHa0HeOa0LfWf8Hoe+Y9Rqi1OFvZOIOPSYyruObhT+DY/AsdMmNZOE/lH6CbYO3/ExS+YkL\nsV8tUyIa+JeGbWTZpfCmZl3uiGsG1pbgRdPmkbmRlq+eNOQ3apWJhyIRkbV/ob3u5pjn4bve/ZLK\neOV9dhAV/jzitkRHFgtXxLOCVbiA8w64pafDeUmYkOQOkY26bLLeiivYreMQuFlgZOSpkR0FDUPE\noWoNpQy0aj4HW3bzSraWbWLbmRzCSqe4HDxPihpgE/GlcCVaJAruFaDg5t9jCQGHrvSA/giaxmR9\nL5Tb53PAEZizNmcT3NBzBnKO5JzMOZ+j5jfk9ObwG87T/G981Qh1cBW2T7qR33msErqh8L2OJziX\nmw0eD1dL8DJdKauvsFrLwp7GjqlTesR/jiy+/a5Jk5Yt/rOJwT+78PADlz5P707P5fQjktN/ZORE\nh0PSWcCjeXLc4ykY5MICxQ4h6QhQQaQpXILEEztE7knwEuCi4gKDS8YGtpXtYqqF6VfZaTSB+RDT\naJQnihc9H8vj3coR6AppK4Q0H6rsbrLofyhnQ87WnF1cGgOv5pzOuZijIj4Dng2e/iIkM2A8At/w\nXhDGDFiOWCClt5H/BX6La5IK+ivcUXF0qR8nkS9dRyAawT/yc1WR+Eu+ynEJNUKrMEdsk7nNCipA\n5Y1QpzMBjwKSGKzvB7Cp5D+sWPRJScD9TBYeSIikXkgQc4US1uhRPHQKMAhYLNJ5XLpAFQRf/lS0\nm17AWhWZrUMPBK9EqsKCZfwIvRyZWS1Vy79CPKKpYOuURuDYNwuBWM/cmlmrzuQda2ZG+yQ7Vzom\noPjQM+G+gRgKJbTJdH9mfymVM0REhEi38WyhhfB763lqvXzZxRVc7LLO7EL8An5LQrb4P4LnPa/M\niHyKE5bC9nIzEt4AyL4OOYLs7aBeIT1E7YF8dg4wtJaLiAuHmFjpPnEZ1s50+LqVXEZGQ8zLJqJH\nAOdpPMxy3MBJgpegkv0k1CvS67Vb+IogvdawiY836XWWzeA9XGfdjCO6Dc6tTnwX2RTBn4mbJuK7\n5s3N+BTfFMctk7ZOAtX5Bu1WZLPBsPXabNY6NyGbr9Q9hZhDa5s30e8nbeI/dAWYy/Zp52af8v3p\niVy77bR5qgsKqj22zN+WIjkGXFHm73DoU2/xFIlvF338VmG1x2r1VBdm/lYmQ0VFIdxCf9n8T7mB\njx3ERUOca4v+65FIpMuwvbzPtAanpSnTIfxJmmaZxLHGrjLjzHi6mX+5mv+MxrFbmVr4F3Y/r0vP\naF2SOZny1aOlp89oL+MtnjFdRpnjaiDNInMoGFeNN8jPFsrimVJ1QiEfK16jsQJaZUjoEGYKt4t7\npFkLePnhOAfSM7fh8JAtiCsDBLkDnUGTNzMMn0PpoNCERe08SG+tkI18Njo6PCqPDtK0zIggPQG1\ntRVwH2CjosAqo8SAoLaoy9Rcd4cSC02M/0JRZ68JyhhGYFbpPR9+5rP4ynw8LU7GOiOgOzRXe6pD\n1TyrjbN4BrMsqU5+cydu7rR0lnXymxdYUlP5zVNx81TP1NBUlHsnyr0zMwAt4i9zUWYAauQfGkcH\noEWZAajRkmodkja2wjCIlxFAGQFLoCyAyJGD+HoCL2YCipngmRCawJNNlOwYTLVaEIyJZ9XNf9mN\nX3Zbusu6+S087VY+4fOxMHUz//nN+PnNnptDN8uOV0sg9PEj1lVDlZSDoXs1Xtjy6w5UU/BCKYIf\nTunSiMMrXme0moK57pOHLENmyJqi0qwY2K09qD3OG+zA8/q9+sPwuXveuNd42MgvducdzDuehwv/\nQf9xP74K7g0eDuKidm/t4Vp8VXew7ngdLiYfnHx8Mr7q2dtzuAcX0/dOPzwdX804OOP4DBWNUMSc\nmjkOumr00XzCd5/0uy9i1GILmqurm/EvWlDVVFbWVFWQ+Tt8z42/+u4Nv5JHsCPV8Xg1/pU1YaRr\nKvM0YbBq8twgnW24wReKj21YnC7W8fFjuqTC+DGi+Ehe14y8lYYJAd597yn3qYcUN1vi+JetJmX2\nfJk5vzHC7v75z1v4/9nNwJ8LCmciyo3QGLJEMiBSGxH5YzlKfrEGMtek5TCYFA2wy5FareQpa+Dl\nkw/USHbRkRRld1kNsb/o5AMb/Mo4BMwb5INpuaPcyuvjUOpG/rxUs5/f08KWPv10y+bNVLcg18uK\nFL1M8+nxLJI41yWVDPEsKAqSopc5QjcIbpH5kAlu8ZmCWRB19oAc0GIs9UMmjgXiDN0onIUcYiIT\nzgJnpWKW8GEKAlookSyaoXwpQSwQtSLd7JviE1dcG4zCek0wisb/fjCKj19jf3698OL8XYRGPmID\n4iBvnxPYc/IM99zoRCuHJzPI5G9PaLdpNTLt/sDL2te0Z/gYorDuG0MDZ4yXjSN8DEmbjR6juKLf\npKbVvJ+PjdiHMfs9fp4KyxQ/toGlVmzwnCm+jA2eJ4q38T/9Raor0n2hzNhOZB/X54lDcylgV6Si\ncjKVKyItClQ3GW4bInMkCsdXYaEwH1Q379hGzyZwLCE9hXOHO7EttQlgB/PNEfdJ93k3NKal7lXu\nde7Nbt48tsOw8XEoxEuyLPAna87XQCcgthsHeBO0AKK5OUzRHlDw24BlKGw94CHAFpx0rC/cgs3C\nZZhBTyF23Qb3VpBGPoyEHZgzl1Wvrl4PfvchFHeq5gIvrnIcOx5vGmqiJ9DqAlmNXO1gtZk1RUFP\noa/aW9A2MdKRM03rbewMBCdHSgp81b6CLJfenKIJAV9VXWkk2VKfE5hU43TVtvPBrKYi0OBD+6gd\nsbA9xLE3gQ2TPTeZ/KUvCyNYfZuxNwV6dn6NOOpZhnZyB5UsWi5TmXJvTFtJ5mQ4cNUZDtwxzeW9\nDLP1mMYSRmN5tHgjGoscP4Eay8wQux45H7WcseR8snlmptEYy0cbjQNnWw4i6cdL25eNPEhBB4mw\ncjNe2uN4aUtcK2FOt2nMCwThp/QIgF7lesB+wFa81Ffdp/FSwakkXUIqfD2knWhOu3FsuwsGvHjR\n2INH0yJLlw2AS/Qxs1soXaTtmQLU1o3ankI7I6LSTajeOjTl11HCYcASwFrAAOA8YPP48unYeDus\na17PNuztaGmrqtehOm8j4QSK3g7A0Die4NCRp1HmZld2pFI3Doy2PVZwo8Y3yoY4p7iWt75QybWt\nr75SHp+e4auhuxRf41tT6pC0EcYVZ9XvwbjifrWsCcvHbUNyOF716JHWYqjzZ3MyjYSchIzyAlGt\nxDCXp9IA/8fqWlq+3tIivvLOO+/IZS8aeYDtpFiCOuGv5WiC14sZSCzEcEwZSGkOaQY1/Es1RUnv\n1/E2+lxONpZglrGYQpUjCGEP68NKb1x0Qv6NpknTo+lDmPEPEX1PrynQBDWqFYhBiH/f7uiYfQfF\nIkRNeT25jHYqMtrCnzKNo0VoIurLathYDFHUdmISkV5QgbBKRQHbidmNJvMXdDxVy2ubhMSeu5HE\ntIrEeBVVMOfsU6GKcK3Xq7DDQJXXwcKzT4dvEIBPryvQBXWqFSyi42LWedmdSu0zgh5f/+e4qAZe\nFl8Tz4iqhf9tgdNLp9c/hnpOPkv9n74E21UvgZ1W2gsTmthp4Yf0HLeDgRQRVfhAda3saRMzDbd2\n6KbkSS0JmsyxDJnWoK7i0CeK2saFuUGW47iyV/KnJb/1NCwWwMYqXsYq5gXxZcUh/3pxL1ElOfgl\nakL+oteI7hMlBrk8IsuDZDHygPBD6js9qM/LIrth0TPHRdu8cQkupYS/xfPewZ/3OXreEGQNV3ox\nOwZIT1Dvzzq4ZkVKbma8r99B/Rz1nMbhVr4WdQnbU65Qv1N2b3RZYMx/CPYcZzC4m2E8AM8e6dHC\ncRSq1/U/pIM1nKVpDXQWdh5T4U+0tF7utzCZvxBbkk1opR9gFNeCZJqMK5vpow2mxJNxT6OyIbsw\n3ZjfxZeTiteeQn5HWztW70wVaxN17sp6T7HDZCr0R33WdtbuSUbm2bzFVm2bpmTCxILhDwX1uLil\nE4V2VSNFLpUDlsqRSrNRTJUApv+1yKXtQ+nF7fcjBoGlnd+WaucVD7cn23kTf49fp9qG5LBDwUFE\nGq8bkmbV8U/NPLWZ/61D6PPUpJA0axJbAa19BLENZrYuasX6opWntfC0Fn7nJEvqpiEpBnPXXtht\nngWEYTG8uAM/6VzUCUaETixPOl/ozOz+/A/CnBZiGzS9JvpElDc0rwVPchYWocloG9YTyRCM5qKW\nVIT/EMEphYglUhZR8TVhs7yf2jKIIEqTiL4GvvE3DG6qUTlU8ib/1cFNodcrFvTXi2yaq3PfMLIp\n+IPSOfpCHA40URDTa4Ob3iCuaRpxTUUloKnG6rg2oClI7saHMU3H8ruh/NwwkOl5QB/Oby+SyxDO\n8jpgntsIOAfoBdyKXa5zgCigG9AFQrlzgCigN4HFEeSXYbuTHSmkGB68RzFl5rqWdcqo74QShhT1\noTCk52JKsenupnlNXHxN8Z54X5w/zgUU2YSCLgCmJD5DQNHsl3zOozWTDgYoDu+nhxJlwanO6nKb\ntdhrXdjy7Iyp7eEvtK28ueVTA4guUeUVu51Feepooi0e1fzzgQM0txaINcIp8SJ4L9gjktGJ9bvs\nBUu80ljgbuQrSJzGa8EZZg0V0C6AtAjqTAjkcJetIzhUNON6m/UFfg1jC7g0pVuLZsKfJFnEe6Zq\nCLYaORRSj85fQKIj9eLUZX6GlCppiuV1583LW5q3Km9dnnYh/2zuNs8zLzWvMq8z43OTrcfWZ1tm\nW21bb6PP9h47ztpX29fb6XNBT0FfwbKC1QXrC+hzIbiSlxXC+oLyK+kumVeytGRVyboSfI6WTi7t\nLV1SivBeWt5K6LSoj2qGk6F5qNk8qllTXk9eX96yvNV566lmTeYec595mXm1ef11axYr7C6cV7i0\ncFXhuuuWjLCo80qXlq4qXcdLtn3CblbaW1joxT+fuchrs1cUmc1FFXabt8gsfqWwoqIQ/+xed16e\n22u3ewvN5kIvrTfKR95nf8PnrnqxWzIjIix5KyEYLLmwgEpWr+YLIjNFh5XN9aRFINQ2W/rLuHJl\ntqTqB1P1ISkJy5BWmHediVCQ8ch9kTWRJyJqZdgkr4/M9EYhJMhUpM6ueIHBPg2H6jhXNciphpBU\nYK9THCoRzkTE/NBfJF7BfpFvSHrfJx/r+LEN+n3olEPCf0KPBI9X0vAQkw/6DjCNfLKX/gF7i8GE\n1bQOWy0P5j2ex/8M5B3hf6RfocmewPi0z3oUrRXBFtOnnBeg7VPIhp8U/BIhG45kwtZK57L60UnA\nG3BM2AnoqcCRIa4uUlzZQA9iBFzCAVYTzCNexy7U24BGuKycphhw4I7hQ+Q+TJCrAafoCvXewnYi\n2vgxdopd4EsfaQNWKAcAYApL42g2+1jSqjw8Q95RPNSr2ILfn9X0aD+D/DUvEbjGWDjSE1CoOFR5\na8UuOKRMwYO8OfoMaRgXw+kKT3EOD3AScAKxISrrG+vFFSwT+NgJw45rSKj9gUAmZo/TxZLmBp+V\nLy/q6jrq2zyR9orowvJm+03V9qDHNrEyaawKFJfUTyqvn+tid5ZU6K1uW3mpwWLoaPDHvJaqhkCZ\nP8dWavd6csx86JpQ7otWWP11sPegdk1+AP9GvD7zFgqCXpDek900RWHSyIPsP8RBwS7MVXkkfye8\npDp5G+/kDZC397OyaXt/Hr/OUcHGULLTH2wmzB1MzQ3RJmOnJTV9MDU9lH5i+rbpIrlPSVWdfuW+\n2sFUbSj9aO3GWhEZpyYOpiaG+hv572ot/TfxW7vpVukRxFd6B7ChGyvDenlLcjbvI7MRGHUbHJqS\n9bPlJUJ/DrsiVcyul23XpTX83fTb4WUsJzlCqdnkMCVVJclot1H+YWMoVW/pb+Lp3RXEKroOBT7Q\nLXcgcofaTFyfmO/ID35n1lP7EjYyDsIg+yAmvFdghQSzJGkTYB1gB+Aoeedga2AfIIo5cQlgAABi\nivS64Gb46dA2AbZJRXlzYOD5ur11h+v4gnFLZCfOOk9FLuDPgcirCMW9C4ukJqwDd7bvx8JwPoJT\n3YUT3j9N5rAcJ94HAKdm4AqwG3B8Bjx+Zh6YyX9zeiZP2DULTXYOKgvQz+XNOzgXK+WlEMG3III7\n8PTk0v8t/ahBzEEIYT+EsB3PehJmWevKN8Ms6ygJBA9/hMNA1DfZ1+tDWEVfRgD7AFsyZvbSBsDz\nkMFAzRGKLE3RrEFXcgEj6G6EIT8eeRPP/ndI+D7gTkiBREGPPxXy2N1+EPJIIGEp5PEB5LEMorgI\nODgVLhQzTs7gwtwxY98MGJRBDgOAHYDtkMg5COMI4A2ACmKxAyo52OCJUyq6MiYLgVidalwX1+qu\n39FlY4/R7v7zkgkOj8/SbnI7TNaiCmvzFo21yOfyVrv0oYo/r46FA36Pp7HT13F3Qbt1SrW9qsLh\nL9sQiCQm5BYVWErCrd6OBWb2VWOwzOFx5evKNPmuYrOz3G3Tuw/lOm0mZ2mpvrLK2uRsm1iXdLib\naqpvqrI1JcpCwdyCQImnytJhaw03JO06W3GgKJAI2mMBrG/auJ55guuC4GB7ERxsijGOHLjENbpz\n/YJW3rO+rB3RGhbK/HCfKZoJDkhMXHM1HTIN8mVxvxEEN5Z+M9dcX8CEowQKuaxwtfExIC80ntWB\nr4zyLBQjBNqtqcnUY+ozQbvFcltvKjAFTVx/HkfTFoscz+ykTYZS/R1lx+zjF5W9hiiHN8n/aV9G\n3yclu5+pwFQvxTH9vAYAAYq0FYBIVZn9E67kqkPpVvVMdUY1IqKrqx2iyK6KgckCIw2ZR+oxX0eJ\nfnPUZInP0WBdlLRYXkG54V+Ka0VZw8GXGaJ66Q/QY/QqtoIxL8hb2JvDv5zNvMM72HfFxz7+kvhY\n+2gMTYpTXct+IJUEsG4dwwCRhFfho4DnruaCIBqIN2H4SNaP20cJIWaho24cRwhBHBCZhyZ2CDot\nGscGgWhsChuEndggpPPI+BW7PPz2UvQjsjDKMi0QycIxABGQn8J8/SGgAAvuHMAHhZmVx2GYLR+G\n9+x5wBuAw9CO3gD8AYDY59IpjEgfAo4DSG06DtiPEelVwMUsUzi2lgderTpddbEKZMvVfKFxtPaN\nWhxZ3Iq69mVDXRzNslWczPjppLVOJ9gqfl+oLCvSpzwXcHx1CpUhb3DyAP8I1TqdDb5+AZU5TUNm\nhp5C3mLeh33uN6rerhKvCbsec40NeCFH/rNFVn8mJojXFAKICoUQ4jpEECzG+4pm5NfsXvGkoBL+\nVfHPuIKGbBy1mhJEUmCkK9Cvjapirn5fvfs1jhqNJQvBOtorLBFWCmuFTcJ2YUA4IpwUzgtG3vQz\nrKS9oBI0gZ62ly1h6C1aPpKzfTBbewPdZQu2AYJik9gjqviaF9HE5XN93mWoXcEoI92tmscrlN6p\n2q+SjX5a4yzUnG8TT9jJPhYd5p9Ufyn62WOKT/sZ4QWhWXoBFtqHALPA+oKABWnEIUQjoO8WGaDe\nGUZg274ICa0G2XqWCXN5nlV8jeVhd+1hav1ofKKz2ahEENhZTLKz9Iv14kIlQohMqJiNE2Ifkhaj\nCyTt8s9KFfdLYk8yjt09g0ZRqgYPRao0JIceIoUCNhqMWCNKiVTJYVUrayWrpb9AJr5ZD7s14jm9\nBKqsw7YT8HA5j1n/DxTJBVU4AnDBYe0Cri5iOfAWYCfa/YNo5ofdJ3Bg83t0Sw1ObZwIjTHPvdQN\nma1DKedRyjrAryhnwO8BGhwyHrGBidc+aD9r593OhsIoisz5bDlbAQc4DPS5l7lXu/ltFISjgJfE\nvNaIo7wxIscwkefdMUFMdu/8ePjWJYsX28O3TKqdXRqyN3nroiX6nWzm8LstLczWMi/c2xYoLou4\niv3NycLZFGeKj6OTxD7BLZzewzQ2dc1ogKnMGx0TZwqmmJJFIJNLaHDb0Cjew9MJNvzAthhyPaR4\nDtkpIIqTXk/hoLQmE8xcID+gzG5bRm0kJhFMKYVyhBOTpV8nM2XZBrG55hykyEeWPgQNXg3VZzlg\nA2C+ha/yBqK5k3N7wdONm5ZZ+IITbLciAlDRqIKwvDSGkPwiXGLxdbn5hWarz6yqnGirqnDefnv7\nOrZl+D/d5fm6XP1N1tzicIAFWr78ZdlefKRYTIjvk13Ccq7zpl+oe7kO3HBD1zUaHzUVh13CGH+8\n64a1IbsE/WeyF1fMES7VsDH24LJt9hTALsB27Pptxq6fbBMubcKIvoM2u7JRHaZmQzvsgj68v+BY\nAXTm0iNwoSJKnyMYwrHiTx+rPoWDv4MZw2/pVTpz3IyZu4m8gshYklyDUPZTKHuLfiesIDabdkB5\n3YGSyHx8B4qDu55ifC4bO+yvPoYiTlcruZMB/LUG5tZPNDB313fVZAzMneHQBPunGD+I9cMbSgNO\n/TgL8x+hb/h533ibj3Ex8XapLKiqgX80he3p1/Ilxn0Kw8dC4uuAZxz5IWH9J8WCZRiDYiHJHaOr\noKW/ii+syiz99WplaWHh79iSGeHIeRojHLNUyvZ6KYuFtEGjnGAMga8xyhNyo3zQoKiCbkY8GFWV\nYOVJVYWkxXweRcCsWvkM4QQcdrXYy3odqg8ZbDuxofU2rh5E34VXU3pr3i5sJ2hwxrAUb8fBO/PA\nEttK21qbSj5sSC+xr8Re/0+gI96KnQWdy+XiSwAKV+XikD5Rcq6Ev+rekiWgwDiBl7oSgJAL0o+z\njBjnAVrsPCDqgrSK4i+gka0CXMDh/kVspbwFOAatSQ+Sx1dh6XMMmtIxMDh8OBFt7xQeUI8HfAMP\neAGPdRrgxlOuxgNuwANuztuBB1ySOTpJr7Ktw0BVgCF5Nfxh9K4CPM18PN4QoADPlQMYgp31CSwl\n5wH6UOHVgOWA04AcPE4f6r8asBxwkQCPcyqQeaYjeBwdHucoHuc4Hof4Oz7iYItkwkmM93p2jYae\nGBvty/vDSk9zdWHXpAmdztay29uqpzaV28prC1SlDT67b9ItdTMeKJme350sjVa5ShvavB72ZJ6n\nwdvcGvSXNccKQl21JRMR0VhbHm4pr58+sahzmitSb6+c6AnGKszkD107clblVPyhk0KnyphqC0l6\nEABW1fPekPNprtCgLh4kJ0bM9Gqa77VDSB7jD01ESRZsTKaq5H3IikH47duG5InlBWyQtML0uz7j\nEFbIC8LKM1lfJW+bINg3V2eT9JHf1jCEfOI8hzhIEtpSbXyUbsPhk3QZyvRrgMWAJM6cOobwZeeQ\ntGZyZpzOhtsa6/t2td80+a0lyW9a/1n9pkvoUOs+NIQzAEsJ7YFaQgMzLYss92HSMls8Fq5WlhBD\nKihRpcK6EgrmgkEBp16tCN5baWlF+a9iPd0g59IQwglZ49CAudHTGGpUUSbtg6l2WnB1DqY6yail\nsYx378llvWVLynj39iPm8FyEQT1HvHIAJ0VFBZxEu+0F28DbuOoGucB56oY4fDkNuAQ4hvO1Juxf\nrAbsByxvw+DStqsNPtttp9sutsGPog3O3ZD9euxx7G8/hj2O5bje2r6rHbuQ7ReVbaAVUi9O7NZ2\nkHN3x5GOkx3nO+Dc3YHq4atVgB10Uyfd1Hmk82Tn+U7chLO97s55OOfb0YnhAk+a7i6bB8+7GK5P\neS/A0K4ADzqfJIBnpEeeh0c+GRz7yANHmk42nW9SyQ873kO8UgkJM7bvakcjll/VdW1wJH921JH8\n4/6CqkSVp6TSHnInq4vClY6Qt67eVdVYGplmixhrq80lBeacgurykuh4X/P7KyoLKmxF5f4Sc3GV\n29toEPXNgZI6j6VqQmlpmdFWaDIWuczDJaO+6BWsiHXzOa2e3Su54VpyFotLC9ayKcVSmy+3bKGM\nSbf0Aga41grZBYRWfRlTbqm+gjjj6kOSs56uKkAugiy4Mg2eqzTOCUT55OCq6GYe3gmwvjgDYHke\nedKTY9GsGJDDAKjg9gPzkzIcxeTKN+ViIkyFh2R3PCcLUyfAotnroU7oDcEd2s87gd/jD/llX+hK\nayNOJWW6GpXC6HEyw+OR1tlddj78v42hfh4G/RMYX96G0noK49OlKrSfydjOCVhjsCA8RbOGvQA/\n+yPyIcIBygBRmdMnqs6BdpFIil6to9H9v9BAHrtxe7BPHNsexMLyiiLvp7YAmVv3pJhkbvF7Qolw\nSTILfAQ3w6lHpuETvpCy42gPjzILuph76Npjb3s2bM6A2eAxhAw8TaPElMWXJXx8C9EulmySsgxG\nKQ+RU0yTukfdp16mVisu529TSBUcAs/LX5q/Kl/D74nZum3zbEttapDZ4qR2ngrM7PSVuls9T70U\nPz+a+fkAwnufxwH26nwU0Zw/JX9+/vJ8NYpTDuPUC1XEQEpuqNFYRA4T6Kf3UK0yOT2u/Mr8/Aqz\ny6Gp4R/LnPyjtcLCP4pJm78kPy9Hb/bY7JUl+WZ9Tp7HJusBLKiCbUme4GTbUvkhSa0BFakSbZer\nSSFsgW0kWwjF8oyUqkfhm6iBFizNhNXGNkBZDtemFF9/RasyykTnTJknFaJwaQ2WLwiqKc0CMXH+\nKI+jmeLGclU6hNe3puAa9g/rEGzDNYOw53aQC52YC0164Lj4pngJJgbwdEo7xEp4D2qV77Rvai/B\nccWhrdTy5IcheKP8Xdw41bjAqFqRThinwQ/uTzAWMBiLjDU8UXoYxgLfMcokEQ6q2Xt2mDzYLfYy\nO280FrKuMjyv2qs6rDqhOoeoVRQ2bx2gFxPoETW4bDFhoAm+qjmtuajBq0YUEdkfKmmQPRVQS/77\n+Ub0UURvTb9u/BUqhRRYSqu8FPgzYiMmD0QALVc91yL+TeBvxJaFf/VXCz7+zeMt69kUFmQLhrfT\nv6eHX2Et0eGn2JIo/Ex55/ktHzPL2FelQnAvLabVR8bcBwqrXk27ptbBlDVE72TAbPVYQ1bVin4L\nbaj2e1RXpD956G6ZNEMYPSy9egMJ4WtBlPQ+0X7aidHjACTzvoqsaPpNXA+wUDpfOUil8h25sLt5\nGEvu7wOIAeMpAALLY95HjARpOdE2QIqIKsVf6ztI6KOlMxbMR7O7JG/mX4IdxDKswuiUaBVG2T8A\nKkG8shbrZOKOjOLjKlytxADYDObIquLmYvipH0b25wDbAUsBy1DafMBFApT7JuA4CgfttrQEBb5B\nmyfOTNEoK73KtQ5GtmB1KS9vZPKxxTVMQeXst3yadFvK3BaHv6E4Ot0w3fyXt9TcnPAWBiNFZ9gD\nc5jH4gvWFpTUlVlbIvqZC1x1XXVVnS1R90+VebKc5slSdpfMt/UCOU7iGc+Ca+ezUW7NwuzWiv3Q\n+8oynZJCQSu2htdjx3o+G7QzhsCtMkUWefdKGqT+SpQ7/41JsTJEiOmt6l0wg72E934RGtIlizLj\nSYux4WSH5//vcaXB1eTMTlQaNFbiGBorhRAKnF2SX2Hv4jXJ8kPtHM8PVQijjrdR1nlo/KP0WR/g\nisJGUlkghkrm6BwuR8ARc6hXsE+gfmLdN+Z7YuU3InmSY5lwPR6c7x7hB1KRCe60RUR+2++WObhf\nGMPBncLLGgSMQG/dWD5u5ZLZrMkyKY3ttZKK2JOkl7An+wPVW4jhcUlFIVz67SIOhbj+gsXI1NwF\nueKK9FTDAgMX8iraFIHxjOIPsg7tvw9dqo+vKYQ02PXQArBlsip/HW7B9km53y9zuvsp3IuybS6z\nvbOnxhBsG0vqKxWK7SzBNqsa/jjQUuUgiu3hb9ri7pERWU50rn5C2ScGH3Je+v6yR7FkTpYxiqtz\nzX2fo/sK0ovK7uP3Ddzve9S30YfgX4j6oHCdyr85mP3NHfSboPQCF/XAa2Vnyi5DFyHquRdgbGJu\n4DrKaw1nGi43qMbnMVruGspDJy2qyHA6IC7zX7P3R/ZynbUI7v2aEE3Jg5h2GbaWQ2Tj6Sh3lLP3\nh43TGmgPlMPrvH3omGaPoGbqGmXXPweNHCqt7EOHNj8gx43jwzosU9WMepxAi1S42w/IUfl4ZyS/\nci3gvYzt9Gs4VwkD7sfETyT6tA54AhDCxxSuLDkZ29pxXgvZZqYWiGQf8cmko7B2364egDn3CfU5\ntagEXaStUqEPvPqyu7NqxWjEsz/A6gQRonkjRHQz/kenduEPFlniinKvKmLj/zHn1H+e+S3xW9PY\n68Mr2VcERVbiK1xWZvbkHr7s4bJS0SLSPCTdj8F7FlwQzprBusAfmeVRVbdj9UMcApsBJwC/Umzx\n+WJIoyZjhjcxdLwD0+etml0wfV6tWa/BuQFXzCG1RZnYjDDjRqcCAbNBRWulPAs8RGT+7EF0KMzB\n0hOKodpC6WVAK0zWnsOVBVdy4KxrKPUz+9ASM9G0+jqkNZ8tx1b4g7A3lqPW8Nb6CyaTWKsGJY18\n73fxCA/iEeZrloOPZS1tvAEoZNEvKMgMMVvzNZhRIHagJViyDBn/k2LN43qisdMo09lSeIJ5ZJIG\nEhcKOhiEGIib8BQmzzewiRLAhkSAi95mi8j/qWjVo7rtHvGLnV8U75nx5NQviF+Y+iR/k19mX6B/\ntezR4Uf5m2TUcX7BrwziT2UPHqxf008I22BtdQbL2FmCTLjAV7J78fLuA/wQQOGeLHAoFoeSprCY\nFGeJi0XEctKuSJoR0ek5MRPPScfnTkz/r+FZZsH15zktnH9UY8M7aIbS0Db4wLgAMYkOao6jDaiH\nMiSdK5KG0VBgmoWye2T6rO49GHQKENAcwJtYrCZ1oDrMBIJTLxxAyK/FOkTCGUqaERQHca3kkDm6\nhUlTq17mIkPAHO0KJRaO1JyjCFx2rpRm4rAMSpBk5lcDLxheNrxmUC3McG8tlG7DsdkJwzkDkX4k\nTRtzn8tN5crBQ7V8wpuVuzj3/txHER8SjkeSBTy6IcATeJm0LYZYQRnncATMGHPcmGmoFC0IDTUn\nFwFUpd9j8IgCenIQQybnIiKJxVB7J6ALX6lxpRLB8SzHlqoCgCw5jbU473URVQesi+VQHrIpgKRV\n5ZDujWM2tEsX2mUfbPJOCRfQSpqIjQgNwo8GgUhaA7IGp5KDmkpVcBt4A68f/EhSAQAOIFIVXteU\nbISOPjTvD2HP3pPTByISP8Q9GfAHyPzDXCxHTqLsVcI6lP02WigqI92KZ6HYCyexwF2lXQc+JkhD\nWpCDKJsRVywCS1ud9192L3jsC7d855UFz2ye+9GbL7zw5kf//u8Y3ywjFnaC94V8MYklHW/wa9Dn\nt7EX2Mvo84vwjPdm2UT4OEgDXNZ9u4/iZ+JqX9bD+wTgV4LiWGO2IEyUtAUrAzPGv/QTOdvwpkZo\n8Jcz7IMT1y4K4AP4KBtio4micljkEzmu/1EM8UuAKwAjBrZ1GWNHaRaH/nw+EDdhb/81rL7uA0Ab\nG7MazbQoohREKDpBm49aoM7S3vHPcSfgAcA3BHkhynVKraXfKF6RT+V+byFtY2C/cEw4hdC41Dam\n4BcXs27tH2JWpfmVGqEOAFd0ya7mTXev+jAmtL2aw5gGTmrOYyh1ogF9iCPWXbCBbLL04CCQgo9c\nyJ4GHgCcBvwRkANpLcBVDwRDUsjJh0XYL1CV1wGHAT2AQpwknNJkFstFxO6VJwudKy2AUwA9cp2S\nLWRB9jUdB3wfANrYGB+FZWrnGG0+xFSRD56YdcnRdpPZY9Y5SrxBc8WhObPZX38sRZOiJmmoDS5g\nb/J1DrVBWuf8TI6x+BBWOa02WuVkvz+Y/f4O/v1UPizaXra9Zjtju2zj2jDuTntsIRvvQUmoURww\ndFa+XPla5ZnKy5W4B5RynspQJe6pZATyQoqNDPN5vk58RShglj2W0Vi+g3K0JOg+96Evi/K4zVMK\nhmgelCknFVerxTQdk8gEixJ7IndI5gtczKE/h99kyKWgEltxUINIxOJCOURFyjQo5VlylZ/ZlOAP\nY8KhG6+2N7baKa6ZNYRFvVFnV87NTEMgejDCN13SU2r6cf23cCQKPWXgsP6E/pxetTD9Hf0emCno\nyI/eSsTDdOYs7aMh5wRGp/McYo0Bb2NEhe0EFcJMZPzZG3+re/oL/37rv/3brT985Gndd77T850z\nNxujrHf4e2zu8O6o8eborl0wyxJcHL7Jx5gcdk4SsHV0H5rbZQB8nSQPb3jyglX6BgYZiqb4AOBO\nrEVgLSIq9lSIZ5u2Mx+WchHWwf9ItyDp71k/bIozgXIhO5nsAu9uUMoFRV2Rtobr/+kW7XRsAyxE\n0j9p/5mPmAOyHRzvus/gHd8D+FvAIxhVp2jnY1QFtRwqyVczulAaUxxoTPBm4eojhQGHAPcDzmDo\nfgJwnyEz9IyLbpt14NbLx/78DX4HY/yXhScxxr8P32G1YBd8fCUrD0m9gJWAc4BXAD8B3I57I0KH\nMAccoypLv8jz4++eokj+ADCELaUWzXTNbRrVijQimfNh5h3Nn/ifAYOmSFMDptWHcOcUjbx1gkUg\n8XDBso0vtSBjZQVdoA1CjD3aPojxdJZx75IWrcalgSUbVzcayZhtw/CvWTFffuUPX2F3sO8Ob2kJ\ns2UtvE9Tm6A+/4txNs25ik2zf+R9UUuxjwJsZcobklq9vP9o1FfgasQX33zeQMx3c9I8y7zYfL/5\nUbN2ITko9RdmDpzHbTVlQrVQUBN2heKZyKfG7ytPSZsQimXeOvI9QgdYB8BKIx3NmYxZ6yO81B4s\nY5oBGwAfAXqydmMfkd8aBqGPyGsaOwwgy+ZS0zgdTv5nu3MAJEaaYkcxPhUPgM+RfG+W4MxVi/AA\nfdhLyQE/wq6yA2AozC1zl/G7d/kPgMGxEKpjLgKK9AWWwZg9J1CIuCKI7rWQIlpDi6MIYLK/nBRF\nLbuzVV0P/brXsQQE1X0oehmKno+QPr2BJTxHNsYIgWxlx5mlTRKZM95RkZNT0RHP/J3+ZxPz8yf+\n2XTlr/i1Sbctq65edtukzN/2yff8VSLxV/dMzvwlHculvOsw+/dUZUh6lI/K/bkqtOH0Ws0mLIdz\nSeeSuaUtg9JKDLFLER34pOU8ZsVbLdhYedzyLcvzlr0WNYwCQBpN21cbOZCBO6jTB9Pf8jzvEemG\nsiF43fGLanJwDA+mwsomJdmmZFqOm39wk3vHBLfs3pGawJc07IqkkRO4zs1Vtvdg+SXoLfAnM8lf\nmELSIqxtKQQmIiEh5NF7FuxhWSyWMgvvrW5Lvw2GLu4J+IEzlD7kHHTKM4KH1KYKOkUOkEJfTaPz\nKujBWwAxLHmex7uksDHnAX/gT5s0wVgh4Iq5ul3zXHxhfw67lLfiwCZGERYBsKYZWBVeF94cxtbF\nQ8gwigw3WTN5YddF+hNlaHAVuWpcCdc01+eQYV8mr/TukoMwf4A/vHRnmCesDK8Fm+hmfk3eE7py\nXTn8fFwRnVc+lFACIwS8sQiMqmP8LwVbdLHfuLqqN/lYkXX4XRVj7+WfMs/pCXZaQ8W3R6Ozm336\nafZ6xlRd9ubCr/6f6nmF4l1W50CTL5hXlBeb9/nKooq6Wl/bgmgsr8Ts9zZ9aVWBRT4H+kD8UNir\nWi+ohDvw9hjCZbON7Dkme9+eRSRW8khOGkYDb/P1gllFY4wqqZqlWqy6X/WoimszBgSTl1M0UAKF\nL/CxvAAUjHSWx0cvVcTlzf3cHQnV+o3yHk2Cl/8RlT8XtslmbHPCpZscdMdGAc+GBv+EcOBKgEiR\nlyd6RJQHT+OViTs+J34olzfyS/FDZuLlaYXHJC3mW8Qjh+IoDMkEJjkZE281HdZczhzWSKKGljca\nYri6TAHhM/TcamLGQuhD+Yll4h5G5/xch8WZmSgHLZbux0JSVGkoDAaD9hGLMFP7nDnt984SP7zn\nno3j6riG4l5KazCVPcqyrFyXiddpkXifuEZ8QhwtfcwmFF+UQb/mj6OVaTbUFNkWCwteR4Y6MpnQ\nC3VNm1UebFHej7W3mpG2p6Fw6KQmPTfrXtSQC/Ee8Fr2igbhLTnu2R6Visn7Ppqh6/iAQ/xPNE/q\nFg0HcObIb3ar7vvfM8fPcuaoUt3ozHHkHJejQbVcMPCVwkKsagWM/0mb/KI3auWdlEHtWW0OH3a1\nFjgvGLGGTQv5lnxxBb8z//78R/M35j+Xn8o/lD+YfzY/B83CwTuPGWt3HNTl4P2PofEIjLl+vtjl\nKsa/Q5kLVdTu8djH/EP8VpVLGFHd/InxW1Wu6H811uvIOXGYP/9jgklwCnt0DBuPOoUkC/GkeAOQ\nVa2ILHRmUM+eNGm2ulYX9/vjOtVjrV1drQH+P9nn9VfCKdW3/9fn9f+XPq+qjhv7vIojx/g4Oovm\nFp3w7ZQ2RGM9kQ2l4eMjwkwtfVZ8T6G6yEwwY2edT5hs5A3Kgfs0azRPaOhXmpmaRZr7NPxXaoWq\njf9Kl9lyHNSd1dEUpcaUqHCkyL5FCHYuD5Ya/u+HfL4a3pO4E5PWRj4fCF3isPAPqjt4G22gPdkB\nkCi9LKhGGZSUXj4g93oVSsnJ9J4x3bYr21vrM71U5k52C3tHfnL98Zz2w/UKxQhoNZbz8fz8Afxu\nsThROCe+y39n38NUKvmsBDGXBZG4K/mq5nsY/N89IHPkmDl8XTzG79cK5WNCJl9z5K1BJ46wCF/Q\nlJtZ4VTmGf7+L9hR8djHTeLjHx/4fzYvJoR4Xv8o/lioF97YY9F41DV7nJpCjiGNwLFKo1XXpGFY\nIC5MFuVoC7U4LIfmu1z7kBbmB7u0B7Svak38W63FafFbopbJll7LEstKy1rLJst2CziBEQrLco6v\nx2GQ5BqETWKYMKLI2ccr7LsmZNJYipCUz9JvEK+kTxsuGlAVvaHAEDRkWPZXG9Ybthh2GvYbjhlM\nGK/g75AK8YU7b1rljZmzcVltcTlg9Z5x2FPOVR0RB5MmdIVcgc7bGhtv6wy4Ql0T/nQ4NCXijvQ9\n0Nb2l/Mi7oYp4cN79VWTZkyILmjzVbYtaKydOalatzd+iyk6pS/ccf/sCRNm398enj8larol/r+y\n/X9Vtv8bv/y/Hr+8bOQjMZ/LrFD4CsyHi2Bc3K/nMnIrhHMQmCwOM39O8zV7Ulk6H3wwW/pz4J4y\niDWodVAOTtvvFK8kixDEOeCMObud85xLnauc65ybnTuc+5xHnby5nnSeB9lAgcpMekClNuOLIlsk\nObz0wDGHmG8tyS8pN/P5ZzL79XRDkd1p0OfYyqtdrHp4KduaSAy/5izLzcQwGPkt28b7WrlQI/w8\nVRtCLIJaouHkarjsimIbgpemiz9vNl6PzdJfobmSfrPiUgV1worCiqqK5oopFfMrllc8VLGhAgwB\nByperTCRpUtwUKrS2KyZmL/jPBdo7U9kRiL2cfuLSRDFruJAcay4u3he8dLiVcXrijcX7yjeV3y0\nGIIoPl9MKj1ifqZPV16spN5XWVAZrGyq7Knsq1xWubpyfeWWyp2V+yuPVZoWSlWUN4QGc4dGnTcQ\ns8r+T2RFqXj3RFwqeUXhiEbZtkR3rCcuunvt3lBReNK8uXlOt8k+wSUWTCt1ufxN8apYa9tfTKqc\ny1TVbRNcnS1Tn+3d5K6w6fPtXtHrDzW1/Kztr2UZ145cFutFl1AkVAgFUnEF12IqsPZUmFg9FTTz\nOa4iu5MHgkAjdH7HM4ne1tv8XlcolgwkFnX6fJ2LEvFFnf4VrXPntjDV3kRzq8MXKTfXTLsjHr9z\nak3VlDtv8n29peXriHtTJSwTX2RfEwJCTJgibE5NDaWmkQIw1SJHa0b/D+J9Bi8F6X0GC4NVwebg\nlOD84PIgoo1uDe4KHgi+GjSR+Vi7hr8jbbuz3d8ebZ/c3tu+pH1l+9r2Te3b2wfaj7RjbG0/1y4u\nFPY0iho+ZHvFGj7Ra8jOyauE80rVWFI3DaZuIv7kLj4mVma8ca4iJpV9dXRy/HddKf8Urcz6mKOH\niy/afRPLSibW1dic1RMipWWRSrvNFykraQzV2O1VSJnotzdXVzmqAl6zxRuocvmrh4+bfVXVDlup\n3VAbtFcHvVc80aDL5vHb8v0euzPQ6IHjg6M8YLMFyx3OQLTCH7UVl5vySt2WhkqTp9hmLizL9zdY\n3R45DtbI+3yB8GMu42amTsVDqQRJOE6m+7kkYQck7LjkIAk7Ch1VjmbHFMd8x3LHQ44Njq2OXY4D\njlcdXMJ8RMjnnc/SHyY5h51hfzganhzuDS8JYztoU3h7eCB8JAw5h8+FeV8gJRYKWHAwFQwJ/N+1\nFKfkf8072h4z3oaUryGaynLig0ifdl90Uy9yF7iD7iZ3j1v2Hlzv3uLe6d7vPuY2Ybe+v5F6Z6Or\nMdAYa+xunNe4tHFV47rGzY07Gvc1Hm1E72w830jGB+MW5E7XxKvsstQZx8OMW9ZRS3h+T2hqpMjd\n0FNX3+th1qquid6I21c2uSY8NVrpzO0qmhWuiHitVm+koibus7C7Y3+9YnrlpNm1NTPiFXV+k9tU\nveiWqNteU1zqiXbPmvMFX8xdG/eUttSXhnvm0Fh+50gN26TKFxoEB19b+NU1wp4y0cHbaJ2oV9eg\n2jSsomZOp8MqG1eT1zyNEdGJjXzk8Mttkm1yWPK4tq0z5ulUjInOhrAjYMsz8SStKU/DRJWhaILX\nUOgwiWetVqPZ5A7U1ZRphvVl829pdhbm5RvzjBOaI1oHu+xqaW0Jl2iMNuiqH45Usw94HfXYwdcJ\nGB00XpUuELPZIszX/t26gjuefan1JJvLCxxOq57EcxWOVIvt/DcGwUFcd/rQnhwRyyWNqMVzuRoZ\na4TVEit3FLIpw4dF8/Bk1ji8n50+GWOH2IGmScM3D0++CXl187z+iuelE7w8H64VcK2ECPX0il8/\nDqCFPVqRIWeNtZzPQOVWsXV4arsYP6nafaVXdeFKQYbj8qfst+I7gkbIEUKSBpaQWpEmeT39kSOq\nCDBK4t8IavqG/tBD2yI2lcpmY92tu3a1/sPx9es3eNk6tm74IdY1/P3h77Mu+BlRQeKP+Ejn5f2v\nRmgYncf8gyl/qN+pvoKJrHKov1jFK65iPi6YShFrSrX8ELHGiCMQmBiLRmNYmY3a2dMEwf9zuPgj\nMv7vZ02NoknntFrsueoJHs8EbYNuajQ6udDPJ+SXh+9gPxoWHuzoeNDaVGgqsZpdNmuOr742ou9p\n624pa/SW2+wT94vLP94sPv1xA68ytclbRi6IPaJGsAm9kk3N5aBTY7KEtqcflEzyBxv2rCRr9oOD\nr1ONoT1Wesm5oo4PsGRKhA0DPnvLQSN1GHL50MrbjhzivjzmUsLbs6rpEyd9a2/nH5n75omtTx3s\nGlm9sejBlsdavlm8iiNE2i3ME+eybwilwk3C7XvyNGZ1jRJKz2xJ1Q0Ke5pFCNIuGjhGxGqOboz3\nROZHHPnXbLSlIrQR7wnxxbMckw8pLYOpFuzBjd3p8o7bA3Pc+CtxrspaWlNaNs1f2VVUEdRM4B9r\nS8unVPq7Snw+XQ19LJtWqXyrtpTgW3/l5BKvT1fLvuFu8LtceXnOeo+7IVDgzMtz1ZXt5pfZxKCS\nSM3sFkHL35Wfa5C5gl/S6Plcrs8YCIqEuYTGIWGPHm+Fz+yNlQ6NxqHh3e8W9sHwQvad4Vz2AQu2\nvdT2zN+1LUkkrs53gpSTzVcS9WQ6o6d3m0PvNmdc9rHGyspGjYNR9t8dvo0XwbO/p+3vnuEFDP8M\n2fMxZf7IWTaTfPFyBHiHIqijl7nYDnIIGvXv+f88HkWWX+BmmV+AjzrvCmfG8A48lk2/jHQuK2Ek\nIL4oviKU8f4+g8JEY36z8fnNlpnsyNr2upoI+TRgGqxgZkyDKhvFu6Q/fMjJBJnmA0E0FijXeVmE\nedH/5V0mVq4SX8yGnLYYjTOGN82YyyZOZhO95fl2Cj89bGeRraMxqC3GnIMHxVc+bikvLKZY1GwD\ne0CJO/ZrcYdqPX/rufR8b7Pm66ZfYN7rpl9khWPS78im/5aVU3ovF9Zeut8o3y+cJfmZkM7lZxHK\n2VekonJogTBWXlMus1iDAOWQYuKsVRG7rInMJ/LAjA67hnIKLLsIrn7bAIJ3XNC/zFso4x/KsKHC\n2BVowAZ2RTI5y+SzvH6LCC0Th3J2OogrVLEVclSyFdJTOJl4C/A9QFP2jO6AWjG0UVgoFQ9x6QCO\nZclufJ9iwbZQ2gp4C/A9AMWBJTcrCtjqB+cqRQ1cB02zF8rteYAfp8XrcNULj4h9UHgPeck5BHWZ\nnA2A0YW6bAI0oXSKAjUVsDtLvjoVQFGfDqD0uSh9CnmJoWDyXO8GfI6XFBv134J9sZeP2Nasm7r3\n2b+dvWqm3z9z1ey/ZeLwcM+UKe+0P353e/vdj7e/014/e2kstnR2/W+44hKpnf943/wvz6+lNrCY\nv2svtQGT0gZ+MCb95mz6u8KxMemPZdMvC8fHpN+RTf+t8B80XizmfbGTt6VKYd6eAjVmiAIY22R7\n5Thdb1yvzJwD73EwJ/8ZV+fyGTEfFfA/hYNSpcpynS5Zbi130H/875h+KXaO6ZSG4TVs3/DX2bzh\nXewRS6ZbjumRhlzxlfbftA//rj3TJ7P96B9JVnal35WPSX8sm36ZVYxJvyOb/lsWUtLd4j+KJ7Pp\nv2OerAz/gvJ3yPlzKaI/UjqXITimHuQSgwWSRZlC+xlfu2BKH+pXqzNcJTm0E2yk67zBqziIx/Nq\nZ6zyMlLPGH3uUYkmPl8bGa16bQotCJZymEgW97DHenqGv9TDjg9/SXzl+ec/bmEzh/vZ12+5ZWRk\n5Jf8xQdU9/HncPL6a4V3TBRHceQKT8+lNiWnv2uQ4yvewv/sJznJ6b81yese20hAOMqfu0SI78lH\n2/kMrYbsDbFdUKI0D9e45uG18qcYbRZHx7YKdU/+DdrC6NhM9c0b+TX7E72nIuU9/Vp+f/y9Pkw2\nNsXyexX2Zd4r+y3dX0LP93aDMJpO95fQ/ZeEXZl8xqX/Tvj2de9fKnw8olHazW7Kv0yZJ9zZ9jQ2\n/SIzZ+u5m/IpU/L/ONNeVfn0firkPs+qx6Q/lk2/zIJj0tdn03/DEtly45ReK9dH2H/d9IvCP2Xr\nE6f61Cr1+QdKb+By/ojun6Dkc+i66ReEPdReGkYC7CPxpDBb+GXqllBqTih1i0KcmJpjSU0bktjE\naZjMS+lPaqKlv1MFBbrT2envjHZO7uztXNK5snNt56bO7Z3w9IYC3XmukyvQ8rbWNEt/jYor6TWX\nakhJrymsqapprplSM79mec1DNRtqttbsqjlQ82oNV4Zp70Lues28TTbz1soX40a+pPAX8gmVFRLT\nY6GlXy1ekUrlT82W/lbGle3Wi62kbLcWtAZbm1p7Wvtal7Wubl3fuqV1Z+v+1mOtJq5Aa1yK/gEV\nVDYBzWrQMb4UHuPxqx0l81FUajVXW6C3MIOotxpKQ47yKvvECZaKoDOozrWb85y5+fXNE+NVba5b\nmoqiNcWeSFtXW8QTaLulpuXz1a2hBcXRGnd01qJZ0aqO6uKSFqZSB3yuCkdugS/fXqjOM+VoNdYO\n0VHYFAqErOVhT2V9udNZXNNWH5neUOAP13eZPfXl4caKoglTk+GbJ+blqATl3brxDrPv9nfCJrnP\n8bYTpnceUtrODqUvusUwtZ2Qcv/mG6cr/iVhiuk5Y4+oVvxLdETJb1JGShoCr95+3GOGIoVFjprU\nGy1UqH49n4r4MGvC+kTeZ4000l6rIyKWvtXz1lvvihXvvsW+OXwv+2bLnvb2PVS3uXxeWEDjYz3V\n7R3egkfTb86mvyv8fEz6Y9n0y+PSv51Nf0/45Zj09dn03wh/pGefy+fiBfzZY8KzqaYQb5appow3\nfjMFSTTZArL2SBpxwNLv4yu9GCVmh95xVn5EK5P5YOQfjJlxmEy68MFo6S9h2BQqcZUESsYe2G4u\n2VGyr+RoCTaFSs7Dqimmsl8zpfOmjF1seKCpeXNW0yW13TGr7pdGx3FV54SGuKPHXl5V5c8zBaqq\nyu09jnjEH3WarhnbVaqC4rm317IXh6dHpjSUWDQaS0nDlAhLD3fW3j632K4pyM8M+4q+oUqRXGPK\n/P9/aF7js7Q4ndKblfFIbpsunu6g9BZl/Hp6TPod2fTfCk9m4gyzfxa/xtMn0Tzx5JeEMemvZNPn\nfEne0gjz8e4X7CzXvmcwdWpmKDUrlKobws67vEUo2eqIQ3CmJVU0iGOJOksqMpiKhLBw71Bj6Otw\ndvg7oh2TO3o7lnSs7FjbsaljeweYMDD0dZzrEImW4ebR9VoVf69VudebeRv4h4arz8D2lImT+JBn\nUxF1ShVvUdhM9F300fjmK/AFfU2+Hl+fb5lvtW+9b4tvp2+/75jPtFC6Sf4J1wp6aE+xx9UT6In1\ndPfM61nas6pnXc/mnh09+3qO9qD59JzvwZ7i+KWgFw6MmRQ+/kUaJ3ordAHZ6RMWcmMWAqqxtpeN\n7Bdj1wVMpRJLZjZ74hOKEvPvrC5ffctNwfYvV7TWFWtUpsyK4YuF07rqbWUBu6/RZx23fLAGbaEq\nbEk2t5XpjQ/FQp32qkk1Py5K2LIK30qNLeh1lTtyCqpinsza8XfsJ/TOe6mNtAl7rpv+OWWuvDp9\nntIGr05fKnyH0oMj74s/Fd/n6YvltYcoUptC+mzxfT6jR1lBKhbCQCEOEfEYbe2lYhlv5AmZjfoJ\nmeY1QXFLxmBahlESQeZ5I/M6vX5v1DvZ2+td4l3pXevd5N3uRQRoNDLvOW+GAdTDG40nQ15G40zu\nVaPw+CVqBYZkSZML3g7JTX8wQPPKVNB2Eh+gg9R2gq5gIBgLdgfnBZcGVwXBI7wjuC94NIi2Ezwf\nlKnBG9A0Gy42UNNsKGgINjQ19DT0NSxrWN2wvmFLw86G/Q3HGjD1YqxvvDZAWob17SqKSXF29Lph\n0o4ebY8Oe66OqSaGPx68JiL17okbNw6vvYpYLDs2XKH3u1x57/8wJv1r2fQnhb+/7v1zsu1kfPpS\nrEWVMeYKH2NiQlL4ZqotBK6ftsyxULsFHuZ59lJI3i5zupda+pv4HzpokGLyV2WWVHIwlQxlR5EM\nMd+eJtHDX2GeqhCvMEZ/sCZK4FUkLiboVSQKEsFEU6In0ZdYllidWJ/YktiZ2J84ljBd0+Vprsgc\njTnK6TAo5ho/WdjkkyIHWzvayTWaCcHaZKUv2dvQOLe5dPhhVXFdi7fxZnukOuLxui1yH2+b1VPW\nMqFoTO/WqEWLTXlP/tZbw6XeSRPc9WXVja48TbFT6d1/1zGnsDpakhnLLaKL5PxFpf8OXDd9jnDw\nuulLhe+PSX83m/6+sF32YeYT/WkVYtU/ruT/93w+YtjhYad5vy4T+lPlIRBglVtSBYOpghCd3DIy\nyVYN4gVVYPuw38RTuapePCizDYyhrcr00HH+FeMmfxf/4JJHf/RQlbFE3qLst+K9Wi9a6b1aC6xB\na5O1x9pnXWZdbV1v3WLdad1vPWY1kXkwH1zK0JnR3eR4M04HX2Ipb8/hzZIsTvuXrCt6dAo5ore0\ntP+LGNouu6IPv8FUM+aQI7oYaty4UdZFT3F5FIuQ0zKaU38sCpm5nAnUb+T0J5k81+q5LvqiuJ9r\nXlXCQ3tKVT7YmPgu0TyW4yv0VfkQSXG+b7nvId8G31bfLt8B36uYx8w+6gLmUH8+l6hPCYMgpAKh\nccrsdafUMcps4NOVWdWYfdSxe5AGsT0vM02x0vz8UvwbN0Wx14drM5ORyuEoKsI/0sFHfj5iEbay\n1wWbMH2PUZMDHTw7BueO3T/VT5oPVYaPtmqXOqDOGLeuUq9Tb1bvUO9TH1VjtFWfV2Om1rkU5QSr\nOVJgnCq9TV9QkqduF12xicUF/8hEdX5JhVX0f/xabn2DP1d+P7w+XGfh/YF9jt7P54YFxXffzX5J\n89nXKP13C+X0efwhnKqdPP0JZR4tFn6lpM+k+5+g+y89IN/vHnEL28ak/+7SaD438f6TyWep8I2R\nHJ7eQf0K/XOLkv8/0v1Xp88TnpLTeT1Ps7PZ9N8JX6X0/HH38/q8mF37ieXUHp9WxvH+MemvZNPn\n3CB9rfAmpVOcKUo/RPm3zZDzt/P63Er1kdN/9ys5vfSq++cl5PRxsRGQz6rrp39ukbyHU87nD8QI\nuUW4CIV8Lqnisk4+15KaDp18Osw6atSfUa8mfzDo7l20tuhydvm7ol2Tu3q7lnSt7Frbtalre9dA\n15EurC26znXxqZ2WK1zpRzlZq4IxmnnuZ9PMkxi7kheTNHYlC5LBZFOyJ9mXXJZcnVyf3JLcmdyf\nPJbEnOT6zJr5uIAWuquCX5CS86Mb6ueN4aq6G8S7SIyPjFFuy7++gt6jsjpuEAcjcHXEDL1alN+z\nG+8z+55/N1dQ9O332YP0/n+o7GU9ldHDwf+rpPP7m4Qbp4/hC64Qntuj1WDjV0sewE4iZ3TSClOL\n5aWAQ8LsnDQu9GbuVec6e1SiWi3H+MWRAlnl8XHK4DIEDDFDt2GeYalhlWGdYbNhh2Gf4agB45Th\nPEip86we5aDVRY4XhYPKArNYmZa4pj+e+rdR3gLI0P/+5V+OJwCeMUOmAF7S+NBYDuC/bVwCEuAs\nB8n3ZA4SLscfg4Mkm/61bPqTinzHcZbQOPD0mPSL2fR/FbZm0sX8MfevFU4KModNgI3wcb5ZGFCs\nU2qGaMaSz2fjyhq/vxTKJdmR1OCMN1UXwkeK4pNd3Y3jHb6xwkhBfTIfMqaBXFUE+XC/l16RF1Gr\nYt5u7zzvUu8q7zrvZu8O7z7vUWgOJ73nQa7YTPdfV/e7AXnN2OO6kXHz5PVJba5/QvAJVDfZzWJl\n3+oVkveQsh77jTDqY634YGO8VMbRcX6aGF8/f/30pcr8thh7PeIrgrx3rhOKhB8p79nC79/P09dT\n+leFd+g9+4XXWIBZYQsBbY4NUUjKIUGOt90KzySK5XBWhGNoJXxKA8MjjL3WLq+DAP/EyxOFXPYX\ne7RqDR82x3kxbcN5VyuM/VtxZcbVGbUc+AFG3FjoF4D/Y59wFJ63CE8vG7bL7BphBRZKg4CNYLfR\ng+pFJDrUi/BQ3s+OwUPZBb+CHL2okGgslHJyFG4HKVdFqX+Ab3AUoIXTQRm4ZFPwyHwNAKcMaRvA\njC/uU9JWSGdxNQvwqDFjyEqnJFeHg8YRuOyjKIl0lf6++AMEuxwS/xOsWn8HUd4lypHU9Rg8Ml6w\nq+B+NR9UBb3w9V3GVuOJdoHaZYpmPuhJQGeWnqzthddvN4QC1utYuYrRkXOg/CUW2Tr8sXy2PHfG\n8KYr7IGPN+Ks4qDynlQPkT+VjU0FqaZAMdbNQ/15XJhfAJ/LixwGvpL3VN7uPNUKSZVngMRA+C8z\nJRyE31Yu4DwdZsKlC4R6IoWRBCGdmrLMGZJeUPiGFkpn4Lm7JueJLN+EGbwm2iHJJGd/0ARud0vK\nMpQ0g452jeUJyzbLC5aXLboVSVvcMtWywHKX5WHLVyxPWXZbDlpyFqbftFyCGXaORdnUegHMXmYH\n2AZmOhY57nOscTzh0Cy8Dq1/lsBEsOYqnqRW+RRRHBy4W3xE/BswE8bxjo4T/Zl8mybUr+X35BI/\nNl6ZkT5RjHlm9aoq5dNF3jV0XnhesxHD71kPsw//J2sYXjt88tFb2b+z54bfZHr28PDaDThGPHJE\nfIU6ENhwKpIC0+wpEITc3AZBLYRGXuQYHfkRx9jInzg2jwxwjBMmCF8a2c3xrZFfcxwi/BnhGcKz\nQBZFPixG2ESYRG6sDTmwh+meRzhqqEQNlaihEjVUooZK1FCJGipRQyVqqEQNlaihEjVUooZK1FCJ\nGipRQyVqqEQNlaihErVUopZK1FKJWipRSyVqqUQtlailErVUopZK1FKJWipRSyVqqUQtlailErVU\nopZK1FKJOipRRyXqqEQdlaijEnVUoo5K1FGJOipRRyXqqEQdlaijEnVUoo5K1FGJOipRRyXqqEQ9\nlainEvVUop5K1FOJeipRTyXqqUQ9lainEvVUop5K1FOJeipRTyXqqUQ9lainEvVUok1Qj7zKUUOo\nJdQR6gkXjqzhmCI8jhRmIDQSmggf41jCa/5djlHCGKU0jzyLU1fCBOFLhD8beYvjGcKzQEa/4rUF\nNhEmkQOvLb+f1/MtoZrXc4CjhlBLqCPUEy4cWcoxRXgcKbyeQCOhifAxjrVCiLeDWiFKGBMsHJtH\nfscxTpgg/JlQwPEM4Vkgo/tZjLCJMInf8hry+9kj/J4Qr+GLHDWEWkIdoZ5w0sjXObYSJgnbCTsJ\nJxNOI+wl7CO8jXAh4XLCuwjvJryH8F7CdfwdhYT1I3/k+DSlPEP4LOE2wm8T7iZMER7i0g4J/0bX\nrxAeITxOdT5B354kfIPwFOFpwiG682eEZwjPArnk+W+55IEmQnpG1kVIT8q6CXsIpxBOJbyZcAbh\nTMJZhLMJF+Dp2BK6Xkq4jHA56sPuIrybkCTDSDLszwnvI3yAvn2QcCXhKsLVhA8RPkx3PkK4hkp8\njD9FlHpKlHpKlHpKlHpKlHpKlL9fYCthkrCdsJNwMuE0wtt4O4xSz4ryd4qUuwjvJryH8F7CdYTw\nt47yd4rrZwifJdxG+G3C3YQpyvMQ7y9R/h5RynFKP0EpJwnfIDxFeJoQo0eURo8ojR5R6uNR6uNR\n6uNRRk/B3yCQnoW/KeAMwpmEswhnEy5AnfmbwvVSwmWEy1Eif1PAuwkfIHyQcCXhKsLVhA8RPkK1\nWkN5YrSJ8Xfxa44aQi2hjlBPOIn/KsbfBTBJ2E7YSTiZcBrhbXT/Qi6rGH8XuL6L8G7CewjvJVzP\n+3iMvwVcP0P4LOE2wm8T7iZMUW6H6PoI4XHCE4QnCd8gPEV4GshlDjQSmgiptlzmQKozlznSZxDO\nJJxFOJtwAWrIZY7rpYTLCOm5GD0Xo+fiMgc+SLiScBXhasKHCNdQbo/x62Yae5tp7G2msbeZxt5m\nGnububS/y7GVMEnYTthJOJlwGuFthAtHHue4nK7vIryb8B7CewnX8d7XTKNZM5c5Up4hfJZwG+G3\nCXcT/gPVJDXyDMe9lHKE8DilnyA8SfgG4SnC04Rv8RbVTPNFM80XzTRfNDOqP5c/kJ6Cyx84g3Am\n4SzC2YQYnZq5/HG9lHAZ4QOU24OEKwlXEa4mfIhwDf0WM1ScpB0nacdJ2nGSdpykHSdpx0nacZJ2\nnKQdJ2nHSdpxknacpB0nacdJ2nGSdpykHSdpx0nacZJ2nKQdJ2nHSdpxknacpB0nacdJ2nGSdpyk\nHSdpx0nacZJ2nKQdJ2nHSdpxknacpB0nacdJ2nGSdpykHSdpx0nacZJ2nKQdJ2nHSdpxknacpB0n\nacdJ2nGSdpykHSdpx0nacZJ2nKQdJ2nHSdpxknacpJ0gaSdI2gmSdoKknSBpJ0jaCZJ2gqSdIGkn\nSNoJknaCpJ0gaSdI2gmSdoKknSBpJ0jaCZJ2gqSdIGknSNoJknaCpJ0gaSdI2gmSdoKknSBpJ0ja\nCZJ2gqSdIGknSNoJknaCpJ0gaSdI2gmSdoKknSBpJ0jaCZJ2gqSdIGknSNoJknaCpJ0gaSdI2gmS\ndoKknSBpJ0jaCZJ2gqSdIGknSNoJknaCpJ0gaa8UMNqsFF4S8oUXhRdHhvjVS4RYgbxEK5CXhB/y\ne16iGfwlmsFfohn8JZrBX2L307crCP+C4yG+XgL2ES7ktTqE/QyOywnvIryb8B7Cewm/SIgZ9pDw\nTV6fQ8IWwqcIn6ZvnyF8lnAb4bcJdxOmqKy9uObrGWAP4RTCqYTTCG8mnEE4k3AW4WzCWwjnEM4l\nvJXw86gJu53wDsI7CZfQt0sJMcIfJ63hOGkNx0lrOE5aw3HSGo6T1nCctIbjpDUcJ63hOM37x2ne\nP07z/nHSGo6T1nCctIbjpDUcJ63hOGkNx2kufotmzLdophvi169yTHH8Gcn/ZySZM3R9hq7P0vVZ\nXDMDasuR15Yjry1HXluOccIEIa8tR15bjkOEPyM8Q3gWiNpyjBE2ESaRG2rL8WG6h9eWGalEI5Vo\npBKNVKKRSjRSiUYq0UglGqlEI5VopBKNVKKRSjRSiUYq0UglGqlEI5VopBJNVKKJSjRRiSYq0UQl\nmqhEE5VoohJNVKKJSjRRiSYq0UQlmqhEE5VoohJNVKKJSjRRiZXQvzhGCbn+xZHrXxzjhAnClwi5\n/sXxDOFZIKNfQf/i2ESYRA7Qvzhy/Yv5KX8/5e+n/P2Uv5/y91P+fsrfT/n7KX8/5e+n/P2Uv5/y\n91P+fsrfT/kHKP8A5R+g/AOUf4DyD1D+Aco/QPkHKP8A5R+g/AOUf4DyD1D+Aco/QPkHKf8g5R+k\n/IOUf5DyD1L+Qco/SPkHKf8g5R+k/IOUf5DyD1L+Qco/SPmHoPNxjBJyvZIj1ys5xgkThFyv5HiG\n8CyQ0f3QKzk2ESbxW+iVHLleycKUc5hyDlPOYco5TDmHKecw5RymnMOUc5hyDlPOYco5TDmHKecw\n5VxPOddTzvWUcz3lXE8511PO9ZRzPeVcTznXU871lHM95VxPOddTzvWUM3SlFxl0JaCWUEeoJ+S6\nMIOuBEwSthN2Ek4mnEbYS9hHeBvhQsLlhHcR3k14D+G9hFwX5shnWAa9CSnPED5LuI3w24S7CVOE\nXBfm+G90/cr/7e1MgOwo7jPerZV2Vxe3AWMsP+MDDEKWhGBmxGGt7gvd4pAlpKe3o92Zefve8o6V\nVoBlrxHIB5CkcscCh5CkApWEHChEoOC4HBIUJakk5iocQ27HSZzEOSqpOFH+329mtU+ywJWqVLx+\n3+s309PT/f96ju7+PgG+CB6nzi+z9xXwVfA18HXwa+T8Ovgm+JZQY2GvkZRwJkgbNRb2GkkJV4Ar\nwVXgavBWcB24HtwAbgS3qXUaC3uNsISDYKL6aCzsNcISEhlPZPQkNayDLfa2wRFwL7gPHAX3k/Me\n8ABntLGwD+A3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8A\nfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4\nDeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3\ngN8AfgP4DeA3gN8AfgP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8Q\nfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4\nDeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3\nhN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4jeA3gt8IfiP4jeA3gt8IfiP4jeA3gt8IfiP4jeA3gt8I\nfiP4jeA3gt8IfiP4jeA3gl9G9z6C3wh+I/iN4DeC3wh+I/iN4DeC3wh+I/iN4DeC3wh+I/iN4DeC\n3wh+I/iN4DeC3wh+I/iN4DeC3wh+I/iN4DeC3wh+I/iN4DeC3wh+I/iN4JfZAB/BbwS/EfxG8BvB\nbwS/EfxG8BvBbwS/EfxG8BvBbwS/EfxG8BvBbwS/zCH4CH4XaX7McArYDfaAveAt9saySPNjhovA\nxeBScDm4BtxOfnvbN0xIp2AGVsEh8JA99xdp3GR4GHwUfAx8HHwSfJrSvkT6RfA4+DL4Cvgq+Br4\nulDzY4YzwJkgtdX8mCF11jjLcB24HtwAbgS3qYYaPRkOgIMg7fK0y9MuzY8ZtsERcC+4DxwFD1Da\nmKX7NIdgOAXsBnvAXvAWY6pPcwiGi8DF4FJwObgG3A7uOHnQMCGdghlYBYfAB43xPq6gPs0hGB4G\nHwUfAx8HnwSfoiZPnzxs+AxbXgSPs/1l8BXwVfA18HXwDXvX7dMcguEMcCZI/TWHYEgrNIdguA5c\nD24AN4K6Ivo0h2A4AA6CLUprgyPgXnAfOAoe4NgxS69xa12/YQscccsND5I+5LYZPgQ+zJZHwCPg\ns26+4VF3k+Fz4PPkPAa+AJ5wG/waf5vyW2+xLX4H6bvAneAusAwOk/9usAEesKN2Wg03GLbsLDut\nhlcZHmTLIfAh8GHwEfAIOZ91FxketXrutBoKn2f7MfAF8ISb5XdaDe0oq6FwB3gXuBPcBZbBYfLf\nDTbAA7Y90ZyJ4R2gjc0Nd5FOwBTMwCo4BN4HPmj9IdGcieGPgj8OfoG9h8FHwcfAx8Enwac51zNK\na87EcCW4ClwNrgHXgreC68D14AZwI7gJ3AxuAbeCu1UfzZwY9oMxuIe9A6Cu/ZQ4pMQhJQ4pcUiJ\nQ0ocUuKQEoeUOKTEISUOKXFIiUNKHFLikBKHlDikxCElDilxSIlDShxS4pASh5Q4pMQhJQ4pcUiJ\nQ0ocUuKQEoeUOKTEISUOKXFIiUNKHFLikBKHlDikxCElDilxyIhDRhwy4pARh4w4ZMQhIw4ZcciI\nQ0YcMuKQEYeMOGTEISMOGXHIiENGHDLikBGHjDhkxCEjDhlxyIhDRhwy4pARh4w4ZMQhIw4ZcciI\nQ0YcMuKQEYeMOGTEISMOGXHIiENGHDLikBGHYbtyZxm2wIPgIfAh8GHwEfCI0K5E4TZwB3gXuBPc\nBZbBA4b7NVdm+LThPcT5HiIwxnzRGPNFY8wXjTFfNMZ80RjzRWPMF40xXzTGfNEY80VjzBeNMV80\nxnzRGPNFY8wXjTFfNMZ80RjzRWPM4Dl3ib8s/68qGU7PNSVos3rsV57uciV3QZGe3JFniuWZX6S7\nbXtUpKUnXFqkLyB/l/OTp9r3Z/XfWCHt3cXGRp6e5M7x+4p0l1vkHyjSkzvyTLE8Lxbpbtv+1SLd\n46/y3yzSve6yrguK9FQ3q2t2kZ7W/Uddq4v0dDdn2uVFeoZbPW18+3luxrQfLNLnu95pX+wbiWtJ\no7S4Xs82xQPtarnRseXGUjhnbv918bwbS/Pnzpt/7dwF9v9iU57tWmUrjkiapXKp1Sj3x0PlRlaq\n7ymtjJP+uLo7bgzEjdLSRruSDZWblcGkFtdKfStml+J9lWq7mYzE1dFSNanEtWbcX2oNNurtgcHS\n2qRWb40Ox6UVQ7tXzi6Va/2lofJoaXdcasQDSbMVNyxzUitV4karbN9pu5E0+5NKK6nXmnPcEld3\nw27UNVziBtyg9fGfM37nu7lOs0ol6/mJq1meluUZdrFtWeGG3G630s229F7+5rjqGbnmuIr9GrLv\nkrM3FPsrdZyhya/YvmP7HjHst5x9pGqWq2H7F9vxdZe5TbZtwLWthLJtP3ueGy0dWglzrZzrbP88\ntqgN8wyvte8FBZ6eq7O0a0+Vdvo5Empbtk/Lftvz3fYNUZfMttXdHsOVti1hT9UiozYNgCXr9w2r\ne8Xy6pimpQaJlMpXZFYQxdjtsz1Vy9m0vSOUM2rbFdUKeZvESHUYtBLrllOR/F7slG2fjtK5Vd5u\ncjSIqNrVopZ5yQk1qrClZfnz36mdqUHefurSMqxTnznvcO4+y62jypSxnBi0YD+Gw3faWyKOTX7X\nirqdyYiOm2f3l9D+8nbuKdpSsrrEsNM8xc6g/R7hqIEiJnkZ461XHMZLbbK/SSqmlnuIet7CPba3\nwhHq16s44szydKbYrgldGwl8fTdLs6lVXJwvoY357z1w3zpVbt3iWSUW5VOxV33qZ8Qp76HVom+V\nicREW5LiqPwc4/046Sgxj9Qy27O7OHq87yyHnTbHzKYPtalfXoeynbNJSn0so/w2sRsvc/ys6uPD\nRUzFZYWt42dpEptq0SvV0/L25deC7lBDHNXq4HWiPXuLfSo5j3il2KJ6j8LWliL3Xju6cZZeNUTc\n8nhdaeWPtzq2X+MRXM7vGlfxRN0HC/abRZ3KRXzGa3d631Ht98JcicgNdcQqKUqZ6E3DnLF1FvY7\neZnDvTDnpW15FMecizPZO9u9Le+ZJTtX3t783qOrMa9dC84q3FMTcg5yLytRVqPgq8w9vknuOmc/\nPR5lys63JNwR8+s1z9HZPwdhKHH7aW+r6GPj97OSu8K2X3Fa2ae3o0xbVLqupgrbKrRY99j4tDtj\nszhbi6jkd5v8Ph2TI+ZOMtF/8p5ds0iViz6cPx2Sjntotbi/7rZPlYiNdpxxoLjDn8lFuYhrw2Je\nZ2udK6mzrvmTIOGekF89w7S0DL/j19QeWqQrtV5cDS2uvtZppQ1yXP+pe0bnPS1/+i+gju98rx4v\n7czeXuL+0ijin9cn7+Nv/9TQ2TKOUizWcO/Tc6sMS4nLn1z59Zt1PA/PFsu8VhWOKNP+t8+9rojO\nROTG823graNFjdtWyxJvS1WiP/EsnMM7Tctas9Bpve97vRP973J/lFrpOjj9uah+2dmO8beXQp/v\n3Mln3Hx3lv/5++0zyXJ1ud+2CP+8necX3Ifch638K91VVt7vuOPud93fuI+4q901drWccL/nft/9\ngb0hzbHa/BlvVXusbP0jwn9otflj9/3uF+2NaoG73t3g/sLeGv/enstfdS9bS1+xp/RCu3Pc5P7W\nPedudn9lb0S6Nz1k7f2ivV1Mtdr3WYxnug9YW5e5j7md7i63y93iFrk33Dfcg9bn/tTa9XV3v40V\n3uvOdZ9zx6zHjLkvu0/buOtZqavdq9Z7honI3e497in3K+6Xjatv2ojhp6xHf8ld6n7T/Yy7xD3v\nVrvPGIfvt3fcJ91vuBesl71p7/prLbojxkLb3Wq9Yb17n3vC/bnb4LvcP7gfcf/oNrrLrYd027vo\nqLvH3et+yb1ld6eL3L+4f3X/5A67R91PuvvcZhsTTrdRRK873092L7pzbOy7xe5Uj9to5bfcr7pn\nbGz4a+4rbprbaiOfP3G3ub90D7hZ7jL3bhsXvWTjytvdt9zF7t/cP7vX3efdu9y33R3uE+6T7lPu\ngPF7p9vmPu62u79zR90Pux3ur92Fforv9j2+10/10/x0P8PP9Of4c/15/nx/gb/QX+Tf5S92j/lL\n/KXuJ/y7bWT3AzYS/4L7afdjNhb/df8eG7P+rI3Ofshf7t/rZ/n3+ZL7L/9+d9Jf4T/gP+g/5D/s\nr7QR1Uf81e7f/TV+tr/Wz/Ef9XP9PD/fX+cX+Ov9DT7woY/8Qn+jv8nf7G/xH/OLfJ9f7Je4//RL\n/TK/3K/wK/0qv9qv8Wv9rX6dX+83+I1+k9/st/it7r/9bd752/0d/k6/zX/cb/c7/F02Uv4Pv8uX\n/W5f8f0+9nv8gB/0iU9tTF71Q77m6zZ6vts3fNO3fNuP+L1+nx913/H7/T3+Xn+f/4Q/4D/pP2Uj\n20/7+/1B/4B/0B/yn/Gf9Z/zn3cfdN83ZU6tXa12D5UrjXrtnOG4kdT7bXDFiGnysnajPnWgUR6J\n51TKw1PLlXaL1DmVpFFpD+2pxvvYUSnbwR2pcrU1tZVU+8k8oz+xwppJUz+m5SdSsqddS+bOXxJN\n3d2I8xP0NpLagBLnDbZrA+VGe6habre0YWZ/vVWuqF76Nb1SHxoq57/P7UjrvFOWxtVWmbKvixbk\n331R/r14ydTyniS5Yd78MJoaN1vJULkV92vf8nD5cn3Pnz/v+uI76unL69rdRwV7+uoD9VqcTV8y\n0fhpS07Vq3spTbevRr3c6l7Gr55lRRHLKGLaslPZe5YVpa3oKG3Fqd0zVnQ0a/rKiTyTV+4uN7pX\nEdyeVXnp01ZNFLuqKHb1xCEz1nSU1b0WErvXUr8Zazt2TV5rxXSvy/evy/ev69jfs75ozHoaM3N9\nJ0ndm/LjNuXHbeo85WZ2Td/cUaXNnfu35Mds6TwXfWNe3+Qtau7WvLlbi/Nv5fxTtqq3zNzaWYue\nrUXzb5841/Q7J9Ld26jKtG0TASsXhZZzkstFAZUOWioTJPfnJPfnJMc5yXFRRJyTHE8UHhelDXSU\nNjBB8kAnyYMdJA+q1Une6iQvvSfJy+q1w6txs5lOTzvimXXGs5pTUc3DWu2kuCqKa/n+Wr6/1lmJ\nWnm43mw16sODcU+9aFY9p7t+Gt0NypjR6DxvIw9OM6e72VG9Zme2Vn7e1nfTvXhySw1v5w1vF+dv\n53S3obt9Gt3tIr57O+ge7aB7f073/lMhn7Rq9aQk5XRz+5YW33NPzd65cQeZPZ9m2VPfL12+dos9\ny/gXrk+eZI/P4kbNtuX5vO2bxHevfWrknN97YvzPvdK10Pd23dt11C+c/J0p39bfpKWT1k3aMmms\n90TX3N5ne7/MH7m7FhZ/9/J3NP/Tcd3f6Lmt5yv66x3hmBP61/jsbFPsidxj577Q3guuxsFzg717\n5O8bI/asP2ZP/uP2FvE1e3t4071VPB/Hn2n5U2z86aUn1hq/s3i+DPMMGbNnubwdcnbI1yFXhzwd\ncmjIUXH85EtyRMgPITcEDoQZ6IalGpZmWIph6YXlQpIHSatqWi/TapnWyqR9XXzWc8g1Is+IHCPy\ni8hnIX+FnCLbKfEAHhE5ROQPkTtE3hDpVuULkStEnhA5QuQHkRtEXhDVWz4QuUDkAZEDRP4PuT/k\n/ZDzQ/pPqT9RU3a0z+ogp4d8HnJ5yOMhh4f8HXJ3yNshZ4d8HXJ1yNMhR4f8HHJzyMshJ4d8HHJx\nyMOBRvGAHafYTUIFfIy5ZWmAp6MBlgJY+t8TllMr4loP12q41sKHbdvd9pHe9xr0vlL7SlMqpa90\nvlL5SuMrha/0vVL3KkZS9krXK1WvNL1S9ErPKzWvtLxS8kqhqhUIrT9o9UFrD1p50LqD1hu02qC1\nBq00aJ1BqwxaY9AKg9YXtLqgtQWtLGhdQasKWlOQNncSSlnpZM/DISenm9xx8sbJGSdfnFxx8sTJ\nESe9odSG0hpKaSidoVSG8sCdi3dNTjT51uRak2dNjjX51eRWewvtXTfaPCnzpMuTKk/+tA340+RO\nkzdNzjT50uRKkydNjjT50eTUkkNLTjT50ORCkwdNDjT5z+Q+k/dM6mxps+U6k5JdjjP5zeQ2k9dM\nTjP5zOQyk8dsnF25y+Qtk7NMvjK5yuQpk6NMfjK5yeQlkzpD2gwpM6TLkCpDmgwpMqTHkBpDWgwp\nMaTDkApDGgwpMKS/0FqztBdSXkh3odV0raVrJf3M3iWdhVQW0lhIYSF9hdQV0lZIWaG1ZznAbsZ1\nJM+RHEfyG8ltJK+RnEbyGcllJNeO3DryF22nlx45aw+Vn+jte+QR/ENyD8k7JOeQfENyDckz9DpX\n7LdQQ0gLISWEdBBSQZytx0r50NErUTywpmcfaR2kdJDOQSoHaRxGuVovxf1z81nvdPJFyBUhT4Qc\nEfITyEcgL4ScEPJByAUhD4QcEPI/yP0g70PeX57A9SDPgxwP8jvI7fAUV8thfA5yOcjjIIeD/A1y\nN8jbIGfDG9yTJ+6w0iJIiSAdglQI0iBIgSD9gdQHeX94At2BVAfSHEhxIL2B1AbSGkhpkHN9xEaX\na22crLH4iI1MD9r3IRuVPWSfhy39iH2O2OdZez4dtTHvc/Z53vYds88L9pGOQCoCaQikIJB+QOoB\naQekHJBuQKoBaQYOWH6dbYP0AlILSCsgpYB0AlIJSCMghYD0AVIHSBsgZYB0AVIFoAmQIkB6AKkB\n0ALYRzoAqQCkAZACQOv/B6ys2f+vd9C1/wd3UY3cZ2lVVmuyWpHVeqxWY7UWy0qs1mG1Cqs1WK3A\nav1Vq69l2jyL+/BLeBQm0WrV+EJ8E3JNyDMhx4T8EnJLyCshp4R8Ep1PSa2uam1VK6taV9WqqtZU\n8xXV/J1Kf+5/AIGHtqIKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago3MDc0OQplbmRvYmoKMTkg\nMCBvYmoKMTI3MzQwCmVuZG9iagoxNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVu\nZ3RoIDY3ID4+CnN0cmVhbQp4nO3NMQ0AIQAEwVNMTYKOV4AZKhosIOQxQUNmuq02uWynZ2WmpWac\nLreHAAAAAAAAAAAAAAAAAAAAAPCY7weB+gXnCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwg\nL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNjEgPj4Kc3RyZWFtCnicXVE9b8MgEN35FTem\nQ0Rst5UHC6lKFw9Jq7qdogw2HBZSDQjjwf++fCRu1ZPg6T7ece+gx/a11coDfXeGd+hBKi0czmZx\nHGHAUWlSlCAU9zcv3XzqLaGB3K2zx6nV0pCmAfoRkrN3K+xehBnwgQAAfXMCndIj7L6OXQ51i7Xf\nOKH2cCCMgUAZ2p16e+4nBJrI+1aEvPLrPtB+Kz5Xi1Amv8gjcSNwtj1H1+sRSXMIxqCRwRhBLf7l\nq8wa5FZexfIAzwwuf9wiQ5mhyvCY4enOuKYGdXbrW4M6hsuyiNQMl4zXOM/95Tha3OOmmy/OBclp\n2UlrVKk0bv9hjY2seH4AHtCFLgplbmRzdHJlYW0KZW5kb2JqCjEzIDAgb2JqCjw8IC9DSURUb0dJ\nRE1hcCAxNSAwIFIgL0ZvbnREZXNjcmlwdG9yIDEyIDAgUiAvQmFzZUZvbnQgL0F2ZW5pci1Cb29r\nCi9DSURTeXN0ZW1JbmZvIDw8IC9PcmRlcmluZyAoSWRlbnRpdHkpIC9TdXBwbGVtZW50IDAgL1Jl\nZ2lzdHJ5IChBZG9iZSkgPj4KL1N1YnR5cGUgL0NJREZvbnRUeXBlMiAvVyAxNyAwIFIgL1R5cGUg\nL0ZvbnQgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9FbmNvZGluZyAvSWRlbnRpdHktSCAvQmFzZUZv\nbnQgL0F2ZW5pci1Cb29rCi9EZXNjZW5kYW50Rm9udHMgWyAxMyAwIFIgXSAvU3VidHlwZSAvVHlw\nZTAgL1RvVW5pY29kZSAxOCAwIFIgL1R5cGUgL0ZvbnQKPj4KZW5kb2JqCjEyIDAgb2JqCjw8IC9E\nZXNjZW50IC0zNjYgL0ZvbnRCQm94IFsgLTE2NyAtMjg4IDEwMDAgOTQwIF0gL1N0ZW1WIDAgL0Zs\nYWdzIDMyCi9YSGVpZ2h0IDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250RmlsZTIgMTYgMCBS\nIC9Gb250TmFtZSAvQXZlbmlyLUJvb2sKL01heFdpZHRoIDY4MiAvQ2FwSGVpZ2h0IDAgL0l0YWxp\nY0FuZ2xlIDAgL0FzY2VudCAxMDAwID4+CmVuZG9iagoxNyAwIG9iagpbIDQ4ClsgNTY5LjMzMzMz\nMzMzMzMgNTY5LjMzMzMzMzMzMzMgNTY5LjMzMzMzMzMzMzMgNTY5LjMzMzMzMzMzMzMKNTY5LjMz\nMzMzMzMzMzMgNTY5LjMzMzMzMzMzMzMgNTY5LjMzMzMzMzMzMzMgXQo1NiBbIDU2OS4zMzMzMzMz\nMzMzIF0gODcyMiBbIDY4MiBdIF0KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE0IDAgUiA+PgplbmRv\nYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMCA+PgovQTIg\nPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+\nPgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCA+PgplbmRvYmoKMiAwIG9i\nago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMjEg\nMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDE0MDIyMDE3NTMyNS0wNycwMCcpCi9Qcm9kdWNl\nciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCkKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMS4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLnNmLm5ldCkgPj4KZW5kb2JqCnhyZWYKMCAyMgowMDAwMDAwMDAwIDY1\nNTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDA3MzYzOCAwMDAwMCBuIAowMDAwMDczNDQ0\nIDAwMDAwIG4gCjAwMDAwNzM0NzYgMDAwMDAgbiAKMDAwMDA3MzU3NSAwMDAwMCBuIAowMDAwMDcz\nNTk2IDAwMDAwIG4gCjAwMDAwNzM2MTcgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAw\nMDAwMzg4IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMTMzMyAwMDAwMCBuIAow\nMDAwMDczMDYwIDAwMDAwIG4gCjAwMDAwNzI3MTIgMDAwMDAgbiAKMDAwMDA3MjkxOSAwMDAwMCBu\nIAowMDAwMDcyMjM5IDAwMDAwIG4gCjAwMDAwMDEzNTMgMDAwMDAgbiAKMDAwMDA3MzI3NyAwMDAw\nMCBuIAowMDAwMDcyMzc4IDAwMDAwIG4gCjAwMDAwNzIyMTYgMDAwMDAgbiAKMDAwMDA3MjE5NCAw\nMDAwMCBuIAowMDAwMDczNjk4IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMjEgMCBSIC9Sb290\nIDEgMCBSIC9TaXplIDIyID4+CnN0YXJ0eHJlZgo3Mzg0OQolJUVPRgo=\n",
178 "collapsed": false,
187 "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJgAAABWCAYAAAAzIF/lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACutJREFUeJzt3X1QE2ceB/BfNuHFsCExQDFECjqAhRa1DGOtAvbUuU4t\nteDUcQbbcDiTq1d7nSLT8bBjcuBh5WxBGRDB8eWOl/MG5uwInt6LN+Xl5uxdC7aQVAJnLeYAiRJI\nNrxE2L0/2vRiJkE27FJz/D4zzJjdfXYfnO/sbvbHs4+AYRhAiC/ED90B9P8NA4Z4hQFDvMKAIV5h\nwBCvMGCIV6LZVtpsNllZWVl9fHx8S0ZGRrHRaEyoqqqqJghiRqlU3lSr1XsFAgFTU1NzrLe3dz3D\nMIRKpdofGxv76UL9AujxNmvA6uvrjz777LOXJycnSQCAmpqaD/Py8l6TyWRDTU1NeW1tba8HBwcP\nEwRBFxYWpo6Pj0uLi4svFRQUbFqY7qPH3awBU6vVe/V6/SaDwbDebrcv8ff3H5fJZEMAAGlpaTV1\ndXXFUqn0bmpqai0AgFgsHouMjNSZTKaosLCwb1z3d+3aNXyq6+O2bNkiYLP9rAFzRlHUUpIkRxyf\nJRLJPYqi5EKh8AFJkvddl7sLGABAUlISm/49pKmpCV555RVs/wO17+joYN1mzgEjSdJMUZTc8dli\nsYSRJDlCkuSI1WoNlcvlAwAAVqs1VCKR3Pe8J3aGrFMwNf3tiS905dPwjXnyofViPwLCSH+uDoc4\nNueA+fv7T9jt9iVms1mxdOnSwdbW1jcSExP/KpVKh9vb23dHRUV9abPZZEajMSE0NLSfqw623x6F\n6k8HnJaMPbS+8McrMWCPsTkFTCAQMAAAKpUqr6SkpIEgiJnly5d/tX379g8BALq6urZqNJo2hmGI\n7Ozsd/nsMPItjwxYQkJCS0JCQgsAgFKpvHn48OEU12127959gI/OId+3qB60xsXFYfsFtqgCtmrV\nKmy/wBZVwNDCm/O3SAe73R5YUVHxG4vFEkbTtHDHjh1FISEhRnclJD46jHwL64ANDw+vJEnSnJub\nu+vu3bsrGxsbtRaLJcy1hJSWllbDR4eRb2F9iVy+fLnebrcvyc3N/Uqr1ba++uqrR11LSN3d3Zu5\n7yryRazPYDdv3twYEBBgKy0tjTcajQnnzp0rCw8Pv+VYL5FI7js/8UeLG+szWE9Pz8b169c3AHx7\nNgMAsFqtIY71Fosl1LlmiRY31gFTKpU39Xr9CwAAZrNZQRDEzIMHDwLNZrMCAMBRQuK4n8hHsb5E\nJicnX+rq6tqq1WpbCIKgc3Jy3hEKhQ/clZAQYh0wAICcnJx3XJe5KyEhhA9aEa8wYIhXGDDEK6/u\nwQAAPv/88/TBwcG49PT0Ek+jjbjsKPJNXp3BJicnSYPB8Hx6enoJwP9GGxUUFGxSKBSGtra217nt\nJvJVXgXswoULv7p9+/bajz76qPHOnTtPY6kIecL6Ejk4OBhL07QwPz//5dHR0WUnTpz4nUKhMDjW\nY6kIOWN9Buvs7Hxp3bp1fwAAkMlkQxKJ5B6WipAnrAMmkUju63S6zQAAExMTktHR0WVYKkKesL5E\nbty48cLp06crtVptKwBAVlZWvkQiuYelIuQO64ARBDHz5ptv/tR1OZaKkDv4oBXxCgOGeIUBQ7zy\nulRkMpmitFpt6/79+3cGBgZSWCpC7nh1BqNpmvj444/zU1JS6hmGEWCpCHniVcCam5vztm7dWuXn\n5zfJMAyBpSLkCeuA9fX1rWMYRrBixYpOgG/PZi4vpsNSEfoe63uw7u7uzT09PRsMBsPzAwMDT3V0\ndLzs/D4wLBUhZ6wDlpGRcdTx74aGBu3atWuvNjY2alxfTMdtN5Gv8vpbpDNPL6ZDaF4B27lzZ4Hj\n31gqQu7gg1bEKwwY4hUGDPGK9T0YTdPEmTNnKoxG49M0TRO7du06JJPJ7mKpCLnDOmD9/f2rFQqF\nQa1W/2x8fFxaUlLSIBQKp/EFdMgd1pfI6OjoG+np6aUAAFNTU+KgoKDRgIAAG5aKkDte34NRFCWv\nqqo6vW3btuNBQUFmx3IsFSFnXgVsbGzsifLy8t9mZ2fnrlixotNlDiMsFaHvsQ7YyMhIxMmTJ8/v\n2bPnbYVC0es8hxEAjipCD2N9k9/c3JxnMpmiKisrzwEAkCQ5gqUi5AnrgKlUqjyVSpXnuhxLRcid\nRfWgtaenB9svsEUVMIPB8OiNsD2nFlXA0MLj5O/BAABqamqO9fb2rmcYhlCpVPtjY2M/5WrfyHdx\ncga7cePGiwRB0IWFhan5+fnbamtrf83FfpHv4+QMptPpfpSamloLACAWi8ciIyN1JpMpKiws7Bsu\n9j+bQBEBXwxaPa5/IsgfFMEBfHfjsTBomYJhm93j+rDohZ8vkpOAURQlJ0nyvuOzRCK5R1GU3F3A\nOjo6WO17JQAcTfK8nh7qnbX94Hc/AABKpZL18Z35ent/YP//P1+cBIwkyRGr1Roql8sHAACsVmuo\nRCK577rdli1bBFwcD/kOTu7BEhMTr7W3t+8GALDZbDKj0ZjgPJQNLV4ChuHm7wLr6uqKe3p6NjAM\nQ2RnZ78bExPzL052jHwaZwFDyB180Ip4hQFDvOLsSf5c6PX6tOPHj//+2LFja6RS6TAAwOXLl9+9\nfv36TpqmiczMzA+Sk5MvuWvrTaXAZrPJysrK6uPj41syMjKK2U55M98BLjMzM6JTp06dGRoaivH3\n9x//bhpEAZs+zOc9bDk5OSPR0dFfAACsWbPmanJychPbwTnznjKIYZgF+TGZTJEVFRXnTpw4UWc2\nm8MZhgGj0fhUaWnpBYZhYHp6WqTRaFqnpqYCXdt2dna+WFtbW8wwDNhsNqlGo2mZyzGrq6tPXbly\nZd/FixcPMAwDR44c+aPZbF7GMAxcunQpr6Wl5Y3Z2n/99ddrm5qach3HPXz48J/Z7MNms0l1Ot0m\nx+9fVlZWw6b9zMwMUV1dfaquru4Dg8HwHNv+FxUVXXH+zLb9xMQEWV9fX+Rte4ZhFu4SGRoaeuet\nt97KEYlEdkfqdTrdCykpKXUAAEKhcDopKam5r6/vOde2nioFjzqmWq3e++STT3YDANjt9iVs32M2\n3wEuYrF4LCEhoQUAwGQyRUul0mE27ef7Hrb+/v5ErVbbWlhYeM1kMkWxbc/FlEGcXyIHBgZWnT9/\n/rjzMqlUenffvn0/cd2Woih5VFTUl47PjgqAu+3mWinwhKKopd6+x8wxwCUzM/PIJ5988v3vMdd9\nFBUV/WloaCimoKAgtaGh4Zdzae/8HrbPPvtsuzfvYSsvL18pEonsfX19606ePHmezZQ/XE0ZxHnA\nIiIieg4ePPjSXLZ1VAAcny0WS9iyZcv6PG33qErBI45l9mZwytjY2BOVlZVns7Ozc0NCQozNzc37\n2e7j/ffff3FgYCDu7Nmz5QKBgJ5Ley7ewyYSiewAADExMf8UiUR2NlP+cDVl0A/yLZJhGAEAwDPP\nPPO39vb2LACA6elpv87Ozm3ubt65qBR4MzhlvgNcDAbD83q9Pg0AIDg4+N7U1JR4rtPuZGRkHD1w\n4MD29957L3PDhg0X9uzZ83M2x+7t7X3u+vXrrwEA3Lp1K0kul/+HzZQ/XE0ZtKDfIh0c92ARERGG\nuLi4fxw6dOjvNE0TO3bsKPLz85ty3X716tV/6erq2qrRaNoclQJvjsd2cMp8B7iEh4f/u7Ky8ux3\nl0VBVlbWL8Ri8Zi3A2TYHFupVH518eLFg1evXn2bJMkRtVq9l6Io+VzbczVlED7JR7zCB62IVxgw\nxCsMGOIVBgzxCgOGeIUBQ7z6LzWkj3n7AHKHAAAAAElFTkSuQmCC\n",
179 "input": [
180 "plt.hist(evs.real)"
181 ],
182 "language": "python",
183 "metadata": {},
184 "outputs": [
185 {
186 "metadata": {},
187 "output_type": "pyout",
188 "prompt_number": 9,
189 "text": [
190 "(array([97, 2, 0, 0, 0, 0, 0, 0, 0, 1]),\n",
191 " array([ -2.59479443, 2.67371141, 7.94221725, 13.21072308,\n",
192 " 18.47922892, 23.74773476, 29.0162406 , 34.28474644,\n",
193 " 39.55325228, 44.82175812, 50.09026395]),\n",
194 " <a list of 10 Patch objects>)"
195 ]
196 },
197 {
198 "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+\nCmVuZG9iago4IDAgb2JqCjw8IC9YT2JqZWN0IDcgMCBSIC9QYXR0ZXJuIDUgMCBSCi9Qcm9jU2V0\nIFsgL1BERiAvVGV4dCAvSW1hZ2VCIC9JbWFnZUMgL0ltYWdlSSBdIC9FeHRHU3RhdGUgNCAwIFIK\nL1NoYWRpbmcgNiAwIFIgL0ZvbnQgMyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Hcm91cCA8\nPCAvQ1MgL0RldmljZVJHQiAvUyAvVHJhbnNwYXJlbmN5IC9UeXBlIC9Hcm91cCA+PiAvUGFyZW50\nIDIgMCBSCi9NZWRpYUJveCBbIDAgMCAxNTIuMzk4NDM3NSA4Ny4xOTIxODc1IF0gL1Jlc291cmNl\ncyA4IDAgUiAvVHlwZSAvUGFnZQovQ29udGVudHMgOSAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwg\nL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnicxZi/btwwDMYz\na+wTCJ3aRSEpiZLGHtAG6FbkgL5AmwTBXYCmQ16/dJycRcWq7SV3k81Pf76fzyZpo703l1/Q3v61\nZL9bsE8W7ZUBOTpajOR8ycGnKOcHdZ6Tw0KY5fAgojq9Mw+yKA2Lgiv+9WdvZeCVoewCR6ZoCVyk\njHIkewVw0IYPdTix8y/hao0qKvveiHOhcF5t6qJgqWDPRRXlkwmzm92vHp1g8rYzzf5on8xuby+/\noUWw+xsjO2L0w+gk06Ld/zKfPn64wAv4bPf39uu+XeGZwITgAuSQCQMVZbtRlHWt1fYbZRNCIAdA\n5F/mnjAWEFiiEb0vlGNSCI2iELRWIzTKJoQYXSglJU7PcyeEpf9BDFAJWDhQZgXRKApCazVEo2yC\nSOiQ0efhCnANQQsQhRz5BNHHhEFBNIqC0FoN0SibICR5QCjxde4E4RcgELLDVAqCTPQ6nzSSwmjE\nmqOVNoEgkCuFwuvkiSQskVBwSDTejKhJGkmTaFGRNNI2Esyu5PLyp9QkcYlkLpHr/K4J5jK8Gr/R\nuQ9Sc8bxlW1esL1YD6BjermIrTGdHI8VAXm47sDr8unkz6Pj/Mb1FG1c18Nnw6tcyzM/bIahMryU\neCZzUkOk+rSWp2hjuR4+G15pGUazvjgPle+lJ3RyGIPUvje+p2jjux4+G159qSPIZpXl9fc0RykT\nbyxP0cZyPXw2vNby8yy5p6hynVe77vRaXKeDFemDNxVUuc6JXKqfQWkIJs9/ZpMColBaaSmyffxt\nf9qHsZ12BFKZMbIUZxkbEBOHBCw20unEPk49atUtXxlhoITscwhNv5cdJ5TWC1TVO2ghBUkqYQRX\nS1WC9Mw788O+J9S896ON0gXIxBDZqwp4aBUxFQb3puE9CefA6rk/Dk+NzJQcSZLgFZdSzH+IK+Xd\nwXr2pW/1LnNhOaeowZRiusjnBevZP9o8ZK4i60pTrp8vpZgu8nnBevalSQfHsiYDSJekTCrFdJHP\nC9azL2BFsn2W/MaQGrBaMV3kM4N17A+vI0k8JOZEgM2nESWZLvR50boAwoaylaTvBEneMzSbkkwf\n+8xwPYLx7YtYXAafC2s4JRkpW5B5jtvW0gg3mk4+UZSmm9SHrBX9z/WKNxc9fsvXuu7w+ebt2ph/\nACMXFgplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjg3MAplbmRvYmoKMTYgMCBvYmoKPDwgL0Zp\nbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aDEgMTkgMCBSIC9MZW5ndGggMjAgMCBSID4+CnN0cmVh\nbQp4nNS9eYAdVZ0vfurudavq3rr7vvftvdOdTtIJi6QTsnQATdhCgsYECRAWIVFAwAUGWQL6JjDj\nAEEQRJYAvsnNnbZZxjfkzVMExhl7HImgeZBRCIn6BnUcRudB8vt8zqm66QScef/+DqnvreXUWb6f\n73pO2QpNCBEH8Ynq8iVLlwleawdAhLl81cozz//y80lcm0LoZyw/8+zFIiXCQvvNBj5feebw6M3v\n9H4RL+zA9YbzP3ne5v959xPrhTj9QSEC2fOvvrIaXKRVhTj3RDyvXrj5ok9etDjUI8Q5T+Od0y+6\n7NoLR5ee8b+EWLdJaGdt2LTxk9fkfn3RLCFCWSFWbN10wXkbn8ze+XPUHcT7Y5twIzjoXYPrjbju\n2vTJK68pvnny6UJ4QujPvvSCT12+7NTTbxHarheEqC+57Irzz1v629+uRv8fE8Ib/uR512z23hfG\n2LWtHM/l533ygq985Ml/EdqPMD/jbzdf8ekr77zla3cJ7fVpjGHW5k9dsPmkX106T4i1eK4NKd6I\nxZenf/fv66Mn/psoeCWjPtds3cDf7994/87Daw/t8x7wfhOXuvAIVfCe98ChPyM9vPbwWryliaOK\ndhPvgG4UQXE2sFDPw5iZ0B8B0YTXE9XuEH7h89zuAQfEqepX+7gY1bKs5/d6+OPFUHauEtVT3LZP\nW/GRlWJcVP+vB2P4a45BW4rbX5X9/sh7j6jiPw+Hqv3OGU0aDf3lBxxXiw2e3WJEHm+K1Z7TcX3s\n8aawPINigzeMOj8UG7SQPJZrocNv4/gNzj3az0SEbaE/HhHvdbK+OhaLEW9LLJS/H3B4TlJ1ZF+D\nYlQeJ6E93McYz3rfcf7h99Aexx7wnHT4t51jUGTkEURbziF+LU7gr/cs595u5/desQrHWu3bouKt\nigF573wxoX0KeLwmTtd8wtR8h/8Vv4tw1MSvD78p7/9OrMBc0e7hn6tfjHNQfERep8XZOBahvRzu\nldFeL377OB/gPIdtoM+P4HoA7y3FcQ7ORz7gGIM8baEkEj/5zulixGn/bK0XfeZkvyPOr8DRLXYc\nXos+ycez0Nc7fA9jnIvjQ9oJ4gQcS1FvAs8mtQ+j/q95Lk7g2OX88A6Of0b9CTk29nsv5yYC4N/J\nePYbZ/wT+L0Jvyc74+Vvg2OceXjvlfwpy+tBsQkY9+AY1y4WY9rpoqL9iajgWa98Dt5D9kfA6zEc\nIe8i0e3OF3zIuWMhTzG+YRyDwOx+HOvdA+8tmHFs1E4TpxILjCGrPSFqPDCOk4gRecyxE2+pB4Pi\nLNSPyHGAlxjnIMZZx5z3oP8JWRfXcu7HHMRIyv8PRQS/PLfdwzN4+BD6zfBgu5RPxecO33GI1ezH\nweA3zvEmx43fFxxZIS83eL4movI4IIblwTHMEVWMYcLzMfDkTdGn/Rp8rYgLtP9z+Pe4l/N8TywH\nj9fTHoCHZ+BY7vyeQZkhj4+yCa49mGkXaAM+wDbQJsw8aB+UjYA+hA6/C9twBo7EMfahc3RshGsn\nXJswsx/XJhxtG44cH2QjcEgb8UfsAnV35iF1Venr+/Xx/GMOhbsJbF7B8VvgEqLezNQd58jDy53j\n6Id7xGfqCGUURxJH2ZXRzgF5nHl8kOzJQ8md3ZGzFnj7U8jlh6UOSUzJC5QR+kld9/uFN+CUoJ8l\n6A8GPSy+gN8fCgZDekgWf0g+VlX1gN8pHtwP4K4v6A94vfJFr9/n8Xn8Hq8X9/y4CPg9HlUbHQb9\nXq9XvYr7QZ8PV6iuuvSg75BHvqZKCC+GQvINtoIzHd37fPJ99hX04AJPvQH+C3k9ul+17vehbTxj\nXVnT4xQvJhyUcw3iKYYu5+Rx2RB02CCLywd5TSYcKQ4jnL5QAoHOfdWjnJUzGE6albzu5P0cHSbi\nDegIBcLEQfYY4CHHEQgFvbI6miMGDg6BkDNMVtTVKCQOuoTOBzhkL152DRQwM698BcwNeDzqBXQY\nDKi2MXX8C3KEAY8aN36CIY+O+kFXNnRUCoV8Xh8v0KDXG0b3nanhDnAIeCkHpCGfJxzwOWOTDA2Q\nQcfgQJaS/ayAriTPPYoNQZcNnHIw6PKBwiCZcKSounogEDgKGKc40/F04J2Bgyv1Ph9nHwQOhhEI\nCK/sISj7JeoBPaRwgFiGdV3ngRLQg+74QsFwh1HAEwhBiPRAUOHgpWhCOL2UXdTzecl6VRsdSpTV\nWDHPkMTBq3iKH8i+DviC7kzDeFnXMQFeoEGv1whSYp2peX06NYU4hAiF7vMaDg4BpcAB1vUeXcA+\n8i9ITcZ8A5y8R7Eh5LKBU5aK6FV4Kia4KLmMCIU7Aul35VjWcabjTBW3fEqHleLI9wkuZh9CXGxa\nxEH2EFK9YADBsK64iREaum6YhiyhMAcYUsMxJGK84cU5Xgz5wzhcHMAYL7jmM4Kogq5wrmZomgE5\nuQD1z4P7IRqZoItDgDgYXsUJSkaIF1AiH+URrYS9XgtjVTOhdPkMWhlw1qdDJYNhv9cM+h0F1/1S\nvQNKrGcU6LguK3AYEC925PEqHrhsCKPoussHKCY4ASY4KDlA6SFDckExNujKs6NIUhR9zkyU4Qr4\nHJFSmhSCxOqGEJYVDAqfahH9KoRDR3AIGuGwYTk4yEE4Q7X0o3EAa4wjOODuDBwCXr2DAzrUQ+5Q\nPBT+4NE4YOoGbuouDhZwMAyFAwA0vD6Jg+QzrBVxkIOAPhIHw++1HBwoUR+MAyYcDrP9MI2wrljq\nIRvCsig2HIMDLhUOZEIHB90KdpAJhf4LHOSYj8IBbtanW0JEoh0cdLcXMDysHAlGCBzMiClLyJS+\nQo4UOLiS4w2asFI4NSF/jgnkXZpyn0nnAubSvUqwo5EgJ+eTPXl04gCtD3kdyxEkDhbqS5/ENyK4\nME1lFzAXy+uNuBKr3LBJa4/24Mrwzwx4IyHHdjpKSy5I7s/EgXMFDkGSkMIBXYcdiZNsQKH7hLvX\nHf0gE1Rx5BbF6ozGASZ0xKBRFNVUdQZENFzBI66Go4N59+kRIaJ2KCR8snPioPAImR0cQtAFK2rJ\n4vBe4RB1OgXOIQvQhYFDSA9IHHyQfcQqIQQjlsTBBw66OERRFXOTI8E9X1ji4OvgEA57LV94Bg54\n2bJg43kBHPx+G91L5hIHr9/y0SiiFyPEqgFf1MEByuHIphTGIwXWLSyZrVNdMV/JUq8ffFc4yKFS\n9MLGERxwn0zosNrRnajigjvcGThQ8OkjjsaBouPgEFI4GFEh7FgHB4P9spi6lD9wBwpKDBwcwpZ0\n2lI39KghRyJxiEgVClpQcxcHHSjoxIFOPugzdAcH3bZDUshCHC/4AZbDV+kuDiEHB91wZxrFRSQC\n28ILhQP4pWYi9cECpjq0Ba4MUUUk4IvpAcWQoOVEe9LPzyh+TpYSTXUNozUcEgdDab6UNHVKHEKy\nO4cJYSdqUUCZRlRxQQ23g4/UeZ9PxtvOPakHDAoCjsu3JBbAwRYiFtN14XdxUI4Agm+pWB/MAAaR\nWESWcASj1cNyOEbMcIfjg26YcOahiN7BQXdw8Ec6OPiVHqFDafXCfOANGz7DwcFJLzAWfxT1OzjY\nR+MQ8ftjEgelHuzij+FAJzYTB/9MHCxKSJjqGjalKTC8fgcGS7JBzVPioAaDKzBBGisZQToVYnqn\nKAVxcJCRke4GWkfhEDiCgwlHbcSEiMeJg2It+pE4gOEKhzD6BwbRWFSWcJRO23BxcDXYp9uYsGmF\nolBzmaJIHGBxwKQoJQ04hB0cwujQoLLLC68BHBhBhn0qd/KHXRxMsok9xPByNAqF5gUa9PvjkEJH\nBNBDIAocwmgvaIUDqBr0xcPBDg66jLoJ4FE4kNl4YChiyJAQFs4yLcltxQYUJZBh2R0uwQSJg/TY\nLg6uHaPPCTvPpGNBR2EXB4MJQsBNQBRqHJ2pB/0WcEgkwmEHBxMdSXmIGNGIEk4oKDCw47Yshm26\n44sYCUtqEHEO27BYFnAImw43wRVKNphkc4Yhv4VzBRw6NPkgTFvsxalJHAx/0NUHmIKY33RjNMOI\n40Xbho1Hd3jR9vsTGKtKaqQTsyFmBvKSoGUETMMO+hOGxMxwgglG3ob/qBJQzA4bVFcjYkqWEgdL\nab4yOCiRiMsHGEhwwrb5xCmyqpUwHHNON+7ad9PpkSMMONWdgEolUcruyLDTbyWESCaBQ0CZPuAt\ncYi6OIQdHBIKB1PiYKqRzsQhFo6ErYgOOGbgEHZwsI7GAR1GTEaBEgfofSSMTMj0d/QBU4/5I6Zl\ngu0cTRygxGKYA2QYViLm9yeVmVaqThzAaIUD/sWC/qQRVFZep+0Od3AIzMQhGjWNsEl1RTgIAxCJ\nEAc5t6jDhg4O4f8Eh8gMHCz1SAq14UwHnSlHYzoBFV2+41kgShE4auKQShmGCEizg6E5AzDtqGrF\nChvAIJaMyWLGaDxNVTkhe2PHfiNuRDEoPWZY7vKLQRxMZFExvGACB9PBwUSHUeIguezD/Sgj+Rk4\nQAYS/qgbK5tmAhoSj4ckDrAScb8/BSlU2i9xiAEHE5MNRc2gZcZD/hQibDlR4MAuKajH4KCYbVg2\ncLCACBnq84PvygLL1yl6UTIiEJaw45JMMB0f4jAiklBckDhIJTYVZ/5LHEyaeeIQTQqRTndwwBhs\nqRe2GVM4GNBd4BBPxWWx4hYHoHBIKR1iRGEmAB3cR9yMhJxFLqIjcYiToTr46verztFh1GIUKHGA\nI4pSYy1nDRFvYerAATGaqax1CiBKHCCtSP4TgWAaY1USKZPYOLTPxSFCHNKmim0MI2r8ERwo2hZx\nMEgsaYN8QQUCH7FQ9KK2NCyyO+BAJsg5y5Gp2ilXHqEglrLrNFemMx0IiuKUJVNDnemjuiNxiIZD\ngWhKiEzGNF0cgLfUtJgVt2Vegv7NRCwWTzs4JCISJhYrFZWWDN0GgIPt4KCrtS4/7wYsJKtxMM/S\nA1EroHCw0KFNHCSXfQiEbIlDoIMDdDERsN1YGTjAiCQSiHnYHXAIBjMKB0xe4YBM18LUENqFYK5D\ngYylcDBVMGFRUI9agnNwgEeMAYcIELFxTRzk3GKKDZyyHWPernAALLgjnbcqylqnrIiru+rEch08\ntf5YHMIzQuAYcLARuEbTQmSzwCEoG4yiHzUAKxGT44WYm9CFZCYpSyQZIS+kjYpkbOWmMEUracUw\nKLiMqLMKG3BxCCbI0DD4GnCcEDq0I65I+KLAgTlqxFnLxVu2HUgG7IgNky1nlA5ErGQS2QZsCXBI\nBoNZjFVNXOKQcHGwESpYST2QtXTH28Ypp8xEj8WBoo0K0TjtbCwibZAvqCxPLK7YkECJxVw+0DjG\nyQSFg5RXFjsj7zgexXL1JGI500HArfxIZAYOinVxgotkzs4IkctZlghKcafWScWIR1wcbNNKJRLJ\nrItD9Ej32Rk4pGCxYraRJA5qsRF3zUAEF0kwLwIcIg4OEXQYkziQy75oFB7kaBww9XQg5uYskUgG\nxjyVQphPmx4MpoLBHOyFsgxcOdKT8NERTFaPR0LRSEoP5CIKB9gzFf4ZVKSZOAQVs61owiQYEWmD\nfGBDTGm+ZIPEIU5GmrZ0VOBEMimdtyrKa2aPaIjCIaIcfAeHkFNdRa9GB4cIpSRmhoLxnBD5/Ewc\nEmoAkWRcpqsWeJRJJFK5lCzRNIcQVZVzMenGcCMQSUfiGJSZitjhIzhYEgfcIw4xDEt1jg5jUXco\nPhs4UGMj7n6GFcDUOzhwNNlANJJOI06l1QgG08FgHmKgJFIu6qQcHMJxhGyRtB7Iz8DBkknRMTgE\ngAPEKmrZCYiDHY92cJAlodhA0Ysn5NpkzMGBTOjgoBgRzykuKEMlH1C5nB4tFwe85uDgpCLS7iAq\nRwJBHAqFSESEZIMx4C0NVDKaSjo4RCLZVCqdS8tiZ2zy4oNwSETiMTMdibk4RIhDFHlLmkmgEYhH\nA8oJRdFhXOLAuMAPIxTnmk30CA5x4hCPxh2nGc3hxUwGDs5WOIRCBXQ/A4c0rGA0RP8U1WPRTDhQ\niIaVw5OGFOEQDEZALbw6MIDj5GjEhgoDjJj0Bf4QIZBSrww/SjKpcGBnuCQTOGvlSBRoM3CIxaLu\nM9WjwsGZiLMSQhzUjSSsWQIpP3EoFomDNDuwfimpaSk7rXCAmEegC5l8RhY7A97HbDnWeF4ld2gu\nGM1Gk9FE3ATPwwG5CAzZD0aCNvKWDF6wjWACHFRuDR3GY/C6UbLVj8QgTo21g86aZSQYTwRzwbjK\nWTiafBA2GDjAT8bhNTOhUBH2QumKxCGDMNAO2XY4aeuoGg4W7bCtZDIlxZMhaPCoEqJoo0IsBXFA\nWB6JJ4hDMknLk0wpNlD0FA6RuIMDmECbrEamGJHIKy4oQ2W7o3Z6pKSEnHszcHA8fEThkMwLUSpF\no+/HIZNycIhGgUGukEPJ5mLZOBtUlQszcMgRh6SVicYNtZsIU9LBAfVM4hBQnaPDhA0c5IU/Hg8m\nHByUqEYCiUQgh/oJV+IKACWbRb4A2w0As6FQCWLg4gDf5+JgJO0wqoaDJQeHaCRp/VEcKNnROM0m\nwnLpC/yKDR0cKHqplMsHKmUGbKAtcHitaheO4KAeyVFD0WkaaJ10555aNzedVIR2BzgkI8ChIES5\nTByk+U+kUypATcdcHGAoC+i9mJMllotTJhUOpQRNGQUgaOftlJ1MWVk70cEB6ARj4FI2hpjDDCYh\nycqtocNEnDjEMBd/wsEhFgy7+pBIBvPBhModOZpiMB7L5ZD2wgbgxVwoVEb3ygpzoSCcRawUC8Vi\nRioWRlUjWI4ZsqtoNK3CcIv5eDAYOoJDMknJjsbTUYIBHJLEQVkeFMkGiUPa5cMMHJyRKUakSooL\n0rHKRzEVaHX0QXfqy0RPrQQoVqRhzFKRcChVFKJSsW2hSxyS6XRGDSCWld2HIOZ2MZvNl/KywBax\nQQVaKTkThzSsaSQHHJwdKdwlDrqeUzikOjigw2QcqikviAMiEAzMxSEaTBKHZCzl4lACDvm8wgFe\nM6/rFXSvrLDcNssRB13hkIjljWDFwcFGYIHyfhxCIZoYWpYM3FcinZC+wK87OGQUG7Io6bTDBwYM\n4ASY0MFBMcLFgYXsPxqH6H+KA8KrVDSsp0pCVKvEQQoBRCQrLV42nss4OMCe53KFckGWeCEh1UVW\nLieVc49BFAuxTCyVjuRjSXe7CiyKhuIhXc/HUc8KpSDJKrxAh+kEcWCM6E8m4MmBQzzk7ChEQ5h6\nIZRWOTxHUw4l4oUCsm84UOBQ0PUqZAbsZddcwc8jIInrcfinuAF7aYaqcVPFEtGMCsNhMEJHl1Qq\nm0WFRJb+LpOwYQrSfl1iAC4oNtAEZDIuH2wbl2ACfaNTlO6UFRekoVE8kfYi7kwHguLMxFmRkmuX\nSt5hzNLAIV0WolaLxYQu3TBERCUK2Xg+q/ZsUnYMulCsFGVJFJNsUFZOVlJyRBKHInBIp6MSB7UZ\nFYPBnolDuoMDOswkEYXKiwD8YAYe9ggOdghTL4YyKofnaMqhZLxYNA2LF7oOHGoQA2Wh5XJqB4cM\ncSiaoZqDA5McmuYPwCGdBg4wflm4r2QmIX1yQLGBOEg20ARksw4fUHAJJiQVswmUql1J/Cc42C4O\nuPU+HJiCZeywnqkIUa8fwSGbzckB5BL5nIMD7Dl6ryocksUkgzpVuYqYLillIxQvxbOwptFCPGXN\nxCGBi0ICeEVCGUiyCi/QocIhgbkEUhIHw0iEjBk4lFA/oyLIZLISSiYcHFJ4sajrdXSvvKHEoQAc\nEnoiYWUSRioBHOoJU3YVs3PSWjA1DoU6n2HxjKYeFVI5qGUqm5Q+WeJAY5TLdXDI5Vw+IHBzcXBH\npnCoKi6oSFf2K+124ggOTv0ZOChW5CQOhp6pCtFoxOMinJW2MJfLS4uXTxQUDrF0LF4pFEq1kizJ\nEpPrpKycqqWP4FCO54CDXTyCAyKbGHAIh4vH4oAOsymYSHkRQDyShWU/gkMslM2GyqGswoGjqYbg\njEoWMnsUXS+Fww3goCy03J0sIkBPoD0rmzBR1Qo1EpaKrWM5aa6ZGh+Fgw6O5/OJZDyVjxGMZDwL\nAAJhiQG4oNhAU6xwAB9QcAkmpBSzpd2Qpaa4IAPN9+FAy2k495yldCclJA6IJLIxI5ytCdHVRRxk\nOAQRKagBJIt5uZ4OcxOHLpTrZVlS5RSDOlk5Xc/INAfN6YlKIpfIZu1SIq1wQGoCx6kn9XC4lARe\nET0LSVZhHjokDkaCsXogndIlDknd2dOK6TAFFdTPqggylarpqWS5bJkROlFdL4fDXZAZ5Q0lDiWk\nRclwMmnlkib8lqV3JS0V08XyMrxkaqwfXehyUSFdgNlM51PSJwcUG+gFJBtoAvJ5hw8ouCQTOGs1\nMlW7rrigMg7Zr0o8nOlAYZ36M3BQrMgDhxxwyNWFaDYTCReHfL4gPU8hVSqoPUwIJXSh0qjIkqqk\nO91nGhkVNxGHaiKfyGXtciITUV/9wLXqcT0FHMop1IvqOUiyCi/QYS4NHGBkUqlAJq0jEjTNlG4q\nBsV1iGAV9eVaCkdT19OpSgU4wInixUo43ET3ykLLTbAyAvRUmPFaysykKpbeTFlqbEhyGNbQYBwN\nAyZcLDJSVzikpU+WONAYFRQbaAIKBZcPCShlCUzAg5RTFA4NxQUV6cr7KvFwpgMcnJk4WxrEQb3P\nFCwXN8O5hhDd3cDBkGFptlAoSotXTJUdHBA4QBeqXVVZ0tUMG5SVM11ZOSL6zmQ1WUgivSgnj8XB\nMN6HAzrMZbgvp3DI/Kc4cDQNHc6oGrEYv2fC4aphdEscKFFy80XigMlG8ikLVSN6dyry/4hDhmYz\nU8goHAyJAbig2EAT4OAgAyhcggkZxWwCpaL5LsWF/wIH3HJWyuVafgeHfNw08l1C9PQkk8KQYSn0\nsSQHUEqXixKHBBxWo1yuNWuypGsZqS4s2aZadJI41IBDPherJLMuDkloiZ4GDpU08LL1PCyKCvPQ\nYT7DfTmGisFsRs8nEqaZdnFI6Pm8XkP9fNqJIrv0TLpWkzhkFQ49kBlloSUOFQToaSOdjhTSVjZd\ni+g96YgaW6JI/qVpMI7BIZ8vlVAhWwIO2WJW+uSgYgO9QAeHYtHlAwI3cKJWw4O0U1TtpuKCDPiz\n8r5KPJzpwHA6M3G2loiDer8IY1ZImEahKURv7xEcYP+k5ymnKyW1p4/+uyqVWrfCIVPLskGFQ3dO\njgiwhlP1VDFVKMarqWxUfeQGHMKJcDpsGFWJQ7gAi6I6R4f57BEcsmHggIGFI2qLNwEWhevhfLrg\nzqgZzioceBEO1wyjF90rbyhxqIYVDlEHh3BvB4dSB4fwzKKHC4VyOZ1JZstwXxKHgoNDUXoByQaa\n4lLJ5QMCN3CiVssqZhMohUO34sL7cHCmA8Pp3HsfDiXgUExEjEK3EH19qZQwZFgKEXFwyFTLak8/\nn0zBJtV76rJk61kGdrJyrgexdVYqYjjVSJWIQy2Vi6qvEUMpOM5wBjjUMsALOECSVZiHDgvEAcY+\nkwnmsuECPKyVCUcVi5LhQj7cQP1Cxokiu8PZTL0ejdgMZgyjbhh9kBnlKeVmZA04ZAzEzcVMJJep\nR8N9maiKrZFsMrzkUtEH4IAKOeKQK+VkbBQkG+gUHBxoistlhw8ouCQTOGs1MhXN9yguyIA/J/tV\nCaAzHeDg1Hd2LOSeilK4JHGIGsUeIfr70ylhyrA0Xy5XpOepZGouDvCrtVqjtyFLtpFjg6pyr8IB\nsIbTXelyulhK1NN5W1cfrDg4mGadi7WxcLGDQ39/qpCDq5IXwXzu/TgUw13AoejOqCeMoKABHOBE\ngUPDNPshMyoqkTjUkShl0J5dykTymUY03H8MDjTcR+EQBscrlUw2laukCEYuXSgCB1NiAC4oNtAE\nuDjIwA2caDRyitnEQUXzvYoLKuOQ/Ur/eQQHy5mJs9U6E4d4vJSMmqVeIQYG0mlhyrAUIlKVnqea\nrVUkDqlCKg2b1NXXJUuuK0+ZlJXzfVyElYoYTjeBQ+koHNLQknCWOGTxTixcgkVR4TY6LOa5T82Q\nPQgjBH8ZiWRdHFJhmORmuJgtZdV6Tr43nM92ddkR5lF5w+gyzQGIgfKUHRyyJuLmcjaCqnZ4IGur\nhChVIf+yXCqS3O/AYJRKtDDpfBU45Cs5GRsFFRvojSUbiEOl4vBB4QAmyCRb5Rmqdp/igky85KOs\nSsSd6QAH594MHBQrKql4vAwcyn1CDA5mXBwgIjU1gGy9KvdbU0X41Xq92d+UJdc8gkOhvyhxAKxG\nppmpZJDmNTIF2/m0J40AxsgaptnIFrLZuFGCKVKdDw4qHORFsJA3FA7q0wpM2SiWjKYxA4c+I59t\nNu0ocEBto2mag4gnVVTCN6INJEoODlHED7Yx2MGhKnGg4TaOLhIHqEEN7qtQyWfKUASJQ0V6AckG\nmuJq1eUDAmhwotl8Hw79igsq85P9Sv+ZdaZjGC4Ozlars2RIwwenUk4Bh34hhoYyGWHJ9KBYrdak\n56nlGgqHdDGdgU3q7u+WJd9dYICtKvcXZdovcejOVBFdJLsyxZjzMVsGjtPIGZbVxUXzuFGGRVHh\nNjqsFPi9QA5zCRULiKjSkUjOcBBMGxDBbqMCY6HW1Qp9RiHX3Q0c4EQLptm0rCHIjPKUcnO+Czjk\nLMTNlVy0mOu2jaGcrXKcdJX8y3HJ7hgcyuV6HRUUDtW8jI1CZAOdQk2xgaZY4ZCWOOASTJBJtsoz\nVFbVr7ggAyC1QSD9Z86ZDhTWmckMHBQrqulEopKyrQpwmDUrCxxkelCCH5IDqOe7agqHUjoDm9Q9\n0MFBmi2W4oBaDAesRrYnW81Wyslm9mgc8sChmQdecaMCSVbh9qxZEocIjH0+38EhPwOHqtGD+pW8\nE833G4V8d3fMjjOYMc1uy5oFMVBRicShiYQ1b+XzsWo+Wsx3x4xZ+ZjKcdI1GebTcB+DQ6VSr6NC\nsY4wolgryNgopNhAbyzZQFNcqzl8QMGlwiHvFFV7QHFB4SDvq0T8CA7OTJwtb+Kg3ufSUDVtW9UB\nIYaHs1kHB0THDRkBNPLNusQhg8ABNqlnsEeWQk+RDSrQBstyRBKH3mwNM0l1Z0suDlloicShm5sX\niRk4oMNqsYNDqWggM8LAXBwyRrVq9BpVhQNHM2AU8z09wAHBDHDosaxhxJPKU8rP7rqP4GCX8j0x\nY9jBAXGWdJvvx8GsVBoNVCg2EEYQhyoUQeJQk95YsoGmuF53+YAAGpzo6SkqZhMohcOg4oJMvJRs\nyjgm70zHwQGvyQVZtfetWFHPODgMCjEykgMOMj2AqnbJAXQVmg35HQj7H2g2e4d6ZSn2FimTsnJp\nCDlOUeqomevL1XNV4JArxdWX68DBzJgFEzgUSgXkKlVYFBVuj4woHGDsCwXgYEocCurTFEzZrNbM\nPtSvFpxoftAsFnp7FQ4l0+y1rBGIgYqlFA5mMlmwCoV4rWCXCr0xc6QQUzlOpiHDfDwuyFG5n2oa\nZrXa1YUKpS6EEaV6KUeGhsgGOoWurg4OjYbLB4kDmcBZq5GprGpIcUHh4OSBPHGmY5oRp/4MHBQr\nGsChlrGt2pAQs2fnciIi0wOISJeMxLoK3QqHLAK4we7uvll9shT7SmxQVi7PqhzBoT/XyNWq6Z5c\nOe58ZJuD4wQOkUgPN5GSZq2DAzqslSKRqMKhXDIRtxAH58PRrAlT0I/6NXdGQ2ap0NcXjyUQVJYs\nqy8SmQ2ZUZ5SfqzSY8JDYrLxesEuF/ri5uxCXCWm2YZ0m3Sg5tGFoU+hmCt3IYwoN8oyRg2RDXQK\nXYoNNMUKh6wMZHEJJpQUs4mDyqpmKS7IxEttmKkFEWc6MJzOTJxPQGbgkE2l6plYpD5LiNHRvItD\ntdFoygigWezpUjhU4Vd7evqH+2Up9Zcpkwq04Sqaljpq5gfyjTxw6M1XEjNxKAKHXm4iAQdYFJX2\njI7m6mXgAKdbLIYqZUS2WdsuHsEBpmDArBdrKrMtl2eZ5WJ/P3BAMFO2rP5IZBTxpIql5McqvcCh\nGCkWE/ViDPFD3BwtxlWume2S6RaXTo+GwWLogwrlZq4AMMr5o3BoKjbQFHd1uXxAIgNO9PfLxQ6V\n7ykchhUXVAYu+5VxTPEIDs5M5MK4+gZBsaKLOGSBw7AQc+bk8yIi0zSoarccQHextylxyCGQhk0a\nGBmQpTQgcZCVKyNH4dCVrzcyfUdwyENLJA59Cod6Bwd0eAQHnTjkcjNwyLk41F0choHDwEA8lmRQ\nKXGYAzFQEYvEoc+EhyQODeIwEDfnODjkc00ZvtCBvg+H7u5iKV/pRjhX6arIGFWPSF2gN5ZsoClu\nNl0+IJEBJwYGZuCgstsRxQWZAL8Ph9zRONCZH8GBS3QN4NAYEWLu3AJwkGlaDX5IRmI9pd5u+cFZ\nDoH0LPQ+W+FQHqgw4ZSVq7ORa5aljpqFwUITUV6mv1BNyC0nB4cScOgvAa+U2YBlV+nn3Ln5RgU4\nwOmWSnq1YjaIQ+kIDo26OYj6jZJaZ66MmJXSwEAinkRQiRcHIpG5kBkV08rPMfqBQymCPLKrFKuW\nBhLm3FJC5fy5bnKnxCXsY3BgCIoKlR6Ec5VmpVBvEAfMqym9sWQDcejudvng4iAXnVTerbLb2YoL\nMhCtyn5lHFPq4GA7M5mBg2JFN3DoysUiXbOFmDevUBDRY3HoUzjka/nCcF/f4OigLOXBGTiMKhwA\nq1UcKjaLja5sf7GaVP9rJoSaVt4qWdGowsFqwLKrztFhoxKN2i4OFuIWDMyKq09E82CRNWTNwGG2\nVSkNDiocqpHIYDQ6DzioWEp+NNRvwUNGkUd2leKI4xLWPAcHxLsyfKEDtY4uXV29vaVyodqDcK7a\nXZG5gh49Gge6RIVDXuKASzDhfTiMKi6oQHYGDs504MCcmTif4shvUBQO+UymKxePdo0KMTZWBA4y\nXYaq9spIrLfc36NwQCA90t8/NGdIlspQlbZBVq7NqaNpqaNWcVaxu9jVlR0o1o7CoQwcBsrAK211\nwbKr9HNsrNBVBQ4lprB6rWp1EYfyERy6GtYs1O9SKwzV6qhVLQ8NJeMpBJXAYSgaHYPMzMBhADiU\no8gjm+V4rTyUtMbKSZXz53vInTKXsD8AB1So9SKcq3VXIUXEAfOic+5VbKBL7Olx+YBEBpwYGpKL\nfyrvVqsMcxQX1EqI7FctTB3BwZnJDBwUK3qAQzMfjzbnCDF/frEoojJNa/T09MlIrK8y0Ku+RW0U\nirBJs+bOkqU6q0aZlJXrc5FrVqVsWKXhUk+p2cwOluouDkUEklYFOAxWgFfaasKyq/QTHXbVgAOc\nbqWi12sW4sdYrOLiUACLrGGrC8ZCrTPX5li1yqxZyUQKQWUtEpkVjc6HzKhYSuIwCBwq0Uol2V2J\n1yuzktb8SlLl/IVe8q+Cx5VjcGg2+/pQodaHcK7WU5Uxqk420Dn3KTbQFPf2OnxAwSWYIBedVN6t\nstu5igsyAa7LfmUcU3GmAwfmzGQGDooVvYVMphs4dM8VYsGCUlHYLg79cgD9lUEXB8Q3g4PD84Zl\nqQ7PwGHeDBxGJA65oVI9JT/+tywHB9seOhaHBQuKzZptxzo4NBFxxmfg0OyyRlC/g8Nc4DA8nEyk\nGdxHo8O2vaCDg/yIbshCpGIzj6wkEMclrQXH4MBA5mgYIgxBK9Vivb9YLtZ7a6VuKIJuOzj0KzbQ\nFLs4yEQGnBgefh8O8/5fcZAbFOrbKBeHbLanELe758m/w+R1jqL6q4C+j+BKk9c+HyyXWCPGhV9k\nxRe0AW2+tkL7gvZnnoLne54XPf/b+xXv495ve3dXk9V8tVytV7urI9Xjq0uq36wlIL3dtVl1Tz1Q\nj9bj9VQdcVJ9oD5R31C/oPnSvj0/t35/+P96Dh/mX0oUD2qztOO009By1vM8Wn6l03KiiryPk0bL\nx31AyzG0nOu0vFG2LNCyJlt2yiH5dxQPNYV47xPvrXzvQ+8dL8S+h3lv34p9N+47Zd+Cfce9fuD1\n1uv/+Po/vPbua2+/9q9CvPY7HK+/9qPX/ua1R177xk+Pq94sRMgv/9riGi3p6fec6PmYEJ6/8XwH\n9DtuT57neXheEn+keKbUcdS9J3D8rUThSvG0+Kq4UOwUS8Vz4r+LvxQrxF+JdeJW0RIvijfEN8Q/\niX8QnxXXiBfE98TlYrv4mHhe3CE+JW4QU+IU7Uahi7AwhSUSIilSIi0KwLEkKuBxXfSLATEohsSw\nmC3GxHyxQBwnThSniw+LM8Ry8RNxvThJnCZWiw3iYnG1+Ly4WWwV/038qdgm/lzcI+4TT4pvid3i\nf4nvi5fFT8Ve8b/Fa+JnYqX4iFglJrQ/EVeJc8XfifXin8VZ4rtio/i4eEz8ibhTu0H8T/EVcb6Y\nFD8S02KRuEt8U+wSa8WjYoe4UTwiHhY/EE+JgHhJ+EQIshbUvigMERMRERW2yIsMpC8n4qImekSX\naIo+0S3uFr1inhgVc8RccbwYEV8QS8RCSOqpYrFYJk6G1H5SXCIuFZeJL4vbxO3iS+LT4l7xkLhf\nfE08IR4QF4jHxatij/ixeEW8Lv5e7NMMbYlmaks1S1umRbTlWlSb0GLaKZoNmY9rp2oJyGdK+4iW\n1lZqGW2VltVO15Lah7WcdoaW187UCtpZWlE7Wytpq7Wydo5W0dZoVW2tVtfO1WpiE/Tmeq2hfUzr\n0tZpTe3jWo+2QevW1mu92nmiLP5M69M+AQ3bqPVr52sXaIPahdqQdhH0YpNoQD+GtYu12dol2oh2\nqTaqXabN0T6pzdUuF7PEd6CVW7QxbTM06NPa8dqV2gnaVdqJ2tXah7TPaCdp12gLtWu1ce06bZH2\nWXGCtlj7nHay9nnxIfFzbZ52hbZA+5T4qDhHnCkuEn8rvi7+UdwitojN4lnx1+IZcZ74hDhb08Rf\naGEYhf3iLXFAHBS/FL8S/0e8LX4tfiN+K34h/lX8TnxGXCsC2ktSn/f9/1uWMQdIIWQwApnrhoQt\nhHSNQ7JOhWytgVx9UkrWbZAtSta9kKqHIFcPQLL2QKooU+dB3qkN3xVnQ9q/AA34uPghZH+j5od0\n94r3xKQW1ELQlbvEIU3TPOI/xGHoyw7x75Dex6EPV0FzhLhOC4h/gxbdKK6AhgWgH32Uhw5C3xb/\nQ1ygecHxE8TnxJvii+ImicQnoGF/A/za0KkoNMuGPik9ylOHNB90idozT2wC+v8I/VT4rwX6Xxfn\ntMTgqS191Zpdmvana5/WDt/cWlLapXvXf3yopQ1Wq0svXtLSNgy1PIMtrb821PIOVpe1vM1lZ6xp\nrK3eXr19xcbbq8uqm87b2PI15S8eXHD72uFqS5y55mLQs9bUWuNrC53TC9auPX6o5WMzPtnM7WvR\nwCVOA5fIBvD+e0Mt/+Cp1Za3e9Wa09e0blhSaI0vWVuo1apLW7tXrWntXlKorV071Ap0xojfz1+c\nVaMNDrYC/UOtkGrhTLyP19fefru6atRau2+/vXA7ZuBcP62JY2+Mz7yBGS99WrthlXxyQ6NW4I1G\nrVHDiNYuGWrpg6eeuWYphlRbOwSRakFk25rHM6C1vV7QKe/yRfOa2dDAlO/Dzon/LHUipjTnbMrz\nsWVj8lY74A8OtISaT3tDSPt0+/owyAMkz5G8TnKYpBLWrmwvJFlPso1kJ8kPSN4miYa1q9rDJCtJ\nriDZaeLdt0kqJqoMk6wn2UbyAMlzJD8gOUwSNdkKyUKSlSRXkLztVPk0q2BovLQjOBsnWUWyk+Rt\nkuEIhxvBa4d5eQUu6RhT0LgToZET+BUifrgoTO1HIg5vG/f8DpZBQLvVf1+Gb3kFVnuWp9/7qP+l\nwNbADwO/DWaDZwWvCV0e+qb+2/Bp4S+EHwq/ZAij23jUfNictiYin4rmo2P2JbGJ2ObY12J/EzuQ\n/I9UOvX99O8ze3KX5LbmXshfXjilcGHh9sJkYbq4oXRLRVS+VvmbyhvVrdUdtQOIQOr1c+vXdd3e\n9WhPqOfcnlbvpr5Ng/cOTg1tHTowy5z1w+EHh58f/tXIZSMPjbw02jV65ZzpudV5l8z79lh17KwF\nXz7u9uM3H986IXLCwyf8/sSNJ3lOGj3pEwu/sPDBhd9euH9cLJpYNL3oXxaHFy9Y8u2l6aVXLn13\n2e7lkxNLVixbsXvFj05dctrVp019OPThlz5yw0cOrFy18oerxlatXrV71U9W/fr09OmDp0+ecd8Z\n3z+zfOaSM58/69dnB86unv3s6jWrD63pXjO+dvTckXMnzr3w3C987NmPHVqXXHf1+lkbzt2w47w1\n5x3aGN7YfUHgglUXvHHhZZs8myY23XjJpksevuS3lz592QuXhy5fdvm9l//HFR+/4r4r3tic3Lxg\nc+tTOz5911Weq+KfyX7mK9f4ru2/9t5rv3Pdjs+e9Lmxz09d/+ANX/uTxTce/8W5N+Vv+sub/vam\nvTcdutm+uf/m3bc8sXXktk/dduNtk7d/4kuXfelzX/7Uf3vov/3sT/N/etmffvtPX9n2uW3T2/Zv\ne/eO+p32nVfe+fCdu+985c5Df9b1Zz/88xu+kv/K1r84/i+uu2vwbnH3GXdfdvef3f303b+455R7\n7tpe3X7a9s9tv2P7S9v3bP/ZvcvuPePej997yb1X33vjV6/56k1fveOr9311x32R+/L3dd83et9J\n951y30P3/eV9z973/P3x+8v3998/dv/i+z9y/7n3X3j/p+7/wv2333/X/Q/d/5f3P3v/8/f/8P7X\nvrb7a9//2itfe+Nrv35g9IGTHjjlgdUPfOKByx+MPJh/sPvB0QdPevCUB1d/fcnXV339Y1/f9PUr\nv37DQ2se2vjQ5oc+99DWb4x848RvTHzjrG9s+MZl3/jdw+Jh8+GtD08/vPfhAw//7hHxiPlI9pGu\nR0YeOfGRiUfOemTDI5c9cs0jNz1yxyP3PbLj0Tseve/RHY9OPrr7sfHHTntszWMbH9v82Od29O6Y\nu2N8x2k71uzYuGPzjjt23PH4xidGGLbLSFJ4/gGetwHbPiBGW4PDraHh1qDd6p5udQ/vSvvebQ3Z\nrebeXUXfu+KvvFqXb+CvmloO1KdpvoGR2fPnzUn19MydPzY2/yTvvLndjXog2DM2Nmc0nUryLwIG\nUplYLabheG3BPI8VTMfsZNg3VKkMBUaDp4yNLct1NwOB5w5t1P7hkLjq5JOvii3IWaVYNJOI6V2z\nB+eEJhYtP7E6r1FLJOc+7bn4vbs99703iiELoaJ1z196P+3phucXWhBe6XXEDh9qX2Fo6yYXGisN\nzxbajS2TO6PPRT3rpnZHp6P7ot51grZmHe3UOhqhdbQruETNkdlH2r240+5G2e6YbLe90NC2jFsP\nGDuN54wfGK8bbxuBde0rSnxSkk9KO0vPlX5Qer30dimwbmT2B4zzetneQPsKC29xgKJ9mKdvcxgL\n3bF0RoVGZs73nk47fyvbWdleFUPtK2KofQPIlIjZsWrMu2Vqd2w6ti/mxZ2aXavWvKhUY481Dc9q\n07V9NS9ewS3RXp9kX8Vj+/pop69/lH012wvz6Atk3dQD+Z355/Jo4Yq8bKGCFg73qha8sLDCczzs\nbhgxxID22XZzwDvQHhnAyzZIa8DeJXzvtu9o4qWRJu+CtJr2roD33ZawW8Y0Llrl6VZ5uL2qrK3b\nFfO+264ZzVj8uPbmQfTXEkvXtHLDhV0586S18qIfF/2Bk9YiAHm3beT6UbVlDO8Ke95t5exdaY3v\nh/n+wRoHqU3u8D7t9axrT3jR/R+8GIgewtm9CQjPNcmtSTw6QK5cTHIvyYEUL0nGiqh5C2Y8eWH1\n6ipqrq7ixltVPHqzAbKH5EddvASZWt11YdfVXQBidc+FPVf3gGcv95JnZ7Hrb7HrpTx7lGfvkAR4\nGeZw9kdxuYm93wMyeW3yNg7sIG9sSrlj2s+ON5G83HD6bP+Y5BV0M3/O6EkeqmZjnjqb5Wk0euaM\nlj1U0VQamhrBnR239ywZLZ17zp/fmZ/Tl9crJ865feKfBs8Y71504qlnx8YuPPuVxXZttLFsyYlW\nebhu9PaWFsf7l4wef2bEE1j3kdjiRSMy0x05/C+exzx7RI/nlnY87B1oxe2WmG6J4fa4wHSmhbau\nFbZ3lQDnql6qXh8Frw9KurBvZR+mdn2fi24UgEZddP248APddiLqJ7KJ4VbU3pXV3m357V11gNvj\nj/J+z3B7ugdNbuiRILff1HBxWxBkbYhnJG9S59eS3Ebysk2wqD5XkXyX5FaSt0im43wAMnlbYnsC\nA3wGAtJ+ieQXJE9SXp5JvkhYniQsv+xgs5ZkO8mLJM+S/ILkSfkgDfIMyRMkvyJJ58CjN/KUMJK7\nSPaQvAMyGcin8zBpy+XzAm48WpgqoNv9Bb5awKvLebacZ29SOMcqyyp4flfVlZE0xXQ5zw5SPFZ0\n4XIHdXAtyXaSHLVxBcmzvHy8G+082/1SN9r5aTdvkLu/6qH4HiRvD5CFK2i+9pCPL4Nnk1fHbolx\nXOTfleTfGyQvk3yPPJN69aLLp8lnUi+mUH1H+iiuHCS5hnM9QHIKiZzpAVoaOQmpcPs5kwuaZEdz\nqol2pjjMPSQHMMxmxNuoz4LYn+SBV8oEZ+EyAtEve6gN8z2PxectWTm48tbzFyw4/9aVi28aXmh0\nz15QXHLZqb29p162pDh/3nByc2GkkVxw/tbTT996/oK5Jw7H6nl79KwrPvShK84aDWf7KlLue6Tc\nr/B+rj3YBVsX7BqkPAYhj5C+VmRvexvt+esgraDdSu5t/5oMKEeCqDZufLX8ZPmvy39X/mnZD7GE\nxWv3gbS67F3zYRHhkRdPtxYPT44vXrUYIjC9GM/KdmvF3vaqU6hFp9LjnbryVCrQqa4C9UFn+lwF\nWoGLFVCglrm3PQLMWrG9rRU0se2hvhUcKRx/n71rFBq1wt51IjRq0Yo+3l803N6wiIqwSGnU3Vnq\nRw4dXly6toQOl9Op7KhTikjWkPPLwfnJH/e/1Y/nPxogSiS3knyP5J8GiTDI1L1DTww9OwST+HdD\nFCySF2bh5SdmPTsLL/9yFqVkmD2QvECylmQ7yTMk15H8gmT/XLw4f+7yuXD2n5l769y756Ldb82j\nJsxbNg+tPTqPtUhuJfkxydhxHC/JrSS3HM8qJMtJ7ia5ZyGaWLvw4oU0vQupwCTf5t0Xx18dp2qQ\nQ78iufpkvk9yN8ktSyinJHuWcvJLqTiPgIWT382+nPWsm7wlexd+2reAoe0pcvXu3GM5j6P73yO5\nDm65fTEjjM+SHMPuZ0jOIc9vo2aeQsbv6d9Pxr9BTr9MckuH8W+S8XtIXiCrd5DVz856iaz+RYfV\nB0iu7XD5RZJzhwnK8LPDqLlgLplCcoBkBdl+7dzbwPb2VrL0aZIVJK+SvLWAsBy3/DiPw+M3XfZO\n3nr83cfj7pvk510kU2TqOQsvIqsf442Xxzl0krfI3mvI1AMk20m2krMHlxCIpa8u9azzZ5zgEy6t\n3jM/PWd0TDo8hqXzu3v+uB3I0Ez0aJd6QjGjPJyq9SXnDtn13nSvL5yMRtLh+Nyh/pP/MxtxgrQj\nhnGi5vX1dGXqqXC2K57M+SKWHvDHlgdixT9uP/ppXzQZjq8G+RbiJlPktMF2IgdLspOicT0I4xhG\nTbthQ1sJGSu119MiPkAiaPZ3F1zlj0DfI67yZ3GRdWKjVsTeZWjvUpWfZqxxHMnjJK/KIIihx708\ne9pHFEEmt/se9wGPp+k8V4R4I/R4CDde5Q0ZNT2l42yCZAfJcSTbSV4l0XVWoXtYTZcg/cKt9Aa3\n0gSuliEMyRRN/kSaKiKjomUkMipaJsfCtp4g+WuSFWzwGZJl6U6YMyO4YVTztS+f/pmV3d0rP3P6\nlyd+ufjmSxcvvvTmxb9cPPv0i+bPv+j02YsH1968Zu1Nawdl7MKYtQHeG+LClne4bYMT5HfLa7e0\nva3AdCswzNg0NN3S7FZ4b3snvN7k9dY2y+PwXAYpLs89uPC4PEeQEoBJ1f0emlQdYSkRmF9L1WI4\n+N8O7bOHPqQ9dehO7ZxDjy9e7PnO4t8sRhwux8TcQVgyDl8kdiEOb3DhZZ2YfNs8bHqcJAbpzBZ5\nWyY2bhx/7Psfle/Pbm8D36aG7YX2StuLBMl+zvYwiKcf57TaCxl3ro+iybejsrVOWxd32too21o3\nrg+bC82V5nrTt2Vc32Y+YO40nzN966ZeNzk+mOAoh7YBo5p6Pft29nCWt7JIlvTh7MLsyuz6rG/L\n5APZnbSDG+hdttH/PVc+ut8jc7he9jugHOqGKMVFZk0yf5JjXs/RHybZGXV4Ad2yHN2yRU27vV2o\nUbdoTK8HadUc3YICtQqdPMSaJo3sxeNWXNLkdHs9g+wHSEQDyZtEOw200y70VVxUXejTUt3aVrpK\n6K3hXTYykth0y2Jb1MIc5GzyOO8Kr8dRvJ+SfJNkAcX+HpJnSHI+1FwQmoDuTd4T2kEVfIYqmDta\nBaXi/ZTkmyRPZ6hkWSYTtCTdjDHP4dmt9C6r6VP2k3Qjf23fyrPVZbZHEHY3yN3JjjLOl8kKx3IX\nyQL2vp3kFJInSBawz1NIniV5hr2fxd5XEFrZ8RSbXk7yUfQ0Q3OpCMxTYh+owZrn0KGJFSs+QI9/\nMzamzXmfLhvAWhdntzTosuboMjTXu5eYQp2h18G97ZWGazK9gM3rYihwIRgvee1dPuAX9AoVz+0K\nUXXnNDqKO6E9eeh+7ZRDU1JnnRzovyMWbHpK7WQJOVDJ3hWCrR5OgguHafJaIK2kvSuGESXtVhPZ\n7nB7hE681eOOpo4B1I814G1Rz3IYYrhVt3d5IV5Ze5eF4SXU/cRwex+8w664MvAvIt2a/Kp4UjBE\nwXn72yQXMW5fQ3INyNRt2nbtcQ06+SJv/YHkpyTfJnncA/J3JHf5Qd4hCfghhvP9y/0Qw7HAsgAa\nfyfA+wHMbxnJVJgeP7w8TC8e5stcOtlD8g5JwEALy4zVhgcNGcsNtkDLtZqG4i2KZR/XGQ7Qr/XR\nr/VVQNaSrGHM38c8Zi2JTLffYArwsky3mQfc1XyUecDzzF+ealKA7+a0d5C8Kty57yB5gQy4WLtW\nu40MeIa3fiIfcsYvgkwe51+BebaXcRbzScY6U1lOspajPSjTFI52dSfXeqOThf+MA/kuyaMke9xx\nad3dR2KQsfnzKPiBwMxsxXNp18bFbpgx/4Lex39z4rZFbq5y9mdHPIu7B91AopD5P4sPPdJounnK\n8IirB5+SPu3mlgE9AOPbq0hGQHaFIX+e6ZYhFWE98xTvNLKTXQHfu5PCsi1YpG10ctPWPji59iqL\ndtxyJVSDUGquhIZxEaaEejSussD9Udd808j2W8HplsfepVMmE3NitdicGLQn1tgwod04MXHoCxOe\n7xz6e23OeydqKw/tUmMWOzBmrzgNfUizvI9hyCrfBoQhk9f7twGRqYp/2L/QD+e12z9NhITftcVH\n6bEcJMYlVXbOjgl0Rp+yHMwJSJ+SdvyqCZ8ya/IB/86ZjcPF+g4z9llIc7feRxfrnMm1vcNv4+3c\njHY+KtuZO3l9cFsQrz0HiziuV0LDoYWhlSHfFngqatBOkvUkb3NpApzn0iPGdfg3aCUjfWza8bGm\nXOO7Hh2ORx/w7fQ95/uB73UfhxVcN25EfRXfsG+hb6XPv6W90sb4rk/Lmumd6efSP0i/nn47fTiN\nmno0XUkPpxemfVvc2ID/l2r/c8bYr5d9DbtjFxhVezMImBA4TC1fSC1fTwXf6Zw5vlUTkcP/on0Z\nrE2Iv2mFhuW8J18PvQ0X1UrslZY3BD/IJT/av20pV4ak2LhY2biwpZWzw8rKyQWj9g1cNbKlvaNV\n6wXS7YvJvetINnEsB0CmQoFsoDfg3dK+hSHMLQwH7kGYOfVM/MX4q3Eo+BNxWoML+daFfGsr693m\n1ms/DTI/nZb+CEIqk4junnPCYyM9swvhicTwacet+IR559DcyuyFNe2N9w51nfqh3lNXuHp2HeYf\n0f5HyxymOp1MZP+K5DDJn5NsJhkHS6lnCDHPhDud/Ib3r7gO+T261rWMvu/xUmhS3qZ3nnepF7HR\nP3l/zhpfZI1fkwhUa/n2Tp7v+zQ1IuVr+qCqf6BkjlFGl5J4QcajN/ju8D3oa/l2+6Z9+yAyLVPi\nwDWIwN72z8i28wOfDnwxAPb8L/LkX0m8AHnqjsCDgRbvT/OW3whw9XQZjX+vf4EfpvtW/93UvEfJ\nz2+B0JBEptsVimHL/sBM5CjdNHBhBJyLIC6CEnyv4bg4fW97KVMHv9DZdQ9xf4qdcRDtFEkiRNXR\n2j+hwf4Vyd+TfIdc+g758Sbrf48kxPovMkTZG2Lw/LLnTQ9G/12/W4vpTGLOHG2OpjW0RiNGe6Hp\n2ocvOvRV7dpLDj1saBMT2p3anEPPHfq89slDf64+4pHYa7/FhV8cd2ze4NlL4xcc/oD8QHKCQaLo\npALo7pRDl08w+pc65bRrib9GE60omqbowD770LqYbvnYQdtGxNuK2k6CAlz1vaTGtIDxg4LJ3iz0\nZpnHsnobfV1FY5QP1zZurA9fEb4+vC38QNgPSQurtVrY7bbQiMDU82KP2C+862Dad3lwO6RrBMYr\nQjI2UpGSIa8mbzHugl+HxZ+fCjJOmhecNx8zfOUVzvGMMya0S55d9uzPFu9ftmyZdo/LR2+eOuTJ\nt4MhROcrGdeupBkSoaDqAdFbex/BvYFkFUkLRHJE29teyAmtJ5G+/FUQGB6ueT3H+ELu+2xzcySp\nB5G97T00AFMkZ5KMkEQ7aQTzHynN7etJHiCZJhn/YAkP4SIk5ThCPrQ/RQv2TyRnMxobE8sQjU2e\nLM4UUNm/4v19JLtp4yLINKc5YN902x+K8PXvQzInv+y/j4r2WUrpkyR7qZG67GDyy/p9Olr8vr5X\nZx0G3U/qat7GdHuNrZbtnmInF5Mp2zWuuWovalzN4o0nSG5Ci5M/CrwBOz95QeAq/Ew9EvhW4LvU\n/7uCNEhTweeDe4L7gz5EkLRjj5Fsoj7tcNOAcf2Z0IuhV0MHQ6j0uM5lGf1VjGrqEv06/Xbd62Tu\nvyR5hGy+kOQukudJ9pOcE6GRfpDjvZPkRyRTJPtBmglGDw1qKBVU+x9vXz7hOSy64c4mLr/JM/7e\niZ6N790nj+84dvkJxj9aue3VIVNVWthVTLlu8N5BqzrtyhAjfQ8kwj8NRR2PrfSv91/hZ7DBmOA5\nf2hLS0ccjwoGIqbh8cSIMW6sMjYYm40bjDuMB42WoW9hKr6F30JsmVxlbWDMdD1czBTjp19bmH6r\nEzxJ2/e+3Q3hp+2bukBcJW6GnrX/gBmPW7rIiT5xnFgh1orAlvZXeNN4EO3sFtNin/BLw+uZRljN\nvZGpHwReD7wN3MatSwLXBW4P3Bt4IvBsILCu/W8BtuYPpALNwLzA0sDZgcCWlp8rGiOzm3MYlimm\nejZ4Js49dC7IZZ41YOjH33tI2jonF3+C+4KiqvYFNQsxQ7l9PfRpknk/pjxuyg1B7uwc7pMhgoc5\nkTeOnCgherTftMowSnvbgjtCmwnsuJDr2bvCMuvelUSyNN4LHrb6dnNPaCGb2tfHvc0+u6/a53UC\nvQbY1nB5KDcD6Uwa9i6/Jjf9oipemKBHANnSPo5n20kOMrbXPTkPlHABJeAAyQqS7Z21MGbm7f+Q\nZ3SoaUY+1IUpqsE7QeCTDjIVCi5nvDRGLXiUZD+jn0AoHeJuDW88RbKc1mwZjc+jJPtJ0hSXp3i2\nnDIzZi2jzNxFmdlj7bfegcxMBqw0A/F3qBtpbgzn6F8XcBFtBcl2bvq+GjsY+0MMtfVYLobaE4xn\nQDBnnh0kyfFyNdfYbiVZzcz8VpK1zFy2cpl5LclWpi9rJeHyyGrmK7eSrGaGems30SVPJxd4J6BB\nkwuCE5j/5Hxzuckfa7nFn9jyGH/iy+OedZpcg52x3CpDKzfPKXs832GC4yY6/P0IMxw30+Gv9gkm\nOW6yw18mOW6yg1+1xrMQPuRG+hDR0FbBMLcKeyd3Fp7jNtnbmKVc14nYuxJQ4+g07W1yr9r83paU\neyLt62MyNW/Vp5GBj+sLmyub65tXNGHPtjVd3a1B1Gqu3KVwkaLc1eRGJP1yCiLMhdbptl1L0W/Z\nw7tiShb3UJqWM+y7yPsZMm++bznzi7tl7Ea7KDPNu0lkfvkYV03WSMKlmR1yC4BLJ0+XicM1bO8V\nkt+ThCixUoov7qwfbSc5hWQZ25+vu+0vZfty/+6AlAJ28jjJQRK5JrTf7am9AkRzMPTNmZNwli5d\nEHHqCR239OrVs8O5gaUbFi2f0PKH9mujhxZd+ufr+k7+5JeWa9869BPPjc0Vn1yeOmHhwtkVbeXi\nQ/+6eMmmLxy39uY1A1zrlDZC5iN1lZNpfcyl2pt7wa71vVf00rb0chdZ7p7v5P7xepqJt3sP89l6\n3ljofILwAe19VLY33r6C5mQVv0XYPICW7YHqgGfL1O6B6YF9A9Dp8UF+kaE2pllpIfdN3h5Ql0e3\nfXGn7Y2y7S6Ob93keO+qXuggx90e5+bI+NxVc3nj+D86tuvl+wva4+hx8sGB1gCcphjg0JDOTA/I\n+TpDwHwHDg941HDk6GQS5u3YWENkxBz/1nahjzGUnGwfQsQ+Z6GpNbq3PTLKmG+U4yMRvNwsz5qj\njCleEj/hmtFlNM7XkjxDC92n1rEMWaf9Y4rPfpKrQPi9Rtfe1qjdmrO3bXbNYY2rXDs3+V3zZXqG\nT/DGPm5dby7cQJ1s0fKMcIVnFQgXXmn7M+r1VyiVnyWRS5j7SbLq0XXcQZvKPs8l43+mtDbU/a1c\nDjpAspGkW430Rdqtq0hmqxuXzGZ7s+lQ5tnzqvPA44XcJmzN281twn3zXE2fBeWe5Wr6KC5Gj13j\nlRdduOjixSy1KFeVvgeZDL9JmHxavEBmXkI+XkPyBokR9XIoL5OBt5BcSfIzElM9+h65tdV0lfRq\nko0kGdlu+1Uy5DqSZ47wZxaXmSefyn6PrPm5ZE11Fmt/iQw5SHKBZI26+8IR1sg3FWt+PlsFjQs4\n0BUMW7eLxzmHAwwVT2EA2a8dr0Gk5zGpkkuDexioOquCQX8G+WH7akapexhYzg8s5wLCvDBqd4NM\nPhZ+iouDTS5FPcU5L+XE/oJkzFkJXDf5qDlFqemmk1xAMs864iSXcTHqMSbwb5EEeXm86xknD8R+\nz08Qsvw0SnrJV0mO4yWz/PbvSbJxrrzHV8Q9joc8TjrMBMhWesjHSf5A0p/m0mPGtcdvkfyeJMSV\n7WVcUv8FV7abXEOXS+pyIb3JhfRz6hjPssbqBnr5PVnfz88u3uFKZaCZboJPY/zcYjlJoBvkGcLx\nJMkabulme/iBEs/WUOG3khwg6ad1WsO93P5BJv0jnPwIxYkYZudws2DOxByuDMzBDR032v1zaNxu\nJq5yUXSC5DgivECbYEbwOME9qP2B57rGJvwTzD10Ap1n8r8gMEEsZ8I4RQR7ieXZBE8GORK1+YTx\nbvMxwng2YVpKBB+1pojgft4I8IaKGdoX8UaaGP2YaP07yV8Ql38jSREtFU+0byMoa4mHnwA8SnPw\nVvbfKfMSjK3k/lb6rbVlcr++uo5H87lX/pbcMCcOEoztIJOhZpY4/IFBzg4yPtTB4fdk/FqSHHE4\np/Mdw1skq8n9/SS3cjt9WQeCU0Amb579F7M9R5Z50/yjMs7XWD3znQ+v6t093Jrudpd852c867o+\nfjxjoEat0TkbnTXKSGjpNcOnNU9zzj8zclrTc3q1wWDouE19Tefsov6x2Td+mFHRQPfp9TOc8/6e\n0+sdv/PRjt/5R+l3CuOGvbS6dGTp+NJVS/0QkPX8WOHw0iN7Z4z7M3JfOqPV2rEMPIudgcXO2PIr\nUTHdXsjAKaZ2pZ/jhwwLcyv5IQN3rj8gTZYbZkx5UpE0Q6TUcPt17gHfAMIlkRnb1Ecim16SFzuh\n+SWd3bJNDG96GaRfy7OD7m6Zyk97GXkfZFB+QP8909GQntV7dVj9axkMvUhyK1P6W+T6YDfb/rFX\nGlqcXc3GLiK5lo31sbFLeHYN3+vTIZU/0X/B3LvAxapbbK4izdyM5rewXE7aceXIyb3xeO/JI1dO\n/MNln//8ZbdMaF9K1obyuaF6YvHH169ff+gp8noEznwAfjwl+rTX2nYAvJYrr6uYfxzmOIdp5xIB\nW8aWdiu1txUADghtbXtX1fvuZGtgNwMEMeAuiR+VbbpL4rsKYHOCy/+7morTa+UaJKe6lROUn8xt\n5SzXkqymet5Kspq5yEEujDxPHf2Wq57tR3nWzTO5v7+C5FF+ITeWXUbl3E+bmabKnuMYTmQ7OWY7\nuf25d3LMdnLpnGfL5PLcOfhpp/Pg7qvFg0W8+2Pq9Aska2hlV/Bse4nWqvQHfoek4+7kRHlNGa8f\nV15Rhh96tXwQP+013DiaqPMl2uKD9T/QGuTkjY4NeLVxEBZ6Um/kGug4RxudphVYRt2/q4dj7Nnf\n804Px9iT7kGdc2gQljHI20+SZii6vPcchH6i/T3yRXqa/UypfkzyFY74RyRvkjwPUqvNyILk95hz\nNCdHmufkTN6BQ5d++IsbxsY2fPHDp+F35Tl73juze2LT4kWbJrrxu2gxfsfOu3nlypvPG+Pvhu2z\nPFrfCZeeMXv2GZee4Py6Ony81OG8diG0kf/zii27LLWWGJHrwc9RzihsuxKQpoDdyk63ssPtP9C+\nhrLZrGdLK7e3naeJ/SZ1fGVuPXRc/Wxpv0s4TT48nqQPREpl1m5l9rZvgLkej41nVmU2ZDZnbsjc\nkXkw08qEtrRX8mvaneTQwiK/qChuK7pfVMgdAVdu5Rqm2h6wnBViWxoJrhnkudUud9Wzclc9T9U9\nwG2ji0PXcqf8dgpznhoql5+66WbGKKkX8MPaq5O38AvO5SkqPHdQLDW83ZnpzL5MAAbAzZZF+0DI\ntQWyzUtJDrDNiwj6VjQ31Z86PnVKyrtlhiHgwor6LD7R8DZ23ODaghsmfnLZ59et+f6av73miDV4\n7wue73x8/SkXhA61NLm/MHr4X7T/gE0Y8TzQjvR6B1q9dmtkb3snfc1hkitIXifZNkIL6n8XVXYF\nYYz5HTnhTe9t/wAz25XxS+NawaOVDPmvINk26lrpIXB5yGV5AhcJyfKhhMPyIbX0G1Y3wsPtTGKI\nZ5lhfpNEGMJ2q7F33NjZeK7xg8brjbcbfhlMbu0kE9vlAtaT4q/F34mfil8K/7r2e7y/yV2elOuS\nk89qLzEKeZWB5TJ9NS2sTF5Xd9ZQHqExesPmd9j21bbH+QZ1D2G4h87k8RTXJJ9NvZT6SeoXKd+6\nqQuzV2dvyXJp7NEs04c92f3Zd7KA10eBZYY9uaA2UfNwJbP2Yu3V2sGab93kpu5r+P3rq4wHXqE5\n+AmTqq39FK7+a/mp3cF+eiKSixkWHJRf3vGzuX8HmXpk5Fsj3x1BavnmCOXndwy3psTzDKi5pKk4\nw53pqae072k/5lb0L8mFPXKvQ3dnew7JDhnxcsqb7Gsw5XFjR+rp1AupV1IHUn7nc+Pf0cpenSWT\nj0wTDy+Sn26SBHNunLqgRhY9XXuh9krtACbbXsE1n2s41YtJftKZ9B5O+mXO8UKSt+QZJ/pjd6Lt\nx0a4q+2uErjxjbulNndWwI1ytJ3D5xbHBvJjq9avGus7+cz+RVf1LcqcsaAwNlCszFm0dNGcSs+i\nMwZO/ES/Z+XSaGV2bWRevTB0yvjIh+cWZy8Y7hmO1UYqzdm1dLo4sGj2nNNGs90jMq+WeiLz6iEZ\n35zz/zH2JvBtXdeZ+FuwcwMJYuUCkCAAghQJkCABQqJIiBJJUCtta7cZsrUtWf05lZjEizLJSP80\nsSVPMtK0iSylnUj/NNqcTgU+w9DSzkitLWpJfyMktTYbrdjakiU5E6mNrcWVybnfeXggKSnTOtHB\ne49vue++e88963e4nzD5poqUW6ZCQzC+BdKJQT8ItZcRknLI3yIEGX/Ucs+8rVUJqvqEQNEisqvs\nHL7DIEgnmMju7O6wtBlbRr2y1KrYlFE9EkWikhVDLeNNVYwVtFaZ3fzc+P8Rqv+P8J2urodlrAru\nTqKC8We2oiH1Bvy5Asu81InP62RMSglQKkpLuxEPvQnkOIK+O51LnMLjJK5ytlOOuVxWDs9Coiyg\nWMYoiDBQBrcVm9lFheX4c1FA2sZW+JF8WTS4kbUnDUvrFAkr+YLuVXBW4odyPJ8pO8A46RrOfznn\nkST56YUc47wJMlOnyAl03VbbQ1F85skoIDMTnso7mquqmjvKvxGP75mxMOJyRRbO2BO/pbE319c3\n2TX/+GfWQG8w2Bu0/g/2LZdO/EZYzfqygh9E3MMSJe5hJB8GfGOiPEPpLtK57LIzLN3CFq1Cg9jF\nUjRSoXqQ3FC5GaLEbuchxNJ3UpoLyDmQfkgWLqfy7fNZF+c/bNQnW2A+eyTWpeQ+IQWvY0QxQqf2\niSlxVGRSRUTsnbSmpg5qj2rPwMRMxuSDuqPo6R3sgySvFd1BNpOmyFLkLWIy7PIiJne8ZtwB/ncV\nrG8HFGBLsRd2YAtWuFomqUu7sIDdALFjdwvYwC6s63abn63ryRv2+2wpT+ntdrvfzm67yg5N0Qs/\nGMnGtGBSSoQH139izX5qXrHlwmNeqWIfUMU2hdXmmc8v6X9upjleWuX3ewsLgBpSGud1M55dGoks\nfXYG/9fjC0N9zRVGtdpY0dwX4pOYv/TdaP42ZeMykHdUySVvVU5AlOuETjcItfpQdkvOsXr4OjkX\nrCF5qPI4LluCKzZU5xKVboEcAukEuxusUnK/5Pusy91Hzv2aGSvaXYlbnau8UomWaJVbohFL6rBV\nR2EXwUPB48FzwSvBW8GJoPbxbduUfSfpkCv7bGpF8lbVRJVAB8CQ+IkvGT9YQ/zo7tsoIl8vcWoV\npqaK3KAxWJET4gk4scgbGoTIk4sPGBFExJ2CdXVCcSgCWQL5bhvIOQh5EA+CmIUxzEcXuFkRyDaw\ntD0gG+DEG9Pf1isshXzHyhAnXkfigQr+2eRT3LNY1JbBsdML8jJWtu9ivftj7qccllXFaaWiNAiB\nZDXSOJar8XWu4oLlIMjc8YRMId7Nh/hG4fri8V/Hx3/bL3ukyD8Oo2eCbRYJ+ZLI5GTpCibVcUbA\nuAsyUhFsC3KArnSOoloLwNDYS3MF+TB23aNoMJDXQUbJEYsOhIs5uV3cw/oWbnxdBt00kNyg24xp\neIJtj+jZbVR6cvGeZu1PtaniqpUqNmG34G3ugmjB+XyMwBerZUsIPKa9WtkNIRkEWPlSKw0vGF41\niAMQXQszUhyq1QlGRorYOXsw8wYx85Zg5lGS3zaQEyBjxY8NXSQuRF8ln+yI31NsPNJ7IP8MopL/\n9F00cxYImilHTPyzinyhiCdgXEuflgwiddZN+Ax+QSFwjKTMBo+h1SAO49Qi+ox3cWMrPjtZleIQ\nYXQILriD76KBA+4TdO79XJx5BA8lJ0UbRJ17uTANCvEhh9o9WlwwFGeB3MPzdTAj3sUHjYNEQWxF\nYFd4eoQNGvxPdNP/Ql8I0nJJOND/y6WSIC39Zf8a8md+ZYpfk40lDZtrG+AnFo6Qnzh5SH8cAudx\nTIdbmASb9Ntw4E204r9heJwQ05h6nB49KQd7yGEob4HsBAmyd07wmVjRNn43f4g/zp/jr/C3eO1A\nzNTJL+EH+fX8Jl75m569E7pMy/PUqaqM1I+uuYTQrwJOZVS5VEFVTNWv0gxL2/GR1JlY8aSD+pz6\nivqWWjcQMyN27WH3tWFY0sgt1WM8x/KUoLRBnZpJM+jlQZCLOiQoZWKmoDam7dcOaTdoN2u3a/do\nE1o9womy2ye0ae2YVjuAuxkysj+pE5/lArb2InQkj7Vu0jd+Ii+dN5bHWmc15rnyHvWd5w3Lgefw\nl0tLEHR4q2ACE9cJw24aR4OPd55PBg7lgQlJpRiB58Fz1nAvgx3tx2i8A6LBn1pBvpezw8ObDomA\nT0saLbzvUh/jlMkPNZ/CyvlzWK+Pac5i2w8OuoLCozhNNhxFnZb0tIMJ0IvB3oOBfXj6OF+Bca5H\n9HavegUs42RN1cB5HNeu1LIDGnDhVSB3MMA0GHZtIEcp1QFb5G+J52GYezjEz3LLEUJiQ6ueZoRn\nQ553i6KbF0N8++jq27xq8NLl1bx46/f4g3zZeGL8+/yc8eP8N/h+GvMT/8rG/EI25nV8YUIISOfA\nONm6sg2xECqMABpsQ6oNKiWITP+4gDKBoiIktSAHATFFH4GkGnaDTs0SzaBmvWaTZptmt+aQ5rgG\nN1C25TAFtpLuxpAZBDmX3RoGHgVblUA2G5Sv/ljJWlKrEJgtdaNHl6mxCH9P/SP1XvU76pPq8+qr\navaApWqEy4Gj4St9gkmFeEGOqUfqlHpUfUF9Ta2W45qlN9ktmITOh0xs6WEi+vjd1X//96vH7/JN\n/J+MS/zi8a9SnCb1Ha3p0aycsp/yMvAaTFjRT4BXdOZ0hEOK8pCNvcxevy53/XN0fTDLdlJX9LgF\nEwqL9E49E84OmY+bcdh8yzxhxmGz0yzIgZw8Z2X3MiPWnbcwCYGtg+vBRwN4myXYWoLXVyOJhX1T\nPsb380P8Bn4zv53fwyd4+qbZ7RN8mh9j7AmahZBGDC8i5f/DXxIPoXA3aQM+ZD9IEGQMC8Z2wx5D\ngi100hUM5AkQJ8RySqufjMKn+KmHg+QQPaol57qkzQkXPhDMa4rcQZZNWl447CBxECwm7JvziD/j\nq1qrhKLxZ/k/Hxf4n4y/wP+rsOXLY13tQk+XHNtC/UjftH2K7uiltkkb8kh4xIjszI1XRM0BJkWJ\ncfmM/1/8GGfkWvh/kSoDYn0iYBxRs7kxATHRyQRGBLmUqB8kjGn2p4Q1nbAGpFtMkkaatDstBZEu\ndyWM7glPS3I3PJTkPhn+ginQIme7twSS6ZaxFmFghBMeJOqMSu57qfBAssinWNjjLIyjBS0xC3w4\ndS0Q2z70fuoVyEbzEha2i+InUETe0Z5EWMsdCC3Eqi4WfAKGvAXK2veQuPuO+SQblckd5n3I36UU\nrosgv4V35im4zE7ClJansVgsXkvY0mNRs7tYPsGj4dxN7ijbB/1zH7SuN8lOCkPqZbhSboLUBvnh\n1NbgruBBWE/s8K7YmnCoaVfTwSZ2yM/2kkeaTzezyeFvjjb3NYvD2aCI67kwHnqDD7CCfApC7f8c\n7YSNKAnDCRJpcGCFBeZmyw008IJVaRSy6KUbcOxfbrjRIGT9a1Y8OtU8yh4tWZr5Yc+U+JbZYou7\nWusLkwILx4/b6211T4nt55+0L+huMrl8pTWtNcWvPjm7tuu71Z2N5WoxJopCxZKoc2ZD2axVz9fd\nUJtq3dYqs97mjzirw/kbI4F5pf6O+l+WzTIV15oC/mJ3qDo6x6Uj3w4bf8J7bPx2ZHnS99nAtklc\nmPVbMAxtIXwizJq7PTwlDmH6NU/TNW6Ji+IaJGv2Y+tEFPJwdE8UWWK3WyfjvmcJLdwXFKu/FGtI\nERN4kseFc0zFBbvRK1KOajglizpMzuUysl2FsR0RIjZUmLQ4JmoHuG8xtm5jclSySHAKFDzqjoRe\nnvXc00LLdm5Ke4/l2vsctbdG2gb3/ZXWW3Df0ywKIlt0Wy+O9t7qFSZjJD4Ta9gcNXBl3FKxTXoq\nzPhl7Ck2A58ywmgqDWL2tYefwmxpD4wY2GQNG0eMqgeJdmOijNIZytPs5ERtOlEbSPgyUmM7TpZW\nNbKbhI2J7nSiOxAr7u8e6t7Qvbl7e/ee7kT3iW7dQGJeJrlnXmIea+GC7CULMAhB9iOBe9vy3cux\naiyHLrac9frYcoUJLGZTfbHCBOJsJ67sNLGdJoUj1LOdeuwsZnyHzfr2xU3yeyQ725e0s6nqbA+0\nC8MJQzrRZBwxC3ipkTL2w16p3jhSzS7xLa7P4ig01i9GI3+NtOAP8XJx40gXO2NenG46L5AMzovR\n29Al0s/wIssYSb234P0FHy9g0/OPF8hxBCshDK+FeHkS5p4UyDHYHg47T8GqsgaK8CjIVgIdANkI\nw+MukKRfYQpkabyEnONPQW5E2MPeiPw48laEPexSG3jN1rZdbQfbjradaWMr+gEM4NMgx0BOImWY\nErTXgrwOchIZxDtAXge5BMfnpR7IsEisPwxyeiHYCchlkAv9uAHIJ/3glk988gRmBb3jOiJ40STe\ncRQkCUYyCnISNpfDICmYHk4RwVvvxQu/BvIjvPArIEf8kwznBt77Q2RgX2q5juz21yI7Ivvw0p+w\nLpB+xt5ceh/kHaRav9a2ow35TziQxHt/D2Qv9QDIVuRVv8BePrll3k72AZPnu692s58LPdd62HXv\n4J3fw5tepdddiIzy/mv9MC89gQOM5AL6tFO4XmtraDKfGszO65vC8kKtSLnOogNRmjZ4o/DPpd7W\nqsqQ1/ILc6PXThxxpt/SZXKHXJUN1Y68Fu/aSOuQw/3sfLDEuq4nfOv5cm9twVOz/NWD0fDSYutA\nqGVJuIwvrIrUWqy1EVdYZ3LaiGXWzXTr9a6Z9Y58c3mRv6mxJdreBH4ZiDoNFZ5AmaEt6Kpp8dYF\nazqXN1U+lh9uIv5SnnS1BduYsB1En3JtSI5o29OWaBOnxF4JCeECV8Q5uW7x39hMTIQyieqMdALh\nBlyoGjPkc+gbH0FgYZNNzdT7Ivn4n8KTehNkKyOJkDExOyNtmM0PEN8JkYtdOuBgf6o2JqoysYKv\nV/1R1Z9U/XnV21XvVmmYOgIT0hcwZH0E8iuQIZAySxXu/yrsuztB1oK46Ghy1HUB0DVuuQ2RHG5N\nUD7wFnxJoyBd8l1OdmFpB5krH7iE+bMT5A6IZi6Tb2YzBpihyAGpn5GReewtO3sVNtbG+FObItt5\n2Y5X4VyU7UhKnLcNjUOwMzAJ0GNkV4DKk/AakTgtaSGFuelEKYomXwaZ2+bFgffRls9B1KxB0kvY\n+iHI34IUuefipDfR2VfR2W3GERO75V5k8JXJd3gOnfQyyA9B3kW82q/K/hmSimuumyKvMGlfRw8H\nuTIc6CojJeQueof6aR7dijFJsL/XoNYfJr8WwmbXaF+GYNUKNvG5DvhAujW6l3VsNpMW2Kuo4VNi\nv85QKBikl1UgFL30Y5A7iF19E7LLXZAtIF641ntBTsIhexiEhsANkJsQaXqRl3gdfPUF8NWDIGcU\nsSv5QuOrAIQ4CM5/BuQGyLFJKA4ssEdBDgPJYe8sjBSQwyDaTsjmRGJoCIhvDiM350KE3pLLzvgE\nzPIlCGcX8LZ3QLTogdFcfPTrIO9QNhfIfQrdgr92q3kXpLYvcu/bA3IKr/ox3vIlkI/wquTh78P7\n3iA5Di+9F6+6BmQU5BO89JrGl9lLp/Y1phpHG2F3x+uuIa8W3nTfLCxXs07NQqQBXs5PBC/XB+LH\nG37E3tBUKOa4oEiIaNi1dogmq3sKP8yF/MguDq01Ehp3N1UW2mpbKioC/ppiX9TfMLvYateXNvrs\nm3aveW7Gc/EZT8yucTTMdLlCZcGY190RKCtvaCv78997gn+m1O2bUVbZ7C41lnst/O66UFuwxFdd\noc23u+rGt/zsheicspYFQV8sVFtU/VRTbUe9xVw7y+eONLgLDxyYKlvdyPG+vyXe94bEzYIsiE+7\nCSSI3RPoju2z9qA7NkHU2oNVI7hAJsMSB3ICu9uBRyO5OnCPDrAFtpUc67jdAdsZtrd37GHbybGe\n21h9uB54akBcPfhjzx4cDfbINnGunzcJ85m8qeFek3iOaVg87G5JlxCEyClmpN9C4ldxPHmrobwm\nA5pOjQBjmfQA2jAMudykCQHcSJ1JiGl2EbInYvq/Vv2dKqP6tUo1IH1GWZdTTW9DKi3lm93F2L2n\nYSthyEQ2l9bg1Y7jxzuE98aX8OvG34RsvIr7VJjDf53zcF8yZpcwZSD6mgAkIMfJILQNbfRkpB8r\nYg/2fRkuoQ4kCjLQp0vSiRK2bRyxCQQj4RIonoIieVlDYvp3hJMCUtlUAzH9YfGUCO2NNX0nLA47\nDeTczbqHccYRy2nLJct1CzsD0W6xAoPH4anzzPTM96z2aIa5mP6ocEa4zEYBzj4qnhEvizdwP4AK\nJHcaDhhgxE+ZR80XzNfoju9YTlrOW67ijvdwxzwE09V62jxxj3oYwFLDvAzB5JPj4LS+DhGjPhsL\nFxHm5JVV+W1Gi8VRYg+XF1c6TNq6Rw/xcWNVWTGvyTcUVhVZ7Yba6bvobyc/xP93ysEchem7nqwY\nmVRQiAn9gjic3CBshuvtNtCP8mG2TCLXjc35TsMSw6BBHJZEA/A5krPEBQBjQAgY7qHKSFdkc6vU\nDKPCv2IY1WBrN7b+AWQudp8EKQHhyL6XT4vCZQ3l0cHoqu/XDengRGCd1a9DLl9GqkN+2wNwwdlQ\nsou0TtgDF+Lo0yC/wp+2g+ipddI/5DAeWmBauk1IHY/momkzSiLvElz8JghHaFNs4CfhgoGOlkaO\noJCRzLDOU2bMN0Ei2P0cWypsQY3OWjt76c3oPtKPYQv9TyB4R2mZhr0RU+0MBJCSR9AZ+WRyO0wW\ncZhSj2hOayAtU4L9aZBjlJODPFRkKZ3ViAOpg4ajhjMGccAUsWqtWsRH+iLW1tCD75t/sDr4zDPB\n1T8wf79daG1oa9hY861v1WxkG9s4gatnMtjnTAZbyH1FvU5qqWMjoM6YmJuRtmHln5iLr5mRbisJ\nR9J2SGI8Ywu8/J3bM9LediazqJkaGGhhr7mHKRmJFuNIgZrMKQicaTEmXOmEKyBthwgwxMiIk52+\nkGtHhyxqJ5CIucaRFezgAB1MLhkaHGJfYfeQ8okC7BMFFCmIiaEjHkhBAWMinpHScdwW5HYcrQJ0\nHkLrY5lEND2iY5M/QAzkNvKauRJjiatEBHAiHNoTbLlLFZU7ywPlbCw7PQG0xRmQhqBntMfiaOGC\neAxHmSr3JLtXzDiyWpDzUmDJuk8E1q7TcDQfLDpahLAXDLD7IKvgDF6NLQO2PsUW8gslHcVdg9zH\n7o9BzoKU4ZgVAdWfQ1DZh6X7ldLXSxEjXmotZQOdsA1PYhknk8wamGT2mVNY3DUIxgqDvKKYlpIn\n7efhpVbbzXYPvNRrEIW2z55CpOkrWP3fBDkJae5zkDUg+xxgg4DP8zrCDtVw8nXHmw5EFOKPZmQf\n7IO40IOtNrh1v4C97h1I7oCQk/oAqtVWG6+Fe35GfAY6BTG/KyE8XAfpAyEVdSZIaTObyWuaX4Zt\n6HVEmphb2V3fh2lhB8h+kPNQ3faDLO9At3S8jiXxNBbTPpDLIFEIk2dAbnYBjaK7rxtiDxOtkwd6\njmBptGGZjPb0YfsLKK5tvbgDSLgPEg7IfkZS5+dfnf/5fCbajGKt7gXZD3JsCZq8DF6TZWghyCiI\ndSU79tkqtpUCWf4MlMtndjyDvn4Gr/4MlvYPMGpWYixcBzkKosf4oOFyFruUsRYFWZ0bHwbs7sLX\n95cyfeoPSr9Z+kYpa5wDKCkzQfJBCEnxMkgUI+Gb2PpTkHzs/ghf+3OQl0HWKvJuSmu32n0YID/K\nDYVuxJK+7HgNX55AFTXAGAmDrKWTMAa6MQZaMQa8IEcwBrq96GFfnw8KCYZCtLYPQyEyoxdD4SKG\nwnmIkOGGHmjr1zAEVoC8jG8P46C0Fls0FKwYCltgjftx+C1Y4z7AYDiIcfAByCoISRtB3uhQhsJZ\nEMKYO92lDIobIL1QtLrx1d8B2QdyB8QCCSrSg0b19vSyp/wMw6AV5Cq+eQ/IPpALIHdAjmIc3FwK\nVo2vb8OIMGMI3MXX/whffAvIRpBdIKufgQAkapiIa5kas6pAmoSmgi9mY3mqvT6yhOYi3kNaXAWp\nme4hBNuWqtT5eY5wfXlwyfMtc762rLl52dfmLNjq77TNe3KgadGWNbNmrdmyqPtbA+FAd391ZY1K\nsM6cEVtc1bG81TPbyO5lqTDWdDTYW/1VbXU2wTt+raAsT5fvmb24LvqVed7WlV/v6Pj6ytZY1D+n\nwRZ9fsvixVuejzY8OTx3zgvzfeVOm/upuS3P9zfVNC42e8qKBH/nAndduD42Pycj/0VORv4lyciV\nEoevGoOicAKWyO2te1qxzAX7sr6B+MRnwizhM87ENfIVUlUjW5tkxCmkDDWwhYUtmg3GhDktJaBy\nUCBnJ8hgUAkuokTDwqnBXIoNkEI2NQ+r1eVkA4TOXAQHQDnpthdg/YfIBmsOzPT1XkR7JY/Vn0XE\n+E3E812ulwFydwkHmbwkQ1MNJHeJB/GzQ7sPyZ47dPuAQrUjfx9yPncU7EPOZ7S4Dzmfu4oPIvdm\nFcIWkH2a3FVyEEkbgH1KRip7EaCdco462akp9yiCriM1vTWImkYmruehXFE+VBySJUZzNtLI5za7\n+d/aG+f4/fOay8ub5/n9cxrt48u6BOOMYMgaebrL4+l6OmINBWcYha6bwLWtaJ7ny/4KTeN/bKu2\nGDxdq1tbV3d5DJZq22KyZasnfsN/lckPIvfThIgMZQgHE4hELeKdvDCc9fFPQGCBoZuwXB4DhaM4\nrZQMquQqbh2MGVsp7PUgd5Q7w13mbiDs9U3owW0CjvcJq4R1wkZhq6BmS69wlHV9zI6+XyWuEzeK\nW0V8AEUgz2eyEa9VR/nATOFvS7+sN6H9T0z8hvsBG2Mi15hQBRC5mG0tk1ynNFMZQgpAHYHyuJ9o\nbxc+e/AF7pM/8RxfLGS4AJ+XmBFIDs3YMEMgZKAZlOKXh42RCjZmS+hQgMm12wK7A4cCxwNMrrUF\nKjDQOpswbg0BIFtxBk8WzmUwi/+bJ1DQdoANTBtHcorHOFJDokhMr+ftvJ+P8iq2EBMkFfpHj2Rt\nvxAV2NF1kDa/aMBRQ4Ojoa5hZgOg5/SN9kZ/Y7QR1zViZUI4RUyv5a28j4/wOEUjWASvEMZNSIMj\nFJh1MAncpdvpG+wN/oYou510r5EO5O5pag63yoZMMw1P0trNlaKZBioOMkYHnOX86khJpc8caysx\n6wVzRaVeX1lhFvTmkraY2VdZEqnmO2a2Su5gRUF7ka2y8C9qmioKeIEvqGiq+YvCSltRe0FF0C21\nziQf/W8nnuPu0bdwsHGVHBTXK+FebHzG9Ju57RyAAFQUsWPIwBNawkRPK1eCTq0gf0UNQZ3NSE/7\nJgEPQewE2DcJ8LLHUP4u7ANy0z6I9PlD3SjVCNmgniT6EwlsOLAWfblmsi+1DdYGX0OEPo260dzo\naWzFp7mDTzPtI9/DnXSCDXfy404zQQjWZ60fd1I3mBs8Da34Krg13YLdv9Ha6GuM4NNUa8xynKgM\ncU32ldZGsVWOJG1V3HChe//upxH+o5+GzZM57Nt8xL6NlvNBXweuXBoquqB+wAGwRQU0FupZRP+i\nL03uYjZQikMfDQ399KfCvgefhcVX5XtVsXu9S/fyJzQBKYboPF5NKRhaWCc4ultg2t2sbNq2sn9V\nuNsaMT/8YAuNmatCjM8j3JgzEqdBLBN3HJgjJzRpGELkWwLcMMN9iw0qG7RQYBRldc8UfgJaMTuk\nUB+EqRUGpyGAaC8tQBFpmqb4Uf4Cf41nc34/RkjefuGwcEq4KHzCOFhMf0R1WnVJdV2lQoi6+oj6\ntPqS+rpaDd2PzgaLky0N08+WDqrIaJG9AAcYm+Vlf0IIRoNwhM9TPdHR8YRqhnam1ztTK7zX2d3d\niYpoFEc9yQe1XE9CBzQmREFOaGSFSksgKxrg5EwJnlO4oobtaGTcP6wA7DR1Rv5wIuvqH7TjP/bi\njeO1479i362PG+F/LpjYul4gGTixnpOK1GI9u2CayNMo9JUHYx5PLFiu/PK/P3WP/XJZ/PTf8n/P\n/xNXJXRLVUB/XW9nSrVdDrFZDzt/Ech2GbIyUZxOrXdvcm9zM8H5Fgydg25Em2BrCcimHEBlJXuv\nSkVgKGU7pWRtryyVOXPKxQW5GKB9Kml0AZ2wgDEDY2mlDGCQBFSoHCRwDMrzv4H8GmQ9wjAITe8Y\nyM0cgOBNzOuwugfpo/thJNmHKY3YMKkVSmYPyD6QA1ASjuW8IF8gveFD46eIaF4PNeFdRDRfKL4G\n6aK3eAUCm9+FBW0popuvYes6ZJljIF+AGBB8MB/e/LPWD6zsNn0Q8+/Dkn+s7Cws+QYI+kdhIL4M\nch/EgMDv+SCE50+uuXdh5V+BPv8AW0Xo3/XoVUqJly4p2Soyig6GqnQAr0ngDfvwNgThj4wNKY53\n6StGwmDxTYhI+RCRKLxzJd7kJoSlG5b7EM7oXQ5DJblLuiladTiXSnYXiVInXedztQeeQgtPooVX\nQdTYvVglYwx6ZWEqwiaOVaPRamSB3GqxWPn/Xjzbx4Qnm40JU77ZxWH3ymD0mTnV1XOeiQZXuvk1\njhq+vLm7tra7uZyvcfj9Pp5nolVrKxOxeN7nl+PIPhJa+AKyyW6SOJ6N2U0E2garCllnpVu0gA8K\n64VNwjZBNZADcVLxXM5OK40BnUbfrxnSbNBs1qjI3nYLEta3mNxiI0EMF04gRKVIdGId3IDgOhVP\nYY3qNKapj8l/oT39X+166qkuoWX7iy/K2Ow0p7r4L2Rs9hPQ2LYzAvGlIy1pazpkbE8Fpn0KQjsy\npyoyWZx26U9hGHgLcuzRyjOVAgG0tzIhvtKY6GKthQd5cJ4y5Qh/XZlyXWyn6yH89a4s/nqXjL+e\nDDbEmP4ImIUgm4FdxpGZbAbO7iIY9tlsBs5eMptmYBLpOuz1oZ0mz1RfRjbjEfiMzzKSOuI77buE\nIhPIS05+2PApu2fyQOORHMb3LwD6HW7ugXViPzLDW6F39uTMEfvg5OwFOdKOMQ1yE+QXtDUb8xvk\nr0GuQkm92AFxi5Txk1MMMkcxFM+CTG0p4fOfAklRWhHIKZCPJ7HJ0czraObBxqONsLo0x9HaA1Cg\nD4SUhvagjfvJ742WXQXZBzIK8gmadxnN+5QR638EGRxzQvvojHE/+J2w4JFKR2NuvoQfnU26x+OB\nL1AZTFPmkf/ReUaYij7un9kMc3KdkraQaYy/Y1QCTsmZmcLm5WGWKMrAzF3Mlq//58uH1v/Ot+vw\nP775S2mdXTxxhP8XoZyr5PyCSVIVAU+Z8bqUHC/KBiBQO6UTIPoilQx8nUzrx4BWFtTH8LNdv4f9\nJHQkOumNCX86UUp2Yyuh2znSqPJRo3ogv5yVvZzV8FDYL4lEMjDciayZWpchGHJsMrXaCqBlUEsG\ntCwjnQPIs9U4UsmudNLj/GSmpqULgdvJ08IlqL6yGpb8QLwJbrMSgIr6I/mn8y/lX8+HB4V8kojE\n14OpXyq5ztTcJNAm2c8R02mUC7mHaDM9LKB3YYUs0DqsDp8j4uh1rHBohqVdWJI+LPu0DFeUn0ae\n80Ew+BvllEQF5RPuHWEgtUNA6hBCPrJJ2my9QNc+gLiUl68qV81QtasWAgcUGZPSDeBtH8s/m/8B\nILiPUlMJKIM1NXWy5HzJVSBiUijOSbRRjTamsHUX5O9hEvstNVl0mBxuR8gx1/EUmoz6JMlLZdex\niv4Ya9MBNHhyKT0LAi+zJyxPH7MbsjjJ5CGzPMN8WtlLauX7a9qKwq6lDcGmxeGKivDipmDDUle4\nqK0m6ArVmEw1IVeT4Lb5vbXC7E61f87SYHDpHL+6c7ZQ6/Xb3IKgcQU73O6OoEvz0Fr0HUmDWNhN\nkPo0kOUIZ48tMNwQt4HbDJWJqfe38Mk3o78ENcV0q8nfc4tk0EHVetUm1TbV5IolC8y0BkGIFCEd\nJovUTog4E7jLBrhHBFEtR4S7fVp3JMQXYDX6ar/Q8uKL29m8WTbxBfc3/GXC6fkWSehSP1ZMeCaS\nHGfkhOFYnqzXIVdGPZCSA28h42lkV0U+CbAlaekW2O16+yaw2wS2Y/Z+u5KrQxYjw8OhtPpMwmxk\nzCHYFCmV7XDgDcVTtv+m0marnPovaK6qMrN//FeyG1n95xvceW6QydmLCO43IwMr3wOmso638bW8\nOJys5dt4Nnrl2GJRTkwWmIiJuBAFCpejSOMMYbWxi62sz747d+4T3/+UUnw4+8RvRK2MHcctEH8i\nVZaK9alNpdtKd8Ne7CxlU+9c6RX4FJaUDiKLe0yG18Y3nyBvD0y5Y1i6E5Vy4RSm1hC8ZSmyqJND\nwQ1BBHcE2Z1OBNPYjrHtxMyM1I8qFRtmbp7JuFRtOjHTmJjFLoXzm5tlnCUMJ4LkYSLn0ixjYkFa\nGkLQVBBBU0sWDS5C5uCiQ4sQ1rdIkQumla1Sgngh7WAEpTCaAmoRQj/7SOTeS3FFxiJXETvmNibq\nmYgCK91EPVWESLRmkmOttxH3OKuVQvdmBRKtTKxhl3bg0g5jh6tDRMkt+Jcm4nhE3BkPxMVhaUF9\nK65YAE/yJIO5AMtIL8jnkLUARAsdn22ndohIV8Q5uTJVADOT4kDF26VF0iL742X4Gr+ARunQ1jGN\nMotZn0LZiKOIc6HCEV8g9MWgc+jqdKwpUbCrXfkH84+CXV1G3Md8pbRQalfBwYKjwE+8DA72BQ4Z\nChwFdQXsQhXE58+hIJiLPUwzSO0o3lecKhazeeAREDWk6zBcZjtK9pWkwPgugPH1gqzMJUYuB+ci\nvAaC8V4OyeUayA0C44GJ/3TDJZj4VzLZJHWp8XrjPYSKUIzMq5BNVoFcBjkLchNkJeSVLSFcHLoU\nwpKAAxtBboCsQCjja5BnXmtD8kBY6IGbWoXOJdD9HiUCW4qgTyO6Xphe2wriiMYmHEBdDuaIcP90\neN2Z2CKMvxUE5UdlnvAKZxou4xUowHpVLsTnPgiJhyvQ6FcYSZ5qvgip63shxCiF1oReDsF5hDbf\nwetcDH2C11mWa//rrP2mh+ArtA8pwp6pCOdsAXBPB0Ff1rT8a11dX1vepPy2t6/Zsmjh1jXsd+vC\nRVvWtAtzip/vDj0501UZfTJUE2uuVrPR1eJt91us9e2elh4dPzT368vY9S/Nm/uNZcGmZS919299\nLhp99vUl2V99fKl79lNNTUvbq03eqLeurayxo8bd2VQxq57kmkpunVAoPM34TYTvl6xAUUNVMmkI\nJOaXgdAYH0sCw4J1QBqdnAAZAolZZenCoH7ASa5m5CWyDwBMMITkJpohITVvbt7ezJTtZjLOQ6SP\nlPaCg8muz2TE3IufsL0HjH2f4taSredZcTrq7oPtvM0bBzgBwIoUJ9Vb5K+sj8OifxS84gA0gbZA\nPACZJnAUNXxScFNEWnvhplAeHjb3wO96GO61I3hcFkblrcpjylOlg3h0mzs+5dGkehzAMyP1vXjm\nfjwuEujFc/ZNPkc63Pro+PBYLFqLBm5+2cJDYEgRbxgufzlUNGL9vfLmLq+nq6m8vKnL4+1iMvIr\njnKeL3e0zmitWlRbu6iKbTxyhP99X3eosjLU7cv+DlctqquTzy0rk8+cto9vXzvxmVCW9dPEpdKq\nST9NqXHELPtp2OrZkJaCOT8NXDTS8aDiCyAHzDTXzDSnjeKnyeFGPs5PE9Mfs5y1fGC5ibAa2UUT\n079Tf7L+fP3VehXpgD8S9kI2/ZG4F26ZsNhDThrGggWlPk8S7BSnFO+F4SRc3IOfH5XshTMGaDmS\nvpLPYuUMJ486zyAUW4+MdiBjJY+6zwCyTA+LRxQkDkyco4ikuw+ix24UBHE/kt4DpHhwaoUrzcQj\nTjv5gchD35x3t7qnewatoeLQBnh0oAFBE4JHh//5f8yjM35r8cMOHf4PmXzin/iOIFLtgyffFtUa\nVT3Z9NJZN85tgc/aQsn4SQZB2cw6NcNQ4vJUsoWMrGIa0hb00BZgyAWSQ6g1xEf+7u+62P/5e+1f\njgoz2/9OtuU1T3yH/4Iw8f8ze37h456vlquQEPyOgShb8lG4BhJeIex7HAyYOSgWapFJN9kiSaUj\nHBZVYEQr0OhUUdUaEUjsaGux0lb2jwniZDCW2/wu+6+LiKBqH0+1nzjRzs9vPyFjUYT4ffyAkCaZ\nKyWVVkJGZYJWVqpaIqcyQYwifMnJoo05SF51BsKKPZPFBiJ5k6ewnyTsvuAMWNZGQQgelyBOTiLx\nMwsPdxRj6CBWsTOA5coqY3IxkgO47DQICuAkDxecwhWHccVeKjNYwv+7oLN8g7HMYzZ7yozKb9BS\nC1iJWovyK8ya+mf8Tv0r+0VfTVwVlvJ5wjGS5weA/g+7cSZmkg1ZMoo+bO9jGj0TGzVGDeuOfETx\nJBHAw4R901DJhpLNJdtL9pQkSk6UpEvGSvRQNcwBG5R4kVgOBp2pJVtaF5xyyvbecqu1HP9OKBvC\n66VOZ+mUf0yOXsytEBYKWmpnGbdZ1jygFCWhEwmK7pGE2sH24FtinXoF1kzYzuWiD5se0kCwbSM7\nuZ0p4ECUGQLhMPe3V0CJtTsYE7UTkgpTPRwEV4bR4Pkd2oe1qrWK/6OHVZAz4wI//gNFDwlkN863\ns/eqn/gL/r5o4xq4MDdH+LZUDr1vDKhB6fIxaNQxiHSbQYZA3GoCOHEHpH7G5xgvT8xJY+aw8Vqd\nSTSmYXxgU6g8G3w5YlITkIIvnfAFRmrZDuPYIRVFY7Yrpolp+PqEDwzz+pwCBMqjhOLEnKzH7jh3\njrvC3YL6WUBzvgDw9KAmUBSqTcwhvKw6K1PUB63rrZusItMirIeYrJE1Zyf7rKusbBRVUYuryMXH\naG0mubl2e61A1awa2Y0ayO4RxmPD58JXwrfC7LEWYyICppCS3criQGqddqN2KwT3F3I1UrWI3dHA\nXr0flcJSxaPFFyBTixAtyWhAZve7sFifNX1gYm36uemvYPDYSYFekFgoGhuxV9LH0L1+BPI5bKcv\nV74GseJl52tYcQhw8TmAKb1WtwNgSheALPQKDhyuO4UDVyHDrGwCE0CbEX6EqU8JRRo0dC+s69Ra\nqt5Kgj8xg9+ikQRPdxVEi9ZTCdLLILty9Vr3o6n7qYoPWvkqIuZQ+lQ6yZqRerkOLYO1BC2j5q0F\noaKWK5AM+A5SakYZMU1aOrCsab1ebXGlKPuK3a1ery9SKYYiWAvDXp+YNYKMV3dH3FXhbk+wpm2G\nu7DNHK/xxGfWOCPz64M96yvbjbW1PmPQ1Ogr4xdEg2UzXCWmqhl2Pm5wNnY11vc0V4g98wptTmPQ\nXcWPf15Q1dTdVNfdXCnO61J11tebXZY8Pr+yyROaW8KvEMzVDQ6Ht8KipzWqW/gK93NaI5slDcf0\n6t0cvIVsUMjcS1Q4VkrmYCL4kp7xJTEznR115zjPf1M4Du6/gtFd/PtslvYwJT+JSFxheERUP5A2\nw3gVU6Jok0PqDTCijKmnQVooYpSS7S1X8dnV1cVuSesU4nEe8GOcjvPwp6QaB2Y+hJMTIBwTTmCh\nRwWhfqTPOGQAf32aoLbZn+QZLg2ycQHwbyrB1Q+yHgbpbSBjICdyZbmcrCVOw8MynJOcZkx4Mstm\nTuk24nM5PT9MMZtm40gh+3Ox2Yk/Fwek7cVyYhyVTqGQ2v1grqug5Mmw3yCEDt8Dsh+Low9bvYBD\nIOjF1cD9WWl8wcim0hbjTjjLVmIKbMRkiFiRGGs9DWYRsfUC4Odo+ZlyWBkrTgMtMQoGTcot3EQS\nByzDJVTW9wChjuH5kVxLsDgnw/k9+ew+1nwf+5Hxdz9BQ1ZgCu4g5DWq8WiEmXSFca3xFePrRlW2\nLUetZ6ArUZoG+bEAfygdBtGiKRGgN16oulYFtHhZJdSyqSJb4KcFkZn5ZH/c1d5QJojlje3u1kWl\nobrnZ7asinlqYsubW5dGK/nCuU/Z68IVYXdHg6PJVdfaqMiG3s5lwUol1+EB5Xmty+bK/oSNJx8+\n/rC0HiNgCUgAuzQqOAQBbvBu9gq52ooP3+NpukclXZ4MeDu9rJe2g0+M1aFfb/uzWEXydcdy1z1H\n17XRc2L6Q97j3nPeK17WcRtywzEInRwYZuzvbcfbzrVdaUMIedu0PN6pbdlE93RI27M663ByzH/b\njzXeb/QTcoDIhdk1d7Iy3iL+r6XYfDZ79qDUahEyWjZjawgkxghihaEGzTdS1bAYFpFEJDBSSsew\n0jQEpD0N/MBIJZtt7fNjlDIGP8wiefvsImUKTcPR7mY73Vgr3c3d8qpM2lA3IWhDP7bzD6RaNaVd\ntbuzdlVJi1D5FflrgSsMmOzkioK1kACBAp1cWfwCnKuwyUtnYRhaWfICVB6IkdILYOjrAhsDWwNY\n8KC/rW1hh9a0vtz6Wis7tBYpTadms8vOd1xFYsqKjrUIzD0FT9L5yfK0yfNdV7vY8ZcRh3keEeYf\nIOZ2Y5yd8UH8ZpydsXLBC6jI/AGSe1cufGEh2gDD4AcLby5EdCBhg+gx50/m8P2AhyydgplrBRYw\nWOvlNNIVIGuU9kqj8G6Nok0nFz4aNCc+tK+Vl6VctpFS9p3mVTjC/6XFF612t/ksFl+buzrqszhM\n1Y1lZY3VJuX3A6uv3OgKx2tr42GXsdxnbY97Zj/R0PDEbE+8/ZSzFZe2OrO//LqyxiqTqQqX0u+3\ndc665rK67qDDEeyuK2uuc+oE43M9jfNby8tb5zf2PGdk43F44gvxFW4Nyadu7qdwa5VAkobcZFXM\n9pN28THuNpenCK0AUMjHaflD+RvyN+dvz9+Tn8g/kZ/OH8u/nY/T8o2Ma0FpseE025Btg22zbbtt\njy1hO2FL28Zst204zWZkvFIazNV6KGPjswwsvigNQbwMCZgJc5rE8akSrPp3bIuvKBLs+NuPbimG\n9Yf/cTK+1TnxOl/MesaJ+CKmmaqN2bJPfJqTBLjaxwSwAA8TmcXrD2zi9XNdnHIt/xldW04XBqZc\nyAvTLuQ/G8/nP6MLBaYjjAoL+Z0UO9MC1VNAFCT0VIEQoXg5bEarhBeSFisDJN6mcnC8uarVw/4J\nCyGws39Ce/uO9vbsWi1Ui3mcn5utegKJCeoisT65ybmNSYFsBU34MxLn9FOUKpSS+dxq4Nu8hu23\nuXehi3ydEKaK1FQYCba2X4P8HORDEJd8+acweD6NsIgPsFXhojwc4Acn91WkKuSnudPQABAvkwRG\nKbu7Tz6PfNGvMQLfY50s57cwnrYEKWwBkEFIe50gm0A4ZAKOdWLE1AQACuAMTEbZKKJCrj6irxZC\ngPQynvIeyB+BVDhrcTSD9fAmGvpWxTEs05yPoikJnsxaipA96T16U/n4dbzfJibrIJQSJqqoHLL3\nPM6PIDBnK9Tlb0Pt7hGXQ3TeAZMyme+1YD+ElbEV5CbIUkhlpJQTasZbIK061kejuguAPqMkzR6q\nN4stNTKQWkEAW5SM5vXlAUcdjEyPgjbR/D7ICmdy3sczYGo5l6mMkEx8mVI79ZDP78D8eAfhLyhL\nkvym7Q0gR6+0s9tttG+FPfQgpPU/gIFyl+Mgwvmp/iZCfJJtFfEK9sCVkOJ3onPeAtkFEecuAqK0\nMGT5yJoFkoSY+DxVDgXpqUF9AW8PrJphLP1hiEURfKBaFB5ZhQzSd7GkvjljMt7/TcoAgRqwC+St\nJvREc18zLHDNB/HTFo4j0v8AIv13gRwFOQCb+S4KZEBeZQRepTdn7Z/FLnizfX87Voi1GPyvCltg\n+CBHC8GSrwShD0c1uI7hSxyjNGF0MWlnyxEAdZWcGkBrfBVgC6/at9izPSnFEQ91Jle7NF422Xe7\nsiWAWetdBxFgdAC992MQB/rs39CP9dhaANIO8gxIIUgvDIJhyCzUgb205QNyv68Xtuk69OPT6MfT\n6Mc+JppIBpB9CPzYj67cj15shcSzn+I90FfRXK/Nz3XdAfRaFOQAkzP4SlE7zcJjsUYaRdmeDAha\nKxNDH7ZDDjXGmx28LToUD8smxvCMnhqh1OP1W/+w5kVHwNLuCFrX1I6P2BvmUJA5BZ3PabALP2z8\nyrMvzmr4yuImRbQsrxQ80WBdabSmzVZb5DH7za3ucddDpkriseT/JZ2riPvm2/mqAlU99H+q3xfT\nK0BLquH/yLqXvFJ8C8KOEwEI64s3Ybs/BwtYxJhO0SNYSvoMWyqne399TKvKeX1L4nFlXfpPgorL\ntrmc+xv+GrX5/3u7QJXP2pxvlPPTkku4QSzBGjRX86jV67YmDwB2TI10aYKamKZfo/l32j1N96OX\n0MkRmdmmT1U8EQW7bErT+YTS9i8fZGuTMtIrcpydO/E2r1ap6pNAwEImKNzVHEDbTmSD1WDbJFc8\n2CAHwDa56CxFsWD9VGdAtXJZ8HSikH2w/sKhwg2FmwtVdAdbWupEaGGwbBpYneICoELOhoci8FHE\nmUdgbxqpvVpC5C+RGXlcQd/npOV6VGDK2pxlS5k26zwzh/jq9V3PPru8t7CiMD/fUVBWXaJZz+8c\nf4Hf2b55YIlKbBdVJVUz7K/Cn47++CXrD3xLP58HDKrb4BQcCjoUZlAAcVgpdw8Mv4dGn459TCMn\nx4tidGqGASdepH4ApxfMY8WPxNxUZpInKtPwIQXhgK+ltd6F8iXkykYZJipyJCXqp8ldSq/Vsp1a\npddK2E4Jeq0M4yF1Tg+wNHEgltepX6If1K/Xb9KrEbABkbAgjYcVgo4UY4WkfSvkOKDdwI8St69E\nwITUaweW7RTBjU0J7e/s7l9WlpRU4l9RV9eeR7te2GIuKzOzf18+y7/f/rjPQHGJn/E3GR/w8F+X\nDCViPRpck2YyxAjPpI6arIiCmoTSEIJmgYQHTDyghVEFM4NxpIx+shXEEzmplbJK86dOIHSYx0gA\nz2pPEUW6BCRBTYWEPoKMYCKxSqkgDtkHpkhknLNL3HQiaw3G5HksOstz1nsqBnkY5B3Y4gFmwT70\nKIHgYFFCSZjkaP6FXA2YNSCjBMUFQeBrMMWdx6L/CQiViZ8JcgDLvB6r1UEsSVGs6fNBrhOQ7ztw\nhi/XrkGKM61+W3G3V1Ft4qL5Ezgy1VkgjAFpL26lwa3ewq1QA4av0mZBaB6BKafAOFMV/8vxf1RZ\ng7bmJ2dV1cRWhOa+WNFbGg9Uz6y3OxpjXu+Cai2/TvjOeb2uevZTTaFls6tjHc66JnvdzCpPR4PN\nXMKvJ96J+fa3ImZeBfceqiPfRt9wOsIGlYJUml5NBZLV7EeVAVqsPiPX7wQtYSfBzgrPgEAge+Vp\naQNMlNtAEiDAoJbSTuX7E2cpnPr9H5s4lgt259OKG1JHhu88CryzZHmQgjvCJXsLVjA1uwrR8L9z\navzt42fEZ+M/+x3zgJt4SdAIaa6O/w4bfkifyAIl2DLSEL4ex74jOAvTXGppjJLnqdRky+4wdcyM\nOgS0zzioMyON5TrFT9dwCT/yJ+itK9hbV2By+GW2qyXrHJg3Yw9+Yg8VxhE3vXwqwvfyK3hxCoht\n8hXhdXherYJPEIZTO40HjEeM4oBky+U/67F1D5YHXbENweorEVt3D4KWDkJqraPNgRojbDt1pOx0\n2aUydvlBAmcBISCotSBvgkRQGGqFB+Ch3hVeYZhL7TDuM6bwSAsedBeP1LKtpKbYgqdR3SSKNtQr\n0YaqYekd3HoU5BrIfpCLBAyEh6wDAfgW7xbhms1Nh4iJfeQIEvCUb6zVhvj9r8xVl7ojtZb6Ylde\neYG10pQndr74SpmmtKbF21JfXVBRZHeVGkTLi/xXx/eUhWeU5RUENRpTpdfEPxne7myb4agI6vS2\nmlrjt2mOeBnREI5cIfc/UVViCfhcfkbajZm9HqQTJXsxOBi/E5HYNKJV0ZpJ6ieOMm5fEJDEAiXQ\n6vF1ebWFMlBpIAuHIPmziJIDKF+MW8txo6KCXnAeX/4aSA8Sk1ZQJVHYYslW0wZih92pr2BVgTDM\nOnCWQL7WqlY+xK8UPrsTX7MmPv6/+cpnhG+N/2HXgQNP8mcRq7hqYoxfInzM3llPpZpFxl3dvJXf\nz78bGu8QPnZ+WZa1cRsFKz/Gmbh2ISK1eFHVzyujIcGyvaSFbbcYR8rl6AQ2e5vT7G+J9nSinSm4\nUFivwE7UCXIcBGAs3CRgnMINyC5neMiHRTtRthPVyTUuwSTq5ViF0igCzpInS88j6i4FR8rHyPDf\nXrqHHUhEjSNWdlZFVb2i2ib/quIX0Go/BRMO1sM5lkoG3wu+HxQppgEhaOzPrRT1BELK6n5Eoe3U\nHgCj34klZmf+AcQ17Cw4AJtfK4b7PpBekDcx7xDmJWTju17DqkIwAmuxFceiEMdS0EaaDxShI1D+\nzoCchmYC6DUpDqUkCpJCsvaK8FqocKewfT5yNcKefzhyiv2kzrRfbr/RLiKMRkbwf1PcD0WbdLMd\nVBoZwzdO7myQH4N8A215H+R5kKsgrWgkmpsEwApeDS3sATmNxh0DSaFxp0BWQBO6BE3oDMgxkKNQ\nhy7B7HoG5AbIsfbJEAyfUlUou9hNQ6WkQIzWXOH7V8sCnZ6aOc1lvK2xy+/pDJTlVwxEm3vqTYLr\nmVBoVZe3pnNFizkQaCwVukyR31/S84cNtz1zmiocAXY6+61omjP+A1+gonmud2mwtqZzZSi0ssuj\nK3WXLR4PepfHg41Bjmo1fCZUsPWxhb8olcKodUiWxgmPEbGc0olsQGd+Gu71Usac2bj3cjAKJ7wB\nqdBbStZmQKdXyEcrAih0PwP1G1o3I/ZoSVgZ8xQ4XviQY2laCWHJp7XLIIgjXjaAi3yE5WWXwXe0\nlLaK0bpOtRGqwavwl6wDATZ48k3DfpTEewmLJvlDoiDkl+yGsiOnMUlhmD96cobdHghB78PoQZYP\nDdT3s9haicoA66o2It8DqRTJldUvVCvBWN8EOQuyEjUI5oNshAp9LYh6VU3Xmu4AJdUCzNQLzdea\n7zSjelWzpZmtIsm1qlfQ/OfR8lcoPQu6xsYCpcko7SWX8R1G4UTWfII0RKNGs0lRA8lk9XtozUto\nwxqqrIf4sO66ZXVCtilvMBJyF+esz5Qzmx1hrRY5FcHrbpXL4pEMsaPL3PREe21PqPIbM+bUlVZ3\nrmgtrCzMt+X3D744UBn2WeOh2nBVoeCa8USHx9bQVfdSnaCqifb6Wld0VInqqCg8s/Tppe0FFYHq\n9q7KxjYH47V3hBbuHVpfngOiCjDZHwd6LGZieZOIpOoBqUjkh2MFQTEm9otD4gZxs6hhmoZLVI6o\nhxOCkkbJZ+REccbKxJDVbXj6uVnCe9tlHXQxVycsZG3QcN+eNJ6qRQD6xIr+i/pP1T9X/5X6F+oP\n1Z+qtewBZrVH3aruVi9Tq4elz9Q5QH4ByQ2yBVdWV7MlalQZaQIqq5oXJhOqZINs8hR3EeEcp8VL\njCuZ1GZ1q8ezmEyz/2P8KaHlN42/aT9zButMC+fk9/J/w6m5PH7R2xqVXlX/NqcSmb5MCv5Acok4\nmC2IkA1WhtyoZ9JihuCcmeZKyO2cpDOgZh2shLfA/4AuD0FWSKeMBpchaBCHUycMacMYyh4YUO0e\nkpZc4ZwN1+XQyO9T0rGcI9yHLGEDHaVMMjkRvA9Z3AYsxvcpWt+u8quiqj4VjiI74r6ajqr96qi6\nT42jajYN/Jqopg+h9Mvhd7lPle3tWr82qu3T4hw6SqXs7Tq/Lqrr0+EoXuU+gWnZDX5D1NBnwFHA\nEK4EhDUwc9if8vx5sIDiTwTT/jQcu0+zTY9V64tY1UT55q8Hvv/9wPhF+rmdqPrlL6sSRPENZrNv\n8JfZb9D6tl6lYd9AVHGqemkIdok9RLAoDskV66FBwIwBaCYq3uYEHLwTFtnjcHHrKcDtNgLc8tIc\nexGxPnVCl9aN6cSBlFHn0gV14rD8bWT8foK0BiJ77sNIdyhfV8NbeC8f5nt4NiRXKmUdpqXU36Hv\noFFZVF5VGN/hjpquVFvUXjUSQdmVMCuzQ1qL1qsNa3u0uBn6/A71OYqme3Vh9Pkd6m6NwWLwGsLo\n7jt5dGWeJc+bF87ryUOdytVoxzLqZtxkGetrBI5qfR6iCepj3v+YrgZ2Mefk7lBf/+XbaqXeU3Ym\nAWl8UIuxzIsYy3gO5YrsRnaDzB7QgyJYgUiQcPcpvcTOyeMYg4DLjuOUPIxFZRAjkt4u+sWoiEO5\nAgGPHcYpefgy8UIuq7KaHYtgHGnv4KW+HqOXkmM52Njh6H0OvS1QvZiJbC2ULOwV+55ylor8ZiKP\nwUDcD6/Cu/gg2rgbw6sTrbolylEKd+jNLExID3M9eDPCYFfTGMDryQODXarGVXfwehbRK4bxemq8\nmTww5GHRw96MTQ3cAZUupOXsBAB9+SLd9EL8HvmNeC7OXuqy8Bln445I+TbIBUwZhK0MQFxsvG6S\ngdwAzyWloeAjAUaacEwD5SicKv4rwi0lkmGhF3RWSA4k3JOY/y7I25hbBdC9YTRCDyzHhDpFxecw\nSbYU4X02GrcadxkPGlVM9DusPwXEf/xB2gjwrF1FB4sYu82Cl1jMTFvOLm9md7xLyKuuC1hXL+8K\n96kbQ7VdTDv+kcllLRhcOX6RFxc/pauJx24jtjAptPDttG5puZ8CGWCTUqExCex9xo2FTHJMuC0D\nbudAtqcib/8/ALfl9PaUXCeErsrWDWFXqTJydOyjNT/YcqfCckcORQ1b9DROakhaxutWs39HZj33\n9Pjbs54HcPf27exberlzvI/8kW74I3nCQlRnsl7MTsysTnT9FLekb3yC589la6OxscAdEI6QzXIX\nU+ySscL+QuHfMVMWTzVT4u86xVQpbUaK+VDxBohiu5VaOlKsGEKiPjBpNlFGjFJTJwljo5At7UBV\nHdZn2SwFRD1kPzwwxUo4zSRIMRuz2Dt9QTEbL7CRruHmUMTGblRWQwqlINdwSMbU/Wq51sPExMRH\n7MyCKdc8za4pTR5SHcfp/SqsOrfVcpzJxFV2Rh7FmcjnPsfObYkV7Vbh9HOqK6pbqgmVdiBZpHKq\nhGH2B8shy3HLOcsVyy3LhAV/sDgteDK71x127TtTnruJ7ZekOK1R69KKrI3afm22HoUw8U8Txuy3\ncnJ/kbCwb2Xpt0z9VnmT30U9/Lgvl7DQJJc2u/CVqjZA+N0NmTOGvPaxKszw7FealhNKlh2mp9KX\nUT7V+mzNvuxXgm3HKAvwPWXLy4QBLhUvW1n2Qpk4MO3zKbWai7P6kC/3Mf+XqDPpbBWFqi7BGmkp\nt+W+7IMUL6hKKqqLBe+X5wxNzV4D8WXwsY8YHzPwf87YUPKQ7rhOGBjRqqmuH1u/RbDBFkyBHhCC\nFLDRwgbyR9h9F+RrWOeZ2FjCZJ6UWwgJcwXGYJdBAgpj7swD+SlqygHpcruACZ0QTghpYQxJ9zoS\n294C/8cikPxAfRMRd3+MA7+vppov0tcgRH5BGaWiyqRyq0KqucgoHSIg1IdLv0gih+D4JArYCXJi\nanKt+Aq2qXLyXqwkP8RRVPlRshLJE66wZeLRyudTKuY9VNaHh2E6eZH7BCEAq7FwWECACM36joIB\n1uJJlBi7EYRKRB/Bg7O6OJV0NoNo5Auu51ArCa3BA6mpVINiIaZISKt2+xAx/8Y/PHuDF9b8tquL\n5//+wvidO+wjKjGNhC8SZ+2XtiFJF1VVBLLjUkxjEmWXhN8V1fiw8pmLapTvP6krfItgZMArJZ7K\n3MT0dfxMfj6/GhLxv+HBwNHB5P0u/0P+Z3ySf49/n/8Y2oxAPipoC2oV0xaoElwO/5KfUkhOQYli\nqoKsIyRPaS4yhs6r1WZPq0dYOP4U0xQEfpy/d+ZMO1MX5DZ+h+JE1FwDJvWUYBBFNdBmuCynl8vV\n3SZhwgOzWJWwsH28gx//zgft2dpb3E326nnceXavJByEcoxoLlkii1lDKRrSZlhTYrC67YauOoaU\ngaGCDQUYX3xASZeYNsqUOnWxoun1b5iqpYfUg2OsQ1EAK4mKWEjAPa47p7uiu6Wb0KkHUkU6lMti\nassm3TbdbiY7ZwvSsMFJGfi8XBRXowXucLY8VK4wlCli1rLlX9saYR/5iSe62P/5s0v7nhr/z/zs\np/qe5NezPpjLcaLAj3Ez+PcTMwLS8Rn8wEi9msybMxByRFUBpW0gt0FcjBGOuFDJlyK/LewEKObb\nQG6DuCzsBDMbjojJkzYgsa+zkfXZOWwNgmwDKcKxTmy5sDXWqAxUPesyvTIxi9lOsWFqZyo7SsUJ\nSa2XbYHq8xjwaojk/wTOUlhM1j91IZsU7xd+XIjg9DQqNRcbRxzCA8aTRzyyjEXpHCl83Esw5MRz\niJKXc4iScdglKL6BylceRFTDLvtBRDXEYcq+BBIFiSPEVFc+WT38OkyOB5HXtKvmYA0iWWohA49O\nZlRK5/HYHghvF4quAfmUguDDeGYvyBt45k7ImK1ZuNAB6QLIVTzsAuGqg2iB1XINz/svCJXYWcMP\nmFq8qGcqO5yyYAxTJcIpsqEo9Aq2ZXWm+lp3fumKAJMRm+d5mp2F7EdT3+jp4l90tDh6/XU6s7ey\noYUExuLehRXB2VX3sZGVHGFf/hdhJTch/FfGp4yEy5Itr0KCCpuEE+P/yhcKK8OyfYIvZvN5EbKt\np8tnFCwGDZN9Ipq5xAmK27GuTZTz/8hkmXLuH6R8DvI5R7khAK7KCed55BCWLpbIDnZHWkqjZxIg\nVBZpe+U0ed0w1VGumTr+lB3yDOtkr7la9tvkpaUSG029DAYHcHQkh40Y/bdhPf2vIH/moKrTjr9y\n/MLxoeNTB1WlTh7VndFRFWX7Eftp+yX7dbsahcHesh+zn7V/YL/JdpkQn4W3hG3UYs1mr/kgyEfi\nlS1eSxc+Gon03f4u/v3xL5cvsDXOrb89/ieOkGNhictWWPG5bAf6Lve8YOHvM+1eQ3UG5fJgV3Jl\nhQkWpx8LlVxXULok17cCE2Ta22QJP0MmoUtTSTxpiGwuiN5PQqQShlOIDXFxTC7LwjxzsNGgwt3E\nlOp1Mk9FATsNlw2rnQmB42mQXkgVVMQyDgVuFqnYIGQ2uQurTi+MIndhLlhO1o4VWI/bFCuNtBB3\nmIeLI7huFVbYz3Bdt2JMkeYzXYqfgvHML/pJ/e7d9T/ZXbd7dx2/enfdnt3Y372njvpuLvRBxiMr\nuNtSAbCxDtkpBX7ERksFlQ5ECk0h9EEl218u1rvd+Vi+RgvwwyNOUunhSExeUF2DUH0SnZCESaAQ\nxi4lMOM0mFs3lMGUQVELT2GrGwYh9IjkA9mZNQGzLWgYG0HeAHkL5LQZn+4U7jWKi7fgbArgJ9f4\nLpBRdo7JYjE/RpFkW77XBf5hbZKtJO+bPKZHFEr+q6aZjmzeBOvLBxT7PYP/O8lXwXpzM8LcYiB7\nEPzok71LnWyiQmRG0LfPmKjLSPY6trKUig+kg6V0GhAJBhG8sZuRkRliNiOKKnrkP7RMJKrZnGUL\npa2+mny1TBq2HbcxabiIHTTbcDCJYu3CZNkgCnZbgbVhBUYPBUmvKFB6cSWm+laQI3AUIIIgqbVY\nmboh3QOnvo+ZfwZM+gzGwWkoFDdc9xHWdj8XFHgBfpWT8IBeALkKH9AoyH4Qqkl2EtV49vlTfnbh\nNThfLoKcnsErlX9WaZV2vYZ2LSfPEzEjeHYc8Oxcxrp8H8QO8z5hlFEjLzumtXQULT2PuMU7IARD\n9gntosWfocUX0eJRNPYayAEUJzvgP+IXHsl61PoeSp8o1WhFN5+01s10u2fWWZXfuFActTUumVlV\n3bG0uXlpR7XbcXwZ/3l1W63VWttWXd3mt1j8bX8u5OdXzewPNvXPdLlm9jfNWlk/fga6LM1NwsXd\nmcXFRf6BFdAbWfyN/llgEsFmpXaYwLkZ0ZNtw8l/F/HAKKmd7HcOISvsNrY5p9GJoO0MLRWI2s3P\nSBuwshSwQ+hsrrKAUM4J1+cWem83wH2M7DTMIr7MCCYqGKlKy0Z8qBdAxALA2kkqZ372aia1avMp\nMFcn/1CZcuTDMZETCT158uFC+cIiumHCCHglaYJ9cAQjOTJkfJJKih00uDOIJygNSGbalyyOYvzY\n5Z9yuWUV1P7H5BAqQE4SR08EeGonJHe5AYlCtlsoA6LdzpYpqGCbFWTkw56WRGcdZRHnUZahkbZL\n6LiZzrFQWXl7GlHxZbDehCJuLdz9+BfS0j+zm/658Zf//T3L955e84eWF1+qmF3xPfZv9bOWwbWV\nsyu/VzmbL/npP7b/tP199h/7uXDhQi4/S6gi37WPf13OI3bJecTEXVzZmogGbMPXugSE0BYGQTpB\nxkA4v+K/oxRjw0Muu4RbFgbsOUAFGb1YioN9RKEKTgcwjmh7H8UxDhf0FEzCGcs4xsm2kjjwnGQQ\nYxkjYTiZsowCpS/nrEumrKPIb7qDQDoNJTyVnQFCEjAHJT3Ca+X8KxlpUA/JNFrRV8FuFXX2OZGe\n5TpDXAkTnSkl7EDVmSqFTemr8AjPqAePwIzXIB4k5R1FpPIdxNhqkJ8U9vX44NprE+OTpeSTkYJe\n+MnDCuLJw8kijyRGX1bCXJWw1ziy75UQWWTjP5yC70MErBIJy36VnCShimxGf5bNsRphY8IkDYJb\n7a49VAuTlZ8fnpJPNe38p+l8F50vLanlh1Mn6tP1Y/XigGSsJ0tX/dT8J3btsdy1z9G1FukQrnUh\n5vgQ8npcM3k59wl1AP+A6gBWcgvFvdKCWcDpQL2aACrXUCGbBCOJBbIbOm/WAky7vIB0Ow81H1QU\nazHLOGJmWwvYGphGyS+2OjblEZ84jRjmuXkI2E/GFvUDAOjKYkUGibFBG1NGcA/b6VF2wmwnrAi6\njWynETs9MnSIs6cxW9EBzFFiXHOYSnzGyKCFMoVQqBpJoZLq5JPrAtIhpKA1hZGElbzSdKuJNWVx\nEzwJ1MRYGM1divyluXPZEErPHZs7ZfWVC9phDq3BAncKxAcRcA3442mwYAqAIXyxA1Cg+kDOgBwD\noUo3vfBu78PU2A8dqg9z4ihIH3AsD5YfxcT4BSbGAegFbcgFPFpxBqEiJ3Oe5RQ8y5HqXvib12AR\n7IU2t7F2ay2CMGov196oZSNjJ5gFFXk6C/IhyK/RA/8AMgo5ZS8izVMgd0FsAbjxQM4gsUrbhoAQ\ngAreo4KCR6Kno5ei16P3ouqB5JHZp2cDwQfJV/rZ7MTTiKc5CnIfRI9om/tICrkDtP6VqNNwMf5J\nPFcgEEpuEv5GNuOPFJzGvDyYrWE+TF2XOlh4tPBMoZiF8jkAEkf3HQDZiz7sAdmLjiR1cz/IKZCT\n6DwkUlJfSRGQk0pPST/CtDtfexXTjqSbH6JvroKM5iSaS+ilX9Tjq8w4iuoGX1ChC2Cd3Ef9QXvA\nH2Cy1Sp01yl0132qWRBB76HP7Oi9Y9j6AsSA3XsoOniUkdTZ6AfRm1H2bnfQgZrZ4GEdo8iuu4Pe\n06D37uZ6bzmKG0S6ETMRvxafItpoH2ZgD5cdnAouMllrUKxVag3GLXUdtTWzZ9hsM2bX1HbUWeLT\n6g1Gf6+8tKmlxRJe0VFdE1vRHH2xquqpzulVBms880KVCgesDM0tnVZoMFxRa89X+GFTWygsVxjk\nucoJH/crTsNZuVlvF6t1qvpYGaL2vMVAZ1levKb45eLXimUEq9HiAva9iq8Ww7AlBhDaZhULSFOb\nkhIbCWWrL4QjvyoO2ktc9iKjw1UU9NRWlhaWGd4pNuVbnSazz+3M90QqzGV5eY/ltZuIXxopADvF\n1RvrXfWiUl8aFv9nCFPv/4e98xBB5vEADVeR9q3KSAHoeeeYkpSSEfNEUvbVaW4yzDR/qsWXfG8a\n2VhGPxT8xlNJuOT74sciqky9qdqvOqw6pVKxyQMsYdLCku+rPmZqWVKlKlWxgfg5Du1Q7YOmNqqi\n0t2AtOSfiW9qSMaEP9gQ/iFhyPkmxsQy4WPG7T2cX/gEUUNOF2P5Vpg3gE+b3GNNsAUc0erZ0Ak4\nzYrSiSKgwmK7Qg5lZ9JSgJTKhMuYcGdiBYNuGYJ5t/uQWzOQvOWecAv0x5q0VKTkDyMgz5eRzkG9\nupVTtIagaNVm8Ed/RtpU/9jw7VyIUlYMThVVOisDleIwfKAISJWWo/2jwgWUDNDDF98jLBdUwwpE\n0MfCZ4JsBCjJIFYDK1iKyzPmufLEYamwhJMFSlQRcmakGIJmKXK2ykNLWTX9MH0OJxAIhoyYmfDT\nJ7uBxaEPFosD0JR3gXwKYkPaGCG/DUu1sG18Con8KtQ0NSq79GBrBchdEKr8c818x4yX0JgtZq85\nbFYNSyuoNhDkLC0UpjYIO69SgVSQdci13uU96MUa4L3sveFl3GUVen0+SBt6eQvIEZB1AKna5Tvo\nw9m+y74bgMldhRyv5WCIr9XCrZuqHa29UHutVjWAo8NSL/70Sk4dvAc2qqu11bLX6vYj1T3lH/Vf\n8F/z4wJkWvf6VyDT+hX/637w/ecxdK+il3rRS/up/DzIVaj9UVhDHCDzQerQUVcReXW19HNEVU72\nkhadRslxFjOyn81rESJIMfNaqJc+kKu5EDL0VlVVayQ8CfU6Ge+u1YY88kwReSsvlo1/+PNSb6G5\nvKAqoGszLAqXN3utRkd18Xc++vJw+5MVL4WfpJjU6M9KAxX5lmJ9lVXf1FJYVldmq6txGV/6lP/q\nXO+qL8NKzKqKi7H5JlBsayFn5uz8Fyg9rkVYUJERBsVsgAlT55YgknZJvuzagh8iheLPAYGNbznQ\nV2t8TJAv4owIbZbQkqRDRih9wFBJ3jJNmNgQKhg0rTdtMm0z7TYdMmnoj6VpaT16ZjNIP+seQKFY\n2aTEenprOn4bU94sBGmzKZfHQ2APyqQkMxImZSF7g0L2BgEQrlCPGTMXippWX5gFlc6GlKTgZw2o\n2HtNDzGW0TglF4zNMZBiM2VllNAPqv+Zs6XiYfdj2pqd5l0bKrm8atkCNeQI3mgdDuyyHLRgcFtQ\nxRyDm+YMXutVkCMg65BWuct60IoTrZetN6w4EWmCyyFUvGajWWAbtV2wXbNhUOfSKF6xKSLcPZje\ndTYbkqVfQyZmyj4KM/w12DOWI7oW+TTSRSTVuLXZgGh3qymknhx2whvCljeAp3/i7b5xz5Rhxn/1\ncvgrX+ngC7Y8NK54LsxXcf8knGVr0atw9mQRPuVVKAl/tjDZz2wMZAFc4fLWZJekFAKRlqsZ5+vM\nVYKcXKAyKA3H+B+IQHZRyQUWK9I2rVIm+Q3+iRrMV1ETSdd18gd4j5DmCrgm7n2p1iTWJzEI4btG\nRo0pFzYnpWvlLCgHY8YOOdbElC0sB4CkhrS0CSiLh0KPwGqx4WZzF8q2M9balBzbICKuIaHLpOC8\nWq+TgULL2V/L+8uHqBicfI0zgPNkrIbGQgTKJj9ovAlgcMA/Qmu+WPkJ0rR2IJMoeb3yHnY+gA0H\nqQgmkrlkU7h2sq5zy1TmQtXuUeHpYkFdbYXH4nAa1c+UeitKSmrnNltiZTNKXI7ZLk9TRZ4ohEW+\nsJlNdX1pSWlJscNZ8LrB7DRbPY5CXdRY6LEbTWWu/K3FVQU1pZZs//4+698izs2NSUZgvfTDsHoC\n60p/lgMoHs7dsMSsl0FfAAg9AX3lEFTnTbksKcJykcHKUoiyGALsqpMAqvJYX+YN5q3Po9iu5AHh\nCIwJZwh7LOdhHoU1nYBb3sllQ1HU9yjs+e/AoLsPBKbd5NGCM5D2oSNlyx8ezd2NfNAH6XK6qFBB\nL1MKaz2ionuLyryWhra2Bou3rKjdVj+rxj2r/v+y9ybgbVVn/vA9V6styZKszZYX2ZYsyUss2Yol\nWzKxvMXOQhYSHCclk/wLZGEZyAwkAdqGYUqWzrSkLc3CAGHakm06g3yjOEthyMyQhbRT3CkJCbhN\nuiQkYWhoSymlwf6f33uvZDsLMDPf9z3P9zxTmp+vjq7OOfe9Z3vPed/fW8D/en38r5hw+Iotieqq\nuKXIZy9rBFdZ4xjOMpUQHPmVWMXeE4r4eiisekxSWVU1KasyuqJdLoJdfCuHpDnsTrpnuRe773c/\n6t7o1i3EVtt/QHs7y2HguaJU0aEi1UKZyEoSirClJkeGeBOgRVcyGLFflv6W4XkDl8E6LEBihm7D\nPAP4rEEwsxJwwgCLYsMruCfPRJtmr0OH/Dmg0G0iBv7CUU/mJgwxxfKND0MBegZAeuRBwIZi8OzL\n1uKV8m3kUbO9EtxglWexm+KXa/ak/7vYSlmJNcXjWFNI/n/lCekf+3/uJ5PX/jqeSZhuln4KFo5f\nAyhI9hYK1gVX5TWARYCzAKEhs2fl5C3NmVHys54oghOeKNJpiOnCqKz0TjrpbzL0GPoMywx8BL4A\n6ayHdAYMR7h0ZEN4KY/ulM5BPD8hGckZzoNcKDKiTCCKqcw9mHKHYFcD0nO9pb9KvCIVlxJdwlNQ\nwlcXry8e5SCvpG/S36p8HjL6JYQ2CPBX0fbnWkjoDf/bEBkFq9+OhL3+w0igEPZhOYOfht8Fm/JW\nSGhnWB5iGoUu8DpQVO8BjIZHsyRIH6AfTNZidaNdquU/jOG6z74M7KT77cewIKIwgB9g+omVdZfB\n3aJsBzbOTsAcfVP5duyZEa/RFuj6u6DKKjEbt0CV3QXH/dO1F3lCemK4M4ywY10Q+wcZyoQ0Qs/w\n2ykA0TFAD86u/oirZlz1YP+jGQCXl/Q8+1LU6yjWaORmgrlRairLOtCnN9fsAC3qZJQfIzd3wAVA\nF7hDYxxYhpFFoUDN+rC7dApBritjkTQxwN4u8mBLLjyztKOsvbgU23KhWWXtZRsndGLfrqLU2VSB\njbsK9lXPnHpyTy/o9HSWzQnjuqiw0zM3AOW1s64i346LtnF7cN/L6oU/Jr2wSGqFmr+Iw4AlVhYL\nx1TYy28Z3cvvGT4rJmift441fXp8u1Y8NsW3G2VQLaNIdxNC17opjuMx/+T4diewEjoP2Av4VwAF\ntTsIqJWD3R2vfbNW/G+FuJOJTcG0nIly14QNmilXR7mTw9tJkz3Y4aAYd8QtIe3H9sp+6HkU606K\n0clVJvHa0HeOa0LfWf8Hoe+Y9Rqi1OFvZOIOPSYyruObhT+DY/AsdMmNZOE/lH6CbYO3/ExS+YkL\nsV8tUyIa+JeGbWTZpfCmZl3uiGsG1pbgRdPmkbmRlq+eNOQ3apWJhyIRkbV/ob3u5pjn4bve/ZLK\neOV9dhAV/jzitkRHFgtXxLOCVbiA8w64pafDeUmYkOQOkY26bLLeiivYreMQuFlgZOSpkR0FDUPE\noWoNpQy0aj4HW3bzSraWbWLbmRzCSqe4HDxPihpgE/GlcCVaJAruFaDg5t9jCQGHrvSA/giaxmR9\nL5Tb53PAEZizNmcT3NBzBnKO5JzMOZ+j5jfk9ObwG87T/G981Qh1cBW2T7qR33msErqh8L2OJziX\nmw0eD1dL8DJdKauvsFrLwp7GjqlTesR/jiy+/a5Jk5Yt/rOJwT+78PADlz5P707P5fQjktN/ZORE\nh0PSWcCjeXLc4ykY5MICxQ4h6QhQQaQpXILEEztE7knwEuCi4gKDS8YGtpXtYqqF6VfZaTSB+RDT\naJQnihc9H8vj3coR6AppK4Q0H6rsbrLofyhnQ87WnF1cGgOv5pzOuZijIj4Dng2e/iIkM2A8At/w\nXhDGDFiOWCClt5H/BX6La5IK+ivcUXF0qR8nkS9dRyAawT/yc1WR+Eu+ynEJNUKrMEdsk7nNCipA\n5Y1QpzMBjwKSGKzvB7Cp5D+sWPRJScD9TBYeSIikXkgQc4US1uhRPHQKMAhYLNJ5XLpAFQRf/lS0\nm17AWhWZrUMPBK9EqsKCZfwIvRyZWS1Vy79CPKKpYOuURuDYNwuBWM/cmlmrzuQda2ZG+yQ7Vzom\noPjQM+G+gRgKJbTJdH9mfymVM0REhEi38WyhhfB763lqvXzZxRVc7LLO7EL8An5LQrb4P4LnPa/M\niHyKE5bC9nIzEt4AyL4OOYLs7aBeIT1E7YF8dg4wtJaLiAuHmFjpPnEZ1s50+LqVXEZGQ8zLJqJH\nAOdpPMxy3MBJgpegkv0k1CvS67Vb+IogvdawiY836XWWzeA9XGfdjCO6Dc6tTnwX2RTBn4mbJuK7\n5s3N+BTfFMctk7ZOAtX5Bu1WZLPBsPXabNY6NyGbr9Q9hZhDa5s30e8nbeI/dAWYy/Zp52af8v3p\niVy77bR5qgsKqj22zN+WIjkGXFHm73DoU2/xFIlvF338VmG1x2r1VBdm/lYmQ0VFIdxCf9n8T7mB\njx3ERUOca4v+65FIpMuwvbzPtAanpSnTIfxJmmaZxLHGrjLjzHi6mX+5mv+MxrFbmVr4F3Y/r0vP\naF2SOZny1aOlp89oL+MtnjFdRpnjaiDNInMoGFeNN8jPFsrimVJ1QiEfK16jsQJaZUjoEGYKt4t7\npFkLePnhOAfSM7fh8JAtiCsDBLkDnUGTNzMMn0PpoNCERe08SG+tkI18Njo6PCqPDtK0zIggPQG1\ntRVwH2CjosAqo8SAoLaoy9Rcd4cSC02M/0JRZ68JyhhGYFbpPR9+5rP4ynw8LU7GOiOgOzRXe6pD\n1TyrjbN4BrMsqU5+cydu7rR0lnXymxdYUlP5zVNx81TP1NBUlHsnyr0zMwAt4i9zUWYAauQfGkcH\noEWZAajRkmodkja2wjCIlxFAGQFLoCyAyJGD+HoCL2YCipngmRCawJNNlOwYTLVaEIyJZ9XNf9mN\nX3Zbusu6+S087VY+4fOxMHUz//nN+PnNnptDN8uOV0sg9PEj1lVDlZSDoXs1Xtjy6w5UU/BCKYIf\nTunSiMMrXme0moK57pOHLENmyJqi0qwY2K09qD3OG+zA8/q9+sPwuXveuNd42MgvducdzDuehwv/\nQf9xP74K7g0eDuKidm/t4Vp8VXew7ngdLiYfnHx8Mr7q2dtzuAcX0/dOPzwdX804OOP4DBWNUMSc\nmjkOumr00XzCd5/0uy9i1GILmqurm/EvWlDVVFbWVFWQ+Tt8z42/+u4Nv5JHsCPV8Xg1/pU1YaRr\nKvM0YbBq8twgnW24wReKj21YnC7W8fFjuqTC+DGi+Ehe14y8lYYJAd597yn3qYcUN1vi+JetJmX2\nfJk5vzHC7v75z1v4/9nNwJ8LCmciyo3QGLJEMiBSGxH5YzlKfrEGMtek5TCYFA2wy5FareQpa+Dl\nkw/USHbRkRRld1kNsb/o5AMb/Mo4BMwb5INpuaPcyuvjUOpG/rxUs5/f08KWPv10y+bNVLcg18uK\nFL1M8+nxLJI41yWVDPEsKAqSopc5QjcIbpH5kAlu8ZmCWRB19oAc0GIs9UMmjgXiDN0onIUcYiIT\nzgJnpWKW8GEKAlookSyaoXwpQSwQtSLd7JviE1dcG4zCek0wisb/fjCKj19jf3698OL8XYRGPmID\n4iBvnxPYc/IM99zoRCuHJzPI5G9PaLdpNTLt/sDL2te0Z/gYorDuG0MDZ4yXjSN8DEmbjR6juKLf\npKbVvJ+PjdiHMfs9fp4KyxQ/toGlVmzwnCm+jA2eJ4q38T/9Raor0n2hzNhOZB/X54lDcylgV6Si\ncjKVKyItClQ3GW4bInMkCsdXYaEwH1Q379hGzyZwLCE9hXOHO7EttQlgB/PNEfdJ93k3NKal7lXu\nde7Nbt48tsOw8XEoxEuyLPAna87XQCcgthsHeBO0AKK5OUzRHlDw24BlKGw94CHAFpx0rC/cgs3C\nZZhBTyF23Qb3VpBGPoyEHZgzl1Wvrl4PfvchFHeq5gIvrnIcOx5vGmqiJ9DqAlmNXO1gtZk1RUFP\noa/aW9A2MdKRM03rbewMBCdHSgp81b6CLJfenKIJAV9VXWkk2VKfE5hU43TVtvPBrKYi0OBD+6gd\nsbA9xLE3gQ2TPTeZ/KUvCyNYfZuxNwV6dn6NOOpZhnZyB5UsWi5TmXJvTFtJ5mQ4cNUZDtwxzeW9\nDLP1mMYSRmN5tHgjGoscP4Eay8wQux45H7WcseR8snlmptEYy0cbjQNnWw4i6cdL25eNPEhBB4mw\ncjNe2uN4aUtcK2FOt2nMCwThp/QIgF7lesB+wFa81Ffdp/FSwakkXUIqfD2knWhOu3FsuwsGvHjR\n2INH0yJLlw2AS/Qxs1soXaTtmQLU1o3ankI7I6LSTajeOjTl11HCYcASwFrAAOA8YPP48unYeDus\na17PNuztaGmrqtehOm8j4QSK3g7A0Die4NCRp1HmZld2pFI3Doy2PVZwo8Y3yoY4p7iWt75QybWt\nr75SHp+e4auhuxRf41tT6pC0EcYVZ9XvwbjifrWsCcvHbUNyOF716JHWYqjzZ3MyjYSchIzyAlGt\nxDCXp9IA/8fqWlq+3tIivvLOO+/IZS8aeYDtpFiCOuGv5WiC14sZSCzEcEwZSGkOaQY1/Es1RUnv\n1/E2+lxONpZglrGYQpUjCGEP68NKb1x0Qv6NpknTo+lDmPEPEX1PrynQBDWqFYhBiH/f7uiYfQfF\nIkRNeT25jHYqMtrCnzKNo0VoIurLathYDFHUdmISkV5QgbBKRQHbidmNJvMXdDxVy2ubhMSeu5HE\ntIrEeBVVMOfsU6GKcK3Xq7DDQJXXwcKzT4dvEIBPryvQBXWqFSyi42LWedmdSu0zgh5f/+e4qAZe\nFl8Tz4iqhf9tgdNLp9c/hnpOPkv9n74E21UvgZ1W2gsTmthp4Yf0HLeDgRQRVfhAda3saRMzDbd2\n6KbkSS0JmsyxDJnWoK7i0CeK2saFuUGW47iyV/KnJb/1NCwWwMYqXsYq5gXxZcUh/3pxL1ElOfgl\nakL+oteI7hMlBrk8IsuDZDHygPBD6js9qM/LIrth0TPHRdu8cQkupYS/xfPewZ/3OXreEGQNV3ox\nOwZIT1Dvzzq4ZkVKbma8r99B/Rz1nMbhVr4WdQnbU65Qv1N2b3RZYMx/CPYcZzC4m2E8AM8e6dHC\ncRSq1/U/pIM1nKVpDXQWdh5T4U+0tF7utzCZvxBbkk1opR9gFNeCZJqMK5vpow2mxJNxT6OyIbsw\n3ZjfxZeTiteeQn5HWztW70wVaxN17sp6T7HDZCr0R33WdtbuSUbm2bzFVm2bpmTCxILhDwX1uLil\nE4V2VSNFLpUDlsqRSrNRTJUApv+1yKXtQ+nF7fcjBoGlnd+WaucVD7cn23kTf49fp9qG5LBDwUFE\nGq8bkmbV8U/NPLWZ/61D6PPUpJA0axJbAa19BLENZrYuasX6opWntfC0Fn7nJEvqpiEpBnPXXtht\nngWEYTG8uAM/6VzUCUaETixPOl/ozOz+/A/CnBZiGzS9JvpElDc0rwVPchYWocloG9YTyRCM5qKW\nVIT/EMEphYglUhZR8TVhs7yf2jKIIEqTiL4GvvE3DG6qUTlU8ib/1cFNodcrFvTXi2yaq3PfMLIp\n+IPSOfpCHA40URDTa4Ob3iCuaRpxTUUloKnG6rg2oClI7saHMU3H8ruh/NwwkOl5QB/Oby+SyxDO\n8jpgntsIOAfoBdyKXa5zgCigG9AFQrlzgCigN4HFEeSXYbuTHSmkGB68RzFl5rqWdcqo74QShhT1\noTCk52JKsenupnlNXHxN8Z54X5w/zgUU2YSCLgCmJD5DQNHsl3zOozWTDgYoDu+nhxJlwanO6nKb\ntdhrXdjy7Iyp7eEvtK28ueVTA4guUeUVu51Feepooi0e1fzzgQM0txaINcIp8SJ4L9gjktGJ9bvs\nBUu80ljgbuQrSJzGa8EZZg0V0C6AtAjqTAjkcJetIzhUNON6m/UFfg1jC7g0pVuLZsKfJFnEe6Zq\nCLYaORRSj85fQKIj9eLUZX6GlCppiuV1583LW5q3Km9dnnYh/2zuNs8zLzWvMq8z43OTrcfWZ1tm\nW21bb6PP9h47ztpX29fb6XNBT0FfwbKC1QXrC+hzIbiSlxXC+oLyK+kumVeytGRVyboSfI6WTi7t\nLV1SivBeWt5K6LSoj2qGk6F5qNk8qllTXk9eX96yvNV566lmTeYec595mXm1ef11axYr7C6cV7i0\ncFXhuuuWjLCo80qXlq4qXcdLtn3CblbaW1joxT+fuchrs1cUmc1FFXabt8gsfqWwoqIQ/+xed16e\n22u3ewvN5kIvrTfKR95nf8PnrnqxWzIjIix5KyEYLLmwgEpWr+YLIjNFh5XN9aRFINQ2W/rLuHJl\ntqTqB1P1ISkJy5BWmHediVCQ8ch9kTWRJyJqZdgkr4/M9EYhJMhUpM6ueIHBPg2H6jhXNciphpBU\nYK9THCoRzkTE/NBfJF7BfpFvSHrfJx/r+LEN+n3olEPCf0KPBI9X0vAQkw/6DjCNfLKX/gF7i8GE\n1bQOWy0P5j2ex/8M5B3hf6RfocmewPi0z3oUrRXBFtOnnBeg7VPIhp8U/BIhG45kwtZK57L60UnA\nG3BM2AnoqcCRIa4uUlzZQA9iBFzCAVYTzCNexy7U24BGuKycphhw4I7hQ+Q+TJCrAafoCvXewnYi\n2vgxdopd4EsfaQNWKAcAYApL42g2+1jSqjw8Q95RPNSr2ILfn9X0aD+D/DUvEbjGWDjSE1CoOFR5\na8UuOKRMwYO8OfoMaRgXw+kKT3EOD3AScAKxISrrG+vFFSwT+NgJw45rSKj9gUAmZo/TxZLmBp+V\nLy/q6jrq2zyR9orowvJm+03V9qDHNrEyaawKFJfUTyqvn+tid5ZU6K1uW3mpwWLoaPDHvJaqhkCZ\nP8dWavd6csx86JpQ7otWWP11sPegdk1+AP9GvD7zFgqCXpDek900RWHSyIPsP8RBwS7MVXkkfye8\npDp5G+/kDZC397OyaXt/Hr/OUcHGULLTH2wmzB1MzQ3RJmOnJTV9MDU9lH5i+rbpIrlPSVWdfuW+\n2sFUbSj9aO3GWhEZpyYOpiaG+hv572ot/TfxW7vpVukRxFd6B7ChGyvDenlLcjbvI7MRGHUbHJqS\n9bPlJUJ/DrsiVcyul23XpTX83fTb4WUsJzlCqdnkMCVVJclot1H+YWMoVW/pb+Lp3RXEKroOBT7Q\nLXcgcofaTFyfmO/ID35n1lP7EjYyDsIg+yAmvFdghQSzJGkTYB1gB+Aoeedga2AfIIo5cQlgAABi\nivS64Gb46dA2AbZJRXlzYOD5ur11h+v4gnFLZCfOOk9FLuDPgcirCMW9C4ukJqwDd7bvx8JwPoJT\n3YUT3j9N5rAcJ94HAKdm4AqwG3B8Bjx+Zh6YyX9zeiZP2DULTXYOKgvQz+XNOzgXK+WlEMG3III7\n8PTk0v8t/ahBzEEIYT+EsB3PehJmWevKN8Ms6ygJBA9/hMNA1DfZ1+tDWEVfRgD7AFsyZvbSBsDz\nkMFAzRGKLE3RrEFXcgEj6G6EIT8eeRPP/ndI+D7gTkiBREGPPxXy2N1+EPJIIGEp5PEB5LEMorgI\nODgVLhQzTs7gwtwxY98MGJRBDgOAHYDtkMg5COMI4A2ACmKxAyo52OCJUyq6MiYLgVidalwX1+qu\n39FlY4/R7v7zkgkOj8/SbnI7TNaiCmvzFo21yOfyVrv0oYo/r46FA36Pp7HT13F3Qbt1SrW9qsLh\nL9sQiCQm5BYVWErCrd6OBWb2VWOwzOFx5evKNPmuYrOz3G3Tuw/lOm0mZ2mpvrLK2uRsm1iXdLib\naqpvqrI1JcpCwdyCQImnytJhaw03JO06W3GgKJAI2mMBrG/auJ55guuC4GB7ERxsijGOHLjENbpz\n/YJW3rO+rB3RGhbK/HCfKZoJDkhMXHM1HTIN8mVxvxEEN5Z+M9dcX8CEowQKuaxwtfExIC80ntWB\nr4zyLBQjBNqtqcnUY+ozQbvFcltvKjAFTVx/HkfTFoscz+ykTYZS/R1lx+zjF5W9hiiHN8n/aV9G\n3yclu5+pwFQvxTH9vAYAAYq0FYBIVZn9E67kqkPpVvVMdUY1IqKrqx2iyK6KgckCIw2ZR+oxX0eJ\nfnPUZInP0WBdlLRYXkG54V+Ka0VZw8GXGaJ66Q/QY/QqtoIxL8hb2JvDv5zNvMM72HfFxz7+kvhY\n+2gMTYpTXct+IJUEsG4dwwCRhFfho4DnruaCIBqIN2H4SNaP20cJIWaho24cRwhBHBCZhyZ2CDot\nGscGgWhsChuEndggpPPI+BW7PPz2UvQjsjDKMi0QycIxABGQn8J8/SGgAAvuHMAHhZmVx2GYLR+G\n9+x5wBuAw9CO3gD8AYDY59IpjEgfAo4DSG06DtiPEelVwMUsUzi2lgderTpddbEKZMvVfKFxtPaN\nWhxZ3Iq69mVDXRzNslWczPjppLVOJ9gqfl+oLCvSpzwXcHx1CpUhb3DyAP8I1TqdDb5+AZU5TUNm\nhp5C3mLeh33uN6rerhKvCbsec40NeCFH/rNFVn8mJojXFAKICoUQ4jpEECzG+4pm5NfsXvGkoBL+\nVfHPuIKGbBy1mhJEUmCkK9Cvjapirn5fvfs1jhqNJQvBOtorLBFWCmuFTcJ2YUA4IpwUzgtG3vQz\nrKS9oBI0gZ62ly1h6C1aPpKzfTBbewPdZQu2AYJik9gjqviaF9HE5XN93mWoXcEoI92tmscrlN6p\n2q+SjX5a4yzUnG8TT9jJPhYd5p9Ufyn62WOKT/sZ4QWhWXoBFtqHALPA+oKABWnEIUQjoO8WGaDe\nGUZg274ICa0G2XqWCXN5nlV8jeVhd+1hav1ofKKz2ahEENhZTLKz9Iv14kIlQohMqJiNE2Ifkhaj\nCyTt8s9KFfdLYk8yjt09g0ZRqgYPRao0JIceIoUCNhqMWCNKiVTJYVUrayWrpb9AJr5ZD7s14jm9\nBKqsw7YT8HA5j1n/DxTJBVU4AnDBYe0Cri5iOfAWYCfa/YNo5ofdJ3Bg83t0Sw1ObZwIjTHPvdQN\nma1DKedRyjrAryhnwO8BGhwyHrGBidc+aD9r593OhsIoisz5bDlbAQc4DPS5l7lXu/ltFISjgJfE\nvNaIo7wxIscwkefdMUFMdu/8ePjWJYsX28O3TKqdXRqyN3nroiX6nWzm8LstLczWMi/c2xYoLou4\niv3NycLZFGeKj6OTxD7BLZzewzQ2dc1ogKnMGx0TZwqmmJJFIJNLaHDb0Cjew9MJNvzAthhyPaR4\nDtkpIIqTXk/hoLQmE8xcID+gzG5bRm0kJhFMKYVyhBOTpV8nM2XZBrG55hykyEeWPgQNXg3VZzlg\nA2C+ha/yBqK5k3N7wdONm5ZZ+IITbLciAlDRqIKwvDSGkPwiXGLxdbn5hWarz6yqnGirqnDefnv7\nOrZl+D/d5fm6XP1N1tzicIAFWr78ZdlefKRYTIjvk13Ccq7zpl+oe7kO3HBD1zUaHzUVh13CGH+8\n64a1IbsE/WeyF1fMES7VsDH24LJt9hTALsB27Pptxq6fbBMubcKIvoM2u7JRHaZmQzvsgj68v+BY\nAXTm0iNwoSJKnyMYwrHiTx+rPoWDv4MZw2/pVTpz3IyZu4m8gshYklyDUPZTKHuLfiesIDabdkB5\n3YGSyHx8B4qDu55ifC4bO+yvPoYiTlcruZMB/LUG5tZPNDB313fVZAzMneHQBPunGD+I9cMbSgNO\n/TgL8x+hb/h533ibj3Ex8XapLKiqgX80he3p1/Ilxn0Kw8dC4uuAZxz5IWH9J8WCZRiDYiHJHaOr\noKW/ii+syiz99WplaWHh79iSGeHIeRojHLNUyvZ6KYuFtEGjnGAMga8xyhNyo3zQoKiCbkY8GFWV\nYOVJVYWkxXweRcCsWvkM4QQcdrXYy3odqg8ZbDuxofU2rh5E34VXU3pr3i5sJ2hwxrAUb8fBO/PA\nEttK21qbSj5sSC+xr8Re/0+gI96KnQWdy+XiSwAKV+XikD5Rcq6Ev+rekiWgwDiBl7oSgJAL0o+z\njBjnAVrsPCDqgrSK4i+gka0CXMDh/kVspbwFOAatSQ+Sx1dh6XMMmtIxMDh8OBFt7xQeUI8HfAMP\neAGPdRrgxlOuxgNuwANuztuBB1ySOTpJr7Ktw0BVgCF5Nfxh9K4CPM18PN4QoADPlQMYgp31CSwl\n5wH6UOHVgOWA04AcPE4f6r8asBxwkQCPcyqQeaYjeBwdHucoHuc4Hof4Oz7iYItkwkmM93p2jYae\nGBvty/vDSk9zdWHXpAmdztay29uqpzaV28prC1SlDT67b9ItdTMeKJme350sjVa5ShvavB72ZJ6n\nwdvcGvSXNccKQl21JRMR0VhbHm4pr58+sahzmitSb6+c6AnGKszkD107clblVPyhk0KnyphqC0l6\nEABW1fPekPNprtCgLh4kJ0bM9Gqa77VDSB7jD01ESRZsTKaq5H3IikH47duG5InlBWyQtML0uz7j\nEFbIC8LKM1lfJW+bINg3V2eT9JHf1jCEfOI8hzhIEtpSbXyUbsPhk3QZyvRrgMWAJM6cOobwZeeQ\ntGZyZpzOhtsa6/t2td80+a0lyW9a/1n9pkvoUOs+NIQzAEsJ7YFaQgMzLYss92HSMls8Fq5WlhBD\nKihRpcK6EgrmgkEBp16tCN5baWlF+a9iPd0g59IQwglZ49CAudHTGGpUUSbtg6l2WnB1DqY6yail\nsYx378llvWVLynj39iPm8FyEQT1HvHIAJ0VFBZxEu+0F28DbuOoGucB56oY4fDkNuAQ4hvO1Juxf\nrAbsByxvw+DStqsNPtttp9sutsGPog3O3ZD9euxx7G8/hj2O5bje2r6rHbuQ7ReVbaAVUi9O7NZ2\nkHN3x5GOkx3nO+Dc3YHq4atVgB10Uyfd1Hmk82Tn+U7chLO97s55OOfb0YnhAk+a7i6bB8+7GK5P\neS/A0K4ADzqfJIBnpEeeh0c+GRz7yANHmk42nW9SyQ873kO8UgkJM7bvakcjll/VdW1wJH921JH8\n4/6CqkSVp6TSHnInq4vClY6Qt67eVdVYGplmixhrq80lBeacgurykuh4X/P7KyoLKmxF5f4Sc3GV\n29toEPXNgZI6j6VqQmlpmdFWaDIWuczDJaO+6BWsiHXzOa2e3Su54VpyFotLC9ayKcVSmy+3bKGM\nSbf0Aga41grZBYRWfRlTbqm+gjjj6kOSs56uKkAugiy4Mg2eqzTOCUT55OCq6GYe3gmwvjgDYHke\nedKTY9GsGJDDAKjg9gPzkzIcxeTKN+ViIkyFh2R3PCcLUyfAotnroU7oDcEd2s87gd/jD/llX+hK\nayNOJWW6GpXC6HEyw+OR1tlddj78v42hfh4G/RMYX96G0noK49OlKrSfydjOCVhjsCA8RbOGvQA/\n+yPyIcIBygBRmdMnqs6BdpFIil6to9H9v9BAHrtxe7BPHNsexMLyiiLvp7YAmVv3pJhkbvF7Qolw\nSTILfAQ3w6lHpuETvpCy42gPjzILuph76Npjb3s2bM6A2eAxhAw8TaPElMWXJXx8C9EulmySsgxG\nKQ+RU0yTukfdp16mVisu529TSBUcAs/LX5q/Kl/D74nZum3zbEttapDZ4qR2ngrM7PSVuls9T70U\nPz+a+fkAwnufxwH26nwU0Zw/JX9+/vJ8NYpTDuPUC1XEQEpuqNFYRA4T6Kf3UK0yOT2u/Mr8/Aqz\ny6Gp4R/LnPyjtcLCP4pJm78kPy9Hb/bY7JUl+WZ9Tp7HJusBLKiCbUme4GTbUvkhSa0BFakSbZer\nSSFsgW0kWwjF8oyUqkfhm6iBFizNhNXGNkBZDtemFF9/RasyykTnTJknFaJwaQ2WLwiqKc0CMXH+\nKI+jmeLGclU6hNe3puAa9g/rEGzDNYOw53aQC52YC0164Lj4pngJJgbwdEo7xEp4D2qV77Rvai/B\nccWhrdTy5IcheKP8Xdw41bjAqFqRThinwQ/uTzAWMBiLjDU8UXoYxgLfMcokEQ6q2Xt2mDzYLfYy\nO280FrKuMjyv2qs6rDqhOoeoVRQ2bx2gFxPoETW4bDFhoAm+qjmtuajBq0YUEdkfKmmQPRVQS/77\n+Ub0UURvTb9u/BUqhRRYSqu8FPgzYiMmD0QALVc91yL+TeBvxJaFf/VXCz7+zeMt69kUFmQLhrfT\nv6eHX2Et0eGn2JIo/Ex55/ktHzPL2FelQnAvLabVR8bcBwqrXk27ptbBlDVE72TAbPVYQ1bVin4L\nbaj2e1RXpD956G6ZNEMYPSy9egMJ4WtBlPQ+0X7aidHjACTzvoqsaPpNXA+wUDpfOUil8h25sLt5\nGEvu7wOIAeMpAALLY95HjARpOdE2QIqIKsVf6ztI6KOlMxbMR7O7JG/mX4IdxDKswuiUaBVG2T8A\nKkG8shbrZOKOjOLjKlytxADYDObIquLmYvipH0b25wDbAUsBy1DafMBFApT7JuA4CgfttrQEBb5B\nmyfOTNEoK73KtQ5GtmB1KS9vZPKxxTVMQeXst3yadFvK3BaHv6E4Ot0w3fyXt9TcnPAWBiNFZ9gD\nc5jH4gvWFpTUlVlbIvqZC1x1XXVVnS1R90+VebKc5slSdpfMt/UCOU7iGc+Ca+ezUW7NwuzWiv3Q\n+8oynZJCQSu2htdjx3o+G7QzhsCtMkUWefdKGqT+SpQ7/41JsTJEiOmt6l0wg72E934RGtIlizLj\nSYux4WSH5//vcaXB1eTMTlQaNFbiGBorhRAKnF2SX2Hv4jXJ8kPtHM8PVQijjrdR1nlo/KP0WR/g\nisJGUlkghkrm6BwuR8ARc6hXsE+gfmLdN+Z7YuU3InmSY5lwPR6c7x7hB1KRCe60RUR+2++WObhf\nGMPBncLLGgSMQG/dWD5u5ZLZrMkyKY3ttZKK2JOkl7An+wPVW4jhcUlFIVz67SIOhbj+gsXI1NwF\nueKK9FTDAgMX8iraFIHxjOIPsg7tvw9dqo+vKYQ02PXQArBlsip/HW7B9km53y9zuvsp3IuybS6z\nvbOnxhBsG0vqKxWK7SzBNqsa/jjQUuUgiu3hb9ri7pERWU50rn5C2ScGH3Je+v6yR7FkTpYxiqtz\nzX2fo/sK0ovK7uP3Ddzve9S30YfgX4j6oHCdyr85mP3NHfSboPQCF/XAa2Vnyi5DFyHquRdgbGJu\n4DrKaw1nGi43qMbnMVruGspDJy2qyHA6IC7zX7P3R/ZynbUI7v2aEE3Jg5h2GbaWQ2Tj6Sh3lLP3\nh43TGmgPlMPrvH3omGaPoGbqGmXXPweNHCqt7EOHNj8gx43jwzosU9WMepxAi1S42w/IUfl4ZyS/\nci3gvYzt9Gs4VwkD7sfETyT6tA54AhDCxxSuLDkZ29pxXgvZZqYWiGQf8cmko7B2364egDn3CfU5\ntagEXaStUqEPvPqyu7NqxWjEsz/A6gQRonkjRHQz/kenduEPFlniinKvKmLj/zHn1H+e+S3xW9PY\n68Mr2VcERVbiK1xWZvbkHr7s4bJS0SLSPCTdj8F7FlwQzprBusAfmeVRVbdj9UMcApsBJwC/Umzx\n+WJIoyZjhjcxdLwD0+etml0wfV6tWa/BuQFXzCG1RZnYjDDjRqcCAbNBRWulPAs8RGT+7EF0KMzB\n0hOKodpC6WVAK0zWnsOVBVdy4KxrKPUz+9ASM9G0+jqkNZ8tx1b4g7A3lqPW8Nb6CyaTWKsGJY18\n73fxCA/iEeZrloOPZS1tvAEoZNEvKMgMMVvzNZhRIHagJViyDBn/k2LN43qisdMo09lSeIJ5ZJIG\nEhcKOhiEGIib8BQmzzewiRLAhkSAi95mi8j/qWjVo7rtHvGLnV8U75nx5NQviF+Y+iR/k19mX6B/\ntezR4Uf5m2TUcX7BrwziT2UPHqxf008I22BtdQbL2FmCTLjAV7J78fLuA/wQQOGeLHAoFoeSprCY\nFGeJi0XEctKuSJoR0ek5MRPPScfnTkz/r+FZZsH15zktnH9UY8M7aIbS0Db4wLgAMYkOao6jDaiH\nMiSdK5KG0VBgmoWye2T6rO49GHQKENAcwJtYrCZ1oDrMBIJTLxxAyK/FOkTCGUqaERQHca3kkDm6\nhUlTq17mIkPAHO0KJRaO1JyjCFx2rpRm4rAMSpBk5lcDLxheNrxmUC3McG8tlG7DsdkJwzkDkX4k\nTRtzn8tN5crBQ7V8wpuVuzj3/txHER8SjkeSBTy6IcATeJm0LYZYQRnncATMGHPcmGmoFC0IDTUn\nFwFUpd9j8IgCenIQQybnIiKJxVB7J6ALX6lxpRLB8SzHlqoCgCw5jbU473URVQesi+VQHrIpgKRV\n5ZDujWM2tEsX2mUfbPJOCRfQSpqIjQgNwo8GgUhaA7IGp5KDmkpVcBt4A68f/EhSAQAOIFIVXteU\nbISOPjTvD2HP3pPTByISP8Q9GfAHyPzDXCxHTqLsVcI6lP02WigqI92KZ6HYCyexwF2lXQc+JkhD\nWpCDKJsRVywCS1ud9192L3jsC7d855UFz2ye+9GbL7zw5kf//u8Y3ywjFnaC94V8MYklHW/wa9Dn\nt7EX2Mvo84vwjPdm2UT4OEgDXNZ9u4/iZ+JqX9bD+wTgV4LiWGO2IEyUtAUrAzPGv/QTOdvwpkZo\n8Jcz7IMT1y4K4AP4KBtio4micljkEzmu/1EM8UuAKwAjBrZ1GWNHaRaH/nw+EDdhb/81rL7uA0Ab\nG7MazbQoohREKDpBm49aoM7S3vHPcSfgAcA3BHkhynVKraXfKF6RT+V+byFtY2C/cEw4hdC41Dam\n4BcXs27tH2JWpfmVGqEOAFd0ya7mTXev+jAmtL2aw5gGTmrOYyh1ogF9iCPWXbCBbLL04CCQgo9c\nyJ4GHgCcBvwRkANpLcBVDwRDUsjJh0XYL1CV1wGHAT2AQpwknNJkFstFxO6VJwudKy2AUwA9cp2S\nLWRB9jUdB3wfANrYGB+FZWrnGG0+xFSRD56YdcnRdpPZY9Y5SrxBc8WhObPZX38sRZOiJmmoDS5g\nb/J1DrVBWuf8TI6x+BBWOa02WuVkvz+Y/f4O/v1UPizaXra9Zjtju2zj2jDuTntsIRvvQUmoURww\ndFa+XPla5ZnKy5W4B5RynspQJe6pZATyQoqNDPN5vk58RShglj2W0Vi+g3K0JOg+96Evi/K4zVMK\nhmgelCknFVerxTQdk8gEixJ7IndI5gtczKE/h99kyKWgEltxUINIxOJCOURFyjQo5VlylZ/ZlOAP\nY8KhG6+2N7baKa6ZNYRFvVFnV87NTEMgejDCN13SU2r6cf23cCQKPWXgsP6E/pxetTD9Hf0emCno\nyI/eSsTDdOYs7aMh5wRGp/McYo0Bb2NEhe0EFcJMZPzZG3+re/oL/37rv/3brT985Gndd77T850z\nNxujrHf4e2zu8O6o8eborl0wyxJcHL7Jx5gcdk4SsHV0H5rbZQB8nSQPb3jyglX6BgYZiqb4AOBO\nrEVgLSIq9lSIZ5u2Mx+WchHWwf9ItyDp71k/bIozgXIhO5nsAu9uUMoFRV2Rtobr/+kW7XRsAyxE\n0j9p/5mPmAOyHRzvus/gHd8D+FvAIxhVp2jnY1QFtRwqyVczulAaUxxoTPBm4eojhQGHAPcDzmDo\nfgJwnyEz9IyLbpt14NbLx/78DX4HY/yXhScxxr8P32G1YBd8fCUrD0m9gJWAc4BXAD8B3I57I0KH\nMAccoypLv8jz4++eokj+ADCELaUWzXTNbRrVijQimfNh5h3Nn/ifAYOmSFMDptWHcOcUjbx1gkUg\n8XDBso0vtSBjZQVdoA1CjD3aPojxdJZx75IWrcalgSUbVzcayZhtw/CvWTFffuUPX2F3sO8Ob2kJ\ns2UtvE9Tm6A+/4txNs25ik2zf+R9UUuxjwJsZcobklq9vP9o1FfgasQX33zeQMx3c9I8y7zYfL/5\nUbN2ITko9RdmDpzHbTVlQrVQUBN2heKZyKfG7ytPSZsQimXeOvI9QgdYB8BKIx3NmYxZ6yO81B4s\nY5oBGwAfAXqydmMfkd8aBqGPyGsaOwwgy+ZS0zgdTv5nu3MAJEaaYkcxPhUPgM+RfG+W4MxVi/AA\nfdhLyQE/wq6yA2AozC1zl/G7d/kPgMGxEKpjLgKK9AWWwZg9J1CIuCKI7rWQIlpDi6MIYLK/nBRF\nLbuzVV0P/brXsQQE1X0oehmKno+QPr2BJTxHNsYIgWxlx5mlTRKZM95RkZNT0RHP/J3+ZxPz8yf+\n2XTlr/i1Sbctq65edtukzN/2yff8VSLxV/dMzvwlHculvOsw+/dUZUh6lI/K/bkqtOH0Ws0mLIdz\nSeeSuaUtg9JKDLFLER34pOU8ZsVbLdhYedzyLcvzlr0WNYwCQBpN21cbOZCBO6jTB9Pf8jzvEemG\nsiF43fGLanJwDA+mwsomJdmmZFqOm39wk3vHBLfs3pGawJc07IqkkRO4zs1Vtvdg+SXoLfAnM8lf\nmELSIqxtKQQmIiEh5NF7FuxhWSyWMgvvrW5Lvw2GLu4J+IEzlD7kHHTKM4KH1KYKOkUOkEJfTaPz\nKujBWwAxLHmex7uksDHnAX/gT5s0wVgh4Iq5ul3zXHxhfw67lLfiwCZGERYBsKYZWBVeF94cxtbF\nQ8gwigw3WTN5YddF+hNlaHAVuWpcCdc01+eQYV8mr/TukoMwf4A/vHRnmCesDK8Fm+hmfk3eE7py\nXTn8fFwRnVc+lFACIwS8sQiMqmP8LwVbdLHfuLqqN/lYkXX4XRVj7+WfMs/pCXZaQ8W3R6Ozm336\nafZ6xlRd9ubCr/6f6nmF4l1W50CTL5hXlBeb9/nKooq6Wl/bgmgsr8Ts9zZ9aVWBRT4H+kD8UNir\nWi+ohDvw9hjCZbON7Dkme9+eRSRW8khOGkYDb/P1gllFY4wqqZqlWqy6X/WoimszBgSTl1M0UAKF\nL/CxvAAUjHSWx0cvVcTlzf3cHQnV+o3yHk2Cl/8RlT8XtslmbHPCpZscdMdGAc+GBv+EcOBKgEiR\nlyd6RJQHT+OViTs+J34olzfyS/FDZuLlaYXHJC3mW8Qjh+IoDMkEJjkZE281HdZczhzWSKKGljca\nYri6TAHhM/TcamLGQuhD+Yll4h5G5/xch8WZmSgHLZbux0JSVGkoDAaD9hGLMFP7nDnt984SP7zn\nno3j6riG4l5KazCVPcqyrFyXiddpkXifuEZ8QhwtfcwmFF+UQb/mj6OVaTbUFNkWCwteR4Y6MpnQ\nC3VNm1UebFHej7W3mpG2p6Fw6KQmPTfrXtSQC/Ee8Fr2igbhLTnu2R6Visn7Ppqh6/iAQ/xPNE/q\nFg0HcObIb3ar7vvfM8fPcuaoUt3ozHHkHJejQbVcMPCVwkKsagWM/0mb/KI3auWdlEHtWW0OH3a1\nFjgvGLGGTQv5lnxxBb8z//78R/M35j+Xn8o/lD+YfzY/B83CwTuPGWt3HNTl4P2PofEIjLl+vtjl\nKsa/Q5kLVdTu8djH/EP8VpVLGFHd/InxW1Wu6H811uvIOXGYP/9jgklwCnt0DBuPOoUkC/GkeAOQ\nVa2ILHRmUM+eNGm2ulYX9/vjOtVjrV1drQH+P9nn9VfCKdW3/9fn9f+XPq+qjhv7vIojx/g4Oovm\nFp3w7ZQ2RGM9kQ2l4eMjwkwtfVZ8T6G6yEwwY2edT5hs5A3Kgfs0azRPaOhXmpmaRZr7NPxXaoWq\njf9Kl9lyHNSd1dEUpcaUqHCkyL5FCHYuD5Ya/u+HfL4a3pO4E5PWRj4fCF3isPAPqjt4G22gPdkB\nkCi9LKhGGZSUXj4g93oVSsnJ9J4x3bYr21vrM71U5k52C3tHfnL98Zz2w/UKxQhoNZbz8fz8Afxu\nsThROCe+y39n38NUKvmsBDGXBZG4K/mq5nsY/N89IHPkmDl8XTzG79cK5WNCJl9z5K1BJ46wCF/Q\nlJtZ4VTmGf7+L9hR8djHTeLjHx/4fzYvJoR4Xv8o/lioF97YY9F41DV7nJpCjiGNwLFKo1XXpGFY\nIC5MFuVoC7U4LIfmu1z7kBbmB7u0B7Svak38W63FafFbopbJll7LEstKy1rLJst2CziBEQrLco6v\nx2GQ5BqETWKYMKLI2ccr7LsmZNJYipCUz9JvEK+kTxsuGlAVvaHAEDRkWPZXG9Ybthh2GvYbjhlM\nGK/g75AK8YU7b1rljZmzcVltcTlg9Z5x2FPOVR0RB5MmdIVcgc7bGhtv6wy4Ql0T/nQ4NCXijvQ9\n0Nb2l/Mi7oYp4cN79VWTZkyILmjzVbYtaKydOalatzd+iyk6pS/ccf/sCRNm398enj8larol/r+y\n/X9Vtv8bv/y/Hr+8bOQjMZ/LrFD4CsyHi2Bc3K/nMnIrhHMQmCwOM39O8zV7Ulk6H3wwW/pz4J4y\niDWodVAOTtvvFK8kixDEOeCMObud85xLnauc65ybnTuc+5xHnby5nnSeB9lAgcpMekClNuOLIlsk\nObz0wDGHmG8tyS8pN/P5ZzL79XRDkd1p0OfYyqtdrHp4KduaSAy/5izLzcQwGPkt28b7WrlQI/w8\nVRtCLIJaouHkarjsimIbgpemiz9vNl6PzdJfobmSfrPiUgV1worCiqqK5oopFfMrllc8VLGhAgwB\nByperTCRpUtwUKrS2KyZmL/jPBdo7U9kRiL2cfuLSRDFruJAcay4u3he8dLiVcXrijcX7yjeV3y0\nGIIoPl9MKj1ifqZPV16spN5XWVAZrGyq7Knsq1xWubpyfeWWyp2V+yuPVZoWSlWUN4QGc4dGnTcQ\ns8r+T2RFqXj3RFwqeUXhiEbZtkR3rCcuunvt3lBReNK8uXlOt8k+wSUWTCt1ufxN8apYa9tfTKqc\ny1TVbRNcnS1Tn+3d5K6w6fPtXtHrDzW1/Kztr2UZ145cFutFl1AkVAgFUnEF12IqsPZUmFg9FTTz\nOa4iu5MHgkAjdH7HM4ne1tv8XlcolgwkFnX6fJ2LEvFFnf4VrXPntjDV3kRzq8MXKTfXTLsjHr9z\nak3VlDtv8n29peXriHtTJSwTX2RfEwJCTJgibE5NDaWmkQIw1SJHa0b/D+J9Bi8F6X0GC4NVwebg\nlOD84PIgoo1uDe4KHgi+GjSR+Vi7hr8jbbuz3d8ebZ/c3tu+pH1l+9r2Te3b2wfaj7RjbG0/1y4u\nFPY0iho+ZHvFGj7Ra8jOyauE80rVWFI3DaZuIv7kLj4mVma8ca4iJpV9dXRy/HddKf8Urcz6mKOH\niy/afRPLSibW1dic1RMipWWRSrvNFykraQzV2O1VSJnotzdXVzmqAl6zxRuocvmrh4+bfVXVDlup\n3VAbtFcHvVc80aDL5vHb8v0euzPQ6IHjg6M8YLMFyx3OQLTCH7UVl5vySt2WhkqTp9hmLizL9zdY\n3R45DtbI+3yB8GMu42amTsVDqQRJOE6m+7kkYQck7LjkIAk7Ch1VjmbHFMd8x3LHQ44Njq2OXY4D\njlcdXMJ8RMjnnc/SHyY5h51hfzganhzuDS8JYztoU3h7eCB8JAw5h8+FeV8gJRYKWHAwFQwJ/N+1\nFKfkf8072h4z3oaUryGaynLig0ifdl90Uy9yF7iD7iZ3j1v2Hlzv3uLe6d7vPuY2Ybe+v5F6Z6Or\nMdAYa+xunNe4tHFV47rGzY07Gvc1Hm1E72w830jGB+MW5E7XxKvsstQZx8OMW9ZRS3h+T2hqpMjd\n0FNX3+th1qquid6I21c2uSY8NVrpzO0qmhWuiHitVm+koibus7C7Y3+9YnrlpNm1NTPiFXV+k9tU\nveiWqNteU1zqiXbPmvMFX8xdG/eUttSXhnvm0Fh+50gN26TKFxoEB19b+NU1wp4y0cHbaJ2oV9eg\n2jSsomZOp8MqG1eT1zyNEdGJjXzk8Mttkm1yWPK4tq0z5ulUjInOhrAjYMsz8SStKU/DRJWhaILX\nUOgwiWetVqPZ5A7U1ZRphvVl829pdhbm5RvzjBOaI1oHu+xqaW0Jl2iMNuiqH45Usw94HfXYwdcJ\nGB00XpUuELPZIszX/t26gjuefan1JJvLCxxOq57EcxWOVIvt/DcGwUFcd/rQnhwRyyWNqMVzuRoZ\na4TVEit3FLIpw4dF8/Bk1ji8n50+GWOH2IGmScM3D0++CXl187z+iuelE7w8H64VcK2ECPX0il8/\nDqCFPVqRIWeNtZzPQOVWsXV4arsYP6nafaVXdeFKQYbj8qfst+I7gkbIEUKSBpaQWpEmeT39kSOq\nCDBK4t8IavqG/tBD2yI2lcpmY92tu3a1/sPx9es3eNk6tm74IdY1/P3h77Mu+BlRQeKP+Ejn5f2v\nRmgYncf8gyl/qN+pvoKJrHKov1jFK65iPi6YShFrSrX8ELHGiCMQmBiLRmNYmY3a2dMEwf9zuPgj\nMv7vZ02NoknntFrsueoJHs8EbYNuajQ6udDPJ+SXh+9gPxoWHuzoeNDaVGgqsZpdNmuOr742ou9p\n624pa/SW2+wT94vLP94sPv1xA68ytclbRi6IPaJGsAm9kk3N5aBTY7KEtqcflEzyBxv2rCRr9oOD\nr1ONoT1Wesm5oo4PsGRKhA0DPnvLQSN1GHL50MrbjhzivjzmUsLbs6rpEyd9a2/nH5n75omtTx3s\nGlm9sejBlsdavlm8iiNE2i3ME+eybwilwk3C7XvyNGZ1jRJKz2xJ1Q0Ke5pFCNIuGjhGxGqOboz3\nROZHHPnXbLSlIrQR7wnxxbMckw8pLYOpFuzBjd3p8o7bA3Pc+CtxrspaWlNaNs1f2VVUEdRM4B9r\nS8unVPq7Snw+XQ19LJtWqXyrtpTgW3/l5BKvT1fLvuFu8LtceXnOeo+7IVDgzMtz1ZXt5pfZxKCS\nSM3sFkHL35Wfa5C5gl/S6Plcrs8YCIqEuYTGIWGPHm+Fz+yNlQ6NxqHh3e8W9sHwQvad4Vz2AQu2\nvdT2zN+1LUkkrs53gpSTzVcS9WQ6o6d3m0PvNmdc9rHGyspGjYNR9t8dvo0XwbO/p+3vnuEFDP8M\n2fMxZf7IWTaTfPFyBHiHIqijl7nYDnIIGvXv+f88HkWWX+BmmV+AjzrvCmfG8A48lk2/jHQuK2Ek\nIL4oviKU8f4+g8JEY36z8fnNlpnsyNr2upoI+TRgGqxgZkyDKhvFu6Q/fMjJBJnmA0E0FijXeVmE\nedH/5V0mVq4SX8yGnLYYjTOGN82YyyZOZhO95fl2Cj89bGeRraMxqC3GnIMHxVc+bikvLKZY1GwD\ne0CJO/ZrcYdqPX/rufR8b7Pm66ZfYN7rpl9khWPS78im/5aVU3ovF9Zeut8o3y+cJfmZkM7lZxHK\n2VekonJogTBWXlMus1iDAOWQYuKsVRG7rInMJ/LAjA67hnIKLLsIrn7bAIJ3XNC/zFso4x/KsKHC\n2BVowAZ2RTI5y+SzvH6LCC0Th3J2OogrVLEVclSyFdJTOJl4C/A9QFP2jO6AWjG0UVgoFQ9x6QCO\nZclufJ9iwbZQ2gp4C/A9AMWBJTcrCtjqB+cqRQ1cB02zF8rteYAfp8XrcNULj4h9UHgPeck5BHWZ\nnA2A0YW6bAI0oXSKAjUVsDtLvjoVQFGfDqD0uSh9CnmJoWDyXO8GfI6XFBv134J9sZeP2Nasm7r3\n2b+dvWqm3z9z1ey/ZeLwcM+UKe+0P353e/vdj7e/014/e2kstnR2/W+44hKpnf943/wvz6+lNrCY\nv2svtQGT0gZ+MCb95mz6u8KxMemPZdMvC8fHpN+RTf+t8B80XizmfbGTt6VKYd6eAjVmiAIY22R7\n5Thdb1yvzJwD73EwJ/8ZV+fyGTEfFfA/hYNSpcpynS5Zbi130H/875h+KXaO6ZSG4TVs3/DX2bzh\nXewRS6ZbjumRhlzxlfbftA//rj3TJ7P96B9JVnal35WPSX8sm36ZVYxJvyOb/lsWUtLd4j+KJ7Pp\nv2OerAz/gvJ3yPlzKaI/UjqXITimHuQSgwWSRZlC+xlfu2BKH+pXqzNcJTm0E2yk67zBqziIx/Nq\nZ6zyMlLPGH3uUYkmPl8bGa16bQotCJZymEgW97DHenqGv9TDjg9/SXzl+ec/bmEzh/vZ12+5ZWRk\n5Jf8xQdU9/HncPL6a4V3TBRHceQKT8+lNiWnv2uQ4yvewv/sJznJ6b81yese20hAOMqfu0SI78lH\n2/kMrYbsDbFdUKI0D9e45uG18qcYbRZHx7YKdU/+DdrC6NhM9c0b+TX7E72nIuU9/Vp+f/y9Pkw2\nNsXyexX2Zd4r+y3dX0LP93aDMJpO95fQ/ZeEXZl8xqX/Tvj2de9fKnw8olHazW7Kv0yZJ9zZ9jQ2\n/SIzZ+u5m/IpU/L/ONNeVfn0firkPs+qx6Q/lk2/zIJj0tdn03/DEtly45ReK9dH2H/d9IvCP2Xr\nE6f61Cr1+QdKb+By/ojun6Dkc+i66ReEPdReGkYC7CPxpDBb+GXqllBqTih1i0KcmJpjSU0bktjE\naZjMS+lPaqKlv1MFBbrT2envjHZO7uztXNK5snNt56bO7Z3w9IYC3XmukyvQ8rbWNEt/jYor6TWX\nakhJrymsqapprplSM79mec1DNRtqttbsqjlQ82oNV4Zp70Lues28TTbz1soX40a+pPAX8gmVFRLT\nY6GlXy1ekUrlT82W/lbGle3Wi62kbLcWtAZbm1p7Wvtal7Wubl3fuqV1Z+v+1mOtJq5Aa1yK/gEV\nVDYBzWrQMb4UHuPxqx0l81FUajVXW6C3MIOotxpKQ47yKvvECZaKoDOozrWb85y5+fXNE+NVba5b\nmoqiNcWeSFtXW8QTaLulpuXz1a2hBcXRGnd01qJZ0aqO6uKSFqZSB3yuCkdugS/fXqjOM+VoNdYO\n0VHYFAqErOVhT2V9udNZXNNWH5neUOAP13eZPfXl4caKoglTk+GbJ+blqATl3brxDrPv9nfCJrnP\n8bYTpnceUtrODqUvusUwtZ2Qcv/mG6cr/iVhiuk5Y4+oVvxLdETJb1JGShoCr95+3GOGIoVFjprU\nGy1UqH49n4r4MGvC+kTeZ4000l6rIyKWvtXz1lvvihXvvsW+OXwv+2bLnvb2PVS3uXxeWEDjYz3V\n7R3egkfTb86mvyv8fEz6Y9n0y+PSv51Nf0/45Zj09dn03wh/pGefy+fiBfzZY8KzqaYQb5appow3\nfjMFSTTZArL2SBpxwNLv4yu9GCVmh95xVn5EK5P5YOQfjJlxmEy68MFo6S9h2BQqcZUESsYe2G4u\n2VGyr+RoCTaFSs7Dqimmsl8zpfOmjF1seKCpeXNW0yW13TGr7pdGx3FV54SGuKPHXl5V5c8zBaqq\nyu09jnjEH3WarhnbVaqC4rm317IXh6dHpjSUWDQaS0nDlAhLD3fW3j632K4pyM8M+4q+oUqRXGPK\n/P9/aF7js7Q4ndKblfFIbpsunu6g9BZl/Hp6TPod2fTfCk9m4gyzfxa/xtMn0Tzx5JeEMemvZNPn\nfEne0gjz8e4X7CzXvmcwdWpmKDUrlKobws67vEUo2eqIQ3CmJVU0iGOJOksqMpiKhLBw71Bj6Otw\ndvg7oh2TO3o7lnSs7FjbsaljeweYMDD0dZzrEImW4ebR9VoVf69VudebeRv4h4arz8D2lImT+JBn\nUxF1ShVvUdhM9F300fjmK/AFfU2+Hl+fb5lvtW+9b4tvp2+/75jPtFC6Sf4J1wp6aE+xx9UT6In1\ndPfM61nas6pnXc/mnh09+3qO9qD59JzvwZ7i+KWgFw6MmRQ+/kUaJ3ordAHZ6RMWcmMWAqqxtpeN\n7Bdj1wVMpRJLZjZ74hOKEvPvrC5ffctNwfYvV7TWFWtUpsyK4YuF07rqbWUBu6/RZx23fLAGbaEq\nbEk2t5XpjQ/FQp32qkk1Py5K2LIK30qNLeh1lTtyCqpinsza8XfsJ/TOe6mNtAl7rpv+OWWuvDp9\nntIGr05fKnyH0oMj74s/Fd/n6YvltYcoUptC+mzxfT6jR1lBKhbCQCEOEfEYbe2lYhlv5AmZjfoJ\nmeY1QXFLxmBahlESQeZ5I/M6vX5v1DvZ2+td4l3pXevd5N3uRQRoNDLvOW+GAdTDG40nQ15G40zu\nVaPw+CVqBYZkSZML3g7JTX8wQPPKVNB2Eh+gg9R2gq5gIBgLdgfnBZcGVwXBI7wjuC94NIi2Ezwf\nlKnBG9A0Gy42UNNsKGgINjQ19DT0NSxrWN2wvmFLw86G/Q3HGjD1YqxvvDZAWob17SqKSXF29Lph\n0o4ebY8Oe66OqSaGPx68JiL17okbNw6vvYpYLDs2XKH3u1x57/8wJv1r2fQnhb+/7v1zsu1kfPpS\nrEWVMeYKH2NiQlL4ZqotBK6ftsyxULsFHuZ59lJI3i5zupda+pv4HzpokGLyV2WWVHIwlQxlR5EM\nMd+eJtHDX2GeqhCvMEZ/sCZK4FUkLiboVSQKEsFEU6In0ZdYllidWJ/YktiZ2J84ljBd0+Vprsgc\njTnK6TAo5ho/WdjkkyIHWzvayTWaCcHaZKUv2dvQOLe5dPhhVXFdi7fxZnukOuLxui1yH2+b1VPW\nMqFoTO/WqEWLTXlP/tZbw6XeSRPc9WXVja48TbFT6d1/1zGnsDpakhnLLaKL5PxFpf8OXDd9jnDw\nuulLhe+PSX83m/6+sF32YeYT/WkVYtU/ruT/93w+YtjhYad5vy4T+lPlIRBglVtSBYOpghCd3DIy\nyVYN4gVVYPuw38RTuapePCizDYyhrcr00HH+FeMmfxf/4JJHf/RQlbFE3qLst+K9Wi9a6b1aC6xB\na5O1x9pnXWZdbV1v3WLdad1vPWY1kXkwH1zK0JnR3eR4M04HX2Ipb8/hzZIsTvuXrCt6dAo5ore0\ntP+LGNouu6IPv8FUM+aQI7oYaty4UdZFT3F5FIuQ0zKaU38sCpm5nAnUb+T0J5k81+q5LvqiuJ9r\nXlXCQ3tKVT7YmPgu0TyW4yv0VfkQSXG+b7nvId8G31bfLt8B36uYx8w+6gLmUH8+l6hPCYMgpAKh\nccrsdafUMcps4NOVWdWYfdSxe5AGsT0vM02x0vz8UvwbN0Wx14drM5ORyuEoKsI/0sFHfj5iEbay\n1wWbMH2PUZMDHTw7BueO3T/VT5oPVYaPtmqXOqDOGLeuUq9Tb1bvUO9TH1VjtFWfV2Om1rkU5QSr\nOVJgnCq9TV9QkqduF12xicUF/8hEdX5JhVX0f/xabn2DP1d+P7w+XGfh/YF9jt7P54YFxXffzX5J\n89nXKP13C+X0efwhnKqdPP0JZR4tFn6lpM+k+5+g+y89IN/vHnEL28ak/+7SaD438f6TyWep8I2R\nHJ7eQf0K/XOLkv8/0v1Xp88TnpLTeT1Ps7PZ9N8JX6X0/HH38/q8mF37ieXUHp9WxvH+MemvZNPn\n3CB9rfAmpVOcKUo/RPm3zZDzt/P63Er1kdN/9ys5vfSq++cl5PRxsRGQz6rrp39ukbyHU87nD8QI\nuUW4CIV8Lqnisk4+15KaDp18Osw6atSfUa8mfzDo7l20tuhydvm7ol2Tu3q7lnSt7Frbtalre9dA\n15EurC26znXxqZ2WK1zpRzlZq4IxmnnuZ9PMkxi7kheTNHYlC5LBZFOyJ9mXXJZcnVyf3JLcmdyf\nPJbEnOT6zJr5uIAWuquCX5CS86Mb6ueN4aq6G8S7SIyPjFFuy7++gt6jsjpuEAcjcHXEDL1alN+z\nG+8z+55/N1dQ9O332YP0/n+o7GU9ldHDwf+rpPP7m4Qbp4/hC64Qntuj1WDjV0sewE4iZ3TSClOL\n5aWAQ8LsnDQu9GbuVec6e1SiWi3H+MWRAlnl8XHK4DIEDDFDt2GeYalhlWGdYbNhh2Gf4agB45Th\nPEip86we5aDVRY4XhYPKArNYmZa4pj+e+rdR3gLI0P/+5V+OJwCeMUOmAF7S+NBYDuC/bVwCEuAs\nB8n3ZA4SLscfg4Mkm/61bPqTinzHcZbQOPD0mPSL2fR/FbZm0sX8MfevFU4KModNgI3wcb5ZGFCs\nU2qGaMaSz2fjyhq/vxTKJdmR1OCMN1UXwkeK4pNd3Y3jHb6xwkhBfTIfMqaBXFUE+XC/l16RF1Gr\nYt5u7zzvUu8q7zrvZu8O7z7vUWgOJ73nQa7YTPdfV/e7AXnN2OO6kXHz5PVJba5/QvAJVDfZzWJl\n3+oVkveQsh77jTDqY634YGO8VMbRcX6aGF8/f/30pcr8thh7PeIrgrx3rhOKhB8p79nC79/P09dT\n+leFd+g9+4XXWIBZYQsBbY4NUUjKIUGOt90KzySK5XBWhGNoJXxKA8MjjL3WLq+DAP/EyxOFXPYX\ne7RqDR82x3kxbcN5VyuM/VtxZcbVGbUc+AFG3FjoF4D/Y59wFJ63CE8vG7bL7BphBRZKg4CNYLfR\ng+pFJDrUi/BQ3s+OwUPZBb+CHL2okGgslHJyFG4HKVdFqX+Ab3AUoIXTQRm4ZFPwyHwNAKcMaRvA\njC/uU9JWSGdxNQvwqDFjyEqnJFeHg8YRuOyjKIl0lf6++AMEuxwS/xOsWn8HUd4lypHU9Rg8Ml6w\nq+B+NR9UBb3w9V3GVuOJdoHaZYpmPuhJQGeWnqzthddvN4QC1utYuYrRkXOg/CUW2Tr8sXy2PHfG\n8KYr7IGPN+Ks4qDynlQPkT+VjU0FqaZAMdbNQ/15XJhfAJ/LixwGvpL3VN7uPNUKSZVngMRA+C8z\nJRyE31Yu4DwdZsKlC4R6IoWRBCGdmrLMGZJeUPiGFkpn4Lm7JueJLN+EGbwm2iHJJGd/0ARud0vK\nMpQ0g452jeUJyzbLC5aXLboVSVvcMtWywHKX5WHLVyxPWXZbDlpyFqbftFyCGXaORdnUegHMXmYH\n2AZmOhY57nOscTzh0Cy8Dq1/lsBEsOYqnqRW+RRRHBy4W3xE/BswE8bxjo4T/Zl8mybUr+X35BI/\nNl6ZkT5RjHlm9aoq5dNF3jV0XnhesxHD71kPsw//J2sYXjt88tFb2b+z54bfZHr28PDaDThGPHJE\nfIU6ENhwKpIC0+wpEITc3AZBLYRGXuQYHfkRx9jInzg2jwxwjBMmCF8a2c3xrZFfcxwi/BnhGcKz\nQBZFPixG2ESYRG6sDTmwh+meRzhqqEQNlaihEjVUooZK1FCJGipRQyVqqEQNlaihEjVUooZK1FCJ\nGipRQyVqqEQNlaihErVUopZK1FKJWipRSyVqqUQtlailErVUopZK1FKJWipRSyVqqUQtlailErVU\nopZK1FKJOipRRyXqqEQdlaijEnVUoo5K1FGJOipRRyXqqEQdlaijEnVUoo5K1FGJOipRRyXqqEQ9\nlainEvVUop5K1FOJeipRTyXqqUQ9lainEvVUop5K1FOJeipRTyXqqUQ9lainEvVUok1Qj7zKUUOo\nJdQR6gkXjqzhmCI8jhRmIDQSmggf41jCa/5djlHCGKU0jzyLU1fCBOFLhD8beYvjGcKzQEa/4rUF\nNhEmkQOvLb+f1/MtoZrXc4CjhlBLqCPUEy4cWcoxRXgcKbyeQCOhifAxjrVCiLeDWiFKGBMsHJtH\nfscxTpgg/JlQwPEM4Vkgo/tZjLCJMInf8hry+9kj/J4Qr+GLHDWEWkIdoZ5w0sjXObYSJgnbCTsJ\nJxNOI+wl7CO8jXAh4XLCuwjvJryH8F7CdfwdhYT1I3/k+DSlPEP4LOE2wm8T7iZMER7i0g4J/0bX\nrxAeITxOdT5B354kfIPwFOFpwiG682eEZwjPArnk+W+55IEmQnpG1kVIT8q6CXsIpxBOJbyZcAbh\nTMJZhLMJF+Dp2BK6Xkq4jHA56sPuIrybkCTDSDLszwnvI3yAvn2QcCXhKsLVhA8RPkx3PkK4hkp8\njD9FlHpKlHpKlHpKlHpKlHpKlL9fYCthkrCdsJNwMuE0wtt4O4xSz4ryd4qUuwjvJryH8F7CdYTw\nt47yd4rrZwifJdxG+G3C3YQpyvMQ7y9R/h5RynFKP0EpJwnfIDxFeJoQo0eURo8ojR5R6uNR6uNR\n6uNRRk/B3yCQnoW/KeAMwpmEswhnEy5AnfmbwvVSwmWEy1Eif1PAuwkfIHyQcCXhKsLVhA8RPkK1\nWkN5YrSJ8Xfxa44aQi2hjlBPOIn/KsbfBTBJ2E7YSTiZcBrhbXT/Qi6rGH8XuL6L8G7CewjvJVzP\n+3iMvwVcP0P4LOE2wm8T7iZMUW6H6PoI4XHCE4QnCd8gPEV4GshlDjQSmgiptlzmQKozlznSZxDO\nJJxFOJtwAWrIZY7rpYTLCOm5GD0Xo+fiMgc+SLiScBXhasKHCNdQbo/x62Yae5tp7G2msbeZxt5m\nGnububS/y7GVMEnYTthJOJlwGuFthAtHHue4nK7vIryb8B7CewnX8d7XTKNZM5c5Up4hfJZwG+G3\nCXcT/gPVJDXyDMe9lHKE8DilnyA8SfgG4SnC04Rv8RbVTPNFM80XzTRfNDOqP5c/kJ6Cyx84g3Am\n4SzC2YQYnZq5/HG9lHAZ4QOU24OEKwlXEa4mfIhwDf0WM1ScpB0nacdJ2nGSdpykHSdpx0nacZJ2\nnKQdJ2nHSdpxknacpB0nacdJ2nGSdpykHSdpx0nacZJ2nKQdJ2nHSdpxknacpB0nacdJ2nGSdpyk\nHSdpx0nacZJ2nKQdJ2nHSdpxknacpB0nacdJ2nGSdpykHSdpx0nacZJ2nKQdJ2nHSdpxknacpB0n\nacdJ2nGSdpykHSdpx0nacZJ2nKQdJ2nHSdpxknacpJ0gaSdI2gmSdoKknSBpJ0jaCZJ2gqSdIGkn\nSNoJknaCpJ0gaSdI2gmSdoKknSBpJ0jaCZJ2gqSdIGknSNoJknaCpJ0gaSdI2gmSdoKknSBpJ0ja\nCZJ2gqSdIGknSNoJknaCpJ0gaSdI2gmSdoKknSBpJ0jaCZJ2gqSdIGknSNoJknaCpJ0gaSdI2gmS\ndoKknSBpJ0jaCZJ2gqSdIGknSNoJknaCpJ0gaa8UMNqsFF4S8oUXhRdHhvjVS4RYgbxEK5CXhB/y\ne16iGfwlmsFfohn8JZrBX2L307crCP+C4yG+XgL2ES7ktTqE/QyOywnvIryb8B7Cewm/SIgZ9pDw\nTV6fQ8IWwqcIn6ZvnyF8lnAb4bcJdxOmqKy9uObrGWAP4RTCqYTTCG8mnEE4k3AW4WzCWwjnEM4l\nvJXw86gJu53wDsI7CZfQt0sJMcIfJ63hOGkNx0lrOE5aw3HSGo6T1nCctIbjpDUcJ63hOM37x2ne\nP07z/nHSGo6T1nCctIbjpDUcJ63hOGkNx2kufotmzLdophvi169yTHH8Gcn/ZySZM3R9hq7P0vVZ\nXDMDasuR15Yjry1HXluOccIEIa8tR15bjkOEPyM8Q3gWiNpyjBE2ESaRG2rL8WG6h9eWGalEI5Vo\npBKNVKKRSjRSiUYq0UglGqlEI5VopBKNVKKRSjRSiUYq0UglGqlEI5VopBJNVKKJSjRRiSYq0UQl\nmqhEE5VoohJNVKKJSjRRiSYq0UQlmqhEE5VoohJNVKKJSjRRiZXQvzhGCbn+xZHrXxzjhAnClwi5\n/sXxDOFZIKNfQf/i2ESYRA7Qvzhy/Yv5KX8/5e+n/P2Uv5/y91P+fsrfT/n7KX8/5e+n/P2Uv5/y\n91P+fsrfT/kHKP8A5R+g/AOUf4DyD1D+Aco/QPkHKP8A5R+g/AOUf4DyD1D+Aco/QPkHKf8g5R+k\n/IOUf5DyD1L+Qco/SPkHKf8g5R+k/IOUf5DyD1L+Qco/SPmHoPNxjBJyvZIj1ys5xgkThFyv5HiG\n8CyQ0f3QKzk2ESbxW+iVHLleycKUc5hyDlPOYco5TDmHKecw5RymnMOUc5hyDlPOYco5TDmHKecw\n5VxPOddTzvWUcz3lXE8511PO9ZRzPeVcTznXU871lHM95VxPOddTzvWUM3SlFxl0JaCWUEeoJ+S6\nMIOuBEwSthN2Ek4mnEbYS9hHeBvhQsLlhHcR3k14D+G9hFwX5shnWAa9CSnPED5LuI3w24S7CVOE\nXBfm+G90/cr/7e1MgOwo7jPerZV2Vxe3AWMsP+MDDEKWhGBmxGGt7gvd4pAlpKe3o92Zefve8o6V\nVoBlrxHIB5CkcscCh5CkApWEHChEoOC4HBIUJakk5iocQ27HSZzEOSqpOFH+329mtU+ywJWqVLx+\n3+s309PT/f96ju7+PgG+CB6nzi+z9xXwVfA18HXwa+T8Ovgm+JZQY2GvkZRwJkgbNRb2GkkJV4Ar\nwVXgavBWcB24HtwAbgS3qXUaC3uNsISDYKL6aCzsNcISEhlPZPQkNayDLfa2wRFwL7gPHAX3k/Me\n8ABntLGwD+A3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8A\nfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4\nDeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3gN8AfgP4DeA3\ngN8AfgP4DeA3gN8AfgP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8Q\nfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4\nDeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4DeE3\nhN8QfkP4DeE3hN8QfkP4DeE3hN8QfkP4jeA3gt8IfiP4jeA3gt8IfiP4jeA3gt8IfiP4jeA3gt8I\nfiP4jeA3gt8IfiP4jeA3gl9G9z6C3wh+I/iN4DeC3wh+I/iN4DeC3wh+I/iN4DeC3wh+I/iN4DeC\n3wh+I/iN4DeC3wh+I/iN4DeC3wh+I/iN4DeC3wh+I/iN4DeC3wh+I/iN4JfZAB/BbwS/EfxG8BvB\nbwS/EfxG8BvBbwS/EfxG8BvBbwS/EfxG8BvBbwS/zCH4CH4XaX7McArYDfaAveAt9saySPNjhovA\nxeBScDm4BtxOfnvbN0xIp2AGVsEh8JA99xdp3GR4GHwUfAx8HHwSfJrSvkT6RfA4+DL4Cvgq+Br4\nulDzY4YzwJkgtdX8mCF11jjLcB24HtwAbgS3qYYaPRkOgIMg7fK0y9MuzY8ZtsERcC+4DxwFD1Da\nmKX7NIdgOAXsBnvAXvAWY6pPcwiGi8DF4FJwObgG3A7uOHnQMCGdghlYBYfAB43xPq6gPs0hGB4G\nHwUfAx8HnwSfoiZPnzxs+AxbXgSPs/1l8BXwVfA18HXwDXvX7dMcguEMcCZI/TWHYEgrNIdguA5c\nD24AN4K6Ivo0h2A4AA6CLUprgyPgXnAfOAoe4NgxS69xa12/YQscccsND5I+5LYZPgQ+zJZHwCPg\ns26+4VF3k+Fz4PPkPAa+AJ5wG/waf5vyW2+xLX4H6bvAneAusAwOk/9usAEesKN2Wg03GLbsLDut\nhlcZHmTLIfAh8GHwEfAIOZ91FxketXrutBoKn2f7MfAF8ISb5XdaDe0oq6FwB3gXuBPcBZbBYfLf\nDTbAA7Y90ZyJ4R2gjc0Nd5FOwBTMwCo4BN4HPmj9IdGcieGPgj8OfoG9h8FHwcfAx8Enwac51zNK\na87EcCW4ClwNrgHXgreC68D14AZwI7gJ3AxuAbeCu1UfzZwY9oMxuIe9A6Cu/ZQ4pMQhJQ4pcUiJ\nQ0ocUuKQEoeUOKTEISUOKXFIiUNKHFLikBKHlDikxCElDilxSIlDShxS4pASh5Q4pMQhJQ4pcUiJ\nQ0ocUuKQEoeUOKTEISUOKXFIiUNKHFLikBKHlDikxCElDilxyIhDRhwy4pARh4w4ZMQhIw4ZcciI\nQ0YcMuKQEYeMOGTEISMOGXHIiENGHDLikBGHjDhkxCEjDhlxyIhDRhwy4pARh4w4ZMQhIw4ZcciI\nQ0YcMuKQEYeMOGTEISMOGXHIiENGHDLikBGHYbtyZxm2wIPgIfAh8GHwEfCI0K5E4TZwB3gXuBPc\nBZbBA4b7NVdm+LThPcT5HiIwxnzRGPNFY8wXjTFfNMZ80RjzRWPMF40xXzTGfNEY80VjzBeNMV80\nxnzRGPNFY8wXjTFfNMZ80RjzRWPM4Dl3ib8s/68qGU7PNSVos3rsV57uciV3QZGe3JFniuWZX6S7\nbXtUpKUnXFqkLyB/l/OTp9r3Z/XfWCHt3cXGRp6e5M7x+4p0l1vkHyjSkzvyTLE8Lxbpbtv+1SLd\n46/y3yzSve6yrguK9FQ3q2t2kZ7W/Uddq4v0dDdn2uVFeoZbPW18+3luxrQfLNLnu95pX+wbiWtJ\no7S4Xs82xQPtarnRseXGUjhnbv918bwbS/Pnzpt/7dwF9v9iU57tWmUrjkiapXKp1Sj3x0PlRlaq\n7ymtjJP+uLo7bgzEjdLSRruSDZWblcGkFtdKfStml+J9lWq7mYzE1dFSNanEtWbcX2oNNurtgcHS\n2qRWb40Ox6UVQ7tXzi6Va/2lofJoaXdcasQDSbMVNyxzUitV4karbN9pu5E0+5NKK6nXmnPcEld3\nw27UNVziBtyg9fGfM37nu7lOs0ol6/mJq1meluUZdrFtWeGG3G630s229F7+5rjqGbnmuIr9GrLv\nkrM3FPsrdZyhya/YvmP7HjHst5x9pGqWq2H7F9vxdZe5TbZtwLWthLJtP3ueGy0dWglzrZzrbP88\ntqgN8wyvte8FBZ6eq7O0a0+Vdvo5Empbtk/Lftvz3fYNUZfMttXdHsOVti1hT9UiozYNgCXr9w2r\ne8Xy6pimpQaJlMpXZFYQxdjtsz1Vy9m0vSOUM2rbFdUKeZvESHUYtBLrllOR/F7slG2fjtK5Vd5u\ncjSIqNrVopZ5yQk1qrClZfnz36mdqUHefurSMqxTnznvcO4+y62jypSxnBi0YD+Gw3faWyKOTX7X\nirqdyYiOm2f3l9D+8nbuKdpSsrrEsNM8xc6g/R7hqIEiJnkZ461XHMZLbbK/SSqmlnuIet7CPba3\nwhHq16s44szydKbYrgldGwl8fTdLs6lVXJwvoY357z1w3zpVbt3iWSUW5VOxV33qZ8Qp76HVom+V\nicREW5LiqPwc4/046Sgxj9Qy27O7OHq87yyHnTbHzKYPtalfXoeynbNJSn0so/w2sRsvc/ys6uPD\nRUzFZYWt42dpEptq0SvV0/L25deC7lBDHNXq4HWiPXuLfSo5j3il2KJ6j8LWliL3Xju6cZZeNUTc\n8nhdaeWPtzq2X+MRXM7vGlfxRN0HC/abRZ3KRXzGa3d631Ht98JcicgNdcQqKUqZ6E3DnLF1FvY7\neZnDvTDnpW15FMecizPZO9u9Le+ZJTtX3t783qOrMa9dC84q3FMTcg5yLytRVqPgq8w9vknuOmc/\nPR5lys63JNwR8+s1z9HZPwdhKHH7aW+r6GPj97OSu8K2X3Fa2ae3o0xbVLqupgrbKrRY99j4tDtj\nszhbi6jkd5v8Ph2TI+ZOMtF/8p5ds0iViz6cPx2Sjntotbi/7rZPlYiNdpxxoLjDn8lFuYhrw2Je\nZ2udK6mzrvmTIOGekF89w7S0DL/j19QeWqQrtV5cDS2uvtZppQ1yXP+pe0bnPS1/+i+gju98rx4v\n7czeXuL+0ijin9cn7+Nv/9TQ2TKOUizWcO/Tc6sMS4nLn1z59Zt1PA/PFsu8VhWOKNP+t8+9rojO\nROTG823graNFjdtWyxJvS1WiP/EsnMM7Tctas9Bpve97vRP973J/lFrpOjj9uah+2dmO8beXQp/v\n3Mln3Hx3lv/5++0zyXJ1ud+2CP+8necX3Ifch638K91VVt7vuOPud93fuI+4q901drWccL/nft/9\ngb0hzbHa/BlvVXusbP0jwn9otflj9/3uF+2NaoG73t3g/sLeGv/enstfdS9bS1+xp/RCu3Pc5P7W\nPedudn9lb0S6Nz1k7f2ivV1Mtdr3WYxnug9YW5e5j7md7i63y93iFrk33Dfcg9bn/tTa9XV3v40V\n3uvOdZ9zx6zHjLkvu0/buOtZqavdq9Z7honI3e497in3K+6Xjatv2ojhp6xHf8ld6n7T/Yy7xD3v\nVrvPGIfvt3fcJ91vuBesl71p7/prLbojxkLb3Wq9Yb17n3vC/bnb4LvcP7gfcf/oNrrLrYd027vo\nqLvH3et+yb1ld6eL3L+4f3X/5A67R91PuvvcZhsTTrdRRK873092L7pzbOy7xe5Uj9to5bfcr7pn\nbGz4a+4rbprbaiOfP3G3ub90D7hZ7jL3bhsXvWTjytvdt9zF7t/cP7vX3efdu9y33R3uE+6T7lPu\ngPF7p9vmPu62u79zR90Pux3ur92Fforv9j2+10/10/x0P8PP9Of4c/15/nx/gb/QX+Tf5S92j/lL\n/KXuJ/y7bWT3AzYS/4L7afdjNhb/df8eG7P+rI3Ofshf7t/rZ/n3+ZL7L/9+d9Jf4T/gP+g/5D/s\nr7QR1Uf81e7f/TV+tr/Wz/Ef9XP9PD/fX+cX+Ov9DT7woY/8Qn+jv8nf7G/xH/OLfJ9f7Je4//RL\n/TK/3K/wK/0qv9qv8Wv9rX6dX+83+I1+k9/st/it7r/9bd752/0d/k6/zX/cb/c7/F02Uv4Pv8uX\n/W5f8f0+9nv8gB/0iU9tTF71Q77m6zZ6vts3fNO3fNuP+L1+nx913/H7/T3+Xn+f/4Q/4D/pP2Uj\n20/7+/1B/4B/0B/yn/Gf9Z/zn3cfdN83ZU6tXa12D5UrjXrtnOG4kdT7bXDFiGnysnajPnWgUR6J\n51TKw1PLlXaL1DmVpFFpD+2pxvvYUSnbwR2pcrU1tZVU+8k8oz+xwppJUz+m5SdSsqddS+bOXxJN\n3d2I8xP0NpLagBLnDbZrA+VGe6habre0YWZ/vVWuqF76Nb1SHxoq57/P7UjrvFOWxtVWmbKvixbk\n331R/r14ydTyniS5Yd78MJoaN1vJULkV92vf8nD5cn3Pnz/v+uI76unL69rdRwV7+uoD9VqcTV8y\n0fhpS07Vq3spTbevRr3c6l7Gr55lRRHLKGLaslPZe5YVpa3oKG3Fqd0zVnQ0a/rKiTyTV+4uN7pX\nEdyeVXnp01ZNFLuqKHb1xCEz1nSU1b0WErvXUr8Zazt2TV5rxXSvy/evy/ev69jfs75ozHoaM3N9\nJ0ndm/LjNuXHbeo85WZ2Td/cUaXNnfu35Mds6TwXfWNe3+Qtau7WvLlbi/Nv5fxTtqq3zNzaWYue\nrUXzb5841/Q7J9Ld26jKtG0TASsXhZZzkstFAZUOWioTJPfnJPfnJMc5yXFRRJyTHE8UHhelDXSU\nNjBB8kAnyYMdJA+q1Une6iQvvSfJy+q1w6txs5lOTzvimXXGs5pTUc3DWu2kuCqKa/n+Wr6/1lmJ\nWnm43mw16sODcU+9aFY9p7t+Gt0NypjR6DxvIw9OM6e72VG9Zme2Vn7e1nfTvXhySw1v5w1vF+dv\n53S3obt9Gt3tIr57O+ge7aB7f073/lMhn7Rq9aQk5XRz+5YW33NPzd65cQeZPZ9m2VPfL12+dos9\ny/gXrk+eZI/P4kbNtuX5vO2bxHevfWrknN97YvzPvdK10Pd23dt11C+c/J0p39bfpKWT1k3aMmms\n90TX3N5ne7/MH7m7FhZ/9/J3NP/Tcd3f6Lmt5yv66x3hmBP61/jsbFPsidxj577Q3guuxsFzg717\n5O8bI/asP2ZP/uP2FvE1e3t4071VPB/Hn2n5U2z86aUn1hq/s3i+DPMMGbNnubwdcnbI1yFXhzwd\ncmjIUXH85EtyRMgPITcEDoQZ6IalGpZmWIph6YXlQpIHSatqWi/TapnWyqR9XXzWc8g1Is+IHCPy\ni8hnIX+FnCLbKfEAHhE5ROQPkTtE3hDpVuULkStEnhA5QuQHkRtEXhDVWz4QuUDkAZEDRP4PuT/k\n/ZDzQ/pPqT9RU3a0z+ogp4d8HnJ5yOMhh4f8HXJ3yNshZ4d8HXJ1yNMhR4f8HHJzyMshJ4d8HHJx\nyMOBRvGAHafYTUIFfIy5ZWmAp6MBlgJY+t8TllMr4loP12q41sKHbdvd9pHe9xr0vlL7SlMqpa90\nvlL5SuMrha/0vVL3KkZS9krXK1WvNL1S9ErPKzWvtLxS8kqhqhUIrT9o9UFrD1p50LqD1hu02qC1\nBq00aJ1BqwxaY9AKg9YXtLqgtQWtLGhdQasKWlOQNncSSlnpZM/DISenm9xx8sbJGSdfnFxx8sTJ\nESe9odSG0hpKaSidoVSG8sCdi3dNTjT51uRak2dNjjX51eRWewvtXTfaPCnzpMuTKk/+tA340+RO\nkzdNzjT50uRKkydNjjT50eTUkkNLTjT50ORCkwdNDjT5z+Q+k/dM6mxps+U6k5JdjjP5zeQ2k9dM\nTjP5zOQyk8dsnF25y+Qtk7NMvjK5yuQpk6NMfjK5yeQlkzpD2gwpM6TLkCpDmgwpMqTHkBpDWgwp\nMaTDkApDGgwpMKS/0FqztBdSXkh3odV0raVrJf3M3iWdhVQW0lhIYSF9hdQV0lZIWaG1ZznAbsZ1\nJM+RHEfyG8ltJK+RnEbyGcllJNeO3DryF22nlx45aw+Vn+jte+QR/ENyD8k7JOeQfENyDckz9DpX\n7LdQQ0gLISWEdBBSQZytx0r50NErUTywpmcfaR2kdJDOQSoHaRxGuVovxf1z81nvdPJFyBUhT4Qc\nEfITyEcgL4ScEPJByAUhD4QcEPI/yP0g70PeX57A9SDPgxwP8jvI7fAUV8thfA5yOcjjIIeD/A1y\nN8jbIGfDG9yTJ+6w0iJIiSAdglQI0iBIgSD9gdQHeX94At2BVAfSHEhxIL2B1AbSGkhpkHN9xEaX\na22crLH4iI1MD9r3IRuVPWSfhy39iH2O2OdZez4dtTHvc/Z53vYds88L9pGOQCoCaQikIJB+QOoB\naQekHJBuQKoBaQYOWH6dbYP0AlILSCsgpYB0AlIJSCMghYD0AVIHSBsgZYB0AVIFoAmQIkB6AKkB\n0ALYRzoAqQCkAZACQOv/B6ys2f+vd9C1/wd3UY3cZ2lVVmuyWpHVeqxWY7UWy0qs1mG1Cqs1WK3A\nav1Vq69l2jyL+/BLeBQm0WrV+EJ8E3JNyDMhx4T8EnJLyCshp4R8Ep1PSa2uam1VK6taV9WqqtZU\n8xXV/J1Kf+5/AIGHtqIKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago3MDc0OQplbmRvYmoKMTkg\nMCBvYmoKMTI3MzQwCmVuZG9iagoxNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVu\nZ3RoIDY3ID4+CnN0cmVhbQp4nO3NMQ0AIQAEwVNMTYKOV4AZKhosIOQxQUNmuq02uWynZ2WmpWac\nLreHAAAAAAAAAAAAAAAAAAAAAPCY7weB+gXnCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwg\nL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNjEgPj4Kc3RyZWFtCnicXVE9b8MgEN35FTem\nQ0Rst5UHC6lKFw9Jq7qdogw2HBZSDQjjwf++fCRu1ZPg6T7ece+gx/a11coDfXeGd+hBKi0czmZx\nHGHAUWlSlCAU9zcv3XzqLaGB3K2zx6nV0pCmAfoRkrN3K+xehBnwgQAAfXMCndIj7L6OXQ51i7Xf\nOKH2cCCMgUAZ2p16e+4nBJrI+1aEvPLrPtB+Kz5Xi1Amv8gjcSNwtj1H1+sRSXMIxqCRwRhBLf7l\nq8wa5FZexfIAzwwuf9wiQ5mhyvCY4enOuKYGdXbrW4M6hsuyiNQMl4zXOM/95Tha3OOmmy/OBclp\n2UlrVKk0bv9hjY2seH4AHtCFLgplbmRzdHJlYW0KZW5kb2JqCjEzIDAgb2JqCjw8IC9DSURUb0dJ\nRE1hcCAxNSAwIFIgL0ZvbnREZXNjcmlwdG9yIDEyIDAgUiAvQmFzZUZvbnQgL0F2ZW5pci1Cb29r\nCi9DSURTeXN0ZW1JbmZvIDw8IC9PcmRlcmluZyAoSWRlbnRpdHkpIC9TdXBwbGVtZW50IDAgL1Jl\nZ2lzdHJ5IChBZG9iZSkgPj4KL1N1YnR5cGUgL0NJREZvbnRUeXBlMiAvVyAxNyAwIFIgL1R5cGUg\nL0ZvbnQgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9FbmNvZGluZyAvSWRlbnRpdHktSCAvQmFzZUZv\nbnQgL0F2ZW5pci1Cb29rCi9EZXNjZW5kYW50Rm9udHMgWyAxMyAwIFIgXSAvU3VidHlwZSAvVHlw\nZTAgL1RvVW5pY29kZSAxOCAwIFIgL1R5cGUgL0ZvbnQKPj4KZW5kb2JqCjEyIDAgb2JqCjw8IC9E\nZXNjZW50IC0zNjYgL0ZvbnRCQm94IFsgLTE2NyAtMjg4IDEwMDAgOTQwIF0gL1N0ZW1WIDAgL0Zs\nYWdzIDMyCi9YSGVpZ2h0IDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250RmlsZTIgMTYgMCBS\nIC9Gb250TmFtZSAvQXZlbmlyLUJvb2sKL01heFdpZHRoIDY4MiAvQ2FwSGVpZ2h0IDAgL0l0YWxp\nY0FuZ2xlIDAgL0FzY2VudCAxMDAwID4+CmVuZG9iagoxNyAwIG9iagpbIDQ4ClsgNTY5LjMzMzMz\nMzMzMzMgNTY5LjMzMzMzMzMzMzMgNTY5LjMzMzMzMzMzMzMgNTY5LjMzMzMzMzMzMzMKNTY5LjMz\nMzMzMzMzMzMgNTY5LjMzMzMzMzMzMzMgNTY5LjMzMzMzMzMzMzMgXQo1NiBbIDU2OS4zMzMzMzMz\nMzMzIF0gODcyMiBbIDY4MiBdIF0KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE0IDAgUiA+PgplbmRv\nYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMCA+PgovQTIg\nPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+\nPgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCA+PgplbmRvYmoKMiAwIG9i\nago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMjEg\nMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDE0MDIyMDE3NTMyNS0wNycwMCcpCi9Qcm9kdWNl\nciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCkKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMS4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLnNmLm5ldCkgPj4KZW5kb2JqCnhyZWYKMCAyMgowMDAwMDAwMDAwIDY1\nNTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDA3MzYzOCAwMDAwMCBuIAowMDAwMDczNDQ0\nIDAwMDAwIG4gCjAwMDAwNzM0NzYgMDAwMDAgbiAKMDAwMDA3MzU3NSAwMDAwMCBuIAowMDAwMDcz\nNTk2IDAwMDAwIG4gCjAwMDAwNzM2MTcgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAw\nMDAwMzg4IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMTMzMyAwMDAwMCBuIAow\nMDAwMDczMDYwIDAwMDAwIG4gCjAwMDAwNzI3MTIgMDAwMDAgbiAKMDAwMDA3MjkxOSAwMDAwMCBu\nIAowMDAwMDcyMjM5IDAwMDAwIG4gCjAwMDAwMDEzNTMgMDAwMDAgbiAKMDAwMDA3MzI3NyAwMDAw\nMCBuIAowMDAwMDcyMzc4IDAwMDAwIG4gCjAwMDAwNzIyMTYgMDAwMDAgbiAKMDAwMDA3MjE5NCAw\nMDAwMCBuIAowMDAwMDczNjk4IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMjEgMCBSIC9Sb290\nIDEgMCBSIC9TaXplIDIyID4+CnN0YXJ0eHJlZgo3Mzg0OQolJUVPRgo=\n",
199 "metadata": {},
200 "output_type": "display_data",
201 "png": "iVBORw0KGgoAAAANSUhEUgAAAJgAAABWCAYAAAAzIF/lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACutJREFUeJzt3X1QE2ceB/BfNuHFsCExQDFECjqAhRa1DGOtAvbUuU4t\nteDUcQbbcDiTq1d7nSLT8bBjcuBh5WxBGRDB8eWOl/MG5uwInt6LN+Xl5uxdC7aQVAJnLeYAiRJI\nNrxE2L0/2vRiJkE27FJz/D4zzJjdfXYfnO/sbvbHs4+AYRhAiC/ED90B9P8NA4Z4hQFDvMKAIV5h\nwBCvMGCIV6LZVtpsNllZWVl9fHx8S0ZGRrHRaEyoqqqqJghiRqlU3lSr1XsFAgFTU1NzrLe3dz3D\nMIRKpdofGxv76UL9AujxNmvA6uvrjz777LOXJycnSQCAmpqaD/Py8l6TyWRDTU1NeW1tba8HBwcP\nEwRBFxYWpo6Pj0uLi4svFRQUbFqY7qPH3awBU6vVe/V6/SaDwbDebrcv8ff3H5fJZEMAAGlpaTV1\ndXXFUqn0bmpqai0AgFgsHouMjNSZTKaosLCwb1z3d+3aNXyq6+O2bNkiYLP9rAFzRlHUUpIkRxyf\nJRLJPYqi5EKh8AFJkvddl7sLGABAUlISm/49pKmpCV555RVs/wO17+joYN1mzgEjSdJMUZTc8dli\nsYSRJDlCkuSI1WoNlcvlAwAAVqs1VCKR3Pe8J3aGrFMwNf3tiS905dPwjXnyofViPwLCSH+uDoc4\nNueA+fv7T9jt9iVms1mxdOnSwdbW1jcSExP/KpVKh9vb23dHRUV9abPZZEajMSE0NLSfqw623x6F\n6k8HnJaMPbS+8McrMWCPsTkFTCAQMAAAKpUqr6SkpIEgiJnly5d/tX379g8BALq6urZqNJo2hmGI\n7Ozsd/nsMPItjwxYQkJCS0JCQgsAgFKpvHn48OEU12127959gI/OId+3qB60xsXFYfsFtqgCtmrV\nKmy/wBZVwNDCm/O3SAe73R5YUVHxG4vFEkbTtHDHjh1FISEhRnclJD46jHwL64ANDw+vJEnSnJub\nu+vu3bsrGxsbtRaLJcy1hJSWllbDR4eRb2F9iVy+fLnebrcvyc3N/Uqr1ba++uqrR11LSN3d3Zu5\n7yryRazPYDdv3twYEBBgKy0tjTcajQnnzp0rCw8Pv+VYL5FI7js/8UeLG+szWE9Pz8b169c3AHx7\nNgMAsFqtIY71Fosl1LlmiRY31gFTKpU39Xr9CwAAZrNZQRDEzIMHDwLNZrMCAMBRQuK4n8hHsb5E\nJicnX+rq6tqq1WpbCIKgc3Jy3hEKhQ/clZAQYh0wAICcnJx3XJe5KyEhhA9aEa8wYIhXGDDEK6/u\nwQAAPv/88/TBwcG49PT0Ek+jjbjsKPJNXp3BJicnSYPB8Hx6enoJwP9GGxUUFGxSKBSGtra217nt\nJvJVXgXswoULv7p9+/bajz76qPHOnTtPY6kIecL6Ejk4OBhL07QwPz//5dHR0WUnTpz4nUKhMDjW\nY6kIOWN9Buvs7Hxp3bp1fwAAkMlkQxKJ5B6WipAnrAMmkUju63S6zQAAExMTktHR0WVYKkKesL5E\nbty48cLp06crtVptKwBAVlZWvkQiuYelIuQO64ARBDHz5ptv/tR1OZaKkDv4oBXxCgOGeIUBQ7zy\nulRkMpmitFpt6/79+3cGBgZSWCpC7nh1BqNpmvj444/zU1JS6hmGEWCpCHniVcCam5vztm7dWuXn\n5zfJMAyBpSLkCeuA9fX1rWMYRrBixYpOgG/PZi4vpsNSEfoe63uw7u7uzT09PRsMBsPzAwMDT3V0\ndLzs/D4wLBUhZ6wDlpGRcdTx74aGBu3atWuvNjY2alxfTMdtN5Gv8vpbpDNPL6ZDaF4B27lzZ4Hj\n31gqQu7gg1bEKwwY4hUGDPGK9T0YTdPEmTNnKoxG49M0TRO7du06JJPJ7mKpCLnDOmD9/f2rFQqF\nQa1W/2x8fFxaUlLSIBQKp/EFdMgd1pfI6OjoG+np6aUAAFNTU+KgoKDRgIAAG5aKkDte34NRFCWv\nqqo6vW3btuNBQUFmx3IsFSFnXgVsbGzsifLy8t9mZ2fnrlixotNlDiMsFaHvsQ7YyMhIxMmTJ8/v\n2bPnbYVC0es8hxEAjipCD2N9k9/c3JxnMpmiKisrzwEAkCQ5gqUi5AnrgKlUqjyVSpXnuhxLRcid\nRfWgtaenB9svsEUVMIPB8OiNsD2nFlXA0MLj5O/BAABqamqO9fb2rmcYhlCpVPtjY2M/5WrfyHdx\ncga7cePGiwRB0IWFhan5+fnbamtrf83FfpHv4+QMptPpfpSamloLACAWi8ciIyN1JpMpKiws7Bsu\n9j+bQBEBXwxaPa5/IsgfFMEBfHfjsTBomYJhm93j+rDohZ8vkpOAURQlJ0nyvuOzRCK5R1GU3F3A\nOjo6WO17JQAcTfK8nh7qnbX94Hc/AABKpZL18Z35ent/YP//P1+cBIwkyRGr1Roql8sHAACsVmuo\nRCK577rdli1bBFwcD/kOTu7BEhMTr7W3t+8GALDZbDKj0ZjgPJQNLV4ChuHm7wLr6uqKe3p6NjAM\nQ2RnZ78bExPzL052jHwaZwFDyB180Ip4hQFDvOLsSf5c6PX6tOPHj//+2LFja6RS6TAAwOXLl9+9\nfv36TpqmiczMzA+Sk5MvuWvrTaXAZrPJysrK6uPj41syMjKK2U55M98BLjMzM6JTp06dGRoaivH3\n9x//bhpEAZs+zOc9bDk5OSPR0dFfAACsWbPmanJychPbwTnznjKIYZgF+TGZTJEVFRXnTpw4UWc2\nm8MZhgGj0fhUaWnpBYZhYHp6WqTRaFqnpqYCXdt2dna+WFtbW8wwDNhsNqlGo2mZyzGrq6tPXbly\nZd/FixcPMAwDR44c+aPZbF7GMAxcunQpr6Wl5Y3Z2n/99ddrm5qach3HPXz48J/Z7MNms0l1Ot0m\nx+9fVlZWw6b9zMwMUV1dfaquru4Dg8HwHNv+FxUVXXH+zLb9xMQEWV9fX+Rte4ZhFu4SGRoaeuet\nt97KEYlEdkfqdTrdCykpKXUAAEKhcDopKam5r6/vOde2nioFjzqmWq3e++STT3YDANjt9iVs32M2\n3wEuYrF4LCEhoQUAwGQyRUul0mE27ef7Hrb+/v5ErVbbWlhYeM1kMkWxbc/FlEGcXyIHBgZWnT9/\n/rjzMqlUenffvn0/cd2Woih5VFTUl47PjgqAu+3mWinwhKKopd6+x8wxwCUzM/PIJ5988v3vMdd9\nFBUV/WloaCimoKAgtaGh4Zdzae/8HrbPPvtsuzfvYSsvL18pEonsfX19606ePHmezZQ/XE0ZxHnA\nIiIieg4ePPjSXLZ1VAAcny0WS9iyZcv6PG33qErBI45l9mZwytjY2BOVlZVns7Ozc0NCQozNzc37\n2e7j/ffff3FgYCDu7Nmz5QKBgJ5Ley7ewyYSiewAADExMf8UiUR2NlP+cDVl0A/yLZJhGAEAwDPP\nPPO39vb2LACA6elpv87Ozm3ubt65qBR4MzhlvgNcDAbD83q9Pg0AIDg4+N7U1JR4rtPuZGRkHD1w\n4MD29957L3PDhg0X9uzZ83M2x+7t7X3u+vXrrwEA3Lp1K0kul/+HzZQ/XE0ZtKDfIh0c92ARERGG\nuLi4fxw6dOjvNE0TO3bsKPLz85ty3X716tV/6erq2qrRaNoclQJvjsd2cMp8B7iEh4f/u7Ky8ux3\nl0VBVlbWL8Ri8Zi3A2TYHFupVH518eLFg1evXn2bJMkRtVq9l6Io+VzbczVlED7JR7zCB62IVxgw\nxCsMGOIVBgzxCgOGeIUBQ7z6LzWkj3n7AHKHAAAAAElFTkSuQmCC\n",
202 "text": [
203 "<matplotlib.figure.Figure at 0x10b0ecf10>"
204 ]
205 }
206 ],
207 "prompt_number": 9
208 },
209 {
210 "cell_type": "markdown",
211 "metadata": {},
188 "metadata": {},
212 "source": [
189 "output_type": "display_data",
213 "```python\n",
190 "text/plain": [
214 "def foo(bar=1):\n",
191 "<matplotlib.figure.Figure at 0x10b0ecf10>"
215 " \"\"\"docstring\"\"\"\n",
216 " raise Exception(\"message\")\n",
217 "```"
218 ]
192 ]
219 }
193 }
220 ],
194 ],
221 "metadata": {}
195 "prompt_number": 9,
196 "source": [
197 "plt.hist(evs.real)"
198 ]
199 },
200 {
201 "cell_type": "markdown",
202 "metadata": {},
203 "source": [
204 "```python\n",
205 "def foo(bar=1):\n",
206 " \"\"\"docstring\"\"\"\n",
207 " raise Exception(\"message\")\n",
208 "```"
209 ]
222 }
210 }
223 ]
211 ],
212 "metadata": {},
213 "nbformat": 4,
214 "nbformat_minor": 0
224 } No newline at end of file
215 }
@@ -38,7 +38,8 b' def from_dict(d):'
38
38
39 def new_output(output_type, mime_bundle=None, **kwargs):
39 def new_output(output_type, mime_bundle=None, **kwargs):
40 """Create a new output, to go in the ``cell.outputs`` list of a code cell."""
40 """Create a new output, to go in the ``cell.outputs`` list of a code cell."""
41 output = NotebookNode(output_type=output_type, **kwargs)
41 output = NotebookNode(output_type=output_type)
42 output.update(from_dict(kwargs))
42 if mime_bundle:
43 if mime_bundle:
43 output.update(mime_bundle)
44 output.update(mime_bundle)
44 # populate defaults:
45 # populate defaults:
@@ -51,7 +52,8 b' def new_output(output_type, mime_bundle=None, **kwargs):'
51
52
52 def new_code_cell(source='', **kwargs):
53 def new_code_cell(source='', **kwargs):
53 """Create a new code cell"""
54 """Create a new code cell"""
54 cell = NotebookNode(cell_type='code', source=source, **kwargs)
55 cell = NotebookNode(cell_type='code', source=source)
56 cell.update(from_dict(kwargs))
55 cell.setdefault('metadata', NotebookNode())
57 cell.setdefault('metadata', NotebookNode())
56 cell.setdefault('source', '')
58 cell.setdefault('source', '')
57 cell.setdefault('prompt_number', None)
59 cell.setdefault('prompt_number', None)
@@ -62,7 +64,8 b" def new_code_cell(source='', **kwargs):"
62
64
63 def new_markdown_cell(source='', **kwargs):
65 def new_markdown_cell(source='', **kwargs):
64 """Create a new markdown cell"""
66 """Create a new markdown cell"""
65 cell = NotebookNode(cell_type='markdown', source=source, **kwargs)
67 cell = NotebookNode(cell_type='markdown', source=source)
68 cell.update(from_dict(kwargs))
66 cell.setdefault('metadata', NotebookNode())
69 cell.setdefault('metadata', NotebookNode())
67
70
68 validate(cell, 'markdown_cell')
71 validate(cell, 'markdown_cell')
@@ -70,7 +73,8 b" def new_markdown_cell(source='', **kwargs):"
70
73
71 def new_heading_cell(source='', **kwargs):
74 def new_heading_cell(source='', **kwargs):
72 """Create a new heading cell"""
75 """Create a new heading cell"""
73 cell = NotebookNode(cell_type='heading', source=source, **kwargs)
76 cell = NotebookNode(cell_type='heading', source=source)
77 cell.update(from_dict(kwargs))
74 cell.setdefault('metadata', NotebookNode())
78 cell.setdefault('metadata', NotebookNode())
75 cell.setdefault('level', 1)
79 cell.setdefault('level', 1)
76
80
@@ -79,7 +83,8 b" def new_heading_cell(source='', **kwargs):"
79
83
80 def new_raw_cell(source='', **kwargs):
84 def new_raw_cell(source='', **kwargs):
81 """Create a new raw cell"""
85 """Create a new raw cell"""
82 cell = NotebookNode(cell_type='raw', source=source, **kwargs)
86 cell = NotebookNode(cell_type='raw', source=source)
87 cell.update(from_dict(kwargs))
83 cell.setdefault('metadata', NotebookNode())
88 cell.setdefault('metadata', NotebookNode())
84
89
85 validate(cell, 'raw_cell')
90 validate(cell, 'raw_cell')
@@ -87,7 +92,7 b" def new_raw_cell(source='', **kwargs):"
87
92
88 def new_notebook(**kwargs):
93 def new_notebook(**kwargs):
89 """Create a new notebook"""
94 """Create a new notebook"""
90 nb = NotebookNode(**kwargs)
95 nb = from_dict(kwargs)
91 nb.nbformat = nbformat
96 nb.nbformat = nbformat
92 nb.nbformat_minor = nbformat_minor
97 nb.nbformat_minor = nbformat_minor
93 nb.setdefault('cells', [])
98 nb.setdefault('cells', [])
General Comments 0
You need to be logged in to leave comments. Login now