##// END OF EJS Templates
Clean up deprecated code: exceptions.Exception, new.instancemethod.
Thomas Kluyver -
Show More
@@ -1,2539 +1,2536 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2010 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import atexit
24 24 import codeop
25 import exceptions
26 import new
27 25 import os
28 26 import re
29 27 import string
30 28 import sys
31 29 import tempfile
30 import types
32 31 from contextlib import nested
33 32
34 33 from IPython.config.configurable import Configurable
35 34 from IPython.core import debugger, oinspect
36 35 from IPython.core import history as ipcorehist
37 36 from IPython.core import page
38 37 from IPython.core import prefilter
39 38 from IPython.core import shadowns
40 39 from IPython.core import ultratb
41 40 from IPython.core.alias import AliasManager
42 41 from IPython.core.builtin_trap import BuiltinTrap
43 42 from IPython.core.display_trap import DisplayTrap
44 43 from IPython.core.displayhook import DisplayHook
45 44 from IPython.core.error import TryNext, UsageError
46 45 from IPython.core.extensions import ExtensionManager
47 46 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
48 47 from IPython.core.history import HistoryManager
49 48 from IPython.core.inputlist import InputList
50 49 from IPython.core.inputsplitter import IPythonInputSplitter
51 50 from IPython.core.logger import Logger
52 51 from IPython.core.magic import Magic
53 52 from IPython.core.payload import PayloadManager
54 53 from IPython.core.plugin import PluginManager
55 54 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
56 55 from IPython.external.Itpl import ItplNS
57 56 from IPython.utils import PyColorize
58 57 from IPython.utils import io
59 58 from IPython.utils import pickleshare
60 59 from IPython.utils.doctestreload import doctest_reload
61 60 from IPython.utils.io import ask_yes_no, rprint
62 61 from IPython.utils.ipstruct import Struct
63 62 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
64 63 from IPython.utils.process import system, getoutput
65 64 from IPython.utils.strdispatch import StrDispatch
66 65 from IPython.utils.syspathcontext import prepended_to_syspath
67 66 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
68 67 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
69 68 List, Unicode, Instance, Type)
70 69 from IPython.utils.warn import warn, error, fatal
71 70 import IPython.core.hooks
72 71
73 72 #-----------------------------------------------------------------------------
74 73 # Globals
75 74 #-----------------------------------------------------------------------------
76 75
77 76 # compiled regexps for autoindent management
78 77 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
79 78
80 79 #-----------------------------------------------------------------------------
81 80 # Utilities
82 81 #-----------------------------------------------------------------------------
83 82
84 83 # store the builtin raw_input globally, and use this always, in case user code
85 84 # overwrites it (like wx.py.PyShell does)
86 85 raw_input_original = raw_input
87 86
88 87 def softspace(file, newvalue):
89 88 """Copied from code.py, to remove the dependency"""
90 89
91 90 oldvalue = 0
92 91 try:
93 92 oldvalue = file.softspace
94 93 except AttributeError:
95 94 pass
96 95 try:
97 96 file.softspace = newvalue
98 97 except (AttributeError, TypeError):
99 98 # "attribute-less object" or "read-only attributes"
100 99 pass
101 100 return oldvalue
102 101
103 102
104 103 def no_op(*a, **kw): pass
105 104
106 class SpaceInInput(exceptions.Exception): pass
105 class SpaceInInput(Exception): pass
107 106
108 107 class Bunch: pass
109 108
110 109
111 110 def get_default_colors():
112 111 if sys.platform=='darwin':
113 112 return "LightBG"
114 113 elif os.name=='nt':
115 114 return 'Linux'
116 115 else:
117 116 return 'Linux'
118 117
119 118
120 119 class SeparateStr(Str):
121 120 """A Str subclass to validate separate_in, separate_out, etc.
122 121
123 122 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
124 123 """
125 124
126 125 def validate(self, obj, value):
127 126 if value == '0': value = ''
128 127 value = value.replace('\\n','\n')
129 128 return super(SeparateStr, self).validate(obj, value)
130 129
131 130 class MultipleInstanceError(Exception):
132 131 pass
133 132
134 133
135 134 #-----------------------------------------------------------------------------
136 135 # Main IPython class
137 136 #-----------------------------------------------------------------------------
138 137
139 138
140 139 class InteractiveShell(Configurable, Magic):
141 140 """An enhanced, interactive shell for Python."""
142 141
143 142 _instance = None
144 143 autocall = Enum((0,1,2), default_value=1, config=True)
145 144 # TODO: remove all autoindent logic and put into frontends.
146 145 # We can't do this yet because even runlines uses the autoindent.
147 146 autoindent = CBool(True, config=True)
148 147 automagic = CBool(True, config=True)
149 148 cache_size = Int(1000, config=True)
150 149 color_info = CBool(True, config=True)
151 150 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
152 151 default_value=get_default_colors(), config=True)
153 152 debug = CBool(False, config=True)
154 153 deep_reload = CBool(False, config=True)
155 154 displayhook_class = Type(DisplayHook)
156 155 exit_now = CBool(False)
157 156 # Monotonically increasing execution counter
158 157 execution_count = Int(1)
159 158 filename = Str("<ipython console>")
160 159 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
161 160
162 161 # Input splitter, to split entire cells of input into either individual
163 162 # interactive statements or whole blocks.
164 163 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
165 164 (), {})
166 165 logstart = CBool(False, config=True)
167 166 logfile = Str('', config=True)
168 167 logappend = Str('', config=True)
169 168 object_info_string_level = Enum((0,1,2), default_value=0,
170 169 config=True)
171 170 pdb = CBool(False, config=True)
172 171
173 172 pprint = CBool(True, config=True)
174 173 profile = Str('', config=True)
175 174 prompt_in1 = Str('In [\\#]: ', config=True)
176 175 prompt_in2 = Str(' .\\D.: ', config=True)
177 176 prompt_out = Str('Out[\\#]: ', config=True)
178 177 prompts_pad_left = CBool(True, config=True)
179 178 quiet = CBool(False, config=True)
180 179
181 180 # The readline stuff will eventually be moved to the terminal subclass
182 181 # but for now, we can't do that as readline is welded in everywhere.
183 182 readline_use = CBool(True, config=True)
184 183 readline_merge_completions = CBool(True, config=True)
185 184 readline_omit__names = Enum((0,1,2), default_value=0, config=True)
186 185 readline_remove_delims = Str('-/~', config=True)
187 186 readline_parse_and_bind = List([
188 187 'tab: complete',
189 188 '"\C-l": clear-screen',
190 189 'set show-all-if-ambiguous on',
191 190 '"\C-o": tab-insert',
192 191 '"\M-i": " "',
193 192 '"\M-o": "\d\d\d\d"',
194 193 '"\M-I": "\d\d\d\d"',
195 194 '"\C-r": reverse-search-history',
196 195 '"\C-s": forward-search-history',
197 196 '"\C-p": history-search-backward',
198 197 '"\C-n": history-search-forward',
199 198 '"\e[A": history-search-backward',
200 199 '"\e[B": history-search-forward',
201 200 '"\C-k": kill-line',
202 201 '"\C-u": unix-line-discard',
203 202 ], allow_none=False, config=True)
204 203
205 204 # TODO: this part of prompt management should be moved to the frontends.
206 205 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
207 206 separate_in = SeparateStr('\n', config=True)
208 207 separate_out = SeparateStr('', config=True)
209 208 separate_out2 = SeparateStr('', config=True)
210 209 wildcards_case_sensitive = CBool(True, config=True)
211 210 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
212 211 default_value='Context', config=True)
213 212
214 213 # Subcomponents of InteractiveShell
215 214 alias_manager = Instance('IPython.core.alias.AliasManager')
216 215 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
217 216 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
218 217 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
219 218 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
220 219 plugin_manager = Instance('IPython.core.plugin.PluginManager')
221 220 payload_manager = Instance('IPython.core.payload.PayloadManager')
222 221 history_manager = Instance('IPython.core.history.HistoryManager')
223 222
224 223 # Private interface
225 224 _post_execute = set()
226 225
227 226 def __init__(self, config=None, ipython_dir=None,
228 227 user_ns=None, user_global_ns=None,
229 228 custom_exceptions=((), None)):
230 229
231 230 # This is where traits with a config_key argument are updated
232 231 # from the values on config.
233 232 super(InteractiveShell, self).__init__(config=config)
234 233
235 234 # These are relatively independent and stateless
236 235 self.init_ipython_dir(ipython_dir)
237 236 self.init_instance_attrs()
238 237 self.init_environment()
239 238
240 239 # Create namespaces (user_ns, user_global_ns, etc.)
241 240 self.init_create_namespaces(user_ns, user_global_ns)
242 241 # This has to be done after init_create_namespaces because it uses
243 242 # something in self.user_ns, but before init_sys_modules, which
244 243 # is the first thing to modify sys.
245 244 # TODO: When we override sys.stdout and sys.stderr before this class
246 245 # is created, we are saving the overridden ones here. Not sure if this
247 246 # is what we want to do.
248 247 self.save_sys_module_state()
249 248 self.init_sys_modules()
250 249
251 250 self.init_history()
252 251 self.init_encoding()
253 252 self.init_prefilter()
254 253
255 254 Magic.__init__(self, self)
256 255
257 256 self.init_syntax_highlighting()
258 257 self.init_hooks()
259 258 self.init_pushd_popd_magic()
260 259 # self.init_traceback_handlers use to be here, but we moved it below
261 260 # because it and init_io have to come after init_readline.
262 261 self.init_user_ns()
263 262 self.init_logger()
264 263 self.init_alias()
265 264 self.init_builtins()
266 265
267 266 # pre_config_initialization
268 267
269 268 # The next section should contain everything that was in ipmaker.
270 269 self.init_logstart()
271 270
272 271 # The following was in post_config_initialization
273 272 self.init_inspector()
274 273 # init_readline() must come before init_io(), because init_io uses
275 274 # readline related things.
276 275 self.init_readline()
277 276 # init_completer must come after init_readline, because it needs to
278 277 # know whether readline is present or not system-wide to configure the
279 278 # completers, since the completion machinery can now operate
280 279 # independently of readline (e.g. over the network)
281 280 self.init_completer()
282 281 # TODO: init_io() needs to happen before init_traceback handlers
283 282 # because the traceback handlers hardcode the stdout/stderr streams.
284 283 # This logic in in debugger.Pdb and should eventually be changed.
285 284 self.init_io()
286 285 self.init_traceback_handlers(custom_exceptions)
287 286 self.init_prompts()
288 287 self.init_displayhook()
289 288 self.init_reload_doctest()
290 289 self.init_magics()
291 290 self.init_pdb()
292 291 self.init_extension_manager()
293 292 self.init_plugin_manager()
294 293 self.init_payload()
295 294 self.hooks.late_startup_hook()
296 295 atexit.register(self.atexit_operations)
297 296
298 297 @classmethod
299 298 def instance(cls, *args, **kwargs):
300 299 """Returns a global InteractiveShell instance."""
301 300 if cls._instance is None:
302 301 inst = cls(*args, **kwargs)
303 302 # Now make sure that the instance will also be returned by
304 303 # the subclasses instance attribute.
305 304 for subclass in cls.mro():
306 305 if issubclass(cls, subclass) and \
307 306 issubclass(subclass, InteractiveShell):
308 307 subclass._instance = inst
309 308 else:
310 309 break
311 310 if isinstance(cls._instance, cls):
312 311 return cls._instance
313 312 else:
314 313 raise MultipleInstanceError(
315 314 'Multiple incompatible subclass instances of '
316 315 'InteractiveShell are being created.'
317 316 )
318 317
319 318 @classmethod
320 319 def initialized(cls):
321 320 return hasattr(cls, "_instance")
322 321
323 322 def get_ipython(self):
324 323 """Return the currently running IPython instance."""
325 324 return self
326 325
327 326 #-------------------------------------------------------------------------
328 327 # Trait changed handlers
329 328 #-------------------------------------------------------------------------
330 329
331 330 def _ipython_dir_changed(self, name, new):
332 331 if not os.path.isdir(new):
333 332 os.makedirs(new, mode = 0777)
334 333
335 334 def set_autoindent(self,value=None):
336 335 """Set the autoindent flag, checking for readline support.
337 336
338 337 If called with no arguments, it acts as a toggle."""
339 338
340 339 if not self.has_readline:
341 340 if os.name == 'posix':
342 341 warn("The auto-indent feature requires the readline library")
343 342 self.autoindent = 0
344 343 return
345 344 if value is None:
346 345 self.autoindent = not self.autoindent
347 346 else:
348 347 self.autoindent = value
349 348
350 349 #-------------------------------------------------------------------------
351 350 # init_* methods called by __init__
352 351 #-------------------------------------------------------------------------
353 352
354 353 def init_ipython_dir(self, ipython_dir):
355 354 if ipython_dir is not None:
356 355 self.ipython_dir = ipython_dir
357 356 self.config.Global.ipython_dir = self.ipython_dir
358 357 return
359 358
360 359 if hasattr(self.config.Global, 'ipython_dir'):
361 360 self.ipython_dir = self.config.Global.ipython_dir
362 361 else:
363 362 self.ipython_dir = get_ipython_dir()
364 363
365 364 # All children can just read this
366 365 self.config.Global.ipython_dir = self.ipython_dir
367 366
368 367 def init_instance_attrs(self):
369 368 self.more = False
370 369
371 370 # command compiler
372 371 self.compile = codeop.CommandCompiler()
373 372
374 373 # User input buffers
375 374 # NOTE: these variables are slated for full removal, once we are 100%
376 375 # sure that the new execution logic is solid. We will delte runlines,
377 376 # push_line and these buffers, as all input will be managed by the
378 377 # frontends via an inputsplitter instance.
379 378 self.buffer = []
380 379 self.buffer_raw = []
381 380
382 381 # Make an empty namespace, which extension writers can rely on both
383 382 # existing and NEVER being used by ipython itself. This gives them a
384 383 # convenient location for storing additional information and state
385 384 # their extensions may require, without fear of collisions with other
386 385 # ipython names that may develop later.
387 386 self.meta = Struct()
388 387
389 388 # Object variable to store code object waiting execution. This is
390 389 # used mainly by the multithreaded shells, but it can come in handy in
391 390 # other situations. No need to use a Queue here, since it's a single
392 391 # item which gets cleared once run.
393 392 self.code_to_run = None
394 393
395 394 # Temporary files used for various purposes. Deleted at exit.
396 395 self.tempfiles = []
397 396
398 397 # Keep track of readline usage (later set by init_readline)
399 398 self.has_readline = False
400 399
401 400 # keep track of where we started running (mainly for crash post-mortem)
402 401 # This is not being used anywhere currently.
403 402 self.starting_dir = os.getcwd()
404 403
405 404 # Indentation management
406 405 self.indent_current_nsp = 0
407 406
408 407 def init_environment(self):
409 408 """Any changes we need to make to the user's environment."""
410 409 pass
411 410
412 411 def init_encoding(self):
413 412 # Get system encoding at startup time. Certain terminals (like Emacs
414 413 # under Win32 have it set to None, and we need to have a known valid
415 414 # encoding to use in the raw_input() method
416 415 try:
417 416 self.stdin_encoding = sys.stdin.encoding or 'ascii'
418 417 except AttributeError:
419 418 self.stdin_encoding = 'ascii'
420 419
421 420 def init_syntax_highlighting(self):
422 421 # Python source parser/formatter for syntax highlighting
423 422 pyformat = PyColorize.Parser().format
424 423 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
425 424
426 425 def init_pushd_popd_magic(self):
427 426 # for pushd/popd management
428 427 try:
429 428 self.home_dir = get_home_dir()
430 429 except HomeDirError, msg:
431 430 fatal(msg)
432 431
433 432 self.dir_stack = []
434 433
435 434 def init_logger(self):
436 435 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
437 436 logmode='rotate')
438 437
439 438 def init_logstart(self):
440 439 """Initialize logging in case it was requested at the command line.
441 440 """
442 441 if self.logappend:
443 442 self.magic_logstart(self.logappend + ' append')
444 443 elif self.logfile:
445 444 self.magic_logstart(self.logfile)
446 445 elif self.logstart:
447 446 self.magic_logstart()
448 447
449 448 def init_builtins(self):
450 449 self.builtin_trap = BuiltinTrap(shell=self)
451 450
452 451 def init_inspector(self):
453 452 # Object inspector
454 453 self.inspector = oinspect.Inspector(oinspect.InspectColors,
455 454 PyColorize.ANSICodeColors,
456 455 'NoColor',
457 456 self.object_info_string_level)
458 457
459 458 def init_io(self):
460 459 # This will just use sys.stdout and sys.stderr. If you want to
461 460 # override sys.stdout and sys.stderr themselves, you need to do that
462 461 # *before* instantiating this class, because Term holds onto
463 462 # references to the underlying streams.
464 463 if sys.platform == 'win32' and self.has_readline:
465 464 Term = io.IOTerm(cout=self.readline._outputfile,
466 465 cerr=self.readline._outputfile)
467 466 else:
468 467 Term = io.IOTerm()
469 468 io.Term = Term
470 469
471 470 def init_prompts(self):
472 471 # TODO: This is a pass for now because the prompts are managed inside
473 472 # the DisplayHook. Once there is a separate prompt manager, this
474 473 # will initialize that object and all prompt related information.
475 474 pass
476 475
477 476 def init_displayhook(self):
478 477 # Initialize displayhook, set in/out prompts and printing system
479 478 self.displayhook = self.displayhook_class(
480 479 shell=self,
481 480 cache_size=self.cache_size,
482 481 input_sep = self.separate_in,
483 482 output_sep = self.separate_out,
484 483 output_sep2 = self.separate_out2,
485 484 ps1 = self.prompt_in1,
486 485 ps2 = self.prompt_in2,
487 486 ps_out = self.prompt_out,
488 487 pad_left = self.prompts_pad_left
489 488 )
490 489 # This is a context manager that installs/revmoes the displayhook at
491 490 # the appropriate time.
492 491 self.display_trap = DisplayTrap(hook=self.displayhook)
493 492
494 493 def init_reload_doctest(self):
495 494 # Do a proper resetting of doctest, including the necessary displayhook
496 495 # monkeypatching
497 496 try:
498 497 doctest_reload()
499 498 except ImportError:
500 499 warn("doctest module does not exist.")
501 500
502 501 #-------------------------------------------------------------------------
503 502 # Things related to injections into the sys module
504 503 #-------------------------------------------------------------------------
505 504
506 505 def save_sys_module_state(self):
507 506 """Save the state of hooks in the sys module.
508 507
509 508 This has to be called after self.user_ns is created.
510 509 """
511 510 self._orig_sys_module_state = {}
512 511 self._orig_sys_module_state['stdin'] = sys.stdin
513 512 self._orig_sys_module_state['stdout'] = sys.stdout
514 513 self._orig_sys_module_state['stderr'] = sys.stderr
515 514 self._orig_sys_module_state['excepthook'] = sys.excepthook
516 515 try:
517 516 self._orig_sys_modules_main_name = self.user_ns['__name__']
518 517 except KeyError:
519 518 pass
520 519
521 520 def restore_sys_module_state(self):
522 521 """Restore the state of the sys module."""
523 522 try:
524 for k, v in self._orig_sys_module_state.items():
523 for k, v in self._orig_sys_module_state.iteritems():
525 524 setattr(sys, k, v)
526 525 except AttributeError:
527 526 pass
528 527 # Reset what what done in self.init_sys_modules
529 528 try:
530 529 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
531 530 except (AttributeError, KeyError):
532 531 pass
533 532
534 533 #-------------------------------------------------------------------------
535 534 # Things related to hooks
536 535 #-------------------------------------------------------------------------
537 536
538 537 def init_hooks(self):
539 538 # hooks holds pointers used for user-side customizations
540 539 self.hooks = Struct()
541 540
542 541 self.strdispatchers = {}
543 542
544 543 # Set all default hooks, defined in the IPython.hooks module.
545 544 hooks = IPython.core.hooks
546 545 for hook_name in hooks.__all__:
547 546 # default hooks have priority 100, i.e. low; user hooks should have
548 547 # 0-100 priority
549 548 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
550 549
551 550 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
552 551 """set_hook(name,hook) -> sets an internal IPython hook.
553 552
554 553 IPython exposes some of its internal API as user-modifiable hooks. By
555 554 adding your function to one of these hooks, you can modify IPython's
556 555 behavior to call at runtime your own routines."""
557 556
558 557 # At some point in the future, this should validate the hook before it
559 558 # accepts it. Probably at least check that the hook takes the number
560 559 # of args it's supposed to.
561 560
562 f = new.instancemethod(hook,self,self.__class__)
561 f = types.MethodType(hook,self)
563 562
564 563 # check if the hook is for strdispatcher first
565 564 if str_key is not None:
566 565 sdp = self.strdispatchers.get(name, StrDispatch())
567 566 sdp.add_s(str_key, f, priority )
568 567 self.strdispatchers[name] = sdp
569 568 return
570 569 if re_key is not None:
571 570 sdp = self.strdispatchers.get(name, StrDispatch())
572 571 sdp.add_re(re.compile(re_key), f, priority )
573 572 self.strdispatchers[name] = sdp
574 573 return
575 574
576 575 dp = getattr(self.hooks, name, None)
577 576 if name not in IPython.core.hooks.__all__:
578 577 print "Warning! Hook '%s' is not one of %s" % \
579 578 (name, IPython.core.hooks.__all__ )
580 579 if not dp:
581 580 dp = IPython.core.hooks.CommandChainDispatcher()
582 581
583 582 try:
584 583 dp.add(f,priority)
585 584 except AttributeError:
586 585 # it was not commandchain, plain old func - replace
587 586 dp = f
588 587
589 588 setattr(self.hooks,name, dp)
590 589
591 590 def register_post_execute(self, func):
592 591 """Register a function for calling after code execution.
593 592 """
594 593 if not callable(func):
595 594 raise ValueError('argument %s must be callable' % func)
596 595 self._post_execute.add(func)
597 596
598 597 #-------------------------------------------------------------------------
599 598 # Things related to the "main" module
600 599 #-------------------------------------------------------------------------
601 600
602 601 def new_main_mod(self,ns=None):
603 602 """Return a new 'main' module object for user code execution.
604 603 """
605 604 main_mod = self._user_main_module
606 605 init_fakemod_dict(main_mod,ns)
607 606 return main_mod
608 607
609 608 def cache_main_mod(self,ns,fname):
610 609 """Cache a main module's namespace.
611 610
612 611 When scripts are executed via %run, we must keep a reference to the
613 612 namespace of their __main__ module (a FakeModule instance) around so
614 613 that Python doesn't clear it, rendering objects defined therein
615 614 useless.
616 615
617 616 This method keeps said reference in a private dict, keyed by the
618 617 absolute path of the module object (which corresponds to the script
619 618 path). This way, for multiple executions of the same script we only
620 619 keep one copy of the namespace (the last one), thus preventing memory
621 620 leaks from old references while allowing the objects from the last
622 621 execution to be accessible.
623 622
624 623 Note: we can not allow the actual FakeModule instances to be deleted,
625 624 because of how Python tears down modules (it hard-sets all their
626 625 references to None without regard for reference counts). This method
627 626 must therefore make a *copy* of the given namespace, to allow the
628 627 original module's __dict__ to be cleared and reused.
629 628
630 629
631 630 Parameters
632 631 ----------
633 632 ns : a namespace (a dict, typically)
634 633
635 634 fname : str
636 635 Filename associated with the namespace.
637 636
638 637 Examples
639 638 --------
640 639
641 640 In [10]: import IPython
642 641
643 642 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
644 643
645 644 In [12]: IPython.__file__ in _ip._main_ns_cache
646 645 Out[12]: True
647 646 """
648 647 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
649 648
650 649 def clear_main_mod_cache(self):
651 650 """Clear the cache of main modules.
652 651
653 652 Mainly for use by utilities like %reset.
654 653
655 654 Examples
656 655 --------
657 656
658 657 In [15]: import IPython
659 658
660 659 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
661 660
662 661 In [17]: len(_ip._main_ns_cache) > 0
663 662 Out[17]: True
664 663
665 664 In [18]: _ip.clear_main_mod_cache()
666 665
667 666 In [19]: len(_ip._main_ns_cache) == 0
668 667 Out[19]: True
669 668 """
670 669 self._main_ns_cache.clear()
671 670
672 671 #-------------------------------------------------------------------------
673 672 # Things related to debugging
674 673 #-------------------------------------------------------------------------
675 674
676 675 def init_pdb(self):
677 676 # Set calling of pdb on exceptions
678 677 # self.call_pdb is a property
679 678 self.call_pdb = self.pdb
680 679
681 680 def _get_call_pdb(self):
682 681 return self._call_pdb
683 682
684 683 def _set_call_pdb(self,val):
685 684
686 685 if val not in (0,1,False,True):
687 686 raise ValueError,'new call_pdb value must be boolean'
688 687
689 688 # store value in instance
690 689 self._call_pdb = val
691 690
692 691 # notify the actual exception handlers
693 692 self.InteractiveTB.call_pdb = val
694 693
695 694 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
696 695 'Control auto-activation of pdb at exceptions')
697 696
698 697 def debugger(self,force=False):
699 698 """Call the pydb/pdb debugger.
700 699
701 700 Keywords:
702 701
703 702 - force(False): by default, this routine checks the instance call_pdb
704 703 flag and does not actually invoke the debugger if the flag is false.
705 704 The 'force' option forces the debugger to activate even if the flag
706 705 is false.
707 706 """
708 707
709 708 if not (force or self.call_pdb):
710 709 return
711 710
712 711 if not hasattr(sys,'last_traceback'):
713 712 error('No traceback has been produced, nothing to debug.')
714 713 return
715 714
716 715 # use pydb if available
717 716 if debugger.has_pydb:
718 717 from pydb import pm
719 718 else:
720 719 # fallback to our internal debugger
721 720 pm = lambda : self.InteractiveTB.debugger(force=True)
722 721 self.history_saving_wrapper(pm)()
723 722
724 723 #-------------------------------------------------------------------------
725 724 # Things related to IPython's various namespaces
726 725 #-------------------------------------------------------------------------
727 726
728 727 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
729 728 # Create the namespace where the user will operate. user_ns is
730 729 # normally the only one used, and it is passed to the exec calls as
731 730 # the locals argument. But we do carry a user_global_ns namespace
732 731 # given as the exec 'globals' argument, This is useful in embedding
733 732 # situations where the ipython shell opens in a context where the
734 733 # distinction between locals and globals is meaningful. For
735 734 # non-embedded contexts, it is just the same object as the user_ns dict.
736 735
737 736 # FIXME. For some strange reason, __builtins__ is showing up at user
738 737 # level as a dict instead of a module. This is a manual fix, but I
739 738 # should really track down where the problem is coming from. Alex
740 739 # Schmolck reported this problem first.
741 740
742 741 # A useful post by Alex Martelli on this topic:
743 742 # Re: inconsistent value from __builtins__
744 743 # Von: Alex Martelli <aleaxit@yahoo.com>
745 744 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
746 745 # Gruppen: comp.lang.python
747 746
748 747 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
749 748 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
750 749 # > <type 'dict'>
751 750 # > >>> print type(__builtins__)
752 751 # > <type 'module'>
753 752 # > Is this difference in return value intentional?
754 753
755 754 # Well, it's documented that '__builtins__' can be either a dictionary
756 755 # or a module, and it's been that way for a long time. Whether it's
757 756 # intentional (or sensible), I don't know. In any case, the idea is
758 757 # that if you need to access the built-in namespace directly, you
759 758 # should start with "import __builtin__" (note, no 's') which will
760 759 # definitely give you a module. Yeah, it's somewhat confusing:-(.
761 760
762 761 # These routines return properly built dicts as needed by the rest of
763 762 # the code, and can also be used by extension writers to generate
764 763 # properly initialized namespaces.
765 764 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
766 765 user_global_ns)
767 766
768 767 # Assign namespaces
769 768 # This is the namespace where all normal user variables live
770 769 self.user_ns = user_ns
771 770 self.user_global_ns = user_global_ns
772 771
773 772 # An auxiliary namespace that checks what parts of the user_ns were
774 773 # loaded at startup, so we can list later only variables defined in
775 774 # actual interactive use. Since it is always a subset of user_ns, it
776 775 # doesn't need to be separately tracked in the ns_table.
777 776 self.user_ns_hidden = {}
778 777
779 778 # A namespace to keep track of internal data structures to prevent
780 779 # them from cluttering user-visible stuff. Will be updated later
781 780 self.internal_ns = {}
782 781
783 782 # Now that FakeModule produces a real module, we've run into a nasty
784 783 # problem: after script execution (via %run), the module where the user
785 784 # code ran is deleted. Now that this object is a true module (needed
786 785 # so docetst and other tools work correctly), the Python module
787 786 # teardown mechanism runs over it, and sets to None every variable
788 787 # present in that module. Top-level references to objects from the
789 788 # script survive, because the user_ns is updated with them. However,
790 789 # calling functions defined in the script that use other things from
791 790 # the script will fail, because the function's closure had references
792 791 # to the original objects, which are now all None. So we must protect
793 792 # these modules from deletion by keeping a cache.
794 793 #
795 794 # To avoid keeping stale modules around (we only need the one from the
796 795 # last run), we use a dict keyed with the full path to the script, so
797 796 # only the last version of the module is held in the cache. Note,
798 797 # however, that we must cache the module *namespace contents* (their
799 798 # __dict__). Because if we try to cache the actual modules, old ones
800 799 # (uncached) could be destroyed while still holding references (such as
801 800 # those held by GUI objects that tend to be long-lived)>
802 801 #
803 802 # The %reset command will flush this cache. See the cache_main_mod()
804 803 # and clear_main_mod_cache() methods for details on use.
805 804
806 805 # This is the cache used for 'main' namespaces
807 806 self._main_ns_cache = {}
808 807 # And this is the single instance of FakeModule whose __dict__ we keep
809 808 # copying and clearing for reuse on each %run
810 809 self._user_main_module = FakeModule()
811 810
812 811 # A table holding all the namespaces IPython deals with, so that
813 812 # introspection facilities can search easily.
814 813 self.ns_table = {'user':user_ns,
815 814 'user_global':user_global_ns,
816 815 'internal':self.internal_ns,
817 816 'builtin':__builtin__.__dict__
818 817 }
819 818
820 819 # Similarly, track all namespaces where references can be held and that
821 820 # we can safely clear (so it can NOT include builtin). This one can be
822 821 # a simple list. Note that the main execution namespaces, user_ns and
823 822 # user_global_ns, can NOT be listed here, as clearing them blindly
824 823 # causes errors in object __del__ methods. Instead, the reset() method
825 824 # clears them manually and carefully.
826 825 self.ns_refs_table = [ self.user_ns_hidden,
827 826 self.internal_ns, self._main_ns_cache ]
828 827
829 828 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
830 829 """Return a valid local and global user interactive namespaces.
831 830
832 831 This builds a dict with the minimal information needed to operate as a
833 832 valid IPython user namespace, which you can pass to the various
834 833 embedding classes in ipython. The default implementation returns the
835 834 same dict for both the locals and the globals to allow functions to
836 835 refer to variables in the namespace. Customized implementations can
837 836 return different dicts. The locals dictionary can actually be anything
838 837 following the basic mapping protocol of a dict, but the globals dict
839 838 must be a true dict, not even a subclass. It is recommended that any
840 839 custom object for the locals namespace synchronize with the globals
841 840 dict somehow.
842 841
843 842 Raises TypeError if the provided globals namespace is not a true dict.
844 843
845 844 Parameters
846 845 ----------
847 846 user_ns : dict-like, optional
848 847 The current user namespace. The items in this namespace should
849 848 be included in the output. If None, an appropriate blank
850 849 namespace should be created.
851 850 user_global_ns : dict, optional
852 851 The current user global namespace. The items in this namespace
853 852 should be included in the output. If None, an appropriate
854 853 blank namespace should be created.
855 854
856 855 Returns
857 856 -------
858 857 A pair of dictionary-like object to be used as the local namespace
859 858 of the interpreter and a dict to be used as the global namespace.
860 859 """
861 860
862 861
863 862 # We must ensure that __builtin__ (without the final 's') is always
864 863 # available and pointing to the __builtin__ *module*. For more details:
865 864 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
866 865
867 866 if user_ns is None:
868 867 # Set __name__ to __main__ to better match the behavior of the
869 868 # normal interpreter.
870 869 user_ns = {'__name__' :'__main__',
871 870 '__builtin__' : __builtin__,
872 871 '__builtins__' : __builtin__,
873 872 }
874 873 else:
875 874 user_ns.setdefault('__name__','__main__')
876 875 user_ns.setdefault('__builtin__',__builtin__)
877 876 user_ns.setdefault('__builtins__',__builtin__)
878 877
879 878 if user_global_ns is None:
880 879 user_global_ns = user_ns
881 880 if type(user_global_ns) is not dict:
882 881 raise TypeError("user_global_ns must be a true dict; got %r"
883 882 % type(user_global_ns))
884 883
885 884 return user_ns, user_global_ns
886 885
887 886 def init_sys_modules(self):
888 887 # We need to insert into sys.modules something that looks like a
889 888 # module but which accesses the IPython namespace, for shelve and
890 889 # pickle to work interactively. Normally they rely on getting
891 890 # everything out of __main__, but for embedding purposes each IPython
892 891 # instance has its own private namespace, so we can't go shoving
893 892 # everything into __main__.
894 893
895 894 # note, however, that we should only do this for non-embedded
896 895 # ipythons, which really mimic the __main__.__dict__ with their own
897 896 # namespace. Embedded instances, on the other hand, should not do
898 897 # this because they need to manage the user local/global namespaces
899 898 # only, but they live within a 'normal' __main__ (meaning, they
900 899 # shouldn't overtake the execution environment of the script they're
901 900 # embedded in).
902 901
903 902 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
904 903
905 904 try:
906 905 main_name = self.user_ns['__name__']
907 906 except KeyError:
908 907 raise KeyError('user_ns dictionary MUST have a "__name__" key')
909 908 else:
910 909 sys.modules[main_name] = FakeModule(self.user_ns)
911 910
912 911 def init_user_ns(self):
913 912 """Initialize all user-visible namespaces to their minimum defaults.
914 913
915 914 Certain history lists are also initialized here, as they effectively
916 915 act as user namespaces.
917 916
918 917 Notes
919 918 -----
920 919 All data structures here are only filled in, they are NOT reset by this
921 920 method. If they were not empty before, data will simply be added to
922 921 therm.
923 922 """
924 923 # This function works in two parts: first we put a few things in
925 924 # user_ns, and we sync that contents into user_ns_hidden so that these
926 925 # initial variables aren't shown by %who. After the sync, we add the
927 926 # rest of what we *do* want the user to see with %who even on a new
928 927 # session (probably nothing, so theye really only see their own stuff)
929 928
930 929 # The user dict must *always* have a __builtin__ reference to the
931 930 # Python standard __builtin__ namespace, which must be imported.
932 931 # This is so that certain operations in prompt evaluation can be
933 932 # reliably executed with builtins. Note that we can NOT use
934 933 # __builtins__ (note the 's'), because that can either be a dict or a
935 934 # module, and can even mutate at runtime, depending on the context
936 935 # (Python makes no guarantees on it). In contrast, __builtin__ is
937 936 # always a module object, though it must be explicitly imported.
938 937
939 938 # For more details:
940 939 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
941 940 ns = dict(__builtin__ = __builtin__)
942 941
943 942 # Put 'help' in the user namespace
944 943 try:
945 944 from site import _Helper
946 945 ns['help'] = _Helper()
947 946 except ImportError:
948 947 warn('help() not available - check site.py')
949 948
950 949 # make global variables for user access to the histories
951 950 ns['_ih'] = self.input_hist
952 951 ns['_oh'] = self.output_hist
953 952 ns['_dh'] = self.dir_hist
954 953
955 954 ns['_sh'] = shadowns
956 955
957 956 # user aliases to input and output histories. These shouldn't show up
958 957 # in %who, as they can have very large reprs.
959 958 ns['In'] = self.input_hist
960 959 ns['Out'] = self.output_hist
961 960
962 961 # Store myself as the public api!!!
963 962 ns['get_ipython'] = self.get_ipython
964 963
965 964 # Sync what we've added so far to user_ns_hidden so these aren't seen
966 965 # by %who
967 966 self.user_ns_hidden.update(ns)
968 967
969 968 # Anything put into ns now would show up in %who. Think twice before
970 969 # putting anything here, as we really want %who to show the user their
971 970 # stuff, not our variables.
972 971
973 972 # Finally, update the real user's namespace
974 973 self.user_ns.update(ns)
975 974
976 975 def reset(self):
977 976 """Clear all internal namespaces.
978 977
979 978 Note that this is much more aggressive than %reset, since it clears
980 979 fully all namespaces, as well as all input/output lists.
981 980 """
982 981 # Clear histories
983 982 self.history_manager.reset()
984 983
985 984 # Reset counter used to index all histories
986 985 self.execution_count = 0
987 986
988 987 # Restore the user namespaces to minimal usability
989 988 for ns in self.ns_refs_table:
990 989 ns.clear()
991 990
992 991 # The main execution namespaces must be cleared very carefully,
993 992 # skipping the deletion of the builtin-related keys, because doing so
994 993 # would cause errors in many object's __del__ methods.
995 994 for ns in [self.user_ns, self.user_global_ns]:
996 995 drop_keys = set(ns.keys())
997 996 drop_keys.discard('__builtin__')
998 997 drop_keys.discard('__builtins__')
999 998 for k in drop_keys:
1000 999 del ns[k]
1001 1000
1002 1001 # Restore the user namespaces to minimal usability
1003 1002 self.init_user_ns()
1004 1003
1005 1004 # Restore the default and user aliases
1006 1005 self.alias_manager.clear_aliases()
1007 1006 self.alias_manager.init_aliases()
1008 1007
1009 1008 def reset_selective(self, regex=None):
1010 1009 """Clear selective variables from internal namespaces based on a
1011 1010 specified regular expression.
1012 1011
1013 1012 Parameters
1014 1013 ----------
1015 1014 regex : string or compiled pattern, optional
1016 1015 A regular expression pattern that will be used in searching
1017 1016 variable names in the users namespaces.
1018 1017 """
1019 1018 if regex is not None:
1020 1019 try:
1021 1020 m = re.compile(regex)
1022 1021 except TypeError:
1023 1022 raise TypeError('regex must be a string or compiled pattern')
1024 1023 # Search for keys in each namespace that match the given regex
1025 1024 # If a match is found, delete the key/value pair.
1026 1025 for ns in self.ns_refs_table:
1027 1026 for var in ns:
1028 1027 if m.search(var):
1029 1028 del ns[var]
1030 1029
1031 1030 def push(self, variables, interactive=True):
1032 1031 """Inject a group of variables into the IPython user namespace.
1033 1032
1034 1033 Parameters
1035 1034 ----------
1036 1035 variables : dict, str or list/tuple of str
1037 1036 The variables to inject into the user's namespace. If a dict, a
1038 1037 simple update is done. If a str, the string is assumed to have
1039 1038 variable names separated by spaces. A list/tuple of str can also
1040 1039 be used to give the variable names. If just the variable names are
1041 1040 give (list/tuple/str) then the variable values looked up in the
1042 1041 callers frame.
1043 1042 interactive : bool
1044 1043 If True (default), the variables will be listed with the ``who``
1045 1044 magic.
1046 1045 """
1047 1046 vdict = None
1048 1047
1049 1048 # We need a dict of name/value pairs to do namespace updates.
1050 1049 if isinstance(variables, dict):
1051 1050 vdict = variables
1052 1051 elif isinstance(variables, (basestring, list, tuple)):
1053 1052 if isinstance(variables, basestring):
1054 1053 vlist = variables.split()
1055 1054 else:
1056 1055 vlist = variables
1057 1056 vdict = {}
1058 1057 cf = sys._getframe(1)
1059 1058 for name in vlist:
1060 1059 try:
1061 1060 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1062 1061 except:
1063 1062 print ('Could not get variable %s from %s' %
1064 1063 (name,cf.f_code.co_name))
1065 1064 else:
1066 1065 raise ValueError('variables must be a dict/str/list/tuple')
1067 1066
1068 1067 # Propagate variables to user namespace
1069 1068 self.user_ns.update(vdict)
1070 1069
1071 1070 # And configure interactive visibility
1072 1071 config_ns = self.user_ns_hidden
1073 1072 if interactive:
1074 1073 for name, val in vdict.iteritems():
1075 1074 config_ns.pop(name, None)
1076 1075 else:
1077 1076 for name,val in vdict.iteritems():
1078 1077 config_ns[name] = val
1079 1078
1080 1079 #-------------------------------------------------------------------------
1081 1080 # Things related to object introspection
1082 1081 #-------------------------------------------------------------------------
1083 1082
1084 1083 def _ofind(self, oname, namespaces=None):
1085 1084 """Find an object in the available namespaces.
1086 1085
1087 1086 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1088 1087
1089 1088 Has special code to detect magic functions.
1090 1089 """
1091 1090 #oname = oname.strip()
1092 1091 #print '1- oname: <%r>' % oname # dbg
1093 1092 try:
1094 1093 oname = oname.strip().encode('ascii')
1095 1094 #print '2- oname: <%r>' % oname # dbg
1096 1095 except UnicodeEncodeError:
1097 1096 print 'Python identifiers can only contain ascii characters.'
1098 1097 return dict(found=False)
1099 1098
1100 1099 alias_ns = None
1101 1100 if namespaces is None:
1102 1101 # Namespaces to search in:
1103 1102 # Put them in a list. The order is important so that we
1104 1103 # find things in the same order that Python finds them.
1105 1104 namespaces = [ ('Interactive', self.user_ns),
1106 1105 ('IPython internal', self.internal_ns),
1107 1106 ('Python builtin', __builtin__.__dict__),
1108 1107 ('Alias', self.alias_manager.alias_table),
1109 1108 ]
1110 1109 alias_ns = self.alias_manager.alias_table
1111 1110
1112 1111 # initialize results to 'null'
1113 1112 found = False; obj = None; ospace = None; ds = None;
1114 1113 ismagic = False; isalias = False; parent = None
1115 1114
1116 1115 # We need to special-case 'print', which as of python2.6 registers as a
1117 1116 # function but should only be treated as one if print_function was
1118 1117 # loaded with a future import. In this case, just bail.
1119 1118 if (oname == 'print' and not (self.compile.compiler.flags &
1120 1119 __future__.CO_FUTURE_PRINT_FUNCTION)):
1121 1120 return {'found':found, 'obj':obj, 'namespace':ospace,
1122 1121 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1123 1122
1124 1123 # Look for the given name by splitting it in parts. If the head is
1125 1124 # found, then we look for all the remaining parts as members, and only
1126 1125 # declare success if we can find them all.
1127 1126 oname_parts = oname.split('.')
1128 1127 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1129 1128 for nsname,ns in namespaces:
1130 1129 try:
1131 1130 obj = ns[oname_head]
1132 1131 except KeyError:
1133 1132 continue
1134 1133 else:
1135 1134 #print 'oname_rest:', oname_rest # dbg
1136 1135 for part in oname_rest:
1137 1136 try:
1138 1137 parent = obj
1139 1138 obj = getattr(obj,part)
1140 1139 except:
1141 1140 # Blanket except b/c some badly implemented objects
1142 1141 # allow __getattr__ to raise exceptions other than
1143 1142 # AttributeError, which then crashes IPython.
1144 1143 break
1145 1144 else:
1146 1145 # If we finish the for loop (no break), we got all members
1147 1146 found = True
1148 1147 ospace = nsname
1149 1148 if ns == alias_ns:
1150 1149 isalias = True
1151 1150 break # namespace loop
1152 1151
1153 1152 # Try to see if it's magic
1154 1153 if not found:
1155 1154 if oname.startswith(ESC_MAGIC):
1156 1155 oname = oname[1:]
1157 1156 obj = getattr(self,'magic_'+oname,None)
1158 1157 if obj is not None:
1159 1158 found = True
1160 1159 ospace = 'IPython internal'
1161 1160 ismagic = True
1162 1161
1163 1162 # Last try: special-case some literals like '', [], {}, etc:
1164 1163 if not found and oname_head in ["''",'""','[]','{}','()']:
1165 1164 obj = eval(oname_head)
1166 1165 found = True
1167 1166 ospace = 'Interactive'
1168 1167
1169 1168 return {'found':found, 'obj':obj, 'namespace':ospace,
1170 1169 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1171 1170
1172 1171 def _ofind_property(self, oname, info):
1173 1172 """Second part of object finding, to look for property details."""
1174 1173 if info.found:
1175 1174 # Get the docstring of the class property if it exists.
1176 1175 path = oname.split('.')
1177 1176 root = '.'.join(path[:-1])
1178 1177 if info.parent is not None:
1179 1178 try:
1180 1179 target = getattr(info.parent, '__class__')
1181 1180 # The object belongs to a class instance.
1182 1181 try:
1183 1182 target = getattr(target, path[-1])
1184 1183 # The class defines the object.
1185 1184 if isinstance(target, property):
1186 1185 oname = root + '.__class__.' + path[-1]
1187 1186 info = Struct(self._ofind(oname))
1188 1187 except AttributeError: pass
1189 1188 except AttributeError: pass
1190 1189
1191 1190 # We return either the new info or the unmodified input if the object
1192 1191 # hadn't been found
1193 1192 return info
1194 1193
1195 1194 def _object_find(self, oname, namespaces=None):
1196 1195 """Find an object and return a struct with info about it."""
1197 1196 inf = Struct(self._ofind(oname, namespaces))
1198 1197 return Struct(self._ofind_property(oname, inf))
1199 1198
1200 1199 def _inspect(self, meth, oname, namespaces=None, **kw):
1201 1200 """Generic interface to the inspector system.
1202 1201
1203 1202 This function is meant to be called by pdef, pdoc & friends."""
1204 1203 info = self._object_find(oname)
1205 1204 if info.found:
1206 1205 pmethod = getattr(self.inspector, meth)
1207 1206 formatter = format_screen if info.ismagic else None
1208 1207 if meth == 'pdoc':
1209 1208 pmethod(info.obj, oname, formatter)
1210 1209 elif meth == 'pinfo':
1211 1210 pmethod(info.obj, oname, formatter, info, **kw)
1212 1211 else:
1213 1212 pmethod(info.obj, oname)
1214 1213 else:
1215 1214 print 'Object `%s` not found.' % oname
1216 1215 return 'not found' # so callers can take other action
1217 1216
1218 1217 def object_inspect(self, oname):
1219 1218 info = self._object_find(oname)
1220 1219 if info.found:
1221 1220 return self.inspector.info(info.obj, oname, info=info)
1222 1221 else:
1223 1222 return oinspect.object_info(name=oname, found=False)
1224 1223
1225 1224 #-------------------------------------------------------------------------
1226 1225 # Things related to history management
1227 1226 #-------------------------------------------------------------------------
1228 1227
1229 1228 def init_history(self):
1230 1229 self.history_manager = HistoryManager(shell=self)
1231 1230
1232 1231 def save_hist(self):
1233 1232 """Save input history to a file (via readline library)."""
1234 1233 self.history_manager.save_hist()
1235 1234
1236 1235 # For backwards compatibility
1237 1236 savehist = save_hist
1238 1237
1239 1238 def reload_hist(self):
1240 1239 """Reload the input history from disk file."""
1241 1240 self.history_manager.reload_hist()
1242 1241
1243 1242 # For backwards compatibility
1244 1243 reloadhist = reload_hist
1245 1244
1246 1245 def history_saving_wrapper(self, func):
1247 1246 """ Wrap func for readline history saving
1248 1247
1249 1248 Convert func into callable that saves & restores
1250 1249 history around the call """
1251 1250
1252 1251 if self.has_readline:
1253 1252 from IPython.utils import rlineimpl as readline
1254 1253 else:
1255 1254 return func
1256 1255
1257 1256 def wrapper():
1258 1257 self.save_hist()
1259 1258 try:
1260 1259 func()
1261 1260 finally:
1262 1261 readline.read_history_file(self.histfile)
1263 1262 return wrapper
1264 1263
1265 1264 #-------------------------------------------------------------------------
1266 1265 # Things related to exception handling and tracebacks (not debugging)
1267 1266 #-------------------------------------------------------------------------
1268 1267
1269 1268 def init_traceback_handlers(self, custom_exceptions):
1270 1269 # Syntax error handler.
1271 1270 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1272 1271
1273 1272 # The interactive one is initialized with an offset, meaning we always
1274 1273 # want to remove the topmost item in the traceback, which is our own
1275 1274 # internal code. Valid modes: ['Plain','Context','Verbose']
1276 1275 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1277 1276 color_scheme='NoColor',
1278 1277 tb_offset = 1)
1279 1278
1280 1279 # The instance will store a pointer to the system-wide exception hook,
1281 1280 # so that runtime code (such as magics) can access it. This is because
1282 1281 # during the read-eval loop, it may get temporarily overwritten.
1283 1282 self.sys_excepthook = sys.excepthook
1284 1283
1285 1284 # and add any custom exception handlers the user may have specified
1286 1285 self.set_custom_exc(*custom_exceptions)
1287 1286
1288 1287 # Set the exception mode
1289 1288 self.InteractiveTB.set_mode(mode=self.xmode)
1290 1289
1291 1290 def set_custom_exc(self, exc_tuple, handler):
1292 1291 """set_custom_exc(exc_tuple,handler)
1293 1292
1294 1293 Set a custom exception handler, which will be called if any of the
1295 1294 exceptions in exc_tuple occur in the mainloop (specifically, in the
1296 1295 run_code() method.
1297 1296
1298 1297 Inputs:
1299 1298
1300 1299 - exc_tuple: a *tuple* of valid exceptions to call the defined
1301 1300 handler for. It is very important that you use a tuple, and NOT A
1302 1301 LIST here, because of the way Python's except statement works. If
1303 1302 you only want to trap a single exception, use a singleton tuple:
1304 1303
1305 1304 exc_tuple == (MyCustomException,)
1306 1305
1307 1306 - handler: this must be defined as a function with the following
1308 1307 basic interface::
1309 1308
1310 1309 def my_handler(self, etype, value, tb, tb_offset=None)
1311 1310 ...
1312 1311 # The return value must be
1313 1312 return structured_traceback
1314 1313
1315 This will be made into an instance method (via new.instancemethod)
1314 This will be made into an instance method (via types.MethodType)
1316 1315 of IPython itself, and it will be called if any of the exceptions
1317 1316 listed in the exc_tuple are caught. If the handler is None, an
1318 1317 internal basic one is used, which just prints basic info.
1319 1318
1320 1319 WARNING: by putting in your own exception handler into IPython's main
1321 1320 execution loop, you run a very good chance of nasty crashes. This
1322 1321 facility should only be used if you really know what you are doing."""
1323 1322
1324 1323 assert type(exc_tuple)==type(()) , \
1325 1324 "The custom exceptions must be given AS A TUPLE."
1326 1325
1327 1326 def dummy_handler(self,etype,value,tb):
1328 1327 print '*** Simple custom exception handler ***'
1329 1328 print 'Exception type :',etype
1330 1329 print 'Exception value:',value
1331 1330 print 'Traceback :',tb
1332 1331 print 'Source code :','\n'.join(self.buffer)
1333 1332
1334 1333 if handler is None: handler = dummy_handler
1335 1334
1336 self.CustomTB = new.instancemethod(handler,self,self.__class__)
1335 self.CustomTB = types.MethodType(handler,self)
1337 1336 self.custom_exceptions = exc_tuple
1338 1337
1339 1338 def excepthook(self, etype, value, tb):
1340 1339 """One more defense for GUI apps that call sys.excepthook.
1341 1340
1342 1341 GUI frameworks like wxPython trap exceptions and call
1343 1342 sys.excepthook themselves. I guess this is a feature that
1344 1343 enables them to keep running after exceptions that would
1345 1344 otherwise kill their mainloop. This is a bother for IPython
1346 1345 which excepts to catch all of the program exceptions with a try:
1347 1346 except: statement.
1348 1347
1349 1348 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1350 1349 any app directly invokes sys.excepthook, it will look to the user like
1351 1350 IPython crashed. In order to work around this, we can disable the
1352 1351 CrashHandler and replace it with this excepthook instead, which prints a
1353 1352 regular traceback using our InteractiveTB. In this fashion, apps which
1354 1353 call sys.excepthook will generate a regular-looking exception from
1355 1354 IPython, and the CrashHandler will only be triggered by real IPython
1356 1355 crashes.
1357 1356
1358 1357 This hook should be used sparingly, only in places which are not likely
1359 1358 to be true IPython errors.
1360 1359 """
1361 1360 self.showtraceback((etype,value,tb),tb_offset=0)
1362 1361
1363 1362 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1364 1363 exception_only=False):
1365 1364 """Display the exception that just occurred.
1366 1365
1367 1366 If nothing is known about the exception, this is the method which
1368 1367 should be used throughout the code for presenting user tracebacks,
1369 1368 rather than directly invoking the InteractiveTB object.
1370 1369
1371 1370 A specific showsyntaxerror() also exists, but this method can take
1372 1371 care of calling it if needed, so unless you are explicitly catching a
1373 1372 SyntaxError exception, don't try to analyze the stack manually and
1374 1373 simply call this method."""
1375 1374
1376 1375 try:
1377 1376 if exc_tuple is None:
1378 1377 etype, value, tb = sys.exc_info()
1379 1378 else:
1380 1379 etype, value, tb = exc_tuple
1381 1380
1382 1381 if etype is None:
1383 1382 if hasattr(sys, 'last_type'):
1384 1383 etype, value, tb = sys.last_type, sys.last_value, \
1385 1384 sys.last_traceback
1386 1385 else:
1387 1386 self.write_err('No traceback available to show.\n')
1388 1387 return
1389 1388
1390 1389 if etype is SyntaxError:
1391 1390 # Though this won't be called by syntax errors in the input
1392 1391 # line, there may be SyntaxError cases whith imported code.
1393 1392 self.showsyntaxerror(filename)
1394 1393 elif etype is UsageError:
1395 1394 print "UsageError:", value
1396 1395 else:
1397 1396 # WARNING: these variables are somewhat deprecated and not
1398 1397 # necessarily safe to use in a threaded environment, but tools
1399 1398 # like pdb depend on their existence, so let's set them. If we
1400 1399 # find problems in the field, we'll need to revisit their use.
1401 1400 sys.last_type = etype
1402 1401 sys.last_value = value
1403 1402 sys.last_traceback = tb
1404 1403
1405 1404 if etype in self.custom_exceptions:
1406 1405 # FIXME: Old custom traceback objects may just return a
1407 1406 # string, in that case we just put it into a list
1408 1407 stb = self.CustomTB(etype, value, tb, tb_offset)
1409 1408 if isinstance(ctb, basestring):
1410 1409 stb = [stb]
1411 1410 else:
1412 1411 if exception_only:
1413 1412 stb = ['An exception has occurred, use %tb to see '
1414 1413 'the full traceback.\n']
1415 1414 stb.extend(self.InteractiveTB.get_exception_only(etype,
1416 1415 value))
1417 1416 else:
1418 1417 stb = self.InteractiveTB.structured_traceback(etype,
1419 1418 value, tb, tb_offset=tb_offset)
1420 1419 # FIXME: the pdb calling should be done by us, not by
1421 1420 # the code computing the traceback.
1422 1421 if self.InteractiveTB.call_pdb:
1423 1422 # pdb mucks up readline, fix it back
1424 1423 self.set_readline_completer()
1425 1424
1426 1425 # Actually show the traceback
1427 1426 self._showtraceback(etype, value, stb)
1428 1427
1429 1428 except KeyboardInterrupt:
1430 1429 self.write_err("\nKeyboardInterrupt\n")
1431 1430
1432 1431 def _showtraceback(self, etype, evalue, stb):
1433 1432 """Actually show a traceback.
1434 1433
1435 1434 Subclasses may override this method to put the traceback on a different
1436 1435 place, like a side channel.
1437 1436 """
1438 1437 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1439 1438
1440 1439 def showsyntaxerror(self, filename=None):
1441 1440 """Display the syntax error that just occurred.
1442 1441
1443 1442 This doesn't display a stack trace because there isn't one.
1444 1443
1445 1444 If a filename is given, it is stuffed in the exception instead
1446 1445 of what was there before (because Python's parser always uses
1447 1446 "<string>" when reading from a string).
1448 1447 """
1449 1448 etype, value, last_traceback = sys.exc_info()
1450 1449
1451 1450 # See note about these variables in showtraceback() above
1452 1451 sys.last_type = etype
1453 1452 sys.last_value = value
1454 1453 sys.last_traceback = last_traceback
1455 1454
1456 1455 if filename and etype is SyntaxError:
1457 1456 # Work hard to stuff the correct filename in the exception
1458 1457 try:
1459 1458 msg, (dummy_filename, lineno, offset, line) = value
1460 1459 except:
1461 1460 # Not the format we expect; leave it alone
1462 1461 pass
1463 1462 else:
1464 1463 # Stuff in the right filename
1465 1464 try:
1466 1465 # Assume SyntaxError is a class exception
1467 1466 value = SyntaxError(msg, (filename, lineno, offset, line))
1468 1467 except:
1469 1468 # If that failed, assume SyntaxError is a string
1470 1469 value = msg, (filename, lineno, offset, line)
1471 1470 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1472 1471 self._showtraceback(etype, value, stb)
1473 1472
1474 1473 #-------------------------------------------------------------------------
1475 1474 # Things related to readline
1476 1475 #-------------------------------------------------------------------------
1477 1476
1478 1477 def init_readline(self):
1479 1478 """Command history completion/saving/reloading."""
1480 1479
1481 1480 if self.readline_use:
1482 1481 import IPython.utils.rlineimpl as readline
1483 1482
1484 1483 self.rl_next_input = None
1485 1484 self.rl_do_indent = False
1486 1485
1487 1486 if not self.readline_use or not readline.have_readline:
1488 1487 self.has_readline = False
1489 1488 self.readline = None
1490 1489 # Set a number of methods that depend on readline to be no-op
1491 1490 self.save_hist = no_op
1492 1491 self.reload_hist = no_op
1493 1492 self.set_readline_completer = no_op
1494 1493 self.set_custom_completer = no_op
1495 1494 self.set_completer_frame = no_op
1496 1495 warn('Readline services not available or not loaded.')
1497 1496 else:
1498 1497 self.has_readline = True
1499 1498 self.readline = readline
1500 1499 sys.modules['readline'] = readline
1501 1500
1502 1501 # Platform-specific configuration
1503 1502 if os.name == 'nt':
1504 1503 # FIXME - check with Frederick to see if we can harmonize
1505 1504 # naming conventions with pyreadline to avoid this
1506 1505 # platform-dependent check
1507 1506 self.readline_startup_hook = readline.set_pre_input_hook
1508 1507 else:
1509 1508 self.readline_startup_hook = readline.set_startup_hook
1510 1509
1511 1510 # Load user's initrc file (readline config)
1512 1511 # Or if libedit is used, load editrc.
1513 1512 inputrc_name = os.environ.get('INPUTRC')
1514 1513 if inputrc_name is None:
1515 1514 home_dir = get_home_dir()
1516 1515 if home_dir is not None:
1517 1516 inputrc_name = '.inputrc'
1518 1517 if readline.uses_libedit:
1519 1518 inputrc_name = '.editrc'
1520 1519 inputrc_name = os.path.join(home_dir, inputrc_name)
1521 1520 if os.path.isfile(inputrc_name):
1522 1521 try:
1523 1522 readline.read_init_file(inputrc_name)
1524 1523 except:
1525 1524 warn('Problems reading readline initialization file <%s>'
1526 1525 % inputrc_name)
1527 1526
1528 1527 # Configure readline according to user's prefs
1529 1528 # This is only done if GNU readline is being used. If libedit
1530 1529 # is being used (as on Leopard) the readline config is
1531 1530 # not run as the syntax for libedit is different.
1532 1531 if not readline.uses_libedit:
1533 1532 for rlcommand in self.readline_parse_and_bind:
1534 1533 #print "loading rl:",rlcommand # dbg
1535 1534 readline.parse_and_bind(rlcommand)
1536 1535
1537 1536 # Remove some chars from the delimiters list. If we encounter
1538 1537 # unicode chars, discard them.
1539 1538 delims = readline.get_completer_delims().encode("ascii", "ignore")
1540 1539 delims = delims.translate(string._idmap,
1541 1540 self.readline_remove_delims)
1542 1541 delims = delims.replace(ESC_MAGIC, '')
1543 1542 readline.set_completer_delims(delims)
1544 1543 # otherwise we end up with a monster history after a while:
1545 1544 readline.set_history_length(1000)
1546 1545 try:
1547 1546 #print '*** Reading readline history' # dbg
1548 1547 readline.read_history_file(self.histfile)
1549 1548 except IOError:
1550 1549 pass # It doesn't exist yet.
1551 1550
1552 1551 # If we have readline, we want our history saved upon ipython
1553 1552 # exiting.
1554 1553 atexit.register(self.save_hist)
1555 1554
1556 1555 # Configure auto-indent for all platforms
1557 1556 self.set_autoindent(self.autoindent)
1558 1557
1559 1558 def set_next_input(self, s):
1560 1559 """ Sets the 'default' input string for the next command line.
1561 1560
1562 1561 Requires readline.
1563 1562
1564 1563 Example:
1565 1564
1566 1565 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1567 1566 [D:\ipython]|2> Hello Word_ # cursor is here
1568 1567 """
1569 1568
1570 1569 self.rl_next_input = s
1571 1570
1572 1571 # Maybe move this to the terminal subclass?
1573 1572 def pre_readline(self):
1574 1573 """readline hook to be used at the start of each line.
1575 1574
1576 1575 Currently it handles auto-indent only."""
1577 1576
1578 1577 if self.rl_do_indent:
1579 1578 self.readline.insert_text(self._indent_current_str())
1580 1579 if self.rl_next_input is not None:
1581 1580 self.readline.insert_text(self.rl_next_input)
1582 1581 self.rl_next_input = None
1583 1582
1584 1583 def _indent_current_str(self):
1585 1584 """return the current level of indentation as a string"""
1586 1585 return self.input_splitter.indent_spaces * ' '
1587 1586
1588 1587 #-------------------------------------------------------------------------
1589 1588 # Things related to text completion
1590 1589 #-------------------------------------------------------------------------
1591 1590
1592 1591 def init_completer(self):
1593 1592 """Initialize the completion machinery.
1594 1593
1595 1594 This creates completion machinery that can be used by client code,
1596 1595 either interactively in-process (typically triggered by the readline
1597 1596 library), programatically (such as in test suites) or out-of-prcess
1598 1597 (typically over the network by remote frontends).
1599 1598 """
1600 1599 from IPython.core.completer import IPCompleter
1601 1600 from IPython.core.completerlib import (module_completer,
1602 1601 magic_run_completer, cd_completer)
1603 1602
1604 1603 self.Completer = IPCompleter(self,
1605 1604 self.user_ns,
1606 1605 self.user_global_ns,
1607 1606 self.readline_omit__names,
1608 1607 self.alias_manager.alias_table,
1609 1608 self.has_readline)
1610 1609
1611 1610 # Add custom completers to the basic ones built into IPCompleter
1612 1611 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1613 1612 self.strdispatchers['complete_command'] = sdisp
1614 1613 self.Completer.custom_completers = sdisp
1615 1614
1616 1615 self.set_hook('complete_command', module_completer, str_key = 'import')
1617 1616 self.set_hook('complete_command', module_completer, str_key = 'from')
1618 1617 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1619 1618 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1620 1619
1621 1620 # Only configure readline if we truly are using readline. IPython can
1622 1621 # do tab-completion over the network, in GUIs, etc, where readline
1623 1622 # itself may be absent
1624 1623 if self.has_readline:
1625 1624 self.set_readline_completer()
1626 1625
1627 1626 def complete(self, text, line=None, cursor_pos=None):
1628 1627 """Return the completed text and a list of completions.
1629 1628
1630 1629 Parameters
1631 1630 ----------
1632 1631
1633 1632 text : string
1634 1633 A string of text to be completed on. It can be given as empty and
1635 1634 instead a line/position pair are given. In this case, the
1636 1635 completer itself will split the line like readline does.
1637 1636
1638 1637 line : string, optional
1639 1638 The complete line that text is part of.
1640 1639
1641 1640 cursor_pos : int, optional
1642 1641 The position of the cursor on the input line.
1643 1642
1644 1643 Returns
1645 1644 -------
1646 1645 text : string
1647 1646 The actual text that was completed.
1648 1647
1649 1648 matches : list
1650 1649 A sorted list with all possible completions.
1651 1650
1652 1651 The optional arguments allow the completion to take more context into
1653 1652 account, and are part of the low-level completion API.
1654 1653
1655 1654 This is a wrapper around the completion mechanism, similar to what
1656 1655 readline does at the command line when the TAB key is hit. By
1657 1656 exposing it as a method, it can be used by other non-readline
1658 1657 environments (such as GUIs) for text completion.
1659 1658
1660 1659 Simple usage example:
1661 1660
1662 1661 In [1]: x = 'hello'
1663 1662
1664 1663 In [2]: _ip.complete('x.l')
1665 1664 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1666 1665 """
1667 1666
1668 1667 # Inject names into __builtin__ so we can complete on the added names.
1669 1668 with self.builtin_trap:
1670 1669 return self.Completer.complete(text, line, cursor_pos)
1671 1670
1672 1671 def set_custom_completer(self, completer, pos=0):
1673 1672 """Adds a new custom completer function.
1674 1673
1675 1674 The position argument (defaults to 0) is the index in the completers
1676 1675 list where you want the completer to be inserted."""
1677 1676
1678 newcomp = new.instancemethod(completer,self.Completer,
1679 self.Completer.__class__)
1677 newcomp = types.MethodType(completer,self.Completer)
1680 1678 self.Completer.matchers.insert(pos,newcomp)
1681 1679
1682 1680 def set_readline_completer(self):
1683 1681 """Reset readline's completer to be our own."""
1684 1682 self.readline.set_completer(self.Completer.rlcomplete)
1685 1683
1686 1684 def set_completer_frame(self, frame=None):
1687 1685 """Set the frame of the completer."""
1688 1686 if frame:
1689 1687 self.Completer.namespace = frame.f_locals
1690 1688 self.Completer.global_namespace = frame.f_globals
1691 1689 else:
1692 1690 self.Completer.namespace = self.user_ns
1693 1691 self.Completer.global_namespace = self.user_global_ns
1694 1692
1695 1693 #-------------------------------------------------------------------------
1696 1694 # Things related to magics
1697 1695 #-------------------------------------------------------------------------
1698 1696
1699 1697 def init_magics(self):
1700 1698 # FIXME: Move the color initialization to the DisplayHook, which
1701 1699 # should be split into a prompt manager and displayhook. We probably
1702 1700 # even need a centralize colors management object.
1703 1701 self.magic_colors(self.colors)
1704 1702 # History was moved to a separate module
1705 1703 from . import history
1706 1704 history.init_ipython(self)
1707 1705
1708 1706 def magic(self,arg_s):
1709 1707 """Call a magic function by name.
1710 1708
1711 1709 Input: a string containing the name of the magic function to call and
1712 1710 any additional arguments to be passed to the magic.
1713 1711
1714 1712 magic('name -opt foo bar') is equivalent to typing at the ipython
1715 1713 prompt:
1716 1714
1717 1715 In[1]: %name -opt foo bar
1718 1716
1719 1717 To call a magic without arguments, simply use magic('name').
1720 1718
1721 1719 This provides a proper Python function to call IPython's magics in any
1722 1720 valid Python code you can type at the interpreter, including loops and
1723 1721 compound statements.
1724 1722 """
1725 1723 args = arg_s.split(' ',1)
1726 1724 magic_name = args[0]
1727 1725 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1728 1726
1729 1727 try:
1730 1728 magic_args = args[1]
1731 1729 except IndexError:
1732 1730 magic_args = ''
1733 1731 fn = getattr(self,'magic_'+magic_name,None)
1734 1732 if fn is None:
1735 1733 error("Magic function `%s` not found." % magic_name)
1736 1734 else:
1737 1735 magic_args = self.var_expand(magic_args,1)
1738 1736 with nested(self.builtin_trap,):
1739 1737 result = fn(magic_args)
1740 1738 return result
1741 1739
1742 1740 def define_magic(self, magicname, func):
1743 1741 """Expose own function as magic function for ipython
1744 1742
1745 1743 def foo_impl(self,parameter_s=''):
1746 1744 'My very own magic!. (Use docstrings, IPython reads them).'
1747 1745 print 'Magic function. Passed parameter is between < >:'
1748 1746 print '<%s>' % parameter_s
1749 1747 print 'The self object is:',self
1750 1748
1751 1749 self.define_magic('foo',foo_impl)
1752 1750 """
1753 1751
1754 1752 import new
1755 im = new.instancemethod(func,self, self.__class__)
1753 im = types.MethodType(func,self)
1756 1754 old = getattr(self, "magic_" + magicname, None)
1757 1755 setattr(self, "magic_" + magicname, im)
1758 1756 return old
1759 1757
1760 1758 #-------------------------------------------------------------------------
1761 1759 # Things related to macros
1762 1760 #-------------------------------------------------------------------------
1763 1761
1764 1762 def define_macro(self, name, themacro):
1765 1763 """Define a new macro
1766 1764
1767 1765 Parameters
1768 1766 ----------
1769 1767 name : str
1770 1768 The name of the macro.
1771 1769 themacro : str or Macro
1772 1770 The action to do upon invoking the macro. If a string, a new
1773 1771 Macro object is created by passing the string to it.
1774 1772 """
1775 1773
1776 1774 from IPython.core import macro
1777 1775
1778 1776 if isinstance(themacro, basestring):
1779 1777 themacro = macro.Macro(themacro)
1780 1778 if not isinstance(themacro, macro.Macro):
1781 1779 raise ValueError('A macro must be a string or a Macro instance.')
1782 1780 self.user_ns[name] = themacro
1783 1781
1784 1782 #-------------------------------------------------------------------------
1785 1783 # Things related to the running of system commands
1786 1784 #-------------------------------------------------------------------------
1787 1785
1788 1786 def system(self, cmd):
1789 1787 """Call the given cmd in a subprocess.
1790 1788
1791 1789 Parameters
1792 1790 ----------
1793 1791 cmd : str
1794 1792 Command to execute (can not end in '&', as bacground processes are
1795 1793 not supported.
1796 1794 """
1797 1795 # We do not support backgrounding processes because we either use
1798 1796 # pexpect or pipes to read from. Users can always just call
1799 1797 # os.system() if they really want a background process.
1800 1798 if cmd.endswith('&'):
1801 1799 raise OSError("Background processes not supported.")
1802 1800
1803 1801 return system(self.var_expand(cmd, depth=2))
1804 1802
1805 1803 def getoutput(self, cmd, split=True):
1806 1804 """Get output (possibly including stderr) from a subprocess.
1807 1805
1808 1806 Parameters
1809 1807 ----------
1810 1808 cmd : str
1811 1809 Command to execute (can not end in '&', as background processes are
1812 1810 not supported.
1813 1811 split : bool, optional
1814 1812
1815 1813 If True, split the output into an IPython SList. Otherwise, an
1816 1814 IPython LSString is returned. These are objects similar to normal
1817 1815 lists and strings, with a few convenience attributes for easier
1818 1816 manipulation of line-based output. You can use '?' on them for
1819 1817 details.
1820 1818 """
1821 1819 if cmd.endswith('&'):
1822 1820 raise OSError("Background processes not supported.")
1823 1821 out = getoutput(self.var_expand(cmd, depth=2))
1824 1822 if split:
1825 1823 out = SList(out.splitlines())
1826 1824 else:
1827 1825 out = LSString(out)
1828 1826 return out
1829 1827
1830 1828 #-------------------------------------------------------------------------
1831 1829 # Things related to aliases
1832 1830 #-------------------------------------------------------------------------
1833 1831
1834 1832 def init_alias(self):
1835 1833 self.alias_manager = AliasManager(shell=self, config=self.config)
1836 1834 self.ns_table['alias'] = self.alias_manager.alias_table,
1837 1835
1838 1836 #-------------------------------------------------------------------------
1839 1837 # Things related to extensions and plugins
1840 1838 #-------------------------------------------------------------------------
1841 1839
1842 1840 def init_extension_manager(self):
1843 1841 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1844 1842
1845 1843 def init_plugin_manager(self):
1846 1844 self.plugin_manager = PluginManager(config=self.config)
1847 1845
1848 1846 #-------------------------------------------------------------------------
1849 1847 # Things related to payloads
1850 1848 #-------------------------------------------------------------------------
1851 1849
1852 1850 def init_payload(self):
1853 1851 self.payload_manager = PayloadManager(config=self.config)
1854 1852
1855 1853 #-------------------------------------------------------------------------
1856 1854 # Things related to the prefilter
1857 1855 #-------------------------------------------------------------------------
1858 1856
1859 1857 def init_prefilter(self):
1860 1858 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1861 1859 # Ultimately this will be refactored in the new interpreter code, but
1862 1860 # for now, we should expose the main prefilter method (there's legacy
1863 1861 # code out there that may rely on this).
1864 1862 self.prefilter = self.prefilter_manager.prefilter_lines
1865 1863
1866 1864 def auto_rewrite_input(self, cmd):
1867 1865 """Print to the screen the rewritten form of the user's command.
1868 1866
1869 1867 This shows visual feedback by rewriting input lines that cause
1870 1868 automatic calling to kick in, like::
1871 1869
1872 1870 /f x
1873 1871
1874 1872 into::
1875 1873
1876 1874 ------> f(x)
1877 1875
1878 1876 after the user's input prompt. This helps the user understand that the
1879 1877 input line was transformed automatically by IPython.
1880 1878 """
1881 1879 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1882 1880
1883 1881 try:
1884 1882 # plain ascii works better w/ pyreadline, on some machines, so
1885 1883 # we use it and only print uncolored rewrite if we have unicode
1886 1884 rw = str(rw)
1887 1885 print >> IPython.utils.io.Term.cout, rw
1888 1886 except UnicodeEncodeError:
1889 1887 print "------> " + cmd
1890 1888
1891 1889 #-------------------------------------------------------------------------
1892 1890 # Things related to extracting values/expressions from kernel and user_ns
1893 1891 #-------------------------------------------------------------------------
1894 1892
1895 1893 def _simple_error(self):
1896 1894 etype, value = sys.exc_info()[:2]
1897 1895 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1898 1896
1899 1897 def user_variables(self, names):
1900 1898 """Get a list of variable names from the user's namespace.
1901 1899
1902 1900 Parameters
1903 1901 ----------
1904 1902 names : list of strings
1905 1903 A list of names of variables to be read from the user namespace.
1906 1904
1907 1905 Returns
1908 1906 -------
1909 1907 A dict, keyed by the input names and with the repr() of each value.
1910 1908 """
1911 1909 out = {}
1912 1910 user_ns = self.user_ns
1913 1911 for varname in names:
1914 1912 try:
1915 1913 value = repr(user_ns[varname])
1916 1914 except:
1917 1915 value = self._simple_error()
1918 1916 out[varname] = value
1919 1917 return out
1920 1918
1921 1919 def user_expressions(self, expressions):
1922 1920 """Evaluate a dict of expressions in the user's namespace.
1923 1921
1924 1922 Parameters
1925 1923 ----------
1926 1924 expressions : dict
1927 1925 A dict with string keys and string values. The expression values
1928 1926 should be valid Python expressions, each of which will be evaluated
1929 1927 in the user namespace.
1930 1928
1931 1929 Returns
1932 1930 -------
1933 1931 A dict, keyed like the input expressions dict, with the repr() of each
1934 1932 value.
1935 1933 """
1936 1934 out = {}
1937 1935 user_ns = self.user_ns
1938 1936 global_ns = self.user_global_ns
1939 1937 for key, expr in expressions.iteritems():
1940 1938 try:
1941 1939 value = repr(eval(expr, global_ns, user_ns))
1942 1940 except:
1943 1941 value = self._simple_error()
1944 1942 out[key] = value
1945 1943 return out
1946 1944
1947 1945 #-------------------------------------------------------------------------
1948 1946 # Things related to the running of code
1949 1947 #-------------------------------------------------------------------------
1950 1948
1951 1949 def ex(self, cmd):
1952 1950 """Execute a normal python statement in user namespace."""
1953 1951 with nested(self.builtin_trap,):
1954 1952 exec cmd in self.user_global_ns, self.user_ns
1955 1953
1956 1954 def ev(self, expr):
1957 1955 """Evaluate python expression expr in user namespace.
1958 1956
1959 1957 Returns the result of evaluation
1960 1958 """
1961 1959 with nested(self.builtin_trap,):
1962 1960 return eval(expr, self.user_global_ns, self.user_ns)
1963 1961
1964 1962 def safe_execfile(self, fname, *where, **kw):
1965 1963 """A safe version of the builtin execfile().
1966 1964
1967 1965 This version will never throw an exception, but instead print
1968 1966 helpful error messages to the screen. This only works on pure
1969 1967 Python files with the .py extension.
1970 1968
1971 1969 Parameters
1972 1970 ----------
1973 1971 fname : string
1974 1972 The name of the file to be executed.
1975 1973 where : tuple
1976 1974 One or two namespaces, passed to execfile() as (globals,locals).
1977 1975 If only one is given, it is passed as both.
1978 1976 exit_ignore : bool (False)
1979 1977 If True, then silence SystemExit for non-zero status (it is always
1980 1978 silenced for zero status, as it is so common).
1981 1979 """
1982 1980 kw.setdefault('exit_ignore', False)
1983 1981
1984 1982 fname = os.path.abspath(os.path.expanduser(fname))
1985 1983
1986 1984 # Make sure we have a .py file
1987 1985 if not fname.endswith('.py'):
1988 1986 warn('File must end with .py to be run using execfile: <%s>' % fname)
1989 1987
1990 1988 # Make sure we can open the file
1991 1989 try:
1992 1990 with open(fname) as thefile:
1993 1991 pass
1994 1992 except:
1995 1993 warn('Could not open file <%s> for safe execution.' % fname)
1996 1994 return
1997 1995
1998 1996 # Find things also in current directory. This is needed to mimic the
1999 1997 # behavior of running a script from the system command line, where
2000 1998 # Python inserts the script's directory into sys.path
2001 1999 dname = os.path.dirname(fname)
2002 2000
2003 2001 with prepended_to_syspath(dname):
2004 2002 try:
2005 2003 execfile(fname,*where)
2006 2004 except SystemExit, status:
2007 2005 # If the call was made with 0 or None exit status (sys.exit(0)
2008 2006 # or sys.exit() ), don't bother showing a traceback, as both of
2009 2007 # these are considered normal by the OS:
2010 2008 # > python -c'import sys;sys.exit(0)'; echo $?
2011 2009 # 0
2012 2010 # > python -c'import sys;sys.exit()'; echo $?
2013 2011 # 0
2014 2012 # For other exit status, we show the exception unless
2015 2013 # explicitly silenced, but only in short form.
2016 2014 if status.code not in (0, None) and not kw['exit_ignore']:
2017 2015 self.showtraceback(exception_only=True)
2018 2016 except:
2019 2017 self.showtraceback()
2020 2018
2021 2019 def safe_execfile_ipy(self, fname):
2022 2020 """Like safe_execfile, but for .ipy files with IPython syntax.
2023 2021
2024 2022 Parameters
2025 2023 ----------
2026 2024 fname : str
2027 2025 The name of the file to execute. The filename must have a
2028 2026 .ipy extension.
2029 2027 """
2030 2028 fname = os.path.abspath(os.path.expanduser(fname))
2031 2029
2032 2030 # Make sure we have a .py file
2033 2031 if not fname.endswith('.ipy'):
2034 2032 warn('File must end with .py to be run using execfile: <%s>' % fname)
2035 2033
2036 2034 # Make sure we can open the file
2037 2035 try:
2038 2036 with open(fname) as thefile:
2039 2037 pass
2040 2038 except:
2041 2039 warn('Could not open file <%s> for safe execution.' % fname)
2042 2040 return
2043 2041
2044 2042 # Find things also in current directory. This is needed to mimic the
2045 2043 # behavior of running a script from the system command line, where
2046 2044 # Python inserts the script's directory into sys.path
2047 2045 dname = os.path.dirname(fname)
2048 2046
2049 2047 with prepended_to_syspath(dname):
2050 2048 try:
2051 2049 with open(fname) as thefile:
2052 2050 # self.run_cell currently captures all exceptions
2053 2051 # raised in user code. It would be nice if there were
2054 2052 # versions of runlines, execfile that did raise, so
2055 2053 # we could catch the errors.
2056 2054 self.run_cell(thefile.read())
2057 2055 except:
2058 2056 self.showtraceback()
2059 2057 warn('Unknown failure executing file: <%s>' % fname)
2060 2058
2061 2059 def run_cell(self, cell):
2062 2060 """Run the contents of an entire multiline 'cell' of code.
2063 2061
2064 2062 The cell is split into separate blocks which can be executed
2065 2063 individually. Then, based on how many blocks there are, they are
2066 2064 executed as follows:
2067 2065
2068 2066 - A single block: 'single' mode.
2069 2067
2070 2068 If there's more than one block, it depends:
2071 2069
2072 2070 - if the last one is no more than two lines long, run all but the last
2073 2071 in 'exec' mode and the very last one in 'single' mode. This makes it
2074 2072 easy to type simple expressions at the end to see computed values. -
2075 2073 otherwise (last one is also multiline), run all in 'exec' mode
2076 2074
2077 2075 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2078 2076 results are displayed and output prompts are computed. In 'exec' mode,
2079 2077 no results are displayed unless :func:`print` is called explicitly;
2080 2078 this mode is more akin to running a script.
2081 2079
2082 2080 Parameters
2083 2081 ----------
2084 2082 cell : str
2085 2083 A single or multiline string.
2086 2084 """
2087 2085
2088 2086 # We need to break up the input into executable blocks that can be run
2089 2087 # in 'single' mode, to provide comfortable user behavior.
2090 2088 blocks = self.input_splitter.split_blocks(cell)
2091 2089
2092 2090 if not blocks:
2093 2091 return
2094 2092
2095 2093 # Store the 'ipython' version of the cell as well, since that's what
2096 2094 # needs to go into the translated history and get executed (the
2097 2095 # original cell may contain non-python syntax).
2098 2096 ipy_cell = ''.join(blocks)
2099 2097
2100 2098 # Store raw and processed history
2101 2099 self.history_manager.store_inputs(ipy_cell, cell)
2102 2100
2103 2101 self.logger.log(ipy_cell, cell)
2104 2102 # dbg code!!!
2105 2103 if 0:
2106 2104 def myapp(self, val): # dbg
2107 2105 import traceback as tb
2108 2106 stack = ''.join(tb.format_stack())
2109 2107 print 'Value:', val
2110 2108 print 'Stack:\n', stack
2111 2109 list.append(self, val)
2112 2110
2113 2111 import new
2114 self.input_hist.append = new.instancemethod(myapp, self.input_hist,
2115 list)
2112 self.input_hist.append = types.MethodType(myapp, self.input_hist)
2116 2113 # End dbg
2117 2114
2118 2115 # All user code execution must happen with our context managers active
2119 2116 with nested(self.builtin_trap, self.display_trap):
2120 2117
2121 2118 # Single-block input should behave like an interactive prompt
2122 2119 if len(blocks) == 1:
2123 2120 # since we return here, we need to update the execution count
2124 2121 out = self.run_one_block(blocks[0])
2125 2122 self.execution_count += 1
2126 2123 return out
2127 2124
2128 2125 # In multi-block input, if the last block is a simple (one-two
2129 2126 # lines) expression, run it in single mode so it produces output.
2130 2127 # Otherwise just feed the whole thing to run_code. This seems like
2131 2128 # a reasonable usability design.
2132 2129 last = blocks[-1]
2133 2130 last_nlines = len(last.splitlines())
2134 2131
2135 2132 # Note: below, whenever we call run_code, we must sync history
2136 2133 # ourselves, because run_code is NOT meant to manage history at all.
2137 2134 if last_nlines < 2:
2138 2135 # Here we consider the cell split between 'body' and 'last',
2139 2136 # store all history and execute 'body', and if successful, then
2140 2137 # proceed to execute 'last'.
2141 2138
2142 2139 # Get the main body to run as a cell
2143 2140 ipy_body = ''.join(blocks[:-1])
2144 2141 retcode = self.run_code(ipy_body, post_execute=False)
2145 2142 if retcode==0:
2146 2143 # And the last expression via runlines so it produces output
2147 2144 self.run_one_block(last)
2148 2145 else:
2149 2146 # Run the whole cell as one entity, storing both raw and
2150 2147 # processed input in history
2151 2148 self.run_code(ipy_cell)
2152 2149
2153 2150 # Each cell is a *single* input, regardless of how many lines it has
2154 2151 self.execution_count += 1
2155 2152
2156 2153 def run_one_block(self, block):
2157 2154 """Run a single interactive block.
2158 2155
2159 2156 If the block is single-line, dynamic transformations are applied to it
2160 2157 (like automagics, autocall and alias recognition).
2161 2158 """
2162 2159 if len(block.splitlines()) <= 1:
2163 2160 out = self.run_single_line(block)
2164 2161 else:
2165 2162 out = self.run_code(block)
2166 2163 return out
2167 2164
2168 2165 def run_single_line(self, line):
2169 2166 """Run a single-line interactive statement.
2170 2167
2171 2168 This assumes the input has been transformed to IPython syntax by
2172 2169 applying all static transformations (those with an explicit prefix like
2173 2170 % or !), but it will further try to apply the dynamic ones.
2174 2171
2175 2172 It does not update history.
2176 2173 """
2177 2174 tline = self.prefilter_manager.prefilter_line(line)
2178 2175 return self.run_source(tline)
2179 2176
2180 2177 # PENDING REMOVAL: this method is slated for deletion, once our new
2181 2178 # input logic has been 100% moved to frontends and is stable.
2182 2179 def runlines(self, lines, clean=False):
2183 2180 """Run a string of one or more lines of source.
2184 2181
2185 2182 This method is capable of running a string containing multiple source
2186 2183 lines, as if they had been entered at the IPython prompt. Since it
2187 2184 exposes IPython's processing machinery, the given strings can contain
2188 2185 magic calls (%magic), special shell access (!cmd), etc.
2189 2186 """
2190 2187
2191 2188 if isinstance(lines, (list, tuple)):
2192 2189 lines = '\n'.join(lines)
2193 2190
2194 2191 if clean:
2195 2192 lines = self._cleanup_ipy_script(lines)
2196 2193
2197 2194 # We must start with a clean buffer, in case this is run from an
2198 2195 # interactive IPython session (via a magic, for example).
2199 2196 self.reset_buffer()
2200 2197 lines = lines.splitlines()
2201 2198
2202 2199 # Since we will prefilter all lines, store the user's raw input too
2203 2200 # before we apply any transformations
2204 2201 self.buffer_raw[:] = [ l+'\n' for l in lines]
2205 2202
2206 2203 more = False
2207 2204 prefilter_lines = self.prefilter_manager.prefilter_lines
2208 2205 with nested(self.builtin_trap, self.display_trap):
2209 2206 for line in lines:
2210 2207 # skip blank lines so we don't mess up the prompt counter, but
2211 2208 # do NOT skip even a blank line if we are in a code block (more
2212 2209 # is true)
2213 2210
2214 2211 if line or more:
2215 2212 more = self.push_line(prefilter_lines(line, more))
2216 2213 # IPython's run_source returns None if there was an error
2217 2214 # compiling the code. This allows us to stop processing
2218 2215 # right away, so the user gets the error message at the
2219 2216 # right place.
2220 2217 if more is None:
2221 2218 break
2222 2219 # final newline in case the input didn't have it, so that the code
2223 2220 # actually does get executed
2224 2221 if more:
2225 2222 self.push_line('\n')
2226 2223
2227 2224 def run_source(self, source, filename='<ipython console>', symbol='single'):
2228 2225 """Compile and run some source in the interpreter.
2229 2226
2230 2227 Arguments are as for compile_command().
2231 2228
2232 2229 One several things can happen:
2233 2230
2234 2231 1) The input is incorrect; compile_command() raised an
2235 2232 exception (SyntaxError or OverflowError). A syntax traceback
2236 2233 will be printed by calling the showsyntaxerror() method.
2237 2234
2238 2235 2) The input is incomplete, and more input is required;
2239 2236 compile_command() returned None. Nothing happens.
2240 2237
2241 2238 3) The input is complete; compile_command() returned a code
2242 2239 object. The code is executed by calling self.run_code() (which
2243 2240 also handles run-time exceptions, except for SystemExit).
2244 2241
2245 2242 The return value is:
2246 2243
2247 2244 - True in case 2
2248 2245
2249 2246 - False in the other cases, unless an exception is raised, where
2250 2247 None is returned instead. This can be used by external callers to
2251 2248 know whether to continue feeding input or not.
2252 2249
2253 2250 The return value can be used to decide whether to use sys.ps1 or
2254 2251 sys.ps2 to prompt the next line."""
2255 2252
2256 2253 # We need to ensure that the source is unicode from here on.
2257 2254 if type(source)==str:
2258 2255 usource = source.decode(self.stdin_encoding)
2259 2256 else:
2260 2257 usource = source
2261 2258
2262 2259 if 0: # dbg
2263 2260 print 'Source:', repr(source) # dbg
2264 2261 print 'USource:', repr(usource) # dbg
2265 2262 print 'type:', type(source) # dbg
2266 2263 print 'encoding', self.stdin_encoding # dbg
2267 2264
2268 2265 try:
2269 2266 code = self.compile(usource,filename,symbol)
2270 2267 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2271 2268 # Case 1
2272 2269 self.showsyntaxerror(filename)
2273 2270 return None
2274 2271
2275 2272 if code is None:
2276 2273 # Case 2
2277 2274 return True
2278 2275
2279 2276 # Case 3
2280 2277 # We store the code object so that threaded shells and
2281 2278 # custom exception handlers can access all this info if needed.
2282 2279 # The source corresponding to this can be obtained from the
2283 2280 # buffer attribute as '\n'.join(self.buffer).
2284 2281 self.code_to_run = code
2285 2282 # now actually execute the code object
2286 2283 if self.run_code(code) == 0:
2287 2284 return False
2288 2285 else:
2289 2286 return None
2290 2287
2291 2288 # For backwards compatibility
2292 2289 runsource = run_source
2293 2290
2294 2291 def run_code(self, code_obj, post_execute=True):
2295 2292 """Execute a code object.
2296 2293
2297 2294 When an exception occurs, self.showtraceback() is called to display a
2298 2295 traceback.
2299 2296
2300 2297 Return value: a flag indicating whether the code to be run completed
2301 2298 successfully:
2302 2299
2303 2300 - 0: successful execution.
2304 2301 - 1: an error occurred.
2305 2302 """
2306 2303
2307 2304 # Set our own excepthook in case the user code tries to call it
2308 2305 # directly, so that the IPython crash handler doesn't get triggered
2309 2306 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2310 2307
2311 2308 # we save the original sys.excepthook in the instance, in case config
2312 2309 # code (such as magics) needs access to it.
2313 2310 self.sys_excepthook = old_excepthook
2314 2311 outflag = 1 # happens in more places, so it's easier as default
2315 2312 try:
2316 2313 try:
2317 2314 self.hooks.pre_run_code_hook()
2318 2315 #rprint('Running code') # dbg
2319 2316 exec code_obj in self.user_global_ns, self.user_ns
2320 2317 finally:
2321 2318 # Reset our crash handler in place
2322 2319 sys.excepthook = old_excepthook
2323 2320 except SystemExit:
2324 2321 self.reset_buffer()
2325 2322 self.showtraceback(exception_only=True)
2326 2323 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2327 2324 except self.custom_exceptions:
2328 2325 etype,value,tb = sys.exc_info()
2329 2326 self.CustomTB(etype,value,tb)
2330 2327 except:
2331 2328 self.showtraceback()
2332 2329 else:
2333 2330 outflag = 0
2334 2331 if softspace(sys.stdout, 0):
2335 2332 print
2336 2333
2337 2334 # Execute any registered post-execution functions. Here, any errors
2338 2335 # are reported only minimally and just on the terminal, because the
2339 2336 # main exception channel may be occupied with a user traceback.
2340 2337 # FIXME: we need to think this mechanism a little more carefully.
2341 2338 if post_execute:
2342 2339 for func in self._post_execute:
2343 2340 try:
2344 2341 func()
2345 2342 except:
2346 2343 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2347 2344 func
2348 2345 print >> io.Term.cout, head
2349 2346 print >> io.Term.cout, self._simple_error()
2350 2347 print >> io.Term.cout, 'Removing from post_execute'
2351 2348 self._post_execute.remove(func)
2352 2349
2353 2350 # Flush out code object which has been run (and source)
2354 2351 self.code_to_run = None
2355 2352 return outflag
2356 2353
2357 2354 # For backwards compatibility
2358 2355 runcode = run_code
2359 2356
2360 2357 # PENDING REMOVAL: this method is slated for deletion, once our new
2361 2358 # input logic has been 100% moved to frontends and is stable.
2362 2359 def push_line(self, line):
2363 2360 """Push a line to the interpreter.
2364 2361
2365 2362 The line should not have a trailing newline; it may have
2366 2363 internal newlines. The line is appended to a buffer and the
2367 2364 interpreter's run_source() method is called with the
2368 2365 concatenated contents of the buffer as source. If this
2369 2366 indicates that the command was executed or invalid, the buffer
2370 2367 is reset; otherwise, the command is incomplete, and the buffer
2371 2368 is left as it was after the line was appended. The return
2372 2369 value is 1 if more input is required, 0 if the line was dealt
2373 2370 with in some way (this is the same as run_source()).
2374 2371 """
2375 2372
2376 2373 # autoindent management should be done here, and not in the
2377 2374 # interactive loop, since that one is only seen by keyboard input. We
2378 2375 # need this done correctly even for code run via runlines (which uses
2379 2376 # push).
2380 2377
2381 2378 #print 'push line: <%s>' % line # dbg
2382 2379 self.buffer.append(line)
2383 2380 full_source = '\n'.join(self.buffer)
2384 2381 more = self.run_source(full_source, self.filename)
2385 2382 if not more:
2386 2383 self.history_manager.store_inputs('\n'.join(self.buffer_raw),
2387 2384 full_source)
2388 2385 self.reset_buffer()
2389 2386 self.execution_count += 1
2390 2387 return more
2391 2388
2392 2389 def reset_buffer(self):
2393 2390 """Reset the input buffer."""
2394 2391 self.buffer[:] = []
2395 2392 self.buffer_raw[:] = []
2396 2393 self.input_splitter.reset()
2397 2394
2398 2395 # For backwards compatibility
2399 2396 resetbuffer = reset_buffer
2400 2397
2401 2398 def _is_secondary_block_start(self, s):
2402 2399 if not s.endswith(':'):
2403 2400 return False
2404 2401 if (s.startswith('elif') or
2405 2402 s.startswith('else') or
2406 2403 s.startswith('except') or
2407 2404 s.startswith('finally')):
2408 2405 return True
2409 2406
2410 2407 def _cleanup_ipy_script(self, script):
2411 2408 """Make a script safe for self.runlines()
2412 2409
2413 2410 Currently, IPython is lines based, with blocks being detected by
2414 2411 empty lines. This is a problem for block based scripts that may
2415 2412 not have empty lines after blocks. This script adds those empty
2416 2413 lines to make scripts safe for running in the current line based
2417 2414 IPython.
2418 2415 """
2419 2416 res = []
2420 2417 lines = script.splitlines()
2421 2418 level = 0
2422 2419
2423 2420 for l in lines:
2424 2421 lstripped = l.lstrip()
2425 2422 stripped = l.strip()
2426 2423 if not stripped:
2427 2424 continue
2428 2425 newlevel = len(l) - len(lstripped)
2429 2426 if level > 0 and newlevel == 0 and \
2430 2427 not self._is_secondary_block_start(stripped):
2431 2428 # add empty line
2432 2429 res.append('')
2433 2430 res.append(l)
2434 2431 level = newlevel
2435 2432
2436 2433 return '\n'.join(res) + '\n'
2437 2434
2438 2435 #-------------------------------------------------------------------------
2439 2436 # Things related to GUI support and pylab
2440 2437 #-------------------------------------------------------------------------
2441 2438
2442 2439 def enable_pylab(self, gui=None):
2443 2440 raise NotImplementedError('Implement enable_pylab in a subclass')
2444 2441
2445 2442 #-------------------------------------------------------------------------
2446 2443 # Utilities
2447 2444 #-------------------------------------------------------------------------
2448 2445
2449 2446 def var_expand(self,cmd,depth=0):
2450 2447 """Expand python variables in a string.
2451 2448
2452 2449 The depth argument indicates how many frames above the caller should
2453 2450 be walked to look for the local namespace where to expand variables.
2454 2451
2455 2452 The global namespace for expansion is always the user's interactive
2456 2453 namespace.
2457 2454 """
2458 2455
2459 2456 return str(ItplNS(cmd,
2460 2457 self.user_ns, # globals
2461 2458 # Skip our own frame in searching for locals:
2462 2459 sys._getframe(depth+1).f_locals # locals
2463 2460 ))
2464 2461
2465 2462 def mktempfile(self,data=None):
2466 2463 """Make a new tempfile and return its filename.
2467 2464
2468 2465 This makes a call to tempfile.mktemp, but it registers the created
2469 2466 filename internally so ipython cleans it up at exit time.
2470 2467
2471 2468 Optional inputs:
2472 2469
2473 2470 - data(None): if data is given, it gets written out to the temp file
2474 2471 immediately, and the file is closed again."""
2475 2472
2476 2473 filename = tempfile.mktemp('.py','ipython_edit_')
2477 2474 self.tempfiles.append(filename)
2478 2475
2479 2476 if data:
2480 2477 tmp_file = open(filename,'w')
2481 2478 tmp_file.write(data)
2482 2479 tmp_file.close()
2483 2480 return filename
2484 2481
2485 2482 # TODO: This should be removed when Term is refactored.
2486 2483 def write(self,data):
2487 2484 """Write a string to the default output"""
2488 2485 io.Term.cout.write(data)
2489 2486
2490 2487 # TODO: This should be removed when Term is refactored.
2491 2488 def write_err(self,data):
2492 2489 """Write a string to the default error output"""
2493 2490 io.Term.cerr.write(data)
2494 2491
2495 2492 def ask_yes_no(self,prompt,default=True):
2496 2493 if self.quiet:
2497 2494 return True
2498 2495 return ask_yes_no(prompt,default)
2499 2496
2500 2497 def show_usage(self):
2501 2498 """Show a usage message"""
2502 2499 page.page(IPython.core.usage.interactive_usage)
2503 2500
2504 2501 #-------------------------------------------------------------------------
2505 2502 # Things related to IPython exiting
2506 2503 #-------------------------------------------------------------------------
2507 2504 def atexit_operations(self):
2508 2505 """This will be executed at the time of exit.
2509 2506
2510 2507 Cleanup operations and saving of persistent data that is done
2511 2508 unconditionally by IPython should be performed here.
2512 2509
2513 2510 For things that may depend on startup flags or platform specifics (such
2514 2511 as having readline or not), register a separate atexit function in the
2515 2512 code that has the appropriate information, rather than trying to
2516 2513 clutter
2517 2514 """
2518 2515 # Cleanup all tempfiles left around
2519 2516 for tfile in self.tempfiles:
2520 2517 try:
2521 2518 os.unlink(tfile)
2522 2519 except OSError:
2523 2520 pass
2524 2521
2525 2522 # Clear all user namespaces to release all references cleanly.
2526 2523 self.reset()
2527 2524
2528 2525 # Run user hooks
2529 2526 self.hooks.shutdown_hook()
2530 2527
2531 2528 def cleanup(self):
2532 2529 self.restore_sys_module_state()
2533 2530
2534 2531
2535 2532 class InteractiveShellABC(object):
2536 2533 """An abstract base class for InteractiveShell."""
2537 2534 __metaclass__ = abc.ABCMeta
2538 2535
2539 2536 InteractiveShellABC.register(InteractiveShell)
General Comments 0
You need to be logged in to leave comments. Login now