Show More
@@ -0,0 +1,32 b'' | |||||
|
1 | import os, copy | |||
|
2 | ||||
|
3 | import nbconvert as nb | |||
|
4 | import json | |||
|
5 | from decorators import DocInherit | |||
|
6 | ||||
|
7 | from IPython.external import argparse | |||
|
8 | from IPython.nbformat import current as nbformat | |||
|
9 | from IPython.nbformat.v3.nbjson import from_dict, rejoin_lines, BytesEncoder | |||
|
10 | from IPython.utils.text import indent | |||
|
11 | from IPython.utils import py3compat | |||
|
12 | ||||
|
13 | ||||
|
14 | class CustomNotebookConverter(nb.ConverterNotebook): | |||
|
15 | ||||
|
16 | def render_code(self, cell): | |||
|
17 | ||||
|
18 | captured_outputs = ['text', 'html', 'svg', 'latex', 'javascript'] | |||
|
19 | ||||
|
20 | cell = copy.deepcopy(cell) | |||
|
21 | cell['input'] = '' | |||
|
22 | ||||
|
23 | for output in cell.outputs: | |||
|
24 | if output.output_type != 'display_data': | |||
|
25 | cell.outputs.remove(output) | |||
|
26 | return nb.ConverterNotebook.render_code(self, cell) | |||
|
27 | ||||
|
28 | if __name__ == '__main__': | |||
|
29 | infile = 'tests/test_display.ipynb' | |||
|
30 | converter = CustomNotebookConverter(infile, 'test_only_display') | |||
|
31 | converter.render() | |||
|
32 |
@@ -0,0 +1,347 b'' | |||||
|
1 | { | |||
|
2 | "metadata": { | |||
|
3 | "name": "test" | |||
|
4 | }, | |||
|
5 | "nbformat": 3, | |||
|
6 | "worksheets": [ | |||
|
7 | { | |||
|
8 | "cells": [ | |||
|
9 | { | |||
|
10 | "cell_type": "code", | |||
|
11 | "collapsed": false, | |||
|
12 | "input": [ | |||
|
13 | "from IPython.core.displaypub import publish_display_data", | |||
|
14 | "%load_ext rmagic", | |||
|
15 | "", | |||
|
16 | "publish_display_data('Assignment1', {'text/html':'<h2>Question 1</h2>'})" | |||
|
17 | ], | |||
|
18 | "language": "python", | |||
|
19 | "outputs": [ | |||
|
20 | { | |||
|
21 | "html": [ | |||
|
22 | "<h2>Question 1</h2>" | |||
|
23 | ], | |||
|
24 | "output_type": "display_data" | |||
|
25 | } | |||
|
26 | ], | |||
|
27 | "metadata": [ | |||
|
28 | { | |||
|
29 | "html": [ | |||
|
30 | "<h2>Question blah</h2>" | |||
|
31 | ], | |||
|
32 | "output_type": "display_data" | |||
|
33 | } | |||
|
34 | ], | |||
|
35 | "prompt_number": 1 | |||
|
36 | }, | |||
|
37 | { | |||
|
38 | "cell_type": "code", | |||
|
39 | "collapsed": false, | |||
|
40 | "input": [ | |||
|
41 | "%%R ", | |||
|
42 | "X = rnorm(40)", | |||
|
43 | "Y = rnorm(40)", | |||
|
44 | "plot(X,Y, pch=24, bg='red', cex=2)" | |||
|
45 | ], | |||
|
46 | "language": "python", | |||
|
47 | "outputs": [ | |||
|
48 | { | |||
|
49 | "output_type": "display_data", | |||
|
50 | "png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAD8GlDQ1BJQ0MgUHJvZmlsZQAAKJGN\nVd1v21QUP4lvXKQWP6Cxjg4Vi69VU1u5GxqtxgZJk6XpQhq5zdgqpMl1bhpT1za2021Vn/YCbwz4\nA4CyBx6QeEIaDMT2su0BtElTQRXVJKQ9dNpAaJP2gqpwrq9Tu13GuJGvfznndz7v0TVAx1ea45hJ\nGWDe8l01n5GPn5iWO1YhCc9BJ/RAp6Z7TrpcLgIuxoVH1sNfIcHeNwfa6/9zdVappwMknkJsVz19\nHvFpgJSpO64PIN5G+fAp30Hc8TziHS4miFhheJbjLMMzHB8POFPqKGKWi6TXtSriJcT9MzH5bAzz\nHIK1I08t6hq6zHpRdu2aYdJYuk9Q/881bzZa8Xrx6fLmJo/iu4/VXnfH1BB/rmu5ScQvI77m+Bkm\nfxXxvcZcJY14L0DymZp7pML5yTcW61PvIN6JuGr4halQvmjNlCa4bXJ5zj6qhpxrujeKPYMXEd+q\n00KR5yNAlWZzrF+Ie+uNsdC/MO4tTOZafhbroyXuR3Df08bLiHsQf+ja6gTPWVimZl7l/oUrjl8O\ncxDWLbNU5D6JRL2gxkDu16fGuC054OMhclsyXTOOFEL+kmMGs4i5kfNuQ62EnBuam8tzP+Q+tSqh\nz9SuqpZlvR1EfBiOJTSgYMMM7jpYsAEyqJCHDL4dcFFTAwNMlFDUUpQYiadhDmXteeWAw3HEmA2s\n15k1RmnP4RHuhBybdBOF7MfnICmSQ2SYjIBM3iRvkcMki9IRcnDTthyLz2Ld2fTzPjTQK+Mdg8y5\nnkZfFO+se9LQr3/09xZr+5GcaSufeAfAww60mAPx+q8u/bAr8rFCLrx7s+vqEkw8qb+p26n11Aru\nq6m1iJH6PbWGv1VIY25mkNE8PkaQhxfLIF7DZXx80HD/A3l2jLclYs061xNpWCfoB6WHJTjbH0mV\n35Q/lRXlC+W8cndbl9t2SfhU+Fb4UfhO+F74GWThknBZ+Em4InwjXIyd1ePnY/Psg3pb1TJNu15T\nMKWMtFt6ScpKL0ivSMXIn9QtDUlj0h7U7N48t3i8eC0GnMC91dX2sTivgloDTgUVeEGHLTizbf5D\na9JLhkhh29QOs1luMcScmBXTIIt7xRFxSBxnuJWfuAd1I7jntkyd/pgKaIwVr3MgmDo2q8x6IdB5\nQH162mcX7ajtnHGN2bov71OU1+U0fqqoXLD0wX5ZM005UHmySz3qLtDqILDvIL+iH6jB9y2x83ok\n898GOPQX3lk3Itl0A+BrD6D7tUjWh3fis58BXDigN9yF8M5PJH4B8Gr79/F/XRm8m241mw/wvur4\nBGDj42bzn+Vmc+NL9L8GcMn8F1kAcXjEKMJAAAAgAElEQVR4nOzdd3hT9eIG8PekUOCyFGQpoFxR\nAff1ihcuQ70MARVkC0KZlgL6E8TRtLRQNrI6oUAHq8imUIoWQUYVKS1UEOjeI6V70Znk9wfDAh1J\n2+R72r6f5+nzaE5OzgsNeXPW9ytptVotiIiIyKgUogMQERE1RCxgIiIiAVjAREREArCAiYiIBGAB\nExERCcACJiIiEoAFTEREJAALmIiISAAWMBERkQAsYCIiIgFYwERERAKwgImIiARgARMREQnAAiYi\nIhKABUxERCQAC5iIiEgAFjAREZEALGAiIiIBWMBEREQCsICJiIgEYAETEREJwAImIiISgAVMREQk\nAAuYiIhIABYwERGRACxgIiIiAVjAREREArCAiYiIBGABExERCcACJiIiEoAFTEREJAALmIiISAAW\nMBERkQAsYCIiIgFYwERERAKwgImIiARgARMREQnAAiYiIhKABUxERCQAC5iIiEgAFjAREZEALGAi\nIiIBWMBEREQCsICJiIgEYAETEREJwAImIiISgAVMREQkAAuYiIhIABYwERGRACxgIiIiAVjARERE\nArCAiYiIBGABExERCcACJiIiEoAFTEREJAALmIiISAAWMBERkQCNRAcwpoMHD6K0tFR0DCIikon2\n7dvj/fffF7JtSavVaoVs2cgOHTqE9evXw8zMTHQUIiKSCQcHB+zZswdvvPGG0bfdYPaAS0tLMXXq\nVJibm4uOQkREMhEWFgaNRiNk2zwHTEREJAALmIiISAAWMNVpaxcvxo5t20THICLSW4M5B0z1z61b\nt/Cb5w6omzXDsJEj0b59e9GRiIh0xj1gqrMcrK1hkaDCmJh4bF69WnQcIiK9sICpTvLz84PW/3cM\nggITStT46+AhXL9+XXQsIiKdsYCpziksLISrlTXm304HAJhCwpz4ZNgrlWggt7UTUT3AAqY6Z7eb\nG94MDUePMm/fgVCg6R+XccLHR2AyIiLdsYCpTlGpVDhm74DZuXceWzY/LRNutra4c+fxZUREcsMC\npjrFZeVKjI2OQ1tIjy3rDgn/CYuC55YtApIREemHBUx1RnBwMEIOH8W40oqHjZuZX4CfXDYjMTHR\niMmIiPTHAqY6QaPRwEGphEWiCo3L2fu97wlImBgTD6dly4yYjohIfyxgqhOOe3uj5eUg9NfhLTtG\nrUWszwlcvnzZCMmIiKqHBUyyl5eXB8+ldpiXlqXT800gwSIxBY6WSqjVagOnIyKqHg5FSbLnam+P\nnmERCIEGIXqsZxIYhB0eHpgxa5bBshERVRcLmGSvz3//iwtffYEQqeJzv+XpodXind69DZSKiKhm\nWMAke33ffRd9331XdAwiolrFc8BEREQCsICJiIgEYAETEREJwAImIiISgAVMREQkAAuYiIhIABYw\nERGRACxgIiIiAVjAREREArCAiYiIBGABExERCcACJiIiEoAFTEREJAALmIiISAAWMBERkQAsYCIi\nIgFYwERERAKwgImIiARgARMREQnAAiYiIhKABUxERCQAC5iIiEgA2RewWq1GUVGR6BhERHXGD8uW\noXfPntBoNKKjUCVkUcDx8fGYOnUqWrRogcGDByMiIuLBsgMHDmDKlCkC0xER1R3x8fHw99yB/ilp\nOLhvn+g4VAlZFPDGjRvRqVMnBAYGok+fPhgwYADCwsJExyIiqnOc7JZhUmwCvsjMwe4VK5GdnS06\nElWgkegAAODr64urV6+iWbNmsLOzQ69evTB06FD4+/vr9Trbtm2Dl5dXucvCw8PRrVs3zJkzpzYi\nE1E9V1xcjGc7dMTQ99+D56FDouPo5NKlS0j0PQk7tRYmkDA4Kgbb7e3xtY2N6GhUDlkUcK9evRAY\nGIj+/fsDACZOnIikpCQMGzYM5ubmOr/O7NmzMXv27HKXLViwACqVqlbyElH957VjB2ZrJYRfCkBg\nYCD+/e9/i45UKbVaDSelEnOTUmBy7+Dm1IJiTPPwxKjJk/H8888LTkiPksUh6Dlz5mDcuHFYs2bN\ng8cWLlyIMWPGYMGCBQKTEVFDlJqaikPr1sMiOw9zE1PgaKmEWq0WHatShw8cQKfga+hd5mO9OSRM\ni02AA/eAZUkWBTxkyBBERkZi+PDhDz1ua2sLPz8/DB06VFAyImqItqxdi1ExcWgHCX2gQLurwTh6\n+LDoWBXKzs7G7uUrYJGR89iy4VoJuWfO4ty5cwKSUWVkUcAA0Lx5c7z66quPPf7uu+9i5syZAhIR\nGcZ7b/0bPbt2lf0eVUN148YNXNu3HxOL//79zE3Pxk67ZcjJebzg5GC7vT0GRcagC6THlkmQME+V\nChelFYqLiwWko4rIpoCJGgI/Pz+8lJCIj/ILcfjAAdFxqBz2SiU+j09GkzJl1hUS3o+MgZujo8Bk\n5YuMjIS/hyemFlZcrq9DgZdu3MKPu3YZMRlVhQVMZCSFhYVwtbLG/NvpsMjIxq7lK3iLiMz4njiB\nxhcv4b1yPhrNCopwzs0d0dHRApJVzMHGBtNiE9C8nL3fssyz83Dgh3VIT083UjKqCguYyEh2u7nh\nzdBw9IACXcrcIkLyUFBQgO02tpiXmlHu8haQMDU2AY5Llhg3WCXOnTuH3DNnMVxbefkCQAdI+Cg6\nDlvWrjVCMtIFC5jICFQqFY7Z22N27p0Hj00tKIa/hyciIyMFJqP7dm7bhrfDIvBiJR+LH2qA9FOn\n9R6jwBCKi4vhorTCPFUqpCr2fu+bVFyKqz/uw82bNw2cjnQhi/uAieo7l5UrMTY6Hm3LfFA2hwSz\ne7eI2O/ZIzAdJSUl4YSjE9zyCoBKykwBCfOTb2ODUol3Tp9G48aNjRfyEXu9vHD28mW88mRr+Oqx\nXrecXCyysIAvr4oWjgVMZGDBwcEIOXwUlqUaPPrhPkIrwfvMWZw/fx4DBgwQE5DgvHw5JkTH4Ukd\n9iTfhAL/vH4T+728MNnMzAjpyjfx00/x9DPPVGvdL3v0qOU0VB0sYCID0mg0cFAqYZGoQuNyDm1K\nkDBflYq1lkr859czMDU1FZCyYQsKCkLUseNYrNaisr3fsuZk5WLemrUY9tFHaNOmjWEDVqBJkyYY\nPHiwkG1T7WABExnQcW9vtLwchP6VnFd8HQq8eOMW9u3ejSkzZhgxHQHAGltbJBcUYH7Xp/VazzQv\nD167d2P+l18aKBnVdyxgIgPJy8uD51I7rEnLQlV7VubZeZj7wzoMHzkSbdu2NU5AAgBs9/JCSkpK\ntdZ99tlnazkNNSQsYCID8XBxwX8jovBPHQ5rdoSED6NiseWHH2C1erUR0tF9rVq1QqtWrUTHoAaI\ntyERGUBcXBx+cd2K6fmFOq8zqbgUV/f+iFu3bhkwGRHJBfeAiQzAbcsWhKWlYcGzel6lqi6F07p1\ncHZzM0wwIpINFjCRAVgtWYIZesxlXVb79u1rOQ0RyRELmMgATE1NeYEOEVWK54AJAKBWq7HCygqh\noaGioxARNQgsYAIA/HTyJP7ashWblFaioxARNQgsYHowC4xNRja0v/0OPz8/0ZGIiOo9FjBhh6sr\n3gmPxAtQYF5KGrZaL0Zhoe63zxARkf5YwA1cYmIifJ2cMTOvAADQEwq8ERKG3e7ugpMREdVvLOAG\nznn5ckyMiX9oFpjZuXdwbJM9VCqVwGRERPUbC7gBCwoKQvRxH4xWax96vC0kjImJg8uqVYKSERHV\nfyzgBkqtVsPhe0vMTUxBo3LGKh5XokHI4SP4888/BaQjIqr/WMANlPeRI3jqajD6VPAWMIWEOQkq\n2FtaQqvVlvscIiKqPhZwA5STk4OddsswNz270ucNgAItLgfh+LFjRkpGRNRwsIAbIHcnJ7wbEY1n\ndZgmb15aFjyWLEFeXp4RkhERNRws4AYmJiYGv25zw7SCIp2e/zwk9A2PgufmzQZORkTUsHAyhgZm\n7feW+CQ2HjcBALqd230nvwATly7FyIkT0aVLF0PGIyJqMFjADcyLPXvg5uSJ9wpYdyMLCwySh4io\noWIBNzBf2dqKjkBEROA5YCIiIiFYwERERAKwgKnOuHXjBpKTk0XHICKqFSxgqhNSUlJgPnw4vjWb\nxpG5iKheYAFTnbB59WrMSL6NJ68Gc2QuIqoXWMAke9evX8eNg4cxvkTDkbmIqN5gAZOsabVabPre\nEnMSkmEKiSNzEVG9wQImWTvh44N/BFzGwDJv1Rn5hfDb4or4+HiByYiIaoYFTLKVn58PNxtbzEvL\neujx1pAwOTYBTnbLBCUjqptKSkqwwtoaiYmJoqMQWMAkYztcXdEnPBLdy5m1aZRai0Tfk7h06ZKA\nZER106H9+xHpvBlOy/jlVQ5YwCRLCQkJ+MnZBTPzC8tdbgIJc5NS4KRUQq1WGzkd1cT3FhbwPnJE\ndIwGJysrC14rV8EmKw8xPicQGBgoOlKDxwImWXJatgyfxiagdSVzFveGAk8HX8Oh/fuNmIxq4uLF\ni4g64g132yXIzc0VHadB2bphA4ZGxaAzJMxNTIGjJb+8isYCJtkJCAhAvI8vRqurHnDDIiMHu1es\nRHZ2thGSUU2UlpbC8XtLfJ2ShoGRMXB3dhYdqcGIiIjAxZ27MKWwBADQBwo8dTWYRyIEYwGTrKjV\najhaKmGRlAKTSvZ+7+sMCYMjY7Dd3t4I6agmDu7bh2ev38BbUGD6nUKc2bodsbGxomM1CJusrDEj\nLhH/KPNval56NnbY2SEnJ0dgsoaNBUyycmj/frQL/hOvQEIetDr9TCosxjl3D0RERIiOTxXIzMyE\n14qVmJN598O+JSRMiY2H45KlgpPVf7/++isKz53HB9qHv9B2hYT3ImLg7uQkKBlxPmCSlXMnT+Kv\nJ5/A5I7t9VqvsLQUgQEB6N69u4GSUU1s27gRH0TF4pkye2AfaYDjfqfw+++/o2/fvgLT1V/FxcXY\nrLSCZUoapHL2t6YVFGHadjeM/PRTdOvWTUDCho0FTLLivHOn6AhUy8LDw3Fx5y7sLCoByhTw/SvZ\n7S2V6H36FzRqxI+j2ua1Ywd63grFqxUc7GwBCVNjE+C4ZAk27Nhh5HTEQ9BEZFD21taYGZeIZuWc\n038LCjx7/QYO7tsnIFn9lpqaikPr1mNOduXjpn+oAdJPnYa/v7+RktF9LGAiMpgzZ86g6NwFDNVW\nfEHdnMwceK1chczMTCMmq/+2rF2LUTFxaFfFxYwKSJiffBvOSiVKSkqMlI4AFjARGcj984/zUtIg\nVVICz0DCB1Ex2LZxoxHT1W83btzAtX0HMLFYt/t834QC/7x+E/u9vAycjMriSRciMog9Hh54+VYo\nXtHhe/6UwhJM3bkL4VOm4IUXXjBCuvptzaJF+DQ+EX9BAlD1/fQA8EFWDqYuWIBhH32ENm3aGDYg\nAWABE5EBpKam4siGjXDNyQd0uJ+7GSTMiEuEvfViOO370fAB67GsrCy82LMnfnviCb3XHaHVoqCg\nwACpqDwsYCKqdRvt7NAvKhaXodF9JS2QdPoMfH19MXz4cMOFq+eeeOIJWG/YIDoG6UAWBbx+/fpK\nT/736NEDo0aNqvJ1fHx88Msvv5S77Ny5c2jbtm21MxKR7gYNH46gJ55AqJ7r/Uerxcu9ehkkE5Hc\nyKKAY2Ji4OTkBDMzMzRv3vyx5e3atdPpdd566y106dKl3GWpqak8tEJkJO8PG4b3hw0THYNI1mRR\nwI6OjtBoNNBoNHCuwQDtnTp1QqdOncpd1r59e6hUqmq/NhERUW2SzW1Ia9asQU5ODvLyKr9pnIiI\nqD6QxR4wALRo0QJ79uwRHYOIiMgoZLMHTERE1JCwgImIiARgARMREQnAAiYiIhKABUxERCQAC5iI\niEgAFjAREZEALGAiIiIBWMBEREQCsICJiIgEYAETEREJwAImIiISgAVMREQkAAuYiIhIABYwETUo\nP9jaYpuTk+gYRPKZD5iIyNDCwsJwwcMTGlNTjBg9Gk8//bToSNSAcQ+YhLl9+zZ+sLNDUVGR6CjU\nQNhbW8M8PhmfxsTDecUK0XGogWMBkzBb1q5F2CYHHNi7V3QUagDOnDmD4vP+GAoFxqi1iPI+jqCg\nINGxqAFjAZMQN27cwLV9+7E4Mxf716xFRkaG6EhUjxUVFWGzUon5KWkAgEaQMCdRBUelEhqNRnA6\naqhYwCTEJktLmCeo8DQkjIiOheu6daIjkczl5+cjPz+/Wut6eXrilVtheLnMR95/oUCboKs4evhw\nbUUk0gsLmIzO98QJmP4RgPfuvf0mFZUiaM9ehISECE5GclVcXIyx/fph0vv/Q2lpqV7rpqam4vCG\nDfg85/HynpuejZ3LliE3N7e2ohLpjAVMRlVQUIDtNjaYl/r3IedmkDAzLhH2VtYCk5Gc7d25E72j\n4/ByeCQO/PijXuu6rFqFT6Lj0Q7SY8ueg4SBEdFwc3SsrahEOmMBk1HtcHVF77BIvPjIW28wFND4\n/wY/Pz9ByUiuUlNTcWjdephn52FOZg72rlyFzMxMnda9fv06/jp4CBNL1BU+Z9qdIpzd7o6YmJha\nSkykGxYwGU1SUhJ8nZwxM6+g3OXzb6djq/ViFBYWGjkZPSoqKgqSJCE0NFR0FGxZuxYjo2PRHhKe\nhoQPomOxbePGKtfTarVwUFrBPD4ZpuXs/d7XEhI+i42H45KltRmbqEosYDIa5+XLMSEmHk9W8GHY\nEwq8HhqO3e7uRk5Gj1q7aBG80Ajrv/0WWq1WWI67V8sfwMTiv/dgpxSW4I+duxAWFlbpuid8fNDk\njwC8q8PH3McaINXvFH7//fcaZybSFQuYjCIoKAhRx45jjLryD/PPc/JxbJM9VCqVkZLRo37++Wfg\nt4sYBxM0vngJvidOCMtir1Ti8/gkNCnzpa0ZJMyIS4TD4sUVrnfnzh242dpifppuh6oVkDAv+Tac\nLJV6X+RFVF0sYDI4tVoNR6USFokpaFTJoUAAaAsJY2Li4LJqlZHSUVkFBQXYZr0Y82+nAwDmp2bA\nzdYWd+7cMXqWkydPotHFSw+uli/rA60Checu4MyZM+Wuu83JCS+ERiAEGvhArdNPMrRoGXwNWzdv\nNvQfjQgAx4ImI/A+cgRtg66ir47f98aVaDDt8FH8OWMGXn/9dQOno7J2u7nhzdBw9Lj3u3oBCvQO\ni8QOV1dYLFhgtBwFBQXYvngx7FIzUNF+whcpaVimVKLf+fMwNTV9aFnffv1wbtECREqVf+F71Ata\nLQb071/d2ER6YQHTA0f27sVLr7+OXr161dpr5ubmYrP1YtimZyFYj/U+S0jCwhkz8EtgICQ9P0Sp\nelQqFY47OGB77h2gzJGKWXkFmOHsgo/Hj8czzzxjlCw7t23Dv0Mj8VIlX9pehgKv3ArDHk9PTP/8\n84eWvd23L97u29fQMYlqhAVMAICQkBC4fL0IHXr2wA4/P5iYmNTK6+bk5KD7q6/gwCsv673uO089\nhczMTLRp06ZWslDlXFauxNjoeLR55DTBE5AwMSYezsuXY6URDs8mJSXhhKMT3PIe/iJQHvOcfJiv\n34APP/kE7dq1M3g2otrEAiYAgL2VFb5OTsUvRSU4cugQxo4fXyuv+8wzz2DzgQO18lpkOMHBwQg9\nfBSWpRqUV3qj1Vr4HPdB4MyZ+Pe//63Ta2ZnZ8P2m29gs3q1Xl+inFeswPjouAqvli+rHSSMio6D\ny+rVsF2/XudtEMkBL8Ii+Pn5Qev/OwZBgbkZd4fmy8nJER2LjESj0cBBqcScRBUaV1B6jSDBIjEF\njkol1OqKB7Uoy93REU33HdTpnt37goKCEOV9DGOruFq+rIklavx14CD++usvndchkgPuATdwhYWF\n2GptDdvb6QAU6AoJ/4uMhZujIxZYWYmOR0Zw3NsbrQKC0L+K7+N9oMDRK8HwPnIEo8eOrfS50dHR\nOO/uAbecfMzatRthU6bgxRdfrDLLvh07cKXgDj5+Tr9zzQWlJTi4Zw9e4dXzVIewgBu43e7ueCMk\nHD3LfPiaFRRhups7Rk2ahG7duglMR4aWl5cHj6VL8UN6Fqo63wrcnbzga7tlGDRkCFq1alXh8xxs\nbTE1NgGtytyz67RvX5Wvv9bBAWsdHPT5IxDVWTwE3YCpVCoc22SP2bkP3+PZAhKmxibAwdZWUDIy\nFg8XF/SLiEY3HcoXAJ6FhHcjouHu5FThc/z9/ZF56jRG3Jtm9wOtAkWV3LNL1FBxD7gBc1m5EmNi\n4tC2nA/fERrA+5cz8Pf3R79+/QSkI0NTqVSwXLwYc5q3wrKmTXVeTwMt1i9ZgnFmZo/dllRSUgKn\n7y2xSJUKRZnv9/NT0rDMUol+Fx6/Z5eooWIBN1DBwcEIPXIU35eUf9WrAhLmJ9/GOktLvHPmDBo3\nbmz8kGRQHTt2xPmLF5GVlaX3uqNaty73nuD9Xl7ofuMW3njk4NrLUOCVkDDs8fDAdHPzamcmqk9Y\nwA2QRqOBo5UVzBNUMK3kLMQbUKD7X7ew38sLk83MjJiQjOVf//pXrb1WRkYG9q1eA5esXJT3pc48\nJx/mGzbiw9Gjec8uEXgOuEE67u2NFgGBGKDDr39OVi72rV6DjIwMIySjusx13TqMiI5FxwrOJ5e9\nZ5eIWMANTl5eHjyX2mFemm6HHTtCwojoWLiuW2fgZFSXhYaGInCPFyYVVT6TEO/ZJfobC7gKAQEB\nkCQJ/v7+oqPUiu2OjngzPBJqaBEOjU4//YpKcGHnLty8eVN0fJKpTUorzIpLQrMqrqY2hYTP45Ph\nYGUldJ5hIjngOeBKlJaWYuOiRTiDxnD89jv0Pvtrnb+CMz8rC9F93sEGE/2+e7VXq3kYmsrl5+cH\njf9vGKzj9/n3oMDRe/MMj/jwQwOnA+ZMnowdBw4gPSsL//jHPwy+PSJdsYArsd/LC92u30R/KHD2\nZgj27twJs1mzRMeqEas1a0RHoHqksLAQG7/5Fl/cToc+x4g+Ss3A/Jkz8V50tEFLMTg4GJnnLmBp\n42Zwd3bG/G++Mdi2iPTFAq5ARkYGfly9Bk73rug0z87DnHXrMXzkSF7BSbLxzdy5WLd5M27fvi3k\nfXnnzh30HzIYv739tt7rmrVqiYKCAoMVcNkxrl+DhBlbXPHxhAno2rWrQbZHpC8WcAW2btiAYVGx\nePreOa32kPBxdCxcf/gB1mvXCk5HdHcKyagTvthq2gyb16yBjYAL5dq0aQPlDz8Yfbu6eHSM60mx\nCXCyW4a127cJTkZ0Fy/CKkdoaCgu796Dz4pKHnr802I1/ty3Hzdu3BCUjOhv9lZ3L3yaXKzGtX0H\n+L4s4/4Y1/PS/77af5Rai6STP+HSpUsCkxH9jQVcDntra8yITXzsis4mkDA7Lgn2nCWIBLs/heRg\nKGAKCeYJybBXKo22/dU2Nvhu7lyjbU9fHi4u6Bce9dAY1yaQMDcpBU56TKlIZEgs4EecPn0aJef9\nMbSCv5r3oYDJxUs4efKkkZMR3XV3CsnFmHc7/cFj70GBxhcvwdfX1+Dbj46OxsVduxF53AfXrl0z\n+Pb0FRcXh19ct2L6naLHlvWGAk8HX8Oh/fsFJCN6GAu4jKKiImxRWmF+mQ+28sy/nY7ti21QUFBg\npGT123Fvb0iShMjISNFR6oTd7u54PSTsoSkkAWBeaoZR3pcONraYFpcIiwQV7C2Vsruf13HpUkyO\niUfrCu5JtsjIwe4VK5GdnW3kZEQPYwGXscfDA6+GhOHlKv5aXoICb4VGYOc2XsxRU3l5eXC3XYKD\naIT1330vOo7s3Z9C8vNHppAEgBehQO+wCOzYurVWtpWQkICxw4YhNzf3wWMXLlxA1i93pxocCAX+\nEXAZJ3x8amV7teHixYtQ/eSHkZqKn9MZEgZHxmC7vb3xghGVQ3YFXFpaiszMTKNv9/bt2zi6cRNm\n5+Tr9PxZeXdwwtEJycnJBk5Wv3m4uOC/EVEYCROU+v+GU6dOiY4ka5VNIQkAM/MK4OvkjKSkpBpv\ny3GpHXqe/w3bHRwA3J1q0NlSiXmqVCjubX9+WhbcbGyRn6/bvxtDUqvVcLJUYm5SCkyqGJFramEx\n/D08edSFhJJFARcXF0OpVKJLly4wNTVFmzZt0Lx5c7zyyivw8PAwSobNq1fjk+g4tNNxYvI2kDAu\nJh7Oy5cbOFn99eBcXX4hgLtzxrpaW6Oo6PFzd3R/CklvjCupePfuSUiYEB1X4/flpUuXkOh7Egvv\nFOG8mzuio6PLnWrweUjoEx6JHa6uNdpeREQEJElCWFhYtV/j4L596HztOt7W4WOtOSRMi02Ag41N\ntbdHVFOyuA/4iy++gEqlwokTJ/DPf/4TzZs3R05ODm7evImvvvoKhYWFsLCwqPJ1srKyKjyvk5OT\ng5KSknKXxcXFwcXNDYM7dcBZSbcCBgAttDi5cydmLlqEbt266bwe3fXoubpeUOC1W+HY7e6OmTr8\nvhsSrVYLB6US5gnJlU4hCQBj1Fr4HDuOoJkz8dZbb+m9LbVaDSfl3T3JllBgamwCfvj+eyRcu17u\nVIMz8wsx3dkFH48fj86dO+u9PQBY+/Ui7EMj/LBoEbbeuyZAH1lZWfBauQr2meVPhVie4VoJ3mfO\n4ty5cxg4cGA1UhPVjCwK2M/PDxcvXkTHjh0fPNa6dWv06dMH9vb2sLW11amAT506hRMnTpS7LCAg\n4KHXL6tr1674MzQUhYWFemdf27Rpha9LFfvjjz+QfPLnx87VfZ6bj883bsKHo0ejQ4cOYsLJ0HFv\nb7S4HKTTFJKNIMEiMQUOlpbw+OknKBT6Heg6fOAAOgVfQ+972xqhAfacOImXiovLnWqwNaS7g1ws\nW4bV1dgTPnnyJEwu/oHRMMG5PwKqNUa099GjCIiKgvWzz+i1XpFGjXVLl2LgmTN6rUdUG2RRwK+8\n8gp+/fVXfPrpp48t8/Hx0XmIvXHjxmHcuHHlLluwYAFUKlWF67JEjefBubrk2zB5pFCegoTRMXFw\nWbUKSzdtEpRQXvLy8uCxZCnWpA15D98AACAASURBVGVB1727vlDg6JVgHD18GKPHjtV5W9nZ2di9\nfAU2ZeQ82JYCEr7PL8QaqFGCRmhcToZP1FocP+GLgIAA9O7dW+ftFRQUYPtiG9ilZgBQ4IvUTFja\n2OK999/Xa4jKz6ZMwXvvv6/z88tq06ZNtdYjqilZFLCdnR0mTZqEjRs34vnnn0erVq2QnZ2NW7du\nobS01Cj3NpLxHNy3D8/8ef3BHtajxpdoMO3wEVybMQOvvfaakdPJz/nz53E2JASWXTshLTkZbUtK\nkWmiQMt27dGkadMK1yvVaHBl9Wq9Cni7vT0GRcagyyMl+wYUeAkaHIQGn8LksfVM7u11O1oq4en3\nM0xMHn9OeXZu24a3QiPw0r33QndIeCfs7jlliwULdM5tYmLCMZ6pzpFFAb/55pu4evUqLl68iJiY\nGKhUKrRr1w4WFhYYMGCA3ueDSL6ys7OxZ8VKOGT+vYf1KFNIMI9Phr2lEtt9jjf43//w4cORWViA\nlZaWeGqDA2ZAwlW1Bhu6P4+dZ06jcePGtbKdyMhI+Ht4wrOwGOX9bubABBYoxVAo0Kac5f+BAt7B\nf+LwwYMYN2FCldtLSkrCCUcnbM+789D2ZuUXYMa9c8rPPKPfIWWiukQWV0EDQNOmTfHee+9h+vTp\nsLS0xKxZszBw4MA68+F76bffEBERITqG7G3buBFDomLRuYpDqQOhQPOAQPgcP26kZPIWEhKCIK+9\nmFRcCgB4Ewo8/9dN7PfyqrVtONjYYFpsAppX8LvpCAkfQoFtqHgYR4uMHOxevkKnQS6cV6zA+Oi4\nx8r8CUiYGBMPp2XL9PsDENUxsingukylUuH7SZNhOW06x5itREREBH7z3ImphcU6PX9eWiY2f28p\ni3tMRbO3ssLsuCQ0LVNWc7JysW/NWmRkZNT49c+dO4fcM2cxXFv5F6NJUOA8NFiLUuyC+rGfc9Dg\n5fBILLW0rPR1rly5gkjvYxirLn8UrTFqLWJ8TiAwMLDafyYiuZPFIei6zmXlSkxPSsHN3Dwc+PFH\nTJw8WXQkWXJYbIPpcQn4h47f+56HhD73zgfOXbjQwOnk6/7EC4Me+XvrCAnDo2Lgum4dLFeurPbr\nFxcXw0VphW9VqZCq+N00g4Qv0QjOb72GsRXcmdAdwP8GDarwNTQaDRwsLWGRmIJGFWzPBBLm3jun\n7P7TSZ3PKRPVJSzgGgoODkbo4aOwLNXgdmYuvli5Ch+MGIEnnnhCdDRZuX79OjwOH0ZBl2dQ1UFl\nrVaLdJUKrUtKkKVV4NLSpZhgZoa2bdsaJauc3J14wRq2t9NR3gGryUWlMNvjhVAzM7z00kvV2saP\nu3bhpRu38LqOX4yGQoFj8Yno3KULhgwZovf2vI8cwZNBV/HfKrbXBwp4X717JfeYCu5uIKrLWMA1\ncPebvBJzElVoDAWeATA0KgZbN27Et0uXio4nK6+++iquhdyqcDCUsvZ6eqK1vSNmlmgQodGipNvd\nwVkaot1ubngjJPyxiRfuawYJs+KSsMnKCpsPHtT79dPS0rB92XJ8mZ0Dfe41ePd2GmZPmoywxAQ0\nadJE5/Vyc3Oxw24Z1qVnQ5dbquamZ2OB3TIMHjoUrVq10iMhkfyxgGvguLc3Wl0OQv8yH45TCktg\ntmMnIqZMQffu3QWmkx9dRgtLTExE0P4DcLtTjCehwIsA/oyOxW53d8yS8fyzhqBSqXDM3gHbch++\nSvhRQ6DAUf/fcerUKQwePFivbTRt2hQT51ogusyEC7pa9vTT0GgqmfWgHO5OThgQEYXndLyfuSsk\nvB8ZAzdHRyzgPNxUz0hauc0lZiD3B+LYu3dvrbxeXl4ePuvXDz/8eeuhSb8BwFfS4NSEMXCspW01\nJEoLC7yyzQPjy1zLlg4tZr3wHLZfON+gRsey+fJLdN+8DZNKq/4nehMa2PV+E3vOn9drj9SYkpOT\n8cJzz2FOy9b4h6T79Z9qaLEpJwthUVG8LYlq3ddff43JkyfjX//6l9G3/dge8DfffAMbGxu0bNnS\n6GHqEg8XF/QLj3qsfAFgmFbCsbPn8euvv+K9994TkK5uCgoKQvRxH9iotSi7x9cWEsY0sNGxgoOD\nEXLv2gJdDtXWhXG0O3XqBP9Ll6o1D+/YVq1YvlQhn+PH8dWcObgRFSXbL6DleayA4+Li8Nprr2Hn\nzp3o37+/iEyyd38WH/c7RSjvw1GChHmqVKxSWuG/587C1NTU+CHrGLVaDYfvLTG3gitjx5doMO3Q\nEfw5fTpef/11AQmNR6PRYPXChfg0MRm/QwKg20Gqd3LzMGXRN7IeR/uNN94QHYHqmfz8fLjZ2GJq\nVi62Ozlh3tdfi46ks8cKeN++fdi7dy/Gjh0LMzMzLF++nAXyiEdn8SnPq1Cg561QeO3YgWmzZxsx\nXd3kfeQInroajD4VXGxkCgnmCclwUCqx3cenzgzQUh35+fnoP2gQrr6o/1XN5iYKvSdfIKrLdri6\nok94JGbeKcKMzZvx8fjx6NKli+hYOin3IqxPP/0UgwYNwqJFi/D2229j/PjxD5b17NkTo0ePNlpA\nubl48SJUP/k9NotPeeZk5+HzdesxYtQonSeUaIhycnKw024Z1ldxZexAKOB9b3Ssjz7+2HgBjaxl\ny5aYp1SKjkEkewkJCfjJ2QUe+YV3Z+WKSYCT3TKs2bZVdDSdVPhVWZIkNG7cGCqVCn/99deDn/j4\neGPmk5UHs/gkpcBEh/Ny7SBhVEwctqxda4R0dZe7kxPejYjGszr8nc5Ly4K77RKOjkVEcLJbhkmx\nCQ+ORo5Sa5HoexIBAQGCk+mm3D3gvXv34ssvv8TAgQNx/fp1tG/f3ti5ZGn/3r1o/+c1PAsJt3U8\nLze0WI15e3/EtSlTOLNPOWJiYvDrNjfsKCj/fPqjnoeEvuGR8NyypU6d6yGi2hUQEID4E75YWuai\nTRNIsEjSf1YuUR4r4AkTJuD06dNwcnLCxIkTRWSSrRuBgQjv2gVfddfvnLikViP05k0WcDnWfm+J\nT2LjcROAzhcb5Rdgoq0tRk6YgM6dOxsyHhHJkFqthuODo5EPH8h9Bwp4B1/D4QMHME7mHfZYAbdu\n3Ro3btyQ7VWUIi1vILfAGNOLPXvg5uSJ9wpYdyMLC9BAbmEnokccPnAAHYP/xDsVnEW1yMjG/y1f\ngSHDhqF169ZGTqe7xwp469a6cfKa6oevbG0f/HdBQQH8TpzAoGHDGuzQk0RUuezsbOxesRIbMyqe\nU7wLJAyKisF2e3t8bWNj3IB64P0KJBsHvLxwdN4X2Ltjh+goRCRT2+3t8b/IaHSt4pqRqQXF8Pfw\nRGRkpJGS6Y8FTLKQlpaGgz+sg+3tDBzbZA+VSiU6EhHJTFRUFPw9PDG1oOo5xVtAgllsAhy4B0xU\nuS1r1+Kj6Fh0LjPsJBFRWfaLF8MsLhEtdJzMY4RWQs6Zszh//ryBk1UPZ0Mi4W7evIngH/dhR7Ea\ngIRxJRpMO3wEf86YUe+HnaSaW2RhAR8fH9yIiZH9bSdUfZcuXYKjlxc6t3wCG/VY79m8fJh/NgW3\n4mINlq26WMAknL3SCrPjk9Hk3gEZU0iYk6CCvaUl3E6cqNfDTlLNhISEIPrESYzKL8D+vXvx6Wef\niY5EBvLOO+/guI+P3lNgAsD45583QKKaYwGTUCdPnoTi94v43yNnQwZAgaOXg3D82DF8PHKkoHQk\nd/ZWVpgdn4RekDB/5Sp8MGIEnnzySdGxyEBGjBghOkKt4jlgEqagoADbF9tgfmpGucvnpWXBY8kS\n5OXlGTkZVSYrKwuSJOH/Zs4UmsPPzw9a/98xCAo8DQnDomKxdcMGoZmI9MECJmF2btuGt0Ij8FIF\nb8O7w05GwXPzZiMno8ps3bABjk2aI/HUL7hx44aQDIWFhdhqbY15t9MfPPZZUQku7dqNsLAwIZmI\n9MUCJiGSk5NxwtEJs/LuVPq8GfmF8Nvi2qAnAZGTsLAw/LFzF8yKSmAenwx7pZWQHLvd3PBGSDh6\nlvkIawYJM+IS4bB4sZBMRPpiAZMQzsuXY1xMPNpUcTtBa0iYHHt3ijESz2HxYsyITUAzSHgPCjS6\n+AdOnjxp1AwqlQrH7B0wO/fxL28faBUoOncBZ86cMWomoupgAZPRXblyBZHHjmNsqW5XM96fYuzS\npUsGTkaVOXPmDIrOXcAH+PtWn/mpGdhmvRgFBQVGy+GyciXGRMehbQVf3uanpMHFUoni4qoHayAS\niQVMRqXRaLD+228xPUGF2wASoa3yRwVgZlIKbOfNg1qtFv1HaJCKi4vhYqnE/JS0hx5/EQq8HRaJ\nndu2GSVHcHAwQg4fxfhKvry9DAVeDQnDHg8Po2Qiqi7ehkRGlZSUhMLSUuzo21vvdZtIEhITE9G1\na1cDJKPK7PHwwCshYXi5nO/ss/LuYKajEz4aOxZPP/20wTJoNBo4Kq0wJ1GFxlXsO3yek4/PN2zE\nh6NHo127dgbLRFQTLGAyqs6dO+PQ2bOiY5AeUlNTcXjDBmzNyUd5s888CQkTouPgvGIFVjg7GyzH\ncW9vtLgciAE6HLhrBwmfRN8d0tSWtyaRTPEQNBFVymXVKnwSHY92lVwwN0atRZT3cQQFBRkkQ15e\nHjyX2mFeWpbO60wsUeOvg4fw119/GSQTUU1xD5iIKnT9+nX8dfAQvim5O053RRpBwpxEFRyVSrif\nPAmFona/2+/ZtQuBoaHY2km/w8ltioqx+OuvceTnn2s1D1FtYAGTLBQXF+Po/v3437BhaNu2reg4\nBECr1cJBaQXz+GSY6nCw7L9QwDvoKo4ePozRY8fWapZpM2bgzbfeqta63bp1q9UsRLWFBUyy8JOv\nLw58tRCRN2/CcuXKSp/7nYUFXnztNcy0sDBSuobphI8PmlwKwLt6nKmam56NRcuWYfDQoWjZsmWt\nZWnSpAl699b/wj0iOWMBk3B5eXnwWLIUq9KzYb1nL0KmTkWPHj3KfW5QUBCivI/jxukz+HjsWF7h\nakD2K1dCbaLAZ8/pd2VzYXYOTp06hdGjRxsoGVH9wAIm4Tw3b0bfiCh0h4SZcYmwt7LG5kMHH3ue\nWq2Go1KJL5JvI6JxI17hamBHf/kFOTk51Vq3Y8eOtZyGqP5hAZNQcXFxOLXFFe75hQAkDIYCR/1/\ng5+fH4YMGfLQc72PHEHboKvoCwX+XaKG2cFDuD59Ol599VUx4eu55s2bo3nz5qJjENVbvA2JhHKy\ns8OkmHi0LnOF7bzb6dhqvRiFhYUPHsvNzcUOOzvMTc8GAJhCgnl8MhysrKDVao2em4iopljAJMyl\nS5eQdPJnjHpkVMFeUOD10HDsdnd/8JiboyPejYjBs2WK+l0oYPpHAHxPnDBWZCKiWsMCJiHUajUc\nv7fE3KQUmJRzf+nnOfnw3mSPlJQUxMTE4Ox2N0wrKHrseV+kZmK7jS3u3Kl8WkMiIrlhAZMQh/bv\nxzN/XkfvCt6CbSFhTMzdoQQdbG0xJTYBLcsp6u6Q8E54JHa4uho6MhFRrWIBk9FlZ2dj94qVsMis\n/Arb8SUa/On1I8J9f8JHlcxcOCuvACedXZCYmFjLSYmIDIcFTEa3bdMmDImMQedKhjYE7l5o9UVq\nBkzTUit95hOQMDEmHk7LltVuUCKSlYDff8f169dFx6g1LGAyqsjISPzmuQNTCnWbLH0gFHgGCvii\nkl1g3J0MIMbnBAIDA2sjJhHJTEZGBpRmZrCcMgUFBQWi49QKFjAZ1TpLS3wam4BUADHQ6vQzEwqs\ngBr5qPh2IxNImJuYAkdLJdRqtfH+QERkFFvXr8eY+CT0jYrFzm3bRMepFRyIg4wmNTUVxSUl8B34\nX/hW8dyYiEggMQn/0N7d820EwBNqdKzisLX2ciB27diBaTNm1E5oIhIuNDQUl3d7wbOoFAVFpZjl\n6ISPx41Dp06dREerERYwGU27du3gduSITs+9evkyfjt37rHHU6tYrzeAQYMH6x+OiGTL3soaM+IS\n0QwKNAMwLiYezitWYLmTk+hoNcICJll68+238ebbb4uOQUSCnTp1CqX+v2FomTOmY0s1mH70GK7O\nnIk333xTYLqa4TlgIiKSpaKiIrhaW2N+StpDjzeGhDmJKthbWkKjqfwCTTljARMRkSzt8fDAa7fC\n0aucquoHBZ4MuopjR48KSFY7WMBERCQ7KSkpOLphI2bn5lf4nLlpWfBcaoe8vDwjJqs9sjgHvH79\nepSUlFS4vEePHhg1apQRExER1U/2a9fiq+++Q1RUFLp16yY6ToU2r16N0TFxaFfJnQ/dIGFARDTc\nnZ3x5XffGTFd7ZDFHnBMTAwsLS0REhKC+Pj4x37S09NFR5SVq1ev4q2ePevNzehEZBxJSUk4vXUb\nDihMscl6seg4Fbp27RpuHjqM8SVVn9+ddqcQp7duQ1xcnBGS1S5Z7AE7OjpCo9FAo9HA2dm52q+z\na9cuHD58uNxl165dQ+fOnav92nKhVqux6dtv8VFsArZu2oT/s7QUHYnKkZ2djcLCQnTo0EF0FL0U\nFBTgm7lz8f2yZfXi3ws9zHn5ckyIicdIDXDizK84f/48BgwYIDrWQ7RaLewtlTCPT4apDvuIrSDh\ns5h4OC5Zih/c3YyQsPbIooABYM2aNTA3N0deXh5atGhRrdcYN24cPvroo3KXWVpa1os96aOHD6Pd\nlT/xfwXFmL7NDSM//RTPPfec6FhUhlarxdyxY5EQHYNjQYFo3bq16Eg62+3mhkaHjsLJ1BSrOcNU\nvRIUFISoY8exWK2FBAnzVKlYp7TCf86chqmpqeh4Dxw/dgwmlwLwAiQkVTL6XVm9NcDBkydl+YWi\nMrIp4BYtWmDPnj01eo2mTZuiadOmFS4zMTGp0euLlpOTg512y7AxIxstIeGz2Lvf+tZ7eoiORmUc\nP3YMbYOv4Z38O9hub4+vbWxER9KJSqXCcQcHbMu9g4UnfBEQEIDevXuLjkW1QK1Ww1GphEViChrd\n26t8Awq8cOMW9u3ejSkyGjku7M8/oeraBd+/2F2v9TRqNaJCQupUAUMrU7Nnz9ZmZ2fX2ut99dVX\n2okTJ9ba64mwccUK7cZmLbUlaKItQRNtEUy1Uzo9o/3tt99ER6N78vLytKPeeEMbAlNtJky1o7r9\nUxsZGSk6lk4Wf/GFdkejptoSNNFeQGPtZ//7n7a0tFR0LKoFhw4c0C5s2+7BZ8f9n3iYaj/q0VOb\nlpYmOqIwCxcu1AYFBQnZtiwuwirPzp07UVhYKDqGbERHR+PsNjdMKyh68JgCEuYl34aTpRKlpaUC\n09F9nps3o294FJ6HhBaQMDU2AQ42tqJjVSk4OBihh49iXOndi17+AwU6XL2GI4cOCU5GNZWbm4sd\ndnaYm5792LKOkPBhVCxc160TkIxkW8D0MEfbJZgal4AWj1yS/xYUeO76DRz48UdByei++Ph4+G3e\nghn5f39xHKEBcu5d7CJXGo0GDpZKzElUoXGZ99fcjGzsWrYc2dmPf3BT3eHm6Ih3I2LwbAW380wq\nLsUVr724deuWkZORbAvYzMyswvO5DY2/vz8yfjmNDyu4In9OZg72rlyFzMxM4wajhzgutUNYVBSW\n4O/pEBWQMDf5NpwtlZXe6y7ScW9vtLochP6PfBx0hYT3I6Ph5uAgKBnVVExMDM5uf/jI2aOaQsKs\nuCQ4WFsbMRkBMi5gV1dXtGrVSnQM4UpKSuBsqcS85NtQVPAN9mlIGBYVi60bNhg5Hd136dIlBBw+\njMGQkAwt/sLf35begAIv3gzBvhpeZGgIeXl58Fi6FPPSs8pdblZQjPPuHoiOjjZyMqoNDra2mBKb\ngJZVTOM5CApo/X+Hn5+fkZIRIOMCprv2e3nh+b9u4s0qflWfFZXg0q7dCAsLM1Iyuk+tVmPjt9+i\ncWYmvkAjmMMEzlBDW+YWCvOsXOxfs1Z2t8J5uLigX3gUulXwAd0CEsziEuFgK//z2PQwf39/pJ86\njY90nKtg/u10uFpZ89obI2IBy1hGRgb2rV6DOVm5VT63GSTMiEuEw2L5jm5TXx0+cABZlwMxDAp0\ng4T3oIApgJ/L7AV3hIQPo+NkdbFLXFwcTm1xxYw7FR+eBO6ex846dRoXLlwwUjKqqdLSUjgrKz9y\n9qgeUODN0HDsdnc3cDq6Tzb3AdPjXNetw/DoWHTU8R/QB1oFvM9dwJkzZ/D+++8bOB0Bd0e8crWx\nRZOCAkxD4wePz4cJLKHGQCjQ7N7vb1JRCcy89iLEzAw9evQQFfkBx6VL8VlsAlpV8f5S3B+0wVKJ\n//x6Bo0bN670+STelStX4HPpEkqf66LXemqtBlEbNmLW3LkGSkZlsYBlKjQ0FMpVq+CIRvDUY71X\nUlIxecwYxKakyGp0m/pqu709mkRGYzpMHiqyF6DAf6DBLmjwOe4OAHP/Yhd7KytsFnx7z8WLF6H6\nyQ8jdTw8+WDQhj178Nm0aQbNRjXXu3dv5BZVfmSDxGMBy9RLL72E/fv36z3hgimAg88/z/I1gsjI\nSBzbvAVdNWp8VM4/pZkwwQyUYgQUeOZeOQ+GAt73LnYZMmSIsSMDuHvOes3ChZiWpII/JEDH4f76\nZuVg+hdfYPjHH6NNmzaGDUnUALCAZWzcuHGiI1AlfI8dQ3zqbayBCUzKOYz7JCSMhwLDWzRBu7Zt\nHzxeotFA7ekprIDv3LmD/40YgeB/vaX3uvOamEKr1a2wiahyLGCiamrXvj0mtHoS/86s+CK5cVDA\nt3VrLDp0EG+9pX/hGULLli3xBe/5JBKOV0ETVUNWVha8Vq7CnMycSp/XCBIsElPgqFRCrVZX+lwi\nalhYwETVsHXDBgyNinlwbrcyfaFA26Cr8D5yxAjJiKiuYAET6Sk8PBwXd+7C1ELdh5acm56NHXZ2\nyM2t+p5uImoYeA6YSE+233yD9PR0rOjwlF7rtU3PhNvWrfjq668NlIyI6hIWMJGeHLZvR3h4eLXW\nfeONN2o5DRHVVSxgIj099dRTeOop/fZ+iYgexXPAREREArCAiYiIBGABExERCcACJiIiEoAFTERU\ny9RqNXJycjhuNlWKBUxEVMs8XF0x4qUeuHz5sugoJGMsYCKiWpSSkoJjm+xhp0rjGOBUKRYwEVEt\nclm1CqNj4tAfCnS4eg1HDh0SHYlkigVMRFRLrl27hluHjmB8iQYAMDcjG7uWLUd2drbgZCRHLGAi\nolqg1Wphb2kJ84RkmN6bJasrJLwfGQ03BwfB6UiOWMBERLXA5/hxNA8IxMBHPlbNCopx3t0D0dHR\ngpKRXLGAiYhqKD8/H+62SzAvLeuxZS0gwSwuEQ62tgKSkZyxgImIashzyxb0DY/E8/cOPT9qhAbI\nOnUaFy5cMHIykjMWMBFRDSQkJOBnl82YkV9Y4XMUkDBPlQpnSyVKSkqMmI7kjAVMRFQDTnbLMCk2\nAa0r2Pu97w0o8MKNW9i3Z4+RkpHcsYCJiKopICAACSd88YlatyEnzbNysX/NWmRkZBg4GdUFLGAi\nompQq9VwtFTCIikFJlXs/d7XERJGRMfCdd06A6ejuqCR6ABERHXRzZs3cTLgElKf66zXeloACV5e\nmLVgAdq1a2eYcFQnsICJiKrh1VdfRVpurugYVIfxEDQREZEALGAiIiIBWMBEREQCsICJiIgEYAET\nEREJwAImIiISgAVMREQkAAuYiIhIABYwERGRACxgIiIiAVjAREREArCAiYiIBGABExERCSD7Alar\n1SgqKhIdg4iIqFbJooDj4+MxdepUtGjRAoMHD0ZERMSDZQcOHMCUKVMEpiMiIqp9sijgjRs3olOn\nTggMDESfPn0wYMAAhIWFiY5FRERkMI1EBwAAX19fXL16Fc2aNYOdnR169eqFoUOHwt/fX3Q0IiIi\ng5BFAffq1QuBgYHo378/AGDixIlISkrCsGHDYG5urvPrREdHIz4+vtxlCQkJKCkpqZW8RERENSWL\nAp4zZw7GjRuHBQsW4LvvvgMALFy4ELm5uViwYAFGjRql0+tERkbiwoUL5S6Lj49Hq1atai0zERFR\nTciigIcMGYLIyEhERUU99LitrS0GDhyIyMhInV5n0KBBGDRoULnLcnJyoFKpapyViIioNsjiIiwA\naN68OV599dUH///5558jJycH7777LmbOnCkwGRERUe2TTQE/aufOnSgsLBQdg4iIyCBkW8BERET1\nmWwL2MzMDE2bNhUdg4iIyCBkcRFWeVxdXUVHICIiMhjZ7gETUd2Xn5+PdcuXIysrS3QUItlhAROR\nwez19ETUhk1wc3AQHYVIdljARGQQKpUKx+ztsTgzF/4enjrfz0/UULCAicggXFauxNjoeLSDBLPY\nBDjY2IiORCQrLGCqE7Kzs/Fi1664ceOG6Cikg+DgYIQePopxpRoAwAithNwzZ3Hu3DnByYjkgwVM\ndYLjihWYnZKGDd9+B61WKzoOVUKj0cBBqcScRBUaQwIASJAwT5UKF6UViouLBSckkgcWMMnezZs3\nEfzjPswtVuMfAZdxwsdHdCSqxHFvb7QMCET/Rz5eXocCL924hR937RKUjEheWMAke/ZKK8yOT0YT\nSJiflgU3G1vk5+eLjkXlyMvLg8fSpZifnl3ucvPsPBz4YR3S09ONnIxIfljAJGsnT56E4veL+N+9\nt+rzkNAnPBI7OFCLLHm4uKBfRDS63Tv0/KgOkPBRdBy2/PCDkZMRyQ8LmGSroKAA2xYvxvzUjIce\nn5lfiJ+cXZCQkCAoGZUnLi4Ov7huxfT8yidRmVRciqt7f8StW7eMlIxInljAJFu7tm/HW6EReOmR\nt2lrSJgUmwCnZcsEJaPyOC5diskx8Whdwd7vfU0hYVZcEuytrIyUjEieWMAkS8nJyfBxcMTsvIJy\nl3+i1iL+hC8CAgKMnIzK88cffyD55M8YqdHt+YOgAH67iJ9//tmwwYhkTLaTMVDD5rx8OcbFxKNN\nBXtTJpBgkZgCR0slPP1+VPqb6QAACoFJREFUhomJiZET0n1qtRo/fP01LJJv4+5d2rrdJvbZ7XTM\nm/05BoSGoFmzZoaMSCRLLGCSnStXriDy2HFYlWqASg5n/gcKeAf/icMHD2LchAnGC0gPSU9Px7Pd\nu+NYhw56r9uvcWNkZmaygKlBYgGTrGg0GjhYKmGeoEJjHc6QWGTkYMHyFRjywQdo3bq1ERLSo9q3\nb48NO3aIjkFU5/AcMMnKsaNH8WTQFfTT8a3ZFRLej4zmbDtEVOdwD5hkIy8vD9OnTMGcYjW2Nq78\nStqyFKWl+MrGBp989hm6detmwIRERLWHBUyy0aJFCxz/+edq3d/r07Ily5eI6hQWMMlKv379REcg\nIjIKngMmIiISgAVMREQkAAuYiIhIABYwERGRACxgIiIiAVjAREREArCAiYiIBGABExERCcACJiIi\nEoAFTEREJAALmIiISAAWMBERkQAsYCIiIgFYwERERAKwgImIiARgARMREQnAAiYiIhKABUxERCQA\nC5iIiEgAFjAREZEALGAiIiIBWMBEREQCsICJiIgEYAETEREJwAImIiISgAVMREQkgGwLWK1WIycn\nR3QMItLDnTt38HTbtvDz8xMdhUj2ZFHAJSUlWLVqFWbMmIErV67gxx9/RIcOHfDEE09g9OjRKCoq\nEh2RiHTgsnYtvrpTBFcrKxQUFIiOQyRrsijgb775BmfPnkWHDh0wYcIELF26FIcOHUJ4eDhKS0tx\n9OhR0RGJqAoRERH4zXMnzAtL8K/QCOzavl10JCJZayQ6AAD4+voiMDAQrVq1QrNmzXD79m0MHDgQ\nALB8+XJYW1tjwoQJglMSUWUcFttgelwCmkOB2bl3MMvRER+PG4eOHTuKjkYkS7LYA/7nP/+JkJAQ\nAMCsWbMwderUB8uuX7+O7t27i4pGRDo4d+4c8s6ewzCtBABoAwnjouPhvGKF4GRE8iWLPeCFCxdi\n5MiR2LJlC0aOHImnn34aAKBUKuHu7o5ffvlFp9fZunUr/r+9uwuJes/jOP4ZOz6kOZUZYQ+U5cVK\nmiZECF7Yw0YPtCh6o61kHJxazQy6WTOC6kbqtOyyrm1EVAZ5jKVOu5zKPJI3WZBEUbjlomu6S0e0\nZsuHzMe9OLuyHjqtlfod/b9f0MXMmH4Iprfzmxm9dOnSe29rbGzU8uXLx20zgB/09fXpD78uVOH3\n7XL9z/f06QNDyr56TQ+//FLx8fGGCwHf5BMB3rRpk549e6bu7u5R12/fvl2HDh1ScHDwmD6Px+OR\nx+N5720VFRXyer2fvRXAaF9fvKif/fWZYn90oOYvl371z+/1u8JCnf32W/n5+cSBG+AzfOYe4Xa7\nFRERMXLZ4/Fo5cqVY44vgMnX3t6uP534Srtfd7339iT5afb9B/rLtWuTvAzwfT4T4B8rKytTb2+v\n9QwAH3D6xAn94u/PtUCun/yYvJf/0vkjR9XV9f5IA07lswEG4Nvq6+v18OsKZfQNfvDjIuVS0t+a\ndK60dJKWAVODzwZ4586dCgoKsp4B4Cf89uBBeVpfKPADj37/a1dPr6r+eFotLS2TsAyYGnw2wKdP\nn5bb7baeAeA9bty4oRm197R+jP+FuOXSL5//Q78/cmSClwFTh0+8ChrA1JK3a5d+3tOjr2aHjPnv\nDEv6zblzysjLU0JCwsSNA6YIAgzgo/35u+8+6Tj5pr8/8QX+gwAD+GgxMTGKiYmxngFMaT77HDAA\nANMZAQYAwAABBgDAAAEGAMAAAQYAwAABBgDAgGt4eHjYesRkePjwobZt26bVq1eP2+e8c+eOXC6X\nXK7//6P4MH76+/s1NDSkwMBA6ymO093drZCQsf/wDYyPt2/fKj4+XmFhYdZTpp2mpiZVVVVp0aJF\nk/61HRPgiZCWlqYzZ85wp5hk33zzjZ4/f66CggLrKY6TnJysmpoa6xmOk5ubq/z8fEVHR1tPwTji\nCBoAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADvA3pM7S1tWn+/Pny8+P7mMnU09OjgYEBud1u\n6ymO8+LFC0VERFjPcJyOjg7Nnj1b/v7+1lMwjggwAAAGeOgGAIABAgwAgAECDACAAQIMAIABAgwA\ngAECDACAAQIMAIABAowpbWBgQLyVHU7Q399vPQHjjAB/hvr6emVkZCguLk4bNmxQRUWF9SRHaW1t\n1dKlS9XU1GQ9ZdqrqalRUlKSIiMjlZqaKq/Xaz3JUcrLy5WYmGg9A+OMAH+G/fv3a8uWLXr06JEu\nXryoffv2qa2tzXqWI5w9e1br1q1Te3u79ZRpr6OjQ5mZmSotLVVDQ4MiIyN14MAB61mO4PV6tXfv\nXhUUFHDSMw0R4E80NDSk3NxcZWRkSJIWLlyo0NBQPXjwwHjZ9NfX16fLly/r+vXrmjNnjvWcaa+u\nrk7R0dFatWqV/P39lZ+frytXrljPcoTq6moFBwfrwoUL1lMwAb6wHjBV+fn5KSUlZeRydXW1vF4v\nx0STICAgQJWVldYzHKOlpWXUL2BYsGCBXr9+rXfv3ikwMNBw2fSXnp6u9PR01dTUWE/BBOAR8Dho\naGhQVlaWSkpKeESGaefly5cKCQkZuTxz5kxJP/xWKgCfjgCPUWVlpQICAhQQEKC5c+eOXP/06VMl\nJyfr8OHDI8fRGF9hYWEj//Y3b960nuM44eHhevPmzcjlzs5OBQUFjbofAPh4HEGPUWJiou7duydJ\nmjFjhiSpqalJGzduVFFRkfbs2WM5b1q7ffu2BgcHJUlRUVHGa5xn8eLFam5uHrnc3NysJUuW2A0C\npgkCPEZut1sJCQmjrsvKytKOHTuUkZGhV69eSZJmzZqlgIAAi4nTVlxcnPUER1u/fr2ys7NVXV2t\npKQknTx5UmlpadazgCmPI+hPdP/+fdXW1ur48eOaN2/eyJ/y8nLracC4CgwMVElJiVJSUrRixQq1\ntraqqKjIehYw5bmGeXMZgDEYGBhQZ2cnz/0C44QAAwBggCNoAAAMEGAAAAwQYAAADBBgAAAMEGAA\nAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAM\nEGAAAAwQYAAADBBgwAF6e3sVExOjgwcPjro+OztbmZmZRqsAZ/vCegCAiRcUFKTy8nKtXbtWa9as\nUWpqqoqLi3X37l3V1dVZzwMciQADDhEbG6vi4mLl5OTI399fx44dU21trUJDQ62nAY7kGh4eHrYe\nAWDybN26Vbdu3VJpaak8Ho/1HMCxeA4YcJioqCgNDg4qPDzcegrgaAQYcJCamhqVlZXp6NGjysvL\nk9frtZ4EOBZH0IBDdHV1KTY2VoWFhcrJyVFycrIiIyN1/vx562mAIxFgwCF2796txsZGVVVVyeVy\nqaGhQXFxcbp69ao2b95sPQ9wHAIMOEBlZaXS09P1+PFjLVu2bOT64uJinTp1Sk+ePOHV0MAkI8AA\nABjgRVgAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAA\nGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGPg3hHOXjmJmlBIAAAAASUVORK5CYII=\n" | |||
|
51 | } | |||
|
52 | ], | |||
|
53 | "prompt_number": 2 | |||
|
54 | }, | |||
|
55 | { | |||
|
56 | "cell_type": "code", | |||
|
57 | "collapsed": false, | |||
|
58 | "input": [ | |||
|
59 | "publish_display_data('Assignment1',{'text/latex':r'''What is the correlation, $\\rho$? We could also have plotted with matplotlib...'''})", | |||
|
60 | "" | |||
|
61 | ], | |||
|
62 | "language": "python", | |||
|
63 | "outputs": [ | |||
|
64 | { | |||
|
65 | "latex": [ | |||
|
66 | "What is the correlation, $\\rho$? We could also have plotted with matplotlib..." | |||
|
67 | ], | |||
|
68 | "output_type": "display_data" | |||
|
69 | } | |||
|
70 | ], | |||
|
71 | "prompt_number": 3 | |||
|
72 | }, | |||
|
73 | { | |||
|
74 | "cell_type": "code", | |||
|
75 | "collapsed": false, | |||
|
76 | "input": [ | |||
|
77 | "import pylab", | |||
|
78 | "%Rpull X Y", | |||
|
79 | "pylab.scatter(X, Y, c='r')", | |||
|
80 | "pylab.gca().set_xlabel('X')", | |||
|
81 | "pylab.gca().set_ylabel('Y')" | |||
|
82 | ], | |||
|
83 | "language": "python", | |||
|
84 | "outputs": [ | |||
|
85 | { | |||
|
86 | "output_type": "pyout", | |||
|
87 | "prompt_number": 4, | |||
|
88 | "text": [ | |||
|
89 | "<matplotlib.text.Text at 0x10df91410>" | |||
|
90 | ] | |||
|
91 | } | |||
|
92 | ], | |||
|
93 | "prompt_number": 4 | |||
|
94 | }, | |||
|
95 | { | |||
|
96 | "cell_type": "code", | |||
|
97 | "collapsed": false, | |||
|
98 | "input": [ | |||
|
99 | "publish_display_data('Assignment1',{'text/html':r'''We might include some other html stuff, too. ", | |||
|
100 | "", | |||
|
101 | "<iframe width=\"560\" height=\"315\" src=\"http://www.youtube.com/embed/sf49cw0134U\" ", | |||
|
102 | "frameborder=\"0\" allowfullscreen></iframe>'''})" | |||
|
103 | ], | |||
|
104 | "language": "python", | |||
|
105 | "outputs": [ | |||
|
106 | { | |||
|
107 | "html": [ | |||
|
108 | "We might include some other html stuff, too. ", | |||
|
109 | "", | |||
|
110 | "<iframe width=\"560\" height=\"315\" src=\"http://www.youtube.com/embed/sf49cw0134U\" ", | |||
|
111 | "frameborder=\"0\" allowfullscreen></iframe>" | |||
|
112 | ], | |||
|
113 | "output_type": "display_data" | |||
|
114 | } | |||
|
115 | ], | |||
|
116 | "prompt_number": 5 | |||
|
117 | }, | |||
|
118 | { | |||
|
119 | "cell_type": "code", | |||
|
120 | "collapsed": false, | |||
|
121 | "input": [ | |||
|
122 | "", | |||
|
123 | "publish_display_data('Assignment1',{'text/html':'<h2>Answer</h2>'})" | |||
|
124 | ], | |||
|
125 | "language": "python", | |||
|
126 | "outputs": [ | |||
|
127 | { | |||
|
128 | "html": [ | |||
|
129 | "<h2>Answer</h2>" | |||
|
130 | ], | |||
|
131 | "output_type": "display_data" | |||
|
132 | } | |||
|
133 | ], | |||
|
134 | "prompt_number": 6 | |||
|
135 | }, | |||
|
136 | { | |||
|
137 | "cell_type": "code", | |||
|
138 | "collapsed": false, | |||
|
139 | "input": [ | |||
|
140 | "publish_display_data('Assignment', {'text/html': '''<input type=\"radio\" name=\"group1\" value=\"Milk\"> Milk<br>", | |||
|
141 | "<input type=\"radio\" name=\"group1\" value=\"Butter\" checked> Butter<br>'''})", | |||
|
142 | "" | |||
|
143 | ], | |||
|
144 | "language": "python", | |||
|
145 | "outputs": [ | |||
|
146 | { | |||
|
147 | "html": [ | |||
|
148 | "<input type=\"radio\" name=\"group1\" value=\"Milk\"> Milk<br>", | |||
|
149 | "<input type=\"radio\" name=\"group1\" value=\"Butter\" checked> Butter<br>" | |||
|
150 | ], | |||
|
151 | "output_type": "display_data" | |||
|
152 | } | |||
|
153 | ], | |||
|
154 | "prompt_number": 7 | |||
|
155 | }, | |||
|
156 | { | |||
|
157 | "cell_type": "heading", | |||
|
158 | "level": 2, | |||
|
159 | "source": [ | |||
|
160 | "Magics", | |||
|
161 | "" | |||
|
162 | ] | |||
|
163 | }, | |||
|
164 | { | |||
|
165 | "cell_type": "code", | |||
|
166 | "collapsed": false, | |||
|
167 | "input": [ | |||
|
168 | "run magics/homework.py" | |||
|
169 | ], | |||
|
170 | "language": "python", | |||
|
171 | "outputs": [], | |||
|
172 | "prompt_number": 8 | |||
|
173 | }, | |||
|
174 | { | |||
|
175 | "cell_type": "code", | |||
|
176 | "collapsed": false, | |||
|
177 | "input": [ | |||
|
178 | "%%MultipleChoiceSetup 1", | |||
|
179 | "", | |||
|
180 | "X = rnorm(200)", | |||
|
181 | "Y = rnorm(200)", | |||
|
182 | "plot(X,Y)" | |||
|
183 | ], | |||
|
184 | "language": "python", | |||
|
185 | "outputs": [ | |||
|
186 | { | |||
|
187 | "html": [ | |||
|
188 | "<h2>Question 1</h2>" | |||
|
189 | ], | |||
|
190 | "output_type": "display_data" | |||
|
191 | }, | |||
|
192 | { | |||
|
193 | "output_type": "display_data", | |||
|
194 | "png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAD8GlDQ1BJQ0MgUHJvZmlsZQAAKJGN\nVd1v21QUP4lvXKQWP6Cxjg4Vi69VU1u5GxqtxgZJk6XpQhq5zdgqpMl1bhpT1za2021Vn/YCbwz4\nA4CyBx6QeEIaDMT2su0BtElTQRXVJKQ9dNpAaJP2gqpwrq9Tu13GuJGvfznndz7v0TVAx1ea45hJ\nGWDe8l01n5GPn5iWO1YhCc9BJ/RAp6Z7TrpcLgIuxoVH1sNfIcHeNwfa6/9zdVappwMknkJsVz19\nHvFpgJSpO64PIN5G+fAp30Hc8TziHS4miFhheJbjLMMzHB8POFPqKGKWi6TXtSriJcT9MzH5bAzz\nHIK1I08t6hq6zHpRdu2aYdJYuk9Q/881bzZa8Xrx6fLmJo/iu4/VXnfH1BB/rmu5ScQvI77m+Bkm\nfxXxvcZcJY14L0DymZp7pML5yTcW61PvIN6JuGr4halQvmjNlCa4bXJ5zj6qhpxrujeKPYMXEd+q\n00KR5yNAlWZzrF+Ie+uNsdC/MO4tTOZafhbroyXuR3Df08bLiHsQf+ja6gTPWVimZl7l/oUrjl8O\ncxDWLbNU5D6JRL2gxkDu16fGuC054OMhclsyXTOOFEL+kmMGs4i5kfNuQ62EnBuam8tzP+Q+tSqh\nz9SuqpZlvR1EfBiOJTSgYMMM7jpYsAEyqJCHDL4dcFFTAwNMlFDUUpQYiadhDmXteeWAw3HEmA2s\n15k1RmnP4RHuhBybdBOF7MfnICmSQ2SYjIBM3iRvkcMki9IRcnDTthyLz2Ld2fTzPjTQK+Mdg8y5\nnkZfFO+se9LQr3/09xZr+5GcaSufeAfAww60mAPx+q8u/bAr8rFCLrx7s+vqEkw8qb+p26n11Aru\nq6m1iJH6PbWGv1VIY25mkNE8PkaQhxfLIF7DZXx80HD/A3l2jLclYs061xNpWCfoB6WHJTjbH0mV\n35Q/lRXlC+W8cndbl9t2SfhU+Fb4UfhO+F74GWThknBZ+Em4InwjXIyd1ePnY/Psg3pb1TJNu15T\nMKWMtFt6ScpKL0ivSMXIn9QtDUlj0h7U7N48t3i8eC0GnMC91dX2sTivgloDTgUVeEGHLTizbf5D\na9JLhkhh29QOs1luMcScmBXTIIt7xRFxSBxnuJWfuAd1I7jntkyd/pgKaIwVr3MgmDo2q8x6IdB5\nQH162mcX7ajtnHGN2bov71OU1+U0fqqoXLD0wX5ZM005UHmySz3qLtDqILDvIL+iH6jB9y2x83ok\n898GOPQX3lk3Itl0A+BrD6D7tUjWh3fis58BXDigN9yF8M5PJH4B8Gr79/F/XRm8m241mw/wvur4\nBGDj42bzn+Vmc+NL9L8GcMn8F1kAcXjEKMJAAAAgAElEQVR4nOzdeViN6f8H8HerUkoYWqislVbL\nJGGECCFbyVaKCjWkLJGxy1KUZC+iL82oiBrLhLETGg1KkhIpSZv2U6fn94efc82ZyrSdnpbP67rm\nur7nPs9z35/zLX3O/Tz3c3+EGIZhQAghhJAmJcx2AIQQQkhbRAmYEEIIYQElYEIIIYQFlIAJIYQQ\nFlACJoQQQlhACZgQQghhASVgQgghhAWUgAkhhBAWUAImhBBCWEAJmBBCCGEBJWBCCCGEBZSACSGE\nEBZQAiaEEEJYQAmYEEIIYQElYEIIIYQFlIAJIYQQFlACJoQQQlhACZgQQghhASVgQgghhAWUgAkh\nhBAWUAImhBBCWEAJmBBCCGEBJWBCCCGEBZSACSGEEBZQAiaEEEJYQAmYEEIIYQElYEIIIYQFlIAJ\nIYQQFlACJoQQQlhACZgQQghhASVgQgghhAWUgAkhhBAWUAImhBBCWEAJmBBCCGEBJWBCCCGEBZSA\nCSGEEBZQAiaEEEJYQAmYEEIIYQElYEIIIYQFlIAJIYQQFlACJoQQQlhACZgQQghhASVgQgghhAWU\ngAkhhBAWUAImhBBCWEAJmBBCCGEBJWBCCCGEBZSACSGEEBZQAiaEEEJYQAmYEEIIYQElYEIIIYQF\nlIAJIYQQFlACJoQQQlhACZgQQghhASVgQgghhAWUgAkhhBAWUAImhBBCWCDKdgBNKTQ0FBUVFWyH\nQQghpJno2rUrRo8ezcrYQgzDMKyM3MTCwsKwZ88eWFtbsx0KIYSQZsLX1xenT5+Gnp5ek4/dZmbA\nFRUVsLKygoODA9uhEEIIaSYSExNRWVnJyth0D5gQQghhASVgQgghhAWUgAkhhBAWUAImhBBCWEAJ\nmBBCCGEBJWBCCCGEBZSACSGEEBa0meeACSGkvp49e4aSkhJoampCWlqa7XBIK0EJmBBCalBeXo5V\nq1bhy5cvkJGRwf79+/Hq1Sv06dOH7dBIK0CXoAkhpAbz589Hjx49cPz4cfj4+ODatWtYunQp8vLy\n2A6NtAKUgAkhpAYfPnyAs7Mz7/WoUaMwbNgwPHnyhMWoSGtBCZgQQmogLS0NDofD15aTkwNxcXGW\nIiKtCSVgQgipwZQpU7B69WpwuVwAgI+PD4KCgmBgYMByZKQ1oARMCCE1WLx4MWRlZaGvr4/Jkyfj\n5cuXSEpKohkwaRS0CpoQQmogJCSEbdu2Ydu2bWyHQlohmgETQgghLKAETAghhLCAEjAhhBDCAkrA\nhBBCCAsoARNCCCEsoARMCCGEsIASMCGEEMICSsCEEEIICygBE0LqJDk5GfPmzcOUKVOgoaGBsLAw\ntkMipEWinbAIIbWWm5uL3r1748qVKzAxMUFubi6sra0hKysLY2NjtsMjpEWhGTAhpNbCw8Oxb98+\nmJiYAADk5OSwc+dOhISENHksRUVF8PT0hIODA9auXYvCwsImj4GQhqAETAiptdLSUsjJyfG1SUhI\noKCgoEnj4HK50NHRQXl5OVxdXaGiooIOHTogPT29SeMgpCHoEjQhpNZGjhwJKysrjBs3Dt26dQPD\nMNi9ezeGDRvWpHGcOHECJiYmWLduHQCgX79+kJGRga+vL3bu3NmksRBSX5SACfl/79+/x4EDB/Dl\nyxdoa2tj8eLFEBISYjusZqV///7YtGkT+vbtCycnJyQnJ0NdXR2Ojo5NGkdeXh4mTZrE1zZ48GDc\nvn27SeMgpCEoARMCICsrC7NmzYKLiwvU1dWxdu1ahISEICoqCiIiImyH16xMmjQJiYmJSEpKQseO\nHaGlpdXkMaiqquL8+fOYOHEir83X1xe9e/du8lgIqS9KwIQAcHNzw8aNG3mLiyIiIrBixQqcP38e\nM2fOZDm65kdeXh7y8vKsjT9jxgycPXsWP/30E9zc3PD48WNcvnwZr169Yi0mQuqKEjAhADgcDrS1\ntfnahg4ditzcXJYiIt8jJCSEs2fPIjQ0FHFxcVBSUkJcXBxERelPGmk56LeVEAA9evRAZGQk7O3t\neW179+7Fpk2b2AuK/Ce6OkFaMkrAhABwdXWFoqIiMjIyYGhoiFOnTkFDQwPjx49nOzRCSCtFzwET\nAqBz587Iz89Hx44d8fDhQ0ybNg0nTpxgO6xGxeVycezYMTg4OMDV1RWZmZlsh0RIm0YzYEL+n4SE\nBJYvX852GAIzbdo0dOvWDc7Oznj16hXk5eXx4sULaGpqsh0aIW0SzYAJaQOuXr2KsrIyHDt2DJqa\nmpg+fTpu3boFT09PtkMjpM2iBExIG5CTkwNzc3O+toEDByInJ4eliAghlIAJaQNUVFRw48YNcLlc\nXtvNmzchLS3NYlSEtG10D5iQNsDQ0BCXLl1Cz549cfjwYaSmpiIkJAShoaFsh0ZIm0UJmJA2Ytu2\nbTA0NERMTAykpKQQEhKCTp06sR0WIW0WJWBC2pCJEyfy7Z9MCGEP3QMmhBBCWEAzYELaoJSUFHz5\n8gUqKiro2LEj2+EQ0ibRDJiQNmbv3r1YtmwZAgIC0KtXL9y5c4ftkAhpk5p9AuZyuSgrK2M7DEJa\nhaCgILx48QIXLlyAr68vHj58iKVLl+LNmzdsh0ZIm9MsEvD79+9hZWUFaWlpjB07FklJSbz3QkJC\nMH/+fBajI6T1uHbtGtatWwdh4a//9Pv164dVq1bhxo0bLEdGSNvTLBKwt7c3FBQU8OTJEwwdOhQ/\n/fQTEhMT69wPl8sFh8Op8b9/bkJASEuWn58PZ2dnGBkZ4ccff0RwcHCtzpOQkEBFRQVfW2lpKcTE\nxAQRJiHkO5rFIqxLly7h6dOnkJSUxJYtW9C/f3+YmJjg7t27dern5MmT+O2336p9LyEhASoqKnB0\ndGyMkAlhTXl5OdTU1ODq6gpvb2/k5eXB3t4e7dq1w/Tp07977uTJkzF+/HjEx8ejffv2iI6OhoOD\nQ50rI+Xn52Pfvn348OEDZGVl8csvv6BDhw4N+ViEtDnNIgH3798fT548wYgRIwAAlpaWSE9Px4QJ\nE+Dg4FDrfmxtbWFra1vteytWrMDHjx8bJV5C2BQVFYWZM2di1apVAAA5OTns378fDg4O/5mAJ02a\nhA8fPkBPTw+DBw8Gh8PBixcv0LVr11qPz+Fw0LNnT2zatAlz585FbGwsJkyYgNDQUMjLyzfosxHS\nljSLBLx48WKYm5tjxYoVWLNmDQDAxcUFBQUFWLFiBaZOncpyhIQ0H8XFxejZsydfm6ysLAoKCmp1\nvoODAywsLFBYWIiuXbuiXbt2dRr/yJEjsLe3x7JlywAAvXv3RlFREfz8/LBt27Y69dWcxcbG4uzZ\nsygpKcHo0aMxefJktkMirUyzuAc8btw4vHnzpsoOPRs3bsQff/wBExMTliIjpPnR19dHREQE3r59\ny2s7evQoVFRUat2HnJwcevToUefkCwB5eXkYO3YsX5uenh7y8/Pr3FdzdefOHaxcuRLGxsawtLTE\n1KlT4evry3ZYpJVpFjNgAJCSkoK2tnaVdiMjIxgZGTV9QIQ0U8rKyti0aRN69uyJrVu34uPHjygp\nKcHRo0drPIfD4SAwMBBpaWno1KkTli5dCnFx8XqN37dvX5w9exZjxozhte3atQsGBgb16q85sre3\nxx9//IEePXoAAMrKymBhYQETExOoqamxHB1pLZrFDJgQUjdGRkZIS0vDgAEDMHPmTBw9erTGlcyV\nlZUwMDDA27dvMX78eHz8+BFKSkooLCys19gWFhbIzMyEsbExIiIisHbtWiQkJLSqBY7q6uq85AsA\noqKi0NLSQlZWFotRkdam2cyACWmrwsPDcejQIVRUVIDD4SAsLKxWi6KUlJSgpKT0n8edPHkSWlpa\n8PDwAPC1NKG8vDwOHjyI1atX1zleYWFhhIeH49y5c0hJSUGPHj1gaGiIMWPGoKysDFu2bIGxsXGd\n+21OxMTEEBsbCz09PQBf77sHBgZi4cKFLEfGLysrC5cuXUJ5eTlGjBhBs/MWhmbAhLDo5s2bOH78\nOP73v//h+vXr2LhxI6ysrBr1fmp6ejqsra352kaPHo2MjIwG9Tt9+nQsXrwY69atg5qaGq5du4bf\nfvsNe/bswfXr1xvUN9vWrl2LAQMGICQkBFevXsWoUaOwfv36Ot1nF7SUlBTMnj0bJSUlEBMTg7q6\nOm7fvs12WKQOKAETwqLDhw/D09MTP/zwAwDA2NgY48aNQ2RkZKON0bVrV9y6dYuvLSQkpE6PHtUk\nPDwcixYtgpOTE0RERNCjRw/4+voiICCgwX2zacCAAUhLS0NKSgoePnwIT09P2Nvbsx0Wn0mTJmHH\njh1YvHgxrK2t8e7dO+zdu7fOz3QT9tAlaEIaGZfLhaenJ27duoXS0lJIS0sjLCys2kVP5eXlkJWV\n5WuTk5NDaWlpo8VjbW2NQYMG4cOHD3BwcMD9+/dx4MCBRnkuvri4GH379uVr69KlC3Jzc2t1fkxM\nDAIDA1FYWIiffvoJNjY2DY6psSgpKdXrEn1T6du3L3788Ufe6x49ekBNTQ1JSUno1q0bi5GR2qIZ\nMCGNbNGiRfjjjz8QGRmJGzduwMTEpMY/5CNHjuRtqAEAmZmZsLW1haGhYb3GfvHiBZYvXw47Ozsc\nP34cACAuLo7Y2FgMHjwYFy9eRHl5Od6+fVvvVdD/pK+vj19//RXZ2dm8toCAAGhoaPznuQ8fPsTq\n1asxa9YsrFmzBk+fPm3WCa+pcDgcPH78GNHR0d/9IlZQUMB3q4JhGNy4cYPKS7YgNAMmpBHl5OQg\nKSmJr8Sfk5MTrK2t8erVqyqLZBwdHTFjxgwYGxtjxIgRePToES5fvlyrBPZvz58/x88//4yNGzei\na9eumDVrFu7du4eAgACIiIhgyZIlDf58/9a/f3/8/PPP6N69O7Zt24bk5OT/fCTqm2XLliE4OBi9\ne/cGAPj6+sLKygoPHz5sVY801UV+fj6WLFkCRUVFVFRUYPjw4Xj//n21O4zZ2dlh4cKF2LZtGyQl\nJbF48WLo6+tDU1OThchJfVACJqQRlZWVVXtvVVxcvNqymiIiIggPD0d0dDS+fPkCW1tbvsdf6uLn\nn3+Gn58ftLS0AHydDdva2uLOnTu8bV4FYfr06Xj+/DmePXsGXV1djB49mldt6XtkZGR4yfcbbW1t\n5OTkCCrUZo3L5eLHH3+EtbU13N3dAXy9wrBixQqcPHmyyhULS0tLdO7cGTt27ACXy8XMmTNr3IqX\nNE+UgAlpRN26dUPnzp3h6enJu7QcFBSEM2fO4MCBAzWeN2TIkAaPLSoqWmXmrKenx3d5WFD69OmD\nPn361OkcFRUVRERE8LZ4LCoqwt69e/Hnn38KIsRm7+PHj9DS0uIlXwCYM2cObt26hcTERN4Xq38a\nO3ZslV3JBInL5eLo0aOIjo6GlJQU1qxZA2Vl5SYbv7WhBExIIxIWFsbu3buhqamJpKQkyMjIIDk5\nGcnJyY1yz/V7evfujYsXL2LatGkAvt5L3Lt3L8LDwwU6bn1t2LABqqqq8PX1hZKSEvbt24cNGzZA\nXV2d7dBY0a5duyqlIoGvj5HVZ8tQQZgyZQoUFBTg7u6OjIwMzJ49Gz4+PnyLwUjtUQImpJF17NgR\n7969Q2xsLMrLy6GrqwtJSUmBj7t+/XooKyvDx8cHvXr1wv79+7F06VLeZhLNjYqKCvLy8hAUFITk\n5GTs2LEDurq6iIiIQGlpKQwNDWu10Uhr0aVLFwwePBibN2/G+vXrISwsDBsbm2pXmrMhKioKlZWV\n8Pf3B/B1Fbavry88PT3x66+/shxdy0QJmBABEBERwaBBg5p0zB49eiA/Px/Hjx/Hs2fP4ObmhtGj\nRzdpDDXJycmBkJAQ5OTk+NplZWXh5OTEO2bOnDkYNGgQpKWl0b17dzx+/BiDBw9mI+RGl5WVhZ07\ndyIlJQVCQkLYs2cPVFVV+Y5xd3fHzz//DCMjI7Rv3x6DBw/GkSNH2An4X/Ly8jBp0iS+Ni0trVo/\nckaqogRMSCsiIyMDZ2dntsPgKSkpwfr165Gamor8/Hy0b98eISEh1V6OnzhxIn755ReYmpoCACZM\nmIDVq1fjxIkT6NKlS1OH3qhKSkogLy+P48ePY8OGDYiLi8O8efMQGBjId+9cREQEBw8eZDHSmvXu\n3RvBwcFYtGgR75J4VFQUpKWlWY6s5aLngAkhAjNq1CgUFhYiNDQUUVFRMDIywi+//FLtsdLS0rzk\nCwAaGhrQ1tbGixcveG1Pnz6Fl5cXvL29kZKSIvD4G8uxY8ewZcsWWFtbQ1ZWFoaGhli3bh0OHTrE\ndmi1NnDgQAwfPhzy8vI4f/489u/fj3379tXqkTNSPUrAhBCB+Fao4Z+XUFesWIHk5GR8+vSp2nOK\nior4Xv/999+QkpICAFy4cAFz586Furo6lJWV0atXL9y7d09wH6ARFRYWVrkXr6qq2uJqKLu4uCA8\nPBxv3ryBqKgozp49i86dO7MdVotFl6AJIQJRVlZW7a5MFRUV1a72nT9/PhYvXgwvLy+0b98ey5Yt\nQ0VFBX788UdkZWVhyZIl+Ouvv3ibUrx+/RqrVq3CgAED0L59e4F/nobQ09ODv78/JkyYwHtG2snJ\nCTNnzmQ5srobOXIkRo4cyXYYrQLNgAkhAtGnTx+Ul5fD29ub17Z69WokJiZCUVGxyvHW1tYwMTHB\n/PnzYW5uDjU1NURERAD4+oyshYUF345Qffr0gaysbIvYuGPixIno06cPtLS0cOLECTg6OkJaWhpL\nly5lOzTCIpoBE0IEQlRUFHv37oWGhgbi4uIgKioKLpeL6OjoGs+ZN28e5s2bV6W9c+fOePPmDUpL\nSyEhIQHg66riW7duQUZGRmCfoTHt3r0bkydPxtu3bzFhwgS++92kbaIETAgRmE6dOuHDhw9ISEiA\niIgI+vXrBxERkTr3o6ioiGnTpkFSUhKPHz8Gh8OBubk5fH19W0wCBoARI0YIdFtQ0rJQAiaECJSo\nqGi12yjWla2tLZSVlREcHAwxMTGcPXsWw4YNa4QICWEHJWBCmpHff/8dkZGRKC8vh4mJCczNzdkO\nqVkxNjaGsbFxrY8vKytDSkoKpKSk6l3kghBBoQRMSDNx6NAheHl5ISIiAiIiIvDw8MDHjx/x888/\nsx1ai/T27VusXr0aUlJSSEhIgI6ODg4ePFivS+CN6cWLF7h16xYkJCQwdepUeoynDaNV0IQ0A9nZ\n2dizZw9evHiB/v37Q01NDQEBAbh69Srev3/PdngtTkFBAXr27AkbGxucOHECDx48wJs3b1jfZeri\nxYuwsrJC586dUV5eji5duiAxMZHVmAh7KAET0gwUFBTA0NCQr2iDqKgolJWVW9xmDc3B/fv3sXnz\nZkyYMIHXFh4ejuvXr7MWU0ZGBqytrXH58mVYWlpi8eLF+PPPP7Fx40bWYiLsogRMSDPQrVs3FBQU\nIDY2ltf2+vVrhISE0L3LemAYBqKiolXaiouLWYro6yVxBwcHdOvWjddmZGSEsrIy1mIi7KJ7wITU\nICIiAhcuXEBRURF++uknLFmyRGBjSUpKYuPGjRgwYAACAgLQrl07bNu2DWFhYZCVlRXYuK3V0KFD\nsWPHDqirq6NHjx74+++/ERERAQMDA9Zi6tixI1JSUsAwDISEhAAAubm5iIuLYy0mwi6aARNSDX9/\nf5w6dQqrV6/Grl278PTpU+zcuVOgY+rp6eHDhw9gGAZFRUWIiIjATz/9JNAxWytZWVkEBQVhwYIF\nmDp1Kvbv34/MzEwEBgaisLCQlZg0NDSgo6MDOzs7JCUl4fnz57CysoKHhwcr8RD20QyYkH8pKCjA\n7t278fTpU14hgCNHjmDGjBlISkriKx9XW8HBwfD394e0tDSSk5Px+++/Q1lZucpxioqKWLhwYYM/\nAwE+ffoEERERXL58GV26dIGioiI8PDywa9cubN26lZWY3N3dERAQgK1bt0JKSgorVqxoNjWbSdOj\nBEzIvxQWFkJXV5eXfAFASEgIqqqq9So+fuXKFYSFheHcuXOQlZXFw4cPsWjRIpw5c6bZ1rlNT09H\nRUVFtV8SWornz5/Dy8sLOjo6vLalS5fCysqKxaiAhQsX0pcsAoAuQRNSRefOnSEkJISbN2/y2t68\neYOAgAD06tWrzv0FBQVhx44dvHu5BgYGmDx5Mi5fvtxYITea0tJSrFy5Eq6urnBxcYGmpiZrl2wb\nqkOHDlUe8Xn37h3v/ishbKMETMi/iIuLY9u2bRg1ahQOHDiAwMBAzJw5ExcvXqzXpglcLpdXQOAb\nKSkpcDgc3uvy8nLExcXh5cuXYBimwZ+hvkxNTfHp0ycEBwcjNDQUEyZMgKurKyorK6s9Pj8/Hxs3\nboSVlRUcHByQnZ3dxBHXbMqUKUhOTsahQ4fw+fNnxMTEYNmyZaxdfibk3ygBE1KNfv36ITs7Gx07\ndkRlZSVCQ0PrXQN1zJgxfCuoU1NTsXDhQt6m/Dk5OVi4cCEOHDgADw8PaGhosDLrzMrKQrt27XDq\n1Clem5eXFyorK/HmzZsqx3M4HPTq1QtdunSBh4cHzMzMMGnSJLx7967OY1dWVsLPzw+mpqYYOXIk\nFi5cWG3N4LoQFxfH6dOnkZCQAFtbW/j4+GD37t18l6QJYRPdAyakBp06dcLcuXMb3M/ChQsRHR0N\nAwMDGBkZ4eXLl7hz5w769esHLpcLDQ0NrFmzBi4uLgC+LtRZs2YN/Pz8mvRyaWVlJTp06FClvbS0\ntNpZub+/P+zt7XlbZXbv3h2lpaXw8/PD7t276zT2qlWrwDAMQkNDISoqCi8vL6xbt67O/fybuLg4\n9u3b16A+/ktOTg6ePHmCdu3aYejQoRAXFxfoeKT1oBkwIQImLCwMf39/HDt2DJMnT4a/vz+GDx8O\nAEhMTMT48eN5yRcAtm/fjs+fPyMjI6NJ4+zWrRsUFBT4isRv2rQJ9+7dq3bl95cvX6qU1tPQ0EBe\nXl6dxs3JycHt27exZ88eSEpKQkxMDGvXrkVaWhpevXpVvw/TRF69egVzc3NER0fjwoUL6Nq1K3Jy\nctgOi7QQNAMmpIloa2tXaWvXrl2VHZuAr/dW2ZhJ7dixA6NHj8b06dMhKysLUVFRPH36FMLCVb+r\nq6urIzg4GBMnTuS1bdmyBUOGDKnTmCUlJVBRUaky25eRkWF156r/UlhYCE1NTdy4cYP3vLaqqirc\n3Nxw9OhRlqMjLQHNgAlhUc+ePSEpKQl/f39e2/Tp0yEuLs7KI0qSkpJ48OAB9u7diw0bNuDw4cM1\n7sQ1depUtGvXDvr6+ggNDcWaNWvw5s0bLFu2rE5jysvLQ0pKiu//g0uXLuHkyZNQV1dv0OcRpBcv\nXsDJyYlvs5Rly5Y1+ZUL0nLRDJgQFgkJCcHT0xNjx47FuXPn0K5dO/Tv35/1DfpVVVVrdZy/vz8u\nX76Mt2/fYsCAAdi+fXu1s+XvERERgaenJ1RVVZGQkAAZGRncuXMHL1++5CtO0dxISkriy5cvfG0V\nFRVIS0tjKSLS0lACJoRlkpKSuHv3LnJyciAkJAQ5OTm2Q6qTf1Yc+qfi4mIcPHgQycnJ6NixI9at\nWwdpaelqj/127zQ6Ohrl5eVYvnx5s98DW1dXFzIyMti9ezdWrFgBDoeD1atXY+rUqWyHRloIugRN\nSDPRqVOnFpd8a8LlcqGlpYWysjIsW7YMSkpK6NChAz5+/FjjORISEhg5ciSMjY2bffL9xtPTE3//\n/TfGjBkDCwsL6OjoYMOGDWyHRVoImgETQhrd8ePHMXHiRLi7uwP4umCrY8eO8PX1bVXFB8TExHD6\n9Oka3//06RN27tyJlJQUCAsLY8+ePbW+vE9aP5oBE9LEuFwuDh8+jAULFsDJyalZ3DMsLy/HyZMn\n4enpieDg4AbvxpWXlwdTU1O+tsGDB7epR3SKi4shLy8PXV1dBAYGwtXVFXPnzkVSUhLboZFmghIw\nIU1s6tSpePLkCdzd3WFubg5LS0s8efKEtXgqKysxYsQIxMfHQ0tLC2FhYTAyMmrQTlSqqqq4cOEC\nX9v+/fvrtZd2S+Xv74/t27fD2toasrKyMDQ0xLp163Do0CG2QyPNBCVgQppQVFQUysvL4e/vj759\n+2LkyJHw8fGBl5cXazEdPXoUPXv2xK5duzBhwgSEhoZi8ODBCAoKqnefM2bMQGZmJoyNjXHlyhVs\n2bIFly5d4ttwpLUrKCiosu2lqqpqlZXTpO2iBExIE8rNzYWZmRlfm5aWFvLz8+vdJ5fLRWRkJIKD\ng/H8+fM6n5+SkgJXV1e+tpkzZ1a7/3NtCQsL4/z587C3t8fff/8NeXl5xMXFVbvpSGs1YMAAHD9+\nnK+QhZOTEwYNGsRiVKQ5oQRMSBPq06cPoqKi+CohXb9+na/2cF1UVFRgwYIF+PPPP5GTk4Phw4fj\n+PHjdepDVlYWjx8/5mu7cuUKOnbsWK+Y/snCwgJr1qyBvb19s36mt76ysrLw4sULZGZmVnlv4sSJ\n6N27N7S1tXHixAk4OjqiQ4cOWLx4MQuRkuao7XwdJaQZGDhwIIYNG4Zu3brhxIkTeP/+PS5evIhf\nf/21Xv25u7tjwIABvEu71tbWmDZtGvT09DBw4MBa9bFkyRIoKCggPz8fU6dOxfXr1+Ht7Y3Pnz/X\nK6a2Ijw8HMePH0evXr0QHh6OjRs3wsbGhu+Y3bt3Y8qUKUhJScGECRMwadIklqIlzRElYELqKTEx\nEd7e3sjLy0PXrl2xc+fOWs3yXF1dMXDgQDx+/Bjt27fH2bNn6/38b0JCAlatWsV7LS0tjTlz5uCv\nv/6qdQKWk5NDXl4eduzYAV9fXygqKuLdu3esV/XJzs7Gvn378P79e8jIyGDLli3N5vngJ0+eYNq0\nacjJyYGcnBy2bt0KAwMD9OrVq0rZyuHDh/OKbxDyT5SASatUUVGB169fQ0hICGpqao1e1i87Oxtq\namq4fPky9PT0cP36dZiZmSEsLEX38XwAACAASURBVKzakn7/NmrUKIwaNarBccjIyODDhw98+0Y/\ne/YMgwcPrlM/EhIS2Lx5c4PjaSylpaXo3r079u/fj0WLFiEmJgampqYIDQ2FvLw82+Hh6tWruHr1\nKu+LU4cOHXDkyBFcvny53nWjSdtDCZi0Orm5uXB2dkb79u2Rn5+Pv//+G9HR0TVug1gf27dvR3Bw\nMMaPHw8AmDt3LjIyMnDq1Ck4Ojo22jj/ZcmSJXBxccHBgwehrKyMI0eO4PTp09i1a1eTxSAIfn5+\nWLduHRYtWgQAUFZWRn5+Pg4fPoxNmzaxGxy+7l/N5XL52ioqKtrUIjPScLQIi7QqXC4X/fv3h7a2\nNg4dOoQzZ85g0qRJWLNmTaOO8+XLF+jp6fG1qaurN/kjJoaGhtixYwecnJwwdepUpKen4/Xr16xf\nPm6oL1++8FUZAgAdHZ061xoWFFNTU9jb2+Pt27cAgMzMTIwaNQozZsxgNzDSolACJq1KUlISxo0b\nh5UrV/Ladu3a1egF7rW1tREQEMB7zTAMVq9eXW3NX0HT19dHVFQUrl69it27dzeb+6QNoa6uXmWL\nx02bNkFDQ4OliPh9W9k8atQoLFiwADY2NoiMjKzy3C8h30PXS0irIiYmBhERkSrtX758gZiYWKON\ns2TJEowYMQKWlpaYMmUKfv/9d4wdO5ZWuTYSS0tLhISEYNy4cbC3t8f9+/dRUFAAe3t7tkPjMTY2\nxosXL5CdnY2OHTtCRkaG7ZBIC0MJmLQqPXv2hISEBI4fPw5bW1sAXzeVEBERadQC9+Li4nj48CHO\nnTuH7Oxs2NraYsyYMY3Wf0tTXFyMY8eOISUlBbGxsRAWFgaXy8WuXbtgYGBQ5/6+beRx8eJFpKWl\nYejQofD09Gz0xXQNJSUlVe9nuAlpFgl4z549KC8vr/F9dXX1WtXYDAoKQlhYWLXvPX/+HN27d693\njKRlEBISwp49e2BsbIzQ0FC0a9cOGhoaAlm4IyQkVO97frGxsdi7dy/y8vLwww8/YN++fY26SKyu\ncnNzsXbtWrx79w6ZmZkwMzPDL7/8UquEV1FRgX79+mHx4sU4cOAAhg0bhvfv3yM8PBzLli3D9u3b\n65WEAWDKlCn1Oo+QlqBZJOC3b9/Cz88P1tbW1X6b/OGHH2rVj7m5eY3/YNeuXUsbC7QRkpKSuHfv\nHrKzsyEkJIROnTqxHRKfd+/eYenSpdi7dy/69++P33//Hebm5ggJCWElCZeXl0NNTQ1r1qzB4cOH\nUV5eDmdnZxw9ehQODg7/eb6fnx/Mzc3Ro0cPuLm5YevWrdiyZQtu374NT09P+Pn51TsBN7W8vDzE\nx8dDSkoKurq6bIdDWrlmkYD379+PyspKVFZW4sCBA/XuR0JCAhISEtW+165du2rvDZLWq3PnzmyH\nUK1t27Zh586dvKQ0e/ZsvH//HsHBwbCzs2vyeO7fvw8LCwveftBiYmLw8vLC9OnTa5WAMzIyMHv2\nbDx58gTq6uoAgNGjR+Pq1avo1q0ba8UHkpKS4OnpidzcXEhLS8Pb2/u7C9Ti4+Ph7u6O3r17Iy4u\nDkJCQggPD2/xK8pJ89VsVkHv2rULX758QWFhIduhECJQxcXF6NGjB19br169WPvdLy8v511levLk\nCa5evYqUlJQq8TAMg6ysLOTm5vK1Kygo4MaNG9DX18fx48dRWFiI06dPQ0FBAQEBARgwYECTfZZv\ncnJy0LdvX0yfPh1HjhyBmZkZzMzMaqxH/OnTJ2hqamL9+vXw8vLC5cuX0aVLF+zdu7eJI299srKy\ncPjwYXh7e1fZc7ytazYJWFpaGqdPn2b1PhghTWHQoEHYv38/73V5eTmcnJxYSVTf4rl37x7mzJkD\nb29vxMTEYMiQIXyJNi8vD0uXLoW9vT1MTU2xdOlS3kYUdnZ28PPzw5kzZzBkyBD88MMPCA0NxbNn\nz5CWloZ169Y1+WfatWsXgoKCYGJiAjk5OZiZmcHCwoLv0bF/evDgAXbu3MlXqejw4cP4888/ea9L\nS0uxbds2TJw4Eaamprh165bAP0dLl5aWhlmzZkFISAhKSkrQ19fHmTNn2A6r2Wg2CZiQtsLR0REP\nHjzArFmzcPz4cVhaWsLZ2RlGRkasxCMnJwdjY2MEBwdDRkYGJ0+ehKKiItLT0zFo0CAUFRWhf//+\nUFFRwfnz53Hv3j3IysryZodSUlJISUmBsrIyhISE4Orqin379mHmzJk4cuQIKyuXCwsLoaWlxdfW\nr1+/Gq8ySEhIoKSkhK+Nw+HwFocyDIPhw4cjPz8fZ86cgY+PD3bt2oUrV64I5gO0EnPmzMHmzZvh\n4OAACwsL5Ofn47fffkNSUhLboTUPTBvh7OzMWFpash0GIQzDMExlZSUTHh7OBAYGMg8ePKjyfm5u\nLvPo0SMmMTGxSeJxcHBg7ty5w3Tu3JlZvnw5U1lZyURGRjK6urrM/PnzGXt7e77jKyoqGBMTkyaJ\nrT6OHTvGODg48F5XVlYyGhoazLlz56o9vqioiDEzM2MuXbrEMAzDlJaWMnZ2dsyBAwcYhmGYK1eu\nMLNmzeI7JyUlhZk8ebKAPkHrMHbs2CptHh4ezJUrV1iIpnouLi5MTEwMK2M3i0VYhLQ1QkJCMDMz\nq/a9R48eYfv27VBVVcWdO3cwYsQI+Pj4CHQmKSkpidevX2Pq1Knw8fEBAKSnp2PBggU4d+4cDA0N\n+Y4XFhZGaWmpwOJpKBsbG5w7dw4TJ06EpaUlrl27hjFjxmDatGnVHt++fXsEBATA2NgYvr6+4HA4\nsLCw4C1CKyoqwo8//sh3Tvfu3VlbYNZSiIuLIyUlBT179uS1RUZGYvTo0SxG1XxQAv4PBQUFvJJj\ntNMNEbTU1FQMGTIECQkJUFNTA8MwMDY2RmBgYJVas43J2toadnZ2UFNTAwBERUXB3t4e2dnZiIiI\nwMuXLxEWFsZ77vnAgQPN+t+DiIgILl26hEuXLiE7OxsLFiz4zz/6nTt3xtOnT6t9T1tbG0eOHMGC\nBQt4q+tDQkKa7Ur75mL58uWws7ODh4cH5OTksGbNGvTt2xdDhgxhO7RmgRLwd0RFRcHX1xddunTB\nzZs34efnB1NTU7bDIq3YzZs3ceTIEV4iFBISQmBgINasWSPQBKynpwcfHx+YmZmhT58+GDZsGF6/\nfo2goCBISkri4MGD6NWrF2xsbFBWVoYOHTogNDRUYPE0lokTJzZKP3379sXixYvRpUsXHDx4EB8/\nfsTz589x6tSpRum/Os+fP4evry++fPkCdXV1rF+/vlG3U20KY8eOhYKCAvz8/FBSUgJTU1OB/h63\nNJSAaxAfH49x48YhLS0NSkpKSE9Ph4GBAc6fP8+3UpKQxiQuLo7i4mK+tvLycggLV79esry8HLt3\n78b9+/dRWFiI/v37w8/Pr17PvA8bNgxv3ryBnp4eSktL8csvv0BRURHnzp2DuLg48vPzkZCQAHFx\ncWhoaDS7bSEFbdq0aYiPj8ejR4+go6MDNzc3SEpKCmSs5ORkLFmyBB4eHujVqxfCwsIwZ84cnDlz\npsUlYS0tLRw+fJjtMJolSsA1CA8Px+XLl6GkpAQAUFRURGBgICIjIykBEz4cDge//vorcnNzoays\nXON9xtoYM2YM5s2bh6FDh0JPTw8lJSXYsGFDjVteWlpagmEYXLx4EcDXOsVbt26t99absrKyePPm\nDVJTUyEuLs77/Qe+rhT+dwnGtkZDQ6NJKjK5ubnBy8uLt1nL8uXLkZGRgfPnz8PCwkLg45OmQY8h\n1YDL5Vb5pikqKorKykqWIiJ1xeVy8fLlS8THx1cpnl5fOTk5cHFxwejRozF8+HBERUVh8ODBSEhI\nQJ8+feDn54fp06fX+/eka9euOHjwIGbMmMHbWrWmxUOpqanIz8/HuXPnICIiAhEREWzYsAF///03\nPnz4UO/PKCwsjJ49e/IlX9K0Kioq0Lt3b742TU1N5OfnsxQREQSaAddg7NixsLGxwb1799CpUyfk\n5+dj5MiRuH//PtuhkVooLCyEi4sLhIWFweFwcOXKFcTHx6Njx4717pPD4aB3797YunUrPD09kZaW\nhvHjx0NZWRkeHh4AvhZqX7x4MUJCQjBr1qx6jdOnTx+8fPkSnz9/hpSUVI3bJ5aVlVXZUQv4OlMt\nKyur19ikedDU1MTJkyd5da3Ly8uxfv36KjWSSctGCbgGBgYG2Lx5M/T09GBmZoa3b9/i7NmzGDp0\nKNuhkVoYMmQIJk+ejJ07dwIAdu/eDRcXFxw7dqzee4KHh4fD1tYWTk5OAAAVFRUMGjSoyvaGM2bM\nwKNHjxoUv7i4OBQVFb97TM+ePVFaWoozZ85gzpw5AIBDhw7h9u3bUFZWrtN4FRUV8PT0xO3bt1Fc\nXAwFBQUEBQW1uPuNrcWqVaugpqaGd+/eYejQofjtt99gZ2eH4cOHsx0aaUSUgL/DwsICo0aNQlZW\nFn744YdaV2Ui7EpLS4OGhgYv+QLA6tWrYWtri5SUFPTp06de/RYWFvKKDXzTrVs3PH/+nK/t2rVr\n6N69O+7du4c//vgDwsLCmDZtGnR0dOo1bnXS09PBMAy8vb2hpKSE2NhYiIqKIj4+nve/68LGxgaf\nP39GZGQkhISE4OPjA3d3d+zevbvRYia1JyMjg3fv3uH06dPIycnBihUrMHLkSLbDIo2MEvB/oMTb\n8oiJiVWbgPLz8+ucmP5pyJAhcHR0xIwZM3glDqWkpJCVlYWwsDDo6uoiIiICJ06cwJ49e2Bra4uj\nR4+Cy+VCV1cXkZGRDX6MraioCG5ubsjNzUVhYSE+ffqErKwsJCQkgGEY/PLLL3VemZuZmYn379/j\n5s2bvDYXFxfMnj0bycnJ6NWrV4NiJrWTnJyMK1eugMPhYMyYMdDW1saCBQvYDosIEC3CIq1Ot27d\n0KNHD+zbt4/XZm9vj4yMDKiqqta7X01NTSxduhRKSkrYu3cvfv75Z6SlpSE+Ph4PHz6Ep6cnioqK\nEB0djfXr1+PBgwcYOXIkRo8ejY8fP+LgwYMN3jlpxIgREBERwf/+9z+Eh4dDW1sbW7ZsgaGhIYYN\nG1avx2JKS0uhoKBQpb1du3bNercrQcvOzsbFixcRGRkp8EpVMTExsLOzQ+fOnaGsrAwdHR1ERUUJ\ndEzCPpoBk1Zp+/btmDFjBi5dugQpKSn07NkT169fb3C/FhYWGDBgAJ49ewZtbW2MGTMGwsLC8PT0\n5B0THx+PKVOm8GbJwNcvBfLy8sjOzq73DlKpqano1asXb6tIADhy5Ajmzp2LDx8+1HvVcvfu3SEh\nIYEDBw7A0dERAHDq1ClcvHgRR48erVefLV1CQgJsbGxgbm6OwsJCTJ48GampqXW+t14bpaWlMDc3\nR1RUFG/lc0ZGBhwcHKCnp0dX4FoxSsCkVRIXF0dERARyc3NRWVnZqFsG9u3bF3379q3x/a5duyI1\nNRW5ubmQk5MD8PWe7fXr1/mSZ10xDFNt8i4rKwPDMPXuV0REBF5eXujbty9evnwJaWlpJCYm8jbd\naGuKi4uhr6+PiIgI3n1XXV1drF69WiAL03Jzc2FoaMj32JG8vDx69+6N9+/fUwJuxegSNGnV5OTk\nmny/3i5dusDW1hadOnXC9evX8ccff2DIkCE4dOgQOnToUO9+VVRUIC4uzldfd/ny5Xjz5g26d+/e\noJg7d+6MzMxMWFlZwczMDKdPn0bXrl0b1GdLlZSUBEtLS75FT2ZmZhASEmrQ89U1kZaWxqdPn/jq\nL3O5XERERKBLly6NPh5pPmgGTIgATJ06FY8fP8bly5chLCyMixcvYsCAAQ3qU0hICF5eXvjxxx+R\nkpICCQkJSEpK4u7du40Ss5iYGPT19Rulr5ZMSkoKnz9/5murrKzEy5cvISUl1ejjdejQAYsWLUKn\nTp3w5MkTiIqKYuHChbCzsxPIJW/SfFACJkRABg8ejMGDBzdqn9LS0oiPj0dqaioYhoGqqmqb25NZ\n0Hr37g09PT24ubnBzc0NXC4XxsbGmDRpksAuB1tYWEBVVRXBwcEoKyvDL7/8UmO5StJ6UAImpI5S\nU1Px4cMHdOnSBf369Wvy8YWEhBq0mptNDx8+xOXLl8EwDExNTZttWbr169dj06ZNmDNnDiQkJLBs\n2TKBPxKkr69PVyDaGErAhNTBr7/+it9++w1aWlo4e/YsrKys4O7uznZYLcK5c+ewcuVKnDhxAkJC\nQjAwMEBISAhmzpzJdmhVCAsLY8uWLWyHUaNnz57xtlYdP3482+GQeqIETJqV27dv4/nz55CRkYGl\npWWz2grx3r17mD17NgoKCiAtLY2NGzdi5MiR0NbWxpQpU9gOr1nLy8uDq6srHj16xLuMm5OTg/nz\n58PIyKhNLDYqKSlBfn4+ZGRk0L59+3r3c+zYMVy4cAETJkxASEgItm/fjuvXr7fJFestHa2CJs3G\n9u3b4eXlBTk5OTx+/BgqKiooKCgQ2HglJSW4cuUKzp8/j4yMjP88/s8//8SlS5cgLS0N4Gt1LG9v\nb9y4cUNgMX7PzZs3cfHiRSQmJrIyfl1kZ2djzJgxfPdQ5eTkoKysXGXBkyAkJCQgKCgIYWFhKC8v\nF/h4/3br1i3MmjULrq6u0NPTw7Vr1+rVz6NHj7B8+XL89ttvcHR0RFhYGAYMGID9+/c3csSkKVAC\nJs3C/fv3cfjwYYSGhmLOnDnw9fXFihUr+Da4aEz5+fmYP38+7t+/j6SkJCgqKiImJua750hISKC4\nuJivrbCwUGBF2WvCMAycnJzwv//9D4mJidDX10dQUFCTxlAboaGhWLJkCVxcXPD582dkZWXxfdH5\n9OkTfv/9d4E/7hQeHo7FixejsLAQd+/ehZKSEvLy8gQ65j+9fv0aRkZG8PHxwenTp3H79m3s3r0b\nT58+rXNfjx8/xtGjR/lWY69ZswYPHz5szJCrdfr0aVhbW2P27Nk4deqUwMdrC+gSNGkW4uLisH37\ndr7LaAsWLICDg4NAxps0aRJWrFiB6dOnA/haRnDVqlUIDAyscaXr1KlTYW9vDy0tLaipqSE1NRVj\nxoxBQkKCQGKsya5duyArKws/Pz8AgJ2dHaZMmQJNTU0MHDiwxvPev3+Pv/76C1JSUhg9ejSEhQX3\n/Xvt2rWIjo6Gj48PCgoKYGBggG3btkFRURFXrlyBsLAwlixZAh8fH74dw2qrqKgIiYmJkJKS+u5C\nuKSkJJibmyM9PZ33c1VWVsbWrVuxZ8+een++uggJCcHvv//O21NbXl4ebm5u9Xo0TUpKCmlpaXxt\nGRkZaNeuXaPFW52NGzciMjIS586dA/D1atWXL194lcFI/dAMmDQLsrKyiI+P52tLTk5uUPGE7xER\nEeElXwDo378/9PT08OzZsxrP6dOnD/bu3YsZM2ZgxowZWLBgAcaPH4+lS5fC0NAQf/31l0Bi/be/\n/voLS5Ys4b2WlZWFvb39d2dBN27cgI2NDV69eoWTJ09CR0enymy+scTFxeHixYuIioqCjo4Ohg0b\nhnfv3uHOnTt48eIFYmJicOvWLejo6MDf3x+6urq8esq1kZiYiHnz5iEgIACLFi3CnDlzwOVyqz32\n2bNn2LFjB9+XqmXLljXZzwr4Wkf63/dnRUVF61WzeebMmbh9+zZCQkJQVlaGuLg4uLq6Yu3atfWK\n7Vtxj1GjRmHYsGEIDAysckx6ejpCQ0Px6NEjqKioQEVFBQcPHkRkZCQ+fvxYr3HJVzQDJs3C1KlT\ncfbsWezbtw/m5uZISkrCunXrcPLkSYGMJyIigqKiIr5LeXFxcZg8efJ3z9PT08OLFy+Ql5cHOTk5\nXoWj169fw97eHvv27WvUsoMAcObMGQQEBIBhGHA4HKiqquLatWt49+4dJCUlMWfOHKSkpNS4G9a3\nmfo/9zJet24dPDw8sG3btkaNFfi6uGrmzJl8dZd79OgBCQkJaGpqom/fvujatSu2bdsGJycnlJeX\nw9HREQEBAVi4cOF3+87Ozoaamhru3LnDq407depU3i2Lf5OWlsa7d+/42jIyMsDhcBrhk9bOmDFj\n4OjoiPv370NaWholJSUYOXJkvdYOSEtLIzg4GHZ2djh27BhkZWXh4eEBTU3NOvdVWVkJfX19mJmZ\nISoqCoWFhXB0dISYmBjmzp3LOy4/Px9Dhw7l+3mKiopCQUFB4EUqWj2mjXB2dmYsLS3ZDoN8B4fD\nYdatW8dYWFgwixYtYp49eyawsQIDA5n58+cznz9/ZoqLi5nFixczI0aMqPX53t7ejJ+fH1/bzZs3\nmWXLljVqnGfPnmVmzZrFFBQUMAzDMBEREUyfPn0YaWlpJjAwkAkODmYAMACYoqKiavsICQlhvLy8\n+NpKSkqY0aNHN2qs36SmpjJmZmZMdnY2k5yczHz8+JF59uwZo6enxzAMw1y/fp1ZsWIF3zlfvnxh\nTE1N/7PviIgIxsPDo9bnVlRUMAsWLGC8vb2ZvLw85vXr14ypqSlz5cqVen66+jlx4gTTvXt3xtXV\nlZkyZQpz6tSpJh2/Ojdv3mTmzZvH15aXl8eMGzeOr62oqIiZNm0a8+TJE17b3bt3mW7dujHFxcVN\nEqsgubi4MDExMayMTTNg0myIiYlh+/btTTKWtbU1GIaBubk5REVFMXz48DoVSiguLq4y0+3SpUuj\nX9Y9fvw4AgICeCuvtbW1kZmZCRcXFxw6dAjt27fHzJkzUVZWhvbt24NhGJw8eRJRUVG8y+zt27fH\np0+f+PrNy8tDRUVFo8b6jbKyMkxNTdG5c2cYGBggLS0NZWVl+PPPPwF8rf7z78eO2rVrV6tSjWJi\nYqisrORr43K5NV6CFhERwbFjx+Ds7IxZs2ZBRkYGy5Ytw7hx4+r56epnwYIFMDExQUZGBrp161bv\nylWNqaioqMr9c1lZ2Sq/w+3bt8fmzZuho6ODgwcPQkhICAcPHsS1a9eafAFia0MJmLRZCxYsqPfu\nRsOGDcPmzZthbGwMCQkJAF8vhTb2phwMw/AVcEhPT4ehoSE0NTWxefNmXvu3zSxcXV3x9OlTnDx5\nEuXl5bxnld++fYugoCDMnj0bubm5cHR0hLOzc6PG+k1JSQkcHR0xf/58xMTEoF+/fnjw4AFsbW0x\nc+ZM5Ofn4/LlyxgzZgxvJ6x9+/bVancvQ0NDHDhwALdv38ZPP/2EiooKrF+//rsJVVRUlLdgjU0K\nCgrV1l1my6BBg+Dt7Y2EhASoq6sDAE6ePImOHTtWOVZbWxsfP37klfT8448/IC8v36TxtkqszLtZ\nQJegSWPz9vZmunfvznh5eTHz589nnJycGn2MHTt2MLa2trzXUVFRDAAmKSmJ15aWlsaoq6szr1+/\nZnR1dZnKykree8XFxYyxsTHz4cMHxszMjBkxYgQzceJEJiwsrNFj/ebmzZvMggULGABMRkYGL25R\nUVFm1apVzOXLlxkAjJCQEOPi4sLY2Ngwy5cvZ8rLy2vVf3p6OtOrVy9m+vTpzNixYxkfHx+BfZbW\nLjo6mgHAeHh4MCtXrmTmzp1b462M1oouQRPSAjk7O2Ps2LF4+/Ythg0bBgMDg0Yfw8XFBZMmTYKp\nqSkGDhyImJgYODs7o2/fvnj48CGKioqwfft2HDp0CHl5eRg5ciRfcQZJSUl06tQJDMMgPDy80eOr\nDsMwyMzMxK+//gp5eXkUFxfDwcEBmpqayMnJwfjx45GTk4O5c+di9OjRUFBQ+O7jU/+moKCAV69e\n4dOnT5CUlOTVXCZ1p6+vj4yMDDx58gSSkpL46aefmtXuc60dJWBCGkBTU7NeK1BrS1xcHH/88Qei\no6NRWFgIJycndOvWDaNGjUJwcDAkJSXh6emJAQMGIC8vD2/fvsWrV6+gpqYGAPj777/x5MmTJi3q\nPnjwYKSmpvJ2f8rLy0OHDh3Qr18/3h93OTk59OvXD927d4eurm6dxxAVFYWioiJf2+PHj5GZmQlF\nRcU6JfS2Tl5eHpMmTWI7jDaJEjAhLcC/qwZNmTKlyv7THTt2hLu7O9TV1XHs2DFwuVyEhYXhypUr\nDd4nuKKiAhcuXMCXL1+grq6OoUOH1nistLQ0Tp48iaFDh+LDhw8QFhZGXl4e8vLy4OLiAuDrfeIL\nFy5g1apVDYrrG3d3d7x9+xY//vgj3NzcMGXKlDo9W0wIG2gjDkJaEX19faSkpEBUVBSysrIICgpC\n3759G9Qnl8uFlZUV7t+/D4ZhYGFhgZ07d373nMGDByMmJgbPnz9HSUkJOnbsiKioKHA4HDx48AAG\nBgZYvXp1o6wGDgsLw4kTJxAUFARnZ2fExsYiNjYWERERDe6bEEGiGTAhrYyqqmqj1q7dvn07Bg4c\niJUrVwIA5s2bh+nTp/NWItdER0cHycnJvNexsbEICwsDh8OBl5cXxo4d2yjx3b9/H2FhYbytNUVF\nRbF69WpcvXr1PzdWIYRNlIAJId8VHx8PLy8v3mtxcXHMnz8fsbGx303A/6anpwc9Pb1Gj09KSqrK\nc87v37/n2+WsscTExKCwsBCampoCL6H45s0bnDx5EsXFxRg2bBimTZsm0PFI06METEgT43A4ePr0\nKcrLyzFw4MAG1YZtCjIyMkhOTubb6vLx48cNXnzG4XAQFhaGvLw8aGlpYcSIEfXqx9raGjY2NlBW\nVoaenh5u374NKyurKkn5Gy6Xi+vXr6OgoAC6urro06fPf47B5XKxatUq5ObmQkFBAcbGxrh9+/Z3\n74U3xKtXr2BnZwdXV1f88MMPmDZtGmJjY/me/WbbrVu3cPPmTUhISGD+/PlVFsWR/0b3gAmphZSU\nFNy5c6fBlY8KCwuxcOFChISEIDw8HFJSUnj//n0jRSkYP//8M9zd3RETE4Pc3Fz4+voiMDCQb7/g\nuuJwOLC0tERcXBw6dOiAefPmYevWrfXqq3fv3vD394eLiwtMTExw4sQJvHz5stqV3xUVFVi0aBF+\n//13pKamQl1dvVaPZ61cHiPNFAAAIABJREFUuRIyMjI4ceIEPDw8EBcXh5UrVwrsZ2dvbw9fX1+Y\nmZnB0NAQGRkZSExM/M+SmU3lyJEjcHNzw9ChQ6GiogIlJSXExsayHVbLw8rTxyygjThIfZ06dYqZ\nPn06s3nzZkZNTY3ZtGlTvfvS0dFhzp49y3sdHh7OzJw5s9nvqZuQkMCYmZkxZmZmjJubG5OXl9eg\n/tasWcO3lzaHw2HMzMyYW7duNTTU73JycmK8vb15r7OyshgjIyMmISHhu+eNGzeOyc/P52vz8fFh\nfv31V4HEaWxsXKVtz549TGRkpEDGq4vk5GSmR48efBt2PHnyhLGwsGAxqvpjcyMOmgET8h23bt2C\nlZUVgoKCsGHDBsTFxeHGjRu4cOFCvfpTUlKCubk577WZmRkUFBQQFxfXWCELhJqaGsLDwxEeHo4d\nO3ZAVla2Qf29ffuW756mmJgYZs2ahRcvXjQ01O96/fo1bGxseK+7dOkCc3NzREdHf/c8aWlpFBUV\n8bVlZWUJrA6vgoIC7t69y3tdUVEBf3//ZnGZNy0tDQsXLuS7dTJo0KB6lVds6ygBkxYvIyMDQUFB\n8Pf351t12xhu3ryJK1eu8P7YiIiIwNPTs16l5L75d+GA9PR03n7SbUWHDh3w+vVrvra7d+9CRkZG\n4ONmZWXxtSUmJvKKXdRk1qxZcHV15RUqCAwMxK5du2BiYiKQON3c3DBixAgEBwfj1q1bmDx5MqZP\nn44BAwYIZLy6+OGHH/D8+XO+3+N3797hzZs3LEbVMlECJi1aQkICrKysUFZWBlFRUfTu3RsPHjxo\ntP4lJSVRUFDA11ZYWFjvKjBGRkZwd3dHRUUFGIbBkiVLkJ6eDi0trcYIt8VYtmwZ1q1bhwcPHiAz\nMxM7duxAREQEZs+eLdBx7ezs4OzsjPfv34PL5cLb2xvBwcH/+biShYUFjIyMoK+vDxMTE9y9exdp\naWkCqwbUv39/ZGZmIikpCZcuXcLSpUsFUru5PtTV1WFoaAhJSUk8evQIf/75J2xsbHDo0CG2Q2tx\naBU0abE4HA4mTpyIixcv8hLY8OHDsXLlSpw4caJR9gg2NzeHjY0NNDU1oaGhgaSkJIwZMwaJiYn1\n6m/lypVYvXo1Ro4cCWlpaQwcOJBXYeZ7ioqKEB0dDS6Xi6FDh/7njK2509bWxv/+9z+4u7uDw+FA\nW1sb8fHxfEXfa+vWrVvYu3cvKioqkJ2d/d3NR/6PvTuPqzn7Hzj+KlKkxRZRllAUEbJlyZJ9kEQo\n2fd9Gxo0Zc82FNmVLbvB15ItTHZiLJGlaFMqaVGRur8/fOf+5n6ztN8r5/l4zB997udzzvveSeee\nz+ec9/ufqkl2dnaoqqpiZmbG06dPs5X/eNSoUYwaNSrH8eWWjo4O8+bNK7T+cmLatGnUrFkTHx8f\n1NTUWLlyZYFsMSvqxAAs/LBiY2Np1qyZzOyxVq1aVKtWjeDgYBo3bpznPmrUqIG7uzuDBg2iatWq\nSCQSLl68mOvsUsrKyjJ7arMjKioKBwcHLCwsgM+DyMuXL6lWrVquYpCXx48fExoaSsWKFWnYsCE1\natRgz549eWrz+fPnWFpaEhQUhKGhIQEBAYwcOZKdO3eir6//xWs6depU6PWAi6JevXrRq1cveYfx\nQxMDsPDD+ud53vv376VJFzIzM/Hz82PSpEn51k/9+vUJCAjIt/Zy4tOnT5ibm7NgwQJpdqtmzZox\nY8YMdu7c+cM8O3Z3d+fy5cuYm5uze/duOnfujJubW57b3bhxI+fPn5cWlm/UqBGjR49m37590sxd\ngqCoxDNgodC8f/8eZ2dnevToQY8ePfI8qGloaODg4MCIESMICgoiJCSEtm3b0qVLF2rWrJlPUctX\nREQELVq0kEkt2bVrV7S1tXn+/Ln8AsuBM2fOMHPmTHbv3s2sWbO4e/cuDx484ODBg3lu+/3791ke\nNWhpaZGWlpbntgWhoIkBWCgUGRkZNGjQgOLFi7Nz507c3NyYPn06V65cyVO7jo6OODg4sHz5clxc\nXBg9enS+zKwURcmSJUlOTs5y/NmzZwqfQesfV65c4fjx49KKTMrKyri4uPDXX3/luW1LS0vmzJlD\nZmYmACkpKXTv3p22bdvmuW1BKGjiFrRQKI4ePUq7du2ki0rKlCmDh4cHCxYskD7bzK1u3brRrVu3\n/Agzizt37rBs2TI+fvzIs2fP2Lx5My1btiyQvr5ER0eHNm3aMHv2bObPn4+ysjK2trZUrlwZAwOD\nQosjL1RVVYmLi5M5FhMTky9fIPr168etW7do2LAhdnZ23Lp1i+3bt0vTWl68eBEfHx+uX79Oeno6\nZcqUwcrKCmdnZ5SUlPLcvyDkhRiAhUKRlJSEubm5zLEqVaqQkJAgp4i+LywsjCZNmnDv3j0aNGhA\naGgoQ4cO5Y8//qB+/fqFFsesWbNwdnbml19+QVVVlXbt2jF16tRC6z+v7O3tcXBwwNDQkEaNGnH/\n/n169OjBq1evZM7z8fHh+PHjpKSk0Lp1a6ZNmyYdJIOCgli9ejUJCQkYGBjw+++/S1cuL1++HHt7\ne+Li4rC1tZUukDty5AhbtmwhIiICY2NjVFVVMTAwID4+njVr1jBlypTC/SAE4X/JJf+WHIhUlPJ1\n9+5dSZcuXSRJSUnSY5s2bZKMGTNGjlF92+LFiyUHDx6UOXb27FnJb7/9JqeIflxBQUGSVq1aSays\nrCR9+/aV3Lx5U+b1pUuXSoyMjCRhYWGS6OhoyaRJkySLFi2SSCQSSWRkpKRFixaSM2fOSMLCwiTr\n16+X9OrVS5KamvrNPg0NDSUXL16U9O7dWyKRSCSZmZkSW1tbyYMHD76Y6lERfPr0SeLj4yNZv369\nQqSd/BnIMxWlmAELhaJhw4bY2tpSqVIlVq9eTXBwMM+fP2fXrl3yDu2r0tLSpCkXIyMjWbFiBQEB\nAURFRTF+/Hh0dXXlHOGPw9DQ8KvPfOPi4tixYwf379+XPif+448/sLa2Jjg4mEWLFrFw4ULat28P\nIE1esm/fPhwdHb/ap4mJCWpqatSoUQMAJSUlatWqRUJCQq72Gxe0zMxMLCwsaNOmDc2bN2fRokXs\n378fb2/vAuvzwYMHuLm5ER8fj6qqKuvXr6dixYoF1p8gS+EWYX369In4+Hh5hyEUgGHDhuHv70/x\n4sVp3Lgxu3fvLrBcuvmhbdu2zJs3j5iYGKpUqYK5uTmXLl3CwcGBvn37EhoaKu8Qi4TNmzcTGxuL\nra0tdevWJSoqCiUlJapUqUJiYiIfPnyQbjP6h6mp6XcfX5QoUYJ3797x6tUrzp8/z5s3b/D09CQw\nMJDY2NiCfEu5sm7dOqpWrYqbmxt9+vTh6tWrABw+fLhA+ouKisLU1JQxY8Zw6NAhxowZg52d3VfL\nOAr5TyEG4I8fP+Lk5IS+vj4lSpSgbNmyqKurU69ePbZv3y7v8IR81LBhQ4YOHUrfvn2lsx1F1b59\newYNGoShoSFWVlYcOnQId3d3fvvtN6ZMmcKGDRvkHeIPb+vWrTx58oTWrVszceJENm7cyIgRI7h0\n6RK7du2iZs2a1K1bV2YWmJmZydy5czE2Nv5m2y4uLnTp0oUmTZrQsWNHTE1NsbS05OLFi/j5+RX0\nW8uxwMBAnJ2dZY4NGDCAx48fF0h/q1at4uDBg1hYWKCqqoqVlRUDBw5kx44dBdKfkJVC3IKeOHEi\nUVFRnDhxAgMDA9TV1UlMTCQwMJApU6aQlpbG2LFjv9vOvXv3CAwM/OJrT548UcjbToJimzBhAk+e\nPKF27dp07dpVOhOrWbMmly9flnN0BePly5esWbOGhIQE6taty7Rp0wrs387hw4fx8vIiKSmJmjVr\nsnz5cooVK8bw4cO5dOkSGhoaTJkyBVNTU8LDw7G0tOTQoUP07t2bjh07frNtIyMj3rx5w9GjR1m2\nbBnly5fHyMgIc3Nzhfvy9+bNG+7evcukSZNo1qwZ8+fPR01Njb/++qvAHnX885n/W7Vq1fI1l7rw\nbQoxAz5z5gwbN27E1NSU0qVLo6SkhJaWFi1atGDNmjXZKpgNkJ6ezvv377/4X3p6OhKJpIDfiVAU\ntW/fnmvXrsncBp0wYQKNGjXK13727NnDpEmTmD17ttxuA8bGxjJgwADatm2Lk5MTxYoVw8bGho8f\nPxZIf0pKSpQoUUK6OrlGjRpoaWkxa9YsaW5hdXV1nj59SosWLXjz5g2jR49m2bJl2Wq/QoUKjBgx\nglmzZjFs2DAsLCwUbvBNSUmhYsWK9O/fn/j4eNLT07G0tMTNzQ0PD48Cyz/drFkzVq5cKf3506dP\nDB06lKZNmxZIf0JWCjEDrlevHn5+fl+shPKf//yHChUqZKsdc3PzLFtd/hEYGEhUVFSe4hR+Tn36\n9MHX15emTZsybtw4rl69ioaGBsbGxiQmJuZLCb2hQ4eSmprKzJkzCQ4OpmLFijx69Oi7t1nz27x5\n85g/fz5du3YFPifdj42NZd++fTg4OORrX69evaJu3boMHDiQEydOoK2tTY0aNaSJWv6tWLFiDB48\nOF/7VxSrVq3Czc2NqVOn4ujoyNy5c8nMzOTMmTO8evWqwL4wDB48GF9fXywtLRkwYAAXLlxg5MiR\n0v/3QsFTiAHY1dWVgQMHsnr1amrWrImmpiYJCQk8fvyYT58+cfLkSXmHKPzkNm7cyMWLFwkNDeXt\n27fo6Ojg4+PD+vXruXfvXp4Gyr/++ougoCDpopvGjRtz+fJlli1bVqArYL8kNTUVExMTmWNNmjQh\nPDw8X/txd3fn7Nmz1KhRg3PnzlG/fn06dOjAq1evuH//PpUqVcrX/hRZQkICtra2AJQtW5b169fj\n7+/P6dOn0dbWLrB+lZWV8fHx4cKFC8THxzNt2jSaNWtWYP0JWWW5BT1z5sws9U8LmpmZGXfv3mXZ\nsmV06tSJ6tWr07FjR9auXcvDhw9/uKovQtFkaWnJ1atXadCgATt37uSPP/7g0qVLjBkzJk+rat+8\neYO9vb3MsWbNmsnlNnTNmjXZv3+/zLHFixfnuvrTlxw9epRr165x5MgR1qxZw/Pnz0lNTaV58+Z4\neXkVapITRWBoaMjevXtlji1YsCDLyu+C0r59e2xsbMTgKwdZZsChoaGYmpqyY8cOaTq3wqCmpka7\ndu0KrT9ByI2nT5+yatUq6c8tWrSgW7duXLt27btF3b9GX1+fI0eOMGbMGJSVP38nvnbtmlwqHU2Z\nMgVDQ0MiIyNp164d+/fvp3Hjxnm6LXn9+nXpQqsWLVoQGBgofb4Mn9//kiVLeP36tXTf9c9kyJAh\ntG/fHltbWwYNGsT58+dRUVEpsrfchf+XZQa8b98+Fi9eTN++fZk1a1aBLb4QhB+RhoYG6enpMsf+\nSWKQW02bNqV69ero6+tz4cIFduzYwfz581m3bl1ew80xDQ0NQkNDqVOnDkFBQdja2rJx48Zct3f5\n8mXmzZvH8OHDcXV15eXLl9K8zP/24cMHaWrJn42KigqXL1+mT58+hIaG0rZtW44dOybvsIRCoCT5\nytLgmJgYZsyYwb179+jXr5/0eN26denTp0+hBZhfpk6dSlRUFD4+PvIORW527tzJiRMn+PjxI23a\ntBG5cL8hIiKCY8eOST8rMzMz4PO+1Vu3buHu7o6Kigrbtm1j3LhxxMfHU7JkyTz1efz4cW7cuIG6\nujpDhgwpEpm2mjZtyv79+6levbr0WOfOnUlJSeHkyZNoaGhw7949zMzMCA8Pp0qVKvILVvgpTZ8+\nnUGDBuX7robs+OoiLCUlJVRUVIiKiuLhw4fS46VLly6UwIT85ezszNGjRzl16hRKSkosWbKE5cuX\nM3PmTHmHpnCePn3K2LFjsbe3p0KFCjRq1IgTJ07QrVs3hg8fTkREBE2aNKF69eqUK1eO0NBQYmNj\n8fb2JikpCQsLC3r27Jnjfn/55Zdc38ZWVOrq6jKDL0C7du2Ii4vDzMyM5s2bk5qaSkBAQL4MvkeO\nHOHAgQMkJydjZmbG77//LqoeCYrrSwmi9+zZIylfvrzExsZGEh0dXajJqQvKz1yMISoqSmJiYiJJ\nT0+XHsvMzJT06NFD8urVKzlGpphMTU0ld+/elf4cExMj+eWXXyQRERFfPP/ly5eS1q1bS/bs2SPx\n8/OTVKxYUTJv3rzCClehjRw5UqagRWJioqR8+fKSoKAgSUJCgiQsLOy7RRWya/PmzZL+/ftLXr16\nJYmJiZHMnDlT4uTklC9tC0WXQhVj6N+/P+fPn8fDwwM7Ozt5fCcQ8tk/s4Hixf//f7eSkhK6urqF\nvuL9R2BgYCBNAgFQvnx5TE1NefHiBZUrV85y/pgxY1i2bBktWrQAPhduGDRoEDdv3vzpkxrMnz8f\nfX193NzcqFq1KuvWrcPNzU26wvdre6hfvHjB4sWLCQ8PJykpCU9PTxo0aPDNvlauXMmdO3ekdYbd\n3Nywt7fn77///u61giAPWRZhaWlp8ejRIzH4FiF6enqkpqZy8eJF6bGrV69y8OBBaaUY4f+9f/9e\nZgtQZmYm//nPfyhbtuwXz8/IyJAZaJWVlWnRogURERE57js5ORl3d3dcXV2zbE35Eenp6ZGYmIiW\nlhavX79m1apVDB069JvXvH37llq1atGvXz98fX3ZunUrEydO/Gqa2X/UrFlTOvj+o3Llyrx+/Zo5\nc+bQp08fbG1tCQ4OzvP7EoT8kGUA3rRpkyhHVcSoqqqyZMkS2rVrx4oVK/Dw8GDixIlcvnw5yx8s\nAcaPH8+QIUO4c+cOjx8/pnPnznTo0CFLgop/6OrqSpNoAEgkEnbu3JnjZBIfP37E2tqatLQ0LCws\n2LhxI3369PlmCtWXL19y6NAhTp48SUZGRo76KywaGhqMGjWKKVOm0KRJk++ev3XrVjZs2EDnzp2B\nzws/582bx7Zt2755Xbly5Th48KD052fPnrFmzRr69OnD/fv3adCgAfb29jg4OHx3MBeEwqAQuaCF\ngle7dm3i4uKoUaMGFStW5OTJk9SrV0/eYSmkXr16sXDhQry8vFi5ciV169YlIyMDJyenL6Yz/fXX\nX2nTpg179+7l2rVr9OnTh2bNmklvSWfX4sWLGTBgADNnzqRDhw74+flRsWJFjhw58sXzfX19GT58\nOCEhIezfvx9jY2Pev3+fq/esSFJTU9HX15c5VqFCBVJSUr553aJFi7C1tWXRokWsX7+eQYMG0b59\ne7S0tJg4cSJ16tShd+/eODg44OHhUZBvQRCyRQzAP5GyZctiY2ODra3tT3eX49mzZ1y8eDHbM59G\njRrh7u6Ompoa4eHhDBw4kMaNG6Orq8uDBw9kzjU2NiY6OprAwEAOHDjAgAEDcvUHPjIykrZt28oc\n6969O2FhYVnODQkJoUuXLuzcuZMZM2bg5eVFv379WLx4cY77LWyBgYGMGjUKOzs75s2bl2VPcMuW\nLVm9ejUfPnwAPt9RsLa2pmXLlt9sV09Pj6SkJAwNDdHS0mLVqlVcu3YNNzc3unTpQv/+/QkICODY\nsWMkJiYW2PvLrZs3bzJkyBCsra2ZNWtWls9FKHrEACwUeRs3bmTOnDn89ddfWFtb4+rqmq3rbty4\nwbVr1zh06BBNmzbFxsaG69evs2TJEpnzQkJCOHToEBUrVmTcuHEy++ZzomzZsty4cUPm2IEDB76Y\nD/jOnTusXLlSZlHYb7/9pvCl5F69esWIESOws7NjxYoVlC9fngEDBsgk/OnYsSOdOnWibt26rFq1\nisGDB2NtbZ0lXeeXlC5dWppRSllZmR49enDkyBHpYGZmZkZoaOhXHyfIy99//82vv/4qrYlcuXJl\nHB0d+fTpk7xDEwqQQhRjEISCcvbsWcaMGUNqaipqamrMmTOHzp07c/z48e/uuX3z5g0ODg4y+0ib\nNm0qk/f5+vXr2Nvbs3DhQpSUlKhduzZ//fUXrVq1ynGsU6ZMQVdXl/j4eFq3bs2+ffu4d+8e27dv\nz3JuqVKleP36tcyxuLg4MjMzc9xvYfrtt99wc3OTfj6TJ08mOjqaw4cPyyz8nDlzJl26dCEsLIyW\nLVvSvHnzLG1du3aNP//8k48fP9KpU6cs6TLv3r3LuXPnKFOmDOrq6ri4uPDy5UvCwsL49ddfC/aN\n5pCTkxNr166V5sGeMmUK06dP5z//+Q+9e/eWc3RCQREzYKFIu3z5MufOnZPmVS5evDgLFy7Ez8/v\nu9fq6elx48YNmVnIzZs3pQNySkoKtra2/Pnnn9jZ2dG/f39CQkJYvnw5hw8fplu3bnTo0IH27dtn\nqxRmpUqVSEpK4vXr12zevJlKlSpx8+ZNaX7of7OysiIsLIxt27bx8eNHIiIiGD9+PNOnT8/uRyMX\nHz58yFLYwcTEhPj4+Czn1q9fn27dun1x8D1+/DgLFizA2tqaQYMG0a1bNzZs2CB9/d69e5w4cYIJ\nEyYQFBSEk5MTnp6eXL58mcOHD3/xM5UniUSSJWGJkZGRQt4qF/KPmAELP4Tw8HAOHjxISkoKlpaW\n330e+I+SJUuSkJAgcywuLi5bq7/NzMwwMTFBV1eXvXv3Eh0dzcaNG9mxYwcAUVFRdOzYUWYxW/Xq\n1VFVVWXFihXs3buXqlWrcu7cOQYPHsy+ffsoU6bMN/ssXbo0Cxcu/G5sKioqeHl5MXjwYLy9vdHU\n1GTkyJEKn0nL2NgYb29vZs2aBXwuAj9//vwvrnA+e/Ysa9asIS0tjQ8fPuDj44Oenh7v379n6tSp\n3Lhxg3LlygGQnp6OjY0NXbt2pVq1anh5eeHq6kqTJk0wNTXFz8+Phg0bYmJiQocOHQr1PWeHqakp\nmzdvZtq0aRw7dgx3d3cuXryIubk5vXv3zpea04LiEQOwoPCeP3/OyJEjGTFiBJqamlhYWLBz585s\nPRPs168fI0eOpG7dutStW5fAwEB++eUXQkJCstX33LlzadiwIX5+fqipqbF792709PQApHtbU1JS\npAP6x48fOX36NAcOHKBq1arA52eagYGBHD58mOHDh+fyU8hKTU0tS+lARTdjxgzq1KlDWFgYrVq1\nYv/+/djb22dZfPbo0SOWLVvG5s2bqVGjBv7+/tIvMZmZmTRt2lQ6+MLnOxuGhobExcVRrVo10tLS\npHc9evbsSc+ePTl06BCvXr0q1PebXXPmzMHQ0BB/f39CQkLQ1tZm9erVVKpUCQcHB/bu3ZvnXOOC\nApJL/i05+JlTUf7omjRpIgkICJD+nJSUJOnVq5fkxYsX2br+/v37kkaNGkm6d+8u6dWrl+Tq1av5\nFtv27dsl/fr1k9y9e1fy4MEDSf369SVmZmaSly9fypy3a9cuiYeHR771+yNLT0+XeHl5SdasWSO5\ncOHCF88ZPXq05MaNGzLHNmzYIPH09JSkpqZKrK2tJQ8fPpS+FhsbK6lUqZLk9evXEolEItm7d6+k\nbdu2koyMDOnrgMzvkaL5+PGjpGHDhhJXV1eZ9+7q6io5cOCAHCMr2hQqFaUgyNPbt2/ZuHEj8fHx\n1K5dmxEjRqCjoyOtRgSfb9M2adKEV69eYWBg8N0269evz507dwok3iFDhlC1alW2bdtGRkYGCxcu\nJCIiAicnJ3bv3g18Lldob29PQEBAgcTwoylevDiOjo7fPCctLS3L7fqyZcsSHh6Ompoas2fPpl69\nehw4cEC6uM7d3V2a/KR///7cu3ePBg0a8MsvvxAYGMiJEydkfo8UjYqKCrq6ukycOFFm5Xu5cuVI\nTU2VY2RCQflqOcKiRpQjVHypqal06dKFPn36oKWlxa5du/j48SMaGhp4eHhI02ZmZmbSqFEjduzY\ngampqZyjziojI4P+/fvz9u1brKysuHr1KoMHD8bW1lbeoeVYXFwc0dHRlC9fHh0dnULrd+vWrZw8\neZJDhw4BSNNZ3rhxQ5r2MzQ0lMOHD/Px40fat2//xSxbT58+5e3bt1StWvWLebwL0tu3b3n37h06\nOjrZriK3ZMkSIiIipPvIo6Ki0NXVJSgoSJo/W8hfClmOUBAK2+LFi7GxseHy5ctUrlwZbW1trl69\nioODAwYGBly6dAlNTU1mz55Nx44dFXLwBShWrBgHDx7k6tWrvHv3DltbW2rVqiXvsHLs+PHjbNmy\nhapVq3Ls2DEWLFjA4MGDC6XvoUOH4u/vT8uWLenRowc3btxgz549Mjm3q1at+t2a1vIatHbu3Mme\nPXvQ09Pj1KlT+Pj40Lp16+9eN23aNDp27IiNjQ3m5ub4+flx8uRJMfgWUWIAFuRGIpFIE+PXqFGD\nyMhIFi5cyLFjx6Srebt168bt27cJCgpiw4YNpKamMmTIkB+iWEh2V2orort379KzZ09iYmIoX748\nixYtomnTplSvXp02bdoUeP/Kysps376dGzdu8OzZM27fvs3OnTtZsGAB8+fPV+j///8sGEtKSqJ0\n6dI8ffqULl26cPr06e8OpKqqqvz1119cvHiRpKQk7OzssmxPEooOMQALcpGSksLMmTNJSUnh48eP\n3Lhxg+bNm2NlZSWzlaZEiRKEh4djaGjIqlWr5Bjxz+XkyZP4+vpSvnx54HPZwC1btnDy5MlCGYD/\nYWJiQvPmzTl48CA2Nja8e/eOoUOHoqWllSXxhqL4888/uXXrlvS2s6GhIcuXL8fX1zfbM1lLS8sC\njFBQFIq1G134abRp04ZixYqxfft2du/ejYODA3FxcVy4cIGFCxdy7do1pkyZwrt377L9/OxHtH37\ndrp27UqbNm2ypGSUp+LFi2eprpSRkSFTU7owHD16lCVLlmBjYwOAtrY2bm5uCl2qMTMzM0uiDyUl\npW9WtRJ+TmIGLBS6qKgo9PT0WLt2rfSYs7Mzw4YNo2vXrjx+/JjU1FTq1auHioqKHCMtWCtXruTx\n48ccOHAAVVVV1q9fz+TJk1m/fr1M+stviYuLY8GCBTx8+JD09HSWLVv2xcxROdW1a1d69OjBlStX\n0NfXJyYmBktLywJNrKuiAAAgAElEQVRdyX379m2uXbuGuro6dnZ2lCpVig8fPlChQgWZ80qXLk1S\nUlKBxZFXVlZWDB48mNu3b6OmpkZoaCg2NjY8efJE3qEJCkbMgIVCp6SkhKqqapbjycnJLFq0iMDA\nQAICAjh8+DA6OjosW7ZMDlEWvJ07d7Ju3TpKly6NiooKkydPRiKRcPPmzWxdn5aWhr6+PiYmJpw6\ndYrNmzczd+7cfCnIYGpqypYtW2jdujXDhg3D0dGRo0ePFtg2Hi8vL6ZPn065cuWIiopCXV2dqKgo\nWrVqxaZNm4iIiJCeu2LFCszNzQskjvzQtWtXxo8fj7GxMePGjWPixIn4+flhZGQk79AEBSNmwEKh\nq1ixInp6ejg6OuLt7Q183ib27NkzTE1NuXv3rpwjLBw6OjpZvohoa2uTlpaWrev379/PtGnTGDly\nJPD5WaObmxvu7u45rkX8JZ06deLBgwfExcVRpkwZtLS08tzmlwQFBTF9+nRevnyJhoYG8Dmlp4uL\nC56enixYsIDatWszbdo0QkNDqVy5MrNnzy6QWPLL2LFjsba2Jj4+nsqVKxfYZyf82MQALMjFokWL\n6N69Oz169KB06dJUqFABf39/eYdVqAwNDVm5cqW0gMKdO3dYtmyZNE/yv/n7+5OYmIiJiQnVqlUD\n4P3791kW9ejq6mbJfZ0X8fHxnD9/ng8fPmBlZZWlkEJ+CAoKYs6cOdLBF2DAgAFs2rQJ+PxFIDg4\nmCdPnqClpaXQyTT+rVKlStLEIILwJWIAFuRCTU2N8+fPEx0djUQi+Sn/UC1cuBAjIyOCg4PR1dXF\nz8+P+/fvU7ZsWek5mZmZTJkyhZSUFAwMDOjbty+7d+/G2tqapk2bMnPmTPr06SNdqLZ169Z82x99\n//59pk+fjoODA6VKlcLQ0JDLly9naz9rTmhpaWV5PhoSEsKHDx+kP+d2MIuMjGT27NkkJyfz9OlT\n7O3tFX72LPw8xAAsyFXFihXlHYLcaGtrEx4ejr+/P2lpaYwePTrLgiNXV1e0tbWlC9ZGjhyJtbU1\nRkZGNG7cmEGDBqGvr8/vv/9OUFAQHz9+ZPPmzd/sd9euXZw5c4YPHz7QqVOnLxaI+PDhAz179sTX\n11f67LJly5ZMmjQJExMTmS8JedW2bVsOHDiAk5MTY8aMISYmhtmzZ7N8+fI8tZuSkkKVKlXYs2cP\nAwYMID09nTFjxrBjx458TSiSmZnJ9u3buXjxImpqakycOFFhk8QIikUswhIEOVJRUaFdu3Z07do1\ny+ALnxNijBs3TvpzhQoVGDZsGFeuXAFg+PDh+Pv7U6VKFXr37s2mTZu+uYLa2dmZ1atXs2jRIlas\nWMHt27dZs2ZNlvNiYmJo2bKlzMKhatWqYWBgQGho6HffV2JiIhcuXODKlSvZ2lrl4eFBmTJlmDhx\nIg4ODsTGxjJr1iwuX7783Wu/5uLFizg7OzNgwADg82e9dOlSjh07lus2v2TIkCGcOnUKFxcXxowZ\nw/Tp0/H19c3XPoSiSQzAgqDANDU1szzTffXqlUw9YxMTE/r27UunTp2+WWg+MjKSQ4cOcfPmTfT1\n9dHX12fFihW4u7vTqlUrLCwspMlONDU1iYmJkdnuk5GRwalTp2QKBXxJSEgIffv2xc/Pj71791Kl\nShXevn373fc6YcIETp48yaxZs7hz5w579uzB1dVV+mUjpz5+/Jiljq6qqmq+Frm/ceMGwcHBHDx4\nEAMDAxo3bszWrVtlttgJwteIAVgQFJijoyPTp08nOjoagB07drBw4UL69OmT47aSkpIwNzenWLFi\n0mMdO3ZERUWFTZs2cebMGZ4+fYqnpyeampoMHjyYYcOG8eDBA54+fYqFhQUDBgyQSY2YlJSEs7Mz\nffv2xc7OjkePHmFoaMj06dNZsGAB7u7uzJkzhzlz5nw3vv379+Pk5MSQIUNQVlamevXqrFy58ru3\n1L+mefPmHDp0iNu3b0uPubm55evt4YSEhCwZuapWrSrz/FoQvkY8AxYEBdaxY0c+fPhAly5dKFOm\nDEZGRkRGRuaqOLu+vj4JCQlcv36d5s2bc/v2bVRVVYmLi6NGjRqULFmStWvX0r17d8aOHYuDgwNV\nqlTB09OT9PR0pk+fLlPRKT09nTp16kiThzx//pyBAwfSt29fOnfuLD1v2rRp9OrV67vxpaSkZCla\nUb58eZKTk3P8XuHzwi1PT0+aNm0qfbZctWrVfN1XXrNmTdzd3Xn37p30zsDly5ezvZVM+LmJAVgQ\n8tnjx4/x9/dHTU0Na2vrPKfS7N69O927d89zXKVKlWLhwoWYmJjg7u5OSEgIgYGBXLhwQTqglyhR\nQiZlYvv27Wnfvv0X2/Px8cHGxka6bUpHR4fJkyezdOlSmfMyMjJkEml8TYsWLZg8eTI9e/aU7pvd\ntGkTDRo0yNX7hc8JRd68ecPTp08pVaoUxsbGuW7rS2rWrMngwYMpU6YMPj4+xMfHc/DgQfbt25ev\n/QhFk7gFLQj56MSJEwwbNoxixYoRFhaGhoZGtgafwmJsbEx0dDQVKlTA2NiYBg0a8P79e+nrBw8e\nJCUlJVttJSYmylR8+vvvv1FXVyc9PZ3Vq1eTmZnJhw8fmDFjBh06dPhuew0bNmTkyJFUq1aNFStW\nMGrUKKKjo5k7d27O3+i/aGpq0qRJk3wffP9ha2vL7du3iY6ORllZmX379lGlSpUC6UsoWsQMWBD+\nJSkpiR07dpCQkICxsTG9e/fO9rURERHY2try4sULdHV1AahVqxbOzs5s2bKloELOMR0dHfr37w+A\nhYUFdevW5ffffyctLY2QkBBOnz6drXbq1avHmjVrsLGxYcGCBQQFBZGUlMSbN2/YtWsXR44cQV1d\nnW7dujF+/PhstWlvb4+5uTlPnjyhcePGtGvXLtfvszA1btyYxo0bF1j7t27dwt/fn1KlSjFgwIAs\ni8uEH5OYAQvCf6WmpmJjY0NqaiqNGjXC1dWV0aNHZ/v6J0+eMGvWLOngC9CvXz9evXpVEOHmizp1\n6hAbG0vz5s3p0qULO3bsyPYfd0tLSxo2bEjlypVZtWoVNWrUoFSpUoSFhVGiRAmWLVvGqVOnmDhx\n4jdXZ/8vIyMjevXqle+Db0ZGBqtXr6Zr165YWloyevToLBWfviU2Npbw8PAcXZMfduzYwdSpU6lS\npQqpqaloaWllayuYoPjEDFgQ/mv+/PnY29tLkzR06dIFR0dHTp06la3asxoaGgQHB8sce/v2LVFR\nUQUSb34pV66czKKpnHB2diYgIABTU1Pq1auHq6srJUqUYPbs2Vy6dClfclLnl3HjxhEUFISvry/F\nihVj+fLlzJs3j8WLF3/zuoyMDJYsWcKNGzdQUVHh77//5vbt25QpU6bAY37x4gVTp04lODhY+lzc\nwMAAFxcXtm7dWuD9CwVLzIAF4b+ioqKyPKvs0aNHtmewTZs2RUdHh9mzZ/P69WuePHnCkCFDcHFx\nKYhwFYaBgQFdu3alf//+lChRgqioKAIDA/NUSjI8PJxp06Zhb2/PpEmT8lx+MDo6mgcPHnDx4kVU\nVVUpXrw4c+bM4fnz51m+NP2vqVOn8vHjR44fP87hw4cZM2YMI0eOLJTazc+ePWPGjBkyxRx69uyp\n0HdVhOwTA7Ag/Je2trbMnlGAP//887uJJ/5t+fLlaGhoMH78eBYvXsz48eNztWf3RzJo0CCcnZ0J\nDw9n+fLl9O7dGycnJ5YtW5arW6VJSUno6+vTokULli9fTtu2benRo0e2knl8TVpamrSIxb+pq6uT\nmpr6zWvv3r2Ls7Oz9OeZM2dSs2bNAq2NHBMTQ3BwMCVLliQwMFDmtbCwsDx9FoLiELegBeG/pk2b\nhoGBAV5eXjRt2hQvLy+ePn0qXbCUHUpKSvz2228FGKXiadKkCXPnzqVJkyaUKlWK5s2b4+3tTWBg\nIAMHDuTEiRM5Kse3YsUK1q9fL91zbGNjw5s3b9iyZcsXK0VlR5UqVVBRUcHLy4shQ4YAn1d8Hz58\nmA0bNnzz2lKlSmVJ75mZmcmnT59yFcv3eHp68ueff1KxYkXOnz9Ply5dmDx5MhMnTiQ+Pp7ffvuN\n1atXF0jfQuESA7Ag/FeNGjWIj49n0aJFXL16FWNjY65cufLN3MpFxcuXLwkICKBUqVJYWVnJZMvK\njrZt22JmZsbu3bulhRqMjIwICgrC398/yz7moKAgli1bRmxsLKVKlcLd3V2aCzsxMZFffvlF5nwT\nExPOnDmT6/dXvHhxli9fTvXq1Xn48CHq6urcunWLwMDALDWZ/1eLFi2wt7dnz549ABw4cICVK1fi\n6uqa63i+Zs+ePdy+fZv//Oc/qKio4O/vz5gxY7C3t8fFxQUNDQ1cXFwU6tm6kHtiABaEf9HW1s5z\nFZ4fzZkzZ3Bzc6Nz5848ePCAadOmcevWLdTV1XPUjqqqapaBOzMzM8sXmJiYGOrUqcOFCxcwNzfn\n6tWr2Nrasn//fnR0dKhXrx7e3t40adJEes2sWbOYPHly7t8knytvxcfHc+vWLTIzM5k5c2a2kqQ4\nOTnxyy+/0KVLF6pWrUpiYiLh4eG5ykb2PSdPnmTBggXS5+etWrViwoQJaGpqijKKRZAYgAUhD65d\nu8aGDRtISkrC2NgYFxeXHM8e5Sk4OJjOnTsTHh4uTR4xd+5cFi9ezKJFi3LUVqdOnbC2tubChQsA\nnD9/nt9++413797JnLdy5Up8fHyk24w6depEeHg427ZtY/bs2QwZMoSuXbvSvXt3HBwcuHDhAjVr\n1pRWNQL49OkTq1atws/Pj0+fPtGhQwd+/fXX796tUFNTy3E94xIlSuDr68uLFy9IS0ujdu3alChR\nIkdtZJeSklKW3x8lJSUyMzMLpD9BvsQiLEHIpevXrzN37lymTJmCp6cnGhoajBw58of6YxkQEMCq\nVatkMjfNnTuXmzdv5ritMWPGYGhoSLNmzRg+fDgbNmzgxYsXWZ7/JicnZ8n5XK1aNWkGrmLFinHm\nzBlGjRpFUlIS1tbW7N69W+b8AQMGcOvWLQ4fPsyhQ4eIiorijz/+yHHMOVGzZk1MTEwKbPCFz19G\n7OzspL9D9+/fZ8yYMV9NByr82MQMWBByycnJiQ0bNmBoaAjAr7/+ysSJEzlz5gxdunSRc3TZU7Jk\nySz7lOPi4nK1xUZZWZkNGzYQGhpKcnIyBgYGqKmpZTmvSZMmrF27lh07dgAgkUgYOXJklgH0awUc\nnjx5QmxsLH5+ftL3sGLFCrp3746jo6P0GfSPyMHBgSdPntCwYUNatWpFZGQkd+/epXLlyvIOTSgA\nYgAWhFz6p2Tev9WuXTvPe1YLk5WVFTt37mT79u3Y29sTGxvLhAkTmDFjRq7brFq16jdfHzx4MKdP\nn6Z9+/YMGDCAixcvYmtrS8+ePbPVflpaGnXr1sXf3x8PDw+Zwb4oVCFatGgRo0aNIjk5mapVq6Kh\noSHvkIQCIgZgQcglU1NTtm7dytixY4HP+1fnz5+Pv7+/nCPLnjNnznDw4EEyMzNxd3dn+/btaGpq\nMnLkyCyrkPOTsrIye/fu5dy5c8TExDB27FhatWqV7etr167N48ePmTx5Mt7e3lSuXJnff/+dCxcu\nUK5cuQKLuzB9ac+yUPSIAVgQcmnu3LlUr16dkJAQTExM2LFjB6tXr6ZevXryDu279u3bh4+PD4sX\nL6ZkyZIsXboUPT095s2bV2gxdOzYMVfX/VNxKSAggMOHDwMQGhqKg4MDvr6+2Z5J/6/Hjx8TGRlJ\npUqVMDExyVUbgpATYhGWIORS2bJliYmJwdTUlLS0NJYvX87QoUPlHVa2zJ8/H29vb4yNjalRowYb\nNmzg4cOHPHr0SN6hZUvp0qUJDQ2ladOmWFhYsGvXLurXr5/r2/9r167F2dmZ69evY2NjUyB7fAXh\nf4kZsCDkgaqqKvb29lmOP336lEWLFhEdHU18fDyenp40atRIDhF+mZGRkczqZCUlJQwMDLJsGVJU\nZmZm+Pj4SDNjJSYmMmvWLK5evZrjtk6fPs2MGTN4//49Kioq/Prrr1hZWdGoUSN69OiR36ErvCdP\nnrB+/XqSkpJo0qRJtktJCjknZsCCkM/i4uIwMjLC0dGR06dPs2PHDqZPn87Dhw/lHZqUhoYG586d\nk/4cGRnJunXrqFmzphyjyj4nJyf++OMPJkyYwKZNm+jTpw8eHh7Ur18/x21dunSJM2fOSJNfFC9e\nnIULF3L58uX8DlvhvXjxghEjRtC9e3dmz55NdHQ0w4YN+6G21v1IFGIGvHLlStLT07/6ep06dXJU\nGF0Q5Gnbtm1s2bJFunfTyMiIuXPn4u3trTBZtlxcXKhduzbu7u5oaWnxxx9/sH//fipVqiTv0LJF\nQ0OD0NBQjhw5QnJyMitXrqRBgwa5aktdXT3LzD8mJqZAMl0puunTp7Ny5UqaNWsGgKurK+PHj+fU\nqVNZ0okKeacQA/DLly/x8PDA0dHxi+nv/skRKwg/gtTUVJnEFvC55u73qu7kh5SUFKKiotDQ0Pjm\nv5tatWoRFxfHsWPHeP/+Pbt376ZOnToFHl9+Kl68uLRgQ17Y2dkxfPhwateujYmJCX///TfW1tY/\nZdH7jIwM6tatK3PMzMyMuLg4OUVUtCnEAOzu7k5mZiaZmZmsW7cu1+3808bXXpNIJLluWxCyq1Wr\nVixYsABLS0vU1NSQSCR07dq1wCvY3Lt3DxcXF7S1tbly5QqTJk1iwoQJXz2/bNmy0spAP7NatWrh\n4eHB0KFDKV++PKVKleL27dvo6+vLO7RCV7t2bQ4fPiz9vfj06RNLly5l586d8g2siFKIARhg2bJl\njB49muTk5GwlSP+S7du3s3fv3i++FhQUlCVpgiAUhPbt23Pv3j3q1q3LuHHjuHfvHkOGDMHOzq7A\n+nz9+jVmZmbcvXuXhg0bkpaWRoMGDahWrdp39/S+ePGCZcuWERERQbFixVi3bt1PN/jUr18/V+k3\ni5o5c+ZQuXJlwsLCaNCgAdu2bWPAgAGi+lIBUZL8JNPCqVOnEhUVhY+Pj7xDEX4SgYGBhIWFUb58\neRo3blygfW3btg2AYcOGyfS/du3ab9a7ffv2LeXKlcPX15c2bdoQEBDA7Nmz2bVr13czWglFU2pq\nKtu2bSM5ORkzMzM6deok75AK1PTp0xk0aJBcdikozAz4f40aNYoVK1agqakp71AEIVeMjY0xNjYu\nlL4yMzOz5F0uVqzYd4vGr1u3jq1bt0r/yLZs2ZLx48ezZcuWIrMX9unTp1y4cAFlZWW6d++e5fn8\nj+D06dNERERQtmxZrK2tC7SvkiVLiq1HhURhtyHt2LGjSOR1FYTC0L59e5YuXcrjx4+Bz8/uFi9e\nTOfOnb95XXJyMrVr15Y5pq+vT3JycoHFWpguXryItbU12traqKqqoqenx7179+QdVo4MHz6c/fv3\no66ujre3Nx06dPjuFyvhx6CwA7AgCNlnYGDA5s2badu2LWPHjqVnz56Ym5t/d5Vw06ZNWbNmjcwC\nRUdHR+k2lB/Zu3fvsLW15fjx49jZ2eHo6ChdqPajfLk/ePAgAQEBbNu2DTs7O/7880/q1avH1q1b\n5R2akA8U9ha0o6PjF0uZCYLwZS1atODZs2dERkaiqamZrVutNjY2+Pn50bRpU4YNG8a1a9fo2rUr\n/fv3L4SIv+/q1ats3ryZpKQkzMzMcHJyQklJKVvXhoaGYmdnh4GBgfRYgwYN0NDQIDo6+ocoePDg\nwYMse8eHDh3Kli1bCj2WjIwMQkNDUVFRQU9Pr9D7L4oUdgDeuHGjvEMQhB+OlpaWTIrJ7PDw8ODK\nlStERkYycuRIWrduXUDR5czly5dxdXVlxYoVVKhQgU2bNjFu3Dg8PT2zdX2ZMmUICQkhIyODYsWK\nAZ9vuV+7du2HWVuiqanJkydPZApX3L17t9BLFL59+5YZM2aQnp5ObGwsysrKHDlyhBIlShRqHEWN\nwg7AgiAUHgsLC3mHAHz+Q+/p6UlCQgIHDx7k7Nmz0vSYLi4ujBo1Cj8/P9q1a/fdtvT19encuTND\nhgxhzpw5fPr0id69e/Pbb79RpkyZgn4rueLv7y+d8Tdo0ICJEyfSt29fKlSogKWlJdevX2fYsGGF\nmrP706dPGBsbM2vWLKZNmwZA//79cXV1ZeHChYUWR1EkngEXURkZGezZs4eVK1eya9cukYREUHhp\naWno6upStmxZ7OzsSElJwcbGho8fP0rPqVOnDgkJCdluc+LEiVhbW+Pu7s7mzZtZv349w4cPL4jw\n8+zSpUu4uLgwbdo0PDw8UFZWxsnJiaNHj3L58mWmTZvGuXPnCAkJyfFdjrx49OgRPXv2lA6+8Lmc\n5YMHDwothqJKzICLIIlEQrt27WjWrBnt27fH29ub9evXc/HiRXHLSFBYS5cu5ffff2fs2LEA9OnT\nh9DQUHbv3s3QoUNJSEjA1dWVGzdu5KjdPn360KdPn3yJMTMzkwsXLpCYmIipqSm1atXKl3bhcxKM\nPXv2SBMGzZs3jzFjxnDr1q08ZQjMD6VKlcpy7EdZyKbIxAy4CNq2bRvlypVj+fLldO3alb1792Jh\nYYG3t7e8QxOEr4qNjZUpuvL7779z6tQp9uzZw65du+jVqxdr167FyMhILvFlZGQwatQojhw5QnBw\nMPXr1+fAgQP51r6qqmqWDGSGhoZyLxFZt25d3r59K7MYbM2aNT9lsYr8JmbARVBwcLC0Tuo/bG1t\nOXTokJwiEoTvq1KlCmfPnpUWA9DR0aFnz57o6OiQmJjIqlWr5FpTefbs2RgaGkr/bQ0dOhQbGxuM\njY0xMTHJc/v16tXDy8tLeov83bt3uZrx57cSJUqwdu1a6tSpQ0BAAEpKSlSuXJn9+/fLNa5/pKam\ncujQIelK+ebNm8s7pGwTA3ARpK2tzZ07d2Tyt547d05hF54IAsD48eOpXr06UVFRdO3alSNHjvD2\n7VsOHz6c7a1HBSkwMFCmKEG5cuUYNGgQN2/ezJcBeP78+ejr6/Pq1SsMDAzw8vLC3d1dbjP+f9PW\n1iYiIoJXr15RvHhxhUlTmpqaip2dHY0aNaJmzZp0794dZ2dnJk2aJO/QskUMwEXQyJEj6d27Nxoa\nGrRo0YKLFy+yYMEC4uPj5R1ajiQnJ5OcnEyZMmVQVVWVdzhCAdPU1CQqKor169dz7tw5TE1NcXNz\nU4jBFz7HFx0dTdmyZaXHnj17lm+z8goVKhAfH8+BAwdISUnhjz/+oGHDhvnSdn4oVqyYzJ5qRTB1\n6lSsra2l1Zv69u2Lra0tLVq0wNzcXL7BZYMYgIsgbW1tfH19WbZsGdevX6dixYpERET8UIlN9u3b\nx9atWylTpgwBAQEcOXKEevXqyTssoYCVKFGCKVOmyDuMLxoxYgTTpk1j8+bN6OrqsmHDBjZu3EhM\nTEy+9VGyZEkGDx6cb+0VdRERETLrBtTU1OjduzePHj0SA7AgP6qqqsyfP1/eYeTKlStX8PHxYf/+\n/WhraxMUFMT48ePZtm2bwtz6EoqmW7duER4eTvny5bMkJOnQoQMSiYR+/fqhqqpKgwYNCAkJETsL\n5EhLS4sXL17IVBu7fPkyvXr1kmNU2ScGYEHh7Nu3T1pYHsDIyIghQ4Zw+vRpRo0aJefohLzy9fXF\n29ubxMREGjZsiKurK8rK8t+Q4erqyuPHj2nVqhXLli2jXr16WVI+duzYUSYrlSBfkydPZurUqaxa\ntQo9PT3Wrl1LQEAA27dvl3do2SL/33pB+B+pqalZZhUlSpTgw4cPcopI8d24cYP9+/dz/vx5eYfy\nTUePHsXDwwMXFxe2b99OsWLFFOKW84kTJ1i3bh27du1i/PjxXL9+nYSEBPbs2SPv0IRvMDc3Z/Pm\nzaxYsYLx48ejrq7OzZs3FeILXXaIGbCgcKysrBg+fDh//fUXxYoVIzIykv79+/Po0SN5h6YQgoOD\nuXfvHqVLl8bKyooFCxbw8OFDOnTowIYNG/D09GT//v0K+Udo/vz5nD17Fh0dHeBzesnhw4fj7+9P\nq1at5BbX9evX2bNnjzRnNHzeduTl5cXAgQPlFld+SE1NZcuWLYSFhVGuXDmmTJlSpBY1GhkZsXfv\nXnmHkSuK9y9U+On169ePjh07Ur9+faZPn87YsWM5d+5coRW3V2THjh1jzJgxvHjxgm3btmFkZMT6\n9evZs2cPo0eP5sKFC6irqyvsLbiyZctKB99/1KhRg6SkJDlF9FmpUqUIDw+XORYSEkLp0qXlFFH+\nyMjIoGHDhsTHx0vTe+ro6OQonadQcMQMWFBIrq6uODo6Eh8fT7Vq1ahQoYK8Q5K7J0+e0KtXL6Kj\no6WDmIWFBc2aNaN48f//pzxjxgw8PDwUMuexkZER3t7eODo6AhAVFcWiRYt4+vSpXONydHRk4MCB\nGBgY0Lx5c27duoWtrS2vX7+Wa1x5tXXrViwtLaULMhs1akT58uVZt24dTk5Oco5OEAOwoLD+qYKT\nVxkZGezbt4/Y2FiqVKmCjY1NvrRb2G7evImHh4fMDLJbt274+PjInJefMzd/f3/Wrl1LYmIiurq6\nrF+/Pk8pCF1cXNDX1+fFixfo6enh7e3NwYMHs6RgLGyVK1dm9+7djB07lg8fPqCjo8P9+/epVKmS\nXOPKq9jY2Cy1ndu0aYOXl5d8AhJkiFvQQpEmkUiwtLQkICCA6tWrs3XrVnr06EFGRoa8Q8sxdXV1\n3rx5I3PMysqKyMhITp8+TWpqKv7+/vTq1YsZM2bkub979+4xf/58nJ2dOXjwIG3btmXgwIF5SsJf\nsWJFEhISMDY2pnjx4mzdupXu3bvnOdb8UKVKFY4dO4avry87d+6kfv368g4pzypXrsy5c+dkju3c\nuRM9PT05RST8m5gBC0Xaxo0bqVChAitWrACgZ8+ejB8/Hh8fH+zt7eUcXc5069aN3bt34+PjQ79+\n/Xj9+jWuroN9IAEAABS7SURBVK5s3bqVLVu24OHhQZkyZbh//z66urp57s/FxYU//vhDmmZxyJAh\nBAcH8+eff2JnZ5frdkuWLJmn64XsGzRoEC1btiQkJIRx48Zx9epV9u7dS0hIiLxDExADsFDEPXv2\njLlz58ocs7Oz4+zZs3KKKPdKlizJjh07GDx4MJ6enmhqajJ27Fi6d++OtbV1vveXkZFBlSpVZI5V\nr16d5OTkfO9LKBgqKircuHGD7du3c+HCBcqUKUNQUBAqKiryDk1ADMBCEaelpcXdu3dl8vWeP38e\nDQ0NOUaVe6VLl+bw4cOF0pe5uTmrV69m4cKFwOfc3BMnTsTf379Q+s8PGRkZvH79GjU1NcqXLy/v\ncORCWVlZIRfkCWIAFoq4sWPHYm1tjaamJo0bN+bs2bO4ubnx9u1beYem8GbMmIG5uTmhoaG0aNGC\n48eP4+HhgZmZmbxDy5a4uDhmzpxJcnIy4eHhmJiYsGHDBpm9voIgT2IRllCkVahQAV9fX27dusWS\nJUuIjIz84QpTyEvJkiW5f/8+ffv2RVNTk6VLlzJ06FB5h5Ut6enpGBoa0qhRI/bv38/Vq1d59uwZ\nq1evlndogiAlZsBCkaeuro6bm5u8w/ghKSsr07NnT3mHkWN37txh4MCBTJgwQXrs/Pnz9OjRI19W\niAtCfhAzYEEQipz09PQsz/mVlJR4//69nCIShKzEACwIQpHTuHFjHj16JJMjePXq1WL/q6BQxC1o\nQcijjIwMDh06RGRkJBUrVsTOzg4lJSV5h/VTK1WqFJ6enhgZGXHu3DlSU1PR1dXF29tb3qEJgpQY\ngAUhDyQSCd26dcPY2Jh27dqxY8cONmzYwLlz58ReSzmrXLkysbGxPHv2DDU1NWrVqiXvkARBhrgF\nLQh54OXlhYqKCqtXr6Znz54cPHiQxo0bi1y7CkJVVZV69eqJwVdQSGIAFoQ8eP78eZaqMnZ2djx/\n/lxOEQmC8KMQA7Ag5IGGhgZ3796VOXbhwgU0NTXlFJEgCD8K8QxYEPJg9OjR9OnTB21tbZo1a8al\nS5eYN28eiYmJ8g5NEAQFJ2bAgpAHZcqU4dSpUwQGBuLm5kZISAivX7/OU81cQRB+DmIGLAh5pKam\nxqJFi+QdhiAIPxgxAxYEQSgCIiIiGDZsGFZWVtSvX5+jR4/KOyThO8QMWBAE4QeXnJyMnp4eBw4c\noG/fvsTFxTFkyBBKlSqFlZWVvMMTvkLMgAVBEHIpNjYWLy8vPD09efjwodziOHLkCIsXL6Zv374A\nlCtXDjc3N3bt2iW3mITvEwOw8NPy9/dn2LBh9OvXj6VLlyKRSOQdkvADCQsLY8CAAaSkpKChoUH9\n+vXx9fWVSyxpaWlUqlRJ5pimpqYoPqHgxAAs/JT8/PxwdXVlypQprFq1iqSkJCZPnizvsBSKv78/\nvXr14pdffqFp06Y8fvxY3iEpFGtra37//XfGjRuHvb09UVFRrFu3jvDw8EKPxcLCgo0bNxIdHS09\ntmbNGpo0aVLosQjZJ54BCz+lX3/9lUOHDqGvrw/AokWLGDFiBH/99RetW7eWc3TyFxwcTOvWrQkK\nCsLQ0JC///6bcePGsX37dqpXry7v8BRChQoVsLCwkP5csWJFzMzMeP78eaFXXTI2NsbJyQkDAwNm\nzJjBy5cv0dHR4ddffy3UOIScETNg4aekrq4uHXz/Ubt2bd69eyeniBTL5s2b8fX1xdDQEIAGDRow\nbtw49u3bJ+fIFEdGRgaxsbEyx86dO4eWlpZc4unZsydBQUG0bt2a8ePHs3z5clGVS8GJAVj4KdWp\nU4fdu3dLf46Pj2fJkiXUrVtXjlEpjpSUFMqUKSNzTFNTk7S0NDlFpHjGjh3L0KFDefToEa9evaJ3\n794YGRlhZmYmt5j09PTo2LEjTZs2lVsMQvaJW9DCT8nZ2RldXV1CQkKoVq0aGzduZN26daJqzn+1\nadOGOXPm4OvrS7FixUhNTaVLly74+fnJOzSFYW1tjY6ODm5ubnz69Ilu3boxYsQIeYcl/EDEACz8\nlCpVqkRycjIHDhwgOTkZd3d3uc5cFI2NjQ137tyhQYMGDBgwgDt37rBlyxYsLS3lHZpCsbCwkHkO\nLAg5IQZg4aelrq7OkCFD5B2Gwlq8eDGDBg0iJiaGfv36Ubt2bXmHJAhFihiABUH4KhMTE3mHIAhF\nlliEJQiCIAhyIAZgQRAEQZADMQALgpDvPnz4wKJFi+jWrRvdu3fn3Llz8g5JEBSOwj8DzsjI4NOn\nT6iqqso7FEEQsqlt27Y0a9YMHx8f4uLimDx5MmlpafTo0UPeoQmCwlCIGXBYWBiDBw+mdOnSWFlZ\n8fz5c+lrBw4cwMHBQY7RCYKQE+fPn0dPT481a9agpaWFgYEBGzduxNPTU96hCYJCUYgBePXq1ejq\n6nL79m1atGhBmzZtePr0qbzDEgQhF96/f4+5ubnMMV1dXRISEuQUkSAoJoW4BX3y5Enu3r1LyZIl\ncXV1xdjYmM6dO+Pv7y/v0ARByKH69euzbt06HB0dpSXyDh06RNmyZeUcmSAoFoUYgI2Njbl9+7a0\nCo2dnR2RkZF07dqV0aNHZ7udXbt2cfjw4S++dv/+fapUqZIv8QqC8HU1atRg0qRJ6Orq/l979x8T\ndeHHcfyFP/ihAaYExCgzDSw6aVmU4Sb5gzTKHxPGTM02f+TMNrUVi9B+2CY2W/8YZXOWmJGsJq4w\nKJq2/LVk2rApYmBpZeqUvMDoED/fP/p6k2abU+7ex93zsfXHfW47X+zEZ5/PHZzefvttnT59Wvv3\n7+/0u7cBBEiA58+fr7y8PC1evNj78VlLlizRn3/+qcWLF2vy5MlX9ThTp05VTk7OFe8rLCzUmTNn\numwzgP+Wk5Oj+vp61dbWKiEhQS+88IKioqKsZwEBJSACnJ2drcbGRjU1NXU6/vLLL2vUqFFqbGy8\nqseJior6z2/yyMhI9ezZ87q3Arg6qampSk1NtZ4BBKyAeBOW9M/v5XW5XN7b8+bNk9vtVlZWlmbP\nnm24DACArhcwAf630tJSPnsUABC0AjbAAAAEs4AN8KxZsxQZGWk9AwAAnwiIN2FdyZo1a6wnAADg\nMwF7BgwAQDAjwAAAGCDAQIA7d+6cCgoKlJ2drbFjx2r37t3WkwB0AQIMBLD29nYNHTpU8fHx2rJl\ni0pKSrRs2TJ9++231tMAXCcCDASwiooK5eXl6bnnnlNUVJRSUlL01ltv8dF+QBAgwEAAa2lp0bBh\nwzodS0pKktvtNloEoKsQYCCADR8+XJs2ber0WbobNmzQHXfcYbgKQFcI2J8DBiANGzZMTz75pJKT\nk1VcXKympiadPHlS77//vvU0ANeJAAMBbubMmbr33ntVV1engQMHasKECXyyFxAECDDQDaSlpSkt\nLc16BoAuxGvAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAY\nIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDAAAAYIMAAABggwAAAGCDA\nAAAYIMAAABjoZT0AgG988803qqqqkiQ99thjyszMNF4E4HKcAQNBaMOGDZo9e7YmTpyoSZMmaeTI\nkfroo4+sZwG4DGfAQJA5e/asli5dqrq6OsXExEiS3G638vPzlZ2drbi4OOOFACTOgIGgc/bsWY0f\nP94bX0mKjo7WoEGDdObMGcNlAC5HgIEgc9NNN+m3337TsWPHvMeOHz+uLVu2KDEx0XAZgMtxCRoI\nMrGxsVq0aJEGDhyoiooKhYWFafHixVq7dq1iY2Ot5wH4PwIMBKHRo0fr0KFDqqyslCRVVFTI5XIZ\nrwJwOQIMBKmhQ4dq6NCh1jMgyePxaPPmzXK73XK5XHrwwQetJyEA8BowAPiQx+PR9OnTtX//foWH\nh2vq1KlauXKl9SwEAAIMAD60dOlSjRo1SsXFxZo1a5aOHj2qHTt2aOfOndbTYIwAA4APNTU1KTc3\n13s7PDxc+fn5qqurM1yFQECAAcCHYmJi1NjY2OnYnj17Ov2cNkITAQYAH3r22WdVUFCg7777TqdP\nn9bKlStVUVGh/Px862kwFrDvgu7o6FBrayv/lwigW7vnnnu0bt06FRUVqb29XS6XS/X19erVK2D/\n+YWfBMTfgPb2dq1atUpHjhzRwoUL1dDQoIULF+rs2bOaPHmyysrKFBERYT0TAK5JSkqKysvLrWcg\nwATEJejnn39e27dvV0JCgvLz8/Xqq6/q008/1ZEjR3ThwgVVVFRYTwQAoEsFxBnw1q1bVVtbq5iY\nGEVFRenUqVMaNWqUJOn1119XUVERr5cAAIJKQAT49ttvV319vTIyMjRnzhz98ssv3vsOHDigIUOG\nXNXj1NXV6eDBg1e87/Dhw+rRIyBO+AEACIwAL1myRJMmTdK7776rSZMmKSkpSZJUWFiodevWqaam\n5qoep62tTefOnbvifdHR0erfv3+XbQYA4HoERICzs7N1+PBhtba2djr++OOPq6ioSH369Lmqx8nI\nyFBGRsYV7+vXr5+am5uveysAAF0hYK7JxsTE6Oabb/benjdvntLS0q46vgAAdCcBE+B/Ky0tVVtb\nm/UMAAB8ImADDABAMAuI14CvZNasWYqMjOyyx0tNTVVOTo4+//zzLnvMa7Fz506FhYUpLCzMdIc/\ntbW1qXfv3urZs6f1FL/xeDyS/vnF+6Gio6ND7e3tXfp9G+gcx9H58+fVt29f6yl+1dbWpocffth6\nRpdoamrSkiVLTP7sMMdxHJM/OUTl5uZqzZo1GjBggPUUvykqKtKECROUmZlpPcVvNm7cqL/++ktz\n5syxnuI3+/bt08aNG/Xmm29aT/Gb8+fPKy8vT5WVldZT/CorK0vbt2+3ntHtcQkaAAADBBgAAAME\nGAAAAwQYAAADBBgAAAMEGAAAA/wYkp+dOnVKcXFxIfXJTM3NzerTp48iIiKsp/hNS0uLHMdRdHS0\n9RS/8Xg8amlpCakPPXEcRydPnlRiYqL1FL86ceJEp18djGtDgAEAMBA6p2EAAAQQAgwAgAECDACA\nAQIMAIABAgwAgAECDACAAQIMAIABAgz42IULF8SP2wcvnl9cKwLsZw0NDZoyZYpcLpcyMjK0d+9e\n60k+d/DgQU2bNk3p6ekaM2aMNm3aZD3Jb44fP66BAweqqanJeopPrVixQsOGDdOgQYO0YsUK6zl+\nEyrP7yVlZWUaPXq00tPTNWPGDB06dMh6UvfmwK9GjhzpbNy40XEcx6murnZuvfVW40W+N27cOGf9\n+vWO4zjOr7/+6sTHxzu///678SrfW7t2rTN48GCnd+/ezo8//mg9x2fKy8udzMxM548//nBOnDjh\npKenO1u3brWe5XOh8vxecuLECSchIcH7vbtu3TonOzvbeFX3xhmwn1VUVGjatGmS/rl0deHCBeNF\nvnXx4kUtWLDA+zUnJSUpOjpa+/btM17mWx6PR+Xl5dq6dav69etnPcenqqqqNGPGDMXGxioxMVHT\npk3T5s2brWf5VCg9v5dcvHhR5eXlSkhIkCSlp6dr165dxqu6t17WA0LNgAEDJEmLFi3SJ598otWr\nVxsv8q0ePXpo8uTJ3ttff/21mpubNWLECMNVvhceHq7q6mrrGX5x7NgxTZw40Xs7MTEx6P9hDqXn\n95KkpCQlJSV5b7/33nvKyckxXNT9cQZs4O+//1Z8fLySk5P18ccfy+PxWE/yi4aGBs2cOVOrV68O\nmbOGUHDmzBn17dvXe7tPnz5qbW01XARfW7t2rT777DOtWrXKekq3RoB9qLq6WuHh4QoPD9eNN97o\nPR4REaHCwkLt2LFD27Zt044dOwxXdq3/+prr6+uVlZWlZcuWeS9HB5P+/ft7v+6qqirrOX4VFxcn\nt9vtve12uzudKSG4rFmzRkVFRaqpqVFycrL1nG6NS9A+NGLECO3Zs0eS1LNnT7W1tWnZsmVavny5\nIiIi1KtXL6WkpOjIkSMaPXq08dqu8e+vWZKampo0duxYvfTSS5o/f77lPJ/Ztm2bOjo6JElDhgwx\nXuNfycnJ+vnnn723f/rpJ91yyy2Gi+Ar69ev1yuvvKKamhrdeeed1nO6PT4P2M/GjBmjvLw8zZ8/\nX7W1tXrooYf0/fff66677rKe5jOZmZkaOXKkCgoKvMduuOEGhYeHG67yn/j4eO3evVuDBw+2nuIT\nVVVVKigo0BdffCGPx6Nx48aprKxM9913n/U0vwj25/eSo0ePyuVyqbKyUi6Xy3u8f//+hqu6Ny5B\n+9mKFSv04YcfKjU1VQsWLFBpaWlQx3fv3r3atWuX3njjDQ0YMMD7X1lZmfU0dJFHHnlEw4cPV1pa\nmkaMGKHp06eHTHxDSUlJiVpbW5WVldXpe/n8+fPW07otzoCNnDt3TrGxsdYzgC7jdrsVERGhiIgI\n6ylAt0CAAQAwwCVoAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBg\nAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgIAS0tbXp7rvvVmFh\nYafjTz31lJ544gmjVUBo62U9AIDvRUZGqqysTA888IDuv/9+TZkyRcXFxdq9e7dqa2ut5wEhiQAD\nIcLlcqm4uFhz585V7969tXz5cu3atUvR0dHW04CQFOY4jmM9AoD/PProo/ryyy9VUlKiefPmWc8B\nQhavAQMhZsiQIero6FBcXJz1FCCkEWAghGzfvl2lpaV67bXX9Mwzz6i5udl6EhCyuAQNhIiWlha5\nXC69+OKLmjt3rrKysjRo0CB98MEH1tOAkESAgRDx9NNPq7GxUV999ZXCwsLU0NCg9PR0bd68WePH\nj7eeB4QcAgyEgOrqauXm5urAgQO67bbbvMeLi4v1zjvv6IcffuDd0ICfEWAAAAzwJiwAAAwQYAAA\nDBBgAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQYAAADBBgAAAMEGAAAAwQ\nYAAADBBgAAAMEGAAAAwQYAAADPwPZ6/+lAyLgq8AAAAASUVORK5CYII=\n" | |||
|
195 | } | |||
|
196 | ], | |||
|
197 | "prompt_number": 9 | |||
|
198 | }, | |||
|
199 | { | |||
|
200 | "cell_type": "code", | |||
|
201 | "collapsed": false, | |||
|
202 | "input": [ | |||
|
203 | "%%MultipleChoiceQuestion 1", | |||
|
204 | "", | |||
|
205 | "question_text = 'Is the correlation:'", | |||
|
206 | "choices = ['positive', 'negative', 'zero']" | |||
|
207 | ], | |||
|
208 | "language": "python", | |||
|
209 | "outputs": [ | |||
|
210 | { | |||
|
211 | "latex": [ | |||
|
212 | "Is the correlation:" | |||
|
213 | ], | |||
|
214 | "output_type": "display_data" | |||
|
215 | }, | |||
|
216 | { | |||
|
217 | "html": [ | |||
|
218 | "", | |||
|
219 | " <input type=\"radio\" name=\"2917924107d1f41e90632af0a98a4793\" value=\"positive\"> positive<br>", | |||
|
220 | " ", | |||
|
221 | "", | |||
|
222 | " <input type=\"radio\" name=\"2917924107d1f41e90632af0a98a4793\" value=\"zero\"> zero<br>", | |||
|
223 | " ", | |||
|
224 | "", | |||
|
225 | " <input type=\"radio\" name=\"2917924107d1f41e90632af0a98a4793\" value=\"negative\"> negative<br>", | |||
|
226 | " " | |||
|
227 | ], | |||
|
228 | "output_type": "display_data" | |||
|
229 | } | |||
|
230 | ], | |||
|
231 | "prompt_number": 10 | |||
|
232 | }, | |||
|
233 | { | |||
|
234 | "cell_type": "code", | |||
|
235 | "collapsed": false, | |||
|
236 | "input": [ | |||
|
237 | "%%MultipleChoiceSetup 2", | |||
|
238 | "", | |||
|
239 | "X = rnorm(20)", | |||
|
240 | "Y = rnorm(20) + X", | |||
|
241 | "print(summary(lm(Y~X)))", | |||
|
242 | "", | |||
|
243 | "true_corr = cor(X,Y)" | |||
|
244 | ], | |||
|
245 | "language": "python", | |||
|
246 | "outputs": [ | |||
|
247 | { | |||
|
248 | "html": [ | |||
|
249 | "<h2>Question 2</h2>" | |||
|
250 | ], | |||
|
251 | "output_type": "display_data" | |||
|
252 | }, | |||
|
253 | { | |||
|
254 | "output_type": "display_data", | |||
|
255 | "text": [ | |||
|
256 | "", | |||
|
257 | "Call:", | |||
|
258 | "lm(formula = Y ~ X)", | |||
|
259 | "", | |||
|
260 | "Residuals:", | |||
|
261 | " Min 1Q Median 3Q Max ", | |||
|
262 | "-1.2911 -0.6555 -0.1402 0.6301 1.6721 ", | |||
|
263 | "", | |||
|
264 | "Coefficients:", | |||
|
265 | " Estimate Std. Error t value Pr(>|t|) ", | |||
|
266 | "(Intercept) 0.1856 0.2176 0.853 0.40499 ", | |||
|
267 | "X 0.9157 0.2535 3.612 0.00199 **", | |||
|
268 | "---", | |||
|
269 | "Signif. codes: 0 \u2018***\u2019 0.001 \u2018**\u2019 0.01 \u2018*\u2019 0.05 \u2018.\u2019 0.1 \u2018 \u2019 1 ", | |||
|
270 | "", | |||
|
271 | "Residual standard error: 0.9539 on 18 degrees of freedom", | |||
|
272 | "Multiple R-squared: 0.4203,\tAdjusted R-squared: 0.3881 ", | |||
|
273 | "F-statistic: 13.05 on 1 and 18 DF, p-value: 0.001991 ", | |||
|
274 | "", | |||
|
275 | "" | |||
|
276 | ] | |||
|
277 | } | |||
|
278 | ], | |||
|
279 | "prompt_number": 11 | |||
|
280 | }, | |||
|
281 | { | |||
|
282 | "cell_type": "code", | |||
|
283 | "collapsed": true, | |||
|
284 | "input": [ | |||
|
285 | "true_corr = %R cor(X,Y)" | |||
|
286 | ], | |||
|
287 | "language": "python", | |||
|
288 | "outputs": [], | |||
|
289 | "prompt_number": 12 | |||
|
290 | }, | |||
|
291 | { | |||
|
292 | "cell_type": "code", | |||
|
293 | "collapsed": false, | |||
|
294 | "input": [ | |||
|
295 | "%%MultipleChoiceQuestion 2", | |||
|
296 | "", | |||
|
297 | "question_text = r'Up to 1 significant digit, what is the correlation between $X$ and $Y$?'", | |||
|
298 | "", | |||
|
299 | "while True:", | |||
|
300 | " choices = ['%0.1f' % c for c in list(np.random.random(size=(3,))*2-1) + [true_corr]]", | |||
|
301 | " if len(set(choices)) == 4 :", | |||
|
302 | " break", | |||
|
303 | "", | |||
|
304 | "" | |||
|
305 | ], | |||
|
306 | "language": "python", | |||
|
307 | "outputs": [ | |||
|
308 | { | |||
|
309 | "latex": [ | |||
|
310 | "Up to 1 significant digit, what is the correlation between $X$ and $Y$?" | |||
|
311 | ], | |||
|
312 | "output_type": "display_data" | |||
|
313 | }, | |||
|
314 | { | |||
|
315 | "html": [ | |||
|
316 | "", | |||
|
317 | " <input type=\"radio\" name=\"96eedd18fc3bbd5cef5164686e0dce1a\" value=\"0.6\"> 0.6<br>", | |||
|
318 | " ", | |||
|
319 | "", | |||
|
320 | " <input type=\"radio\" name=\"96eedd18fc3bbd5cef5164686e0dce1a\" value=\"0.8\"> 0.8<br>", | |||
|
321 | " ", | |||
|
322 | "", | |||
|
323 | " <input type=\"radio\" name=\"96eedd18fc3bbd5cef5164686e0dce1a\" value=\"0.4\"> 0.4<br>", | |||
|
324 | " ", | |||
|
325 | "", | |||
|
326 | " <input type=\"radio\" name=\"96eedd18fc3bbd5cef5164686e0dce1a\" value=\"0.7\"> 0.7<br>", | |||
|
327 | " " | |||
|
328 | ], | |||
|
329 | "output_type": "display_data" | |||
|
330 | } | |||
|
331 | ], | |||
|
332 | "prompt_number": 13 | |||
|
333 | }, | |||
|
334 | { | |||
|
335 | "cell_type": "code", | |||
|
336 | "collapsed": true, | |||
|
337 | "input": [ | |||
|
338 | "" | |||
|
339 | ], | |||
|
340 | "language": "python", | |||
|
341 | "outputs": [], | |||
|
342 | "prompt_number": 13 | |||
|
343 | } | |||
|
344 | ] | |||
|
345 | } | |||
|
346 | ] | |||
|
347 | } No newline at end of file |
@@ -0,0 +1,20 b'' | |||||
|
1 | from nbconvert import ConverterNotebook | |||
|
2 | import nose.tools as nt | |||
|
3 | import os | |||
|
4 | ||||
|
5 | fname = 'tests/test.ipynb' | |||
|
6 | outbase1 = 'newtest1' | |||
|
7 | outbase2 = 'newtest2' | |||
|
8 | ||||
|
9 | def test_roundtrip(): | |||
|
10 | converter = ConverterNotebook(fname, outbase1) | |||
|
11 | converter.render() | |||
|
12 | ||||
|
13 | converter2 = ConverterNotebook(outbase1+'.ipynb', outbase2) | |||
|
14 | converter2.render() | |||
|
15 | ||||
|
16 | s1 = open(outbase1+'.ipynb', 'rb').read() | |||
|
17 | s2 = open(outbase2+'.ipynb', 'rb').read() | |||
|
18 | nt.assert_true(s1.replace(outbase1, outbase2) == s2) | |||
|
19 | os.remove(outbase1+'.ipynb') | |||
|
20 | os.remove(outbase2+'.ipynb') |
@@ -22,6 +22,9 b' import pprint' | |||||
22 | import re |
|
22 | import re | |
23 | import subprocess |
|
23 | import subprocess | |
24 | import sys |
|
24 | import sys | |
|
25 | import json | |||
|
26 | import copy | |||
|
27 | from shutil import rmtree | |||
25 |
|
28 | |||
26 | inkscape = 'inkscape' |
|
29 | inkscape = 'inkscape' | |
27 | if sys.platform == 'darwin': |
|
30 | if sys.platform == 'darwin': | |
@@ -34,6 +37,8 b' from IPython.external import argparse' | |||||
34 | from IPython.nbformat import current as nbformat |
|
37 | from IPython.nbformat import current as nbformat | |
35 | from IPython.utils.text import indent |
|
38 | from IPython.utils.text import indent | |
36 | from decorators import DocInherit |
|
39 | from decorators import DocInherit | |
|
40 | from IPython.nbformat.v3.nbjson import BytesEncoder | |||
|
41 | from IPython.utils import py3compat | |||
37 |
|
42 | |||
38 | #----------------------------------------------------------------------------- |
|
43 | #----------------------------------------------------------------------------- | |
39 | # Utility functions |
|
44 | # Utility functions | |
@@ -149,23 +154,26 b' class Converter(object):' | |||||
149 | os.mkdir(files_dir) |
|
154 | os.mkdir(files_dir) | |
150 | self.infile_root = infile_root |
|
155 | self.infile_root = infile_root | |
151 | self.files_dir = files_dir |
|
156 | self.files_dir = files_dir | |
|
157 | self.outbase = infile_root | |||
152 |
|
158 | |||
153 | def dispatch(self, cell_type): |
|
159 | def dispatch(self, cell_type): | |
154 | """return cell_type dependent render method, for example render_code |
|
160 | """return cell_type dependent render method, for example render_code | |
155 | """ |
|
161 | """ | |
156 | return getattr(self, 'render_' + cell_type, self.render_unknown) |
|
162 | return getattr(self, 'render_' + cell_type, self.render_unknown) | |
157 |
|
163 | |||
158 | def convert(self): |
|
164 | def convert(self, cell_separator='\n'): | |
159 | lines = [] |
|
165 | lines = [] | |
160 | lines.extend(self.optional_header()) |
|
166 | lines.extend(self.optional_header()) | |
|
167 | converted_cells = [] | |||
161 | for worksheet in self.nb.worksheets: |
|
168 | for worksheet in self.nb.worksheets: | |
162 | for cell in worksheet.cells: |
|
169 | for cell in worksheet.cells: | |
163 | #print(cell.cell_type) # dbg |
|
170 | #print(cell.cell_type) # dbg | |
164 | conv_fn = self.dispatch(cell.cell_type) |
|
171 | conv_fn = self.dispatch(cell.cell_type) | |
165 | if cell.cell_type in ('markdown', 'raw'): |
|
172 | if cell.cell_type in ('markdown', 'raw'): | |
166 | remove_fake_files_url(cell) |
|
173 | remove_fake_files_url(cell) | |
167 |
|
|
174 | converted_cells.append('\n'.join(conv_fn(cell))) | |
168 | lines.append(u'') |
|
175 | cell_lines = cell_separator.join(converted_cells).split('\n') | |
|
176 | lines.extend(cell_lines) | |||
169 | lines.extend(self.optional_footer()) |
|
177 | lines.extend(self.optional_footer()) | |
170 | return u'\n'.join(lines) |
|
178 | return u'\n'.join(lines) | |
171 |
|
179 | |||
@@ -180,11 +188,10 b' class Converter(object):' | |||||
180 | with open(self.infile) as f: |
|
188 | with open(self.infile) as f: | |
181 | self.nb = nbformat.read(f, 'json') |
|
189 | self.nb = nbformat.read(f, 'json') | |
182 |
|
190 | |||
183 |
def save(self, |
|
191 | def save(self, outfile=None, encoding=None): | |
184 | "read and parse notebook into self.nb" |
|
192 | "read and parse notebook into self.nb" | |
185 |
if |
|
193 | if outfile is None: | |
186 | outfile = os.path.basename(self.infile) |
|
194 | outfile = self.outbase + '.' + self.extension | |
187 | outfile = os.path.splitext(outfile)[0] + '.' + self.extension |
|
|||
188 | if encoding is None: |
|
195 | if encoding is None: | |
189 | encoding = self.default_encoding |
|
196 | encoding = self.default_encoding | |
190 | with open(outfile, 'w') as f: |
|
197 | with open(outfile, 'w') as f: | |
@@ -642,6 +649,75 b' class ConverterLaTeX(Converter):' | |||||
642 | return [r'{\vspace{5mm}\bf WARNING:: unknown cell:}'] + \ |
|
649 | return [r'{\vspace{5mm}\bf WARNING:: unknown cell:}'] + \ | |
643 | self.in_env('verbatim', data) |
|
650 | self.in_env('verbatim', data) | |
644 |
|
651 | |||
|
652 | ||||
|
653 | class ConverterNotebook(Converter): | |||
|
654 | """ | |||
|
655 | A converter that is essentially a null-op. | |||
|
656 | This exists so it can be subclassed | |||
|
657 | for custom handlers of .ipynb files | |||
|
658 | that create new .ipynb files. | |||
|
659 | ||||
|
660 | What distinguishes this from JSONWriter is that | |||
|
661 | subclasses can specify what to do with each type of cell. | |||
|
662 | ||||
|
663 | Writes out a notebook file. | |||
|
664 | ||||
|
665 | """ | |||
|
666 | extension = 'ipynb' | |||
|
667 | ||||
|
668 | def __init__(self, infile, outbase): | |||
|
669 | Converter.__init__(self, infile) | |||
|
670 | self.outbase = outbase | |||
|
671 | rmtree(self.files_dir) | |||
|
672 | ||||
|
673 | def convert(self): | |||
|
674 | return json.dumps(json.loads(Converter.convert(self, ',')), indent=1, sort_keys=True) | |||
|
675 | ||||
|
676 | def optional_header(self): | |||
|
677 | s = \ | |||
|
678 | """{ | |||
|
679 | "metadata": { | |||
|
680 | "name": "%(name)s" | |||
|
681 | }, | |||
|
682 | "nbformat": 3, | |||
|
683 | "worksheets": [ | |||
|
684 | { | |||
|
685 | "cells": [""" % {'name':self.outbase} | |||
|
686 | ||||
|
687 | return s.split('\n') | |||
|
688 | ||||
|
689 | def optional_footer(self): | |||
|
690 | s = \ | |||
|
691 | """] | |||
|
692 | } | |||
|
693 | ] | |||
|
694 | }""" | |||
|
695 | return s.split('\n') | |||
|
696 | ||||
|
697 | @DocInherit | |||
|
698 | def render_heading(self, cell): | |||
|
699 | return cell_to_lines(cell) | |||
|
700 | ||||
|
701 | @DocInherit | |||
|
702 | def render_code(self, cell): | |||
|
703 | return cell_to_lines(cell) | |||
|
704 | ||||
|
705 | @DocInherit | |||
|
706 | def render_markdown(self, cell): | |||
|
707 | return cell_to_lines(cell) | |||
|
708 | ||||
|
709 | @DocInherit | |||
|
710 | def render_raw(self, cell): | |||
|
711 | return cell_to_lines(cell) | |||
|
712 | ||||
|
713 | @DocInherit | |||
|
714 | def render_pyout(self, output): | |||
|
715 | return cell_to_lines(cell) | |||
|
716 | ||||
|
717 | @DocInherit | |||
|
718 | def render_pyerr(self, output): | |||
|
719 | return cell_to_lines(cell) | |||
|
720 | ||||
645 | #----------------------------------------------------------------------------- |
|
721 | #----------------------------------------------------------------------------- | |
646 | # Standalone conversion functions |
|
722 | # Standalone conversion functions | |
647 | #----------------------------------------------------------------------------- |
|
723 | #----------------------------------------------------------------------------- | |
@@ -694,6 +770,51 b' def rst2simplehtml(infile):' | |||||
694 |
|
770 | |||
695 | return newfname |
|
771 | return newfname | |
696 |
|
772 | |||
|
773 | #----------------------------------------------------------------------------- | |||
|
774 | # Cell-level functions -- similar to IPython.nbformat.v3.rwbase functions | |||
|
775 | # but at cell level instead of whole notebook level | |||
|
776 | #----------------------------------------------------------------------------- | |||
|
777 | ||||
|
778 | def writes_cell(cell, **kwargs): | |||
|
779 | kwargs['cls'] = BytesEncoder | |||
|
780 | kwargs['indent'] = 3 | |||
|
781 | kwargs['sort_keys'] = True | |||
|
782 | kwargs['separators'] = (',',': ') | |||
|
783 | if kwargs.pop('split_lines', True): | |||
|
784 | cell = split_lines_cell(copy.deepcopy(cell)) | |||
|
785 | return py3compat.str_to_unicode(json.dumps(cell, **kwargs), 'utf-8') | |||
|
786 | ||||
|
787 | _multiline_outputs = ['text', 'html', 'svg', 'latex', 'javascript', 'json'] | |||
|
788 | def split_lines_cell(cell): | |||
|
789 | """ | |||
|
790 | Split lines within a cell as in | |||
|
791 | IPython.nbformat.v3.rwbase.split_lines | |||
|
792 | ||||
|
793 | """ | |||
|
794 | if cell.cell_type == 'code': | |||
|
795 | if 'input' in cell and isinstance(cell.input, basestring): | |||
|
796 | cell.input = (cell.input + '\n').splitlines() | |||
|
797 | for output in cell.outputs: | |||
|
798 | for key in _multiline_outputs: | |||
|
799 | item = output.get(key, None) | |||
|
800 | if isinstance(item, basestring): | |||
|
801 | output[key] = (item + '\n').splitlines() | |||
|
802 | else: # text, heading cell | |||
|
803 | for key in ['source', 'rendered']: | |||
|
804 | item = cell.get(key, None) | |||
|
805 | if isinstance(item, basestring): | |||
|
806 | cell[key] = (item + '\n').splitlines() | |||
|
807 | return cell | |||
|
808 | ||||
|
809 | def cell_to_lines(cell): | |||
|
810 | ''' | |||
|
811 | Write a cell to json, returning the split lines. | |||
|
812 | ''' | |||
|
813 | split_lines_cell(cell) | |||
|
814 | s = writes_cell(cell).strip() | |||
|
815 | return s.split('\n') | |||
|
816 | ||||
|
817 | ||||
697 | known_formats = "rst (default), html, quick-html, latex" |
|
818 | known_formats = "rst (default), html, quick-html, latex" | |
698 |
|
819 | |||
699 | def main(infile, format='rst'): |
|
820 | def main(infile, format='rst'): |
1 | NO CONTENT: file was removed |
|
NO CONTENT: file was removed |
General Comments 0
You need to be logged in to leave comments.
Login now