Show More
@@ -1,434 +1,564 | |||||
1 | # -*- coding: utf-8 -*- |
|
1 | # -*- coding: utf-8 -*- | |
2 | """ |
|
2 | """ | |
3 | ====== |
|
3 | ====== | |
4 | Rmagic |
|
4 | Rmagic | |
5 | ====== |
|
5 | ====== | |
6 |
|
6 | |||
7 | Magic command interface for interactive work with R via rpy2 |
|
7 | Magic command interface for interactive work with R via rpy2 | |
8 |
|
8 | |||
9 | Usage |
|
9 | Usage | |
10 | ===== |
|
10 | ===== | |
11 |
|
11 | |||
12 | ``%R`` |
|
12 | ``%R`` | |
13 |
|
13 | |||
14 | {R_DOC} |
|
14 | {R_DOC} | |
15 |
|
15 | |||
16 | ``%Rpush`` |
|
16 | ``%Rpush`` | |
17 |
|
17 | |||
18 | {RPUSH_DOC} |
|
18 | {RPUSH_DOC} | |
19 |
|
19 | |||
20 | ``%Rpull`` |
|
20 | ``%Rpull`` | |
21 |
|
21 | |||
22 | {RPULL_DOC} |
|
22 | {RPULL_DOC} | |
23 |
|
23 | |||
|
24 | ``%Rget`` | |||
|
25 | ||||
|
26 | {RGET_DOC} | |||
|
27 | ||||
24 | """ |
|
28 | """ | |
25 |
|
29 | |||
26 | #----------------------------------------------------------------------------- |
|
30 | #----------------------------------------------------------------------------- | |
27 | # Copyright (C) 2012 The IPython Development Team |
|
31 | # Copyright (C) 2012 The IPython Development Team | |
28 | # |
|
32 | # | |
29 | # Distributed under the terms of the BSD License. The full license is in |
|
33 | # Distributed under the terms of the BSD License. The full license is in | |
30 | # the file COPYING, distributed as part of this software. |
|
34 | # the file COPYING, distributed as part of this software. | |
31 | #----------------------------------------------------------------------------- |
|
35 | #----------------------------------------------------------------------------- | |
32 |
|
36 | |||
33 | import sys |
|
37 | import sys | |
34 | import tempfile |
|
38 | import tempfile | |
35 | from glob import glob |
|
39 | from glob import glob | |
36 | from shutil import rmtree |
|
40 | from shutil import rmtree | |
37 | from getopt import getopt |
|
41 | from getopt import getopt | |
38 |
|
42 | |||
39 | # numpy and rpy2 imports |
|
43 | # numpy and rpy2 imports | |
40 |
|
44 | |||
41 | import numpy as np |
|
45 | import numpy as np | |
42 |
|
46 | |||
43 | import rpy2.rinterface as ri |
|
47 | import rpy2.rinterface as ri | |
44 | import rpy2.robjects as ro |
|
48 | import rpy2.robjects as ro | |
45 | from rpy2.robjects.numpy2ri import numpy2ri |
|
49 | from rpy2.robjects.numpy2ri import numpy2ri | |
46 | ro.conversion.py2ri = numpy2ri |
|
50 | ro.conversion.py2ri = numpy2ri | |
47 |
|
51 | |||
48 | # IPython imports |
|
52 | # IPython imports | |
49 |
|
53 | |||
50 | from IPython.core.displaypub import publish_display_data |
|
54 | from IPython.core.displaypub import publish_display_data | |
51 | from IPython.core.magic import (Magics, magics_class, cell_magic, line_magic, |
|
55 | from IPython.core.magic import (Magics, magics_class, cell_magic, line_magic, | |
52 | line_cell_magic) |
|
56 | line_cell_magic) | |
53 | from IPython.testing.skipdoctest import skip_doctest |
|
57 | from IPython.testing.skipdoctest import skip_doctest | |
54 | from IPython.core.magic_arguments import ( |
|
58 | from IPython.core.magic_arguments import ( | |
55 | argument, magic_arguments, parse_argstring |
|
59 | argument, magic_arguments, parse_argstring | |
56 | ) |
|
60 | ) | |
57 | from IPython.utils.py3compat import str_to_unicode, unicode_to_str |
|
61 | from IPython.utils.py3compat import str_to_unicode, unicode_to_str | |
58 |
|
62 | |||
59 | class RMagicError(ri.RRuntimeError): |
|
63 | class RMagicError(ri.RRuntimeError): | |
60 | pass |
|
64 | pass | |
61 |
|
65 | |||
62 | def Rconverter(Robj): |
|
66 | def Rconverter(Robj, dataframe=False): | |
63 | """ |
|
67 | """ | |
64 | Convert an object in R's namespace to one suitable |
|
68 | Convert an object in R's namespace to one suitable | |
65 | for ipython's namespace. |
|
69 | for ipython's namespace. | |
66 |
|
70 | |||
67 | For a data.frame, it tries to return a structured array. |
|
71 | For a data.frame, it tries to return a structured array. | |
|
72 | It first checks for colnames, then names. | |||
|
73 | If all are NULL, it returns np.asarray(Robj), else | |||
|
74 | it tries to construct a recarray | |||
68 |
|
75 | |||
69 | Parameters |
|
76 | Parameters | |
70 | ---------- |
|
77 | ---------- | |
71 |
|
78 | |||
72 | Robj: an R object returned from rpy2 |
|
79 | Robj: an R object returned from rpy2 | |
73 | """ |
|
80 | """ | |
74 | if is_data_frame(Robj): |
|
81 | is_data_frame = ro.r('is.data.frame') | |
75 | Robj = as_data_frame(Robj) |
|
82 | colnames = ro.r('colnames') | |
76 | dimRobj = list(np.array(dimR(Robj))) |
|
83 | rownames = ro.r('rownames') # with pandas, these could be used for the index | |
77 | if 1 not in dimRobj: |
|
84 | names = ro.r('names') | |
78 | Robj = np.rec.fromarrays(Robj, names = tuple(Robj.names)) |
|
85 | ||
79 | return np.squeeze(np.asarray(Robj)) |
|
86 | ||
80 |
|
87 | if dataframe: | ||
81 | is_data_frame = None |
|
88 | as_data_frame = ro.r('as.data.frame') | |
82 | as_data_frame = None |
|
89 | cols = colnames(Robj) | |
83 | dimR = None |
|
90 | rows = rownames(Robj) | |
84 | colnames = None |
|
91 | _names = names(Robj) | |
85 | ncol = None |
|
92 | if cols != ri.NULL: | |
86 | nrow = None |
|
93 | Robj = as_data_frame(Robj) | |
|
94 | names = tuple(np.array(cols)) | |||
|
95 | elif _names != ri.NULL: | |||
|
96 | names = tuple(np.array(_names)) | |||
|
97 | else: # failed to find names | |||
|
98 | return np.asarray(Robj) | |||
|
99 | Robj = np.rec.fromarrays(Robj, names = names) | |||
|
100 | return np.asarray(Robj) | |||
87 |
|
101 | |||
88 | @magics_class |
|
102 | @magics_class | |
89 | class RMagics(Magics): |
|
103 | class RMagics(Magics): | |
90 | """A set of magics useful for interactive work with R via rpy2. |
|
104 | """A set of magics useful for interactive work with R via rpy2. | |
91 | """ |
|
105 | """ | |
92 |
|
106 | |||
93 | def __init__(self, shell, Rconverter=Rconverter, |
|
107 | def __init__(self, shell, Rconverter=Rconverter, | |
94 | pyconverter=np.asarray, |
|
108 | pyconverter=np.asarray, | |
95 | cache_display_data=False): |
|
109 | cache_display_data=False): | |
96 | """ |
|
110 | """ | |
97 | Parameters |
|
111 | Parameters | |
98 | ---------- |
|
112 | ---------- | |
99 |
|
113 | |||
100 | shell : IPython shell |
|
114 | shell : IPython shell | |
101 |
|
115 | |||
102 | pyconverter : callable |
|
116 | pyconverter : callable | |
103 | To be called on values in ipython namespace before |
|
117 | To be called on values in ipython namespace before | |
104 | assigning to variables in rpy2. |
|
118 | assigning to variables in rpy2. | |
105 |
|
119 | |||
106 | cache_display_data : bool |
|
120 | cache_display_data : bool | |
107 | If True, the published results of the final call to R are |
|
121 | If True, the published results of the final call to R are | |
108 | cached in the variable 'display_cache'. |
|
122 | cached in the variable 'display_cache'. | |
109 |
|
123 | |||
110 | """ |
|
124 | """ | |
111 | super(RMagics, self).__init__(shell) |
|
125 | super(RMagics, self).__init__(shell) | |
112 | self.cache_display_data = cache_display_data |
|
126 | self.cache_display_data = cache_display_data | |
113 |
|
127 | |||
114 | self.r = ro.R() |
|
128 | self.r = ro.R() | |
115 | global is_data_frame, dimR, colnames, ncol, nrow, as_data_frame |
|
|||
116 | is_data_frame = self.r('is.data.frame') |
|
|||
117 | as_data_frame = self.r('as.data.frame') |
|
|||
118 | dimR = self.r('dim') |
|
|||
119 | colnames = self.r('colnames') |
|
|||
120 | ncol = self.r('ncol') |
|
|||
121 | nrow = self.r('nrow') |
|
|||
122 |
|
129 | |||
123 | self.Rstdout_cache = [] |
|
130 | self.Rstdout_cache = [] | |
124 | self.pyconverter = pyconverter |
|
131 | self.pyconverter = pyconverter | |
125 | self.Rconverter = Rconverter |
|
132 | self.Rconverter = Rconverter | |
126 |
|
133 | |||
127 | def eval(self, line): |
|
134 | def eval(self, line): | |
128 | ''' |
|
135 | ''' | |
129 | Parse and evaluate a line with rpy2. |
|
136 | Parse and evaluate a line with rpy2. | |
130 | Returns the output to R's stdout() connection |
|
137 | Returns the output to R's stdout() connection | |
131 | and the value of eval(parse(line)). |
|
138 | and the value of eval(parse(line)). | |
132 | ''' |
|
139 | ''' | |
133 | old_writeconsole = ri.get_writeconsole() |
|
140 | old_writeconsole = ri.get_writeconsole() | |
134 | ri.set_writeconsole(self.write_console) |
|
141 | ri.set_writeconsole(self.write_console) | |
135 | try: |
|
142 | try: | |
136 | value = ri.baseenv['eval'](ri.parse(line)) |
|
143 | value = ri.baseenv['eval'](ri.parse(line)) | |
137 | except (ri.RRuntimeError, ValueError) as exception: |
|
144 | except (ri.RRuntimeError, ValueError) as exception: | |
138 | raise RMagicError(unicode_to_str('parsing and evaluating line "%s". R traceback: "%s"\n' % |
|
145 | raise RMagicError(unicode_to_str('parsing and evaluating line "%s". R traceback: "%s"\n' % | |
139 | (line, str_to_unicode(exception.message, 'utf-8')))) |
|
146 | (line, str_to_unicode(exception.message, 'utf-8')))) | |
140 | text_output = self.flush() |
|
147 | text_output = self.flush() | |
141 | ri.set_writeconsole(old_writeconsole) |
|
148 | ri.set_writeconsole(old_writeconsole) | |
142 | return text_output, value |
|
149 | return text_output, value | |
143 |
|
150 | |||
144 | def write_console(self, output): |
|
151 | def write_console(self, output): | |
145 | ''' |
|
152 | ''' | |
146 | A hook to capture R's stdout in a cache. |
|
153 | A hook to capture R's stdout in a cache. | |
147 | ''' |
|
154 | ''' | |
148 | self.Rstdout_cache.append(output) |
|
155 | self.Rstdout_cache.append(output) | |
149 |
|
156 | |||
150 | def flush(self): |
|
157 | def flush(self): | |
151 | ''' |
|
158 | ''' | |
152 | Flush R's stdout cache to a string, returning the string. |
|
159 | Flush R's stdout cache to a string, returning the string. | |
153 | ''' |
|
160 | ''' | |
154 | value = ''.join([str_to_unicode(s, 'utf-8') for s in self.Rstdout_cache]) |
|
161 | value = ''.join([str_to_unicode(s, 'utf-8') for s in self.Rstdout_cache]) | |
155 | self.Rstdout_cache = [] |
|
162 | self.Rstdout_cache = [] | |
156 | return value |
|
163 | return value | |
157 |
|
164 | |||
158 | @skip_doctest |
|
165 | @skip_doctest | |
159 | @line_magic |
|
166 | @line_magic | |
160 | def Rpush(self, line): |
|
167 | def Rpush(self, line): | |
161 | ''' |
|
168 | ''' | |
162 | A line-level magic for R that pushes |
|
169 | A line-level magic for R that pushes | |
163 | variables from python to rpy2. The line should be made up |
|
170 | variables from python to rpy2. The line should be made up | |
164 | of whitespace separated variable names in the IPython |
|
171 | of whitespace separated variable names in the IPython | |
165 | namespace:: |
|
172 | namespace:: | |
166 |
|
173 | |||
167 | In [7]: import numpy as np |
|
174 | In [7]: import numpy as np | |
168 |
|
175 | |||
169 | In [8]: X = np.array([4.5,6.3,7.9]) |
|
176 | In [8]: X = np.array([4.5,6.3,7.9]) | |
170 |
|
177 | |||
171 | In [9]: X.mean() |
|
178 | In [9]: X.mean() | |
172 | Out[9]: 6.2333333333333343 |
|
179 | Out[9]: 6.2333333333333343 | |
173 |
|
180 | |||
174 | In [10]: %Rpush X |
|
181 | In [10]: %Rpush X | |
175 |
|
182 | |||
176 | In [11]: %R mean(X) |
|
183 | In [11]: %R mean(X) | |
177 | Out[11]: array([ 6.23333333]) |
|
184 | Out[11]: array([ 6.23333333]) | |
178 |
|
185 | |||
179 | ''' |
|
186 | ''' | |
180 |
|
187 | |||
181 | inputs = line.split(' ') |
|
188 | inputs = line.split(' ') | |
182 | for input in inputs: |
|
189 | for input in inputs: | |
183 | self.r.assign(input, self.pyconverter(self.shell.user_ns[input])) |
|
190 | self.r.assign(input, self.pyconverter(self.shell.user_ns[input])) | |
184 |
|
191 | |||
185 | @skip_doctest |
|
192 | @skip_doctest | |
|
193 | @magic_arguments() | |||
|
194 | @argument( | |||
|
195 | '-d', '--as_dataframe', action='store_true', | |||
|
196 | default=False, | |||
|
197 | help='Convert objects to data.frames before returning to ipython.' | |||
|
198 | ) | |||
|
199 | @argument( | |||
|
200 | 'outputs', | |||
|
201 | nargs='*', | |||
|
202 | ) | |||
186 | @line_magic |
|
203 | @line_magic | |
187 | def Rpull(self, line): |
|
204 | def Rpull(self, line): | |
188 | ''' |
|
205 | ''' | |
189 | A line-level magic for R that pulls |
|
206 | A line-level magic for R that pulls | |
190 | variables from python to rpy2:: |
|
207 | variables from python to rpy2:: | |
191 |
|
208 | |||
192 | In [18]: _ = %R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4) |
|
209 | In [18]: _ = %R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4) | |
193 |
|
210 | |||
194 | In [19]: %Rpull x y z |
|
211 | In [19]: %Rpull x y z | |
195 |
|
212 | |||
196 | In [20]: x |
|
213 | In [20]: x | |
197 | Out[20]: array([ 3. , 4. , 6.7]) |
|
214 | Out[20]: array([ 3. , 4. , 6.7]) | |
198 |
|
215 | |||
199 | In [21]: y |
|
216 | In [21]: y | |
200 | Out[21]: array([ 4., 6., 7.]) |
|
217 | Out[21]: array([ 4., 6., 7.]) | |
201 |
|
218 | |||
202 | In [22]: z |
|
219 | In [22]: z | |
203 | Out[22]: |
|
220 | Out[22]: | |
204 | array(['a', '3', '4'], |
|
221 | array(['a', '3', '4'], | |
205 | dtype='|S1') |
|
222 | dtype='|S1') | |
206 |
|
223 | |||
207 |
|
224 | |||
|
225 | If --as_dataframe, then each object is returned as a structured array | |||
|
226 | after first passed through "as.data.frame" in R before | |||
|
227 | being calling self.Rconverter. | |||
|
228 | This is useful when a structured array is desired as output, or | |||
|
229 | when the object in R has mixed data types. | |||
|
230 | See the %%R docstring for more examples. | |||
|
231 | ||||
208 | Notes |
|
232 | Notes | |
209 | ----- |
|
233 | ----- | |
210 |
|
234 | |||
211 | Beware that R names can have '.' so this is not fool proof. |
|
235 | Beware that R names can have '.' so this is not fool proof. | |
212 | To avoid this, don't name your R objects with '.'s... |
|
236 | To avoid this, don't name your R objects with '.'s... | |
213 |
|
237 | |||
214 | ''' |
|
238 | ''' | |
215 | outputs = line.split(' ') |
|
239 | args = parse_argstring(self.Rpull, line) | |
|
240 | outputs = args.outputs | |||
216 | for output in outputs: |
|
241 | for output in outputs: | |
217 | self.shell.push({output:self.Rconverter(self.r(output))}) |
|
242 | self.shell.push({output:self.Rconverter(self.r(output),dataframe=args.as_dataframe)}) | |
|
243 | ||||
|
244 | @skip_doctest | |||
|
245 | @magic_arguments() | |||
|
246 | @argument( | |||
|
247 | '-d', '--as_dataframe', action='store_true', | |||
|
248 | default=False, | |||
|
249 | help='Convert objects to data.frames before returning to ipython.' | |||
|
250 | ) | |||
|
251 | @argument( | |||
|
252 | 'output', | |||
|
253 | nargs=1, | |||
|
254 | type=str, | |||
|
255 | ) | |||
|
256 | @line_magic | |||
|
257 | def Rget(self, line): | |||
|
258 | ''' | |||
|
259 | Return an object from rpy2, possibly as a structured array (if possible). | |||
|
260 | Similar to Rpull except only one argument is accepted and the value is | |||
|
261 | returned rather than pushed to self.shell.user_ns:: | |||
|
262 | ||||
|
263 | In [3]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')] | |||
|
264 | ||||
|
265 | In [4]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype) | |||
|
266 | ||||
|
267 | In [5]: %R -i datapy | |||
|
268 | ||||
|
269 | In [6]: %Rget datapy | |||
|
270 | Out[6]: | |||
|
271 | array([['1', '2', '3', '4'], | |||
|
272 | ['2', '3', '2', '5'], | |||
|
273 | ['a', 'b', 'c', 'e']], | |||
|
274 | dtype='|S1') | |||
|
275 | ||||
|
276 | In [7]: %Rget -d datapy | |||
|
277 | Out[7]: | |||
|
278 | array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')], | |||
|
279 | dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]) | |||
|
280 | ||||
|
281 | ''' | |||
|
282 | args = parse_argstring(self.Rget, line) | |||
|
283 | output = args.output | |||
|
284 | return self.Rconverter(self.r(output[0]),dataframe=args.as_dataframe) | |||
218 |
|
285 | |||
219 |
|
286 | |||
220 | @skip_doctest |
|
287 | @skip_doctest | |
221 | @magic_arguments() |
|
288 | @magic_arguments() | |
222 | @argument( |
|
289 | @argument( | |
223 | '-i', '--input', action='append', |
|
290 | '-i', '--input', action='append', | |
224 | help='Names of input variable from shell.user_ns to be assigned to R variables of the same names after calling self.pyconverter. Multiple names can be passed separated only by commas with no whitespace.' |
|
291 | help='Names of input variable from shell.user_ns to be assigned to R variables of the same names after calling self.pyconverter. Multiple names can be passed separated only by commas with no whitespace.' | |
225 | ) |
|
292 | ) | |
226 | @argument( |
|
293 | @argument( | |
227 | '-o', '--output', action='append', |
|
294 | '-o', '--output', action='append', | |
228 | help='Names of variables to be pushed from rpy2 to shell.user_ns after executing cell body and applying self.Rconverter. Multiple names can be passed separated only by commas with no whitespace.' |
|
295 | help='Names of variables to be pushed from rpy2 to shell.user_ns after executing cell body and applying self.Rconverter. Multiple names can be passed separated only by commas with no whitespace.' | |
229 | ) |
|
296 | ) | |
230 | @argument( |
|
297 | @argument( | |
231 | '-w', '--width', type=int, |
|
298 | '-w', '--width', type=int, | |
232 | help='Width of png plotting device sent as an argument to *png* in R.' |
|
299 | help='Width of png plotting device sent as an argument to *png* in R.' | |
233 | ) |
|
300 | ) | |
234 | @argument( |
|
301 | @argument( | |
235 | '-h', '--height', type=int, |
|
302 | '-h', '--height', type=int, | |
236 | help='Height of png plotting device sent as an argument to *png* in R.' |
|
303 | help='Height of png plotting device sent as an argument to *png* in R.' | |
237 | ) |
|
304 | ) | |
238 |
|
305 | |||
239 | @argument( |
|
306 | @argument( | |
|
307 | '-d', '--dataframe', action='append', | |||
|
308 | help='Convert these objects to data.frames and return as structured arrays.' | |||
|
309 | ) | |||
|
310 | @argument( | |||
240 | '-u', '--units', type=int, |
|
311 | '-u', '--units', type=int, | |
241 | help='Units of png plotting device sent as an argument to *png* in R. One of ["px", "in", "cm", "mm"].' |
|
312 | help='Units of png plotting device sent as an argument to *png* in R. One of ["px", "in", "cm", "mm"].' | |
242 | ) |
|
313 | ) | |
243 | @argument( |
|
314 | @argument( | |
244 | '-p', '--pointsize', type=int, |
|
315 | '-p', '--pointsize', type=int, | |
245 | help='Pointsize of png plotting device sent as an argument to *png* in R.' |
|
316 | help='Pointsize of png plotting device sent as an argument to *png* in R.' | |
246 | ) |
|
317 | ) | |
247 | @argument( |
|
318 | @argument( | |
248 | '-b', '--bg', |
|
319 | '-b', '--bg', | |
249 | help='Background of png plotting device sent as an argument to *png* in R.' |
|
320 | help='Background of png plotting device sent as an argument to *png* in R.' | |
250 | ) |
|
321 | ) | |
251 | @argument( |
|
322 | @argument( | |
252 | '-n', '--noreturn', |
|
323 | '-n', '--noreturn', | |
253 | help='Force the magic to not return anything.', |
|
324 | help='Force the magic to not return anything.', | |
254 | action='store_true', |
|
325 | action='store_true', | |
255 | default=False |
|
326 | default=False | |
256 | ) |
|
327 | ) | |
257 | @argument( |
|
328 | @argument( | |
258 | 'code', |
|
329 | 'code', | |
259 | nargs='*', |
|
330 | nargs='*', | |
260 | ) |
|
331 | ) | |
261 | @line_cell_magic |
|
332 | @line_cell_magic | |
262 | def R(self, line, cell=None): |
|
333 | def R(self, line, cell=None): | |
263 | ''' |
|
334 | ''' | |
264 | Execute code in R, and pull some of the results back into the Python namespace. |
|
335 | Execute code in R, and pull some of the results back into the Python namespace. | |
265 |
|
336 | |||
266 | In line mode, this will evaluate an expression and convert the returned value to a Python object. |
|
337 | In line mode, this will evaluate an expression and convert the returned value to a Python object. | |
267 | The return value is determined by rpy2's behaviour of returning the result of evaluating the |
|
338 | The return value is determined by rpy2's behaviour of returning the result of evaluating the | |
268 | final line. Multiple R lines can be executed by joining them with semicolons:: |
|
339 | final line. Multiple R lines can be executed by joining them with semicolons:: | |
269 |
|
340 | |||
270 | In [9]: %R X=c(1,4,5,7); sd(X); mean(X) |
|
341 | In [9]: %R X=c(1,4,5,7); sd(X); mean(X) | |
271 | Out[9]: array([ 4.25]) |
|
342 | Out[9]: array([ 4.25]) | |
272 |
|
343 | |||
273 | As a cell, this will run a block of R code, without bringing anything back by default:: |
|
344 | As a cell, this will run a block of R code, without bringing anything back by default:: | |
274 |
|
345 | |||
275 | In [10]: %%R |
|
346 | In [10]: %%R | |
276 | ....: Y = c(2,4,3,9) |
|
347 | ....: Y = c(2,4,3,9) | |
277 | ....: print(summary(lm(Y~X))) |
|
348 | ....: print(summary(lm(Y~X))) | |
278 | ....: |
|
349 | ....: | |
279 |
|
350 | |||
280 | Call: |
|
351 | Call: | |
281 | lm(formula = Y ~ X) |
|
352 | lm(formula = Y ~ X) | |
282 |
|
353 | |||
283 | Residuals: |
|
354 | Residuals: | |
284 | 1 2 3 4 |
|
355 | 1 2 3 4 | |
285 | 0.88 -0.24 -2.28 1.64 |
|
356 | 0.88 -0.24 -2.28 1.64 | |
286 |
|
357 | |||
287 | Coefficients: |
|
358 | Coefficients: | |
288 | Estimate Std. Error t value Pr(>|t|) |
|
359 | Estimate Std. Error t value Pr(>|t|) | |
289 | (Intercept) 0.0800 2.3000 0.035 0.975 |
|
360 | (Intercept) 0.0800 2.3000 0.035 0.975 | |
290 | X 1.0400 0.4822 2.157 0.164 |
|
361 | X 1.0400 0.4822 2.157 0.164 | |
291 |
|
362 | |||
292 | Residual standard error: 2.088 on 2 degrees of freedom |
|
363 | Residual standard error: 2.088 on 2 degrees of freedom | |
293 | Multiple R-squared: 0.6993,Adjusted R-squared: 0.549 |
|
364 | Multiple R-squared: 0.6993,Adjusted R-squared: 0.549 | |
294 | F-statistic: 4.651 on 1 and 2 DF, p-value: 0.1638 |
|
365 | F-statistic: 4.651 on 1 and 2 DF, p-value: 0.1638 | |
295 |
|
366 | |||
296 | In the notebook, plots are published as the output of the cell. |
|
367 | In the notebook, plots are published as the output of the cell. | |
297 |
|
368 | |||
298 | %R plot(X, Y) |
|
369 | %R plot(X, Y) | |
299 |
|
370 | |||
300 | will create a scatter plot of X bs Y. |
|
371 | will create a scatter plot of X bs Y. | |
301 |
|
372 | |||
302 | If cell is not None and line has some R code, it is prepended to |
|
373 | If cell is not None and line has some R code, it is prepended to | |
303 | the R code in cell. |
|
374 | the R code in cell. | |
304 |
|
375 | |||
305 | Objects can be passed back and forth between rpy2 and python via the -i -o flags in line:: |
|
376 | Objects can be passed back and forth between rpy2 and python via the -i -o flags in line:: | |
306 |
|
377 | |||
307 | In [14]: Z = np.array([1,4,5,10]) |
|
378 | In [14]: Z = np.array([1,4,5,10]) | |
308 |
|
379 | |||
309 | In [15]: %R -i Z mean(Z) |
|
380 | In [15]: %R -i Z mean(Z) | |
310 | Out[15]: array([ 5.]) |
|
381 | Out[15]: array([ 5.]) | |
311 |
|
382 | |||
312 |
|
383 | |||
313 | In [16]: %R -o W W=Z*mean(Z) |
|
384 | In [16]: %R -o W W=Z*mean(Z) | |
314 | Out[16]: array([ 5., 20., 25., 50.]) |
|
385 | Out[16]: array([ 5., 20., 25., 50.]) | |
315 |
|
386 | |||
316 | In [17]: W |
|
387 | In [17]: W | |
317 | Out[17]: array([ 5., 20., 25., 50.]) |
|
388 | Out[17]: array([ 5., 20., 25., 50.]) | |
318 |
|
389 | |||
319 | The return value is determined by these rules: |
|
390 | The return value is determined by these rules: | |
320 |
|
391 | |||
321 | * If the cell is not None, the magic returns None. |
|
392 | * If the cell is not None, the magic returns None. | |
322 |
|
393 | |||
323 | * If the cell evaluates as False, the resulting value is returned |
|
394 | * If the cell evaluates as False, the resulting value is returned | |
324 | unless the final line prints something to the console, in |
|
395 | unless the final line prints something to the console, in | |
325 | which case None is returned. |
|
396 | which case None is returned. | |
326 |
|
397 | |||
327 | * If the final line results in a NULL value when evaluated |
|
398 | * If the final line results in a NULL value when evaluated | |
328 | by rpy2, then None is returned. |
|
399 | by rpy2, then None is returned. | |
329 |
|
400 | |||
|
401 | The --dataframe argument will return structured arrays | |||
|
402 | from dataframes in R. This is useful for dataframes with | |||
|
403 | mixed data types. Note also that for a data.frame, | |||
|
404 | if it is returned as an ndarray, it is transposed:: | |||
|
405 | ||||
|
406 | In [18]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')] | |||
|
407 | ||||
|
408 | In [19]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype) | |||
|
409 | ||||
|
410 | In [20]: %%R -o datar | |||
|
411 | datar = datapy | |||
|
412 | ....: | |||
|
413 | ||||
|
414 | In [21]: datar | |||
|
415 | Out[21]: | |||
|
416 | array([['1', '2', '3', '4'], | |||
|
417 | ['2', '3', '2', '5'], | |||
|
418 | ['a', 'b', 'c', 'e']], | |||
|
419 | dtype='|S1') | |||
|
420 | ||||
|
421 | In [22]: %%R -d datar | |||
|
422 | datar = datapy | |||
|
423 | ....: | |||
|
424 | ||||
|
425 | In [23]: datar | |||
|
426 | Out[23]: | |||
|
427 | array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')], | |||
|
428 | dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]) | |||
|
429 | ||||
|
430 | The --dataframe argument first tries colnames, then rownames, then names. | |||
|
431 | If all are NULL, it returns an ndarray (i.e. unstructured):: | |||
|
432 | ||||
|
433 | ||||
|
434 | In [1]: %R mydata=c(4,6,8.3); NULL | |||
|
435 | ||||
|
436 | In [2]: %R -d mydata | |||
|
437 | ||||
|
438 | In [3]: mydata | |||
|
439 | Out[3]: array([ 4. , 6. , 8.3]) | |||
|
440 | ||||
|
441 | In [4]: %R names(mydata) = c('a','b','c'); NULL | |||
|
442 | ||||
|
443 | In [5]: %R -d mydata | |||
|
444 | ||||
|
445 | In [6]: mydata | |||
|
446 | Out[6]: | |||
|
447 | array((4.0, 6.0, 8.3), | |||
|
448 | dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')]) | |||
|
449 | ||||
|
450 | In [7]: %R -o mydata | |||
|
451 | ||||
|
452 | In [8]: mydata | |||
|
453 | Out[8]: array([ 4. , 6. , 8.3]) | |||
|
454 | ||||
330 |
|
455 | |||
331 | ''' |
|
456 | ''' | |
332 |
|
457 | |||
333 | args = parse_argstring(self.R, line) |
|
458 | args = parse_argstring(self.R, line) | |
334 |
|
459 | |||
335 | # arguments 'code' in line are prepended to |
|
460 | # arguments 'code' in line are prepended to | |
336 | # the cell lines |
|
461 | # the cell lines | |
337 | if not cell: |
|
462 | if not cell: | |
338 | code = '' |
|
463 | code = '' | |
339 | return_output = True |
|
464 | return_output = True | |
340 | line_mode = True |
|
465 | line_mode = True | |
341 | else: |
|
466 | else: | |
342 | code = cell |
|
467 | code = cell | |
343 | return_output = False |
|
468 | return_output = False | |
344 | line_mode = False |
|
469 | line_mode = False | |
345 |
|
470 | |||
346 | code = ' '.join(args.code) + code |
|
471 | code = ' '.join(args.code) + code | |
347 |
|
472 | |||
348 | if args.input: |
|
473 | if args.input: | |
349 | for input in ','.join(args.input).split(','): |
|
474 | for input in ','.join(args.input).split(','): | |
350 | self.r.assign(input, self.pyconverter(self.shell.user_ns[input])) |
|
475 | self.r.assign(input, self.pyconverter(self.shell.user_ns[input])) | |
351 |
|
476 | |||
352 | png_argdict = dict([(n, getattr(args, n)) for n in ['units', 'height', 'width', 'bg', 'pointsize']]) |
|
477 | png_argdict = dict([(n, getattr(args, n)) for n in ['units', 'height', 'width', 'bg', 'pointsize']]) | |
353 | png_args = ','.join(['%s=%s' % (o,v) for o, v in png_argdict.items() if v is not None]) |
|
478 | png_args = ','.join(['%s=%s' % (o,v) for o, v in png_argdict.items() if v is not None]) | |
354 | # execute the R code in a temporary directory |
|
479 | # execute the R code in a temporary directory | |
355 |
|
480 | |||
356 | tmpd = tempfile.mkdtemp() |
|
481 | tmpd = tempfile.mkdtemp() | |
357 | self.r('png("%s/Rplots%%03d.png",%s)' % (tmpd, png_args)) |
|
482 | self.r('png("%s/Rplots%%03d.png",%s)' % (tmpd, png_args)) | |
358 |
|
483 | |||
359 | text_output = '' |
|
484 | text_output = '' | |
360 | if line_mode: |
|
485 | if line_mode: | |
361 | for line in code.split(';'): |
|
486 | for line in code.split(';'): | |
362 | text_result, result = self.eval(line) |
|
487 | text_result, result = self.eval(line) | |
363 | text_output += text_result |
|
488 | text_output += text_result | |
364 | if text_result: |
|
489 | if text_result: | |
365 | # the last line printed something to the console so we won't return it |
|
490 | # the last line printed something to the console so we won't return it | |
366 | return_output = False |
|
491 | return_output = False | |
367 | else: |
|
492 | else: | |
368 | text_result, result = self.eval(code) |
|
493 | text_result, result = self.eval(code) | |
369 | text_output += text_result |
|
494 | text_output += text_result | |
370 |
|
495 | |||
371 | self.r('dev.off()') |
|
496 | self.r('dev.off()') | |
372 |
|
497 | |||
373 | # read out all the saved .png files |
|
498 | # read out all the saved .png files | |
374 |
|
499 | |||
375 | images = [open(imgfile, 'rb').read() for imgfile in glob("%s/Rplots*png" % tmpd)] |
|
500 | images = [open(imgfile, 'rb').read() for imgfile in glob("%s/Rplots*png" % tmpd)] | |
376 |
|
501 | |||
377 | # now publish the images |
|
502 | # now publish the images | |
378 | # mimicking IPython/zmq/pylab/backend_inline.py |
|
503 | # mimicking IPython/zmq/pylab/backend_inline.py | |
379 | fmt = 'png' |
|
504 | fmt = 'png' | |
380 | mimetypes = { 'png' : 'image/png', 'svg' : 'image/svg+xml' } |
|
505 | mimetypes = { 'png' : 'image/png', 'svg' : 'image/svg+xml' } | |
381 | mime = mimetypes[fmt] |
|
506 | mime = mimetypes[fmt] | |
382 |
|
507 | |||
383 | # publish the printed R objects, if any |
|
508 | # publish the printed R objects, if any | |
384 |
|
509 | |||
385 | display_data = [] |
|
510 | display_data = [] | |
386 | if text_output: |
|
511 | if text_output: | |
387 | display_data.append(('RMagic.R', {'text/plain':text_output})) |
|
512 | display_data.append(('RMagic.R', {'text/plain':text_output})) | |
388 |
|
513 | |||
389 | # flush text streams before sending figures, helps a little with output |
|
514 | # flush text streams before sending figures, helps a little with output | |
390 | for image in images: |
|
515 | for image in images: | |
391 | # synchronization in the console (though it's a bandaid, not a real sln) |
|
516 | # synchronization in the console (though it's a bandaid, not a real sln) | |
392 | sys.stdout.flush(); sys.stderr.flush() |
|
517 | sys.stdout.flush(); sys.stderr.flush() | |
393 | display_data.append(('RMagic.R', {mime: image})) |
|
518 | display_data.append(('RMagic.R', {mime: image})) | |
394 |
|
519 | |||
395 | # kill the temporary directory |
|
520 | # kill the temporary directory | |
396 | rmtree(tmpd) |
|
521 | rmtree(tmpd) | |
397 |
|
522 | |||
398 | # try to turn every output into a numpy array |
|
523 | # try to turn every output into a numpy array | |
399 | # this means that output are assumed to be castable |
|
524 | # this means that output are assumed to be castable | |
400 | # as numpy arrays |
|
525 | # as numpy arrays | |
401 |
|
526 | |||
402 | if args.output: |
|
527 | if args.output: | |
403 | for output in ','.join(args.output).split(','): |
|
528 | for output in ','.join(args.output).split(','): | |
404 | self.shell.push({output:self.Rconverter(self.r(output))}) |
|
529 | self.shell.push({output:self.Rconverter(self.r(output), dataframe=False)}) | |
|
530 | ||||
|
531 | if args.dataframe: | |||
|
532 | for output in ','.join(args.dataframe).split(','): | |||
|
533 | self.shell.push({output:self.Rconverter(self.r(output), dataframe=True)}) | |||
405 |
|
534 | |||
406 | for tag, disp_d in display_data: |
|
535 | for tag, disp_d in display_data: | |
407 | publish_display_data(tag, disp_d) |
|
536 | publish_display_data(tag, disp_d) | |
408 |
|
537 | |||
409 | # this will keep a reference to the display_data |
|
538 | # this will keep a reference to the display_data | |
410 | # which might be useful to other objects who happen to use |
|
539 | # which might be useful to other objects who happen to use | |
411 | # this method |
|
540 | # this method | |
412 |
|
541 | |||
413 | if self.cache_display_data: |
|
542 | if self.cache_display_data: | |
414 | self.display_cache = display_data |
|
543 | self.display_cache = display_data | |
415 |
|
544 | |||
416 | # if in line mode and return_output, return the result as an ndarray |
|
545 | # if in line mode and return_output, return the result as an ndarray | |
417 | if return_output and not args.noreturn: |
|
546 | if return_output and not args.noreturn: | |
418 | if result != ri.NULL: |
|
547 | if result != ri.NULL: | |
419 | return self.Rconverter(result) |
|
548 | return self.Rconverter(result, dataframe=False) | |
420 |
|
549 | |||
421 | __doc__ = __doc__.format( |
|
550 | __doc__ = __doc__.format( | |
422 | R_DOC = ' '*8 + RMagics.R.__doc__, |
|
551 | R_DOC = ' '*8 + RMagics.R.__doc__, | |
423 | RPUSH_DOC = ' '*8 + RMagics.Rpush.__doc__, |
|
552 | RPUSH_DOC = ' '*8 + RMagics.Rpush.__doc__, | |
424 | RPULL_DOC = ' '*8 + RMagics.Rpull.__doc__ |
|
553 | RPULL_DOC = ' '*8 + RMagics.Rpull.__doc__ | |
|
554 | RGET_DOC = ' '*8 + RMagics.Rget.__doc__ | |||
425 | ) |
|
555 | ) | |
426 |
|
556 | |||
427 |
|
557 | |||
428 | _loaded = False |
|
558 | _loaded = False | |
429 | def load_ipython_extension(ip): |
|
559 | def load_ipython_extension(ip): | |
430 | """Load the extension in IPython.""" |
|
560 | """Load the extension in IPython.""" | |
431 | global _loaded |
|
561 | global _loaded | |
432 | if not _loaded: |
|
562 | if not _loaded: | |
433 | ip.register_magics(RMagics) |
|
563 | ip.register_magics(RMagics) | |
434 | _loaded = True |
|
564 | _loaded = True |
@@ -1,62 +1,62 | |||||
1 | import numpy as np |
|
1 | import numpy as np | |
2 | from IPython.core.interactiveshell import InteractiveShell |
|
2 | from IPython.core.interactiveshell import InteractiveShell | |
3 | from IPython.extensions import rmagic |
|
3 | from IPython.extensions import rmagic | |
4 | import nose.tools as nt |
|
4 | import nose.tools as nt | |
5 |
|
5 | |||
6 | ip = get_ipython() |
|
6 | ip = get_ipython() | |
7 | ip.magic('load_ext rmagic') |
|
7 | ip.magic('load_ext rmagic') | |
8 |
|
8 | |||
9 |
|
9 | |||
10 | def test_push(): |
|
10 | def test_push(): | |
11 | rm = rmagic.RMagics(ip) |
|
11 | rm = rmagic.RMagics(ip) | |
12 | ip.push({'X':np.arange(5), 'Y':np.array([3,5,4,6,7])}) |
|
12 | ip.push({'X':np.arange(5), 'Y':np.array([3,5,4,6,7])}) | |
13 | ip.run_line_magic('Rpush', 'X Y') |
|
13 | ip.run_line_magic('Rpush', 'X Y') | |
14 | np.testing.assert_almost_equal(np.asarray(rm.r('X')), ip.user_ns['X']) |
|
14 | np.testing.assert_almost_equal(np.asarray(rm.r('X')), ip.user_ns['X']) | |
15 | np.testing.assert_almost_equal(np.asarray(rm.r('Y')), ip.user_ns['Y']) |
|
15 | np.testing.assert_almost_equal(np.asarray(rm.r('Y')), ip.user_ns['Y']) | |
16 |
|
16 | |||
17 | def test_pull(): |
|
17 | def test_pull(): | |
18 | rm = rmagic.RMagics(ip) |
|
18 | rm = rmagic.RMagics(ip) | |
19 | rm.r('Z=c(11:20)') |
|
19 | rm.r('Z=c(11:20)') | |
20 | ip.run_line_magic('Rpull', 'Z') |
|
20 | ip.run_line_magic('Rpull', 'Z') | |
21 | np.testing.assert_almost_equal(np.asarray(rm.r('Z')), ip.user_ns['Z']) |
|
21 | np.testing.assert_almost_equal(np.asarray(rm.r('Z')), ip.user_ns['Z']) | |
22 | np.testing.assert_almost_equal(ip.user_ns['Z'], np.arange(11,21)) |
|
22 | np.testing.assert_almost_equal(ip.user_ns['Z'], np.arange(11,21)) | |
23 |
|
23 | |||
24 | def test_Rconverter(): |
|
24 | def test_Rconverter(): | |
25 | datapy= np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c')], |
|
25 | datapy= np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c')], | |
26 | dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]) |
|
26 | dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]) | |
27 | ip.user_ns['datapy'] = datapy |
|
27 | ip.user_ns['datapy'] = datapy | |
28 | ip.run_line_magic('Rpush', 'datapy') |
|
28 | ip.run_line_magic('Rpush', 'datapy') | |
29 |
|
29 | |||
30 | # test to see if a copy is being made |
|
30 | # test to see if a copy is being made | |
31 | v = ip.run_line_magic('R', 'datapy') |
|
31 | v = ip.run_line_magic('Rget', '-d datapy') | |
32 | w = ip.run_line_magic('R', 'datapy') |
|
32 | w = ip.run_line_magic('Rget', '-d datapy') | |
33 | np.testing.assert_almost_equal(w['x'], v['x']) |
|
33 | np.testing.assert_almost_equal(w['x'], v['x']) | |
34 | np.testing.assert_almost_equal(w['y'], v['y']) |
|
34 | np.testing.assert_almost_equal(w['y'], v['y']) | |
35 | nt.assert_true(np.all(w['z'] == v['z'])) |
|
35 | nt.assert_true(np.all(w['z'] == v['z'])) | |
36 | np.testing.assert_equal(id(w.data), id(v.data)) |
|
36 | np.testing.assert_equal(id(w.data), id(v.data)) | |
37 | nt.assert_equal(w.dtype, v.dtype) |
|
37 | nt.assert_equal(w.dtype, v.dtype) | |
38 |
|
38 | |||
39 |
ip.run_cell_magic('R', ' - |
|
39 | ip.run_cell_magic('R', ' -d datar datar=datapy', '') | |
40 |
|
40 | |||
41 | u = ip.run_line_magic('R', 'datar') |
|
41 | u = ip.run_line_magic('Rget', ' -d datar') | |
42 | np.testing.assert_almost_equal(u['x'], v['x']) |
|
42 | np.testing.assert_almost_equal(u['x'], v['x']) | |
43 | np.testing.assert_almost_equal(u['y'], v['y']) |
|
43 | np.testing.assert_almost_equal(u['y'], v['y']) | |
44 | nt.assert_true(np.all(u['z'] == v['z'])) |
|
44 | nt.assert_true(np.all(u['z'] == v['z'])) | |
45 | np.testing.assert_equal(id(u.data), id(v.data)) |
|
45 | np.testing.assert_equal(id(u.data), id(v.data)) | |
46 | nt.assert_equal(u.dtype, v.dtype) |
|
46 | nt.assert_equal(u.dtype, v.dtype) | |
47 |
|
47 | |||
48 |
|
48 | |||
49 | def test_cell_magic(): |
|
49 | def test_cell_magic(): | |
50 |
|
50 | |||
51 | ip.push({'x':np.arange(5), 'y':np.array([3,5,4,6,7])}) |
|
51 | ip.push({'x':np.arange(5), 'y':np.array([3,5,4,6,7])}) | |
52 | snippet = ''' |
|
52 | snippet = ''' | |
53 | print(summary(a)) |
|
53 | print(summary(a)) | |
54 | plot(x, y, pch=23, bg='orange', cex=2) |
|
54 | plot(x, y, pch=23, bg='orange', cex=2) | |
55 | plot(x, x) |
|
55 | plot(x, x) | |
56 | print(summary(x)) |
|
56 | print(summary(x)) | |
57 | r = resid(a) |
|
57 | r = resid(a) | |
58 | xc = coef(a) |
|
58 | xc = coef(a) | |
59 | ''' |
|
59 | ''' | |
60 | ip.run_cell_magic('R', '-i x,y -o r,xc a=lm(y~x)', snippet) |
|
60 | ip.run_cell_magic('R', '-i x,y -o r,xc a=lm(y~x)', snippet) | |
61 | np.testing.assert_almost_equal(ip.user_ns['xc'], [3.2, 0.9]) |
|
61 | np.testing.assert_almost_equal(ip.user_ns['xc'], [3.2, 0.9]) | |
62 | np.testing.assert_almost_equal(ip.user_ns['r'], np.array([-0.2, 0.9, -1. , 0.1, 0.2])) |
|
62 | np.testing.assert_almost_equal(ip.user_ns['r'], np.array([-0.2, 0.9, -1. , 0.1, 0.2])) |
General Comments 0
You need to be logged in to leave comments.
Login now