Show More
@@ -1,6 +1,6 b'' | |||||
1 | { |
|
1 | { | |
2 | "metadata": { |
|
2 | "metadata": { | |
3 | "name": "InteractiveMPI-publish-data" |
|
3 | "name": "" | |
4 | }, |
|
4 | }, | |
5 | "nbformat": 3, |
|
5 | "nbformat": 3, | |
6 | "nbformat_minor": 0, |
|
6 | "nbformat_minor": 0, | |
@@ -66,21 +66,13 b'' | |||||
66 | "cell_type": "code", |
|
66 | "cell_type": "code", | |
67 | "collapsed": false, |
|
67 | "collapsed": false, | |
68 | "input": [ |
|
68 | "input": [ | |
69 |
"% |
|
69 | "%matplotlib inline\n", | |
|
70 | "import numpy as np\n", | |||
|
71 | "import matplotlib.pyplot as plt" | |||
70 | ], |
|
72 | ], | |
71 | "language": "python", |
|
73 | "language": "python", | |
72 | "metadata": {}, |
|
74 | "metadata": {}, | |
73 | "outputs": [ |
|
75 | "outputs": [], | |
74 | { |
|
|||
75 | "output_type": "stream", |
|
|||
76 | "stream": "stdout", |
|
|||
77 | "text": [ |
|
|||
78 | "\n", |
|
|||
79 | "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.kernel.zmq.pylab.backend_inline].\n", |
|
|||
80 | "For more information, type 'help(pylab)'.\n" |
|
|||
81 | ] |
|
|||
82 | } |
|
|||
83 | ], |
|
|||
84 | "prompt_number": 2 |
|
76 | "prompt_number": 2 | |
85 | }, |
|
77 | }, | |
86 | { |
|
78 | { | |
@@ -118,9 +110,9 b'' | |||||
118 | "stream": "stdout", |
|
110 | "stream": "stdout", | |
119 | "text": [ |
|
111 | "text": [ | |
120 | "[stdout:0] MPI rank: 2/4\n", |
|
112 | "[stdout:0] MPI rank: 2/4\n", | |
121 |
"[stdout:1] MPI rank: |
|
113 | "[stdout:1] MPI rank: 0/4\n", | |
122 |
"[stdout:2] MPI rank: |
|
114 | "[stdout:2] MPI rank: 3/4\n", | |
123 |
"[stdout:3] MPI rank: |
|
115 | "[stdout:3] MPI rank: 1/4\n" | |
124 | ] |
|
116 | ] | |
125 | } |
|
117 | } | |
126 | ], |
|
118 | ], | |
@@ -221,7 +213,7 b'' | |||||
221 | "language": "python", |
|
213 | "language": "python", | |
222 | "metadata": {}, |
|
214 | "metadata": {}, | |
223 | "outputs": [], |
|
215 | "outputs": [], | |
224 |
"prompt_number": |
|
216 | "prompt_number": 5 | |
225 | }, |
|
217 | }, | |
226 | { |
|
218 | { | |
227 | "cell_type": "heading", |
|
219 | "cell_type": "heading", | |
@@ -242,7 +234,7 b'' | |||||
242 | "cell_type": "code", |
|
234 | "cell_type": "code", | |
243 | "collapsed": false, |
|
235 | "collapsed": false, | |
244 | "input": [ |
|
236 | "input": [ | |
245 | "from IPython.display import clear_output\n", |
|
237 | "from IPython.display import display, clear_output\n", | |
246 | "\n", |
|
238 | "\n", | |
247 | "def plot_current_results(ar, in_place=True):\n", |
|
239 | "def plot_current_results(ar, in_place=True):\n", | |
248 | " \"\"\"Makes a blocking call to retrieve remote data and displays the solution mesh\n", |
|
240 | " \"\"\"Makes a blocking call to retrieve remote data and displays the solution mesh\n", | |
@@ -275,7 +267,7 b'' | |||||
275 | " fig, ax = plt.subplots()\n", |
|
267 | " fig, ax = plt.subplots()\n", | |
276 | " ax.contourf(Z)\n", |
|
268 | " ax.contourf(Z)\n", | |
277 | " ax.set_title('Mesh: %i x %i, step %i/%i' % (nx, nyt, j+1, nsteps))\n", |
|
269 | " ax.set_title('Mesh: %i x %i, step %i/%i' % (nx, nyt, j+1, nsteps))\n", | |
278 | " axis('off')\n", |
|
270 | " plt.axis('off')\n", | |
279 | " # We clear the notebook output before plotting this if in-place \n", |
|
271 | " # We clear the notebook output before plotting this if in-place \n", | |
280 | " # plot updating is requested\n", |
|
272 | " # plot updating is requested\n", | |
281 | " if in_place:\n", |
|
273 | " if in_place:\n", | |
@@ -287,7 +279,7 b'' | |||||
287 | "language": "python", |
|
279 | "language": "python", | |
288 | "metadata": {}, |
|
280 | "metadata": {}, | |
289 | "outputs": [], |
|
281 | "outputs": [], | |
290 |
"prompt_number": |
|
282 | "prompt_number": 6 | |
291 | }, |
|
283 | }, | |
292 | { |
|
284 | { | |
293 | "cell_type": "markdown", |
|
285 | "cell_type": "markdown", | |
@@ -350,7 +342,7 b'' | |||||
350 | "language": "python", |
|
342 | "language": "python", | |
351 | "metadata": {}, |
|
343 | "metadata": {}, | |
352 | "outputs": [], |
|
344 | "outputs": [], | |
353 |
"prompt_number": |
|
345 | "prompt_number": 7 | |
354 | }, |
|
346 | }, | |
355 | { |
|
347 | { | |
356 | "cell_type": "heading", |
|
348 | "cell_type": "heading", | |
@@ -378,14 +370,12 b'' | |||||
378 | "view = cluster[:]\n", |
|
370 | "view = cluster[:]\n", | |
379 | "# And now we call on all available nodes our simulation routine,\n", |
|
371 | "# And now we call on all available nodes our simulation routine,\n", | |
380 | "# as an asynchronous task\n", |
|
372 | "# as an asynchronous task\n", | |
381 | "nsteps = 10\n", |
|
373 | "ar = view.apply_async(lambda : simulation(nsteps=10, delay=0.1))" | |
382 | "delay = 0.1\n", |
|
|||
383 | "ar = view.apply_async(lambda : simulation(nsteps, delay))" |
|
|||
384 | ], |
|
374 | ], | |
385 | "language": "python", |
|
375 | "language": "python", | |
386 | "metadata": {}, |
|
376 | "metadata": {}, | |
387 | "outputs": [], |
|
377 | "outputs": [], | |
388 |
"prompt_number": |
|
378 | "prompt_number": 8 | |
389 | }, |
|
379 | }, | |
390 | { |
|
380 | { | |
391 | "cell_type": "code", |
|
381 | "cell_type": "code", | |
@@ -399,9 +389,9 b'' | |||||
399 | { |
|
389 | { | |
400 | "metadata": {}, |
|
390 | "metadata": {}, | |
401 | "output_type": "display_data", |
|
391 | "output_type": "display_data", | |
402 | "png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXusVcX1x78HG1C5CNeKcHk/TB+IUDXWRhStTayPFFsb\nH1SgVVOtta/EalVSmbQYtT8fjW1slT7EirQa+UNFCipVq1QaX6CiERBB0MpTuSiCyvz+oOf0Ps45\ne8/Mmpk1e69PYtJ79z6zN3TOZy3Wnj2rorXWEARBEJKlR+wbEARBENwQkQuCICSOiFwQBCFxROSC\nIAiJIyIXBEFIHBG5IAhC4ojIhW6MGDECjz76aOzbEAQhJyLyBBkxYgR69eqFLVu2dPr94Ycfjh49\nemDdunVO41cqFVQqFavPzp8/H8ceeyxaW1vR1taG7373u9ixY0encx555BEcccQRaGlpwdChQ3Hv\nvfc63S8AvPHGG+jRowf69OlT+++aa67pdM5zzz2HiRMnok+fPhg4cCBuueUW5+v26NEDr7/+uvM4\njbjmmmswfPhw9O3bF5MnT0Z7e3vt2IYNG3D66afj05/+NIYOHYrbbrut2+fnzp2Lc889FwBw4YUX\n4nOf+xz22WcfzJ49u9u5N998M9ra2tC3b19ccMEF2L17d+3Y1q1b8Y1vfAMtLS0YMWIE5s6d6+FP\nK9giIk+QSqWCUaNGdfoyvfjii9i5c6e1gKnYvn07rr76arz99tt45ZVXsGHDBlx22WW14ytWrMC5\n556La6+9Ftu3b8fy5ctx5JFHkl6/vb0d7e3tmD59eu33mzdvximnnIKLL74YW7duxerVq3HSSSeR\nXNPXO3WzZ8/GXXfdhSVLluCtt97Czp078cMf/rB2fMqUKRg9ejQ2btyI+fPn46qrrsJjjz3WaYz5\n8+fjtNNOAwB84QtfwK233oojjjii2zxZuHAhrr/+eixevBhr167F66+/jhkzZtSOX3LJJdh3332x\nceNGzJkzBxdffDFWrFjh5c8tWKCF5BgxYoSeOXOmPuqoo2q/u/TSS/U111yjK5WKXrt2rdZa6w8/\n/FBfeumletiwYXrAgAH6e9/7nt65c6fWWutNmzbp0047Tffr108feOCB+rjjjus0/g033KDHjRun\n+/btq88++2z94YcfWt3rvHnz9GGHHVb7efLkyfrqq6/O9dnrrrtOH3300frjjz/WWmt966236kMP\nPVTv2rWr27lr1qzRlUqldm5XrrzySj1t2jSLP4HWK1eu1BMnTtR9+/bVBx10kD7nnHO01lofd9xx\nulKp6N69e+uWlhZ9zz33aK21fuCBB/T48eN1v3799DHHHKOXL19eG2v48OH62muv1WPGjNGtra36\nvPPOa/h3+81vflP/3//9X+3nJUuW6H333Vfv3LlTt7e360qlojdt2lQ7fuGFF+qpU6fWfv7kk0/0\ngAED9JYtWzqNe+yxx+rZs2d3+t3kyZP19OnTaz8vXrxYDxw4UGut9Y4dO3TPnj31ypUra8enTZum\nr7jiinx/gYJ3JCNPlC996UvYvn07Xn31VXzyySf429/+hilTpnQ654orrsCqVauwbNkyrFq1Chs2\nbMAvfvELAMCNN96IoUOHYvPmzdi4cSOuvfba2ue01rj33nuxcOFCrFmzBsuXL8cdd9xRO97a2ool\nS5bkus/HH38cY8eOrf28dOlSaK0xbtw4DBo0CFOnTsW2bdvqfvbyyy9Hr169MHPmTKxcuRLTp0/H\nnDlz0LNnz4bXGz58OIYOHYrzzz+/U+lp6dKlaG1txYQJEzBgwABMmjQJb775Zq4/w89//nOcfPLJ\nePfdd7Fhw4ZaVvzEE08AAJYvX4729naceeaZeP7553HBBRdg1qxZ2Lp1Ky666CJMmjQJH330UW28\nu+++G4sWLcLq1avx2muvYebMmXWvW6lUOmX7e/bswa5du7By5cra77sef+mll2o///vf/8aoUaNw\n4IEHZv4ZV6xYgfHjx9d+HjduHN555x1s27YNr732Gj71qU/hkEMOqR0fP348Xn755cxxhTCIyBNm\n6tSpuPPOO/Hwww9jzJgxGDx4cO2Y1hqzZs3CTTfdhH79+qGlpQVXXnkl/vrXvwIAevbsibfffhtv\nvPEG9tlnH0yYMKH22Uqlgh/96EcYOHAgWltb8bWvfQ0vvPBC7fi2bdtwzDHHZN7fww8/jDvvvLMW\nPADgzTffxF133YV58+Zh5cqV3coFHalUKrjzzjtxyy234PTTT8fPfvazTrLpSP/+/fHMM89g3bp1\nePbZZ9He3l6rDVevO3v2bNxyyy1Yt24dRo4cicmTJ2f+GYC9f1dvvPEGNmzYgJ49ezb9s99+++24\n6KKLcNRRR6FSqWDatGno1asXnn766dqf6Qc/+AEGDx6M1tZWTJ8+vWG9+eSTT8Yf/vAHrF27Fu+9\n9x6uv/56AMAHH3yAPn36YMKECfjlL3+JXbt24bnnnsO8efOwc+fO2uc7llWy2LFjB/r27Vv7+YAD\nDgAAtLe3Y8eOHbWfq/Tp06dTvV6Ii4g8USqVCqZOnYo5c+Zg9uzZmDZtWqfsbNOmTfjggw9w5JFH\norW1Fa2trTjllFOwefNmAMBll12GQw45BCeddBJGjx5dk0SVgQMH1v73fvvt1+2BZRZPP/00zj33\nXNx3332dMrn9998f5513Hg455BD07t0bV111FR566KGG4wwfPhwnnHAC1q5di0suuaTheb1798YR\nRxyBHj164OCDD8Zvf/tbLFq0CO+//37tumeccQaOPPJI9OrVCzNmzMCSJUtyyehXv/oVtNb44he/\niLFjx+LPf/5zw3PXrl2LG2+8sfZ33traivXr1+Ott96qnTN06NDa/x42bFinYx05//zzMXnyZJxw\nwgk47LDDcOKJJwIAhgwZAgCYM2cO1qxZg6FDh+KSSy7BlClTOgXzBQsW4NRTT8388wFAS0sLtm/f\nXvv5vffeA7BX2F2PVY/36dMn19iCf0TkCTNs2DCMGjUKCxYswBlnnNHp2EEHHYT99tsPK1aswLZt\n27Bt2za8++67tS9kS0sLbrjhBqxevRr3338/brrpJvzjH/+oex3TB6jPP/88Tj/9dNxxxx348pe/\n3OnYuHHjjMaaP38+nn76aXzlK1/BT3/6U6PPAnvLDTbX7ciAAQNw++23Y8OGDbjtttvw/e9/v+FK\nlWHDhmH69Om1v/Nt27Zhx44dOPvss2vndFxVtG7dOgwaNKjuWJVKBUoprFmzBuvWrcOYMWMwZMiQ\nmqyHDRuGBx54ABs3bsS//vUvbNq0CUcffTQA4D//+Q/efvttHH744bn+jIceeminf3UtW7YMAwYM\nQGtrKz7zmc/g448/xqpVqzod71gyEyITrzwv2DJixAj96KOPaq21Xr16tX722We11lp/9NFHnR52\n/vjHP9ZnnXWW3rhxo9Za6/Xr1+uFCxdqrbV+8MEH9cqVK/WePXv0unXrdFtbm37ssce6ja+11jNm\nzNBTpkzJdW8vvviiPvjgg2sP/rrypz/9SY8cOVK//vrr+v3339dnnnlmw4eQmzZt0m1tbXrBggV6\ny5YtetCgQfqhhx6qe+7SpUv1q6++qj/55BO9efNmfdZZZ+kTTzyxdnzx4sW6tbVVv/DCC3r37t36\nJz/5iZ44cWLt+PHHH6+VUnXHvueee/Sbb76ptdb6pZde0vvtt59es2aN1lrrgQMH6kWLFtXOfeaZ\nZ/TQoUP10qVL9Z49e/SOHTv0gw8+qNvb27XWex92jhs3Tq9fv15v2bJFT5gwodNDxo5s3bpVr1q1\nSu/Zs0e//PLLeuzYsXrWrFm146+88orevn273rVrl/7LX/6iDzroIL158+ba3/MFF1zQabzdu3fr\nnTt36mOOOUbPmjVL79y5U+/Zs0drrfXf//53PXDgQL1ixQq9detWffzxx+srr7yy9tlzzjlHT548\nWb///vv6n//8p+7bt69esWJF3fsWwiMiT5Cuoq3y0Ucf6R49enRatXLVVVfpUaNG6QMOOEB//vOf\n17/5zW+01lrffPPNesSIEbp37956yJAheubMmQ3HV0p1Wg3R0tKin3zyybr3dt555+l99tlHt7S0\n1P4bO3Zsp3NmzJih+/fvr/v376+nTZum33333bpjnXHGGfriiy+u/bxgwQI9aNAgvXXr1m7nzp07\nV48cOVL37t1bt7W16W9/+9v6nXfe6XTO7373Oz148GDd2tqqJ02apNevX187Nnr0aP3II4/UvY/L\nL79cDx48WLe0tOjRo0d3kunvf/973dbWpvv166fvvfderfVeKR511FG6X79+uq2tTZ911ll6x44d\nWuu9f7fXXXedHjNmjO7Xr5/+zne+U1tJ1JXXXntNf/azn9X777+/Hj58uL755ps7Hf/1r3+t+/fv\nr3v37q2PO+64WkDXeu+Kl/vuu6/T+ccff7yuVCq6R48eulKp6Eqloh9//PHa8ZtuukkPGDBAH3DA\nAfr888/Xu3fvrh3bunWr/vrXv6579+6thw8frufOnVv3noU4VLSWxhJCuVm/fj3OOeccPPnkk96v\nNXLkSPzxj3+s1bt98PHHH6OtrQ1r1qxBS0uLt+sIfJAauVB6hgwZEkTiodi2bRtmzpwpEi8RInJB\nKBj9+/fHRRddFPs2hIBIaUUQBCFxPuVr4Kci7/mRIhPyvZ9iz8/cPn7/ePO9SX6P/JnhgifOyD6p\nI8rsdADAP5ZafMgzXz4633mq8aFTJs5reOx76L6ZFgBMWrao8YDXNz4EAE9F2jMr13ekwTyvN38b\nzc+6c1FlXJdobmmdcz50wFtGLiJ3x7vY8xBB/oBZAAACBYF6UHx584q8imp+OLTUAf9id/4uNJnH\njeZovTnYdJ6pJtc3mCciciGTKMHBIRiYBgJ2/wIAmn+JTSWehWp+uJnkgcaiBzJkD+QSfkfqyd9k\nfjYLHkbz3FDyRll8FdXg93XmBiuR41vFF3msf16mCEkAMQwIeYJAXvHnlr7Kd1o0VPYpNhl9FdfM\nPg+U3zvbUo3PMo1enOOeuiAiD4RI3x7rIJBT/BTCzyV6le9+APit5UeoyVNl86G+R74F30zuvES+\nrCAiJ8oibJEAUJ/QGX7eEk+eDJ9c+h3JEwAoyjmq8aFGkjeuz0d64Oo0t3LKHWgseD3R/LLeRH4/\nvupjWHZkZhrURAgsqQYT0ucBEaTvVfg+UNmnkEm+ikMmn3d+ONfiDWvwk7Awx6Cd8SbyyhP0Y2Y9\nqOFGVj3RBS8BJFCQSDEwWAUFgtKOk+xVvus3xEd2rxofMpU8YJ/N54VirjadO/XmyHhzJfsTub+t\nJOxQsW9gL9TBiCJYOAcFxy9NimLPQ275ZwjfVvTOkqeu0+eRvqr/a9KaPPfllHdzEnkl0osX1Mu5\nfKBoh3MJDraBwEr+DsIviuyNM3sHyQME5RvV/HAnfK+pV/V/bZLJm2bwPuZd5hwQkRuSgvS7ouiH\nLEMg6Ai3oED9cK0rXmWvsq/vLPhG39OMa9eb17FeiDL6/1hEngjcAohyH8I2GNgEAuMgUOB/Cfh8\n8aWK1QswANmbjnXxUKYxkjzh86Suc2yChZLTqJFz3B+jSAR+u7AepoEgbwAwkj6ztcyU+FhdAfh/\ny9GarDnd4B6cyzQGgm80j3iJ3MOqldyoiNemJMUA5hIUVP5T84o/j/Bzy75goneVe5Ugku+Kr3p8\ng+vnLdOYyr3uskhOIj8V/JYKGu+tEQIV+wb+C4c3CfOgzE6nFD5AL/2ucAgCMcs1gKPoXeaxRS3e\nSfBA/XnCqUaeygtBprvsUeA1oCji8UL/qyCi9AHemX5HkhF+6uUai1U0QPd5ZFR/57SOPKVX9G23\nWrWBMnA4BwRFcBOcyz+2QUHlO81lJ8EqlDsKcpB7PYxfiAHRroOqwTVDbD1c59q5s3dOb3ZG2TTL\nce9s3/gKGBTBgUVQ6EjsAEGwsRQQf9tYjnLPzOSJtpUFLCTfkUZzkPg5UNc58hDMv4vFEjlXAgUY\nqkDhEhicAoKy/2hdYryZ2BGVfYprVp+rfJNAVu/6FixZmUblvA9KulyT1aZZ0lgicocfguDBtrsP\n4Hd3QFOYl3BS20K2HtQt3gDDDkAqx/W7YtlQhNU2tiLy+MRo5lDFJAiQN3cA+Oz93QyTAKCaH7aV\nvWtGz6l003C+O9bhreTuMKdYdQgSkfOG/F8LAYQPeGzlpoxu43+ECgIObzICYft4cpG7zUNWIL7g\nReSCF7yViJjJP4j4gTCvp1dR2afYbB8L0LR1Cy192wetXlfRdOQfS3mJvGwPO7lkISnAtX8nQNTs\nAaCvqZoQqGRjveKG4WqbKL07Vf3LsKqRs1hHHrlNW14kCNhBvSUsEKh/p8q+DwD+yzYJ9e7k8B0x\nqcHnEXyjvp2sRJ7nzc7gbdKoCRgoOEzkFPDdqBlw3xYWKFizZlX/1yT7hAPpyd2xPMNqHTnFXis+\nW6X5IEhgChA8OHxBfOBc0iHu2xmlZ2eI8o1q/lHSvp1EDZqbzQ2T7wPFyhlWb3b63v2Qe/9O30GI\nPGh4DBCpB4Yk+3UC4Us4jqUa0pU1jJqQSM9OG1Sk62bgI/AUoV8nkL7oG0HRszO5HQQb4UnyPvp1\nVonWt5PT7oesOgRx6sijaIcL3aYtVIu2Iso9ZL9Oa8kDcR/GctlKFhFXzojICeEkf0ACgAUpBAOO\nZRtWoifaRhagLc/4nFusGkskL3IfcAgOyn2IovbnrMI5AIRo+gB46tMJRNtCtopvwQPu80dELnTH\nV/BQ9h81CQQm8i96IwcTkmj6AITt0wnk3iccoO3TabTyhZXIYz3sDEHsvbK5wKg/J2mrNqavl7vg\nO5NP5sGrQQ0+ZJ/OjvASeczmyxSo2DeQAfdg4vovAWV2egot2riKn2J1DUAseZXznoCgfTp9yR34\n3/xgJXKOzZebEbUxswp0HS7yL1sz5sRLOb6aPgAeNp7yWYNvcu08gs9dc+e0aiWF5suhGy+TBwtF\nOxwb0WeRUEnHh+g5Sb4K5a6CAI99wTthsXrGWu6cXghisWlWB0I2WK6Hj6BBFhgUzTAA+AeDQFvA\nViniVrB58PGwNansvcH1c8md0yv6QbexZd50GSh442Ug7WBgk+GrfKfZbgML0LVoA/jInrrxMsBs\nJY3F0khpvpwSHoMNRZCwDQjWQUDZfawGp8489VDZp7iWborSeBkI15MTaLx9bCamc85yWwJpvswY\n742YHQOFTTDw2mRZmd0LgPhlHVPpq+xTXEo3qew5kgebTN65PKOaXM9jlydW+5GLyN0ou/iNM31l\ndjqANMSvmh8O2YuzShJiB3LLHTB4uKoyrkkwp1i1ehORh8W7+AEn+ftssgxIo+WulKVFW5VQpZkQ\nD1ZF5AIZ5IHBIgiYyJ9Ng2VfsufehxPwvgeJLb4bLlMvi2Ql8o4POzn8U0yIB4f2a0ABW7B1hKD/\nJhCnVAMwlbxD3d2oLNNljrAVOQckmPBGZB8I4p0DAX67B7pg3M0H9HJn9bDT+wtBARsfUyNBxQyn\nMg+x6IFIsgfilm1U40OhBA9EbPbQiJxyN1ktw2r5oe9X9IM0OqYgYsApY8AIIX3bvbw7Qta8AUiq\nNRuQvuB9L4Vk9UKQ702zfDc3tsV7gPEcGMoof4Bum1fAXfRO275W8VmuCZjB2z5gZVdzN5A7K5H7\n3sbWRzNjF3wEFrKgwKijeKr43uq1SvKSB1i2Z2MndqCh3FnttZL8fuQZ+AwkVEHBORBIAGgKdTNl\nwE30rMs1hHIHaJorA8xq7tX5wWn3w+Q7BKk4l6UMEK4BwSkQSBAgF703yavm160RUu6Acf091dUz\n3eYJp/3Io/bs5NDk2BRFP6RLULANAlbyd5B+yqKvEqJsQ75DIBDvIauq/2vn0gyTh6qsOgRJ8+Uc\n+A44yv6jNkHAVP5G0k+8y44tFJIvhOABki1iq4TovWmLiLxM+AgCyu5jptI3Eb5xhl+AbjvNoCzX\nkAse4NNMGXAuzcSqufMSuU2NPPZudEXEV9av7D7GRvoFzfCTbqTMvC0bEEbu6Ys8FhJAGhOxUTIQ\nqVlylQLK3kcLNsBDGzaA9nvJSO5Zc4SXyKmXHyri8UJT5mDhsctOFYpGyVWK2GIti5AdeoCAXXqa\nEbKhMpBb7KxE7vJmJ3m3+ZCoiNdOOVh4lj2V6Cnbq3GWvM+HrKyzdw/NlAHDB6mclh+einm1P5CP\nDvJcCBZ0lOfxuQYBl9KOyn8qVQknd+km4aw+ZHkmSgPljhCslDEux3ASue9Ns2LiMzCRBgZFNA5X\nyXclgay+6GUbyiYOAKHcGYkdyJA7pzc7vW9jGwCK7vRZUAYF5yCgSG6jmOJX2ae4NEoG0m7QkAXV\nPt9AmC49xjiWZDrODVZ7rXBrLFHDsekwBT4ChGtAcAoCyunS/4NbACDqugO4SZ4ii+cm+FJn7nWu\n3XF+sNr9kK3IY+AxeFAEBdsgYC1/ZfexGrGFzyiTL5Lko8pdZVzbdc4ZiJ1VY4kyNl8O0sm+ClFw\nsAkEXjvcA/y73DfCtEavsk+J1Si5CgfJUzVyAAj6a1ahmGsN5gurVm9lFDkl3oKCQwDwLf1kO9yb\n4rlRsrXgi5K9++itCQRbJSMiLylFkD4r4QPxpO/YfQcIL3gOci9S1q61+eorEXmJIQ8AFuL3JXyv\nsg8teYIM3kuJhrngg2ftKuOGcs4bEbkQFOdAYCj+4F3ugfhNkJsRSfAu9ffYcgfM+moC+eROWY4R\nkQtssZa+geypRE8uea5lGtX8cIhOPEUVO2CYtXeYI6xEnsryQw4Tqew4ZfbEoifL5lWOG6rCLZNX\njQ+VQe6xxc7qYWe0NzuJekWGIvakTYUQsmcp+lCSZy73KjG+LxS1dhOxsxK5614rzh3gYxEhkEgw\n6IyV9Ak63AOOXe4BPoJ3rL+TrZxhKHffYmf1QlBRN83yHmA8BQKRfWeMZE8geSfBq+zrA2CfvZs+\nWE1F7IC53JuJndUr+i77kcfEtnu8KeQBgTAAlFX6lP0wO2LTG7NKMpInlrtRWYbZMkjTNe1d5wer\nTbPIOwQRYtMhngLqIEEWDCQIZOJD8tGzeJ9yd3ixyUTutvX2kPPU+GUlTtvYBu3ZqQJeywAfAYMi\nGDgHAALxF1H4lOUa2yzeSfAhSjMW7dUA/3JnJXZOjSWSar5MhfI3tGtQsA0A1tK3lH0RBQ/4724P\nWLRQq6KaHItdd1eNPxKrOTI13eYGK5FXmGxQ5AJlB3lTFM0wtgHAVPxWwi9gl3oTqDJ4L9m7ynFP\nsUozqv6vCyN2Ts2XCyFyF0IHAeU+hI30bTJ9Y+mXLLuPmb0Djk2QAT+CJyzJuMrd97wSkRcN38FA\n2X/Ut/RDyD5F0cfobg8w6XDfEcJVMtzELiIX6kMZEJT5R0ykn1f2RqI3lHwZBR9U7r5KMiEaI3fF\ng9hF5AIdrvJXZqfnlT256BPvWt+MXHLnkrkzydqdxE5UY+cl8iKtWuHSWYYLFBm+Mjs9iugLlsnH\nKMtYP1Atsdh5iZz6hSBFPF5oyhgMAmb1lKKnljx3wQP2jY+BQHIvkdiLLfIYqEjXFennR+U7LY/o\nsyRPXa5JXvBEcmcjdsB4dYwPsbNaR57KXivGHd6pUAGuUcSAELhTfRVnyYvcc+/bDURugNwRD2LP\nlDonkXPY/dCkoa8vvAUK5WfYZOXvQfBAtuRJsvjEJV+qrN3gDVTrbJ3TXiu+GkuYNusNha+gQRYI\nFM0wANKSvU3JRmWf4ip4wK2xcRWOcqeut5Nk7aFLMXXuIbfYOe1+GK1DkGd8BhKKYOAsfuV4AylJ\nvoqJ7FX2KS6SpyjRFEnuzmJXDa7HWOy8RM69Z6dhB3dKKIOBq/ydxK+cLp2G9Aklb9OxHnCXu4i9\nC6rBNUOVYupcv+PcYNVYgr3IfeE5QFAEAVv5W0tf2X2sBjfhB5I7UB7Bs8vYgWhiZ9Xq7alK2iJ3\navZLBVFQcJG/qfStZK/MPwKAl+CJH7bGyt4BHoK3fSs1KbE3kLqIPDG8BguHIGAqfq+yV0ZD85J7\nRxybGVchF3xCD1VtsvYUxa4Xm39URM4cjrK3yfBNZO9V9AA/2Tu0RQPs5O6yYoaD1AGabvaAwXJH\n1eR6hHNKa/OVViLygkEu/kCyF9F3wFHsgHlTYyB9ubt2sq8SW+wicsEKMvkbSt9E9nlFn1vyKvel\n95KC3AGyvpdVXEoyseVOIfbcZRiVcTMG80dELgTDSf45hZ9X9KSSV7mG2ksJ5Z5y1u5L7NTZuohc\niE4IwQO0ki+l4FX9X5PW2xmL3VcZhkLqrETuax157Kgu2JOa5MnLNLEE7+lhqoi9M87Z+n/nRylE\nzgEJJv6wlj1huYZE8Crf/QCII3jLnpdAuHIMS7EHkDqr5YfR9lqx7LgeCgkC7hjLnkjyzoJX+e6D\nbeauGh8ykbuN2GN/b6jF3kzqInJfRAgOsSduivgQfJAMXmXfBwB+mbtqfIhE7CXN1lm92clhP/Is\njDqxUxEgKEgQ+B9WpRoCwRdW7iL2TviQOqtNs0J3CMrbdNc3XoODpyBQZvEbid6z4EnknrDYqR6e\nppCtN5N6qUUeCp8BgzQIEEq/rKKn6DoPRJa7iD25bJ3VfuQpNl/O24ndFapg4Cx+AtmXTfLs5a6a\nXxdAWLlbPkB1amoMJC11Vq3eKif6GLULKsA1DPERDCjE7yR9R+EXWfaUpRlbuSeVtVtk7D7r6zHm\nZqbUSyfyEKhwl6IKAi7itxa+g+yLKPoQmbu3rD2U2CVbrz9P7uYk8kqAyWDTWDcmin5IF/nbCt9K\n9paiL5rkbRsmdMRG7klk7YzEHlXqpRN5bEIGEuU+hI30TWVvLPmSC9535p501m4h9iJk6xMslCwi\nD4lv8Su3jxdF9KlL3mfWnqzYiaQOGIg9ktRF5EXCp/SV/UdNZW8ieiPJl0zwrnInL8eojHtJROwc\npS4iLzuU8ld2HzMRPQfJF1ruocSuMu4D8Ct2JiUYqrkkIhfMoBC/Mjs9r+jzSj634Esgd5esPajY\nY2brqvtzoyLsAAANEklEQVSvuEldRC7Q4iJ6ZXY6dSYvgvcjdqsau8q4h1jZuur+Kw5S5yXyWOvI\nY3dnKQOumbwyO50yiy+z4EOKvQhSB7rPvRBSF5FTIgHBnkCZfHDBF0zupRZ7SKkbPijlJXKKvVYU\nwRixkYBQHxvZq3yn5RE8idxF7DVMxJ6U1IFcJRhKqRdP5DFRka9f1gDAXPBlkTv7bJ1Jpu5jSSOr\nNztjbGObu1luKFSAa5RB+CWRu4g9oWxddf9VHqnnqqeXXeS+CBIglKdxiy56U8mr7FO4yD1psfvM\n1lXGtVOW+vXgJXJurd6yWm/5wksQUMTjFVH2xIJ3lXuRxU6drbOXuofyS6f5wWkb2/vxVUxatihX\n89oU8RkYyOSvaIYBUBzZmwheNT+cJXffWXuyYhep16hbT+fUIQjLKl6G9UHIYEMZAEiEr9yHSFry\nhGIH3OReRLGL1GGcpfMS+bc8iDxH89uY+AgIruJ3kr1yunS6gmeStRdN7LYlGOeHpSrjmsykzqr5\nsheRhyBgsKASv4vsrUWvrC+5l9QkH0juIvYOhJZ6yIekDe7jlInzROTR8RgEXKVvK3sr0SurS+0l\nJcHnlbtqftiL2BN7eEoldbLyS8QsXU80H9qbyJ+q8BO5UaPcUBDK30X2wUSvrC6zF+6SF7GTwErq\nEZYyisgjEDQ4EEjfVvamog8ieBG7N7GL1OsQKEvXi82HEZFHwKv8HWVvKnqvgldGQ++lCHJXzQ/b\niL0I2bpPqRu/UepR6iLyAuFN9g6i9yl5r4LnLHePYi9ytt70++G4pDF2lq61+ZYUIvKEIZe9peRZ\nCF4Z3QJfuTuKPXS2nqLUuWfpInKhLmTCtxC9ieTzCt6L3FMVu2p+mDRbZy714KUX1eA6jnNJRC5Y\nQSJ6Q8nnFbzIvQsOYifN1lOWukPpJUSWLiIXSHEWfNHkzk3snsow1CWY1KQeO0sXkQvBcJK8geAp\n5V74rN1Dtl4aqVNn6arJTWTMGRG5EB1OgieTu8pxQ1W4iF2knomJ1ENm6SJygS3Wgs8pd6rMvZRi\nV40PhZB6SkIHus816n1eWImcw14rsSeI0BwOcg8q9hSkDuTuIl+F8kFpzO+sj1q6jdBF5J6RwBAG\nK8HnkLuIvQ4i9brELLuwerOTtLGEQWdyboj8aTCWO1HWXiqxi9S7EUPoxRW5TyIHCRG9PT7k7l3s\nKvseAPCWump8yETqqdXT6843D3V0EXlIAgYAkX0+ROyeIJS6ZOnZdXRW29jej6/6GNaJzA4rPvEs\nfpF9d7iJvaxS9116KZrQReSe8R4IPMleJL+X0GIPkq3HknqAenoKWbqPlS6sWr2diuZNZ0PRbHMg\nn3iRPrHoyy54arFHz9Y5Sl01PuRcemG034vphl3NhC4i94DvQEAqfCLRl1XwRmL3mK2XTeqlydJz\nZuiTsND4mt5EXnnCx6jZNNvhLQQ+xE8ie5G8MZRiL53UCUsvZRO6iJyIEMGASvgcJF8WuecWe6wS\njGp+XQD8pK7q/9pn2YW70HmJ/ETCwRThWJ7wIX9X2TtJXuTeFCqpA56ydZV93eBSt8jSi1R2yS30\n8eZKTkPkPlFhL0clfBfJxxJ8keUeIls36gTfEZVxTwkIHShO2SVT6CLyACi/w1OI3lby1oK3lHtR\nxc5W6irjfgpWdklW6HdzEnnFYVLk6XzCHUU/pKvkgwpe5A7Av9S9lV44Zemq/q+LUEevOz8KI/IQ\ncAkWim4oW9HbCD6U3IskdgqpB6+ncxI6kLuOTiH0aNm5iDwAoQOAch8ilOCN5V5isceSepGzdOcH\no1yELiJnQgjZK/chbATvVe4lFXsuqXMqvYjQvTLBQski8hj4Fr2y/6hvuYvYm+Mq9UJn6SURuoi8\nSPiQvbL7mKncRezusCu9qIz74JKlq+6/8iV0wM/8EpGXBWrJK/OP+JK7T7EXWupcsvSiCj3gBl0i\n8rJDJXhl9zETuccWu0i9M0mXXQhKLpyycxG50J2Ico8q9hJk66Zbp3aE9OGoyrgPEboRInIhPxSC\nV2anpyL21KTukqUXso7OQOguc0hELrjjInhldjq12MsudTZlF5VxDyGE7vHForxCt507InKBHoZi\nF6lnE7LskqzQVfdf+djHxXTeiMgF/wQSO2epi9BF6FV8lFtE5EJ4GImdtK5eNqnHXukS+8UiVf9U\na6E7PAzlJfJQ29jG6k0o1CeA2INn6wWTenShqybXj/1AVNX/ddc553N1SzlF7ooEAr/Yil3lO41K\n6mUTuo+VLskJnWm5RUTuC5E9HTZiV/lPzRK7ZOmdEaEjenbedY6IyGMhorejCFIXodMIXWVc2/d3\njFF2zkvkT/gYtQsqwDUoENHnw1TsKv+pIvV8UK9ySWqFC8HacwqZl0/kLqjYNwARfDM8SZ1i9YsI\nHcUut8TOzlk1luAu8jyoSNcVwXcmktRDPSAtu9DZLld03FnRWuacRH4q8q0maPp/YgqoQNcRue/F\ng9QlS8+GcsliUtk5QC70TJmnKHIfsAkOyvP4ZZd7BKmXWehsyy0x156r7r9yfolIRG5HcPErj2OX\nUe4i9KBELbeoJteNlZ2r+qdaPQi9HiJyXwQRvfI0btnEzkzqFEJPUuZAXaEXdqmiqn+qlczHMxL5\n/fiqj2GbbnwfC2+iVx7GLJPYTaSusk8RoXentNm5z7p5GURuQyz5exG8Ih6vDGInztJF6N2xeRia\nfHbuS+YicjdCCZ9U8IpuqMJLXYTuFcrsPHmZA93uK7fMReR+8Sl6lnIvstjzSl1lnyJC74zv7Jxd\nqcXxBaJuMsdC41vwJnIsq3gZtkqzXoOh8SV4Erkr9yEAFFfqKQg90RUuDYVOsO68yDIvlchNiSF+\nasGzEXsRpR5I6E7LFkucnSex5pxI5iJyB0KJnlLuzmJXBDdRNKkzEHrRyi3sSi2MV7R8D7eJyH3i\nU/QUchepE0Mk9JjllmRkDjivOS+SzB+C+XfZn8i/ZSHyJrUzrvgQfHSxK8eLi9C7EUvoqcscSLhu\nDli91p++yF1hEgio5e4qdpG6I4QvFsUqt3AROssliszWmovIs4goekq5u4g9mtTLJHTV/HDZs3OR\n+X9R3X91ysR5InJnAoqeSuxRpK6sLylC74CX7Dyh2nmUFS2qyTVDy1zVP1VPNB9eRJ4Xz5KPLfbg\nUi+L0FX2KY2EXvpSS0llLiIPjUe5u4o9eKauLC+WutAlO3emNDLPWWIRkcfGk9hjSV2EbgBBdl5m\nmQPmb4ImuZolh8xZifypCr3Ic+2BzA1iuceQugg9JwTZue2DUJH5/0hd5oUXuQlspU8odhepB8vS\nldVl0hU611JLIjL3WWZh89JQxqv8IvKcsJF8wlIXoWfgOTsv8hLFsstcLzYfrpQib0RUwTOQOluh\ni8zrIjLvTFFkLiL3QBS5E0ldhM4AkbkVVHuzkKxkCbwkUUQeiKByJ5B6KKFLuaUBInMrypqVi8gj\nkJLUCyX0Esoc8PDyUBOZxxY5wEjmAbNyEXlkgkm9iEJXZvcCQGTehSLKPMr2t6rBtQLJXETODO9i\njyB0yc4JcHx5KHSZpSgyT6VeLiJnjFepF03oyuxeAIjMO+DjpaEiy5xNvRwAvny0iDwFyix0kXkX\nROa5YVViAbzONa0N9r//Lz083IfQhKfmevxCXI/cHdfrkbmjXh2ymgl3JOv1804o41sxawDBAUcZ\nNAuMjQJs02CdkQjEfM8i8ztTZ97bzOdOKLePh0REHomq0L1I3UHok5YtMv4CiMw9opofttkHx+Ut\nYNYyz0m9+Wo0LwF280xEzgCvQrfEt8xzf3EUzIXO7EvWlDxZubIbulnZq6HMc5Tn2Gxx0ZXQWTmj\neSYiZ4QXoTtm5yaYyBzwnJ0z+pJl4ihzmxJLU5j0vq0Hq6ycESJyhnDKzlnJvOyoxofKVGIxxTkr\nbwaThEFEzhRv2bkFvmWeG2V4PpMvWS48roIoVVZuMMdzZ+Uq/5ixEJEzpwwylxKLAarxoTJl5abf\nC69ZOQNE5AlAnp2LzHkiWTkNDg/5rWAwv0TkZUVkni6q8SHJyhtTb+4WpbwiIk+IMpRZSo9k5YIF\nIvLESFXmeZGsPCeq8aHQWXlMYu8BUyPy3BKRJ0iKMpes3ADJyt1pMKedyiuMEZEnCptMxAOSladF\nSmvKnVCxb6AxIvKE4bCSxQTJysNhU14R0kVELjjBolZeVhTtcKnWyQURefJIVo5illekTi4YICIX\nBEFIHBG5IAhCXlTsG6iPiFxwpuj7WAi8aVheNFiCSELEkp23np2CIAhCGCQjFwRBSBwRuSAIQuKI\nyAVBEBJHRC4IgpA4InJBEITEEZELgiAkjohcEAQhcUTkgiAIiSMiFwRBSBwRuSAIQuKIyAVBEBJH\nRC4IgpA4InJBEITEEZELgiAkjohcEAQhcUTkgiAIiSMiFwRBSBwRuSAIQuKIyAVBEBLn/wFL+aQx\n5FczVAAAAABJRU5ErkJggg==\n", |
|
392 | "png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGKCAYAAAD6yM7KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGIZJREFUeJzt3XuQV3X9+PHXZ9W4SLYIISERuowojZKOoyRFhuYtFUPU\nMElMSZukpkgdhWrN+1iTZSEKKKGoQ+p4SR1RQi3FqEa3BiEV0dAcZxCRIkSXPd8//Lm/gF1473I+\n+7k9HjPMxOdzzvu8d9f2PDm3TyHLsiwAANiuulJPAACgUggnAIBEwgkAIJFwAgBIJJwAABIJJwCA\nRMIJqtwrr7wSe+21V6mnQQds2rSp1FMA2iGcoAs1NjZGXV1dXHfdde0uc88990RdXV2cddZZXTiz\nNC+++GKMGTMmevfuHZ/4xCdi4sSJ8eabb+a6jffeey+mTp0an/rUp6K+vj6OP/74eOGFF3LdRils\n3LgxTjvttPjkJz+5zeVee+21GD58+GavrVq1Kvbff/+YMGFCm+vMmTMnhg4dGj179ozPfOYz8dBD\nD+U2b2Bzwgm6WI8ePWL27Nntvj9r1qzo2bNnFAqFLpzV9q1bty6OPPLIGDhwYLz00kvx7LPPRnNz\nc5x00km5bueiiy6KhQsXxoIFC+KVV16J4cOHxzHHHBPr16/PdTtd6e23344vfelL8cwzz2z35zp7\n9uw47rjjWv/e1NQUI0aMiHXr1rW57h133BHTpk2LOXPmxJo1a+LKK6+MM844IxYvXpz71wEIJ+hS\nhUIhjj766Fi1alU888wzW73/2muvxcKFC+Pkk0+Ocnuo/5IlS2Lw4MHx61//Ovr06RP9+/eP2bNn\nx7PPPht/+9vfctvOzTffHNdee20MHTo06uvr44orroiIiEcffTS3bdTVde2vvnHjxkXfvn1j5syZ\n2/y5trS0xC233BLf/OY3IyLinXfeiSOOOCK++93vxje+8Y021/3Rj34Uv/rVr+Kzn/1sdO/ePY47\n7ri45JJL4tJLLy3a1wO1TDhBF9t1113j9NNPj1mzZm313s033xxHHnlkDBo0qAQz27Yjjzwynnji\nic1e69atW/To0SNaWlpy207Pnj23eq1QKLT5emeUIkhvvPHG+O1vfxsf+chHtrncww8/HHvvvXcM\nGTIkIiI+9rGPxR//+Me48MIL25z3ihUr4tVXX41jjjlms9ePPfbYWLRoUbz33nv5fRFARAgnKIlJ\nkybF/PnzNzv9lGVZzJkzp/Vow5b+/Oc/x8iRI6NHjx4xcODAuPzyyze7iPjBBx+MAw44IHr27BkH\nHHBALFy4cLP1n3zyyTj44IOjV69ecfDBB8fTTz+92fuHHHJIfP/73+/Q1/G73/0uIiL222+/Nt+/\n+OKLY999940NGza0fo2jR4+OqVOntjvm5MmT44ILLogXX3wx3nnnnZg2bVr06tUrjjjiiOR5vfnm\nmzF27Nior6+PPfbYIy655JKIiJg4cWLstNNOEfHBUaeddtop/vnPf0bEB6civ/Wtb0Xfvn2jV69e\ncdJJJ8Wrr77aOmZjY2P88Ic/jFmzZsWwYcOie/fuMWzYsPjNb36z3fkMGTKkdbvbctNNN2318993\n333bXX7FihUxZMiQ6N69+2av77ffflFXVxerVq3a7jaBjhFO0IWyLItCoRAHHnhg7LPPPnHHHXe0\nvvfoo4/Gxo0b4/jjj9/q6MIzzzwTX/3qV2Pq1Knx1ltvxVNPPRXLli2Lb3/72xERsWbNmjjllFPi\npz/9aaxduzbOPvvsmDlzZuv6q1evjmnTpsXs2bPjjTfeiHHjxsWpp5662RGJoUOHduhI16pVq2LS\npElx8cUXR7du3dpc5vLLL4/evXvHhRdeGBERM2bMiHfeeWebp5GmTJkSu+22WwwdOjR69+4d06dP\nj1tuuSUpPD50/vnnR79+/WLVqlXx2GOPxYIFC2LlypUxZ86c1qNjLS0tsWnTphg0aFA0NzfH4Ycf\nHv3794+lS5fGG2+8EWPHjo1Ro0bF2rVrI+KDo1633npr3HnnnXH77bfHmjVrYvr06XHVVVfFD37w\ng+S5tedf//pXLFmyJE4++eTkdd5+++3Ybbfdtnq9rq4uPvrRj8aaNWt2eF7AFjKgy/z4xz/Ozjjj\njCzLsmzGjBnZoYce2vreKaeckl1yySVZlmXZ1KlTs4kTJ7a+N2LEiGzRokWbjbVx48asV69e2Vtv\nvZU1NTVlu+66a7Z27dqttrly5cqsUChky5Yt2+z1AQMGZEuXLu3U17F69epsv/32y0444YTtLrty\n5cqsvr4+u+mmm7KPf/zj2fPPP7/N5U866aRszJgx2UsvvZS9/fbb2fXXX5/169cvW7lyZfL8Djro\noGzmzJntvl8oFDb7+4wZM7Izzzxzq+XOPvvs7Gc/+1mWZR/87BoaGrINGzZstszzzz+fdevWLVu1\natV257Vo0aJs4MCBbb73k5/8JJsyZUq76/7vfzsfuvPOO7MRI0a0uXy/fv2yJUuWbHdOQMc44gQl\nMn78+Fi6dGksXbo0Vq9eHQ888ECcc845Wy33/vvvx5/+9KcYPXp01NXVtf7p3r17/Pe//41ly5bF\n/vvvH6NHj44hQ4bEWWedFbfddlts3LixdYy+fftudcpnr732irfeeqvD816/fn18+ctfjr59+8b8\n+fO3u/zgwYPj6quvjnPPPTfOP//8dk/rRUQ899xz8fvf/z7mzZsXDQ0NUV9fH+eff34cffTR8ctf\n/jJ5jlOmTInvfOc7cdRRR8XVV18dK1eu3Obyf/jDH2Lu3LmbfX/r6urilltuiWXLlrUuN2bMmDZP\nizU0NGx16rMjWlpa4uabb45JkyZ1aL3evXvHunXr2hxv3bp1sfvuu3d6TkDbhBOUyG677Rannnpq\nzJw5M+bOnRuf+9znWh9UueVt54VCIf7+979HS0vLZn82bdoUI0eOjEKhEPfff3888MAD0dDQEFde\neWWMGjUqmpubI+KDC9K3tMsuu3T4Qun3338/xo0bFy0tLfHQQw9tFRFtybIs5s+fH/vvv3/cdddd\nmwXdlpYvXx5DhgzZar4HHXRQLF++PHmep59+erz00ktx6qmnxuLFi2P48OFt3sX4obq6upgyZUqb\n398PT3kWCoVtfr925PERjzzySAwaNCiGDh3aofUaGhrixRdf3Op7unz58mhpadnuM6OAjhNO0IW2\n3LlOmjQpbr311pg1a1a7Rxt22WWXOOyww+K2227b7PVNmzbF0qVLW//e3NwcI0aMiGnTpkVTU1Ms\nW7Ys18cEZFkWEydOjNdffz0eeeSR6NWrV9J61157bWzYsCGWLFkSPXr0iO9973vtLrvnnnvGihUr\ntnpm07PPPhsDBw5Mnmtzc3MMGDAgzjnnnLjvvvti/PjxMW/evHaX/8IXvhB33333VgHS1NTU+r+z\nLIsHHngg3n333c2WWb58eaxYsSIOO+yw5Pltqa2LwrfUVpg1NDTE4MGDt3rg5YMPPhijR4/e7l18\nQMcJJ+hCWx6xGDFiRAwYMCBWr14dX/nKV9pd7uc//3lcf/318Ytf/CLWrFkTr7zySpx++ukxZcqU\niIh44oknYtiwYdHU1BTvvvtu3HvvvbFp06btxsb/bmfChAnbfKL51KlTY8mSJbFgwYLo3bt30tf7\n17/+Na6++uqYO3dudOvWLebNmxe33XZb3HvvvW0u//nPfz4OO+ywmDBhQqxcuTLWrl0bN9xwQ9x/\n//1x0UUXtS43ffr0GDZsWJtjNDc3x4EHHhjTp0+PDRs2xAsvvBBPP/107LPPPq3L9O/fP5588slY\ns2ZNrF+/Ps4666zo06dPnHzyyfHCCy/Ev//977jpppti9OjR8fLLL7eu9/7778cJJ5wQzz33XPzn\nP/+Jxx9/PMaOHRuTJ0+OPffcM+l7sqU33ngjFi9eHKeccso2l2vvaNdll10WkydPjqeffjo2bNgQ\nDz74YFx11VXR2NjYqfkA2yacoAsVCoU2jzp9/etfj1122aXd5Q4++OB44okn4u67744999wzRowY\nEXvssUfcddddEfHBEZMzzzwzTjzxxOjdu3dcc801cd9990W/fv1ax2tvPh/6xz/+0XprflsWL14c\nL7/8cgwYMGCra4Hmzp271fLr16+Pr33ta3H55Ze3PpdoyJAhcd1118U555wTr7/+epvbmT9/fgwe\nPDgOP/zwGDx4cNx3333x+OOPR0NDQ+syjz32WLt3n+28885xww03xK233hq77757fPGLX4wxY8bE\n5MmTW5e59NJL4/jjj49Pf/rT8eabb0ZdXV0sWrQoBg0aFCNHjoz+/fvH/Pnz45FHHom999679Xs1\nYcKEGDduXJx22mnRp0+fOO+88+KCCy6Ia6+9tt3v25a2/FnMmTMnxo8fv92jQ239txMRcdppp8UV\nV1zRGn/Tpk2LefPmxaGHHpo8JyBdIevoRQ4AJdTS0hJ9+/aNhQsXxoEHHthl27300kujubk5Lrvs\nslzHXbt2bWzatCn69OmT67hAcexc6gkAdMRf/vKXqK+v79JoKqb6+vpSTwHoAKfqgIpyyCGHbHbd\nEUBXEk4AiXbkkQNAdXCNEwBAotyucXqqg/8SGzk+ry0DABXtou0vkrvhnTtulNsRp46Ek2gCAHLX\nkQCrlHASTQBAyd3eufzp0ovDRRMAUMm65DlOggkAqAZFP+IkmgCAalHUcBJNAEA1KVo4iSYAoNoU\nJZxEEwBQjXK9OFwwAQDVLLcjTqIJAKh2PuQXACCRcAIASCScAAASCScAgETCCQAgkXACAEgknAAA\nEgknAIBEwgkAIJFwAgBIJJwAABIJJwCARMIJACCRcAIASCScAAASCScAgETCCQAgkXACAEgknAAA\nEu1c6gkAAGzPU3fkO97I2zu3nnACADot76Apd8IJAKpQrQVNVxFOANCFBE1lE04AEIKGNMIJgLIn\naigXwgmAThM01BrhBFCFBA0Uh3AC6EKCBiqbcAIIQQOkEU5AWRM0QDkRTkCnCBqgFgknqEKiBqA4\nhBN0IUEDUNmEE4SgASCNcKKsCRoAyolwolMEDQC1SDhVGUEDAMUjnLqQqAGAyiacikAgAUB1Ek5F\nMHJ8qWdQPUQoAOVEOFHWRGj5ErVALRJOQKeI2vIlaqF4hBNAlRG15UvUVj7hBABdRNRWvrpSTwAA\noFLkd8TpotxG6rhrSrhtAKBmVMepulJGGx0ndAGoUNURTlQWoVt5xC5ARAgnIIXYrSxCF4pGOAFU\nG6FbWYRuRSlkWZblMlJTIZdhAACKbnjn8sfjCAAAEuV2qu7+4UclLXdi04K8NgkA0KW6/Bqn1MCi\n/IlgAGqNi8PpNBFcPUQwQBrhBIjgKiKCobiEE0AVEcHVQQCXL+EEAGVGABffiZ1cz+MIAAASCScA\ngES5naqbEefmNRRd5Ly4sdRTAICK4hqnGiZ2a4NABsiPcIIqJ5Brg0CGriGcAKqAQK4dIrm0hBMA\nVBCRnA+PIwAAKDLhBACQKLdTdQ8/OTavodiOY0fdU+opAEBNco1TBRKpRAhogFIQTlChBDQfEtHQ\ndYQTQIUT0UQI6K5SyLIsy2WgJ/MYBQCg+LJRnVvPXXUAAImEEwBAovyucWrMbaTq0ljqCQAAeXFx\neLE1lnoCVJTGUk8AgG0RTlBOGks9ASpKY6knALVHOAFUqsZST4CK0ljqCVSH/B5HMDqPUQAAii/7\nfefWc1cdAEAi4QQAkCi/a5wW/Sm3obrcFw8t9QwAgArg4vCIyo4+ypcgB6g6wgmKRZBTLKIcSkY4\nAVQaUU6xiPLtyu9xBAX/RwYAKkOWdS4S3VUHAJBIOAEAJBJOAACJhBMAQCJ31QEApVchd/QJJ4Ad\nUSG/7IF8CKda5Zc9AHRYfuFkRwwAVDkXhwMAJBJOAACJhBMAQCLhBACQyF11ALWosdQTgMqUXzg1\n5jYSAEBZcqoOACCRcAIASCScAAASCScAgETCCQAgkXACAEiU2+MIjh11T15DAQAU2dhOreWIEwBA\nIuEEAJBIOAEAJBJOAACJhBMAQKLc7qo7L27Mayiq0Iw4t9RTAIAdlls4wbYIawDKi8cRAAAUlXAC\nAEgknAAAEgknAIBEwgkAIFFud9Wd2LQgr6GgJtw//KhSTwGADvI4AigR/9iA6uEfQrWjkGVZlstI\nTYVchgEAKLrhncsf1zgBACQSTgAAiYQTAECi/C4Ovya3karHRaWeAACQJ3fVFZOYpBQEO0DRCCeo\nNoKdUhDs1AjhBMCOE+yUQgmCPb/nOJ3uOU4AQIW43XOcAACKKrdweuqOD/4AAFSr3K9xEk/VaeT4\nUs8AAErPxeEkEcTVRwwDdJxwgholhquPGIbiE04AVUIMVx8xXH5yexzBUwWPIwAAKsPITuaPI04A\nQElU4hE14QRARajEnSzVRzgBVclOFigG4QRhJwtAGuHUCXayAFCbcgsnMQEAVDsf8gsAkMipOgCg\nPF1U6glsTTgBUDpluGOEbRFOQPHYKQJVRjixY+wYAaghuX1WXTT5rDoAoEIM71z+uKsOACCRcAIA\nSOQaJwCg4t0//KgOLX9iJ7cjnADotI7urKDSCSeoMHZUAKUjnBLZWQEAuYWTsAAAqp276gAAEgkn\nAIBEwgkAIJGLwwGq3Iw4t9RTgLLjOU7UFDsCAEoht3CyIwMAqp1rnAAAEgknAIBEwgkAIJFwAgBI\n5K46gBw8/OTYUk8B6IhRnVtNOLXBL0AAoC2FLMuyXAZ6Mo9RAACKL+vkESfXOAEAJBJOAACJhBMA\nQCLhBACQyF11QNsaSz0BgCL6fedWyy+cGnMbCQCgLDlVBwCQSDgBACQSTgAAiYQTAEAi4QQAkKgy\nH0ew6E+lngEAUNEO7dRa+X3Ib0HMAACVIcs6F05O1QEAJBJOAACJhBMAQCLhBACQSDgBACQSTgAA\niYQTAEAi4QQAkEg4AQAkEk4AAImEEwBAIuEEAJBo51JPAIAy8sXOffAp1ArhRPnyCxyAMpNfONnJ\nAQBVzjVOAACJhBMAQCLhBACQSDgBACQSTgAAiTyOAACoHI2l3bxwAoAPNZZ6ApQ74QTQVRpLPQFg\nRwknqCaNpZ4AQHUTTqRrLPUEAKC0yiucGks9AQCA9uUXTo25jQQAUJY8xwkAIJFwAgBIVF7XOAEA\nVevYUfeUegr/Y2yn1hJOAFAk5RUK5EE4AZALkUAtEE4AnSQUoPYIJyCJSAAQTtAuoQDAloQTrYQC\nAGxbzYaTSAAAOiq3cBIiAEC1q9kjTgBAvs6LG0s9hQ7wAEwAqDiVFRsIJwAqjtigVIQTQI0QG7Dj\nhBPAdggO4EPCCSgKsQFUI+EEZURsAJQ34UTFExsAdBXhVKPEBgDV6sSmBdtfaHjnxhZOHSQ4AKgV\nSQFSY7oknMQGALVKfFSXQpZlWR4D3R9H5zEMALRJgJCr4Z3LH6fqAGqI+IAdI5wAOkGAQG0STkDJ\niA+g0ggnqGHCBaBjhBOUESEDUN6EE2yHmAHgQ8KJiiNkACgV4UQuxAwAtUA4VSkhAwD/zzVtvHZ7\n54YSTl1EyABQ89oKmApT0+EkZgCoOVUQL6VUVuEkZACoGQKmIuX2Ib/RVMhlGADoUgKmNt3uQ34B\nqFTihQohnAD4/wQMbJNwAihHAgbKknAC2BYBA/wP4QSUP/EClAnhBKQTMECNE05QiQQMQEkIJ+gs\n8QJQc4QTlU/AANBFhBP5ETAAVDnhVI0EDAAUhXAqFvECAFWn+sNJwAAAOem6cBIwAECFyy+chBEA\nUOXqSj0BAIBKIZwAABJV/8XhAEDVeeqOHVt/5O2dW084AUCN2dHoqGXCCQASCQ6EEwBFJzioFsIJ\noIwJDigvwgmoSoIDKAbhBGxGcAC0TzhBTgQHQPUTTpQF0QFAJRBOFU5wAEDXqdlwEhwAQEcVsizL\n8hjoqUIhj2EAAIpuZCfzx4f8AgAkEk4AAImEEwBAIuEEAJBIOAEAJBJOAACJhBMAQCLhBACQSDgB\nACQSTgAAiYQTAEAi4QQAkEg4AQAkEk4AAImEEwBAIuEEAJBIOAEAJBJOAACJhBMAQCLhBACQSDgB\nACQSTgAAiYQTAEAi4QQAkEg4AQAkEk4AAImEEwBAIuEEAJBIOAEAJBJOAACJhBMAQCLhBACQSDgB\nACQSTgAAiYQTAEAi4QQAkEg4AQAkEk4AAImEEwBAIuEEAJBIOAEAJBJOAACJhBMAQCLhBACQSDgB\nACQSTgAAiYQTAEAi4QQAkEg4AQAkEk4AAImEEwBAIuEEAJBIOAEAJBJOAACJhBMAQCLhBACQSDgB\nACQSTgAAiYQTAEAi4QQAkKiQZVlW6kkAAFQCR5wAABIJJwCARMIJACCRcAIASCScAAASCScAgETC\nCQAgkXACAEgknAAAEgknAIBEwgkAIJFwAgBIJJwAABIJJwCARMIJACCRcAIASCScAAASCScAgETC\nCQAgkXACAEgknAAAEgknAIBEwgkAINH/Acd8GCUQEYlkAAAAAElFTkSuQmCC\n", | |
403 | "text": [ |
|
393 | "text": [ | |
404 |
"<matplotlib.figure.Figure at 0x5 |
|
394 | "<matplotlib.figure.Figure at 0x10b00b350>" | |
405 | ] |
|
395 | ] | |
406 | }, |
|
396 | }, | |
407 | { |
|
397 | { | |
@@ -409,19 +399,11 b'' | |||||
409 | "stream": "stdout", |
|
399 | "stream": "stdout", | |
410 | "text": [ |
|
400 | "text": [ | |
411 | "Simulation completed!\n", |
|
401 | "Simulation completed!\n", | |
412 |
"Monitored for: 0:00: |
|
402 | "Monitored for: 0:00:01.229672.\n" | |
413 | ] |
|
403 | ] | |
414 | } |
|
404 | } | |
415 | ], |
|
405 | ], | |
416 |
"prompt_number": |
|
406 | "prompt_number": 9 | |
417 | }, |
|
|||
418 | { |
|
|||
419 | "cell_type": "code", |
|
|||
420 | "collapsed": false, |
|
|||
421 | "input": [], |
|
|||
422 | "language": "python", |
|
|||
423 | "metadata": {}, |
|
|||
424 | "outputs": [] |
|
|||
425 | } |
|
407 | } | |
426 | ], |
|
408 | ], | |
427 | "metadata": {} |
|
409 | "metadata": {} |
@@ -1,6 +1,6 b'' | |||||
1 | { |
|
1 | { | |
2 | "metadata": { |
|
2 | "metadata": { | |
3 |
"name": " |
|
3 | "name": "" | |
4 | }, |
|
4 | }, | |
5 | "nbformat": 3, |
|
5 | "nbformat": 3, | |
6 | "nbformat_minor": 0, |
|
6 | "nbformat_minor": 0, | |
@@ -23,8 +23,13 b'' | |||||
23 | "cell_type": "code", |
|
23 | "cell_type": "code", | |
24 | "collapsed": false, |
|
24 | "collapsed": false, | |
25 | "input": [ |
|
25 | "input": [ | |
26 |
"% |
|
26 | "%matplotlib inline\n", | |
|
27 | "import numpy as np\n", | |||
|
28 | "import matplotlib.pyplot as plt\n", | |||
|
29 | "\n", | |||
|
30 | "from IPython.display import display\n", | |||
27 | "from IPython.parallel import Client, error\n", |
|
31 | "from IPython.parallel import Client, error\n", | |
|
32 | "\n", | |||
28 | "cluster = Client(profile=\"mpi\")\n", |
|
33 | "cluster = Client(profile=\"mpi\")\n", | |
29 | "view = cluster[:]\n", |
|
34 | "view = cluster[:]\n", | |
30 | "view.block = True" |
|
35 | "view.block = True" | |
@@ -35,18 +40,8 b'' | |||||
35 | "slide_start": false |
|
40 | "slide_start": false | |
36 | } |
|
41 | } | |
37 | }, |
|
42 | }, | |
38 | "outputs": [ |
|
43 | "outputs": [], | |
39 | { |
|
44 | "prompt_number": 1 | |
40 | "output_type": "stream", |
|
|||
41 | "stream": "stdout", |
|
|||
42 | "text": [ |
|
|||
43 | "\n", |
|
|||
44 | "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.kernel.zmq.pylab.backend_inline].\n", |
|
|||
45 | "For more information, type 'help(pylab)'.\n" |
|
|||
46 | ] |
|
|||
47 | } |
|
|||
48 | ], |
|
|||
49 | "prompt_number": 12 |
|
|||
50 | }, |
|
45 | }, | |
51 | { |
|
46 | { | |
52 | "cell_type": "code", |
|
47 | "cell_type": "code", | |
@@ -60,13 +55,13 b'' | |||||
60 | { |
|
55 | { | |
61 | "metadata": {}, |
|
56 | "metadata": {}, | |
62 | "output_type": "pyout", |
|
57 | "output_type": "pyout", | |
63 |
"prompt_number": |
|
58 | "prompt_number": 2, | |
64 | "text": [ |
|
59 | "text": [ | |
65 | "[0, 1, 2, 3]" |
|
60 | "[0, 1, 2, 3]" | |
66 | ] |
|
61 | ] | |
67 | } |
|
62 | } | |
68 | ], |
|
63 | ], | |
69 |
"prompt_number": |
|
64 | "prompt_number": 2 | |
70 | }, |
|
65 | }, | |
71 | { |
|
66 | { | |
72 | "cell_type": "markdown", |
|
67 | "cell_type": "markdown", | |
@@ -115,7 +110,7 b'' | |||||
115 | ] |
|
110 | ] | |
116 | } |
|
111 | } | |
117 | ], |
|
112 | ], | |
118 |
"prompt_number": |
|
113 | "prompt_number": 3 | |
119 | }, |
|
114 | }, | |
120 | { |
|
115 | { | |
121 | "cell_type": "markdown", |
|
116 | "cell_type": "markdown", | |
@@ -148,7 +143,7 b'' | |||||
148 | } |
|
143 | } | |
149 | }, |
|
144 | }, | |
150 | "outputs": [], |
|
145 | "outputs": [], | |
151 |
"prompt_number": |
|
146 | "prompt_number": 4 | |
152 | }, |
|
147 | }, | |
153 | { |
|
148 | { | |
154 | "cell_type": "heading", |
|
149 | "cell_type": "heading", | |
@@ -225,7 +220,7 b'' | |||||
225 | } |
|
220 | } | |
226 | }, |
|
221 | }, | |
227 | "outputs": [], |
|
222 | "outputs": [], | |
228 |
"prompt_number": |
|
223 | "prompt_number": 5 | |
229 | }, |
|
224 | }, | |
230 | { |
|
225 | { | |
231 | "cell_type": "heading", |
|
226 | "cell_type": "heading", | |
@@ -283,7 +278,7 b'' | |||||
283 | " fig, ax = plt.subplots()\n", |
|
278 | " fig, ax = plt.subplots()\n", | |
284 | " ax.contourf(Z)\n", |
|
279 | " ax.contourf(Z)\n", | |
285 | " ax.set_title('Mesh: %i x %i, step %i/%i' % (nx, nyt, j+1, nsteps))\n", |
|
280 | " ax.set_title('Mesh: %i x %i, step %i/%i' % (nx, nyt, j+1, nsteps))\n", | |
286 | " axis('off')\n", |
|
281 | " plt.axis('off')\n", | |
287 | " # We clear the notebook output before plotting this if in-place plot updating is requested\n", |
|
282 | " # We clear the notebook output before plotting this if in-place plot updating is requested\n", | |
288 | " if in_place:\n", |
|
283 | " if in_place:\n", | |
289 | " clear_output()\n", |
|
284 | " clear_output()\n", | |
@@ -297,7 +292,7 b'' | |||||
297 | } |
|
292 | } | |
298 | }, |
|
293 | }, | |
299 | "outputs": [], |
|
294 | "outputs": [], | |
300 |
"prompt_number": |
|
295 | "prompt_number": 6 | |
301 | }, |
|
296 | }, | |
302 | { |
|
297 | { | |
303 | "cell_type": "markdown", |
|
298 | "cell_type": "markdown", | |
@@ -326,7 +321,7 b'' | |||||
326 | } |
|
321 | } | |
327 | }, |
|
322 | }, | |
328 | "outputs": [], |
|
323 | "outputs": [], | |
329 |
"prompt_number": |
|
324 | "prompt_number": 7 | |
330 | }, |
|
325 | }, | |
331 | { |
|
326 | { | |
332 | "cell_type": "markdown", |
|
327 | "cell_type": "markdown", | |
@@ -395,7 +390,7 b'' | |||||
395 | } |
|
390 | } | |
396 | }, |
|
391 | }, | |
397 | "outputs": [], |
|
392 | "outputs": [], | |
398 |
"prompt_number": |
|
393 | "prompt_number": 8 | |
399 | }, |
|
394 | }, | |
400 | { |
|
395 | { | |
401 | "cell_type": "heading", |
|
396 | "cell_type": "heading", | |
@@ -431,7 +426,7 b'' | |||||
431 | } |
|
426 | } | |
432 | }, |
|
427 | }, | |
433 | "outputs": [], |
|
428 | "outputs": [], | |
434 |
"prompt_number": |
|
429 | "prompt_number": 9 | |
435 | }, |
|
430 | }, | |
436 | { |
|
431 | { | |
437 | "cell_type": "code", |
|
432 | "cell_type": "code", | |
@@ -449,20 +444,21 b'' | |||||
449 | { |
|
444 | { | |
450 | "metadata": {}, |
|
445 | "metadata": {}, | |
451 | "output_type": "display_data", |
|
446 | "output_type": "display_data", | |
452 | "png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAEICAYAAACtXxSQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuMlNXBx/Hf7BbLZXdhAYXKJQvFUGsBKchrJTVKoqYQ\nQGkjEbmIRUuiVgox2lbKwUsMasHQ/vFaY6o21ba2b1vaSpYGsGttMEJlUbCpq+0WQbk0i0Bhueye\n9w86w87uzDy3c55zeX6fxNTuzHNB5fsczjxznpyUUoKIiJxWZfoEiIgoOcaciMgDjDkRkQcYcyIi\nDzDmREQeYMyJiDzAmFNFDQ0N2Lx5s+nTIKIAjLnjGhoa8OlPfxr//ve/i34+ceJEVFVV4V//+lei\n/edyOeRyuVjbvvrqq6iqqkJtbW3hr5/85CeJzifvhz/8ISZPnozevXtj8eLFRa9t27YN1113HQYN\nGoSLLroIN998Mz7++OPEx7ztttuwcuXKxPspZ+XKlRg3bhx69eqF1atX93j90KFDmDdvHgYMGICB\nAwdi/vz5Ra+fPn0aF154IU6cOIFf/OIXuOqqq9CvXz9ce+21Pfa1c+dOTJo0Cf369cPkyZPR3Nxc\n9Pq6devwmc98Bv3798fXv/51nD59Wu0vlpRjzB2Xy+UwevRovPTSS4Wfvf322zh58mTsCKs0bNgw\nHDt2rPDXggULlO135cqVuP3223u8duTIESxduhStra1obW1FbW1tj+Db6JJLLsETTzyBGTNmlPx3\nN2fOHFx88cXYu3cvDh06hPvuu6/o9aamJkycOBF9+/bFoEGDsHz5cjzwwAM99nP69GnMnj0bCxcu\nxJEjR7Bo0SLMnj0bZ86cAQA0NjZizZo12LJlC1pbW/HBBx9g1apVen7RpI4kpzU0NMhHHnlEXnHF\nFYWfrVixQj766KMyl8vJ1tZWKaWU7e3tcsWKFXLkyJFyyJAhcunSpfLkyZNSSikPHTokZ8yYIQcM\nGCAHDhwov/zlLxft/8knn5Tjx4+X/fv3l3PnzpXt7e2hzm3r1q1y+PDhod7b0tIiBw4cKP/6179K\nKaXct2+fHDx4sPzTn/5UcbsHH3xQ3nbbbRXfs2PHDllbWxvqPKSUctmyZfKiiy6SdXV1cty4cfKd\nd96RTz/9tOzVq5e84IILZE1NjZw1a1bhPOfMmSMvvPBCOWrUKLl+/frCflatWiW/+tWvyrlz58ra\n2lr5xS9+UTY3Nwcef/78+VIIUfSzxsZG2dDQIDs6Ospu961vfUuuW7eu6GfPPPOMvOaaa3rsa9iw\nYUU/GzlypGxsbJRSSnnLLbfI7373u4XXtmzZIocOHRp43mQWR+YeuPLKK3H06FH87W9/Q0dHB37+\n85/3+CP4Aw88gJaWFjQ3N6OlpQX79u3DQw89BAD4/ve/jxEjRuDw4cM4ePAgHnvsscJ2Ukq8/PLL\naGxsxD/+8Q/s2rULzz33XOH1+vp6/OUvfyl7bgcPHsTQoUMxevRoLF++HCdOnCj5vs9+9rNYs2YN\n5s+fj5MnT2Lx4sVYvHgxrr766oq/dhliNYqmpiZ84QtfCHwfcG5U+tprr+G9997DJ598gpdffhmD\nBg3CnXfeiVtvvRX3338/jh07ht/+9rfo7OzEzJkzMXHiROzfvx+bN2/GU089hU2bNhX2t2HDBtx8\n881oa2vDvHnzcOONN+Ls2bOhzqWrbdu2YezYsVi0aBEGDx6MKVOmoKmpqeg9GzduxIwZMwL3tXv3\nbowfP77oZxMmTMDu3bsBAHv27MGECRMKr40fPx4HDhxAW1tb5POm9DDmnliwYAFeeOEF/PGPf8Tn\nP/95DBs2rPCalBLPPPMM1q5diwEDBqCmpgbf/va38bOf/QwAcMEFF+Cjjz7CP//5T1RXV2Pq1KmF\nbXO5HL75zW9i6NChqK+vx8yZM7Fz587C621tbbjqqqtKntOll16K5uZmfPzxx9iyZQt27NiB5cuX\nl/01LFmyBGPGjMGUKVNw4MABPProo4G/7qCppF27duHhhx/GE088Ebgv4Nw/i2PHjuHdd99FZ2cn\nxo4di6FDhxZe73rxePPNN3H48GE8+OCD+NSnPoVRo0ZhyZIlhX+uADB58mTMmTMH1dXVWL58Odrb\n27Ft27ZQ59LVhx9+iE2bNmHatGk4cOAAVqxYgdmzZxc+K3n//fdx9uxZXHLJJYH7On78OPr371/0\ns7q6Ohw7dqzk63V1dQBQeJ3sxJh7IJfLYcGCBfjpT3+K559/HgsXLiyKzqFDh3DixAlMmjQJ9fX1\nqK+vx1e+8hUcPnwYAHDfffdhzJgxuP766wsj5K66xqxPnz44fvx4qPMaMmQIPve5zwE490Ht448/\njl/96lcVt1myZAl2796Ne+65B7169Qo8RqWReUtLC6ZPn47169cXXaAqufbaa3H33XfjrrvuwpAh\nQ/CNb3yjbMRaW1uxf//+wj/T+vp6PPbYYzh48GDhPcOHDy/8fS6Xw/Dhw/HRRx+FOpeu+vTpg1Gj\nRmHx4sWorq7G3LlzMWLEiMKfil555RVMnz491L5qa2tx9OjRop8dOXIEtbW1AICampqi1z/55JPC\ndmQvxtwTI0eOxOjRo7Fx40bMmTOn6LXBgwejT58+2LNnD9ra2tDW1oYjR44UfsPW1NTgySefxPvv\nv48NGzZg7dq12Lp1a8njJP1QtbOzs+xrx48fx7Jly7BkyRKsWrUq1B/ry51Pa2srrrvuOnzve9/D\nrbfeGukc77nnHmzfvh179uzB3//+98KovvuxRo4ciVGjRhX+mba1teHo0aP4/e9/X3jP3r17C3/f\n2dmJDz/8EBdffHHkX1fXaY9S7ykX81L/fC677DLs2rWr6Gdvv/02LrvsssLrXf/01dzcjCFDhqC+\nvj7wvMkcxtwjzz77LLZs2YI+ffoU/byqqgp33HEHli1bhkOHDgEA9u3bV5jb/cMf/oCWlhZIKVFX\nV4fq6mpUVZX+TyPMHHXeq6++itbWVkgpsXfvXtx///248cYby77/3nvvxZQpU/CjH/0IM2bMwNKl\nS8u+t6OjA+3t7Th79iw6Ojpw6tQpdHR0FH5t06ZNw913340777yzx7bPPfccRo0aVXK/27dvxxtv\nvIEzZ86gb9++6N27N6qrqwGc+5PGBx98UHjvlClTUFtbi8cffxwnT55ER0cH3nnnHWzfvr3wnh07\nduDXv/41zp49i6eeegq9e/fGlVdeWfLYZ8+eRXt7Ozo6OnDmzBm0t7cXLn433XQT2tra8MILL6Cj\nowO//OUvsW/fPkydOhUnTpzAm2++WXQLYmdnJ9rb23HmzBl0dnbi1KlThbtVrrnmGlRXV2P9+vU4\ndeoU1q9fj6qqKkybNg0AsHDhQjz77LN499130dbWhocfftiJu4Eyz9hHr6REQ0OD3Lx5c4+fnzlz\nRlZVVRXdzfKd73xHjh49WtbV1clLL71U/uAHP5BSSrlu3TrZ0NAg+/XrJ4cPHy4feeSRsvsXQsgF\nCxYU/n9NTY3885//XPLc1q5dK4cNGyb79u0rR4wYIe+99155/Pjxku/9zW9+I4cPHy7b2tqklFIe\nP35cjhkzRr744osl379q1SqZy+WK/lq9enXhHHO5nKypqSn81fVuloceekjOnz+/5H43b94sx48f\nL2tqauTgwYPl/Pnz5X/+8x8ppZTvvfeevPzyy+WAAQPkTTfdJKWUcv/+/fKWW26RQ4cOlfX19fJL\nX/pS4Z+XEEJ+7WtfK7qb5a233ip5XCmlXLRoUY9f0/PPP194/bXXXpPjxo2TNTU18oorrij8c//d\n734nZ86cWbSvH//4xz32tXjx4sLrb731lpw0aZLs06ePnDRpkty5c2fR9mvXrpVDhgyRdXV18vbb\nb5enT58ue95kh5yUfDgFZcsNN9yA9evXY+zYsVqPs3r1arS0tCj7olQ5d911F8aNG1fxTzLkv0+Z\nPgGitDU2NqZynLTGSZdffjlmzZqVyrHIXow5kSZJlkKI4o477tB+DLIfp1mIiDygbWSey72ha9cU\nxbX/o2e/Qs9uAeArV/+fvp3/11I8rXX/s5o3Bb8pjjXBb4nr9ZeC3xPV1FsivPn+8G/dMOH60O/9\nX3wjwkmcs7FpTvCb8kSEHW+t3EUp4/9+1TYyZ8xToCvUAGOtkLawA1bH3dWQl5JW3BnzNOgMpwlC\nz26zFmoVfIh9pHAD1sc7iK64yy2RT6VAX8yn6dgrhSL07Vp3rH0LtSquBh9ApHADdsY7iKq4M+ZZ\nI/TslqNqd1kVe8dH3SpEijtQ+D3NmJcjTJ+AXTiqzjatwQ/J13iHESbwsvKKzxXpi3lT8HtIHYaa\nktIR+yzHO0ipuDPmGaAz1gw1hRUUfMY7vo1Nc7IV8zTmdX3DWJMNGO9gryDiXHsX2r40xOimI0uh\nNj0NQNEw3uni2iwpy1J8ATs+dKtkVvMmBl0Rxtss62KetdjZyPYAq5b/9TLq4THcap3vXvxpFm1z\n5htwg47dUhlZC7AuDHpPDLd65QatsxB/eWbrRuauYDz9xFE6461DGjMOxkbmjCG5wPeo61hRMOs3\nP0QNd1ELJ8TPsb71zJv1L8pPlAZfgq59KdgyfI97onh3x5grpHvRIbJDxMWfALeinlq4Rbf/DcH1\nuEeJd+QZCCdizkiSjTyIeurhVvxe2+OuNd7du/iijTGf5+jI3JA4DwKIvIY0leZQ0ON+OKk93or3\nZTLw2uIdZkDLmIen49FYPsvUBcPCqFs56s7r/gi0qA9wiXBMW9YmUh7vLl5/CZiaIMepxZwRpa6s\nvkgYirpT4Q7D0rjbFO/unIh5d4x79lgd8LyUQq7yXm5rgx4l5iL8W6OEXMX93bqC7k3MbcILy3lO\nBFclB+MdRuqBt2QUrvvLOZxmodDCXFgyF9yoYgQ6iAsBr8SlD0BtincQfgBK2aYhtqq5Hu8wtAU+\nzHu6cCnelSgJu5UxT/KlId6Tbo4DodUhC/EOQ8U3PoP4Eu8gseLuXczpnO4XtYyGVgfGO7ykgc9K\nvCsJHXYnvgFKFIIP3670XaW4R71l0Nd4Bykbd8acVLMtqmlhvPXKarwrsX7VRD6cglzAeOvFeEfD\nh1NQJjHEdmG4zWLMKRCjSaUw3nZhzA1gHMlFjLfdtMWcwSJyF8OdrnwvZyXYB0fmFFsaXzDRzfYH\nI6RF5aPPsnonVBQ6Brva7maZDv4mCcOHIPokC3GPM+pO8gB2xj18vF9B/B5kKuYMJ0XhS9iVPnBY\nEZ8Dn+RpUPLq+MfVFvNck469kvOE6RPoQkR7uwtxT2XUHWbtJAuf2qSLykf5MeauE6ZPgFwNu/ZR\nt8pF7zwJvM7nsDLmOgnTJ0BGiGhvTyPu1oy6u8ivvx97jX0HAp/a4/yQ9ZiLlI5D2SWivV1V2G0c\ndUd5KleswMdcGVRl4NOMd/f/tuSWeLsBbI65UHEWpESch/naTuNjzoDkQU/lQ0sFDyAO4lLQTUY8\nz8+Y6yRMnwBZT0TfRNdUi83TK935NN1iIu6MuU2E6ROgWET0TUx+CGrjFExoFoY7jDTinu05czpH\nmD4Bx4jom9hyB0spNk7LALBiDlwHXXe0MOZEGtgc7yDGpmYcHXUnpSruVsbcxm+A5vGboFSKy/EO\nw4ZvgvoQ7jDiTskw5h7jhUcf3+MdJI24ZyXeQbg2CxGlJunUDMMdXrm4M+ZEpAXXNdeva9itjLlP\nD3TmgzaIzmHc9UryQGfGnDKNF+pkGHe1GHMiRRj35Bj4+BhzIg0YdjUY9/AY8wBpPDmF3BP17gvG\nXR0GvqdZzZuACfFzrC3maM5p2S2RLox7OEHffYhz/34W415ykMmYE6nHuJ+j4otrUQPva9wDZwkY\nc8voXHGO1Im4jkhW4p7Gt46zMnqPPMXLmIfAwFKQDMY9VriFovd048PoPfFqlC+6GnMGlmyVwup/\nJuIeOd5C0YFj7MeV0bvS5YStjPk8y0bmBsV53BbpFfmJOI7GXXu8848UjPoYvjjHgh2jd61rwTPm\n6WOg/WBj1PNSeWyZiHiAsM+DtTTuQLLAa39iE2PuDl4E7JDGg4Z1rCIYNfDa5sSTinEMp5+xCoQL\nu5UxV/kBKOfWyRQLAh5Ee+BFtLer2N6l56sCCuPufczTxotHtjkQ8EqMTs+U+3kFLjwkJLVnrDLm\nHuAFxJwMPLcylemZEFwIdxjaRu823mfedW0Wro1CyiW9+GUg4EHSCLwv8Q6iLO62x9x2vNhQOb4F\nvJKk0zNZCXcYsePOmPuLF5r0ZSngQWz81qqrwgSeS+CSEb5caBjv8Bh3dUrF3cqYm3ygs41rNlC6\ngi40DLg6DLwaS/E0Y55VvGiRjRj3+F5B/LuIGHMqixcLUoFxD48xJ2fxguG2/HRWlGkrxr08K2Oe\na9KxVyqFt4RVxgtGclE/7Gbco9vYNAfy6vjbM+ZUkMWLAkPfk667lMIGPitxL/UlLMacrOLyRSFr\ncY8d7nLfwI3wzdosxj3oW7R2xnyajr1SRcL0Cajn2up5tko02k6ydELG4x5pCQQByC3xj8WY0znC\n9AnopeKi4ErclY+2VcpA3EMHXPT8EWNO5gjTJ5BM3MjbEva0wx3m4SqRHvzhQdyjjr4ryUbMwz6u\nis6L8+iuNAnTJ9CTrXE3MU2i6qlYvsVdZbyLbH0DUsb/Pasv5jnG11m2XwSAVC4EJsNuYqokjUca\nmg47kMLDO0TI95UYoNoZ81Ijc46u7WJ7tIXpEyiWdtxdHo2XYkPIS4kSd91RdyfmPjJ9gbI9yIB1\nUVbJmcAbGrGHDniK8Q5iMu7ZmDMn84TpE3CD74GvFHdbR99JaIm7KP1jO2Oe9EtDQsVZUA/C9Alk\nT5LbIl0JfCiOxDuIzrj7GXOfCEf2Sakx8eGqkcCHDLjN8Q6iMu52fgOUMSeKxIvAezL6TiJs3J1Z\nmyXNJXDjPDWcyAXOzL+H4Gu8g0SJe+Zj7gNekCgsVwKf1XhXEhR2K9czZ8zTwYsAAfYEngGPpnvc\nrYz5BtygY7ex2bYYTxoY+uwycQcNJWflA51ti7nrVF6MGPlssnXdGTqPMc84hp7iYuDtYmXM0ZzT\nsludfJzvY+gpKgbeHMY8I1RebIwuC0rOiRN4xj1Yjw+SJ8TPsb6YzwsR8whfMKDKbA09I+8vBj6a\nULd4OhtzFzl4AWLoKQ2M+3mx7s1fA+BFxjw7FF9MGHrSKSuBjx3v7myM+es5NTGPtKRm1ikMva2R\nBxh6l/kQd2XhLsXnmLvG2otPBkLPyGsgNL33v2yPu9Zwd5FfI35qghwz5g5SfsFg6P0kTJ8AnAt8\n2vHujjHPIKVB1/yhLgOvgDB9AgqIeJulFXfTIQcY80xxKeKV2Bh4Z+IuTJ9ADCL+pmmvM2My6oy5\nB1Kda7f09krbAs+4KyLib5ok5F25EnXGPCRrP5xMi6URL0f18gpJA8+4xyCSba4q5oCBJzLFedye\njXez8D5zSzgW8CA2jd4Zd/3HVRnzPKujzphTD55FvBJVgc9E3IU7x9ER8q6sjDpjTgUZinglKgLP\nuJvdp+6Y51kVdcacGPFgSQPPuKewfRdpxRxIfp+611/nZ8xTwojHxrgHEJrfHyDNmOcZj7qVMU9j\nPfM4nxb7ghFXjnEPIGK+FoOJkHdlLOqZjbmtdF1kGPBUMe4BRLf/Vch0zAFDSwRYuZ55lmNOXmLc\n02NDzPNSjTpjThSg3J+WEvxph3HXw6aQd5VK1G2M+QbcUPj7WPNHRFGpmN5i3I2zNeZ5WqNue8zj\n4AWASkr7Q2/GPXW2xxxQu6Z6Uet8jHkcvAB4xNY7lRh3rVwIeVfKo86Yx8P4G5ZisMs+DCDp4muM\nu1KuxTxP2dQLGmNvm+mYx8ELQEQWBDuKRHFPeOso4+5uzAE1Qbcy5tMR7l+KbQ9r1cH7C4BjwY6C\ncU+PyyHvKtFaLy7HPCrG3xCPgx0F466PLzHPi/VAjCzFPCrf4p966BnxHkzOs3flUtx9C3UUURrE\nmCvkYvxTDXyG425yVB6G6bhTPF2bw5gbZHP8GflkbBmBx8W4u+cVxJ/K0hbzXFP0bbLyRzHTFwBf\nIw8kC73r8Q7CuNvPm5jHkYULQJrx9zX0Wu4ztzzeQRh3+2Q65nH5cBFg5A1wPOCVMO7mMeYpcekC\nkFbovY+8x/EOEjfujHp8jLnlbLoIcDQfQoYDXkmcuDPs4W1smgN5dfztGXNLpX0ByHTkGe9Yosad\nYS+t6/36dsZ8Wsg3Ch1H919asfc28qRclLgz7KW/dOV2zHURho9vSJojei/n5UmJsGHPYtQrfXOW\nMU+LMH0CyXA0T2njaP28MMsfMOYuE6ZPgJGndGQx7JEWJxOA3BL/WIy5i0Q6h2HkqaxSHyxH+CDZ\n92mYqBHPY8zpHJHOYXybl2fgA8S57TOjYY8b8Tw7Y5574/z/ufZ/dByCwhLpHMaXyGc+7qq/nBUy\n7C5Pw4SOuKj8sv0x94GPFySR3qFcnrLxOu5pfqtWw2gdMBf2pKPwUhjzLEnroiLSOYyLkXc27grD\nXWrhskiLljk8DaMj4gCArW9Ayvi/vxlzXzDykXkfeEXxjrOssI6wmx6ta4n41uJOMuZUHiMfiarA\nu/p4Px0P/ggddkunYdKIeB5jTtEx8qFYHXeLA16Ka1FX9aFmkTIRz2PMKTrTH+iKdA6jMvJWht2R\noJueT8+LEnSdc+PlMOYUnumIlyPSOYyKuFsXdcuDrivkgP6VG9MOOmNOldka8EqE/kMkDTujHo5N\nMQfizaGnFXXGnHpyMeCVCH279irqlgVdZ8iBdJ+GlEbQ7Yx52K/zB3wgQBH4FvBKhPpd2hB1n0bp\nukMOmHm0XfbuMze1NksWLw5Zing5Qt2uvIm6Z/eZl5LkIdQ2Bt3Ob4D6tNCWjRcIBjyYSLY5o14s\nbNQjhRwwFnMgxaADof57ZMxdFOcCwYAnI+Jt5kXUUwp6miEHzMY8T+UonTEnikrE2yxJ2JNG3fZR\netohB5LHHDAQdKDsf3+MOVFcIt5mTkddU9BdjTlgT9DtjHlTyDcKHUcnikjE24xRPxd1EyEH7Ip5\nXpKoux3zsITi/RGVI6Jv4mzU01zPPE9RyAF1MQfsCHo2Yh6FMHhs8oeIvgmjHkBhyAG1MQfUL50b\nNery6vjH8jPmYQnTJ0BOENE3MRV164OesZgD0YLOmKdBmD4BMk7E2yxu2L2LuuKQA+pjDpgNupUx\nn47z/wFHnj9ymTB9AlQQ5l7+OPfui+ibAI5F3dBDnaPSEXNA3yPoglpofczDylT0AYZfBVXfzmXU\nS1MVdca8oFLnvIl5WJmLPsDwp7WkgsdRNzb1oinkgL6YA2aCnrmYh+F98IXpE9DElnVw4i6dIKJv\n4kzU4wRdY8gBvTEH9AYd6NkpxjwBb6IvTJ9ARLZEOwij3lPYqGsOOaA/5kC6QWfMNXMu+ML0CZTh\nSsC7S7LAmYi3WZywpxr1oKB7EvJSdMb9FcRvjbaYb8ANJX+u+ypnirXBF6ZPoATXop50tUoRf1Nn\nou5xvIOobJpTMQ/D1+ADhqMvzB26JBeirmrZYZFs8zSnYJQ97SghW+MdJEm/vIt5WL5GP5XgC/2H\nCM3WqKtcP16o2Y0z8+oRuRruMKJ0KrMxD8O34GsJvVC/y1hsirqOB4EItbuzfgqmAp/jHUa5LjHm\nCbkafIZdI11PdRLqd+nCFEzW4x0k3yDGPCU2R9/bsJuIuu7H8wk9u7Up6ox3PLPQGHtbbTFHc67w\nt1n6F2tD8L0Mu83fAI1D6N19mlMwpI71MQ8rK9FPM/jehV1n1NN+YLbQfwgT68BQfN7EPCxGPx6v\nwq466mmHPE+kcxhG3Q2Zi3lYPkbf6KOtggi1uwtNRdg9j3lXnIKxF2OekKvRZ9i7iRt1UyHPE2YO\ny9G6fRjzlNgefVVxdz7sUaJuOuR5wtyhGXU7zGreBEyIn2N9MZ+XS2W9BhvZEH2GHcFRtyXkecL0\nCXAKJk0lb++0NuZhMfpaZT7s5aJuW8wBK4IOmHsgtc9CfeHK+ZiHlcHo2/z0caVxF+p2VVbXqNsY\n8jxh+gTOSxL1rrIY+Fjfls1MzMPyPPqqAp/psNtOmD6BnlSFHfAz7krWr2HME3A8/Ay7p4TpEyhP\nZdTzXIy7lhUlGfMUOBB9lVMyVs6zC3W7coIwfQKV6Yh6no1x174c8BoALzLm9rAk+gy7J4TpEwhH\nZ9gBM3FPJd7d2Rjz13PFMZ96i46jOMZA6Bl1DwjTJxCd63HXGvJKz091IealMPBILfCMukeE6RMI\nz9WpGG0xD3oQtqsxL4WBh9bAe/2BqVCzGycJ0ydQnq6gM+bFrIt5OZmPvMLA2zhKBxh1pYTpEyjm\nUtCNhRzIRsxLyWTgPY86p140EmYP78otjVpiHibkQHZjXkomAu950AGO0lMj0jsUYx4CY16Zt4Fn\n1MMTanbjPaF39y4EXXnMw4YcYMzj8Cbwij8stTHqnHoxTKjdneqgWx3zKCEHGHNVnA48R+nRCHW7\nyiSRbHObg86Yd+NizMtxKvKMenRC7e4yR8TbzNaFu5TFPGrIAcbcBKsDn4GgA5oeUA0w7nGIeJvZ\nuMSukpjHCTnAmNvCusBnIOragp4n9O7eKyLeZjYF3eSo/PWXgKkJcsyYa2Y88Bn4gBRIIep5Ip3D\nOEvE20xF0K2JecxROWPuICOBz8AoHUgx6nki3cM5Q0TfxIagJ455gpADjLk3tEeeo3S9hJnDWktE\n3yRp0F2MeT7kAGPuNS2Bt3SUDngS9Txh9vBWENE3Mfkw6UQxTxhygDHPDOVhtzTqzk+9lCNMn4Ah\nIvompoIeO+YKQg4w5pmjNOqcejFHmD6BFInom8QNeuoxVxRygDHPpKyM0oEMRB3IRthF9E3SDLrp\nUTnAmGcaR+nxWBv1PGH6BDQR0TeJE/TUYq4w5ABjnnlZCTrAqHtBRN8kjaCnEfNKIQeSxbwq9pbk\np7hfQy5D+xPOE9L94GHvbX0j+jZC+VkQGHMvBF3tfaLjYQQMekz5kMcJOinHmFNPlo/OMxV0YfoE\n7GD9dJg1oT7jAAABaElEQVQFGHOi/7I26DbiaNw6jLknlE+1ZHB0DjDoqRGmT0ABxb9HkmLMyVkM\nuiGlRuUcqRvHmHska6NzIpfovlGBMadUcbolBmH6BLrgCNxajDlVZtm8YCmZCDpRAMbcMy7cc+7S\ndAuD3gVH5VZjzClYhkfnAIMeWtTYi2hv573mlTHmHsrq6JxB14ijcusx5hSOhtG5S9MtAIPuGtWL\nstmOMSev6BydAwaDLswcFgBH5Y5gzD2lZarFkdG57qBTBQy/MYw5UUSZmm5hnJ3BmHuMo3N9MhV0\nnYTpE/AHY07eYtAT4qhcmTTuMGPMKTpHRudpSDXoIr1DJcKLgBHangFKRETp4ciciMgDjDkRkQcY\ncyIiDzDmREQeYMyJiDzAmBMReYAxJyLyAGNOROQBxpyIyAOMORGRBxhzIiIPMOZERB5gzImIPMCY\nExF5gDEnIvIAY05E5AHGnIjIA4w5EZEHGHMiIg/8P0ACaoJOhEAtAAAAAElFTkSuQmCC\n", |
|
447 | "png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAGKCAYAAAAomMSSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXvwnkV5//9+UkNOQAgQKAxnQjgIhFA5lNgQUvyGgA0e\nIAK1lFP40VoYEAsjh2GnxVq0RenUEUJQUQtKZ9IhQGxEAgQDgi0QkEkrIVBAwikRwYSEQPb3R/g8\n+Tyf53Tvfe/huvZ+v2Yc5Xn23t1g9vq8Ptde927DWmtBCCGEEEJKMSz1BAghhBBCNEOZIoQQQgip\nAGWKEEIIIaQClClCCCGEkApQpgghhBBCKkCZIoQQQgipAGWKEGW88MIL2HvvvVNPgwhk06ZNqadA\nSC2hTBFSAWMMhg0bhm9+85td28yfPx/Dhg3D2WefHXFmxXj22Wdx8sknY9y4cdhll11w1lln4bXX\nXuvY9oknnsCIESPwq1/9yvs8pk2bhmHDhrX85w/+4A86tn3llVewzTbb4Cc/+Yn3ecRm3rx52G+/\n/TBixAhMnDgRt956a8v3GzduxD/+4z9izz33xMiRIzFp0iTcc889Xfu77rrr8NWvfrXlsx/96EcY\nOXIkFi9e3Nb+nXfewbnnnovx48dj3LhxOOWUU/Dqq6+2tFm1ahU++9nPYty4cRg/fjzOO+88rF27\ntsKfmpD8oEwRUpFRo0bhlltu6fr9vHnzMHr0aDQajYiz6s/bb7+N448/HrvtthtWrFiBJ554Au+/\n/z4+9alPdWx/0UUX4eyzz8bBBx/sfS6NRgPz5s3Dpk2bmv/54IMPOra97LLLMGXKFMycOdP7PGJy\n3XXX4brrrsPNN9+MNWvWYO7cubj22mvxr//6r802F110EebPn4/58+dj9erV+Pu//3ucc845uPvu\nu9v6s9billtuwcknn9z87Otf/zr+5m/+BiNHjuw4h1NPPRW///3v8fTTT2PlypXYddddccIJJzT/\n3b/33nuYMWMGdt99dzz//PN46qmn8Pbbb2P27Nme/20QohxLCCmNMcZ++tOftmPHjrWPPPJI2/cv\nvfSS3WqrreyZZ55pzzrrLC9jPv/883avvfaq3M+9995rp06d2vLZ+vXr7YgRI+yyZctaPr/tttvs\ntttua19//fXK43Zi2rRp9pZbbunbbunSpXb48OH2mWee8T6H+++/306bNs17v51477337NZbb22X\nLFnS8vmDDz5ot9tuO/v+++/b3/zmN3bYsGH2xRdfbGlz66232oMOOqitz5/+9Kd2ypQpzX/+/ve/\nb3fZZRf71FNP2b322sved999Le0feughu/POO9v169e3fH7wwQfb22+/3Vpr7Q9+8AN72GGHtXy/\nbt06O378+I5/3wmpK8xMEVKRMWPG4IwzzsC8efPavvvOd76D448/HnvssUeCmfXm+OOPx4MPPtjy\n2YgRIzBq1KiW2pu1a9fisssuwxVXXIHx48cHm4/tc7PVpk2bcNFFF+Hcc8/FQQcdFGweMXjjjTew\ndu1aTJ48ueXzww8/HL/73e/w6quv4oUXXsB2222H3Xffva3N//7v/7b1OXfuXJx//vnNf549ezYe\nfvhhHHLIIR3nsGjRIhx//PEYMWJEy+czZ85sbqEuWrQIJ510Usv3o0aNwrRp07LYZiXEF5QpQjww\nZ84c3HHHHS21JNZafO9732v5ATeYX/7yl5gyZQpGjRqF3XbbDddee23L1tY999yDQw89FKNHj8ah\nhx6K++67r+X5JUuW4GMf+xi23nprfOxjH8PDDz/c8v2RRx6JL37xi05/joHtowMPPLD52Ve/+lV8\n5CMfwcUXX1yoj9NPPx3Tpk1rytH69etxwAEH4Oabb+75nDEGo0ePxvjx43H55Zfj/fffb/n+O9/5\nDp599ln83d/9ncsfqYVHH30Uf/zHf4wxY8Zg4sSJ+NGPfgQA2GuvvTB9+nQ8+OCDGDZsGPbZZ5/m\nM88++yxmzpyJMWPGYKeddsIll1yCdevWNb+fNm0a7r77blx++eXYbbfdMHr0aEydOhWPPvpo13ns\nuOOOGD16NJ588smWz5944gkAwLbbbos99tgDb731Fl5++eW2NmPHjm357PXXX8eSJUvwuc99rvnZ\niBEjsNdee3Wdw8qVKzFp0qS2zydNmoTnnnuuZ5vDDjus2YYQQpkipBLWWjQaDUyePBkTJ07E7bff\n3vzu3nvvxYYNG/DJT36yLevyi1/8AqeddhquvPJKrF69GkuXLsXy5cvxhS98AQCwZs0anHrqqfin\nf/onvPXWWzj33HNbZOTNN9/EVVddhVtuuQWrVq3CKaecgtmzZ+O9995rttl///2dMmIvvfQS5syZ\ngy9/+cvNbMVrr72Gf/7nf8aIESMwYcIE7L777vjSl76Ed999t2s/c+fOxUsvvYTrr78eAHDNNddg\nv/32w5w5c7o+c/rpp+Oee+7Bm2++ifnz5+POO+/EBRdc0Px+w4YNuPrqq7H99tvj6KOPxi677IJz\nzz0Xa9asKfzns9Zi1qxZOP/887FmzRp85StfwY033ohNmzbhhRdewP33349jjz0WmzZtwsqVKwFs\nfnPy+OOPx5lnnolXX30VTz/9NBqNBj7zmc80+200GrjwwguxYcMGPPTQQ3jllVdw3nnnYebMmbjz\nzjs7zmWrrbbCZZddhjlz5uDhhx/GunXr8Mgjj2DOnDk4+uijsc0222C33XbDX/7lX2L27Nl4+umn\nsXbtWixatAiXXXYZZsyY0dLfd7/7XXzuc59ryzL14re//S223Xbbts+322675r/Xbm3Gjh3r9O+e\nkOxJucdIiHauueYa+/nPf95aa+2NN95ojzrqqOZ3p556qr3iiiustdZeeeWVLTVTRx99tL3//vtb\n+tqwYYPdeuut7erVq+2yZcvsmDFj7FtvvdU25vPPP28bjYZdvnx5y+e77rpr6VqiN9980x544IH2\nz/7sz1o+v/LKK+3w4cOtMcY+/vjjduHChfbwww+3J510Us/+Hn30UbvNNtvYW265xf7hH/6hfe21\n15zm86tf/coOHz7cPvfcc9Zaa2+++WbbaDTsRRddZB977DG7ePFi+6d/+qf2sMMOsxs3bizU51tv\nvWWHDRtmn3322Y7fd6qZOu200+x3v/vdtrb77bef/e///m9rrbXHHnusPf3009va3HTTTXbixIld\n57Np0yZ7/fXX2913392OGDHC7r///rbRaNj58+c322zYsMFeccUVdqeddrKjRo2yEyZMsMOGDbOP\nP/54Sz/77befffrpp7uO1almaubMmfamm25qa3vPPffYAw880Fpr7YEHHmgXLVrU1uZb3/qWnTlz\nZtfxCKkbzEwR4onTTz8dzzzzDJ555hm8+eabuOuuu3Deeee1tdu4cSMeffRRTJ8+veUogJEjR2Ld\nunVYvnw5DjnkEEyfPh0TJkzA2WefjR/+8IfYsGFDs48dd9wRBxxwQEu/e++9N1avXu0877Vr1+Kk\nk07CjjvuiDvuuKPlu0WLFuGSSy7BNddcg8mTJ2PmzJn4z//8Tzz44IN45JFHuvZ55JFH4gtf+ALO\nO+88XHfdddhpp52c5vTRj34U++yzDx577LHmPE499VTccMMNOOKII3Dcccfh7rvvxm9/+1v8+7//\ne6E+x44diwsuuACHH344TjvtNMydOxdvv/12z2ceeughnHPOOW3HNjz33HNYvnw5gM2ZqdNPP73t\n2U996lN49tln8cYbb3Tsu9Fo4JJLLsGLL76I9evXY+rUqTjmmGPw6U9/utlmq622wle+8hW89tpr\nWLduHfbZZx+cdtppLbVWixcvxo477uj8luW4cePwu9/9ru3zt956CzvssEPfNttvv73TeITkDGWK\nEE9su+22mD17Nm6++WZ8//vfx8c//vHm4ZpDj0VoNBp4+umnW44CGDgOYMqUKWg0GliwYAHuuusu\n7LvvvviHf/gHTJ06tVlHNGbMmLbxhw8f3reIeygbN27EKaecgk2bNmHhwoVtr9C//fbb+PjHP97y\n2fjx43HAAQf0rJl59913sWDBAhxyyCH4t3/7N6c5DbDVVls1z5rqNI+RI0fiiCOOwIoVKwr3+a1v\nfQs///nPccQRR2DevHmYPHlyR1kYYNiwYbjrrrs6/v/053/+5812rv/eh/LUU0/he9/7Hv7lX/6l\na5u7774bS5cuxde//vWWz+fOndtzC7Ub++67L5YtW9b2+ZNPPol99923b5sJEyY4j0lIrlCmCKnA\nUEmaM2cOfvCDH2DevHldf8ANHz4cxxxzDH74wx+2fP7BBx/gmWeeaf7z+++/j6OPPhpXXXUVli1b\nhuXLl+Opp57yNndrLc466yz85je/waJFi7D11lu3tdl///1b5gQA69atw8qVK7Hnnnt27fvSSy/F\nRz/6UTz00EP49a9/ja997Wtd2z733HP49re/3fLZypUrsWLFChx11FFd57Fp0yY888wzPYush/L+\n++/j0EMPxaWXXorHHnsMw4cPbxb2NxqNthPEjz322Lb/nwC0CIa1Fj/+8Y/b2tx5552YOHFioTcg\nL774Ypx11lk4/PDDO36/ceNGfOlLX8IVV1yBXXfdtfn5G2+8gfvvvx+nnXZa3zGGcsIJJ+BnP/sZ\n1q9f3/JnWbhwYfMMrxNOOKHtTKt169bhgQceUH/OFyFeSbrJSIhyBtdMDXDwwQfb8ePH2/fee6/5\n2dCaqV/+8pd2zJgx9pvf/KZdvXq1ff755+3s2bPtjBkzrLXWPvDAA3a//fazTz75pH333XftHXfc\nYUePHm1fe+21rudMTZs2zT7wwAPNf/785z9vv/GNb3Sd+5e//GU7YcIEu2rVqq5tHn/8cbv99tvb\nH//4x/btt9+2K1assCeffLL9xCc+0fWZBQsW2F122cWuXr3aWmvtz3/+cztq1Cj72GOPdWz/i1/8\nwm611Vb2G9/4hn3nnXfs448/bidPnmwvv/zyZpuXX37Z7rDDDvbb3/62XbNmjX355Zft+eefbw8+\n+GC7YcOGZrtTTz3V/tVf/VXHcX7961/b3XbbzT7wwAN2/fr19r777rPbbLONffLJJ6211v7P//yP\n3Xnnne3rr79u/+///s9aa+2LL75ox44da6+44gr76quv2lWrVtkLL7zQHnTQQfaDDz6w1m6umdpz\nzz3txRdfbFeuXGnXrFljb731Vrv99tvbO++8s+u/pwHmz59vt9tuO/vGG290bXP99dfbffbZp+XP\naq21X/va1+xf//Vf9x2jU82UtZvrpmbPnm1XrVplV69ebS+88EI7efLk5p9t48aN9tBDD7UXXXSR\nXbNmjX3llVfsKaecYj/5yU/2HZOQOkGZIqQCxhj7F3/xFy2f3XDDDfbSSy9t+eyqq66yZ599dstn\n//Vf/2X/5E/+xI4cOdLuvPPO9sILL7TvvPNO8/trr73W7rHHHnbkyJH2j/7oj+y9995rrd1cgL73\n3nu3zWXatGn2wQcfbP7zEUccYS+55JKuc582bZodNmyYbTQabf+59dZbm+0efvhhe8wxx9iRI0fa\nnXbayV5yySUt8xzMK6+8YnfaaSd7zz33tHx+9dVX2wkTJtjf//73HZ+799577ZFHHmlHjRpl99xz\nT3vDDTe0tVm+fLmdMWOGHT16tB03bpw9++yzWwrbN23aZHfccUf7s5/9rOufee7cuXbixIl25MiR\n9qCDDmoeTjnAOeecY0eMGGEPP/zw5mcrVqywJ554oh0zZozdfvvt7ZlnnmlfffXVln+Pd911l/3i\nF79od955Zzty5Eg7ZcqUQodabtiwwU6YMKGn9L755pt23Lhx9j/+4z/avtt///2bMtiLbjL1zjvv\n2HPPPdfusMMOduzYsfaUU05pe1lg1apV9rOf/awdO3as3WGHHex5551n165d23dMQupEw9qKm/2E\nECKAxx9/HJ/4xCfwxhtvYNiweBUMxx13HK6++mpMnz492pgDrFixgrVLhAiANVOEkCy47777MGvW\nrKgilRqKFCEy+EjqCRBCiA/+9m//NvUUCCE1pT6/whFCCCGEBIA1U4QQQgghFYiyzbd0yFk8pH5M\naT8gWi6XxxtqwaT/573PG/H/ee3vJ0s+07+RC8Zvd23c3/2CYbUcd1S1541b85lT5zu1vwA3FW47\na9lPizW8zmkKLSy9vX8byXiLlwVimUsM6hdbCsUKU3i4ViKva2vd1lyUzBRligxFlVwVJaKEAWFE\nDFAgY0B4IRtKSkGrKlL9MO6PiJCtwSgVr2RxsGCsii5aA5jiTZt4XqOUKVIrspMy5VkxwK+MqRYx\nX8E9tEz1w7g/4ipbgJtwAfGlqxNFRcxnnBo8ptf4VyL2FIkhReKB8zo3Dm1LrkORMoUzKFP90J6W\nrhuqJC6woPmWMh8y5k3CjJ9uOlIkyKcWqSKY8o+GzHAN4CxdnoXLFz5+RlSOWw6xxJdoAQ7r2RRr\nVmTtUaZIVyhs+SB9e6AoVUVMjHiZ6l0EJ7W8mfKPukhXcOGKLFup4nbpGOOpTsubaJlC3Wxm0Bqh\nTBGvUMDqSTBZ8yBjVQSsjHxVki1T/lFnpBTe+xIy49Y8hHClzGppiL2l4kSfGNBvfXvZNjR9u4Bd\n3L/NYOLI1DLFMiU05ZsCDYubhCd4ViyxcAHlM14ixEuKVBUh4luKvmUr5FuJ2mJtjO3D2JJFmSJb\nyEgEtQWXOqF5yzHlNmPl7UVT7fGuhJCxFLVfpnjTZKIFqJStaGu+YhZrgDJvGtqphbpuEkWmFmBG\n6CFqQam3V6SiXPRSBzOtJBEvj3VequUL0FHbFRJT7rGisiV1+7BsvBL5oo3HYx16rceFcFtvUWTq\nRLi/Jps7ZYokpSNe9ihwqkgayD0JmLrtRlPuseB0y5b5zHiZco+FKo6XXBRfFNeYVWnNe37TcBYW\nOQ0fRaYaS0KPEIcyZ6fkgkT5EyNvQgPZAHWTsH4ElbQEW49Rs12m9FDlkHhWl3Frnly2EsSn0DEn\nROH7AAPrT6ZMTXdobELNggxFshymkrfogpZIxChYfvAiZiUFLLR0JRct7afOm2LNtNVr9UJSXHFa\nm53W4CQ3NZInU6Q6JvUE+hNb5ELLWVAJiyRckgJhTsS8Z20wZbYYXYQrmmxpeTvRVcBMsWa+6rVy\nL4rvRak1eJtEmWooWQy90HAScWxM6gnEk7KQMhZMxAJLmOTgKR3vW40RRAuIkN0C8j0ioujPEOPW\nbb8YmEqypMSH0muNMiUEyldvTOoJbIFC1oOanPYsAYkHpYbObg2QVLqAdOIVSLCA6pI1gLaMlrd1\nRJnKFMpZb0zqCcSRMgqZO9oFLcpbjRUL52MVzUet45IuWAMYt+ZF4pQU0RpMr3Xse40svR2Y4qhG\nlCniTt3EzqQZNqSc+ZYyrSKmXbSKknpbERBYwzWAcWirRbAGY4o39SlaQIG4IORN6E5xgDJFCKBH\n+Ez4IUJImS8Z8yZhGb+VlJIUbyu6SJe3y3CHYhzapq7NinQlj8+DS1NLVpH1LVOm+r3Nl/ovIyG+\nSSVzxm93PkTMh3h5kS4PAZqS1Z3S4hVItoKIlineVOzPtQDbiD5EK7RgOR8gqlKmSHykLnTSmdBy\nZvx1VUXAqohXZeGibHklxuW3Q/EtWkBA2RqKpJhcJN6YYl0Ff9vQcd0WXaMyZSqTE9CDY1JPQDiS\ngo0EYma/jP8uU2e9pGS7BlMXGYt1bchgQmwfAokON00RCz0KFhDpSIcKbxeKlCntd/N5uWA0J0zq\nCUREo8Clrhcz/rtMLV6ATPkaSg4ylupUefWyFTtW5X5ulsSjEbTLlHZUyqBJPQEHNArXYFLLFyBS\nwHKXL43i5fWtxMAHnRYRruDna0kVrAFM8aY+zs1yWpMSr5NZgBmhh8iSKheYpkCctJnE42uXrDKk\nEDPjp5uU8lVavLjN2JeYW4pFhCuIZJmC7aRuD3bD9G8S7HBSiTKFZY3gQ0ii7FUNUkgtcdGlzMQd\nDkA9RassoQTNVO/CVcCiCpcn0cpRsHpR+YLcLkQXLVOsmYhYVGaNm95fV94uxCKn6VCmMkO6yKUS\ntVoIGiAjMEol0nk8QymT8XKVrpiiVTe5AsIJFuBPsoAAojVArLji4xcn0/vropIlU6bOyFymKl7F\noBVJ4pZC0qIKmok3VFdyFbUIAbwXZbcXgwvXAJHP99GApDO1kovWUPrFCYGlAJ3W4EK4xXfKVJ1Q\nKn0ppS2mpEWRMxN+iL5okTLfQd+UfzSWcAEy6rc0CljMc7WSnadlCncnH9P7azvVrbsoMrW0IVum\nolwkSrYgTOpiylpIOQsuYyZs9x2RKF4hf7M21R6PsaU4QCnpqmEdl7efLwXjpu8jHqJltFwJkQEz\nW/4nZYp4JQvRjCxvIeXMt4wFETDjv8smEuWqGzWXrtgZLk2C1Y0Y24c+tg6THFQ6GB9xoM/6tIvd\nuqNMEZWIkLyAkuZbyHxImDfxMn66aaJJsFzwKWPG/ZHQwhUjs5WDYHUjRFF8v7jjTbJMsWZtRCyE\np0wR0oOkEqZEvnxlv7zIl6neRRu5yhcQ/Y1FF+EKKloOkpWzYAEOMc5jNiuJZAVex9a6rSXKFCGD\nEJHxAoJvTUqUL0Bw9mso2oQs0RuLIWQr1jEQuUhXymMdktZkVVyjlClCAiFGtHqhJPsFCMuAAXEK\naCVImMK3FCWfuwXoE69SsSxiJmuAoNuGfdaiSJni0QhuaFuYpBzi5CyQiEnLglG+CpC4XgsIt4UI\nULY6EePanaiSZQp11RWRNVOUKd1oCASknSSy5lHIfEhYWflivVcBlBXIB9tGBErJlra4GvJNw2hX\n7Zj+cxlApkzlcp1MwBvcc0FbgCBuBBW0iiJWRb6iS5cp91gbkuSqFwlqtkLIVmjRyiF++iyAj3KM\ng+n8MWUqRzKVuBwCB+lNEPlKJF1RhcuUGqoVLaLVjQCX3w6liHAFyWjVTLAGKBQPPEiWD8ESKVML\nMCP0EEEpfficNpRJW05Bpk4E3370sNWoQrgGMOUfbUGbfLnKlnFr7ku06ihZA2u8yBxjCRbgJlki\nT0DXLlMaUSeASkROcgDTTrQaL091Xaq2FQcw1R5vQ5qABRYswG82C3CI1UKOeCi6TquM60uwgPKS\nJfKi4xNR7pLOulP2ziwJiJQ5Cls2RC2uT5jpAsqJV/JargEkyFbZei3j1jzpmVrCYluIGOb7MNJ+\na3IWFhUccDNRZKqxJPQIMih7s7sWJMpdcmkTFsQGQynrjOQieqCceEXLdJlSw7SiWbAGY4o3rZto\nxYg9zuvYUbJkytR0h8Ym1CzIUKTKXyppSyJmmQa63PEmZCXlK4ZwRS2clyBYQ4l4NY/Pw0tD1WgV\nRUJ88SJak9zUSJ5MkXKY1BMoRgqBiyFnwUUsgnRJCII54kW8SkiXq3C5yFaUjJZEwepGwFot6YXw\ng5EeQ5zW4m0SZaqhaFFUxfdVDdIxaYePIWehZCyIgAWULumBUhNetxo936fWCdFZLUC+eLn8XDDF\nm/aLf94kK5O3DIfScx1SppRCCYsORWwIkbYcNQXbmEg6kytkVgtIePYWIEe8AgkWEFGygKxEq2UN\nUqZqDIUsKqFlTJWIAVHrv6QHZZ8EK5ivUCwfWraAmhbHJz47S0Lxu5S1PcVRjShTxJ1cpc3EHzKk\nkIWQMWbEdJByG3EA9TVbA2gTrAFMsWZJToGvsOZjrWPKFMkbTSJnwg8RQsZ8Spg3+WItWFBSFMmH\nkq0oW4haBWsAU6xZVNESJliUKUJCkFLiTJhufYqYDwGrLF6ehYuS1ZlK4uUgXC6yVUS0nCTLFG8K\nIL1cdSPQ/YbR3jBMuE0oU6ZyPhpB6iIieoghasZPN1UFrIp0SZAtClZnKme2AmW1gmWzjFtz0T8n\nisYf07+JD8nyLVhl1yxlivhFchCoC7GyYsZfVymlC5AhXgPUUcBSHmrqW7SAiDVaEuKt57cMowgW\n4F2yZMpUTa6T8YJJPQFBSAgs0om9/Wj8dudjqzEn8RpMzhIWO5M1QHLRMsWb9iR2bAxwjINUyQI2\nrz2RMiX1ouPKN7DnjEk9AY/UVcpSF+sbv91RvDqTo3RJLogPcqaWceqynVQxzuMW4QBVJcvbG4US\nz5mSKlNaUSuBJvUEelBX4eqH4sxXqq1GL28wspi+LzGzW8mK4U3hYVtJGc8CnZVV9Yws5+t0JMrU\nAswIPYQYyt7eLg1RwmZST+BDKFzlCC1kpnoXVcSrjHRVEi7WczlRWroKypbPjFYwyZIQuxJIViXB\nknjRMZY1mv+zzL1QxA2pQpdc0Eza4UUENI34ljFT/tEy0hVNtvi2ohOULMiJSZ5Fy4tgSZcpsgXt\nYilF2pJJmkkzbAtSgmFqfAqXqfa4q3BRtmQg7fys2p+dlViwZmGR0/BxZOoMB5mqcF8UcUey0KWS\ntSRyZuIP2ULqwBmCENuLpnoXuWe3gPykq5RoBTrWIcjZWaZ4UwCy3yYcjOn9da+1uBBuPwfkyRTp\nTCaSmVreYglaNCEzcYbpikYJE17DVbZ+K2rtFrNcTUJvFwKKJAuIExOqrGHT++uB9SdSppY2wspU\nsFvVSXcEyl1MUQspZUFFzITruolGwepFKPky5R+NJVwpZWsAzdIlQbS8n5llCnfXimTJMu0f2alu\nXWQhU6Q3qmUzkbSFEjPfEhZEvIz/LgHkJ1ndEFIwH2M70Vm2uI3YQkjZ8pXNCiJY0s/FAmAXu3VN\nmSJeES1uEcQshIT5FDCv8mX8ddWkLsI1lKoCZso95iJcQUWrgmTlIlaDCSVZFKweDFmDlCkiHtHC\nNUCkjJh0+QIUCNgAqYNxDAIV4nZCu2jlJFmh3zQULVlAkrVtrdtao0wRNVDCNiNdwLxvPRq/3bWQ\ng4AlyGqFPP4h5tahVuGKcfp79CMcTKHh2gm0hilThPRAtJAFFjHfEiZSwIyfbrqiSb581G4Z90dE\niRZQu8yWlsNIpWexKFOEREaMoAWSMV8SVlW+VGw3SpctAcXxoWQr9puHtZEtj5LlRbAAt793Jdek\nSJkaes7+J9WjAAAgAElEQVSU1r+EhMQkqqR5FDEf8lVFvCpLl6n2eAvS5aobvqTLuD8SqlYrVkE8\noPdnnFPM8XR8Q3TBKrgmVciUVrQuEFJvgkmZBwGrIl5lhauSbJnyjzbRKljdCHiA4lCKilYQyaph\nbdZgfItWlfOxvApWl/VImVJEDguM6CZ49kupcAECpAvIR7wivIXoW7RCSlYOsT9EFqvqAaQ+67BE\nHo2Q7KJjj6fwkjwCAClOlG1GT9uLqYQLECJdgD7xipTRSiZZQK3qsVLVYoXaJqRM1ZEaSKPG4JIz\ndaznyqaOC5ArXhGPeQhRm8Utwy2kPN3dh2CJvE5mAWaEHkIcpd8s0YRyidMSlHJCS7ZLTS2XKTVU\nZ3IVLECPZAHZbxumOt3d9TwskTJ1IspdylmEMjel1xU1gqdA0jQFr1wIImIVxauMdEWTLVNqmFak\nCtZgFGezQh5Qqi1GlVrfAQVrIdzWm3qZyhVtkihK1BLLmLYgljteJKyCdLkKVxnZiipaGgSrE2Wk\nyxRv6rM2K0QmS3Nc8lnsXlSwRMpUY0noEdJQ5lZ2qUiQtyRCFlm8NAe0XIlxNUc3YmS2om8f1kW2\nTPGmRX5W9IvBFKwt+C5277QOZ2GR0xCUKaVoELlUghZVyhJkwbQGQG1421YsKVtl67aiyBZQfRtR\ng3QJFyyAkgWEkSuZMjU99AgBMaknkA5JwhZbzChkpBvea7dylC3j/khHJAqXgO3CVJIF6IodlbYH\nJ7mpEWVKMyb1BMqTUtRiiVkUIUtUH6YpoMZEWpF8dvVaA0iTrMCHkiapx8r4jKxC6/Q2yhQJjUk9\ngXZiy1lIIQsqYZHkS0NAlYC2rcSgWS3j1HU7uQgW4FWyvB7fkPH5WG1rUaRMNYT9Jc8J37fAS8Gk\nGzqkmIWSMO8CFlC6pAdVqaR4K9FFtlxEK4pkSZOrwQjIZHnLYmWawZriqEaUKeIXyXJnwg8RQsR8\nCphX6QogXNIDrFRii1aojFbtJWuAQIXv0d4qdIwNEtc9ZYrkgRQpM2G79y1fvsSL0qWfFFuIIbcN\no9VmSZatAJJFweoMZYrUBynCNRgTtnvKV3lSB2cJeC2QL1GnJWLbEMhHtARnsIACcUHw1TmUKUK6\nUTP5yl68WNflnZSnxYsQLVO8aUekyJZLrDPFm9YpiyVTprS+zSdlYRAZSJExE65rXwJG8cqXFCfG\nFxUtkZIl6edIAMmKerp7xENHKVNakLTASHxSiJnx36UP+aoqXpWFizVd3qkkXAFqtIJIlincZSvS\nYn+iLFavde/7wNEy65EyVVekLVAShxhSZqp3kVq6SguXR9Gqu2ANJoZs+RatQpJlCnXVjsT4nSCL\n5UWwPGWvZMpUHe7mM6knIASJQYG0EkrATPUuqkiXVtmiZMXbOgxRl1WrTFbktwljbg8OXYeUKdIZ\nk3oCAZAUZHIhZKbL+OkmhXBV2kr0lN2qm3TFLIanZJUkwVEN0QRL4gnoJ0LOhbkSKX1ru0RM6gmU\nQEJQ0kDoLUXjp5uqW4qahQvIW7okH05aRLKCFr1LiGOBLoFOIlgSZWoBZoQeojRlLvbMBfESZ1JP\noAcSApdEalLDVUa4pMgWQOHqSKCrdpJKloQ4pVWwJlGmskSL9IkRNJNwbAkBTAvCtxXLSlfU7Ba3\nEZ0oJVues1nJBEtKbEogWM6HjEqUKSxrBB8iNa7XKEhEgrBFlzETdzgAcgKaVnwLmKn2eBnhipLZ\nYnG8M86iFVmygtRhSYpHnmuwKr09iEVOU6FMKUa6wKWSs6hCZuIN1YKkAKgBHwJmyj3mKluuohVb\nsihYfZCcxTLFmgGQFWM8HtNQVLBkytQZimWq5NUI2pEkaimkLJqQmTjDtCApSKYmoWQBcbJalC3/\nZCVYgD7JiiBXC+H2M4AypRHFgpdS0mJJWXARM2G774iEABoTX1uJptxjsWq1UtRo5SpbIWuxfAkW\nEPDIhpQxIsD2oEiZWtrYLFNebywncREocLHFLLSMBZUwE67rJnURLp81W6bcYyIzWgNQtgDIOeXd\nm2SZQt20kyouVMxe2aluw0WVKVKdbIU0kayFFrIQAhZEuoz/LpvURbIAMcXxudVpDVB70SoQJ6Nu\nE5r+TdpIHQ8KrlG72K1byhQpjWixiyBnoUTMp4B5Ey/jp5s2UgfWlCgpig8qWsxitRGiHku0YEmI\nAR3WImWKiEekhCmUL5HSBYQRLwkBNxVVpMu4PxJKtGJIFuXqQyQJluk/lzYErHdr3dYdZYqIhuLl\nh1qJFyAiGAeHkuVELqKVxRah6T+XNiKvacoUqTUi5QsILmA+5cuXeFG6EpBg61CEZAG1z2bVMoMF\nBFvDlClCKiJGyAIJWLbiZap30UJOoiVcsoDiohVDsnIRLMAxnkV8i1B6/RVlihABJBOyAALmQ76q\nSpfIQvocZCtREXyIbFboM7NyEizAIUZJEixTbC5NKqxRyhQhmRBFyDzKV1XpqiJclWXLVHu8SQ6C\nNRShtVkSMlm5CRbgV7L6xYTo2SuH9UmZIqSGBBcvT9KVSrgqyZYp/2gLOYrWAGWEy7g1TypZNRas\n2BksKdkrkTJVt+tkcltMRC/RthvrLFsAhasbQiQrtWABef1ciClYqbJXlClSiJwWNqmOpi3FKsKV\nbCvRlH+0hRxkS4hgAZQsX0jKXvm6e1DkoZ1YVmOZ8nSNgmZyCBakHsKlWrY0i1bZuizj1jyZZNXs\n2IbYbxCGyF5Rpkgrmcmc1uBSR4LJlwfhip3domiVIFLhu2/BAgpKVo0OIE1xRU7V7JXIi44XYEbo\nIcRT+gZ2iSgSNG1Bp854l68K0hUzs1VatEy5x5poFCxArWSFFCyNcc63YPmWK5EydSL8FQiS/ogX\nN2EypjEQ1Rmv0lVSuMrIVjTRMu6PNNEqWAME3i70fT5WKMHSGtNiCla/9bgQbmtPjEzVAY3CKEbM\nBAiY1gBVFyRIFpCxaAG6ZStg4bvPLBYFawsp5UqkTDWWFGvnev0A6Y5UcUsqZ4mFTGMw006Qui2K\nVne0yFaErUIKln9iytUsLHIaSpRM1QXN0ihF0pJIWUIZ0xb0tKC9TiuKaBnnIVrRIlhA8GMbKFh+\nCSlXlCnShmR5SyFnUUWM2TD1SNg+jCFaUbNZmgQLcJcsU7ypL8Hiie4l12q3NTnJTY3iyNT00CMo\nxKSegD9Sy1pMIQsuYpHkS1OA1IA34SohW6FFK5pkaRMsILlkpRAsbbGjdPaKMkUKYVJPoDMxxSy0\nhAUTr8DCpS1YasGLcDnKlqtoBZUs49YcgE7BAtwkyxRv2i8+etseBChXt0mUqYbSBRGLKsWQEjHp\nhg4tYyEELIh0BRIubYFTOqkyWpSsBATKYkUTrLptDVKmakYuImbSDBtSviheYfrNHU1bhuIkC9Aj\nWonkCvC4PZhh9qq5/ihTxAnNMmbiD6lJvjSJF6Ar4KYgpWQBbqIlUrIA+aKlPXsFFIoRGtb6FEc1\nokwRP2iSMhNvqFDyJVq8KFxJSFGTBQiRLFO8aUekSlagoxqkZa8krmvKFNGPVDEz4YcIIV8+xcub\ndHFrMTqVZStQXVawIxyMU7et5CRXgBfBipm9krCOKVOEDCW1nJlwXfuSL1/CJVm2JARoqcQUrRCS\nFVywpMoVEEywfGSvAD/F7SnWLmWKkFDElDLjv0sf4lVVurzIlkfRomD1ppJkBRAsoLhk1VqwgCBb\nhFLeHIyxbilThKQmlnQZv91RttqhbLUTK4uVVLCA/CQrgVwBnmqvEtRdyZSpOhzaKXUBEVkwu5Ve\nuDxvIdZduGIXvjOL5QnKVU8oU3VG4oIl7sSu8TL+uqJsbYGSVbEDLYIFuK8hibE60ZuDXrYGA5x3\nRZki1ZC4yEl3FGa6qgpXDrJF0Sr5YOI3CoMJltS4q7XuyoNcyZSpJaFHEIBJPYFESA0CpDOh5cv4\n6SaVcFUSLWa0vFBKtBK9TVi77BXg/WBRSXIFbFl/lKk6YFJPwANSAwVpJ4SAmWqPV5GtMqKVWrLq\nLlhACckKkMVKKliSY6bHi52j1F0VWZMSr5M5EWEvn42N8/UHGjGpJ+CI5EBTB4QJV1nZiipalKzK\nULCExr0c5IoyVQ/UCZ1JPYE+SA1K2hEmWQBFK3dCCpb4LUKpcUyjXEmUqQWYEXqIZLhehaAFkbJm\nUk9gCFIDlxYoWqXGomi5k1qwkh3RIDVGaZCrSZSpWiFd5pJLmUk7vNhgJplQRfKm2uNlRCtqIXxF\nyaqTYEkock+SvZIcj4que9P7a29yJVGmsKwRfAgJuJx1IhkJghZdwkzc4VqQHOAk41u6TPlHY4lW\nbMmiYPVBsmCZAm0kx55IctVtHc7ComLjfwhlSjlSBS6FkEUTMBNnGACyg50GfAqXKfdYDNGKKVl1\nEiwgnGSJlCtAdswpsp5N76+LypVMmTpDqUw5vvmhHSliFlPEogiYCT9EC5KDoTR8yZZxf0SkZFGw\n+hIygxVVsEyBCQGy40lAuVoIt58NlClpKBe4lEIWS8KCC5gJ230LkgNlSjKWLGax/BLyNHdmrxzp\nt25N/y4G1h9livRGuKzFlrHQAhZUvEy4rtuQGjxjknjLkJKlAw1yBXjOXgEyY0QFubJT3YaKIlNL\nG3nIlJfb0XNDkJzFErFQAhZMvEyYbluQGEhjIKAIPifJAvIULQ2CRblCy5+PMlVDspG8BGIWWsB8\ni1cQ4TL+u2wiMaDGJOF2IeAmWlLrsQbITbKyKGw3/Zs0kRYL+qxNu9itO8oUcUK0uEWSsRAC5lO6\nvAqX8ddVE2lBNSVVZcuUe0yMZDGD1UIIwaJcFWTIWqRMEVGIla8I4uVbuihcNaSKbBm35qEEi3JV\nnlTZK8oVYK3b2qNMETGIFK/A0iU5y0XhEkpEwQJ0S1ZugkW5igdlitQGUfKlTLrECZfx000LdZIt\nClZhchIs1XJl+s+jhcjrmTJFSB+SS1hA8fIpXT6Ey4tsmepdtFEH0Ypcj0XBSg/lyh+UKUICkUTC\nAoiXL+GqKlviRIuCVQxTvGlywaq5XAEl4hblCgBlihBxRJMwj+LlQ7iSypapNHQrlKz+mOJNXc/F\nKipZFKziOMUkjXLlYc1SpghRiDbhqipbVUSrckbLVHu8CSWrN8ateVHJ8i5XQCnBolx1p6pcScha\nUaYIyZAospWBaAFCMlo5ixYFqyO5yJXvbUEf51ylyFqJlCmJd/Pl8hefEE2iBVSTLYqWUCIJVoga\nrJDbgzn8nImdtQJkyBVlKhNyWIREBppkK1VWS8TWYW6SJUywmL3yR+GYom1LcNAapEyRvuSyoIlf\ngkqXB9lKIVrMZAWgjGQZt+Y+BSvkHYS5xGJfciUpayXyOhksUypTFS/mzJFcFj+pRhDxqihcZWVL\npWRRsIIIVursVS7xVYpcVRErypRWMhO3XIICKYd32aogWioky5R7rIXcBAtwlyzj1tyXYFGuelMo\nHgjbEhQpUwswwz1VSqqhUM5yCRykM7lks6LWZZlSQ7WSm2QFFCzKVXi0ZK3s1L7dtxBNpupIVgKp\nRM5yCDZ1g5JFyaqEArkCwrw1mEO8k5q1okzVEDXSJlTIcghIuSJpuxAQLlmm1DBboFz1JUlhe43k\nKlbWqohYiZSpE+F2fYA2XO6U0oA4ORMmYdoDVk54la3IdVnRarKM+yNNKFh9kbo1mEOcSpm1Wgi3\ntUaZUoYGcRMhYwkFLIcglgveZKukaMWQrKiCRbnqS3S5KhjrtMel2FkrkTLVWBJ6hDi4XtCpASly\nlkTAEgmX9qCWCylFy1WyKFiBCXg0A+UqDD6yVr3W4SwscpoPZUo40gUulYxFla+I0qU9wGlHk2AB\nbpJFwXIkUPaKcuWfEFkrmTI1PfAAJnD/GSBNymJLWBT5ipzp0hz8NJGzYAERC921C1aN5EpzbPF2\n1c0kNzXKQ6YkYlJPwC8SZCyWgOUmXpoDo1RSF76H3CZkBqsANdsW1BxDSm8HUqZqgkk9geKkErEY\n8hVUvCIJl+ZAKQ1NWSyRgkW5asOHXFGsNuOUtaJMkVKY1BNoJ6aEhRQvzcKlOXBKo7JoRXijMKhg\nGbfmTTQKVkK5YtaqGH3X420SZaqhcDH4pszi0ohJO3wMAQslXkGkK6BsaQ2i0kghWaoFqy5yBRT6\n9xNNrjIuZO+4BilTpIk2gTNxhwspXr6Fy7toUbJEU1vBMsWbtqBNsALJVdR6q0yzVs21R5kildAi\nYCbeUKGkS7RwBZItjcFVCpUES6tcAfXIXgXaFoxWb5Vh1mqKoxpRpkg1pMuXiTNMCOGibJF+1FKw\nTPGmLWgSrERyxazVFihTRDZS5cuEH0KycEkXLemBVxJSBYtyVYEAciUpayVxfVOmSJ5IkTATtnvf\nwiVOtjyLlsQgLJXSkuUoWMmzV6Zwl61okStmraJAmSJkgNQCZsJ061O4fMiWRNGSEIw1IE2wRGWv\naixXzFpRpgipRgoBM/679CFcYkTLk2RRsPoTa4swRPaKcvUhCeQqx0NDKVOExCCmdBm/3UkQrcqS\nxSxWNGJkryhXgRAoVoCOrBVlihAJxJIt47c7itYWKFmdkZa9olw5EOCy5ihZqwRiJVOmpkPHXzRC\nYlBT0cpFsgCK1mCylytTrFkb0n/mCcxaSRIruTKVI9IXC9GHQtFKnc2qJFkULO9Qrrog/eeF56yV\ndrGiTGlF+kIjsggtXcZPNymzWRIki4K1mRiCpUqupMf7yNuBEk9hp0zVGekLlMQlpHCZ6l1UEa0k\nkuVBsChXm6FcDUFy7BZWZxXrzUCZMrUk9AgFMaknoAzJC5xUJ5RsmepdlBWtspJFwUpLtnJlCnXV\nivS4W5PtQMqUFkzqCURAelAg7WQoWEBkyeIWYWW0yRWzVgUxvb+WJFaUqbpjUk+gIpIDR53JULK0\nZbEoVyXxKFfMWvVAkFh5karbBMrUifB/wWtMnM4n0YxJPQEHJAeVOpGZZGkSLMpVSQrIFbcEPeAS\nG0zvr5OIFWVKJ2qFzaSeQB8kB5s64Fu2TLXHY2axKFjxCH1Ku4otQcmxTqNYSZSpBZjhpR+XSzDr\nimgpM6knMATJwacOCBKtWFms2IJFuXJEqlyZQsO1IjW+eRQroPyRC33X4qSMZUoyuYieKBkzqSfw\nIVKDUs74FC1T7jHRgsXslRMh5YpiVYGi69wUa+ZVrChT+aFB1ERImEk8vtSAlQsUrN4we1WYUnKV\nSyG71DglbStQokxhWSP4EEVwuZk8R6RJWTIBM2mGBSA3kGmlJoLF7cFw1DprJTUeCRCrWVhUfA6o\nmUxJQKvQpRax6OJl4g7XRGpw0wQFqzuUq75oyFpRrDpg+jdx2QakTNUQqYKWSsCiiZeJMwwAuYFO\nCzUQLNZe+Sd11orbgUOIJFYAsBBuP0fiyNQZymXK4SZzjUiRsVjyFUW2TPghAMgMeJrwJVmm3GOu\ngsXsVVqYtRJGkfVr+jfptA4pU9pQKmopBSyGdAUXLhO2ewByA6B0FAkW5SotoeSKYuVIAKmiTNUR\nBUKWQr5CS1dQ4TLhugYgMyBKxodgmXKPhcxeUa78QbESgiexslPdhqVM1RmhEhZTvEIKVzDZMmG6\nbSIxQEokkWBRruSTcjswiVhJjRkVxEqkTC1t5CFTle6DygkhEhZLukIJl0rZkho0JaAke0W5ik+q\nrBXFahCOYkWZyoAspS2hgIWWrhCyFUS0jP8um0gNoKlRkL0KXndFuWqBYpWYgmvSLnbrljJVE9QJ\nWmT5CilcvmXLu2gZv901kRhIJVBVsIz7I2LkimLVQm3ESmos6LEWKVPEO6JFLKJ0hRAu0aJl/HXV\nRGpQlUBZyTLlHisqWJSrOEguYK+jWFGmSDLESlcE4ZIuWuIlC5AbZFNRJYNl3B8JIVfcEiwHxSox\nxx1FmSKyESlcCmVLpGgZP920IDXYpiCiXIkoaKdYNXGOm9wKrIy1buuNMkXEIka8AsuWVNHyIlmm\nehctCAu4SaFc9YViBYpVSShTpHaIkK5AwuVTtLKVLAGBVwyR6q5CyFWMLcHc5EqiWOUiVZQpQnqQ\nTLwCyJYv0RIjWcbLNDZDwdqMMLli1iocFCu/UKYIqUgS4fIsWz5Ey4dkUbCEUUaujPsjlKu0UKyq\nQ5kiJCDRRStDyaJgCSKCXCXfEqRYudEn5kSRKqDY37OA65cyRUgiooqWMMnKJotVZ7lSuiVIsSqO\nU4yqebaKMkWIQKKJlkfJYhbrQ+oqWBHkKmnWimJVnBqKFWWKEGVEES1BklVFsMS8SVhHwRK0JSgh\na1VLsSoYR6qIlZT7ASlThGREcNHKQLJEZK+AegmWoKwVxcovPsUqeLbK9J9DE8f1SZkipCYEFS1P\nkqVSsEz5R1ugXPXGuDUvIlcUK39IylYB8cVKpEzhjDgylctfYkKqIF2yqghWsi1CU/7RJpSr3pji\nTZNlrShWvZGQrQK81FbVWqakkMsCIvlAwWqHchUJihWAPH4uqCtaN/3nAKDjWqRMZUoOC5HII5hk\nKRQsylUEKFbZxHKfYiVRqihTpCO5LGAShyCSVVGwVGWvTLnHWqBctWPcmieps6JYdSdwtsrnFqBd\nXKzdAHFkapkgmSpxtkhdyWWhEz9QsChXQRGQtaJYVSOnbBVlSgo1kbYcAgCphjTJKitYlCthBMxa\n+RKrUG8F5hBXfWWriqznStkq0/ljylQuZCJjOQQF4o53waJc9YZi1Yop3pRiFZ5C8UBYwTpliqgU\nsRwCBumOJLkCygkW5UoIFCu1xMpW+ZAqkTK1ADNCDxEcp8WhESUCpj2YkC1IEqys5YpitQVTvGl0\nsaJUtVMxW1VFquzU/mMPhjKVENWCJly+tAebOkK5Kohxf6SFXOUqkFj5PG6BYtWKlIL1TuuQMlUj\nVMiYMOnSHHjqiFfBoly1Q7HajCnWLLpY1eRgUIlSJVKmTkSxv4CpKfparGZECpgQ4dIaiOqGN8ES\nLlfMWnkg4HELkrcBAZ3xzHlt91jDVeuqFsJt/VGmIqFV1ETIlwDZ0hiY6oKE7FWWclV3sTLFm1Ks\n/OJTqoBydVWUqQyRLmLJhSuhbGkLUnVAY+aKYhWZXMQqc6kC4m0BDl2DImWqsST0CFsouqddB6RJ\nWDLpSiRbGgNXjqSWq+yyVhSrQkjOVmmMTbHrqmovUzHJTdwkyFd04aJo1Q5tckWxikgOYsVs1RYq\nSNUsLCo+IVCmxKBJzFJKV+6ypTGwaSdnuaJYlSRQ4TqzVf7xcbp6pzVImaohUkUshXRFk62IkqU1\nyGnFi1wJFCughFwZt+Yt5CBXubwNyGzVZhwOAZUpU9NDj1ABk3oC8ZEkXzGFK4poRZIsjcFOK7nK\nFcXKkYTZKqB/rKRU+T1ZHZPc1IgyFRqTegLVSSlfsWQruGhFkCxtgU8rqeQqC7GiVPWE2So/eJEq\nylQmmNQTcCOFcMUQLe2SpSkAaoRiBYqVK6Z/E0qVHypJFWWqxpjUE+hOjrIVTLQoWGqpLFcUK70I\nfhOQUuXQeGANUqZIIUzqCbQTS7hCShYFiwygIWslTqxykCogiFhJzVZpih1Oa/I2iTLVULZAyqRu\nc8aknoB+0QoiWQEFS1OA1IL0rBXFKgCJslWUqt4UWouUKcHkLGkm7fAxZCuEaGmSLE3BUjoUK0e0\ni5V2qQIKxxUtcaLvGqRMZY52ITPxhwwtWr4li4JVLyhWDmiXKkDsFmBdpQrosgYpU6SJRvEy8YYK\nKVniBYtyJZZKcqVVrEzxpk20i5XQbBWl6kMoU8QJLcJl4g4XSrR8SpYGwdIUSCVCsSoIxaoNaXVV\n2mLBFEc1okyR/kgXLhNvqBCSJVawKFeiiLkdGOq4BdZX9YFSJQbKFEmDVOEy4YegYJVHS2CVRu3E\nyjhNYTOapQpwi6mmfxOJ51VJXv+UKSIXScJlwg/hW7JEChazV8mJuRXIbcAEUKqSQJkiupEgXCZc\n11IFS6pcSQyyktEuVpSqPhSNj6Z/kyhSVSIeSFnzlCmSJ5SswvgQLMqVfiSKFbNVnshcqiSsc8oU\nqRepJcuE6ZZy1R8JAVcLscSK2arIeJQqIMKxCoqkijJFyACpRMuE6daXYInaGqRcRae0WGnKVpnC\nXW5Bq1R5rqkCZElVqnVNmSKkHykky4Tp1odg5Zi5olj1h9mqHmgUq8wL1WOvacoUIWWJLVnGf5dS\nslfMWulCmliJyVYB+sTK81lVkqQq5jqmTBHim5iSZfx3KSF7JUmuKFbdkSZVQIBslSk8dCuapKpM\nzDK9v5Z0+GeMNUyZIiQWsSTL+O0uC7li1io40sSKW4AlyFiqQq9byhQhqaBclUKKWFGquhOjaJ1S\nFRCt19QkzFJRpgiRRAzBMn67qypXOWStKFadkSRVgJAtQE1SBUQvVNdapE6ZIkQ6ygQrpVxRrORS\nSqwSH68QTKq0CRWgT6oiH6dAmSJEG4rkimJVvY8cCS1WarYAc5YqU6xZLlJFmSIkB0ILlvHTjVq5\nolgFQUq2ilJVkiJxx/RvUvU4BQknqcuUqemhR4Dev7yEFKEGckWxygdK1Ydo/LkU8d4/ydfT1Fem\nYqBxYZA8CSlXxk83qbJWFCs5UKo+ROPPjkylquj6pExJRuOCIjoQLld1FCtK1RakvAXIQnVHIhap\nx3zrD+i/PilTuaBt0RFZZCxXFCu9SJEqoJhY8UgF1PatP8pU3dCyIElaQsmVqd6FKrHiNqAXKFWD\n0BLDBUlVjLOpKFOkFS0LlcSDYtUCxSodlKpBaIjVkS9RTnmBskyZWuKxM+OxL6JjAZOwCJWrOokV\nparkg5SqNNRAqvKXqViY1BMQhIbFTfwRQq5MtcdjixWzVWmQIlUsVC9A5kJFmZKAST2BSGhY8KQa\nFCtmqxIh4VR1r1JlCnXVioYYq02qCgoVZUojJvUEAqAhCBA3MhKrqNuAzFZVQotU1TpLBXgtUBeR\npRCBeVIAAArtSURBVLqNMpUvJvUEPKAlMJD++JYrU+3xmGLFbFV8nKUqp3oqTXEzl8M+KVM1x6Se\nQEk0BQvSTgZixWyVDihVSvAkVcnu+ZMoUyei2unHPnC6JiBnTOoJOKApcJAt1FSsmK2KS2qpSlak\nri0uRro82XuWijIVlqylzKSeQAG0BZK6I0isxG8DUqqcqXU9lbZY6EGqogoVZUoeWQiYST2BHmgL\nKnXFp1iZao+LzlZRqpwJKVXc+vOIgCxVYaGiTOlFpXSZ1BPogqYAU0eEiJVoqQIqiVXdpCr0GVXi\nj1LQEvM8CRUQ+OLkSZSp7FEhXSb1BDqgJdjUDQFiFWsLkFIVnpBSJT5LBeiIc5He+KskVBJlagFm\nBOm36G8BdUO0bJnUExiEhqBTJwRIFSA8W0WpKkxWW3+m0HCtSI9vQo5Q6LoO6yRTIchd0ESKlkk9\ngQ+RHnzqhACxolTpR8vWX23v+hNy0GfHNUiZik8uAiZKtEzqCUB2EKoTvsTKlHtM9BYgpaoQzFIJ\njmUehQrwuO1HmZKNRvESIVkm9QQgOyDVgZpkqyhV4UgtVRSqLkS836+wUFGm9KNFuJJLlkk7vOjg\nlDOUqu5Qqgqh4cDPWr7xJ2nbjzJVD6QKV20FS3qQyhWFW4CUKjmEkirRtVTSY5XHLFUlocIip2lE\nkSksawTruuh+dZ2QJlpJBcskGld6wMoNSlVnKFWFcJKqyFmqWh6hIECoaidTvsldziSJVhLJMvGH\nFB20coNS1RlKVV8kCxVQwyxVYqGiTEUkJ/GSIFnR5crEHQ6A7OCVGz7EypR7TKRU8ZqavnDbTxgJ\nC9MpU0LRKl4pJSt7uZIcxHKCUtUKs1Q9kf7GX+2ECkhSmE6ZUoom2UolWJQrUglKVSuUqp7ULkul\nIf54OjW9iFBRpjJFumxlL1gmzjBNNAQ2rSiSKsn1VBSqLni6449C1YVIQrUQbj9bKFOZIFG2UghW\ndnKlIbhpJWGxujipolB1RbpQAZ7PpNISc4qsX9P7617rUKZMnRFQphzeqqgj0iQrtmBFkSsTfggA\neoKcNpip2gKlqiMh7/gTe8inhngTUKjqJ1NVqaGMSRKsmHJFsSJdUZSlAtykKtbWH4WqC5qFCpAf\nawIJFWUqNBnLlwTJiiVX2YiV9ECnDUVSxSxVGqRv+1GoumB6fz10/VGmJJCRcKUUrGzEyoTtvon0\ngKeJTLf+mKXyA4VKIB6ECtiy/ihTWlAsXKkEK4ZcZSFW0oOeJpRIFbNU8UkpVICn86hMoaG2IDm2\neHrLD9i89ihTOaBMtChXJTHhum4iOfhpIpFUcetPPurPozLF5tOC1LjiUajsVLehKVPaUCBaucqV\narGSGvy0UVWqTLnHmKWSDYVKEJ6EijJVZwSLVmzBUitWJky3TaQGQG0kkCpRWSqent4GhUoQHoSK\nMkW2QLkCEFas1EoVIDcQaqKKVJlyj+WQpQIoVQAoVKHwcJcfZYr0RqBgUaz6YMJ020RiMNREZlkq\nClV1KFQCqChUImVqaSOMTJU+RI20IkiwchArSlVNiSxV3PaTT+GfUdKECsjjtPQKQlUrmaoCRawP\nQgQrhlypy1YZ/122IDUwaqDOWSoKVUckCpX3C5IBuXGjpFBRpgJRe/kSIFeaxUpltkpqcJROgmMU\nxAgVwLf9hhBiyw/oHw8pVB/iuh7N5v+iTCWkVsKVWK4oVkMw/rtsIjFAaiCjbT8KVTWk1lBRqLpj\nF7u1p0xFImvRylysKFWQGSA1UOcsFYWqhdoIldRY4bgWKVPKyFKyEsqVRrGiVGVOnYUK4N1+g6BQ\nJcZhLVKmMiArwUokVpQqcOtPEhQqZ3IUqlQHe3p7ww+ojVBRpjIlC8HKUKxqLVVSg6VkWEflBIUK\n8oTKFJuP2PhAmSKdUC1ZkeWKUuW3uyZSg6ZUhB+fQKEKD4UqMQXWIGWq5qiUqwQZK01iRanKEApV\nYXKUKSCMUIk81FNqXOizBilTpAV1cpVJtqq2mSqpgVMiFConcpOqUrE5klB5rZ+SHBN6rEHKFOmK\nKrGiVHVEhVABsgOoNCJflkyhkkMqoWJ2ahBd1h9lihRGjVxFFCtKlUckB1BpUKgKQ6FC35gobrtP\neizosP4oU6QUKsSKUtWGV6ky/rpqQXoglQKFqjA5CVXp2Euh8suQ9UeZIl4QL1eRxEqDVDFLlREU\nqsLUXqgk1U+Z/k0AyI8Dg9YfZYp4R7RYUaqaiM9SSQ+kkigrVcb9ERFCxatnWD8lhQ/XHmWKBEWs\nWCmWqloJFSA/mEqBQlWIXIRKcnYKqJ9QUaZIFChVlKpKSA+mUqBQFYJC1Rtx232A+BhgrdvaGxZo\nHiRzlt4uNIBdh9IB2QXnmpACuPyA6ofrNSI9Mf66auLjrro6UPYHjvE6i3iU/GVI7C93jpSKqRHi\nHVAwphiHDjOLAZQpUokBqRInVhGkatayn3qXKgoV8YZxa+6SzXTJooa+dDw3QsTSInHKZ+ypI9zm\nI94R91tihK2/2mz7GT/dtCA83S+CiG/5cbsvPbUpRgfErn9u85HkiMtUMUvlL0tl/HTTAjNU/any\nA8e4NReRoeJ2XxKKxByvGW8gm/VPmSLBqKtU+YRCRbxgwnUd4h7KKtRWqArEtmjbfcaxfQbrnzJF\ngiNSqgJCoSJBiLgd4v0g2A+JkZ0i4fGencoAyhSJhiipolBVx/jppkkGv52Kxrg1F7HdV5LaZqcK\nwGL0MFCmSHTESJWyOqoLcJO3IEehUkrV7JTxMouOBNnuY3bKjUjHJBTCOLZXvvYpUyQZYoSqplkq\nCpVSIgqViO2+kjA71R0fMYlbfa1QpkhS6pSl8gmFisQi1HZfYZidcouRnmJZkq0+xeueMkVEQKFy\nh0JVYwRv9xWFRyWkJUp2ylQeQg2UKSIGClUGGM/9UahEkDw7RZLERxaiF4cyRURBoXJDXHaKxIPZ\nqdpROD5KKkR3RekvUJQpIg4KlRvihMr46aaJ0uCaG1qzU9zq6w63+vxBmSIiEVGYrui3O6bja4rQ\ne81cYHbKjdhxkbGlGJQpIpqchUpi/RSzUzXDhOtaUnaqlij6ZbANheudMkXEQ6EqBrf7SGhCnTvl\nRInsFLf6uhPllzoTfojUUKYIKULNhIooom6F6EQcfIGFMkWUkDw7BehOmzvC7BTphtZC9Jxg3ZQ8\nKFNEDSKEKhDMThHiAAvRi1GjXwBTQ5kixIUaBSem7hWRwVt9oWHdVHdE1k0py0JTpogqmJ1SiPHc\nn7IgqwKTegKsmyK6oUwRdSQXKgXZKW71kZCwbooMpe6ZbMoUIaQrdQ+QqqjbVh/rpqLCX9B6Q5ki\nhBBCCKkAZYqoJPlWXyCyfavPeO6PdVOEEEFQpgghhBASHpN6AuGgTBFSBgVF6IRog2/0Fadwdr5g\nrMr2beJIUKYIIYRknTUYgGdNkVBQpohacq2bIkQDIi49JkQIDWutTT0JQgghhBCtMDNFCCGEEFIB\nyhQhhBBCSAUoU4QQQgghFaBMEUIIIYRUgDJFCCGEEFIByhQhhBBCSAUoU4QQQgghFaBMEUIIIYRU\ngDJFCCGEEFIByhQhhBBCSAUoU4QQQgghFaBMEUIIIYRUgDJFCCGEEFIByhQhhBBCSAUoU4QQQggh\nFaBMEUIIIYRUgDJFCCGEEFIByhQhhBBCSAUoU4QQQgghFaBMEUIIIYRUgDJFCCGEEFIByhQhhBBC\nSAUoU4QQQgghFfj/AcxNvvk8Uc7VAAAAAElFTkSuQmCC\n", | |
453 | "text": [ |
|
448 | "text": [ | |
454 |
"<matplotlib.figure.Figure at 0x5 |
|
449 | "<matplotlib.figure.Figure at 0x1141a1450>" | |
455 | ] |
|
450 | ] | |
456 | }, |
|
451 | }, | |
457 | { |
|
452 | { | |
458 | "output_type": "stream", |
|
453 | "output_type": "stream", | |
459 | "stream": "stdout", |
|
454 | "stream": "stdout", | |
460 | "text": [ |
|
455 | "text": [ | |
461 | "Simulation has already finished, no monitoring to do.\n" |
|
456 | "Simulation completed!\n", | |
|
457 | "Monitored for: 0:00:50.653178.\n" | |||
462 | ] |
|
458 | ] | |
463 | } |
|
459 | } | |
464 | ], |
|
460 | ], | |
465 |
"prompt_number": |
|
461 | "prompt_number": 10 | |
466 | }, |
|
462 | }, | |
467 | { |
|
463 | { | |
468 | "cell_type": "markdown", |
|
464 | "cell_type": "markdown", | |
@@ -488,7 +484,7 b'' | |||||
488 | } |
|
484 | } | |
489 | }, |
|
485 | }, | |
490 | "outputs": [], |
|
486 | "outputs": [], | |
491 |
"prompt_number": |
|
487 | "prompt_number": 11 | |
492 | }, |
|
488 | }, | |
493 | { |
|
489 | { | |
494 | "cell_type": "code", |
|
490 | "cell_type": "code", | |
@@ -506,27 +502,27 b'' | |||||
506 | "stream": "stdout", |
|
502 | "stream": "stdout", | |
507 | "text": [ |
|
503 | "text": [ | |
508 | "{\n", |
|
504 | "{\n", | |
509 |
" \"stdin_port\": 6 |
|
505 | " \"stdin_port\": 65310, \n", | |
510 | " \"ip\": \"127.0.0.1\", \n", |
|
506 | " \"ip\": \"127.0.0.1\", \n", | |
511 |
" \"control_port\": |
|
507 | " \"control_port\": 58188, \n", | |
512 |
" \"hb_port\": |
|
508 | " \"hb_port\": 58187, \n", | |
513 |
" \"key\": \" |
|
509 | " \"key\": \"e4f5cda8-faa8-48d3-a62c-dbde67db9827\", \n", | |
514 |
" \"shell_port\": 60 |
|
510 | " \"shell_port\": 65083, \n", | |
515 | " \"transport\": \"tcp\", \n", |
|
511 | " \"transport\": \"tcp\", \n", | |
516 |
" \"iopub_port\": 5 |
|
512 | " \"iopub_port\": 54934\n", | |
517 | "}\n", |
|
513 | "}\n", | |
518 | "\n", |
|
514 | "\n", | |
519 | "Paste the above JSON into a file, and connect with:\n", |
|
515 | "Paste the above JSON into a file, and connect with:\n", | |
520 | " $> ipython <app> --existing <file>\n", |
|
516 | " $> ipython <app> --existing <file>\n", | |
521 | "or, if you are local, you can connect with just:\n", |
|
517 | "or, if you are local, you can connect with just:\n", | |
522 |
" $> ipython <app> --existing kernel- |
|
518 | " $> ipython <app> --existing kernel-64604.json \n", | |
523 | "or even just:\n", |
|
519 | "or even just:\n", | |
524 | " $> ipython <app> --existing \n", |
|
520 | " $> ipython <app> --existing \n", | |
525 | "if this is the most recent IPython session you have started.\n" |
|
521 | "if this is the most recent IPython session you have started.\n" | |
526 | ] |
|
522 | ] | |
527 | } |
|
523 | } | |
528 | ], |
|
524 | ], | |
529 |
"prompt_number": 1 |
|
525 | "prompt_number": 12 | |
530 | }, |
|
526 | }, | |
531 | { |
|
527 | { | |
532 | "cell_type": "code", |
|
528 | "cell_type": "code", | |
@@ -538,15 +534,7 b'' | |||||
538 | "language": "python", |
|
534 | "language": "python", | |
539 | "metadata": {}, |
|
535 | "metadata": {}, | |
540 | "outputs": [], |
|
536 | "outputs": [], | |
541 |
"prompt_number": 1 |
|
537 | "prompt_number": 13 | |
542 | }, |
|
|||
543 | { |
|
|||
544 | "cell_type": "code", |
|
|||
545 | "collapsed": false, |
|
|||
546 | "input": [], |
|
|||
547 | "language": "python", |
|
|||
548 | "metadata": {}, |
|
|||
549 | "outputs": [] |
|
|||
550 | } |
|
538 | } | |
551 | ], |
|
539 | ], | |
552 | "metadata": {} |
|
540 | "metadata": {} |
@@ -1,6 +1,6 b'' | |||||
1 | { |
|
1 | { | |
2 | "metadata": { |
|
2 | "metadata": { | |
3 |
"name": " |
|
3 | "name": "" | |
4 | }, |
|
4 | }, | |
5 | "nbformat": 3, |
|
5 | "nbformat": 3, | |
6 | "nbformat_minor": 0, |
|
6 | "nbformat_minor": 0, | |
@@ -163,7 +163,19 b'' | |||||
163 | "collapsed": false, |
|
163 | "collapsed": false, | |
164 | "input": [ |
|
164 | "input": [ | |
165 | "%pxconfig --block\n", |
|
165 | "%pxconfig --block\n", | |
166 |
"%px % |
|
166 | "%px %matplotlib inline" | |
|
167 | ], | |||
|
168 | "language": "python", | |||
|
169 | "metadata": {}, | |||
|
170 | "outputs": [] | |||
|
171 | }, | |||
|
172 | { | |||
|
173 | "cell_type": "code", | |||
|
174 | "collapsed": false, | |||
|
175 | "input": [ | |||
|
176 | "%%px\n", | |||
|
177 | "import numpy as np\n", | |||
|
178 | "import matplotlib.pyplot as plt" | |||
167 | ], |
|
179 | ], | |
168 | "language": "python", |
|
180 | "language": "python", | |
169 | "metadata": {}, |
|
181 | "metadata": {}, | |
@@ -194,10 +206,10 b'' | |||||
194 | "collapsed": false, |
|
206 | "collapsed": false, | |
195 | "input": [ |
|
207 | "input": [ | |
196 | "%%px --noblock\n", |
|
208 | "%%px --noblock\n", | |
197 | "x = linspace(0,pi,1000)\n", |
|
209 | "x = np.linspace(0,np.pi,1000)\n", | |
198 | "for n in range(id,12, stride):\n", |
|
210 | "for n in range(id,12, stride):\n", | |
199 | " print n\n", |
|
211 | " print n\n", | |
200 | " plt.plot(x,sin(n*x))\n", |
|
212 | " plt.plot(x,np.sin(n*x))\n", | |
201 | "plt.title(\"Plot %i\" % id)" |
|
213 | "plt.title(\"Plot %i\" % id)" | |
202 | ], |
|
214 | ], | |
203 | "language": "python", |
|
215 | "language": "python", | |
@@ -234,11 +246,11 b'' | |||||
234 | "collapsed": false, |
|
246 | "collapsed": false, | |
235 | "input": [ |
|
247 | "input": [ | |
236 | "%%px --group-outputs=engine\n", |
|
248 | "%%px --group-outputs=engine\n", | |
237 | "x = linspace(0,pi,1000)\n", |
|
249 | "x = np.linspace(0,np.pi,1000)\n", | |
238 | "for n in range(id+1,12, stride):\n", |
|
250 | "for n in range(id+1,12, stride):\n", | |
239 | " print n\n", |
|
251 | " print n\n", | |
240 | " plt.figure()\n", |
|
252 | " plt.figure()\n", | |
241 | " plt.plot(x,sin(n*x))\n", |
|
253 | " plt.plot(x,np.sin(n*x))\n", | |
242 | " plt.title(\"Plot %i\" % n)" |
|
254 | " plt.title(\"Plot %i\" % n)" | |
243 | ], |
|
255 | ], | |
244 | "language": "python", |
|
256 | "language": "python", | |
@@ -291,7 +303,7 b'' | |||||
291 | " \"\"\"\n", |
|
303 | " \"\"\"\n", | |
292 | " \n", |
|
304 | " \n", | |
293 | " import sys,os\n", |
|
305 | " import sys,os\n", | |
294 |
" from IPython. |
|
306 | " from IPython.display import display, HTML, Math\n", | |
295 | " \n", |
|
307 | " \n", | |
296 | " print \"stdout\"\n", |
|
308 | " print \"stdout\"\n", | |
297 | " print >> sys.stderr, \"stderr\"\n", |
|
309 | " print >> sys.stderr, \"stderr\"\n", | |
@@ -431,7 +443,7 b'' | |||||
431 | "from numpy.random import random\n", |
|
443 | "from numpy.random import random\n", | |
432 | "from numpy.linalg import norm\n", |
|
444 | "from numpy.linalg import norm\n", | |
433 | "A = random((100,100))\n", |
|
445 | "A = random((100,100))\n", | |
434 |
"norm(A, 2) |
|
446 | "norm(A, 2)" | |
435 | ], |
|
447 | ], | |
436 | "language": "python", |
|
448 | "language": "python", | |
437 | "metadata": {}, |
|
449 | "metadata": {}, |
General Comments 0
You need to be logged in to leave comments.
Login now