##// END OF EJS Templates
added Rget, and options to try to return strucutred array
Jonathan Taylor -
Show More
@@ -1,434 +1,564
1 # -*- coding: utf-8 -*-
1 # -*- coding: utf-8 -*-
2 """
2 """
3 ======
3 ======
4 Rmagic
4 Rmagic
5 ======
5 ======
6
6
7 Magic command interface for interactive work with R via rpy2
7 Magic command interface for interactive work with R via rpy2
8
8
9 Usage
9 Usage
10 =====
10 =====
11
11
12 ``%R``
12 ``%R``
13
13
14 {R_DOC}
14 {R_DOC}
15
15
16 ``%Rpush``
16 ``%Rpush``
17
17
18 {RPUSH_DOC}
18 {RPUSH_DOC}
19
19
20 ``%Rpull``
20 ``%Rpull``
21
21
22 {RPULL_DOC}
22 {RPULL_DOC}
23
23
24 ``%Rget``
25
26 {RGET_DOC}
27
24 """
28 """
25
29
26 #-----------------------------------------------------------------------------
30 #-----------------------------------------------------------------------------
27 # Copyright (C) 2012 The IPython Development Team
31 # Copyright (C) 2012 The IPython Development Team
28 #
32 #
29 # Distributed under the terms of the BSD License. The full license is in
33 # Distributed under the terms of the BSD License. The full license is in
30 # the file COPYING, distributed as part of this software.
34 # the file COPYING, distributed as part of this software.
31 #-----------------------------------------------------------------------------
35 #-----------------------------------------------------------------------------
32
36
33 import sys
37 import sys
34 import tempfile
38 import tempfile
35 from glob import glob
39 from glob import glob
36 from shutil import rmtree
40 from shutil import rmtree
37 from getopt import getopt
41 from getopt import getopt
38
42
39 # numpy and rpy2 imports
43 # numpy and rpy2 imports
40
44
41 import numpy as np
45 import numpy as np
42
46
43 import rpy2.rinterface as ri
47 import rpy2.rinterface as ri
44 import rpy2.robjects as ro
48 import rpy2.robjects as ro
45 from rpy2.robjects.numpy2ri import numpy2ri
49 from rpy2.robjects.numpy2ri import numpy2ri
46 ro.conversion.py2ri = numpy2ri
50 ro.conversion.py2ri = numpy2ri
47
51
48 # IPython imports
52 # IPython imports
49
53
50 from IPython.core.displaypub import publish_display_data
54 from IPython.core.displaypub import publish_display_data
51 from IPython.core.magic import (Magics, magics_class, cell_magic, line_magic,
55 from IPython.core.magic import (Magics, magics_class, cell_magic, line_magic,
52 line_cell_magic)
56 line_cell_magic)
53 from IPython.testing.skipdoctest import skip_doctest
57 from IPython.testing.skipdoctest import skip_doctest
54 from IPython.core.magic_arguments import (
58 from IPython.core.magic_arguments import (
55 argument, magic_arguments, parse_argstring
59 argument, magic_arguments, parse_argstring
56 )
60 )
57 from IPython.utils.py3compat import str_to_unicode, unicode_to_str
61 from IPython.utils.py3compat import str_to_unicode, unicode_to_str
58
62
59 class RMagicError(ri.RRuntimeError):
63 class RMagicError(ri.RRuntimeError):
60 pass
64 pass
61
65
62 def Rconverter(Robj):
66 def Rconverter(Robj, dataframe=False):
63 """
67 """
64 Convert an object in R's namespace to one suitable
68 Convert an object in R's namespace to one suitable
65 for ipython's namespace.
69 for ipython's namespace.
66
70
67 For a data.frame, it tries to return a structured array.
71 For a data.frame, it tries to return a structured array.
72 It first checks for colnames, then names.
73 If all are NULL, it returns np.asarray(Robj), else
74 it tries to construct a recarray
68
75
69 Parameters
76 Parameters
70 ----------
77 ----------
71
78
72 Robj: an R object returned from rpy2
79 Robj: an R object returned from rpy2
73 """
80 """
74 if is_data_frame(Robj):
81 is_data_frame = ro.r('is.data.frame')
75 Robj = as_data_frame(Robj)
82 colnames = ro.r('colnames')
76 dimRobj = list(np.array(dimR(Robj)))
83 rownames = ro.r('rownames') # with pandas, these could be used for the index
77 if 1 not in dimRobj:
84 names = ro.r('names')
78 Robj = np.rec.fromarrays(Robj, names = tuple(Robj.names))
85
79 return np.squeeze(np.asarray(Robj))
86
80
87 if dataframe:
81 is_data_frame = None
88 as_data_frame = ro.r('as.data.frame')
82 as_data_frame = None
89 cols = colnames(Robj)
83 dimR = None
90 rows = rownames(Robj)
84 colnames = None
91 _names = names(Robj)
85 ncol = None
92 if cols != ri.NULL:
86 nrow = None
93 Robj = as_data_frame(Robj)
94 names = tuple(np.array(cols))
95 elif _names != ri.NULL:
96 names = tuple(np.array(_names))
97 else: # failed to find names
98 return np.asarray(Robj)
99 Robj = np.rec.fromarrays(Robj, names = names)
100 return np.asarray(Robj)
87
101
88 @magics_class
102 @magics_class
89 class RMagics(Magics):
103 class RMagics(Magics):
90 """A set of magics useful for interactive work with R via rpy2.
104 """A set of magics useful for interactive work with R via rpy2.
91 """
105 """
92
106
93 def __init__(self, shell, Rconverter=Rconverter,
107 def __init__(self, shell, Rconverter=Rconverter,
94 pyconverter=np.asarray,
108 pyconverter=np.asarray,
95 cache_display_data=False):
109 cache_display_data=False):
96 """
110 """
97 Parameters
111 Parameters
98 ----------
112 ----------
99
113
100 shell : IPython shell
114 shell : IPython shell
101
115
102 pyconverter : callable
116 pyconverter : callable
103 To be called on values in ipython namespace before
117 To be called on values in ipython namespace before
104 assigning to variables in rpy2.
118 assigning to variables in rpy2.
105
119
106 cache_display_data : bool
120 cache_display_data : bool
107 If True, the published results of the final call to R are
121 If True, the published results of the final call to R are
108 cached in the variable 'display_cache'.
122 cached in the variable 'display_cache'.
109
123
110 """
124 """
111 super(RMagics, self).__init__(shell)
125 super(RMagics, self).__init__(shell)
112 self.cache_display_data = cache_display_data
126 self.cache_display_data = cache_display_data
113
127
114 self.r = ro.R()
128 self.r = ro.R()
115 global is_data_frame, dimR, colnames, ncol, nrow, as_data_frame
116 is_data_frame = self.r('is.data.frame')
117 as_data_frame = self.r('as.data.frame')
118 dimR = self.r('dim')
119 colnames = self.r('colnames')
120 ncol = self.r('ncol')
121 nrow = self.r('nrow')
122
129
123 self.Rstdout_cache = []
130 self.Rstdout_cache = []
124 self.pyconverter = pyconverter
131 self.pyconverter = pyconverter
125 self.Rconverter = Rconverter
132 self.Rconverter = Rconverter
126
133
127 def eval(self, line):
134 def eval(self, line):
128 '''
135 '''
129 Parse and evaluate a line with rpy2.
136 Parse and evaluate a line with rpy2.
130 Returns the output to R's stdout() connection
137 Returns the output to R's stdout() connection
131 and the value of eval(parse(line)).
138 and the value of eval(parse(line)).
132 '''
139 '''
133 old_writeconsole = ri.get_writeconsole()
140 old_writeconsole = ri.get_writeconsole()
134 ri.set_writeconsole(self.write_console)
141 ri.set_writeconsole(self.write_console)
135 try:
142 try:
136 value = ri.baseenv['eval'](ri.parse(line))
143 value = ri.baseenv['eval'](ri.parse(line))
137 except (ri.RRuntimeError, ValueError) as exception:
144 except (ri.RRuntimeError, ValueError) as exception:
138 raise RMagicError(unicode_to_str('parsing and evaluating line "%s". R traceback: "%s"\n' %
145 raise RMagicError(unicode_to_str('parsing and evaluating line "%s". R traceback: "%s"\n' %
139 (line, str_to_unicode(exception.message, 'utf-8'))))
146 (line, str_to_unicode(exception.message, 'utf-8'))))
140 text_output = self.flush()
147 text_output = self.flush()
141 ri.set_writeconsole(old_writeconsole)
148 ri.set_writeconsole(old_writeconsole)
142 return text_output, value
149 return text_output, value
143
150
144 def write_console(self, output):
151 def write_console(self, output):
145 '''
152 '''
146 A hook to capture R's stdout in a cache.
153 A hook to capture R's stdout in a cache.
147 '''
154 '''
148 self.Rstdout_cache.append(output)
155 self.Rstdout_cache.append(output)
149
156
150 def flush(self):
157 def flush(self):
151 '''
158 '''
152 Flush R's stdout cache to a string, returning the string.
159 Flush R's stdout cache to a string, returning the string.
153 '''
160 '''
154 value = ''.join([str_to_unicode(s, 'utf-8') for s in self.Rstdout_cache])
161 value = ''.join([str_to_unicode(s, 'utf-8') for s in self.Rstdout_cache])
155 self.Rstdout_cache = []
162 self.Rstdout_cache = []
156 return value
163 return value
157
164
158 @skip_doctest
165 @skip_doctest
159 @line_magic
166 @line_magic
160 def Rpush(self, line):
167 def Rpush(self, line):
161 '''
168 '''
162 A line-level magic for R that pushes
169 A line-level magic for R that pushes
163 variables from python to rpy2. The line should be made up
170 variables from python to rpy2. The line should be made up
164 of whitespace separated variable names in the IPython
171 of whitespace separated variable names in the IPython
165 namespace::
172 namespace::
166
173
167 In [7]: import numpy as np
174 In [7]: import numpy as np
168
175
169 In [8]: X = np.array([4.5,6.3,7.9])
176 In [8]: X = np.array([4.5,6.3,7.9])
170
177
171 In [9]: X.mean()
178 In [9]: X.mean()
172 Out[9]: 6.2333333333333343
179 Out[9]: 6.2333333333333343
173
180
174 In [10]: %Rpush X
181 In [10]: %Rpush X
175
182
176 In [11]: %R mean(X)
183 In [11]: %R mean(X)
177 Out[11]: array([ 6.23333333])
184 Out[11]: array([ 6.23333333])
178
185
179 '''
186 '''
180
187
181 inputs = line.split(' ')
188 inputs = line.split(' ')
182 for input in inputs:
189 for input in inputs:
183 self.r.assign(input, self.pyconverter(self.shell.user_ns[input]))
190 self.r.assign(input, self.pyconverter(self.shell.user_ns[input]))
184
191
185 @skip_doctest
192 @skip_doctest
193 @magic_arguments()
194 @argument(
195 '-d', '--as_dataframe', action='store_true',
196 default=False,
197 help='Convert objects to data.frames before returning to ipython.'
198 )
199 @argument(
200 'outputs',
201 nargs='*',
202 )
186 @line_magic
203 @line_magic
187 def Rpull(self, line):
204 def Rpull(self, line):
188 '''
205 '''
189 A line-level magic for R that pulls
206 A line-level magic for R that pulls
190 variables from python to rpy2::
207 variables from python to rpy2::
191
208
192 In [18]: _ = %R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4)
209 In [18]: _ = %R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4)
193
210
194 In [19]: %Rpull x y z
211 In [19]: %Rpull x y z
195
212
196 In [20]: x
213 In [20]: x
197 Out[20]: array([ 3. , 4. , 6.7])
214 Out[20]: array([ 3. , 4. , 6.7])
198
215
199 In [21]: y
216 In [21]: y
200 Out[21]: array([ 4., 6., 7.])
217 Out[21]: array([ 4., 6., 7.])
201
218
202 In [22]: z
219 In [22]: z
203 Out[22]:
220 Out[22]:
204 array(['a', '3', '4'],
221 array(['a', '3', '4'],
205 dtype='|S1')
222 dtype='|S1')
206
223
207
224
225 If --as_dataframe, then each object is returned as a structured array
226 after first passed through "as.data.frame" in R before
227 being calling self.Rconverter.
228 This is useful when a structured array is desired as output, or
229 when the object in R has mixed data types.
230 See the %%R docstring for more examples.
231
208 Notes
232 Notes
209 -----
233 -----
210
234
211 Beware that R names can have '.' so this is not fool proof.
235 Beware that R names can have '.' so this is not fool proof.
212 To avoid this, don't name your R objects with '.'s...
236 To avoid this, don't name your R objects with '.'s...
213
237
214 '''
238 '''
215 outputs = line.split(' ')
239 args = parse_argstring(self.Rpull, line)
240 outputs = args.outputs
216 for output in outputs:
241 for output in outputs:
217 self.shell.push({output:self.Rconverter(self.r(output))})
242 self.shell.push({output:self.Rconverter(self.r(output),dataframe=args.as_dataframe)})
243
244 @skip_doctest
245 @magic_arguments()
246 @argument(
247 '-d', '--as_dataframe', action='store_true',
248 default=False,
249 help='Convert objects to data.frames before returning to ipython.'
250 )
251 @argument(
252 'output',
253 nargs=1,
254 type=str,
255 )
256 @line_magic
257 def Rget(self, line):
258 '''
259 Return an object from rpy2, possibly as a structured array (if possible).
260 Similar to Rpull except only one argument is accepted and the value is
261 returned rather than pushed to self.shell.user_ns::
262
263 In [3]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]
264
265 In [4]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype)
266
267 In [5]: %R -i datapy
268
269 In [6]: %Rget datapy
270 Out[6]:
271 array([['1', '2', '3', '4'],
272 ['2', '3', '2', '5'],
273 ['a', 'b', 'c', 'e']],
274 dtype='|S1')
275
276 In [7]: %Rget -d datapy
277 Out[7]:
278 array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')],
279 dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])
280
281 '''
282 args = parse_argstring(self.Rget, line)
283 output = args.output
284 return self.Rconverter(self.r(output[0]),dataframe=args.as_dataframe)
218
285
219
286
220 @skip_doctest
287 @skip_doctest
221 @magic_arguments()
288 @magic_arguments()
222 @argument(
289 @argument(
223 '-i', '--input', action='append',
290 '-i', '--input', action='append',
224 help='Names of input variable from shell.user_ns to be assigned to R variables of the same names after calling self.pyconverter. Multiple names can be passed separated only by commas with no whitespace.'
291 help='Names of input variable from shell.user_ns to be assigned to R variables of the same names after calling self.pyconverter. Multiple names can be passed separated only by commas with no whitespace.'
225 )
292 )
226 @argument(
293 @argument(
227 '-o', '--output', action='append',
294 '-o', '--output', action='append',
228 help='Names of variables to be pushed from rpy2 to shell.user_ns after executing cell body and applying self.Rconverter. Multiple names can be passed separated only by commas with no whitespace.'
295 help='Names of variables to be pushed from rpy2 to shell.user_ns after executing cell body and applying self.Rconverter. Multiple names can be passed separated only by commas with no whitespace.'
229 )
296 )
230 @argument(
297 @argument(
231 '-w', '--width', type=int,
298 '-w', '--width', type=int,
232 help='Width of png plotting device sent as an argument to *png* in R.'
299 help='Width of png plotting device sent as an argument to *png* in R.'
233 )
300 )
234 @argument(
301 @argument(
235 '-h', '--height', type=int,
302 '-h', '--height', type=int,
236 help='Height of png plotting device sent as an argument to *png* in R.'
303 help='Height of png plotting device sent as an argument to *png* in R.'
237 )
304 )
238
305
239 @argument(
306 @argument(
307 '-d', '--dataframe', action='append',
308 help='Convert these objects to data.frames and return as structured arrays.'
309 )
310 @argument(
240 '-u', '--units', type=int,
311 '-u', '--units', type=int,
241 help='Units of png plotting device sent as an argument to *png* in R. One of ["px", "in", "cm", "mm"].'
312 help='Units of png plotting device sent as an argument to *png* in R. One of ["px", "in", "cm", "mm"].'
242 )
313 )
243 @argument(
314 @argument(
244 '-p', '--pointsize', type=int,
315 '-p', '--pointsize', type=int,
245 help='Pointsize of png plotting device sent as an argument to *png* in R.'
316 help='Pointsize of png plotting device sent as an argument to *png* in R.'
246 )
317 )
247 @argument(
318 @argument(
248 '-b', '--bg',
319 '-b', '--bg',
249 help='Background of png plotting device sent as an argument to *png* in R.'
320 help='Background of png plotting device sent as an argument to *png* in R.'
250 )
321 )
251 @argument(
322 @argument(
252 '-n', '--noreturn',
323 '-n', '--noreturn',
253 help='Force the magic to not return anything.',
324 help='Force the magic to not return anything.',
254 action='store_true',
325 action='store_true',
255 default=False
326 default=False
256 )
327 )
257 @argument(
328 @argument(
258 'code',
329 'code',
259 nargs='*',
330 nargs='*',
260 )
331 )
261 @line_cell_magic
332 @line_cell_magic
262 def R(self, line, cell=None):
333 def R(self, line, cell=None):
263 '''
334 '''
264 Execute code in R, and pull some of the results back into the Python namespace.
335 Execute code in R, and pull some of the results back into the Python namespace.
265
336
266 In line mode, this will evaluate an expression and convert the returned value to a Python object.
337 In line mode, this will evaluate an expression and convert the returned value to a Python object.
267 The return value is determined by rpy2's behaviour of returning the result of evaluating the
338 The return value is determined by rpy2's behaviour of returning the result of evaluating the
268 final line. Multiple R lines can be executed by joining them with semicolons::
339 final line. Multiple R lines can be executed by joining them with semicolons::
269
340
270 In [9]: %R X=c(1,4,5,7); sd(X); mean(X)
341 In [9]: %R X=c(1,4,5,7); sd(X); mean(X)
271 Out[9]: array([ 4.25])
342 Out[9]: array([ 4.25])
272
343
273 As a cell, this will run a block of R code, without bringing anything back by default::
344 As a cell, this will run a block of R code, without bringing anything back by default::
274
345
275 In [10]: %%R
346 In [10]: %%R
276 ....: Y = c(2,4,3,9)
347 ....: Y = c(2,4,3,9)
277 ....: print(summary(lm(Y~X)))
348 ....: print(summary(lm(Y~X)))
278 ....:
349 ....:
279
350
280 Call:
351 Call:
281 lm(formula = Y ~ X)
352 lm(formula = Y ~ X)
282
353
283 Residuals:
354 Residuals:
284 1 2 3 4
355 1 2 3 4
285 0.88 -0.24 -2.28 1.64
356 0.88 -0.24 -2.28 1.64
286
357
287 Coefficients:
358 Coefficients:
288 Estimate Std. Error t value Pr(>|t|)
359 Estimate Std. Error t value Pr(>|t|)
289 (Intercept) 0.0800 2.3000 0.035 0.975
360 (Intercept) 0.0800 2.3000 0.035 0.975
290 X 1.0400 0.4822 2.157 0.164
361 X 1.0400 0.4822 2.157 0.164
291
362
292 Residual standard error: 2.088 on 2 degrees of freedom
363 Residual standard error: 2.088 on 2 degrees of freedom
293 Multiple R-squared: 0.6993,Adjusted R-squared: 0.549
364 Multiple R-squared: 0.6993,Adjusted R-squared: 0.549
294 F-statistic: 4.651 on 1 and 2 DF, p-value: 0.1638
365 F-statistic: 4.651 on 1 and 2 DF, p-value: 0.1638
295
366
296 In the notebook, plots are published as the output of the cell.
367 In the notebook, plots are published as the output of the cell.
297
368
298 %R plot(X, Y)
369 %R plot(X, Y)
299
370
300 will create a scatter plot of X bs Y.
371 will create a scatter plot of X bs Y.
301
372
302 If cell is not None and line has some R code, it is prepended to
373 If cell is not None and line has some R code, it is prepended to
303 the R code in cell.
374 the R code in cell.
304
375
305 Objects can be passed back and forth between rpy2 and python via the -i -o flags in line::
376 Objects can be passed back and forth between rpy2 and python via the -i -o flags in line::
306
377
307 In [14]: Z = np.array([1,4,5,10])
378 In [14]: Z = np.array([1,4,5,10])
308
379
309 In [15]: %R -i Z mean(Z)
380 In [15]: %R -i Z mean(Z)
310 Out[15]: array([ 5.])
381 Out[15]: array([ 5.])
311
382
312
383
313 In [16]: %R -o W W=Z*mean(Z)
384 In [16]: %R -o W W=Z*mean(Z)
314 Out[16]: array([ 5., 20., 25., 50.])
385 Out[16]: array([ 5., 20., 25., 50.])
315
386
316 In [17]: W
387 In [17]: W
317 Out[17]: array([ 5., 20., 25., 50.])
388 Out[17]: array([ 5., 20., 25., 50.])
318
389
319 The return value is determined by these rules:
390 The return value is determined by these rules:
320
391
321 * If the cell is not None, the magic returns None.
392 * If the cell is not None, the magic returns None.
322
393
323 * If the cell evaluates as False, the resulting value is returned
394 * If the cell evaluates as False, the resulting value is returned
324 unless the final line prints something to the console, in
395 unless the final line prints something to the console, in
325 which case None is returned.
396 which case None is returned.
326
397
327 * If the final line results in a NULL value when evaluated
398 * If the final line results in a NULL value when evaluated
328 by rpy2, then None is returned.
399 by rpy2, then None is returned.
329
400
401 The --dataframe argument will return structured arrays
402 from dataframes in R. This is useful for dataframes with
403 mixed data types. Note also that for a data.frame,
404 if it is returned as an ndarray, it is transposed::
405
406 In [18]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]
407
408 In [19]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype)
409
410 In [20]: %%R -o datar
411 datar = datapy
412 ....:
413
414 In [21]: datar
415 Out[21]:
416 array([['1', '2', '3', '4'],
417 ['2', '3', '2', '5'],
418 ['a', 'b', 'c', 'e']],
419 dtype='|S1')
420
421 In [22]: %%R -d datar
422 datar = datapy
423 ....:
424
425 In [23]: datar
426 Out[23]:
427 array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')],
428 dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])
429
430 The --dataframe argument first tries colnames, then rownames, then names.
431 If all are NULL, it returns an ndarray (i.e. unstructured)::
432
433
434 In [1]: %R mydata=c(4,6,8.3); NULL
435
436 In [2]: %R -d mydata
437
438 In [3]: mydata
439 Out[3]: array([ 4. , 6. , 8.3])
440
441 In [4]: %R names(mydata) = c('a','b','c'); NULL
442
443 In [5]: %R -d mydata
444
445 In [6]: mydata
446 Out[6]:
447 array((4.0, 6.0, 8.3),
448 dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')])
449
450 In [7]: %R -o mydata
451
452 In [8]: mydata
453 Out[8]: array([ 4. , 6. , 8.3])
454
330
455
331 '''
456 '''
332
457
333 args = parse_argstring(self.R, line)
458 args = parse_argstring(self.R, line)
334
459
335 # arguments 'code' in line are prepended to
460 # arguments 'code' in line are prepended to
336 # the cell lines
461 # the cell lines
337 if not cell:
462 if not cell:
338 code = ''
463 code = ''
339 return_output = True
464 return_output = True
340 line_mode = True
465 line_mode = True
341 else:
466 else:
342 code = cell
467 code = cell
343 return_output = False
468 return_output = False
344 line_mode = False
469 line_mode = False
345
470
346 code = ' '.join(args.code) + code
471 code = ' '.join(args.code) + code
347
472
348 if args.input:
473 if args.input:
349 for input in ','.join(args.input).split(','):
474 for input in ','.join(args.input).split(','):
350 self.r.assign(input, self.pyconverter(self.shell.user_ns[input]))
475 self.r.assign(input, self.pyconverter(self.shell.user_ns[input]))
351
476
352 png_argdict = dict([(n, getattr(args, n)) for n in ['units', 'height', 'width', 'bg', 'pointsize']])
477 png_argdict = dict([(n, getattr(args, n)) for n in ['units', 'height', 'width', 'bg', 'pointsize']])
353 png_args = ','.join(['%s=%s' % (o,v) for o, v in png_argdict.items() if v is not None])
478 png_args = ','.join(['%s=%s' % (o,v) for o, v in png_argdict.items() if v is not None])
354 # execute the R code in a temporary directory
479 # execute the R code in a temporary directory
355
480
356 tmpd = tempfile.mkdtemp()
481 tmpd = tempfile.mkdtemp()
357 self.r('png("%s/Rplots%%03d.png",%s)' % (tmpd, png_args))
482 self.r('png("%s/Rplots%%03d.png",%s)' % (tmpd, png_args))
358
483
359 text_output = ''
484 text_output = ''
360 if line_mode:
485 if line_mode:
361 for line in code.split(';'):
486 for line in code.split(';'):
362 text_result, result = self.eval(line)
487 text_result, result = self.eval(line)
363 text_output += text_result
488 text_output += text_result
364 if text_result:
489 if text_result:
365 # the last line printed something to the console so we won't return it
490 # the last line printed something to the console so we won't return it
366 return_output = False
491 return_output = False
367 else:
492 else:
368 text_result, result = self.eval(code)
493 text_result, result = self.eval(code)
369 text_output += text_result
494 text_output += text_result
370
495
371 self.r('dev.off()')
496 self.r('dev.off()')
372
497
373 # read out all the saved .png files
498 # read out all the saved .png files
374
499
375 images = [open(imgfile, 'rb').read() for imgfile in glob("%s/Rplots*png" % tmpd)]
500 images = [open(imgfile, 'rb').read() for imgfile in glob("%s/Rplots*png" % tmpd)]
376
501
377 # now publish the images
502 # now publish the images
378 # mimicking IPython/zmq/pylab/backend_inline.py
503 # mimicking IPython/zmq/pylab/backend_inline.py
379 fmt = 'png'
504 fmt = 'png'
380 mimetypes = { 'png' : 'image/png', 'svg' : 'image/svg+xml' }
505 mimetypes = { 'png' : 'image/png', 'svg' : 'image/svg+xml' }
381 mime = mimetypes[fmt]
506 mime = mimetypes[fmt]
382
507
383 # publish the printed R objects, if any
508 # publish the printed R objects, if any
384
509
385 display_data = []
510 display_data = []
386 if text_output:
511 if text_output:
387 display_data.append(('RMagic.R', {'text/plain':text_output}))
512 display_data.append(('RMagic.R', {'text/plain':text_output}))
388
513
389 # flush text streams before sending figures, helps a little with output
514 # flush text streams before sending figures, helps a little with output
390 for image in images:
515 for image in images:
391 # synchronization in the console (though it's a bandaid, not a real sln)
516 # synchronization in the console (though it's a bandaid, not a real sln)
392 sys.stdout.flush(); sys.stderr.flush()
517 sys.stdout.flush(); sys.stderr.flush()
393 display_data.append(('RMagic.R', {mime: image}))
518 display_data.append(('RMagic.R', {mime: image}))
394
519
395 # kill the temporary directory
520 # kill the temporary directory
396 rmtree(tmpd)
521 rmtree(tmpd)
397
522
398 # try to turn every output into a numpy array
523 # try to turn every output into a numpy array
399 # this means that output are assumed to be castable
524 # this means that output are assumed to be castable
400 # as numpy arrays
525 # as numpy arrays
401
526
402 if args.output:
527 if args.output:
403 for output in ','.join(args.output).split(','):
528 for output in ','.join(args.output).split(','):
404 self.shell.push({output:self.Rconverter(self.r(output))})
529 self.shell.push({output:self.Rconverter(self.r(output), dataframe=False)})
530
531 if args.dataframe:
532 for output in ','.join(args.dataframe).split(','):
533 self.shell.push({output:self.Rconverter(self.r(output), dataframe=True)})
405
534
406 for tag, disp_d in display_data:
535 for tag, disp_d in display_data:
407 publish_display_data(tag, disp_d)
536 publish_display_data(tag, disp_d)
408
537
409 # this will keep a reference to the display_data
538 # this will keep a reference to the display_data
410 # which might be useful to other objects who happen to use
539 # which might be useful to other objects who happen to use
411 # this method
540 # this method
412
541
413 if self.cache_display_data:
542 if self.cache_display_data:
414 self.display_cache = display_data
543 self.display_cache = display_data
415
544
416 # if in line mode and return_output, return the result as an ndarray
545 # if in line mode and return_output, return the result as an ndarray
417 if return_output and not args.noreturn:
546 if return_output and not args.noreturn:
418 if result != ri.NULL:
547 if result != ri.NULL:
419 return self.Rconverter(result)
548 return self.Rconverter(result, dataframe=False)
420
549
421 __doc__ = __doc__.format(
550 __doc__ = __doc__.format(
422 R_DOC = ' '*8 + RMagics.R.__doc__,
551 R_DOC = ' '*8 + RMagics.R.__doc__,
423 RPUSH_DOC = ' '*8 + RMagics.Rpush.__doc__,
552 RPUSH_DOC = ' '*8 + RMagics.Rpush.__doc__,
424 RPULL_DOC = ' '*8 + RMagics.Rpull.__doc__
553 RPULL_DOC = ' '*8 + RMagics.Rpull.__doc__
554 RGET_DOC = ' '*8 + RMagics.Rget.__doc__
425 )
555 )
426
556
427
557
428 _loaded = False
558 _loaded = False
429 def load_ipython_extension(ip):
559 def load_ipython_extension(ip):
430 """Load the extension in IPython."""
560 """Load the extension in IPython."""
431 global _loaded
561 global _loaded
432 if not _loaded:
562 if not _loaded:
433 ip.register_magics(RMagics)
563 ip.register_magics(RMagics)
434 _loaded = True
564 _loaded = True
@@ -1,62 +1,62
1 import numpy as np
1 import numpy as np
2 from IPython.core.interactiveshell import InteractiveShell
2 from IPython.core.interactiveshell import InteractiveShell
3 from IPython.extensions import rmagic
3 from IPython.extensions import rmagic
4 import nose.tools as nt
4 import nose.tools as nt
5
5
6 ip = get_ipython()
6 ip = get_ipython()
7 ip.magic('load_ext rmagic')
7 ip.magic('load_ext rmagic')
8
8
9
9
10 def test_push():
10 def test_push():
11 rm = rmagic.RMagics(ip)
11 rm = rmagic.RMagics(ip)
12 ip.push({'X':np.arange(5), 'Y':np.array([3,5,4,6,7])})
12 ip.push({'X':np.arange(5), 'Y':np.array([3,5,4,6,7])})
13 ip.run_line_magic('Rpush', 'X Y')
13 ip.run_line_magic('Rpush', 'X Y')
14 np.testing.assert_almost_equal(np.asarray(rm.r('X')), ip.user_ns['X'])
14 np.testing.assert_almost_equal(np.asarray(rm.r('X')), ip.user_ns['X'])
15 np.testing.assert_almost_equal(np.asarray(rm.r('Y')), ip.user_ns['Y'])
15 np.testing.assert_almost_equal(np.asarray(rm.r('Y')), ip.user_ns['Y'])
16
16
17 def test_pull():
17 def test_pull():
18 rm = rmagic.RMagics(ip)
18 rm = rmagic.RMagics(ip)
19 rm.r('Z=c(11:20)')
19 rm.r('Z=c(11:20)')
20 ip.run_line_magic('Rpull', 'Z')
20 ip.run_line_magic('Rpull', 'Z')
21 np.testing.assert_almost_equal(np.asarray(rm.r('Z')), ip.user_ns['Z'])
21 np.testing.assert_almost_equal(np.asarray(rm.r('Z')), ip.user_ns['Z'])
22 np.testing.assert_almost_equal(ip.user_ns['Z'], np.arange(11,21))
22 np.testing.assert_almost_equal(ip.user_ns['Z'], np.arange(11,21))
23
23
24 def test_Rconverter():
24 def test_Rconverter():
25 datapy= np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c')],
25 datapy= np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c')],
26 dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])
26 dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')])
27 ip.user_ns['datapy'] = datapy
27 ip.user_ns['datapy'] = datapy
28 ip.run_line_magic('Rpush', 'datapy')
28 ip.run_line_magic('Rpush', 'datapy')
29
29
30 # test to see if a copy is being made
30 # test to see if a copy is being made
31 v = ip.run_line_magic('R', 'datapy')
31 v = ip.run_line_magic('Rget', '-d datapy')
32 w = ip.run_line_magic('R', 'datapy')
32 w = ip.run_line_magic('Rget', '-d datapy')
33 np.testing.assert_almost_equal(w['x'], v['x'])
33 np.testing.assert_almost_equal(w['x'], v['x'])
34 np.testing.assert_almost_equal(w['y'], v['y'])
34 np.testing.assert_almost_equal(w['y'], v['y'])
35 nt.assert_true(np.all(w['z'] == v['z']))
35 nt.assert_true(np.all(w['z'] == v['z']))
36 np.testing.assert_equal(id(w.data), id(v.data))
36 np.testing.assert_equal(id(w.data), id(v.data))
37 nt.assert_equal(w.dtype, v.dtype)
37 nt.assert_equal(w.dtype, v.dtype)
38
38
39 ip.run_cell_magic('R', ' -o datar datar=datapy', '')
39 ip.run_cell_magic('R', ' -d datar datar=datapy', '')
40
40
41 u = ip.run_line_magic('R', 'datar')
41 u = ip.run_line_magic('Rget', ' -d datar')
42 np.testing.assert_almost_equal(u['x'], v['x'])
42 np.testing.assert_almost_equal(u['x'], v['x'])
43 np.testing.assert_almost_equal(u['y'], v['y'])
43 np.testing.assert_almost_equal(u['y'], v['y'])
44 nt.assert_true(np.all(u['z'] == v['z']))
44 nt.assert_true(np.all(u['z'] == v['z']))
45 np.testing.assert_equal(id(u.data), id(v.data))
45 np.testing.assert_equal(id(u.data), id(v.data))
46 nt.assert_equal(u.dtype, v.dtype)
46 nt.assert_equal(u.dtype, v.dtype)
47
47
48
48
49 def test_cell_magic():
49 def test_cell_magic():
50
50
51 ip.push({'x':np.arange(5), 'y':np.array([3,5,4,6,7])})
51 ip.push({'x':np.arange(5), 'y':np.array([3,5,4,6,7])})
52 snippet = '''
52 snippet = '''
53 print(summary(a))
53 print(summary(a))
54 plot(x, y, pch=23, bg='orange', cex=2)
54 plot(x, y, pch=23, bg='orange', cex=2)
55 plot(x, x)
55 plot(x, x)
56 print(summary(x))
56 print(summary(x))
57 r = resid(a)
57 r = resid(a)
58 xc = coef(a)
58 xc = coef(a)
59 '''
59 '''
60 ip.run_cell_magic('R', '-i x,y -o r,xc a=lm(y~x)', snippet)
60 ip.run_cell_magic('R', '-i x,y -o r,xc a=lm(y~x)', snippet)
61 np.testing.assert_almost_equal(ip.user_ns['xc'], [3.2, 0.9])
61 np.testing.assert_almost_equal(ip.user_ns['xc'], [3.2, 0.9])
62 np.testing.assert_almost_equal(ip.user_ns['r'], np.array([-0.2, 0.9, -1. , 0.1, 0.2]))
62 np.testing.assert_almost_equal(ip.user_ns['r'], np.array([-0.2, 0.9, -1. , 0.1, 0.2]))
General Comments 0
You need to be logged in to leave comments. Login now