Show More
@@ -0,0 +1,186 b'' | |||||
|
1 | #!/usr/bin/env python | |||
|
2 | """A really simple notebook to rst/html exporter. | |||
|
3 | ||||
|
4 | Usage | |||
|
5 | ||||
|
6 | ./nb2html.py file.ipynb | |||
|
7 | ||||
|
8 | Produces 'file.rst' and 'file.html', along with auto-generated figure files | |||
|
9 | called nb_figure_NN.png. | |||
|
10 | ||||
|
11 | """ | |||
|
12 | ||||
|
13 | import os | |||
|
14 | import subprocess | |||
|
15 | import sys | |||
|
16 | ||||
|
17 | from IPython.nbformat import current as nbformat | |||
|
18 | from IPython.utils.text import wrap_paragraphs, indent | |||
|
19 | ||||
|
20 | ||||
|
21 | # Cell converters | |||
|
22 | ||||
|
23 | def unknown_cell(cell): | |||
|
24 | """Default converter for cells of unknown type. | |||
|
25 | """ | |||
|
26 | ||||
|
27 | return [rst_directive('.. warning:: Unknown cell'), | |||
|
28 | repr(cell)] | |||
|
29 | ||||
|
30 | def markdown_cell(cell): | |||
|
31 | """convert a markdown cell to rst | |||
|
32 | ||||
|
33 | Returns list.""" | |||
|
34 | return [cell.source] | |||
|
35 | ||||
|
36 | ||||
|
37 | def rst_directive(directive, text): | |||
|
38 | return [directive, '', indent(text), ''] | |||
|
39 | ||||
|
40 | def code_cell(cell): | |||
|
41 | """Convert a code cell to rst | |||
|
42 | ||||
|
43 | Returns list.""" | |||
|
44 | ||||
|
45 | if not cell.input: | |||
|
46 | return [] | |||
|
47 | ||||
|
48 | lines = ['In[%s]:' % cell.prompt_number, ''] | |||
|
49 | lines.extend(rst_directive('.. code:: python', cell.input)) | |||
|
50 | ||||
|
51 | for output in cell.outputs: | |||
|
52 | conv = converters[output.output_type] | |||
|
53 | lines.extend(conv(output)) | |||
|
54 | ||||
|
55 | return lines | |||
|
56 | ||||
|
57 | # Converters for parts of a cell. | |||
|
58 | figures_counter = 1 | |||
|
59 | ||||
|
60 | def out_display(output): | |||
|
61 | """convert display data from the output of a code cell to rst. | |||
|
62 | ||||
|
63 | Returns list. | |||
|
64 | """ | |||
|
65 | global figures_counter | |||
|
66 | ||||
|
67 | lines = [] | |||
|
68 | ||||
|
69 | if 'png' in output: | |||
|
70 | fname = 'nb_figure_%s.png' % figures_counter | |||
|
71 | with open(fname, 'w') as f: | |||
|
72 | f.write(output.png.decode('base64')) | |||
|
73 | ||||
|
74 | figures_counter += 1 | |||
|
75 | lines.append('.. image:: %s' % fname) | |||
|
76 | lines.append('') | |||
|
77 | ||||
|
78 | return lines | |||
|
79 | ||||
|
80 | ||||
|
81 | def out_pyout(output): | |||
|
82 | """convert pyout part of a code cell to rst | |||
|
83 | ||||
|
84 | Returns list.""" | |||
|
85 | ||||
|
86 | lines = ['Out[%s]:' % output.prompt_number, ''] | |||
|
87 | ||||
|
88 | if 'latex' in output: | |||
|
89 | lines.extend(rst_directive('.. math::', output.latex)) | |||
|
90 | ||||
|
91 | if 'text' in output: | |||
|
92 | lines.extend(rst_directive('.. parsed-literal::', output.text)) | |||
|
93 | ||||
|
94 | return lines | |||
|
95 | ||||
|
96 | ||||
|
97 | converters = dict(code = code_cell, | |||
|
98 | markdown = markdown_cell, | |||
|
99 | pyout = out_pyout, | |||
|
100 | display_data = out_display, | |||
|
101 | ) | |||
|
102 | ||||
|
103 | ||||
|
104 | ||||
|
105 | def convert_notebook(nb): | |||
|
106 | lines = [] | |||
|
107 | for cell in nb.worksheets[0].cells: | |||
|
108 | conv = converters.get(cell.cell_type, unknown_cell) | |||
|
109 | lines.extend(conv(cell)) | |||
|
110 | lines.append('') | |||
|
111 | ||||
|
112 | return '\n'.join(lines) | |||
|
113 | ||||
|
114 | ||||
|
115 | def nb2rst(fname): | |||
|
116 | "Convert notebook to rst" | |||
|
117 | ||||
|
118 | with open(fname) as f: | |||
|
119 | nb = nbformat.read(f, 'json') | |||
|
120 | ||||
|
121 | rst = convert_notebook(nb) | |||
|
122 | ||||
|
123 | newfname = os.path.splitext(fname)[0] + '.rst' | |||
|
124 | with open(newfname, 'w') as f: | |||
|
125 | f.write(rst.encode('utf8')) | |||
|
126 | ||||
|
127 | return newfname | |||
|
128 | ||||
|
129 | ||||
|
130 | def rst2simplehtml(fname): | |||
|
131 | """Convert a rst file to simplified html suitable for blogger. | |||
|
132 | ||||
|
133 | This just runs rst2html with certain parameters to produce really simple | |||
|
134 | html and strips the document header, so the resulting file can be easily | |||
|
135 | pasted into a blogger edit window. | |||
|
136 | """ | |||
|
137 | ||||
|
138 | # This is the template for the rst2html call that produces the cleanest, | |||
|
139 | # simplest html I could find. This should help in making it easier to | |||
|
140 | # paste into the blogspot html window, though I'm still having problems | |||
|
141 | # with linebreaks there... | |||
|
142 | cmd_template = ("rst2html --link-stylesheet --no-xml-declaration " | |||
|
143 | "--no-generator --no-datestamp --no-source-link " | |||
|
144 | "--no-toc-backlinks --no-section-numbering " | |||
|
145 | "--strip-comments ") | |||
|
146 | ||||
|
147 | cmd = "%s %s" % (cmd_template, fname) | |||
|
148 | proc = subprocess.Popen(cmd, | |||
|
149 | stdout=subprocess.PIPE, | |||
|
150 | stderr=subprocess.PIPE, | |||
|
151 | shell=True) | |||
|
152 | html, stderr = proc.communicate() | |||
|
153 | if stderr: | |||
|
154 | raise IOError(stderr) | |||
|
155 | ||||
|
156 | # Make an iterator so breaking out holds state. Our implementation of | |||
|
157 | # searching for the html body below is basically a trivial little state | |||
|
158 | # machine, so we need this. | |||
|
159 | walker = iter(html.splitlines()) | |||
|
160 | ||||
|
161 | # Find start of main text, break out to then print until we find end /div. | |||
|
162 | # This may only work if there's a real title defined so we get a 'div class' | |||
|
163 | # tag, I haven't really tried. | |||
|
164 | for line in walker: | |||
|
165 | if line.startswith('<div class'): | |||
|
166 | break | |||
|
167 | ||||
|
168 | newfname = os.path.splitext(fname)[0] + '.html' | |||
|
169 | with open(newfname, 'w') as f: | |||
|
170 | for line in walker: | |||
|
171 | if line.startswith('</div>'): | |||
|
172 | break | |||
|
173 | f.write(line) | |||
|
174 | f.write('\n') | |||
|
175 | ||||
|
176 | return newfname | |||
|
177 | ||||
|
178 | ||||
|
179 | def main(fname): | |||
|
180 | """Convert a notebook to html in one step""" | |||
|
181 | newfname = nb2rst(fname) | |||
|
182 | rst2simplehtml(newfname) | |||
|
183 | ||||
|
184 | ||||
|
185 | if __name__ == '__main__': | |||
|
186 | main(sys.argv[1]) |
@@ -0,0 +1,147 b'' | |||||
|
1 | { | |||
|
2 | "metadata": { | |||
|
3 | "name": "test" | |||
|
4 | }, | |||
|
5 | "nbformat": 3, | |||
|
6 | "worksheets": [ | |||
|
7 | { | |||
|
8 | "cells": [ | |||
|
9 | { | |||
|
10 | "cell_type": "heading", | |||
|
11 | "level": 1, | |||
|
12 | "source": [ | |||
|
13 | "H1" | |||
|
14 | ] | |||
|
15 | }, | |||
|
16 | { | |||
|
17 | "cell_type": "heading", | |||
|
18 | "level": 2, | |||
|
19 | "source": [ | |||
|
20 | "H2" | |||
|
21 | ] | |||
|
22 | }, | |||
|
23 | { | |||
|
24 | "cell_type": "heading", | |||
|
25 | "level": 3, | |||
|
26 | "source": [ | |||
|
27 | "H3" | |||
|
28 | ] | |||
|
29 | }, | |||
|
30 | { | |||
|
31 | "cell_type": "heading", | |||
|
32 | "level": 4, | |||
|
33 | "source": [ | |||
|
34 | "H4" | |||
|
35 | ] | |||
|
36 | }, | |||
|
37 | { | |||
|
38 | "cell_type": "heading", | |||
|
39 | "level": 5, | |||
|
40 | "source": [ | |||
|
41 | "H5" | |||
|
42 | ] | |||
|
43 | }, | |||
|
44 | { | |||
|
45 | "cell_type": "heading", | |||
|
46 | "level": 6, | |||
|
47 | "source": [ | |||
|
48 | "H6" | |||
|
49 | ] | |||
|
50 | }, | |||
|
51 | { | |||
|
52 | "cell_type": "markdown", | |||
|
53 | "source": [ | |||
|
54 | "A section heading", | |||
|
55 | "=================", | |||
|
56 | "", | |||
|
57 | "A bit of text, with *important things*:", | |||
|
58 | "", | |||
|
59 | "* and", | |||
|
60 | "* more", | |||
|
61 | "", | |||
|
62 | "Using reST links to `ipython <http://ipython.org>`_." | |||
|
63 | ] | |||
|
64 | }, | |||
|
65 | { | |||
|
66 | "cell_type": "code", | |||
|
67 | "collapsed": false, | |||
|
68 | "input": [ | |||
|
69 | "f = figure()", | |||
|
70 | "plot([1])", | |||
|
71 | "display(f)" | |||
|
72 | ], | |||
|
73 | "language": "python", | |||
|
74 | "outputs": [ | |||
|
75 | { | |||
|
76 | "output_type": "display_data", | |||
|
77 | "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD3CAYAAAAUl4NyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFyVJREFUeJzt3H9M1Pcdx/HXGTK1XWNloG7xN1Lh1Baq46RDPRv8kTL2\no2qUJbX+Si5mKlqJm6aLsqQah/NHiamki0ushcbEP+b8OYg5YIveSaqTCc6IkMkyO8GJWqGe+tkf\nppdS9BDvTpTP85GY3Pc+3x/vd77t93X3+d4XhzHGCABgnV7dXQAAoHsQAABgKQIAACxFAACApQgA\nALAUAQAAlgoZAIsWLdLAgQM1bty4R66zdu1ajRw5UuPHj9f58+eD73/55Zd699139corr8jpdOrk\nyZORqxoAELaQAbBw4UIdPXr0keN+v1+VlZWqqqpSXl6e8vLygmPr16/X0KFDdfbsWZ09e1bJycmR\nqxoAEDZHZw+CNTQ0KDs7W9XV1R3GCgsLde/ePa1cuVKSlJCQoLq6OklSSkqKTpw4ob59+0ahbABA\nuGLC2djv9+udd94JLsfHx+vSpUv6zne+o7a2Ni1dulS1tbV6++23lZubqz59+nTYh8PhCKcEALBW\nuH/IIaybwMaYhxbQ1tamCxcuaNasWfJ6vTp37pz27dvX6X564r/169d3ew30R3829teTezMmMn/B\nJ6wAcLlcqqmpCS5fvXpVI0eO1KhRozR69GhlZ2erb9++ysnJ0ZEjR8IuFgAQOWEHwP79+9Xc3Kzi\n4uJ2N3oTExPl8/l0//59HTp0SJmZmWEXCwCInJD3AHJyclReXq6mpiYNGTJE+fn5CgQCkiSPx6O0\ntDRlZGRowoQJio2N1d69e4PbbtmyRfPnz1dbW5syMzM1b9686HbyjHK73d1dQlTR3/OtJ/fXk3uL\nlE5/BRT1AhyOiM1nAYAtInHt5ElgALAUAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUI\nAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABYigAA\nAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSIQNg0aJFGjhwoMaNG/fIddauXauRI0dq/Pjx\nOn/+fLuxe/fuKTU1VdnZ2ZGpFgAQMSEDYOHChTp69Ogjx/1+vyorK1VVVaW8vDzl5eW1G9+xY4ec\nTqccDkdkqgUAREzIAJg0aZL69+//yHGfz6fZs2crNjZWOTk5qq2tDY41Njbq8OHDWrJkiYwxkasY\nABARYd0D8Pv9cjqdweX4+HhdunRJkrRq1SoVFBSoVy9uMwDAsygmnI2NMQ/9dH/w4EENGDBAqamp\n8nq9ne5nw4YNwddut1tutzucsgCgx/F6vY91Pe0Kh+lkfqahoUHZ2dmqrq7uMFZYWKi7d+9q1apV\nkqSEhATV1dVp3bp1+uSTTxQTE6O2tjbduHFDs2bN0p49ezoW4HAwRQQAXRSJa2dY8zMul0v79+9X\nc3OziouLlZycLEnauHGjLl++rPr6en322Wd68803H3rxBwB0n5BTQDk5OSovL1dTU5OGDBmi/Px8\nBQIBSZLH41FaWpoyMjI0YcIExcbGau/evQ/dD78CAoBnT6dTQFEvgCkgAOiybp8CAgA8vwgAALAU\nAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEA\nAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABYigAAAEsRAABgKQIAACxFAACApQgAALAUAQAA\nluo0ABYtWqSBAwdq3Lhxj1xn7dq1GjlypMaPH6/z589Lki5fvqypU6dqzJgxcrvdKi4ujlzVAICw\nOYwxJtQKlZWV+u53v6v58+erurq6w7jf79d7772nAwcO6NixY/r000918OBBXblyRVeuXFFKSoqa\nmpqUlpamv//973rppZfaF+BwqJMSAADfEolrZ6ffACZNmqT+/fs/ctzn82n27NmKjY1VTk6Oamtr\nJUmDBg1SSkqKJCkuLk5jxoxRVVVVWMUCACIn7HsAfr9fTqczuBwfH6+6urp261y8eFHnzp1TWlpa\nuIcDAERITLg7MMZ0+BricDiCr2/evKm5c+dq27ZtevHFFx+6jw0bNgRfu91uud3ucMsCgB7F6/XK\n6/VGdJ+d3gOQpIaGBmVnZz/0HkBhYaHu3r2rVatWSZISEhKC3wACgYCysrL01ltvaeXKlQ8vgHsA\nANBlT+UeQGdcLpf279+v5uZmFRcXKzk5WdKDbwaLFy/W2LFjH3nxBwB0n06ngHJyclReXq6mpiYN\nGTJE+fn5CgQCkiSPx6O0tDRlZGRowoQJio2N1d69eyVJf/vb37R37169+uqrSk1NlSRt2rRJM2fO\njGI7AIDH9VhTQFEtgCkgAOiyZ2IKCADwfCIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUIAACw\nFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABYigAAAEsR\nAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWCpkACxatEgDBw7UuHHjHrnO2rVrNXLkSI0f\nP17nz58Pvl9RUaHk5GQlJiaqsLAwchUDACIiZAAsXLhQR48efeS43+9XZWWlqqqqlJeXp7y8vOBY\nbm6uioqKVFZWpp07d6qpqSlyVQMAwhYyACZNmqT+/fs/ctzn82n27NmKjY1VTk6OamtrJUktLS2S\npMmTJ2vYsGGaPn26fD5fBMsGAIQrrHsAfr9fTqczuBwfH6+6ujqdOnVKSUlJwfedTqdOnjwZzqEA\nABEWE87GxhgZY9q953A4uryfDRs2BF+73W653e5wygKAHsfr9crr9UZ0nw7z7Sv4tzQ0NCg7O1vV\n1dUdxgoLC3X37l2tWrVKkpSQkKC6ujpdv35dU6dO1enTpyVJy5cv18yZM5WVldWxAIejQ4gAAEKL\nxLUzrCkgl8ul/fv3q7m5WcXFxUpOTpYkvfzyy5Ie/BKooaFBpaWlcrlcYRUKAIiskFNAOTk5Ki8v\nV1NTk4YMGaL8/HwFAgFJksfjUVpamjIyMjRhwgTFxsZq7969wW23b98uj8ejQCCgFStWKC4uLrqd\nAAC6pNMpoKgXwBQQAHRZt08BAQCeXwQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAA\nwFIEAABYigAAAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAs\nRQAAgKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGCpTgOgoqJCycnJSkxMVGFhYYfxmzdvavXq\n1UpJSVF6errq6uqCYx9//LHeeOMNjR8/XitXroxs5QCAsHQaALm5uSoqKlJZWZl27typpqamduMl\nJSUKBAI6c+aMtm7dqjVr1kiSrl27po0bN6q0tFSnTp3ShQsXdOzYseh0AQDospAB0NLSIkmaPHmy\nhg0bpunTp8vn87Vb5/jx48rKypIkpaen6+LFi5Kkvn37yhijlpYWtba26vbt2+rfv380egAAPIGY\nUIOnTp1SUlJScNnpdOrkyZPBC74kzZgxQyUlJZo8ebJKS0tVXV2t+vp6jRgxQh999JGGDx+u3r17\na8WKFUpLS3vocTZs2BB87Xa75Xa7w+sKAHoYr9crr9cb0X2GDIDHMXfuXDU2NmrKlCkaPXq0EhMT\n1bt3b129elVLly5VTU2N+vfvrzlz5ujQoUPtwuNr3wwAAEBH3/5wnJ+fH/Y+Q04B/fCHP9T58+eD\ny+fOndPEiRPbrfPCCy/oN7/5jfx+vz766CP17dtXP/jBD+T3+zVx4kSNGjVK3/ve9zRnzhxVVFSE\nXTAAIDJCBkC/fv0kPfglUENDg0pLS+Vyudqt09LSojt37uj27dvatGmTpk2bJknKyMhQVVWVrl27\npq+++kpHjhzR9OnTo9QGAKCrOp0C2r59uzwejwKBgFasWKG4uDgVFRVJkjwej2pqarRgwQLdv39f\n6enp2rVrl6QH4fH+++/r5z//uW7fvq2ZM2dq6tSp0e0GAPDYHMYY060FOBzq5hIA4LkTiWsnTwID\ngKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABY\nigAAAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUI\nAACwFAEAAJbqNAAqKiqUnJysxMREFRYWdhi/efOmVq9erZSUFKWnp6uuri449uWXX+rdd9/VK6+8\nIqfTqZMnT0a2egDAE+s0AHJzc1VUVKSysjLt3LlTTU1N7cZLSkoUCAR05swZbd26VWvWrAmOrV+/\nXkOHDtXZs2d19uxZJScnR74DAMATiQk12NLSIkmaPHmyJGn69Ony+XzKysoKrnP8+HEtXLhQkpSe\nnq6LFy8Gx8rKynTixAn16dNHktSvX7/IVg8AeGIhvwGcOnVKSUlJweWHTePMmDFDJSUlam1t1YED\nB1RdXa36+no1Njaqra1NS5culcvl0ubNm9XW1hadLgAAXRbyG8DjmDt3rhobGzVlyhSNHj1aiYmJ\n6t27t27fvq0LFy6ooKBAmZmZ8ng82rdvn+bPn99hHxs2bAi+drvdcrvd4ZYFAD2K1+uV1+uN6D4d\nxhjzqMGWlha53W6dPn1akrR8+XLNnDmz3RTQN926dUsZGRk6c+aMJCk5OVm1tbWSpCNHjmjPnj0q\nKSlpX4DDoRAlAAAeIhLXzpBTQF/P2VdUVKihoUGlpaVyuVzt1mlpadGdO3d0+/Ztbdq0SdOmTQuO\nJSYmyufz6f79+zp06JAyMzPDKhYAEDmdTgFt375dHo9HgUBAK1asUFxcnIqKiiRJHo9HNTU1WrBg\nge7fv6/09HTt2rUruO2WLVs0f/58tbW1KTMzU/PmzYteJwCALgk5BfRUCmAKCAC6LOpTQACAnosA\nAABLEQAAYCkCAAAsRQAAgKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAA\nsBQBAACWIgAAwFIEAABYigAAAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWIoAAABL\nEQAAYKlOA6CiokLJyclKTExUYWFhh/GbN29q9erVSklJUXp6uurq6tqN37t3T6mpqcrOzo5c1c8R\nr9fb3SVEFf0933pyfz25t0jpNAByc3NVVFSksrIy7dy5U01NTe3GS0pKFAgEdObMGW3dulVr1qxp\nN75jxw45nU45HI7IVv6c6On/EdLf860n99eTe4uUkAHQ0tIiSZo8ebKGDRum6dOny+fztVvn+PHj\nysrKkiSlp6fr4sWLwbHGxkYdPnxYS5YskTEm0rUDAMIQMgBOnTqlpKSk4LLT6dTJkyfbrTNjxgyV\nlJSotbVVBw4cUHV1terr6yVJq1atUkFBgXr14lYDADxrYsLdwdy5c9XY2KgpU6Zo9OjRSkxMVO/e\nvXXw4EENGDBAqampnX4V6+nTQ/n5+d1dQlTR3/OtJ/fXk3uLBIcJMTfT0tIit9ut06dPS5KWL1+u\nmTNnBqd8vu3WrVvKyMjQmTNntG7dOn3yySeKiYlRW1ubbty4oVmzZmnPnj3R6QQA0CUhA0CSUlNT\ntWPHDg0dOlQzZ87UX//6V8XFxQXHW1pa1LdvX929e1cffPCB7ty5o4KCgnb7KC8v15YtW/TnP/85\nOl0AALqs0ymg7du3y+PxKBAIaMWKFYqLi1NRUZEkyePxqKamRgsWLND9+/eVnp6uXbt2PXQ/PX2a\nBwCeOybKbty4YX7yk5+YIUOGmJ/+9Kfm5s2bD12vvLzcJCUlmVGjRpkPP/yw3dju3btNUlKScTqd\nZs2aNdEuuUsi0Z8xxmzZssU4HA7T3Nwc7ZK7JNz+8vLyTFJSkklNTTW5ubnm9u3bT6v0kDo7H8YY\n8+tf/9qMGDHCvP7666a2trZL23a3J+3vX//6l3G73cbpdJopU6aYTz/99GmW/VjCOXfGGHP37l2T\nkpJifvzjHz+NcrssnP5u3bpl5s+fbxITE01ycrI5ceJEyGNFPQA2b95sli1bZtra2swvf/lLU1BQ\n8ND1UlJSTHl5uWloaDCjR482V69eNcYYU11dbSZOnGguXLhgjDHmv//9b7RL7pJw+zPmwf90M2bM\nMMOHD3/mAuBJ+2tqajLGGPOXv/zF3Lt3z9y7d88sWbLE/OEPf3ia5T9SqPNhjDE+n8/86Ec/Ms3N\nzaa4uNhkZWU99rbPgift7z//+Y85ffq0McaYq1evmhEjRpgbN2489fpDCefcGWPM73//e/OLX/zC\nZGdnP82yH1s4/a1evdq8//77prW11QQCAXP9+vWQx4r67zP9fr8WL16s3r17a9GiRR2eI5BCP29w\n5MgRLV68WImJiZKk+Pj4aJfcJeH2J0nvvfeefve73z21mrviSfv7+ufC06ZNU69evdSrVy/NmDFD\n5eXlT7X+h3mc51t8Pp9mz56t2NhY5eTkqLa29rG37W7h9Ddo0CClpKRIkuLi4jRmzBhVVVU93QZC\nCKc36dl/Ninc/srKyrRu3Tr16dNHMTEx6tevX8jjRT0AvvksQVJSkvx+f8h1pPbPGxw7dkz/+Mc/\nNGHCBC1ZskQ1NTXRLrlLwu3vT3/6kwYPHqxXX3316RTcReH2900ff/zxM/EnQR6nXr/fL6fTGVyO\nj49XXV3dY/fancLp75suXryoc+fOKS0tLboFd8GT9nbp0iVJz/6zSeH019jYqLa2Ni1dulQul0ub\nN29WW1tbyOOF/RyA9OBT3pUrVzq8/8EHHzxxyn590/irr77StWvXVFlZqbKyMi1btkzHjx8Pq96u\nilZ/ra2t2rhxo0pLS4Pvd8enkmj0922//e1v9dJLL2nOnDkR2V+0mQfTo+3e60k/ZOisv5s3b2ru\n3Lnatm2bXnzxxaddXlge1pukLj2b9Cx7VH9tbW26cOGCCgoKlJmZKY/Ho3379mn+/PkhdxZVb7/9\ntvn888+NMcZUVVWZWbNmdVjn+vXrJiUlJbi8bNkyc/DgQWPMg5uIX782xpjvf//7prW1NcpVP75w\n+quurjYDBgwww4cPN8OHDzcxMTFm2LBh5osvvnhq9Xcm3PNnjDF//OMfzRtvvPHMnLfO6jXGmA8/\n/NBs3bo1uDxy5EhjjDH/+9//Ot22u4XTnzHG3Llzx0ybNs1s27Yt+sV2UTi9rV271gwePNgMHz7c\nDBo0yLzwwgvmnXfeeTqFP6Zwz11SUlLw9eHDh828efNCHi/q34NcLpd2796t1tZW7d69WxMnTuyw\nztfzVBUVFWpoaFBpaalcLpekB39f6MiRIzLGyOfzKSEhQX369Il22Y8tnP7Gjh2rL774QvX19aqv\nr9fgwYP1+eefa8CAAU+7jUcK9/wdPXpUBQUFOnDgwDNz3kLV+zWXy6X9+/erublZxcXFSk5OliS9\n/PLLnW7b3cLpzxijxYsXa+zYsVq5cuVTr70z4fS2ceNGXb58WfX19frss8/05ptvPnMPpobTnyQl\nJibK5/Pp/v37OnTokDIzM0MfMLy86tyjfkb473//27z11lvB9bxer0lKSjIJCQlmx44dwffv3r1r\nPB6PSUpKMj/72c+M3++PdsldEm5/3zRixIhn7ldA4fY3atQoM3ToUJOSkmJSUlLM0qVLn3oPD/Ow\nenft2mV27doVXOdXv/qVGT58uHn99ddNTU1NyG2fNU/aX2VlpXE4HOa1114LnrMjR450Sw+PEs65\n++Y+ntVfAYXT3z//+U/jcrnMa6+9ZlavXm1u3boV8lidPgkMAOiZns1b4QCAqCMAAMBSBAAAWIoA\nAABLEQAAYCkCAAAs9X/vh7DYicSaVQAAAABJRU5ErkJggg==\n", | |||
|
78 | "text": [ | |||
|
79 | "<matplotlib.figure.Figure at 0x28f2750>" | |||
|
80 | ] | |||
|
81 | }, | |||
|
82 | { | |||
|
83 | "output_type": "display_data", | |||
|
84 | "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD3CAYAAAAUl4NyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFyVJREFUeJzt3H9M1Pcdx/HXGTK1XWNloG7xN1Lh1Baq46RDPRv8kTL2\no2qUJbX+Si5mKlqJm6aLsqQah/NHiamki0ushcbEP+b8OYg5YIveSaqTCc6IkMkyO8GJWqGe+tkf\nppdS9BDvTpTP85GY3Pc+3x/vd77t93X3+d4XhzHGCABgnV7dXQAAoHsQAABgKQIAACxFAACApQgA\nALAUAQAAlgoZAIsWLdLAgQM1bty4R66zdu1ajRw5UuPHj9f58+eD73/55Zd699139corr8jpdOrk\nyZORqxoAELaQAbBw4UIdPXr0keN+v1+VlZWqqqpSXl6e8vLygmPr16/X0KFDdfbsWZ09e1bJycmR\nqxoAEDZHZw+CNTQ0KDs7W9XV1R3GCgsLde/ePa1cuVKSlJCQoLq6OklSSkqKTpw4ob59+0ahbABA\nuGLC2djv9+udd94JLsfHx+vSpUv6zne+o7a2Ni1dulS1tbV6++23lZubqz59+nTYh8PhCKcEALBW\nuH/IIaybwMaYhxbQ1tamCxcuaNasWfJ6vTp37pz27dvX6X564r/169d3ew30R3829teTezMmMn/B\nJ6wAcLlcqqmpCS5fvXpVI0eO1KhRozR69GhlZ2erb9++ysnJ0ZEjR8IuFgAQOWEHwP79+9Xc3Kzi\n4uJ2N3oTExPl8/l0//59HTp0SJmZmWEXCwCInJD3AHJyclReXq6mpiYNGTJE+fn5CgQCkiSPx6O0\ntDRlZGRowoQJio2N1d69e4PbbtmyRfPnz1dbW5syMzM1b9686HbyjHK73d1dQlTR3/OtJ/fXk3uL\nlE5/BRT1AhyOiM1nAYAtInHt5ElgALAUAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUI\nAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABYigAA\nAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSIQNg0aJFGjhwoMaNG/fIddauXauRI0dq/Pjx\nOn/+fLuxe/fuKTU1VdnZ2ZGpFgAQMSEDYOHChTp69Ogjx/1+vyorK1VVVaW8vDzl5eW1G9+xY4ec\nTqccDkdkqgUAREzIAJg0aZL69+//yHGfz6fZs2crNjZWOTk5qq2tDY41Njbq8OHDWrJkiYwxkasY\nABARYd0D8Pv9cjqdweX4+HhdunRJkrRq1SoVFBSoVy9uMwDAsygmnI2NMQ/9dH/w4EENGDBAqamp\n8nq9ne5nw4YNwddut1tutzucsgCgx/F6vY91Pe0Kh+lkfqahoUHZ2dmqrq7uMFZYWKi7d+9q1apV\nkqSEhATV1dVp3bp1+uSTTxQTE6O2tjbduHFDs2bN0p49ezoW4HAwRQQAXRSJa2dY8zMul0v79+9X\nc3OziouLlZycLEnauHGjLl++rPr6en322Wd68803H3rxBwB0n5BTQDk5OSovL1dTU5OGDBmi/Px8\nBQIBSZLH41FaWpoyMjI0YcIExcbGau/evQ/dD78CAoBnT6dTQFEvgCkgAOiybp8CAgA8vwgAALAU\nAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEA\nAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABYigAAAEsRAABgKQIAACxFAACApQgAALAUAQAA\nluo0ABYtWqSBAwdq3Lhxj1xn7dq1GjlypMaPH6/z589Lki5fvqypU6dqzJgxcrvdKi4ujlzVAICw\nOYwxJtQKlZWV+u53v6v58+erurq6w7jf79d7772nAwcO6NixY/r000918OBBXblyRVeuXFFKSoqa\nmpqUlpamv//973rppZfaF+BwqJMSAADfEolrZ6ffACZNmqT+/fs/ctzn82n27NmKjY1VTk6Oamtr\nJUmDBg1SSkqKJCkuLk5jxoxRVVVVWMUCACIn7HsAfr9fTqczuBwfH6+6urp261y8eFHnzp1TWlpa\nuIcDAERITLg7MMZ0+BricDiCr2/evKm5c+dq27ZtevHFFx+6jw0bNgRfu91uud3ucMsCgB7F6/XK\n6/VGdJ+d3gOQpIaGBmVnZz/0HkBhYaHu3r2rVatWSZISEhKC3wACgYCysrL01ltvaeXKlQ8vgHsA\nANBlT+UeQGdcLpf279+v5uZmFRcXKzk5WdKDbwaLFy/W2LFjH3nxBwB0n06ngHJyclReXq6mpiYN\nGTJE+fn5CgQCkiSPx6O0tDRlZGRowoQJio2N1d69eyVJf/vb37R37169+uqrSk1NlSRt2rRJM2fO\njGI7AIDH9VhTQFEtgCkgAOiyZ2IKCADwfCIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUIAACw\nFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABYigAAAEsR\nAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWCpkACxatEgDBw7UuHHjHrnO2rVrNXLkSI0f\nP17nz58Pvl9RUaHk5GQlJiaqsLAwchUDACIiZAAsXLhQR48efeS43+9XZWWlqqqqlJeXp7y8vOBY\nbm6uioqKVFZWpp07d6qpqSlyVQMAwhYyACZNmqT+/fs/ctzn82n27NmKjY1VTk6OamtrJUktLS2S\npMmTJ2vYsGGaPn26fD5fBMsGAIQrrHsAfr9fTqczuBwfH6+6ujqdOnVKSUlJwfedTqdOnjwZzqEA\nABEWE87GxhgZY9q953A4uryfDRs2BF+73W653e5wygKAHsfr9crr9UZ0nw7z7Sv4tzQ0NCg7O1vV\n1dUdxgoLC3X37l2tWrVKkpSQkKC6ujpdv35dU6dO1enTpyVJy5cv18yZM5WVldWxAIejQ4gAAEKL\nxLUzrCkgl8ul/fv3q7m5WcXFxUpOTpYkvfzyy5Ie/BKooaFBpaWlcrlcYRUKAIiskFNAOTk5Ki8v\nV1NTk4YMGaL8/HwFAgFJksfjUVpamjIyMjRhwgTFxsZq7969wW23b98uj8ejQCCgFStWKC4uLrqd\nAAC6pNMpoKgXwBQQAHRZt08BAQCeXwQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAA\nwFIEAABYigAAAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAs\nRQAAgKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGCpTgOgoqJCycnJSkxMVGFhYYfxmzdvavXq\n1UpJSVF6errq6uqCYx9//LHeeOMNjR8/XitXroxs5QCAsHQaALm5uSoqKlJZWZl27typpqamduMl\nJSUKBAI6c+aMtm7dqjVr1kiSrl27po0bN6q0tFSnTp3ShQsXdOzYseh0AQDospAB0NLSIkmaPHmy\nhg0bpunTp8vn87Vb5/jx48rKypIkpaen6+LFi5Kkvn37yhijlpYWtba26vbt2+rfv380egAAPIGY\nUIOnTp1SUlJScNnpdOrkyZPBC74kzZgxQyUlJZo8ebJKS0tVXV2t+vp6jRgxQh999JGGDx+u3r17\na8WKFUpLS3vocTZs2BB87Xa75Xa7w+sKAHoYr9crr9cb0X2GDIDHMXfuXDU2NmrKlCkaPXq0EhMT\n1bt3b129elVLly5VTU2N+vfvrzlz5ujQoUPtwuNr3wwAAEBH3/5wnJ+fH/Y+Q04B/fCHP9T58+eD\ny+fOndPEiRPbrfPCCy/oN7/5jfx+vz766CP17dtXP/jBD+T3+zVx4kSNGjVK3/ve9zRnzhxVVFSE\nXTAAIDJCBkC/fv0kPfglUENDg0pLS+Vyudqt09LSojt37uj27dvatGmTpk2bJknKyMhQVVWVrl27\npq+++kpHjhzR9OnTo9QGAKCrOp0C2r59uzwejwKBgFasWKG4uDgVFRVJkjwej2pqarRgwQLdv39f\n6enp2rVrl6QH4fH+++/r5z//uW7fvq2ZM2dq6tSp0e0GAPDYHMYY060FOBzq5hIA4LkTiWsnTwID\ngKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAAsBQBAACWIgAAwFIEAABY\nigAAAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWIoAAABLEQAAYCkCAAAsRQAAgKUI\nAACwFAEAAJbqNAAqKiqUnJysxMREFRYWdhi/efOmVq9erZSUFKWnp6uuri449uWXX+rdd9/VK6+8\nIqfTqZMnT0a2egDAE+s0AHJzc1VUVKSysjLt3LlTTU1N7cZLSkoUCAR05swZbd26VWvWrAmOrV+/\nXkOHDtXZs2d19uxZJScnR74DAMATiQk12NLSIkmaPHmyJGn69Ony+XzKysoKrnP8+HEtXLhQkpSe\nnq6LFy8Gx8rKynTixAn16dNHktSvX7/IVg8AeGIhvwGcOnVKSUlJweWHTePMmDFDJSUlam1t1YED\nB1RdXa36+no1Njaqra1NS5culcvl0ubNm9XW1hadLgAAXRbyG8DjmDt3rhobGzVlyhSNHj1aiYmJ\n6t27t27fvq0LFy6ooKBAmZmZ8ng82rdvn+bPn99hHxs2bAi+drvdcrvd4ZYFAD2K1+uV1+uN6D4d\nxhjzqMGWlha53W6dPn1akrR8+XLNnDmz3RTQN926dUsZGRk6c+aMJCk5OVm1tbWSpCNHjmjPnj0q\nKSlpX4DDoRAlAAAeIhLXzpBTQF/P2VdUVKihoUGlpaVyuVzt1mlpadGdO3d0+/Ztbdq0SdOmTQuO\nJSYmyufz6f79+zp06JAyMzPDKhYAEDmdTgFt375dHo9HgUBAK1asUFxcnIqKiiRJHo9HNTU1WrBg\nge7fv6/09HTt2rUruO2WLVs0f/58tbW1KTMzU/PmzYteJwCALgk5BfRUCmAKCAC6LOpTQACAnosA\nAABLEQAAYCkCAAAsRQAAgKUIAACwFAEAAJYiAADAUgQAAFiKAAAASxEAAGApAgAALEUAAIClCAAA\nsBQBAACWIgAAwFIEAABYigAAAEsRAABgKQIAACxFAACApQgAALAUAQAAliIAAMBSBAAAWIoAAABL\nEQAAYKlOA6CiokLJyclKTExUYWFhh/GbN29q9erVSklJUXp6uurq6tqN37t3T6mpqcrOzo5c1c8R\nr9fb3SVEFf0933pyfz25t0jpNAByc3NVVFSksrIy7dy5U01NTe3GS0pKFAgEdObMGW3dulVr1qxp\nN75jxw45nU45HI7IVv6c6On/EdLf860n99eTe4uUkAHQ0tIiSZo8ebKGDRum6dOny+fztVvn+PHj\nysrKkiSlp6fr4sWLwbHGxkYdPnxYS5YskTEm0rUDAMIQMgBOnTqlpKSk4LLT6dTJkyfbrTNjxgyV\nlJSotbVVBw4cUHV1terr6yVJq1atUkFBgXr14lYDADxrYsLdwdy5c9XY2KgpU6Zo9OjRSkxMVO/e\nvXXw4EENGDBAqampnX4V6+nTQ/n5+d1dQlTR3/OtJ/fXk3uLBIcJMTfT0tIit9ut06dPS5KWL1+u\nmTNnBqd8vu3WrVvKyMjQmTNntG7dOn3yySeKiYlRW1ubbty4oVmzZmnPnj3R6QQA0CUhA0CSUlNT\ntWPHDg0dOlQzZ87UX//6V8XFxQXHW1pa1LdvX929e1cffPCB7ty5o4KCgnb7KC8v15YtW/TnP/85\nOl0AALqs0ymg7du3y+PxKBAIaMWKFYqLi1NRUZEkyePxqKamRgsWLND9+/eVnp6uXbt2PXQ/PX2a\nBwCeOybKbty4YX7yk5+YIUOGmJ/+9Kfm5s2bD12vvLzcJCUlmVGjRpkPP/yw3dju3btNUlKScTqd\nZs2aNdEuuUsi0Z8xxmzZssU4HA7T3Nwc7ZK7JNz+8vLyTFJSkklNTTW5ubnm9u3bT6v0kDo7H8YY\n8+tf/9qMGDHCvP7666a2trZL23a3J+3vX//6l3G73cbpdJopU6aYTz/99GmW/VjCOXfGGHP37l2T\nkpJifvzjHz+NcrssnP5u3bpl5s+fbxITE01ycrI5ceJEyGNFPQA2b95sli1bZtra2swvf/lLU1BQ\n8ND1UlJSTHl5uWloaDCjR482V69eNcYYU11dbSZOnGguXLhgjDHmv//9b7RL7pJw+zPmwf90M2bM\nMMOHD3/mAuBJ+2tqajLGGPOXv/zF3Lt3z9y7d88sWbLE/OEPf3ia5T9SqPNhjDE+n8/86Ec/Ms3N\nzaa4uNhkZWU99rbPgift7z//+Y85ffq0McaYq1evmhEjRpgbN2489fpDCefcGWPM73//e/OLX/zC\nZGdnP82yH1s4/a1evdq8//77prW11QQCAXP9+vWQx4r67zP9fr8WL16s3r17a9GiRR2eI5BCP29w\n5MgRLV68WImJiZKk+Pj4aJfcJeH2J0nvvfeefve73z21mrviSfv7+ufC06ZNU69evdSrVy/NmDFD\n5eXlT7X+h3mc51t8Pp9mz56t2NhY5eTkqLa29rG37W7h9Ddo0CClpKRIkuLi4jRmzBhVVVU93QZC\nCKc36dl/Ninc/srKyrRu3Tr16dNHMTEx6tevX8jjRT0AvvksQVJSkvx+f8h1pPbPGxw7dkz/+Mc/\nNGHCBC1ZskQ1NTXRLrlLwu3vT3/6kwYPHqxXX3316RTcReH2900ff/zxM/EnQR6nXr/fL6fTGVyO\nj49XXV3dY/fancLp75suXryoc+fOKS0tLboFd8GT9nbp0iVJz/6zSeH019jYqLa2Ni1dulQul0ub\nN29WW1tbyOOF/RyA9OBT3pUrVzq8/8EHHzxxyn590/irr77StWvXVFlZqbKyMi1btkzHjx8Pq96u\nilZ/ra2t2rhxo0pLS4Pvd8enkmj0922//e1v9dJLL2nOnDkR2V+0mQfTo+3e60k/ZOisv5s3b2ru\n3Lnatm2bXnzxxaddXlge1pukLj2b9Cx7VH9tbW26cOGCCgoKlJmZKY/Ho3379mn+/PkhdxZVb7/9\ntvn888+NMcZUVVWZWbNmdVjn+vXrJiUlJbi8bNkyc/DgQWPMg5uIX782xpjvf//7prW1NcpVP75w\n+quurjYDBgwww4cPN8OHDzcxMTFm2LBh5osvvnhq9Xcm3PNnjDF//OMfzRtvvPHMnLfO6jXGmA8/\n/NBs3bo1uDxy5EhjjDH/+9//Ot22u4XTnzHG3Llzx0ybNs1s27Yt+sV2UTi9rV271gwePNgMHz7c\nDBo0yLzwwgvmnXfeeTqFP6Zwz11SUlLw9eHDh828efNCHi/q34NcLpd2796t1tZW7d69WxMnTuyw\nztfzVBUVFWpoaFBpaalcLpekB39f6MiRIzLGyOfzKSEhQX369Il22Y8tnP7Gjh2rL774QvX19aqv\nr9fgwYP1+eefa8CAAU+7jUcK9/wdPXpUBQUFOnDgwDNz3kLV+zWXy6X9+/erublZxcXFSk5OliS9\n/PLLnW7b3cLpzxijxYsXa+zYsVq5cuVTr70z4fS2ceNGXb58WfX19frss8/05ptvPnMPpobTnyQl\nJibK5/Pp/v37OnTokDIzM0MfMLy86tyjfkb473//27z11lvB9bxer0lKSjIJCQlmx44dwffv3r1r\nPB6PSUpKMj/72c+M3++PdsldEm5/3zRixIhn7ldA4fY3atQoM3ToUJOSkmJSUlLM0qVLn3oPD/Ow\nenft2mV27doVXOdXv/qVGT58uHn99ddNTU1NyG2fNU/aX2VlpXE4HOa1114LnrMjR450Sw+PEs65\n++Y+ntVfAYXT3z//+U/jcrnMa6+9ZlavXm1u3boV8lidPgkMAOiZns1b4QCAqCMAAMBSBAAAWIoA\nAABLEQAAYCkCAAAs9X/vh7DYicSaVQAAAABJRU5ErkJggg==\n" | |||
|
85 | } | |||
|
86 | ], | |||
|
87 | "prompt_number": 1 | |||
|
88 | }, | |||
|
89 | { | |||
|
90 | "cell_type": "code", | |||
|
91 | "collapsed": true, | |||
|
92 | "input": [ | |||
|
93 | "# multiline input", | |||
|
94 | "x = 1", | |||
|
95 | "y = 2" | |||
|
96 | ], | |||
|
97 | "language": "python", | |||
|
98 | "outputs": [], | |||
|
99 | "prompt_number": 2 | |||
|
100 | }, | |||
|
101 | { | |||
|
102 | "cell_type": "code", | |||
|
103 | "collapsed": false, | |||
|
104 | "input": [ | |||
|
105 | "1+2" | |||
|
106 | ], | |||
|
107 | "language": "python", | |||
|
108 | "outputs": [ | |||
|
109 | { | |||
|
110 | "output_type": "pyout", | |||
|
111 | "prompt_number": 3, | |||
|
112 | "text": [ | |||
|
113 | "3" | |||
|
114 | ] | |||
|
115 | } | |||
|
116 | ], | |||
|
117 | "prompt_number": 3 | |||
|
118 | }, | |||
|
119 | { | |||
|
120 | "cell_type": "code", | |||
|
121 | "collapsed": false, | |||
|
122 | "input": [ | |||
|
123 | "print 'hello world'" | |||
|
124 | ], | |||
|
125 | "language": "python", | |||
|
126 | "outputs": [ | |||
|
127 | { | |||
|
128 | "output_type": "stream", | |||
|
129 | "stream": "stdout", | |||
|
130 | "text": [ | |||
|
131 | "hello world" | |||
|
132 | ] | |||
|
133 | } | |||
|
134 | ], | |||
|
135 | "prompt_number": 4 | |||
|
136 | }, | |||
|
137 | { | |||
|
138 | "cell_type": "code", | |||
|
139 | "collapsed": true, | |||
|
140 | "input": [], | |||
|
141 | "language": "python", | |||
|
142 | "outputs": [] | |||
|
143 | } | |||
|
144 | ] | |||
|
145 | } | |||
|
146 | ] | |||
|
147 | } No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now