This diff has been collapsed as it changes many lines, (1028 lines changed)
Show them
Hide them
|
|
@@
-1,7
+1,7
b''
|
|
1
|
{
|
|
1
|
{
|
|
2
|
"metadata": {
|
|
2
|
"metadata": {
|
|
3
|
"name": "",
|
|
3
|
"name": "",
|
|
4
|
"signature": "sha256:180c055843c21d9b1ac1c9ab78517b077ff5d6526a847739908408866ac449b2"
|
|
4
|
"signature": "sha256:b4d7c6b90e8b3e2ab460015611518e5d598dea6903db56a26dc8a81e5d1f5722"
|
|
5
|
},
|
|
5
|
},
|
|
6
|
"nbformat": 3,
|
|
6
|
"nbformat": 3,
|
|
7
|
"nbformat_minor": 0,
|
|
7
|
"nbformat_minor": 0,
|
|
@@
-13,14
+13,14
b''
|
|
13
|
"level": 1,
|
|
13
|
"level": 1,
|
|
14
|
"metadata": {},
|
|
14
|
"metadata": {},
|
|
15
|
"source": [
|
|
15
|
"source": [
|
|
16
|
"IPython's Rich Display System"
|
|
16
|
"Rich Output"
|
|
17
|
]
|
|
17
|
]
|
|
18
|
},
|
|
18
|
},
|
|
19
|
{
|
|
19
|
{
|
|
20
|
"cell_type": "markdown",
|
|
20
|
"cell_type": "markdown",
|
|
21
|
"metadata": {},
|
|
21
|
"metadata": {},
|
|
22
|
"source": [
|
|
22
|
"source": [
|
|
23
|
"In Python, objects can declare their textual representation using the `__repr__` method. IPython expands on this idea and allows objects to declare other, richer representations including:\n",
|
|
23
|
"In Python, objects can declare their textual representation using the `__repr__` method. IPython expands on this idea and allows objects to declare other, rich representations including:\n",
|
|
24
|
"\n",
|
|
24
|
"\n",
|
|
25
|
"* HTML\n",
|
|
25
|
"* HTML\n",
|
|
26
|
"* JSON\n",
|
|
26
|
"* JSON\n",
|
|
@@
-56,7
+56,7
b''
|
|
56
|
"language": "python",
|
|
56
|
"language": "python",
|
|
57
|
"metadata": {},
|
|
57
|
"metadata": {},
|
|
58
|
"outputs": [],
|
|
58
|
"outputs": [],
|
|
59
|
"prompt_number": 1
|
|
59
|
"prompt_number": 3
|
|
60
|
},
|
|
60
|
},
|
|
61
|
{
|
|
61
|
{
|
|
62
|
"cell_type": "markdown",
|
|
62
|
"cell_type": "markdown",
|
|
@@
-75,12
+75,15
b''
|
|
75
|
"cell_type": "code",
|
|
75
|
"cell_type": "code",
|
|
76
|
"collapsed": false,
|
|
76
|
"collapsed": false,
|
|
77
|
"input": [
|
|
77
|
"input": [
|
|
78
|
"from IPython.display import display_pretty, display_html, display_jpeg, display_png, display_json, display_latex, display_svg"
|
|
78
|
"from IPython.display import (\n",
|
|
|
|
|
79
|
" display_pretty, display_html, display_jpeg,\n",
|
|
|
|
|
80
|
" display_png, display_json, display_latex, display_svg\n",
|
|
|
|
|
81
|
")"
|
|
79
|
],
|
|
82
|
],
|
|
80
|
"language": "python",
|
|
83
|
"language": "python",
|
|
81
|
"metadata": {},
|
|
84
|
"metadata": {},
|
|
82
|
"outputs": [],
|
|
85
|
"outputs": [],
|
|
83
|
"prompt_number": 2
|
|
86
|
"prompt_number": 4
|
|
84
|
},
|
|
87
|
},
|
|
85
|
{
|
|
88
|
{
|
|
86
|
"cell_type": "heading",
|
|
89
|
"cell_type": "heading",
|
|
@@
-106,7
+109,7
b''
|
|
106
|
"language": "python",
|
|
109
|
"language": "python",
|
|
107
|
"metadata": {},
|
|
110
|
"metadata": {},
|
|
108
|
"outputs": [],
|
|
111
|
"outputs": [],
|
|
109
|
"prompt_number": 3
|
|
112
|
"prompt_number": 5
|
|
110
|
},
|
|
113
|
},
|
|
111
|
{
|
|
114
|
{
|
|
112
|
"cell_type": "code",
|
|
115
|
"cell_type": "code",
|
|
@@
-117,7
+120,7
b''
|
|
117
|
"language": "python",
|
|
120
|
"language": "python",
|
|
118
|
"metadata": {},
|
|
121
|
"metadata": {},
|
|
119
|
"outputs": [],
|
|
122
|
"outputs": [],
|
|
120
|
"prompt_number": 5
|
|
123
|
"prompt_number": 6
|
|
121
|
},
|
|
124
|
},
|
|
122
|
{
|
|
125
|
{
|
|
123
|
"cell_type": "markdown",
|
|
126
|
"cell_type": "markdown",
|
|
@@
-139,19
+142,19
b''
|
|
139
|
"metadata": {},
|
|
142
|
"metadata": {},
|
|
140
|
"output_type": "pyout",
|
|
143
|
"output_type": "pyout",
|
|
141
|
"png": "iVBORw0KGgoAAAANSUhEUgAAAggAAABDCAYAAAD5/P3lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAH3AAAB9wBYvxo6AAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURB\nVHic7Z15uBxF1bjfugkJhCWBsCSAJGACNg4QCI3RT1lEAVE+UEBNOmwCDcjHT1wQgU+WD3dFxA1o\nCAikAZFFVlnCjizpsCUjHQjBIAkQlpCFJGS79fvjdGf69vTsc2fuza33eeaZmeqq6jM9vZw6dc4p\nBUwC+tE+fqW1fqmRDpRSHjCggS40sBxYDCxKvL8KzNBaL21EPoPB0DPIWVY/4NlE0ffzYfhgu+Qx\nGHoy/YFjaK+CcB3QkIIAHAWs3wRZsuhUSs0CXgQeBm7UWi/spn0Z+jA5yxpEfYruqnwYllRic5a1\nMaWv8U5gaT4M19Sx396IAnZLfB/SLkEMhp5O/3YL0AvoAHaKXl8HLlZK3QZcpbWe0lbJDOsaHuDU\n0e4u4JAy2wPk/C1JzrKWArOQ0fUtwH35MOysQxaDwbCO0NFuAXoh6wPjgQeUUvcqpUa0WyCDoQls\nCIwBjgfuAV7KWdY+7RWpmJxlXZezrEdylvXxdstiMKzrGAtCYxwI/EspdZbW+g/tFsbQ67kQuBHY\nFNgseh9FV6vCbUAeWBC9PgBeq2EfS6J2MQOBrRDTe5KdgAdzlvW1fBjeUUP/3UbOsoYBE6OvG7VT\nFoOhL9Af+BUwFLkZpV+DaY6V4UPkRpb1+ncT+m8nGwK/V0oN01qf025hDL2XfBi+DLycLMtZVo6u\nCsKfGnSq8/NheEpqHwOBEcDBwJnAsGhTP2ByzrJG5cPwnQb22Sy+0G4BDIa+RH+t9dmlNiqlFKIk\nJJWGi+jq5JPmq8BbJJQArfXqpkncczlbKbVQa/3rdgtiMNRCPgxXAK8Ar+Qs63LgXmDvaPPGwPeA\nH7VJvCRfbLcABkNfouwUg9ZaAwuj178BlFLvVejzgR4WFviM1npcuQpKqf6IyXIjxLS7GzAWuUnu\nXsO+fqWUellr3ZBJdq/jr9+BDn1uve07O9Rz0y6f8PtGZGgWe53oT6SBkZ/q1/nHZy47aloTRTKU\nIR+Gy3OWNR6Zxtg0Kv4KRkEwGPocxgcBiCwcsSI0F5iOhF+ilPok8C3gVGS+thK/VErdrbWuO2ys\ns/+aLZTuOKbe9krrIUCPUBB0B+PQ1P1bdKe6EzAKQgvJh+GbOct6gkJkxM45y+qXDIWMHBhjBWJe\nPgyDWvaRs6zPIVObAG/nw/DpEvUGAp8E9gGGJzbtl7Os7cvs4skqp0V0Yl8jgcOBjyMDhbmIZeWl\nfBg+UUVfReQsayhwELAnsAXi6/E28BxwTz4MP6iyn92RaSCA+/NhuCwqXx9R4MYhU0MfRTK/AjyW\nD8MFGd0ZDFVhFIQKaK3/BXxfKXUlklTq0xWafAI4Driyu2UzGLqRlygoCArYHJif2H4gcFb0+Z2c\nZW2bD8NV1XScs6yNgH8g/jsAPwCeTmzfFPgjYsnbiez71MUVdnMQcF8V4nyUs6whwB8QX4+0s2Ys\n0yPAt/NhGFbRZ/wbzgO+DaxXotqqnGX9GbigCkXhf5CBCsDngYdzljURGQhsWqLN+znL+iFwdT4M\ndYk6BkNJTJhjlWitQ2Bf4P4qqv848t8wGHor6Yd9+ruHJFkC2BI4rIa+D6egHKwmstYlGAxMQCwH\nrRjEPI5ER5S7ZvcFXsxZ1phKneUsawSi8HyH0soB0bbvAM9Ebaplt5xlnYkct1LKAYiFZhJwSQ19\nGwxrMRaEGtBar1RKfRX4JxIzXortou3PN1mE+YgJsSwaeoLHOQCqUy3QSr9eqZ6G/gq2aYVMhqrY\nOfF5FeJwvJZ8GM7JWdY/gC9HRS7wtyr7Pjrx+e6MqYC3KLbU7Qhck/h+FJIKvRRVjfSREXicU8EH\npgAvIIqLBZwGfC7avl5Uf29KkLOsTZCMq8npj9sQx89no37HIlaAODplNPBIzrJ2z4dhNVlaT0HC\nXwFmIkrAC4if2PaIz8/3KCgn385Z1pX5MJxeRd8Gw1qMglAjWutlSqnTgUcqVP0SzVYQtP5mcMXE\nSvvtUUy9YsK5QEWHy7EnTB6lOtSsFohkqEDOsgYAdqJoagkT9Z8pKAj75yzr4/kwnF2h748ho/GY\nq9J1oqiKLj4JOctKK8Yz8mH4Yrl9VcnHkXVYTsyHoZ8WJWdZNyPThbF5/3M5yzowH4alpi9+T0E5\nWA18Nx+Gf0zVeRG4KmdZ90R9bwCMRKwyX69C5h2j91uA4/JhuCSxbTYwJWdZtwNPIFbifsAFSISZ\nwVA1ZoqhDrTWjyIjjXIc3ApZDIZu4ELgY4nvt5Wody8wJ/qsgBOr6HsihfvOfCRrY7v5dYZyAECk\nGP0ISEZmZYZ55yxrB8SyEXNxhnKQ7Pt64H8TRUfmLGuXKmWeC4xPKQfJvp9CLCJlZTYYymEUhPq5\ntcL2XVsihcHQJHKWtU3Osi5GnAZj5iKWgiKitRouTxQdl7OscnPu0HV64dp8GLY7R8pyxEGxJPkw\nfBcZ9ceUSvN8IoV76upK/UZcgawcG3NKqYopfleFU+gDic/b5SzLWIwNNWFOmPqp5CG9sVJqPa11\nVZ7dBkOL2D1nWcmcBkOR8MFtgM/QdTXJZcCR+TBcXqa/SYj5egAFZ8VMX4ScZe2FRPnEXF2z9M3n\n3nwYVsrtAmK6/0z0uVR4ZXLtivvzYfhGpU7zYbgkZ1k3ACdHRQdWIQsUO3ZmkUzB3Q/xjaolLbeh\nj2MUhDrRWr+mlFpJ+eV5hyIxz4YWs98Fj/Rf8uZbozo0/ZYt7D8rf9ORK9stUw/hU9GrEnMAp1R+\ngph8GL4bzdNPiIpOorSzYtJ68FS1IYPdTLWp3hcnPm+Q3pizrA7E+TCmFn+aZN0dcpY1LB+G5e4b\ny6rM8bA49X39GmQyGMwUQ4NUGnkMrbDd0A3sdeLk4z6cN+89pTtDTWd+gyErF+7pTv5eu+XqJbyK\nTDHsmg/DJ6tsc2ni8+dzljUqXSGaevhmoqjIObFNVBzlV8kQug4W5tbQNl13WGatAv+poW+DoW6M\nBaExPgC2LrO9nHWhpSilDqI4NPMhrfXUJvS9M/DfqeJXtdY3N9p3rex50uQ9lFKT6BrTvoFCXbTX\nyZNfmnrZxHtbLVMP4xng74nvK5DzeD7wfIWRayb5MHwiZ1kzgF0oOCuemar2ZQoK8zLgr7Xup5t4\ns0n9DEl9b0RBSPeV5q0a+jYY6sYoCI1RacnZ91siRXUMAH6eKnsYicdulDOAY1NlpzWh35pRqG9R\nIuGN7uw4AfG878s8nw/DX3RDv5dScGY8NmdZP86HYXJaJzm9cHMp7/s2UHdK9BTpKaxBNbRN163k\nt9Rux05DH8FMMTTGZhW2v9sSKarjbopNk/sqpUY30qlSahCSGS/JCuD6RvqtF6UpMm/HaHTJbYaG\nmQzED/0umRVzlrUZhXwJ0HOmF5pJOlXyxzJrZbNt6rtZP8HQIzAKQp0opTZAlsItxTKtdTnv75YS\nLR7lpYqrjV0vx2EUH4fbtdZtucnpMqOrDjPy6jYii8DkRFHSYnAEhem22cBjrZKrVeTDcCldTf/p\nh345ksrEGprnF2EwNIRREOrnMxW2z2uJFLVxJcXmy2OVUo34ShydUda+EaIq7T2u0SZTY/eSdFY8\nMGdZm0efk86J6/LCQUnFp5pIkZjkcvQz8mH4YZPkMRgawigI9VNp7v7BlkhRA1rr+RQneNqC2hba\nWYtSajiS9z3JXLomaGktq/VllLIUdKqSWe0MjZMPwxlIel8Q/6Zv5CxrGIX8AJ10XU+hFtIRQ+UW\nKWoXyYyTu+Qsa79KDXKWNRpJyx5zZ9OlMhjqxCgIdaCU6g98o0K1npBCNotLM8rcOvuagCRgSXKN\n1rozq3IrCCZNfFkrfRjotWsCaJinUBODK51/tkuuPkTy/DoYOIDCfeb+fBjW4t2/lqhdcmRdbUri\nVnILXS2HZ1WRvfAcCk61K4A/dYdgBkM9GAWhPr5F6XSrIBf6Qy2SpSaidSReShV/XilV7veUIj29\noOkB2fGmXT7x7sCbOGpFf7VZx4A1m0/znG2nehMyc+0bms7NFJxzxwH7J7Y1OvWUPG9/mLOsLRvs\nr6lEaaOT0TtfBB5ITLWsJWdZg3KWdRNwTKL4wnwYzu9mMQ2GqjFhjjWilBqBpJYtx51a66UV6rST\nS+maJz52VvxRdvVilFK7UbzexGNa67Kr+bWS6X+ekPYs79HkLGt34JOI+Xyz6D2d1vfMnGUdini6\nL0C851/Oh2HD+SyaQT4MV+YsaxJyLm1Gwf9gAXBHg93/JNHHtsArOcuajCztPBDYCkkytBXg5sOw\n5QmF8mF4W86yLgK+HxXtC8zKWVaALMm8CslHsicS7RFzL8VhyAZDWzEKQg0opbYE7qd8prPVdF2h\nrSdyLfALYMNE2XFKqR/XsHbEURll62L4Wiv5PuBUqPPF6JXkLuCQbpGoPi4HfohYKGMHWD9axrlu\n8mF4Z7RuwfioaDBwaonqRemQW0U+DH+Qs6xFwHnIFNwQsv+3mMnA8dHiVwZDj8FMMVSJUuow4DkK\na7GX4gqt9cstEKlutNaL6boULMho5tBq2iul+lH8IFuCmJcNfZx8GM6hOCFVU5THfBhOQHxfylkH\n3gY+asb+6iUfhhcCewC3l5BlFbJk/P75MDwqlVTKYOgRKK1rizhSSk2h67ximo1abV5XSi2n9EIk\nz2itx5XYVqnfQcjI7DiqW2XtfeCTUbRA3ex50nWfUrqjeJEcrfcLrpj4SCN9xyilxgDPp4of0Fof\nUEXbg4B/pIqv1FrXnVNh7AmTR3V0qIwwRH1E4E28pd5+De0hZ1m/Bb4bfX0+H4Z7dMM+hgGjkDwC\nS5FpjFk9bR4/Z1mDkGmF4VHR20g4Y3oxJYOhR9EXphg6lFLlVjFbH0mZvDGwCTAayCFe0ntTOZ1y\nzDLgkEaVg1ahtX5BKfUU8OlE8ReUUjtorSstCduzch8YehSR5/6ERFG3nBvRuhE9frXUfBguA6pd\n+Mpg6DH0BQXBBro7o+Ea4Bta66e6eT/N5lK6KggKOAE4u1QDpdTGFOdNmNkLf7uh+zgYcRQEMa+3\nJe22wWBoDOOD0DhLgYla67vaLUgd3ETxglLHRXkeSnEExQ5gbQ9tNPQokis5TsqHoVlbwGDohRgF\noTECYHet9Y3tFqQetNYrKDb/DqN46eYk6emF1UhUhMFAzrImUEhDvgr4VRvFMRgMDWAUhPpYAvwf\n8Bmte31+/8uQBEdJMjMrKqW2o5A2N+YfWusePw9s6F5yltWRs6zxwKRE8RXtyEVgMBiaQ1/wQWgm\neWTe/jqtdU9Zz74htNavKaXuAw5KFB+glBqptZ6Tqj6RQlrYGDO90AfJWdY5wNeQFQwHIAmetk5U\neZFCsiCDwdALMQpCed5AphEC4NF12BHvUroqCAoJ7TwvVS+d++BdJEmPoe+xKRLnn0UeODwfhm3N\nRWAwGBqjLygIbwN/LbNdI1MGH6ReL/eWkMUmcDeSeGa7RNlRSqnzdZQoQym1C7Bzqt11NWReNKxb\nzEMU6GHAesBiYCaSLOviaF0Cg8HQi+kLCsLrWuvT2y1ET0ZrvUYp5SG57mO2Bz4LPB59/2ZRQ5P7\noM+SD8OLgYvbLYfBYOg+jJOiIeZKxOs8STJiIb28daC1/lf3imQwGAyGdmEUBAMA0XTKraniI5VS\nA6O0zOnloI31wGAwGNZhjIJgSHJp6vtgJBNlehW65cANLZHIYDAYDG3BKAiGtWitHwVeShV/muLF\nuW7VWi9qjVQGg8FgaAd9wUnRUBuXAn9IfN8f+FyqTo/OfbDnSX8brDpXnqEUe2ropzQvdtDx66ev\nGN9XolIMPQDb9T8LrBd4zsPtlsXQe7Bd/0BgQeA5QbtlMQqCIc21wC+ADaPv6WWu5wAPtVKgWtjt\n6Os2XG/9jhdQjIzTQ2rFF9bQecy4E2/I9UQlwXb9LYDDK1R7K/Cc21shj6FxbNcfDjwGKNv1Rwae\n83q7ZWo2tusPBb6ELGW9BbAICX99Gngs8Jx0hlZDBWzXHwvcC6ywXX9o4DlL2ymPURAMXdBaL1ZK\n+ZRItwz8Jc6N0BMZMFB9GxiZsWnzTjrPAH7QWomqYgTF/h9pngC6RUGwXf+XwC2B50ztjv57M7br\nXwJMCjxneo1NP0SWgAfJq7LOYLv+esAFwOkUL9wWM912/d0Dz+lsnWQ9A9v1BwEXAT8PPKfWVOML\nkPVt3kNWQm0rxgfBkEWph5UG/tJCOWqnQ40ttUkrvWcrRamWwHOmAZsguSfGAi9Hmy5AUhgPAz7f\nHfu2XX8k8ENgx+7ovzdju/4uwP9D/peaCDxnCbANsF3gOYubLVu7sF1/AHAHcBaiHDwI/C+ywNsE\n4KfA68BdfVE5iNgbOBmxqtRE4Dn/BoYDnwg8Z02zBasVY0EwFKG1fkEp9RTioJjkIa11zzaVarYq\nvVFt2TpBaiN6oCwB5tiu/2FUPCvwnLTTaLM5oJv77800dGwCz1kXHXkvRNKydwI/Cjzn1+kKtuuf\ni2TX7Ks0et681yxBGsUoCIZSBBQrCL0h98EbdW7rddiuPwoYFJu/bdffFNgL2BZ4DZgWKR5ZbRWS\n2+KIqGiE7fpjUtXmlrtZRdaHscBAYDowM/CckimWbdffFfgw8JzXou/9kfUccojV5MXAcz4s0XYw\nsCsymu8PzAVmBJ7zVqn9pdoPRVKF7wSsAN4EgqzRve36HcAoZDEqgO0zjs3rged8kGo3gOJ05ADT\ns0bTkan+k9HXGaVGjNFxykVf81nH2Hb9Ich/MRJJeT291H9fL7brj6CwANfPspQDgOi3rijRx/rI\nb8kB7wPPBZ4zL6Ne/JvfCDzn/WhufhvgvsBzVkR1dgN2AR4JPGduom38P7wXeM7c6FzfCfgU4iMR\nlFLebNfPIefXzMBzikz8tusPQyx676bljmTeCfhyVLST7frp//TV9Dluu/6GwOhUvTWB58zIkjFq\nsykyNfmfwHMW2K7fLzoWeyDTFPnAc14t1T7qYwNgT+Rc/wi5ZyT/N20UBEMRSqn+wNdTxQspTqTU\n41BaP6yVOipzGzzSYnG6m6uBz0YPv7OQm3dytc35tuuflHZutF3/BuArwEaJ4p/QNdU2wGnAH9M7\njRSTG5CbS5LQdv2joymTLKYBzwHjbNc/DomW2TCxfbXt+sMCz3k/sa8RwM+Qh/X6qf5W2q4/CTit\nzMN1OPB7CopQktW2658YeM5fEvXvRKZzBiXqZaWUPha4JlW2NfB8Rt0hiANfmjWIuf5jiLPfvVm/\nAfmvbgNmB54zKrkheuD+Bjg11Wap7fpnBJ5TybelFk4E+iE+Fb+ptbHt+scg//nGqfJbgeMDz1mY\nKN4UOZYX2q7fSWHhuNdt198ZOBc4MypbbLv+5wPPeTb6PiJqe5ft+ichx3WXRN8rbdc/OfCcrGis\nR4ChiHKSlSn2f4BzkOvitMRvCKJ9DEzU9TPafwGZlkkyBvExSrKUrtdnmoOBycA5tus/iCyat3li\nu7Zd/0rk2ihS1mzXPwT4E3LulaLTKAiGLL6EaMlJbtBat91pphIjFw289t9DVh4N7Jva9EKnWnpJ\nG0RqBXcjCa08YCqy/PJE4L8A33b9HQPPeTNR/0bgvujzGchoywPSq5U+nd6R7fp7IDfRjYDrEE99\nDeyHrPb5lO364xI36zTb2q4/AUnt/SSyLHQHMvJZklQOIhYChyCLid2FWBoGIQrDfwGnAP8Gskzd\nVvSbBgPvIMdpJjLHuxdikXgg1ewa4Jbo84+BHRAFI/3gT9/QQZa+/iIy9zwccVQrSeA5nbbrX4s8\ncI6htIIQK7xdFJLIAvEEYjmYBlyP/E4LeXj92Xb94YHnnFtOjhrYJ3q/vtbpE9v1fwqcjYxUL0GO\n51bI//g1YIzt+mNTSgJIivfNEIXgBOThfx0ySv8Nct7vgzgfj0+1HQf8E5iPKM/vI+vLHA9cZbs+\nJZSEevgDBZ++3yIKzgVI1FeSrCnD6ci0zebAJxCfjmoZjxzXPPBL5By0gW8jCt3sqHwtkYL1N0RB\n/R2ymOG2yHE5CLFAHAu8ahQEQxbfyijrDdML3HTTkWvUBRfsb88bPb6TzjEK+oHKL184YHL+Jmdl\nu+XrJsYBhwaec0dcYLu+hzw0dkcu/AvjbUmLgu36DqIgPB54zuQq9nURMgI8LjnyBibZrj8z2s/l\ntuvvVcJJbWvkXDoi8JzbKu0s8JxFtut/IqXgAPzOdv0/IiPnb5KhICAjpMGIEjAhPV1iu35HWsbA\nc25ObD8ZURAeqibENBqpTYnark8FBSHiakRBOMx2/cHpB29kSv4KooSlLRYnIcrBHcBXk7/Fdv0b\ngReAM23Xvz7wnJlVyFIJK3qfXUsj2/U/jiiiq4B9ktEytuv/Fhlpfx2xEnw31XxHYLfAc6bbrv8k\ncny/Bnwz8Jy/2q6/DTLd9F8Zu94ceXAeEHhOvM7MNbbrT0UU4vNs15+c2FY3gedcm/hNP0EUhDvL\nKMrJtkuIFPboWNWiIOSAO4HDE7/Dj67FSxEn21+m2pyOWDpuCDxn7fG2Xf8e4F1EIVsceE5oohgM\nXVBKjURuSEke11qXMhv3OPR553VO9Sb407yJZwTexO8FnnNV/qYj11XlAOCfSeUA1s4D/y36mp7f\nrAvb9fdGLDMzU8pBzMXIg2wsMhLKQiFhgxWVg5gM5SDm+uh9VHqD7fr7IlaNFcAJWb4UPcHLPvCc\n2YgVZn3gyIwq30AsQg8lQ+aiefUfR1/PzlB08sD9Udusfmsi2t+Q6GutjspnIE6L16dDaSN/irMR\np8dTbddPOxK/nwgxTZr8747e30SsEkNL7PvXGQrAVYgvwggK/gK9mXMyfuON0fvWkY9Dkp2i97uT\nhYHnLKNgURsDxknRUMz5FJ8XP22DHIbqSc9pxsSOW8ObtJ89ovdXbNcvpQC8j4zcdiTbnAoy4q2b\n6Ia3CYV5/Y0zqsXOf4/WEYveaq5GQuOOQaZekhydqJNkW2BLZF2UzhL/R+xE2XAIa+A52nb9lUho\nY63hd7GD5d1ZGwPPmW27/iuIUrkLXc/n9xP13rZd/yNgVezoF8n1NjAyyyKETGGl97fGdv1/IlaL\n3h7e+06WM2PgOQtt11+GTMcNo6vVJ1aWsyK+4nvFQjAKgiGBUmoshfnOmGe11vdl1Tf0GOaUKI9v\nlqrE9lqJb6b/Hb3KsU2Zba/VslPb9bdDfA0ORLz0N62iWWxVqMkc3iZuRuawP2u7/g6JKI9RSCTR\nYoodhOP/YgNKK2Ix2zZJzjnINMN2NbaL/4uiaIUE/0EUhB3pqiCkMwl2IscjXZZFJ/B2iW1xRtWR\nZWTqDcwps63U9f8Q0TSN7fp/iK0PtuvviPjmrCHyR1qrICilNkTmHjZDLsDke/JzOtwnzY1KqXcR\nR4cFiBab9XlRT87I19dQSo1GNPz0tJOxHvR8mhrOVobB0XuAOBiWo1zmwaqdXW3X3x+4BzGVv4SM\npN9AnPEg21McxMIArTs2dRN4zoe26/8NOA6xGJwfbYqV9b8GnrM81Sz+Lz5A0qOXo2y4Ww3MoT4F\nIY4+KTfNF58TaXN4VthstVNDitLKcdxvOjKmEj0tv0M953fs87E3Eul0B2JliBflOzfwnFcA+iul\n5iEmwQFNEBaK569L0amUWggcqrXO8gg2FKHG2CdW4Uem9XvBlUflu7RUaiByU3lPa92ZKN8cSav8\nfUQBTHKr1rrqueIsxp18/eg1azrLjSYB6NfRsY3G6Is9nDjDYxh4zundvbMotvtm5N50duA5P09t\nT0faJIkfirU+zNrF1YiC4FBQECZE73/JqB//F+u14r+ImIVEOB1iu/6ZNfhwzEamp7YuU2e7RN1m\noZBnW5YVIfZ1qNWfotw51yuIph++hET0bAkcikwpTAEuCjxnSly3PzIP0a8NcnYgD6SBlSoaIhQX\nV2UtVup24LBU6S7IyG+NUuodZP52awojrTSvIjeshlij9XdQKh2jXYRRDtpGfOCruQfEpmzbdn0V\ndP9iPLsgjnEryI67Lzd/PCt6/5Tt+v3LJXAqQ/z7ut2ZO/Ccx23XfxUYZbt+7D8xCngl8Jwsa80s\nZBS8ke36O7cg4ybA5UgegJ0QE/XN5auvZRaiIMQRF12wXX8TCv9ls6eERpOtIMR+EXNS5YsRh8dS\nTo/V+CzUck21i6uR5++4wHNeKFXJRDH0PfoR5fqmtHKwDDhCa73O5JA3lCSeF04v6Z3FPRTMzBO7\nS6AE8Q12PbomgYn5Xpm29yMPhu2RUK96iKMn9q6zfa38JXo/NHoly7oQeM5K4Iro60+jKINuJVJC\nYu/439uuX805A4VkWyfbrp+V/MdFnOmeCmpfFKsSRYMc2/U/DeyG3OfSjpOx5WmfVHmcuXFcFfus\n5ZpqObbrb45EtswqpxyAcVI0FDMbOFxrXeT9a+heopvnEArzolvashT0wmbEapdgGpIU5XDb9R9F\nYqrXQyyL8wPPeTeuGHjOMtv1T0VuqldH6W//jigNmyHOcAcBgwPPcZog20xkRLcJ8DPb9S9CRqM7\nI7kDvoDE1hfdxwLPWWy7/plI7oCLbNffHXm4zUQeRtsjGRP/EXhOKSfcABkpj49i5+9G/putgHmB\n5yxIN4iSF21C14V6Rtiu/yYSW15uHv4a4P8oKAedlPcvOAv4KmItfCTKKfAS8v8NR1ILHwnsl5GA\nqF7ORdYaGA48HGWyfBqYgViDRwCfQR72PkDgOU9E2TvHI4m0TgeeRczb30DyH2iKcyA0ymrgWNv1\nFyDK1NvIQ3tStN3LCH+9HUl29UPb9echFo8BUbtLEKfJtJ9EmgA59ifbrj8bCR3cGDlvZqdTLcPa\n9NCbUMhs2GFLKvPFSAKxZl7/CxEL8pgoA+QMxD+kE3HenAHcHnjOGmNB6Dt8iGjHWSFKK4HHkcQr\nOxvloLXYrr+77fqrEIejNyiE6P0WccZbabv+lFLtG+Ry5AY/BHkYfRDtR9M79QAAA3FJREFUcwYS\nNdCFwHPuQR6a7wHfAR5GMhk+i9xcT6G6KIOKBJ6zFBn9r0GUmBlIWN9ziHf/5yjO/phsfy2yqt4i\nxOJxF3INTI9k/Q7ZoV4xv0PC5LZCci4sQm6g08kYHdquvxy5lt4DwsSmF5EENCts1//Idv3M9LbR\negJTkEx4NvBA1joFifqLIjkeR6wcfwdeQfIFTEEcjHNU79RXkShvw95Ixs5+yOj/KuSh+ATiAHcq\nxb4fxwOXRfJMQc6zlxGF6B3g4MBznmmWnBFzEUfP0xDFcCGiAG+JHKushESXIdanjRBF4l3EInAj\n8vuOqWK/5yNRGaOQFNkfIhkOX6CQgwAA2/W3jkI3V0T7ejjatAFyXb2PXP/LbVnroWGi6bbzo697\nIlaWk5Br93wkk+jztusP7o94Lna7eaoMZU0cVXIAped7eqGZfP2ZqmPFl+ptrVf3n19UpvVMYLRS\nagBywxuEjLwWAe9qrTMXV2mUzs7OP/Xrp+6qt33Hmn5Zue3XNeZTOVoky5nqKiQkrNT883Qk3WvJ\nsMLAc1bbrv9Z5AH6KWRkOB+5wRWlWo7a3Ga7/mOIomAho/GFyI30YeDREru7ELlOq07TG3jONbbr\nT0Nu9KOQm+i/gFsDz3nTdv2fI2FbpdpfHnlpH4LcnHdAlIz5yLErqXgFnvOR7fo28lDYE7lu3kKO\nTdZ9K52xrhTl7knnUVB6SqVeTsr4apQU6lDEbG4hCsFbROsRBE1ebjrwnNB2/XGIGf5gRBkYhPyv\n7yDpjR9MtVkOnGK7/vWIgrFrVPcF4O8ZKbaXIuduWkH6KfL/JbkEsWClfWK2CDzHt10/jzhXjkGO\nyzNIZEiRD00ga3ocaLv+kUh2xo8hSuVURKmIUyiXVGYCWVzKQlJD7xrJNg85b9LX8RLgF6X6SpFU\n9Cpe28gaJgORqEEAbNffDLlvHIQoAndR8NEYilwjExD/nwuUiTQ0GAwGw7qC7fqjEUvKqsBzmhWd\nt05gu/5pyNoifw48J9N5PForxQeeNFMMBoPBYDD0DWL/llvK1In9jt4zCoLBYDAYDH2DePo5MwrJ\ndv0hFPwTnjBRDAaDwWAw9A3+hPgOHRPl25iK+FhsiuR4OARx0Lwf+J1REAwGg8Fg6AMEnvNklL78\nHMRRca/E5hVINNIVwI2B56z6/3ExLRI31pXNAAAAAElFTkSuQmCC\n",
|
|
144
|
"png": "iVBORw0KGgoAAAANSUhEUgAAAggAAABDCAYAAAD5/P3lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAH3AAAB9wBYvxo6AAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURB\nVHic7Z15uBxF1bjfugkJhCWBsCSAJGACNg4QCI3RT1lEAVE+UEBNOmwCDcjHT1wQgU+WD3dFxA1o\nCAikAZFFVlnCjizpsCUjHQjBIAkQlpCFJGS79fvjdGf69vTsc2fuza33eeaZmeqq6jM9vZw6dc4p\nBUwC+tE+fqW1fqmRDpRSHjCggS40sBxYDCxKvL8KzNBaL21EPoPB0DPIWVY/4NlE0ffzYfhgu+Qx\nGHoy/YFjaK+CcB3QkIIAHAWs3wRZsuhUSs0CXgQeBm7UWi/spn0Z+jA5yxpEfYruqnwYllRic5a1\nMaWv8U5gaT4M19Sx396IAnZLfB/SLkEMhp5O/3YL0AvoAHaKXl8HLlZK3QZcpbWe0lbJDOsaHuDU\n0e4u4JAy2wPk/C1JzrKWArOQ0fUtwH35MOysQxaDwbCO0NFuAXoh6wPjgQeUUvcqpUa0WyCDoQls\nCIwBjgfuAV7KWdY+7RWpmJxlXZezrEdylvXxdstiMKzrGAtCYxwI/EspdZbW+g/tFsbQ67kQuBHY\nFNgseh9FV6vCbUAeWBC9PgBeq2EfS6J2MQOBrRDTe5KdgAdzlvW1fBjeUUP/3UbOsoYBE6OvG7VT\nFoOhL9Af+BUwFLkZpV+DaY6V4UPkRpb1+ncT+m8nGwK/V0oN01qf025hDL2XfBi+DLycLMtZVo6u\nCsKfGnSq8/NheEpqHwOBEcDBwJnAsGhTP2ByzrJG5cPwnQb22Sy+0G4BDIa+RH+t9dmlNiqlFKIk\nJJWGi+jq5JPmq8BbJJQArfXqpkncczlbKbVQa/3rdgtiMNRCPgxXAK8Ar+Qs63LgXmDvaPPGwPeA\nH7VJvCRfbLcABkNfouwUg9ZaAwuj178BlFLvVejzgR4WFviM1npcuQpKqf6IyXIjxLS7GzAWuUnu\nXsO+fqWUellr3ZBJdq/jr9+BDn1uve07O9Rz0y6f8PtGZGgWe53oT6SBkZ/q1/nHZy47aloTRTKU\nIR+Gy3OWNR6Zxtg0Kv4KRkEwGPocxgcBiCwcsSI0F5iOhF+ilPok8C3gVGS+thK/VErdrbWuO2ys\ns/+aLZTuOKbe9krrIUCPUBB0B+PQ1P1bdKe6EzAKQgvJh+GbOct6gkJkxM45y+qXDIWMHBhjBWJe\nPgyDWvaRs6zPIVObAG/nw/DpEvUGAp8E9gGGJzbtl7Os7cvs4skqp0V0Yl8jgcOBjyMDhbmIZeWl\nfBg+UUVfReQsayhwELAnsAXi6/E28BxwTz4MP6iyn92RaSCA+/NhuCwqXx9R4MYhU0MfRTK/AjyW\nD8MFGd0ZDFVhFIQKaK3/BXxfKXUlklTq0xWafAI4Driyu2UzGLqRlygoCArYHJif2H4gcFb0+Z2c\nZW2bD8NV1XScs6yNgH8g/jsAPwCeTmzfFPgjYsnbiez71MUVdnMQcF8V4nyUs6whwB8QX4+0s2Ys\n0yPAt/NhGFbRZ/wbzgO+DaxXotqqnGX9GbigCkXhf5CBCsDngYdzljURGQhsWqLN+znL+iFwdT4M\ndYk6BkNJTJhjlWitQ2Bf4P4qqv848t8wGHor6Yd9+ruHJFkC2BI4rIa+D6egHKwmstYlGAxMQCwH\nrRjEPI5ER5S7ZvcFXsxZ1phKneUsawSi8HyH0soB0bbvAM9Ebaplt5xlnYkct1LKAYiFZhJwSQ19\nGwxrMRaEGtBar1RKfRX4JxIzXortou3PN1mE+YgJsSwaeoLHOQCqUy3QSr9eqZ6G/gq2aYVMhqrY\nOfF5FeJwvJZ8GM7JWdY/gC9HRS7wtyr7Pjrx+e6MqYC3KLbU7Qhck/h+FJIKvRRVjfSREXicU8EH\npgAvIIqLBZwGfC7avl5Uf29KkLOsTZCMq8npj9sQx89no37HIlaAODplNPBIzrJ2z4dhNVlaT0HC\nXwFmIkrAC4if2PaIz8/3KCgn385Z1pX5MJxeRd8Gw1qMglAjWutlSqnTgUcqVP0SzVYQtP5mcMXE\nSvvtUUy9YsK5QEWHy7EnTB6lOtSsFohkqEDOsgYAdqJoagkT9Z8pKAj75yzr4/kwnF2h748ho/GY\nq9J1oqiKLj4JOctKK8Yz8mH4Yrl9VcnHkXVYTsyHoZ8WJWdZNyPThbF5/3M5yzowH4alpi9+T0E5\nWA18Nx+Gf0zVeRG4KmdZ90R9bwCMRKwyX69C5h2j91uA4/JhuCSxbTYwJWdZtwNPIFbifsAFSISZ\nwVA1ZoqhDrTWjyIjjXIc3ApZDIZu4ELgY4nvt5Wody8wJ/qsgBOr6HsihfvOfCRrY7v5dYZyAECk\nGP0ISEZmZYZ55yxrB8SyEXNxhnKQ7Pt64H8TRUfmLGuXKmWeC4xPKQfJvp9CLCJlZTYYymEUhPq5\ntcL2XVsihcHQJHKWtU3Osi5GnAZj5iKWgiKitRouTxQdl7OscnPu0HV64dp8GLY7R8pyxEGxJPkw\nfBcZ9ceUSvN8IoV76upK/UZcgawcG3NKqYopfleFU+gDic/b5SzLWIwNNWFOmPqp5CG9sVJqPa11\nVZ7dBkOL2D1nWcmcBkOR8MFtgM/QdTXJZcCR+TBcXqa/SYj5egAFZ8VMX4ScZe2FRPnEXF2z9M3n\n3nwYVsrtAmK6/0z0uVR4ZXLtivvzYfhGpU7zYbgkZ1k3ACdHRQdWIQsUO3ZmkUzB3Q/xjaolLbeh\nj2MUhDrRWr+mlFpJ+eV5hyIxz4YWs98Fj/Rf8uZbozo0/ZYt7D8rf9ORK9stUw/hU9GrEnMAp1R+\ngph8GL4bzdNPiIpOorSzYtJ68FS1IYPdTLWp3hcnPm+Q3pizrA7E+TCmFn+aZN0dcpY1LB+G5e4b\ny6rM8bA49X39GmQyGMwUQ4NUGnkMrbDd0A3sdeLk4z6cN+89pTtDTWd+gyErF+7pTv5eu+XqJbyK\nTDHsmg/DJ6tsc2ni8+dzljUqXSGaevhmoqjIObFNVBzlV8kQug4W5tbQNl13WGatAv+poW+DoW6M\nBaExPgC2LrO9nHWhpSilDqI4NPMhrfXUJvS9M/DfqeJXtdY3N9p3rex50uQ9lFKT6BrTvoFCXbTX\nyZNfmnrZxHtbLVMP4xng74nvK5DzeD7wfIWRayb5MHwiZ1kzgF0oOCuemar2ZQoK8zLgr7Xup5t4\ns0n9DEl9b0RBSPeV5q0a+jYY6sYoCI1RacnZ91siRXUMAH6eKnsYicdulDOAY1NlpzWh35pRqG9R\nIuGN7uw4AfG878s8nw/DX3RDv5dScGY8NmdZP86HYXJaJzm9cHMp7/s2UHdK9BTpKaxBNbRN163k\nt9Rux05DH8FMMTTGZhW2v9sSKarjbopNk/sqpUY30qlSahCSGS/JCuD6RvqtF6UpMm/HaHTJbYaG\nmQzED/0umRVzlrUZhXwJ0HOmF5pJOlXyxzJrZbNt6rtZP8HQIzAKQp0opTZAlsItxTKtdTnv75YS\nLR7lpYqrjV0vx2EUH4fbtdZtucnpMqOrDjPy6jYii8DkRFHSYnAEhem22cBjrZKrVeTDcCldTf/p\nh345ksrEGprnF2EwNIRREOrnMxW2z2uJFLVxJcXmy2OVUo34ShydUda+EaIq7T2u0SZTY/eSdFY8\nMGdZm0efk86J6/LCQUnFp5pIkZjkcvQz8mH4YZPkMRgawigI9VNp7v7BlkhRA1rr+RQneNqC2hba\nWYtSajiS9z3JXLomaGktq/VllLIUdKqSWe0MjZMPwxlIel8Q/6Zv5CxrGIX8AJ10XU+hFtIRQ+UW\nKWoXyYyTu+Qsa79KDXKWNRpJyx5zZ9OlMhjqxCgIdaCU6g98o0K1npBCNotLM8rcOvuagCRgSXKN\n1rozq3IrCCZNfFkrfRjotWsCaJinUBODK51/tkuuPkTy/DoYOIDCfeb+fBjW4t2/lqhdcmRdbUri\nVnILXS2HZ1WRvfAcCk61K4A/dYdgBkM9GAWhPr5F6XSrIBf6Qy2SpSaidSReShV/XilV7veUIj29\noOkB2fGmXT7x7sCbOGpFf7VZx4A1m0/znG2nehMyc+0bms7NFJxzxwH7J7Y1OvWUPG9/mLOsLRvs\nr6lEaaOT0TtfBB5ITLWsJWdZg3KWdRNwTKL4wnwYzu9mMQ2GqjFhjjWilBqBpJYtx51a66UV6rST\nS+maJz52VvxRdvVilFK7UbzexGNa67Kr+bWS6X+ekPYs79HkLGt34JOI+Xyz6D2d1vfMnGUdini6\nL0C851/Oh2HD+SyaQT4MV+YsaxJyLm1Gwf9gAXBHg93/JNHHtsArOcuajCztPBDYCkkytBXg5sOw\n5QmF8mF4W86yLgK+HxXtC8zKWVaALMm8CslHsicS7RFzL8VhyAZDWzEKQg0opbYE7qd8prPVdF2h\nrSdyLfALYMNE2XFKqR/XsHbEURll62L4Wiv5PuBUqPPF6JXkLuCQbpGoPi4HfohYKGMHWD9axrlu\n8mF4Z7RuwfioaDBwaonqRemQW0U+DH+Qs6xFwHnIFNwQsv+3mMnA8dHiVwZDj8FMMVSJUuow4DkK\na7GX4gqt9cstEKlutNaL6boULMho5tBq2iul+lH8IFuCmJcNfZx8GM6hOCFVU5THfBhOQHxfylkH\n3gY+asb+6iUfhhcCewC3l5BlFbJk/P75MDwqlVTKYOgRKK1rizhSSk2h67ximo1abV5XSi2n9EIk\nz2itx5XYVqnfQcjI7DiqW2XtfeCTUbRA3ex50nWfUrqjeJEcrfcLrpj4SCN9xyilxgDPp4of0Fof\nUEXbg4B/pIqv1FrXnVNh7AmTR3V0qIwwRH1E4E28pd5+De0hZ1m/Bb4bfX0+H4Z7dMM+hgGjkDwC\nS5FpjFk9bR4/Z1mDkGmF4VHR20g4Y3oxJYOhR9EXphg6lFLlVjFbH0mZvDGwCTAayCFe0ntTOZ1y\nzDLgkEaVg1ahtX5BKfUU8OlE8ReUUjtorSstCduzch8YehSR5/6ERFG3nBvRuhE9frXUfBguA6pd\n+Mpg6DH0BQXBBro7o+Ea4Bta66e6eT/N5lK6KggKOAE4u1QDpdTGFOdNmNkLf7uh+zgYcRQEMa+3\nJe22wWBoDOOD0DhLgYla67vaLUgd3ETxglLHRXkeSnEExQ5gbQ9tNPQokis5TsqHoVlbwGDohRgF\noTECYHet9Y3tFqQetNYrKDb/DqN46eYk6emF1UhUhMFAzrImUEhDvgr4VRvFMRgMDWAUhPpYAvwf\n8Bmte31+/8uQBEdJMjMrKqW2o5A2N+YfWusePw9s6F5yltWRs6zxwKRE8RXtyEVgMBiaQ1/wQWgm\neWTe/jqtdU9Zz74htNavKaXuAw5KFB+glBqptZ6Tqj6RQlrYGDO90AfJWdY5wNeQFQwHIAmetk5U\neZFCsiCDwdALMQpCed5AphEC4NF12BHvUroqCAoJ7TwvVS+d++BdJEmPoe+xKRLnn0UeODwfhm3N\nRWAwGBqjLygIbwN/LbNdI1MGH6ReL/eWkMUmcDeSeGa7RNlRSqnzdZQoQym1C7Bzqt11NWReNKxb\nzEMU6GHAesBiYCaSLOviaF0Cg8HQi+kLCsLrWuvT2y1ET0ZrvUYp5SG57mO2Bz4LPB59/2ZRQ5P7\noM+SD8OLgYvbLYfBYOg+jJOiIeZKxOs8STJiIb28daC1/lf3imQwGAyGdmEUBAMA0XTKraniI5VS\nA6O0zOnloI31wGAwGNZhjIJgSHJp6vtgJBNlehW65cANLZHIYDAYDG3BKAiGtWitHwVeShV/muLF\nuW7VWi9qjVQGg8FgaAd9wUnRUBuXAn9IfN8f+FyqTo/OfbDnSX8brDpXnqEUe2ropzQvdtDx66ev\nGN9XolIMPQDb9T8LrBd4zsPtlsXQe7Bd/0BgQeA5QbtlMQqCIc21wC+ADaPv6WWu5wAPtVKgWtjt\n6Os2XG/9jhdQjIzTQ2rFF9bQecy4E2/I9UQlwXb9LYDDK1R7K/Cc21shj6FxbNcfDjwGKNv1Rwae\n83q7ZWo2tusPBb6ELGW9BbAICX99Gngs8Jx0hlZDBWzXHwvcC6ywXX9o4DlL2ymPURAMXdBaL1ZK\n+ZRItwz8Jc6N0BMZMFB9GxiZsWnzTjrPAH7QWomqYgTF/h9pngC6RUGwXf+XwC2B50ztjv57M7br\nXwJMCjxneo1NP0SWgAfJq7LOYLv+esAFwOkUL9wWM912/d0Dz+lsnWQ9A9v1BwEXAT8PPKfWVOML\nkPVt3kNWQm0rxgfBkEWph5UG/tJCOWqnQ40ttUkrvWcrRamWwHOmAZsguSfGAi9Hmy5AUhgPAz7f\nHfu2XX8k8ENgx+7ovzdju/4uwP9D/peaCDxnCbANsF3gOYubLVu7sF1/AHAHcBaiHDwI/C+ywNsE\n4KfA68BdfVE5iNgbOBmxqtRE4Dn/BoYDnwg8Z02zBasVY0EwFKG1fkEp9RTioJjkIa11zzaVarYq\nvVFt2TpBaiN6oCwB5tiu/2FUPCvwnLTTaLM5oJv77800dGwCz1kXHXkvRNKydwI/Cjzn1+kKtuuf\ni2TX7Ks0et681yxBGsUoCIZSBBQrCL0h98EbdW7rddiuPwoYFJu/bdffFNgL2BZ4DZgWKR5ZbRWS\n2+KIqGiE7fpjUtXmlrtZRdaHscBAYDowM/CckimWbdffFfgw8JzXou/9kfUccojV5MXAcz4s0XYw\nsCsymu8PzAVmBJ7zVqn9pdoPRVKF7wSsAN4EgqzRve36HcAoZDEqgO0zjs3rged8kGo3gOJ05ADT\ns0bTkan+k9HXGaVGjNFxykVf81nH2Hb9Ich/MRJJeT291H9fL7brj6CwANfPspQDgOi3rijRx/rI\nb8kB7wPPBZ4zL6Ne/JvfCDzn/WhufhvgvsBzVkR1dgN2AR4JPGduom38P7wXeM7c6FzfCfgU4iMR\nlFLebNfPIefXzMBzikz8tusPQyx676bljmTeCfhyVLST7frp//TV9Dluu/6GwOhUvTWB58zIkjFq\nsykyNfmfwHMW2K7fLzoWeyDTFPnAc14t1T7qYwNgT+Rc/wi5ZyT/N20UBEMRSqn+wNdTxQspTqTU\n41BaP6yVOipzGzzSYnG6m6uBz0YPv7OQm3dytc35tuuflHZutF3/BuArwEaJ4p/QNdU2wGnAH9M7\njRSTG5CbS5LQdv2joymTLKYBzwHjbNc/DomW2TCxfbXt+sMCz3k/sa8RwM+Qh/X6qf5W2q4/CTit\nzMN1OPB7CopQktW2658YeM5fEvXvRKZzBiXqZaWUPha4JlW2NfB8Rt0hiANfmjWIuf5jiLPfvVm/\nAfmvbgNmB54zKrkheuD+Bjg11Wap7fpnBJ5TybelFk4E+iE+Fb+ptbHt+scg//nGqfJbgeMDz1mY\nKN4UOZYX2q7fSWHhuNdt198ZOBc4MypbbLv+5wPPeTb6PiJqe5ft+ichx3WXRN8rbdc/OfCcrGis\nR4ChiHKSlSn2f4BzkOvitMRvCKJ9DEzU9TPafwGZlkkyBvExSrKUrtdnmoOBycA5tus/iCyat3li\nu7Zd/0rk2ihS1mzXPwT4E3LulaLTKAiGLL6EaMlJbtBat91pphIjFw289t9DVh4N7Jva9EKnWnpJ\nG0RqBXcjCa08YCqy/PJE4L8A33b9HQPPeTNR/0bgvujzGchoywPSq5U+nd6R7fp7IDfRjYDrEE99\nDeyHrPb5lO364xI36zTb2q4/AUnt/SSyLHQHMvJZklQOIhYChyCLid2FWBoGIQrDfwGnAP8Gskzd\nVvSbBgPvIMdpJjLHuxdikXgg1ewa4Jbo84+BHRAFI/3gT9/QQZa+/iIy9zwccVQrSeA5nbbrX4s8\ncI6htIIQK7xdFJLIAvEEYjmYBlyP/E4LeXj92Xb94YHnnFtOjhrYJ3q/vtbpE9v1fwqcjYxUL0GO\n51bI//g1YIzt+mNTSgJIivfNEIXgBOThfx0ySv8Nct7vgzgfj0+1HQf8E5iPKM/vI+vLHA9cZbs+\nJZSEevgDBZ++3yIKzgVI1FeSrCnD6ci0zebAJxCfjmoZjxzXPPBL5By0gW8jCt3sqHwtkYL1N0RB\n/R2ymOG2yHE5CLFAHAu8ahQEQxbfyijrDdML3HTTkWvUBRfsb88bPb6TzjEK+oHKL184YHL+Jmdl\nu+XrJsYBhwaec0dcYLu+hzw0dkcu/AvjbUmLgu36DqIgPB54zuQq9nURMgI8LjnyBibZrj8z2s/l\ntuvvVcJJbWvkXDoi8JzbKu0s8JxFtut/IqXgAPzOdv0/IiPnb5KhICAjpMGIEjAhPV1iu35HWsbA\nc25ObD8ZURAeqibENBqpTYnark8FBSHiakRBOMx2/cHpB29kSv4KooSlLRYnIcrBHcBXk7/Fdv0b\ngReAM23Xvz7wnJlVyFIJK3qfXUsj2/U/jiiiq4B9ktEytuv/Fhlpfx2xEnw31XxHYLfAc6bbrv8k\ncny/Bnwz8Jy/2q6/DTLd9F8Zu94ceXAeEHhOvM7MNbbrT0UU4vNs15+c2FY3gedcm/hNP0EUhDvL\nKMrJtkuIFPboWNWiIOSAO4HDE7/Dj67FSxEn21+m2pyOWDpuCDxn7fG2Xf8e4F1EIVsceE5oohgM\nXVBKjURuSEke11qXMhv3OPR553VO9Sb407yJZwTexO8FnnNV/qYj11XlAOCfSeUA1s4D/y36mp7f\nrAvb9fdGLDMzU8pBzMXIg2wsMhLKQiFhgxWVg5gM5SDm+uh9VHqD7fr7IlaNFcAJWb4UPcHLPvCc\n2YgVZn3gyIwq30AsQg8lQ+aiefUfR1/PzlB08sD9Udusfmsi2t+Q6GutjspnIE6L16dDaSN/irMR\np8dTbddPOxK/nwgxTZr8747e30SsEkNL7PvXGQrAVYgvwggK/gK9mXMyfuON0fvWkY9Dkp2i97uT\nhYHnLKNgURsDxknRUMz5FJ8XP22DHIbqSc9pxsSOW8ObtJ89ovdXbNcvpQC8j4zcdiTbnAoy4q2b\n6Ia3CYV5/Y0zqsXOf4/WEYveaq5GQuOOQaZekhydqJNkW2BLZF2UzhL/R+xE2XAIa+A52nb9lUho\nY63hd7GD5d1ZGwPPmW27/iuIUrkLXc/n9xP13rZd/yNgVezoF8n1NjAyyyKETGGl97fGdv1/IlaL\n3h7e+06WM2PgOQtt11+GTMcNo6vVJ1aWsyK+4nvFQjAKgiGBUmoshfnOmGe11vdl1Tf0GOaUKI9v\nlqrE9lqJb6b/Hb3KsU2Zba/VslPb9bdDfA0ORLz0N62iWWxVqMkc3iZuRuawP2u7/g6JKI9RSCTR\nYoodhOP/YgNKK2Ix2zZJzjnINMN2NbaL/4uiaIUE/0EUhB3pqiCkMwl2IscjXZZFJ/B2iW1xRtWR\nZWTqDcwps63U9f8Q0TSN7fp/iK0PtuvviPjmrCHyR1qrICilNkTmHjZDLsDke/JzOtwnzY1KqXcR\nR4cFiBab9XlRT87I19dQSo1GNPz0tJOxHvR8mhrOVobB0XuAOBiWo1zmwaqdXW3X3x+4BzGVv4SM\npN9AnPEg21McxMIArTs2dRN4zoe26/8NOA6xGJwfbYqV9b8GnrM81Sz+Lz5A0qOXo2y4Ww3MoT4F\nIY4+KTfNF58TaXN4VthstVNDitLKcdxvOjKmEj0tv0M953fs87E3Eul0B2JliBflOzfwnFcA+iul\n5iEmwQFNEBaK569L0amUWggcqrXO8gg2FKHG2CdW4Uem9XvBlUflu7RUaiByU3lPa92ZKN8cSav8\nfUQBTHKr1rrqueIsxp18/eg1azrLjSYB6NfRsY3G6Is9nDjDYxh4zundvbMotvtm5N50duA5P09t\nT0faJIkfirU+zNrF1YiC4FBQECZE73/JqB//F+u14r+ImIVEOB1iu/6ZNfhwzEamp7YuU2e7RN1m\noZBnW5YVIfZ1qNWfotw51yuIph++hET0bAkcikwpTAEuCjxnSly3PzIP0a8NcnYgD6SBlSoaIhQX\nV2UtVup24LBU6S7IyG+NUuodZP52awojrTSvIjeshlij9XdQKh2jXYRRDtpGfOCruQfEpmzbdn0V\ndP9iPLsgjnEryI67Lzd/PCt6/5Tt+v3LJXAqQ/z7ut2ZO/Ccx23XfxUYZbt+7D8xCngl8Jwsa80s\nZBS8ke36O7cg4ybA5UgegJ0QE/XN5auvZRaiIMQRF12wXX8TCv9ls6eERpOtIMR+EXNS5YsRh8dS\nTo/V+CzUck21i6uR5++4wHNeKFXJRDH0PfoR5fqmtHKwDDhCa73O5JA3lCSeF04v6Z3FPRTMzBO7\nS6AE8Q12PbomgYn5Xpm29yMPhu2RUK96iKMn9q6zfa38JXo/NHoly7oQeM5K4Iro60+jKINuJVJC\nYu/439uuX805A4VkWyfbrp+V/MdFnOmeCmpfFKsSRYMc2/U/DeyG3OfSjpOx5WmfVHmcuXFcFfus\n5ZpqObbrb45EtswqpxyAcVI0FDMbOFxrXeT9a+heopvnEArzolvashT0wmbEapdgGpIU5XDb9R9F\nYqrXQyyL8wPPeTeuGHjOMtv1T0VuqldH6W//jigNmyHOcAcBgwPPcZog20xkRLcJ8DPb9S9CRqM7\nI7kDvoDE1hfdxwLPWWy7/plI7oCLbNffHXm4zUQeRtsjGRP/EXhOKSfcABkpj49i5+9G/putgHmB\n5yxIN4iSF21C14V6Rtiu/yYSW15uHv4a4P8oKAedlPcvOAv4KmItfCTKKfAS8v8NR1ILHwnsl5GA\nqF7ORdYaGA48HGWyfBqYgViDRwCfQR72PkDgOU9E2TvHI4m0TgeeRczb30DyH2iKcyA0ymrgWNv1\nFyDK1NvIQ3tStN3LCH+9HUl29UPb9echFo8BUbtLEKfJtJ9EmgA59ifbrj8bCR3cGDlvZqdTLcPa\n9NCbUMhs2GFLKvPFSAKxZl7/CxEL8pgoA+QMxD+kE3HenAHcHnjOGmNB6Dt8iGjHWSFKK4HHkcQr\nOxvloLXYrr+77fqrEIejNyiE6P0WccZbabv+lFLtG+Ry5AY/BHkYfRDtR9M79QAAA3FJREFUcwYS\nNdCFwHPuQR6a7wHfAR5GMhk+i9xcT6G6KIOKBJ6zFBn9r0GUmBlIWN9ziHf/5yjO/phsfy2yqt4i\nxOJxF3INTI9k/Q7ZoV4xv0PC5LZCci4sQm6g08kYHdquvxy5lt4DwsSmF5EENCts1//Idv3M9LbR\negJTkEx4NvBA1joFifqLIjkeR6wcfwdeQfIFTEEcjHNU79RXkShvw95Ixs5+yOj/KuSh+ATiAHcq\nxb4fxwOXRfJMQc6zlxGF6B3g4MBznmmWnBFzEUfP0xDFcCGiAG+JHKushESXIdanjRBF4l3EInAj\n8vuOqWK/5yNRGaOQFNkfIhkOX6CQgwAA2/W3jkI3V0T7ejjatAFyXb2PXP/LbVnroWGi6bbzo697\nIlaWk5Br93wkk+jztusP7o94Lna7eaoMZU0cVXIAped7eqGZfP2ZqmPFl+ptrVf3n19UpvVMYLRS\nagBywxuEjLwWAe9qrTMXV2mUzs7OP/Xrp+6qt33Hmn5Zue3XNeZTOVoky5nqKiQkrNT883Qk3WvJ\nsMLAc1bbrv9Z5AH6KWRkOB+5wRWlWo7a3Ga7/mOIomAho/GFyI30YeDREru7ELlOq07TG3jONbbr\nT0Nu9KOQm+i/gFsDz3nTdv2fI2FbpdpfHnlpH4LcnHdAlIz5yLErqXgFnvOR7fo28lDYE7lu3kKO\nTdZ9K52xrhTl7knnUVB6SqVeTsr4apQU6lDEbG4hCsFbROsRBE1ebjrwnNB2/XGIGf5gRBkYhPyv\n7yDpjR9MtVkOnGK7/vWIgrFrVPcF4O8ZKbaXIuduWkH6KfL/JbkEsWClfWK2CDzHt10/jzhXjkGO\nyzNIZEiRD00ga3ocaLv+kUh2xo8hSuVURKmIUyiXVGYCWVzKQlJD7xrJNg85b9LX8RLgF6X6SpFU\n9Cpe28gaJgORqEEAbNffDLlvHIQoAndR8NEYilwjExD/nwuUiTQ0GAwGw7qC7fqjEUvKqsBzmhWd\nt05gu/5pyNoifw48J9N5PForxQeeNFMMBoPBYDD0DWL/llvK1In9jt4zCoLBYDAYDH2DePo5MwrJ\ndv0hFPwTnjBRDAaDwWAw9A3+hPgOHRPl25iK+FhsiuR4OARx0Lwf+J1REAwGg8Fg6AMEnvNklL78\nHMRRca/E5hVINNIVwI2B56z6/3ExLRI31pXNAAAAAElFTkSuQmCC\n",
|
|
142
|
"prompt_number": 6,
|
|
145
|
"prompt_number": 7,
|
|
143
|
"text": [
|
|
146
|
"text": [
|
|
144
|
"<IPython.core.display.Image at 0x106a91e10>"
|
|
147
|
"<IPython.core.display.Image object>"
|
|
145
|
]
|
|
148
|
]
|
|
146
|
}
|
|
149
|
}
|
|
147
|
],
|
|
150
|
],
|
|
148
|
"prompt_number": 6
|
|
151
|
"prompt_number": 7
|
|
149
|
},
|
|
152
|
},
|
|
150
|
{
|
|
153
|
{
|
|
151
|
"cell_type": "markdown",
|
|
154
|
"cell_type": "markdown",
|
|
152
|
"metadata": {},
|
|
155
|
"metadata": {},
|
|
153
|
"source": [
|
|
156
|
"source": [
|
|
154
|
"Or you can pass it to `display`:"
|
|
157
|
"Or you can pass an object with a rich representation to `display`:"
|
|
155
|
]
|
|
158
|
]
|
|
156
|
},
|
|
159
|
},
|
|
157
|
{
|
|
160
|
{
|
|
@@
-168,17
+171,17
b''
|
|
168
|
"output_type": "display_data",
|
|
171
|
"output_type": "display_data",
|
|
169
|
"png": "iVBORw0KGgoAAAANSUhEUgAAAggAAABDCAYAAAD5/P3lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAH3AAAB9wBYvxo6AAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURB\nVHic7Z15uBxF1bjfugkJhCWBsCSAJGACNg4QCI3RT1lEAVE+UEBNOmwCDcjHT1wQgU+WD3dFxA1o\nCAikAZFFVlnCjizpsCUjHQjBIAkQlpCFJGS79fvjdGf69vTsc2fuza33eeaZmeqq6jM9vZw6dc4p\nBUwC+tE+fqW1fqmRDpRSHjCggS40sBxYDCxKvL8KzNBaL21EPoPB0DPIWVY/4NlE0ffzYfhgu+Qx\nGHoy/YFjaK+CcB3QkIIAHAWs3wRZsuhUSs0CXgQeBm7UWi/spn0Z+jA5yxpEfYruqnwYllRic5a1\nMaWv8U5gaT4M19Sx396IAnZLfB/SLkEMhp5O/3YL0AvoAHaKXl8HLlZK3QZcpbWe0lbJDOsaHuDU\n0e4u4JAy2wPk/C1JzrKWArOQ0fUtwH35MOysQxaDwbCO0NFuAXoh6wPjgQeUUvcqpUa0WyCDoQls\nCIwBjgfuAV7KWdY+7RWpmJxlXZezrEdylvXxdstiMKzrGAtCYxwI/EspdZbW+g/tFsbQ67kQuBHY\nFNgseh9FV6vCbUAeWBC9PgBeq2EfS6J2MQOBrRDTe5KdgAdzlvW1fBjeUUP/3UbOsoYBE6OvG7VT\nFoOhL9Af+BUwFLkZpV+DaY6V4UPkRpb1+ncT+m8nGwK/V0oN01qf025hDL2XfBi+DLycLMtZVo6u\nCsKfGnSq8/NheEpqHwOBEcDBwJnAsGhTP2ByzrJG5cPwnQb22Sy+0G4BDIa+RH+t9dmlNiqlFKIk\nJJWGi+jq5JPmq8BbJJQArfXqpkncczlbKbVQa/3rdgtiMNRCPgxXAK8Ar+Qs63LgXmDvaPPGwPeA\nH7VJvCRfbLcABkNfouwUg9ZaAwuj178BlFLvVejzgR4WFviM1npcuQpKqf6IyXIjxLS7GzAWuUnu\nXsO+fqWUellr3ZBJdq/jr9+BDn1uve07O9Rz0y6f8PtGZGgWe53oT6SBkZ/q1/nHZy47aloTRTKU\nIR+Gy3OWNR6Zxtg0Kv4KRkEwGPocxgcBiCwcsSI0F5iOhF+ilPok8C3gVGS+thK/VErdrbWuO2ys\ns/+aLZTuOKbe9krrIUCPUBB0B+PQ1P1bdKe6EzAKQgvJh+GbOct6gkJkxM45y+qXDIWMHBhjBWJe\nPgyDWvaRs6zPIVObAG/nw/DpEvUGAp8E9gGGJzbtl7Os7cvs4skqp0V0Yl8jgcOBjyMDhbmIZeWl\nfBg+UUVfReQsayhwELAnsAXi6/E28BxwTz4MP6iyn92RaSCA+/NhuCwqXx9R4MYhU0MfRTK/AjyW\nD8MFGd0ZDFVhFIQKaK3/BXxfKXUlklTq0xWafAI4Driyu2UzGLqRlygoCArYHJif2H4gcFb0+Z2c\nZW2bD8NV1XScs6yNgH8g/jsAPwCeTmzfFPgjYsnbiez71MUVdnMQcF8V4nyUs6whwB8QX4+0s2Ys\n0yPAt/NhGFbRZ/wbzgO+DaxXotqqnGX9GbigCkXhf5CBCsDngYdzljURGQhsWqLN+znL+iFwdT4M\ndYk6BkNJTJhjlWitQ2Bf4P4qqv848t8wGHor6Yd9+ruHJFkC2BI4rIa+D6egHKwmstYlGAxMQCwH\nrRjEPI5ER5S7ZvcFXsxZ1phKneUsawSi8HyH0soB0bbvAM9Ebaplt5xlnYkct1LKAYiFZhJwSQ19\nGwxrMRaEGtBar1RKfRX4JxIzXortou3PN1mE+YgJsSwaeoLHOQCqUy3QSr9eqZ6G/gq2aYVMhqrY\nOfF5FeJwvJZ8GM7JWdY/gC9HRS7wtyr7Pjrx+e6MqYC3KLbU7Qhck/h+FJIKvRRVjfSREXicU8EH\npgAvIIqLBZwGfC7avl5Uf29KkLOsTZCMq8npj9sQx89no37HIlaAODplNPBIzrJ2z4dhNVlaT0HC\nXwFmIkrAC4if2PaIz8/3KCgn385Z1pX5MJxeRd8Gw1qMglAjWutlSqnTgUcqVP0SzVYQtP5mcMXE\nSvvtUUy9YsK5QEWHy7EnTB6lOtSsFohkqEDOsgYAdqJoagkT9Z8pKAj75yzr4/kwnF2h748ho/GY\nq9J1oqiKLj4JOctKK8Yz8mH4Yrl9VcnHkXVYTsyHoZ8WJWdZNyPThbF5/3M5yzowH4alpi9+T0E5\nWA18Nx+Gf0zVeRG4KmdZ90R9bwCMRKwyX69C5h2j91uA4/JhuCSxbTYwJWdZtwNPIFbifsAFSISZ\nwVA1ZoqhDrTWjyIjjXIc3ApZDIZu4ELgY4nvt5Wody8wJ/qsgBOr6HsihfvOfCRrY7v5dYZyAECk\nGP0ISEZmZYZ55yxrB8SyEXNxhnKQ7Pt64H8TRUfmLGuXKmWeC4xPKQfJvp9CLCJlZTYYymEUhPq5\ntcL2XVsihcHQJHKWtU3Osi5GnAZj5iKWgiKitRouTxQdl7OscnPu0HV64dp8GLY7R8pyxEGxJPkw\nfBcZ9ceUSvN8IoV76upK/UZcgawcG3NKqYopfleFU+gDic/b5SzLWIwNNWFOmPqp5CG9sVJqPa11\nVZ7dBkOL2D1nWcmcBkOR8MFtgM/QdTXJZcCR+TBcXqa/SYj5egAFZ8VMX4ScZe2FRPnEXF2z9M3n\n3nwYVsrtAmK6/0z0uVR4ZXLtivvzYfhGpU7zYbgkZ1k3ACdHRQdWIQsUO3ZmkUzB3Q/xjaolLbeh\nj2MUhDrRWr+mlFpJ+eV5hyIxz4YWs98Fj/Rf8uZbozo0/ZYt7D8rf9ORK9stUw/hU9GrEnMAp1R+\ngph8GL4bzdNPiIpOorSzYtJ68FS1IYPdTLWp3hcnPm+Q3pizrA7E+TCmFn+aZN0dcpY1LB+G5e4b\ny6rM8bA49X39GmQyGMwUQ4NUGnkMrbDd0A3sdeLk4z6cN+89pTtDTWd+gyErF+7pTv5eu+XqJbyK\nTDHsmg/DJ6tsc2ni8+dzljUqXSGaevhmoqjIObFNVBzlV8kQug4W5tbQNl13WGatAv+poW+DoW6M\nBaExPgC2LrO9nHWhpSilDqI4NPMhrfXUJvS9M/DfqeJXtdY3N9p3rex50uQ9lFKT6BrTvoFCXbTX\nyZNfmnrZxHtbLVMP4xng74nvK5DzeD7wfIWRayb5MHwiZ1kzgF0oOCuemar2ZQoK8zLgr7Xup5t4\ns0n9DEl9b0RBSPeV5q0a+jYY6sYoCI1RacnZ91siRXUMAH6eKnsYicdulDOAY1NlpzWh35pRqG9R\nIuGN7uw4AfG878s8nw/DX3RDv5dScGY8NmdZP86HYXJaJzm9cHMp7/s2UHdK9BTpKaxBNbRN163k\nt9Rux05DH8FMMTTGZhW2v9sSKarjbopNk/sqpUY30qlSahCSGS/JCuD6RvqtF6UpMm/HaHTJbYaG\nmQzED/0umRVzlrUZhXwJ0HOmF5pJOlXyxzJrZbNt6rtZP8HQIzAKQp0opTZAlsItxTKtdTnv75YS\nLR7lpYqrjV0vx2EUH4fbtdZtucnpMqOrDjPy6jYii8DkRFHSYnAEhem22cBjrZKrVeTDcCldTf/p\nh345ksrEGprnF2EwNIRREOrnMxW2z2uJFLVxJcXmy2OVUo34ShydUda+EaIq7T2u0SZTY/eSdFY8\nMGdZm0efk86J6/LCQUnFp5pIkZjkcvQz8mH4YZPkMRgawigI9VNp7v7BlkhRA1rr+RQneNqC2hba\nWYtSajiS9z3JXLomaGktq/VllLIUdKqSWe0MjZMPwxlIel8Q/6Zv5CxrGIX8AJ10XU+hFtIRQ+UW\nKWoXyYyTu+Qsa79KDXKWNRpJyx5zZ9OlMhjqxCgIdaCU6g98o0K1npBCNotLM8rcOvuagCRgSXKN\n1rozq3IrCCZNfFkrfRjotWsCaJinUBODK51/tkuuPkTy/DoYOIDCfeb+fBjW4t2/lqhdcmRdbUri\nVnILXS2HZ1WRvfAcCk61K4A/dYdgBkM9GAWhPr5F6XSrIBf6Qy2SpSaidSReShV/XilV7veUIj29\noOkB2fGmXT7x7sCbOGpFf7VZx4A1m0/znG2nehMyc+0bms7NFJxzxwH7J7Y1OvWUPG9/mLOsLRvs\nr6lEaaOT0TtfBB5ITLWsJWdZg3KWdRNwTKL4wnwYzu9mMQ2GqjFhjjWilBqBpJYtx51a66UV6rST\nS+maJz52VvxRdvVilFK7UbzexGNa67Kr+bWS6X+ekPYs79HkLGt34JOI+Xyz6D2d1vfMnGUdini6\nL0C851/Oh2HD+SyaQT4MV+YsaxJyLm1Gwf9gAXBHg93/JNHHtsArOcuajCztPBDYCkkytBXg5sOw\n5QmF8mF4W86yLgK+HxXtC8zKWVaALMm8CslHsicS7RFzL8VhyAZDWzEKQg0opbYE7qd8prPVdF2h\nrSdyLfALYMNE2XFKqR/XsHbEURll62L4Wiv5PuBUqPPF6JXkLuCQbpGoPi4HfohYKGMHWD9axrlu\n8mF4Z7RuwfioaDBwaonqRemQW0U+DH+Qs6xFwHnIFNwQsv+3mMnA8dHiVwZDj8FMMVSJUuow4DkK\na7GX4gqt9cstEKlutNaL6boULMho5tBq2iul+lH8IFuCmJcNfZx8GM6hOCFVU5THfBhOQHxfylkH\n3gY+asb+6iUfhhcCewC3l5BlFbJk/P75MDwqlVTKYOgRKK1rizhSSk2h67ximo1abV5XSi2n9EIk\nz2itx5XYVqnfQcjI7DiqW2XtfeCTUbRA3ex50nWfUrqjeJEcrfcLrpj4SCN9xyilxgDPp4of0Fof\nUEXbg4B/pIqv1FrXnVNh7AmTR3V0qIwwRH1E4E28pd5+De0hZ1m/Bb4bfX0+H4Z7dMM+hgGjkDwC\nS5FpjFk9bR4/Z1mDkGmF4VHR20g4Y3oxJYOhR9EXphg6lFLlVjFbH0mZvDGwCTAayCFe0ntTOZ1y\nzDLgkEaVg1ahtX5BKfUU8OlE8ReUUjtorSstCduzch8YehSR5/6ERFG3nBvRuhE9frXUfBguA6pd\n+Mpg6DH0BQXBBro7o+Ea4Bta66e6eT/N5lK6KggKOAE4u1QDpdTGFOdNmNkLf7uh+zgYcRQEMa+3\nJe22wWBoDOOD0DhLgYla67vaLUgd3ETxglLHRXkeSnEExQ5gbQ9tNPQokis5TsqHoVlbwGDohRgF\noTECYHet9Y3tFqQetNYrKDb/DqN46eYk6emF1UhUhMFAzrImUEhDvgr4VRvFMRgMDWAUhPpYAvwf\n8Bmte31+/8uQBEdJMjMrKqW2o5A2N+YfWusePw9s6F5yltWRs6zxwKRE8RXtyEVgMBiaQ1/wQWgm\neWTe/jqtdU9Zz74htNavKaXuAw5KFB+glBqptZ6Tqj6RQlrYGDO90AfJWdY5wNeQFQwHIAmetk5U\neZFCsiCDwdALMQpCed5AphEC4NF12BHvUroqCAoJ7TwvVS+d++BdJEmPoe+xKRLnn0UeODwfhm3N\nRWAwGBqjLygIbwN/LbNdI1MGH6ReL/eWkMUmcDeSeGa7RNlRSqnzdZQoQym1C7Bzqt11NWReNKxb\nzEMU6GHAesBiYCaSLOviaF0Cg8HQi+kLCsLrWuvT2y1ET0ZrvUYp5SG57mO2Bz4LPB59/2ZRQ5P7\noM+SD8OLgYvbLYfBYOg+jJOiIeZKxOs8STJiIb28daC1/lf3imQwGAyGdmEUBAMA0XTKraniI5VS\nA6O0zOnloI31wGAwGNZhjIJgSHJp6vtgJBNlehW65cANLZHIYDAYDG3BKAiGtWitHwVeShV/muLF\nuW7VWi9qjVQGg8FgaAd9wUnRUBuXAn9IfN8f+FyqTo/OfbDnSX8brDpXnqEUe2ropzQvdtDx66ev\nGN9XolIMPQDb9T8LrBd4zsPtlsXQe7Bd/0BgQeA5QbtlMQqCIc21wC+ADaPv6WWu5wAPtVKgWtjt\n6Os2XG/9jhdQjIzTQ2rFF9bQecy4E2/I9UQlwXb9LYDDK1R7K/Cc21shj6FxbNcfDjwGKNv1Rwae\n83q7ZWo2tusPBb6ELGW9BbAICX99Gngs8Jx0hlZDBWzXHwvcC6ywXX9o4DlL2ymPURAMXdBaL1ZK\n+ZRItwz8Jc6N0BMZMFB9GxiZsWnzTjrPAH7QWomqYgTF/h9pngC6RUGwXf+XwC2B50ztjv57M7br\nXwJMCjxneo1NP0SWgAfJq7LOYLv+esAFwOkUL9wWM912/d0Dz+lsnWQ9A9v1BwEXAT8PPKfWVOML\nkPVt3kNWQm0rxgfBkEWph5UG/tJCOWqnQ40ttUkrvWcrRamWwHOmAZsguSfGAi9Hmy5AUhgPAz7f\nHfu2XX8k8ENgx+7ovzdju/4uwP9D/peaCDxnCbANsF3gOYubLVu7sF1/AHAHcBaiHDwI/C+ywNsE\n4KfA68BdfVE5iNgbOBmxqtRE4Dn/BoYDnwg8Z02zBasVY0EwFKG1fkEp9RTioJjkIa11zzaVarYq\nvVFt2TpBaiN6oCwB5tiu/2FUPCvwnLTTaLM5oJv77800dGwCz1kXHXkvRNKydwI/Cjzn1+kKtuuf\ni2TX7Ks0et681yxBGsUoCIZSBBQrCL0h98EbdW7rddiuPwoYFJu/bdffFNgL2BZ4DZgWKR5ZbRWS\n2+KIqGiE7fpjUtXmlrtZRdaHscBAYDowM/CckimWbdffFfgw8JzXou/9kfUccojV5MXAcz4s0XYw\nsCsymu8PzAVmBJ7zVqn9pdoPRVKF7wSsAN4EgqzRve36HcAoZDEqgO0zjs3rged8kGo3gOJ05ADT\ns0bTkan+k9HXGaVGjNFxykVf81nH2Hb9Ich/MRJJeT291H9fL7brj6CwANfPspQDgOi3rijRx/rI\nb8kB7wPPBZ4zL6Ne/JvfCDzn/WhufhvgvsBzVkR1dgN2AR4JPGduom38P7wXeM7c6FzfCfgU4iMR\nlFLebNfPIefXzMBzikz8tusPQyx676bljmTeCfhyVLST7frp//TV9Dluu/6GwOhUvTWB58zIkjFq\nsykyNfmfwHMW2K7fLzoWeyDTFPnAc14t1T7qYwNgT+Rc/wi5ZyT/N20UBEMRSqn+wNdTxQspTqTU\n41BaP6yVOipzGzzSYnG6m6uBz0YPv7OQm3dytc35tuuflHZutF3/BuArwEaJ4p/QNdU2wGnAH9M7\njRSTG5CbS5LQdv2joymTLKYBzwHjbNc/DomW2TCxfbXt+sMCz3k/sa8RwM+Qh/X6qf5W2q4/CTit\nzMN1OPB7CopQktW2658YeM5fEvXvRKZzBiXqZaWUPha4JlW2NfB8Rt0hiANfmjWIuf5jiLPfvVm/\nAfmvbgNmB54zKrkheuD+Bjg11Wap7fpnBJ5TybelFk4E+iE+Fb+ptbHt+scg//nGqfJbgeMDz1mY\nKN4UOZYX2q7fSWHhuNdt198ZOBc4MypbbLv+5wPPeTb6PiJqe5ft+ichx3WXRN8rbdc/OfCcrGis\nR4ChiHKSlSn2f4BzkOvitMRvCKJ9DEzU9TPafwGZlkkyBvExSrKUrtdnmoOBycA5tus/iCyat3li\nu7Zd/0rk2ihS1mzXPwT4E3LulaLTKAiGLL6EaMlJbtBat91pphIjFw289t9DVh4N7Jva9EKnWnpJ\nG0RqBXcjCa08YCqy/PJE4L8A33b9HQPPeTNR/0bgvujzGchoywPSq5U+nd6R7fp7IDfRjYDrEE99\nDeyHrPb5lO364xI36zTb2q4/AUnt/SSyLHQHMvJZklQOIhYChyCLid2FWBoGIQrDfwGnAP8Gskzd\nVvSbBgPvIMdpJjLHuxdikXgg1ewa4Jbo84+BHRAFI/3gT9/QQZa+/iIy9zwccVQrSeA5nbbrX4s8\ncI6htIIQK7xdFJLIAvEEYjmYBlyP/E4LeXj92Xb94YHnnFtOjhrYJ3q/vtbpE9v1fwqcjYxUL0GO\n51bI//g1YIzt+mNTSgJIivfNEIXgBOThfx0ySv8Nct7vgzgfj0+1HQf8E5iPKM/vI+vLHA9cZbs+\nJZSEevgDBZ++3yIKzgVI1FeSrCnD6ci0zebAJxCfjmoZjxzXPPBL5By0gW8jCt3sqHwtkYL1N0RB\n/R2ymOG2yHE5CLFAHAu8ahQEQxbfyijrDdML3HTTkWvUBRfsb88bPb6TzjEK+oHKL184YHL+Jmdl\nu+XrJsYBhwaec0dcYLu+hzw0dkcu/AvjbUmLgu36DqIgPB54zuQq9nURMgI8LjnyBibZrj8z2s/l\ntuvvVcJJbWvkXDoi8JzbKu0s8JxFtut/IqXgAPzOdv0/IiPnb5KhICAjpMGIEjAhPV1iu35HWsbA\nc25ObD8ZURAeqibENBqpTYnark8FBSHiakRBOMx2/cHpB29kSv4KooSlLRYnIcrBHcBXk7/Fdv0b\ngReAM23Xvz7wnJlVyFIJK3qfXUsj2/U/jiiiq4B9ktEytuv/Fhlpfx2xEnw31XxHYLfAc6bbrv8k\ncny/Bnwz8Jy/2q6/DTLd9F8Zu94ceXAeEHhOvM7MNbbrT0UU4vNs15+c2FY3gedcm/hNP0EUhDvL\nKMrJtkuIFPboWNWiIOSAO4HDE7/Dj67FSxEn21+m2pyOWDpuCDxn7fG2Xf8e4F1EIVsceE5oohgM\nXVBKjURuSEke11qXMhv3OPR553VO9Sb407yJZwTexO8FnnNV/qYj11XlAOCfSeUA1s4D/y36mp7f\nrAvb9fdGLDMzU8pBzMXIg2wsMhLKQiFhgxWVg5gM5SDm+uh9VHqD7fr7IlaNFcAJWb4UPcHLPvCc\n2YgVZn3gyIwq30AsQg8lQ+aiefUfR1/PzlB08sD9Udusfmsi2t+Q6GutjspnIE6L16dDaSN/irMR\np8dTbddPOxK/nwgxTZr8747e30SsEkNL7PvXGQrAVYgvwggK/gK9mXMyfuON0fvWkY9Dkp2i97uT\nhYHnLKNgURsDxknRUMz5FJ8XP22DHIbqSc9pxsSOW8ObtJ89ovdXbNcvpQC8j4zcdiTbnAoy4q2b\n6Ia3CYV5/Y0zqsXOf4/WEYveaq5GQuOOQaZekhydqJNkW2BLZF2UzhL/R+xE2XAIa+A52nb9lUho\nY63hd7GD5d1ZGwPPmW27/iuIUrkLXc/n9xP13rZd/yNgVezoF8n1NjAyyyKETGGl97fGdv1/IlaL\n3h7e+06WM2PgOQtt11+GTMcNo6vVJ1aWsyK+4nvFQjAKgiGBUmoshfnOmGe11vdl1Tf0GOaUKI9v\nlqrE9lqJb6b/Hb3KsU2Zba/VslPb9bdDfA0ORLz0N62iWWxVqMkc3iZuRuawP2u7/g6JKI9RSCTR\nYoodhOP/YgNKK2Ix2zZJzjnINMN2NbaL/4uiaIUE/0EUhB3pqiCkMwl2IscjXZZFJ/B2iW1xRtWR\nZWTqDcwps63U9f8Q0TSN7fp/iK0PtuvviPjmrCHyR1qrICilNkTmHjZDLsDke/JzOtwnzY1KqXcR\nR4cFiBab9XlRT87I19dQSo1GNPz0tJOxHvR8mhrOVobB0XuAOBiWo1zmwaqdXW3X3x+4BzGVv4SM\npN9AnPEg21McxMIArTs2dRN4zoe26/8NOA6xGJwfbYqV9b8GnrM81Sz+Lz5A0qOXo2y4Ww3MoT4F\nIY4+KTfNF58TaXN4VthstVNDitLKcdxvOjKmEj0tv0M953fs87E3Eul0B2JliBflOzfwnFcA+iul\n5iEmwQFNEBaK569L0amUWggcqrXO8gg2FKHG2CdW4Uem9XvBlUflu7RUaiByU3lPa92ZKN8cSav8\nfUQBTHKr1rrqueIsxp18/eg1azrLjSYB6NfRsY3G6Is9nDjDYxh4zundvbMotvtm5N50duA5P09t\nT0faJIkfirU+zNrF1YiC4FBQECZE73/JqB//F+u14r+ImIVEOB1iu/6ZNfhwzEamp7YuU2e7RN1m\noZBnW5YVIfZ1qNWfotw51yuIph++hET0bAkcikwpTAEuCjxnSly3PzIP0a8NcnYgD6SBlSoaIhQX\nV2UtVup24LBU6S7IyG+NUuodZP52awojrTSvIjeshlij9XdQKh2jXYRRDtpGfOCruQfEpmzbdn0V\ndP9iPLsgjnEryI67Lzd/PCt6/5Tt+v3LJXAqQ/z7ut2ZO/Ccx23XfxUYZbt+7D8xCngl8Jwsa80s\nZBS8ke36O7cg4ybA5UgegJ0QE/XN5auvZRaiIMQRF12wXX8TCv9ls6eERpOtIMR+EXNS5YsRh8dS\nTo/V+CzUck21i6uR5++4wHNeKFXJRDH0PfoR5fqmtHKwDDhCa73O5JA3lCSeF04v6Z3FPRTMzBO7\nS6AE8Q12PbomgYn5Xpm29yMPhu2RUK96iKMn9q6zfa38JXo/NHoly7oQeM5K4Iro60+jKINuJVJC\nYu/439uuX805A4VkWyfbrp+V/MdFnOmeCmpfFKsSRYMc2/U/DeyG3OfSjpOx5WmfVHmcuXFcFfus\n5ZpqObbrb45EtswqpxyAcVI0FDMbOFxrXeT9a+heopvnEArzolvashT0wmbEapdgGpIU5XDb9R9F\nYqrXQyyL8wPPeTeuGHjOMtv1T0VuqldH6W//jigNmyHOcAcBgwPPcZog20xkRLcJ8DPb9S9CRqM7\nI7kDvoDE1hfdxwLPWWy7/plI7oCLbNffHXm4zUQeRtsjGRP/EXhOKSfcABkpj49i5+9G/putgHmB\n5yxIN4iSF21C14V6Rtiu/yYSW15uHv4a4P8oKAedlPcvOAv4KmItfCTKKfAS8v8NR1ILHwnsl5GA\nqF7ORdYaGA48HGWyfBqYgViDRwCfQR72PkDgOU9E2TvHI4m0TgeeRczb30DyH2iKcyA0ymrgWNv1\nFyDK1NvIQ3tStN3LCH+9HUl29UPb9echFo8BUbtLEKfJtJ9EmgA59ifbrj8bCR3cGDlvZqdTLcPa\n9NCbUMhs2GFLKvPFSAKxZl7/CxEL8pgoA+QMxD+kE3HenAHcHnjOGmNB6Dt8iGjHWSFKK4HHkcQr\nOxvloLXYrr+77fqrEIejNyiE6P0WccZbabv+lFLtG+Ry5AY/BHkYfRDtR9M79QAAA3FJREFUcwYS\nNdCFwHPuQR6a7wHfAR5GMhk+i9xcT6G6KIOKBJ6zFBn9r0GUmBlIWN9ziHf/5yjO/phsfy2yqt4i\nxOJxF3INTI9k/Q7ZoV4xv0PC5LZCci4sQm6g08kYHdquvxy5lt4DwsSmF5EENCts1//Idv3M9LbR\negJTkEx4NvBA1joFifqLIjkeR6wcfwdeQfIFTEEcjHNU79RXkShvw95Ixs5+yOj/KuSh+ATiAHcq\nxb4fxwOXRfJMQc6zlxGF6B3g4MBznmmWnBFzEUfP0xDFcCGiAG+JHKushESXIdanjRBF4l3EInAj\n8vuOqWK/5yNRGaOQFNkfIhkOX6CQgwAA2/W3jkI3V0T7ejjatAFyXb2PXP/LbVnroWGi6bbzo697\nIlaWk5Br93wkk+jztusP7o94Lna7eaoMZU0cVXIAped7eqGZfP2ZqmPFl+ptrVf3n19UpvVMYLRS\nagBywxuEjLwWAe9qrTMXV2mUzs7OP/Xrp+6qt33Hmn5Zue3XNeZTOVoky5nqKiQkrNT883Qk3WvJ\nsMLAc1bbrv9Z5AH6KWRkOB+5wRWlWo7a3Ga7/mOIomAho/GFyI30YeDREru7ELlOq07TG3jONbbr\nT0Nu9KOQm+i/gFsDz3nTdv2fI2FbpdpfHnlpH4LcnHdAlIz5yLErqXgFnvOR7fo28lDYE7lu3kKO\nTdZ9K52xrhTl7knnUVB6SqVeTsr4apQU6lDEbG4hCsFbROsRBE1ebjrwnNB2/XGIGf5gRBkYhPyv\n7yDpjR9MtVkOnGK7/vWIgrFrVPcF4O8ZKbaXIuduWkH6KfL/JbkEsWClfWK2CDzHt10/jzhXjkGO\nyzNIZEiRD00ga3ocaLv+kUh2xo8hSuVURKmIUyiXVGYCWVzKQlJD7xrJNg85b9LX8RLgF6X6SpFU\n9Cpe28gaJgORqEEAbNffDLlvHIQoAndR8NEYilwjExD/nwuUiTQ0GAwGw7qC7fqjEUvKqsBzmhWd\nt05gu/5pyNoifw48J9N5PForxQeeNFMMBoPBYDD0DWL/llvK1In9jt4zCoLBYDAYDH2DePo5MwrJ\ndv0hFPwTnjBRDAaDwWAw9A3+hPgOHRPl25iK+FhsiuR4OARx0Lwf+J1REAwGg8Fg6AMEnvNklL78\nHMRRca/E5hVINNIVwI2B56z6/3ExLRI31pXNAAAAAElFTkSuQmCC\n",
|
|
172
|
"png": "iVBORw0KGgoAAAANSUhEUgAAAggAAABDCAYAAAD5/P3lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAH3AAAB9wBYvxo6AAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURB\nVHic7Z15uBxF1bjfugkJhCWBsCSAJGACNg4QCI3RT1lEAVE+UEBNOmwCDcjHT1wQgU+WD3dFxA1o\nCAikAZFFVlnCjizpsCUjHQjBIAkQlpCFJGS79fvjdGf69vTsc2fuza33eeaZmeqq6jM9vZw6dc4p\nBUwC+tE+fqW1fqmRDpRSHjCggS40sBxYDCxKvL8KzNBaL21EPoPB0DPIWVY/4NlE0ffzYfhgu+Qx\nGHoy/YFjaK+CcB3QkIIAHAWs3wRZsuhUSs0CXgQeBm7UWi/spn0Z+jA5yxpEfYruqnwYllRic5a1\nMaWv8U5gaT4M19Sx396IAnZLfB/SLkEMhp5O/3YL0AvoAHaKXl8HLlZK3QZcpbWe0lbJDOsaHuDU\n0e4u4JAy2wPk/C1JzrKWArOQ0fUtwH35MOysQxaDwbCO0NFuAXoh6wPjgQeUUvcqpUa0WyCDoQls\nCIwBjgfuAV7KWdY+7RWpmJxlXZezrEdylvXxdstiMKzrGAtCYxwI/EspdZbW+g/tFsbQ67kQuBHY\nFNgseh9FV6vCbUAeWBC9PgBeq2EfS6J2MQOBrRDTe5KdgAdzlvW1fBjeUUP/3UbOsoYBE6OvG7VT\nFoOhL9Af+BUwFLkZpV+DaY6V4UPkRpb1+ncT+m8nGwK/V0oN01qf025hDL2XfBi+DLycLMtZVo6u\nCsKfGnSq8/NheEpqHwOBEcDBwJnAsGhTP2ByzrJG5cPwnQb22Sy+0G4BDIa+RH+t9dmlNiqlFKIk\nJJWGi+jq5JPmq8BbJJQArfXqpkncczlbKbVQa/3rdgtiMNRCPgxXAK8Ar+Qs63LgXmDvaPPGwPeA\nH7VJvCRfbLcABkNfouwUg9ZaAwuj178BlFLvVejzgR4WFviM1npcuQpKqf6IyXIjxLS7GzAWuUnu\nXsO+fqWUellr3ZBJdq/jr9+BDn1uve07O9Rz0y6f8PtGZGgWe53oT6SBkZ/q1/nHZy47aloTRTKU\nIR+Gy3OWNR6Zxtg0Kv4KRkEwGPocxgcBiCwcsSI0F5iOhF+ilPok8C3gVGS+thK/VErdrbWuO2ys\ns/+aLZTuOKbe9krrIUCPUBB0B+PQ1P1bdKe6EzAKQgvJh+GbOct6gkJkxM45y+qXDIWMHBhjBWJe\nPgyDWvaRs6zPIVObAG/nw/DpEvUGAp8E9gGGJzbtl7Os7cvs4skqp0V0Yl8jgcOBjyMDhbmIZeWl\nfBg+UUVfReQsayhwELAnsAXi6/E28BxwTz4MP6iyn92RaSCA+/NhuCwqXx9R4MYhU0MfRTK/AjyW\nD8MFGd0ZDFVhFIQKaK3/BXxfKXUlklTq0xWafAI4Driyu2UzGLqRlygoCArYHJif2H4gcFb0+Z2c\nZW2bD8NV1XScs6yNgH8g/jsAPwCeTmzfFPgjYsnbiez71MUVdnMQcF8V4nyUs6whwB8QX4+0s2Ys\n0yPAt/NhGFbRZ/wbzgO+DaxXotqqnGX9GbigCkXhf5CBCsDngYdzljURGQhsWqLN+znL+iFwdT4M\ndYk6BkNJTJhjlWitQ2Bf4P4qqv848t8wGHor6Yd9+ruHJFkC2BI4rIa+D6egHKwmstYlGAxMQCwH\nrRjEPI5ER5S7ZvcFXsxZ1phKneUsawSi8HyH0soB0bbvAM9Ebaplt5xlnYkct1LKAYiFZhJwSQ19\nGwxrMRaEGtBar1RKfRX4JxIzXortou3PN1mE+YgJsSwaeoLHOQCqUy3QSr9eqZ6G/gq2aYVMhqrY\nOfF5FeJwvJZ8GM7JWdY/gC9HRS7wtyr7Pjrx+e6MqYC3KLbU7Qhck/h+FJIKvRRVjfSREXicU8EH\npgAvIIqLBZwGfC7avl5Uf29KkLOsTZCMq8npj9sQx89no37HIlaAODplNPBIzrJ2z4dhNVlaT0HC\nXwFmIkrAC4if2PaIz8/3KCgn385Z1pX5MJxeRd8Gw1qMglAjWutlSqnTgUcqVP0SzVYQtP5mcMXE\nSvvtUUy9YsK5QEWHy7EnTB6lOtSsFohkqEDOsgYAdqJoagkT9Z8pKAj75yzr4/kwnF2h748ho/GY\nq9J1oqiKLj4JOctKK8Yz8mH4Yrl9VcnHkXVYTsyHoZ8WJWdZNyPThbF5/3M5yzowH4alpi9+T0E5\nWA18Nx+Gf0zVeRG4KmdZ90R9bwCMRKwyX69C5h2j91uA4/JhuCSxbTYwJWdZtwNPIFbifsAFSISZ\nwVA1ZoqhDrTWjyIjjXIc3ApZDIZu4ELgY4nvt5Wody8wJ/qsgBOr6HsihfvOfCRrY7v5dYZyAECk\nGP0ISEZmZYZ55yxrB8SyEXNxhnKQ7Pt64H8TRUfmLGuXKmWeC4xPKQfJvp9CLCJlZTYYymEUhPq5\ntcL2XVsihcHQJHKWtU3Osi5GnAZj5iKWgiKitRouTxQdl7OscnPu0HV64dp8GLY7R8pyxEGxJPkw\nfBcZ9ceUSvN8IoV76upK/UZcgawcG3NKqYopfleFU+gDic/b5SzLWIwNNWFOmPqp5CG9sVJqPa11\nVZ7dBkOL2D1nWcmcBkOR8MFtgM/QdTXJZcCR+TBcXqa/SYj5egAFZ8VMX4ScZe2FRPnEXF2z9M3n\n3nwYVsrtAmK6/0z0uVR4ZXLtivvzYfhGpU7zYbgkZ1k3ACdHRQdWIQsUO3ZmkUzB3Q/xjaolLbeh\nj2MUhDrRWr+mlFpJ+eV5hyIxz4YWs98Fj/Rf8uZbozo0/ZYt7D8rf9ORK9stUw/hU9GrEnMAp1R+\ngph8GL4bzdNPiIpOorSzYtJ68FS1IYPdTLWp3hcnPm+Q3pizrA7E+TCmFn+aZN0dcpY1LB+G5e4b\ny6rM8bA49X39GmQyGMwUQ4NUGnkMrbDd0A3sdeLk4z6cN+89pTtDTWd+gyErF+7pTv5eu+XqJbyK\nTDHsmg/DJ6tsc2ni8+dzljUqXSGaevhmoqjIObFNVBzlV8kQug4W5tbQNl13WGatAv+poW+DoW6M\nBaExPgC2LrO9nHWhpSilDqI4NPMhrfXUJvS9M/DfqeJXtdY3N9p3rex50uQ9lFKT6BrTvoFCXbTX\nyZNfmnrZxHtbLVMP4xng74nvK5DzeD7wfIWRayb5MHwiZ1kzgF0oOCuemar2ZQoK8zLgr7Xup5t4\ns0n9DEl9b0RBSPeV5q0a+jYY6sYoCI1RacnZ91siRXUMAH6eKnsYicdulDOAY1NlpzWh35pRqG9R\nIuGN7uw4AfG878s8nw/DX3RDv5dScGY8NmdZP86HYXJaJzm9cHMp7/s2UHdK9BTpKaxBNbRN163k\nt9Rux05DH8FMMTTGZhW2v9sSKarjbopNk/sqpUY30qlSahCSGS/JCuD6RvqtF6UpMm/HaHTJbYaG\nmQzED/0umRVzlrUZhXwJ0HOmF5pJOlXyxzJrZbNt6rtZP8HQIzAKQp0opTZAlsItxTKtdTnv75YS\nLR7lpYqrjV0vx2EUH4fbtdZtucnpMqOrDjPy6jYii8DkRFHSYnAEhem22cBjrZKrVeTDcCldTf/p\nh345ksrEGprnF2EwNIRREOrnMxW2z2uJFLVxJcXmy2OVUo34ShydUda+EaIq7T2u0SZTY/eSdFY8\nMGdZm0efk86J6/LCQUnFp5pIkZjkcvQz8mH4YZPkMRgawigI9VNp7v7BlkhRA1rr+RQneNqC2hba\nWYtSajiS9z3JXLomaGktq/VllLIUdKqSWe0MjZMPwxlIel8Q/6Zv5CxrGIX8AJ10XU+hFtIRQ+UW\nKWoXyYyTu+Qsa79KDXKWNRpJyx5zZ9OlMhjqxCgIdaCU6g98o0K1npBCNotLM8rcOvuagCRgSXKN\n1rozq3IrCCZNfFkrfRjotWsCaJinUBODK51/tkuuPkTy/DoYOIDCfeb+fBjW4t2/lqhdcmRdbUri\nVnILXS2HZ1WRvfAcCk61K4A/dYdgBkM9GAWhPr5F6XSrIBf6Qy2SpSaidSReShV/XilV7veUIj29\noOkB2fGmXT7x7sCbOGpFf7VZx4A1m0/znG2nehMyc+0bms7NFJxzxwH7J7Y1OvWUPG9/mLOsLRvs\nr6lEaaOT0TtfBB5ITLWsJWdZg3KWdRNwTKL4wnwYzu9mMQ2GqjFhjjWilBqBpJYtx51a66UV6rST\nS+maJz52VvxRdvVilFK7UbzexGNa67Kr+bWS6X+ekPYs79HkLGt34JOI+Xyz6D2d1vfMnGUdini6\nL0C851/Oh2HD+SyaQT4MV+YsaxJyLm1Gwf9gAXBHg93/JNHHtsArOcuajCztPBDYCkkytBXg5sOw\n5QmF8mF4W86yLgK+HxXtC8zKWVaALMm8CslHsicS7RFzL8VhyAZDWzEKQg0opbYE7qd8prPVdF2h\nrSdyLfALYMNE2XFKqR/XsHbEURll62L4Wiv5PuBUqPPF6JXkLuCQbpGoPi4HfohYKGMHWD9axrlu\n8mF4Z7RuwfioaDBwaonqRemQW0U+DH+Qs6xFwHnIFNwQsv+3mMnA8dHiVwZDj8FMMVSJUuow4DkK\na7GX4gqt9cstEKlutNaL6boULMho5tBq2iul+lH8IFuCmJcNfZx8GM6hOCFVU5THfBhOQHxfylkH\n3gY+asb+6iUfhhcCewC3l5BlFbJk/P75MDwqlVTKYOgRKK1rizhSSk2h67ximo1abV5XSi2n9EIk\nz2itx5XYVqnfQcjI7DiqW2XtfeCTUbRA3ex50nWfUrqjeJEcrfcLrpj4SCN9xyilxgDPp4of0Fof\nUEXbg4B/pIqv1FrXnVNh7AmTR3V0qIwwRH1E4E28pd5+De0hZ1m/Bb4bfX0+H4Z7dMM+hgGjkDwC\nS5FpjFk9bR4/Z1mDkGmF4VHR20g4Y3oxJYOhR9EXphg6lFLlVjFbH0mZvDGwCTAayCFe0ntTOZ1y\nzDLgkEaVg1ahtX5BKfUU8OlE8ReUUjtorSstCduzch8YehSR5/6ERFG3nBvRuhE9frXUfBguA6pd\n+Mpg6DH0BQXBBro7o+Ea4Bta66e6eT/N5lK6KggKOAE4u1QDpdTGFOdNmNkLf7uh+zgYcRQEMa+3\nJe22wWBoDOOD0DhLgYla67vaLUgd3ETxglLHRXkeSnEExQ5gbQ9tNPQokis5TsqHoVlbwGDohRgF\noTECYHet9Y3tFqQetNYrKDb/DqN46eYk6emF1UhUhMFAzrImUEhDvgr4VRvFMRgMDWAUhPpYAvwf\n8Bmte31+/8uQBEdJMjMrKqW2o5A2N+YfWusePw9s6F5yltWRs6zxwKRE8RXtyEVgMBiaQ1/wQWgm\neWTe/jqtdU9Zz74htNavKaXuAw5KFB+glBqptZ6Tqj6RQlrYGDO90AfJWdY5wNeQFQwHIAmetk5U\neZFCsiCDwdALMQpCed5AphEC4NF12BHvUroqCAoJ7TwvVS+d++BdJEmPoe+xKRLnn0UeODwfhm3N\nRWAwGBqjLygIbwN/LbNdI1MGH6ReL/eWkMUmcDeSeGa7RNlRSqnzdZQoQym1C7Bzqt11NWReNKxb\nzEMU6GHAesBiYCaSLOviaF0Cg8HQi+kLCsLrWuvT2y1ET0ZrvUYp5SG57mO2Bz4LPB59/2ZRQ5P7\noM+SD8OLgYvbLYfBYOg+jJOiIeZKxOs8STJiIb28daC1/lf3imQwGAyGdmEUBAMA0XTKraniI5VS\nA6O0zOnloI31wGAwGNZhjIJgSHJp6vtgJBNlehW65cANLZHIYDAYDG3BKAiGtWitHwVeShV/muLF\nuW7VWi9qjVQGg8FgaAd9wUnRUBuXAn9IfN8f+FyqTo/OfbDnSX8brDpXnqEUe2ropzQvdtDx66ev\nGN9XolIMPQDb9T8LrBd4zsPtlsXQe7Bd/0BgQeA5QbtlMQqCIc21wC+ADaPv6WWu5wAPtVKgWtjt\n6Os2XG/9jhdQjIzTQ2rFF9bQecy4E2/I9UQlwXb9LYDDK1R7K/Cc21shj6FxbNcfDjwGKNv1Rwae\n83q7ZWo2tusPBb6ELGW9BbAICX99Gngs8Jx0hlZDBWzXHwvcC6ywXX9o4DlL2ymPURAMXdBaL1ZK\n+ZRItwz8Jc6N0BMZMFB9GxiZsWnzTjrPAH7QWomqYgTF/h9pngC6RUGwXf+XwC2B50ztjv57M7br\nXwJMCjxneo1NP0SWgAfJq7LOYLv+esAFwOkUL9wWM912/d0Dz+lsnWQ9A9v1BwEXAT8PPKfWVOML\nkPVt3kNWQm0rxgfBkEWph5UG/tJCOWqnQ40ttUkrvWcrRamWwHOmAZsguSfGAi9Hmy5AUhgPAz7f\nHfu2XX8k8ENgx+7ovzdju/4uwP9D/peaCDxnCbANsF3gOYubLVu7sF1/AHAHcBaiHDwI/C+ywNsE\n4KfA68BdfVE5iNgbOBmxqtRE4Dn/BoYDnwg8Z02zBasVY0EwFKG1fkEp9RTioJjkIa11zzaVarYq\nvVFt2TpBaiN6oCwB5tiu/2FUPCvwnLTTaLM5oJv77800dGwCz1kXHXkvRNKydwI/Cjzn1+kKtuuf\ni2TX7Ks0et681yxBGsUoCIZSBBQrCL0h98EbdW7rddiuPwoYFJu/bdffFNgL2BZ4DZgWKR5ZbRWS\n2+KIqGiE7fpjUtXmlrtZRdaHscBAYDowM/CckimWbdffFfgw8JzXou/9kfUccojV5MXAcz4s0XYw\nsCsymu8PzAVmBJ7zVqn9pdoPRVKF7wSsAN4EgqzRve36HcAoZDEqgO0zjs3rged8kGo3gOJ05ADT\ns0bTkan+k9HXGaVGjNFxykVf81nH2Hb9Ich/MRJJeT291H9fL7brj6CwANfPspQDgOi3rijRx/rI\nb8kB7wPPBZ4zL6Ne/JvfCDzn/WhufhvgvsBzVkR1dgN2AR4JPGduom38P7wXeM7c6FzfCfgU4iMR\nlFLebNfPIefXzMBzikz8tusPQyx676bljmTeCfhyVLST7frp//TV9Dluu/6GwOhUvTWB58zIkjFq\nsykyNfmfwHMW2K7fLzoWeyDTFPnAc14t1T7qYwNgT+Rc/wi5ZyT/N20UBEMRSqn+wNdTxQspTqTU\n41BaP6yVOipzGzzSYnG6m6uBz0YPv7OQm3dytc35tuuflHZutF3/BuArwEaJ4p/QNdU2wGnAH9M7\njRSTG5CbS5LQdv2joymTLKYBzwHjbNc/DomW2TCxfbXt+sMCz3k/sa8RwM+Qh/X6qf5W2q4/CTit\nzMN1OPB7CopQktW2658YeM5fEvXvRKZzBiXqZaWUPha4JlW2NfB8Rt0hiANfmjWIuf5jiLPfvVm/\nAfmvbgNmB54zKrkheuD+Bjg11Wap7fpnBJ5TybelFk4E+iE+Fb+ptbHt+scg//nGqfJbgeMDz1mY\nKN4UOZYX2q7fSWHhuNdt198ZOBc4MypbbLv+5wPPeTb6PiJqe5ft+ichx3WXRN8rbdc/OfCcrGis\nR4ChiHKSlSn2f4BzkOvitMRvCKJ9DEzU9TPafwGZlkkyBvExSrKUrtdnmoOBycA5tus/iCyat3li\nu7Zd/0rk2ihS1mzXPwT4E3LulaLTKAiGLL6EaMlJbtBat91pphIjFw289t9DVh4N7Jva9EKnWnpJ\nG0RqBXcjCa08YCqy/PJE4L8A33b9HQPPeTNR/0bgvujzGchoywPSq5U+nd6R7fp7IDfRjYDrEE99\nDeyHrPb5lO364xI36zTb2q4/AUnt/SSyLHQHMvJZklQOIhYChyCLid2FWBoGIQrDfwGnAP8Gskzd\nVvSbBgPvIMdpJjLHuxdikXgg1ewa4Jbo84+BHRAFI/3gT9/QQZa+/iIy9zwccVQrSeA5nbbrX4s8\ncI6htIIQK7xdFJLIAvEEYjmYBlyP/E4LeXj92Xb94YHnnFtOjhrYJ3q/vtbpE9v1fwqcjYxUL0GO\n51bI//g1YIzt+mNTSgJIivfNEIXgBOThfx0ySv8Nct7vgzgfj0+1HQf8E5iPKM/vI+vLHA9cZbs+\nJZSEevgDBZ++3yIKzgVI1FeSrCnD6ci0zebAJxCfjmoZjxzXPPBL5By0gW8jCt3sqHwtkYL1N0RB\n/R2ymOG2yHE5CLFAHAu8ahQEQxbfyijrDdML3HTTkWvUBRfsb88bPb6TzjEK+oHKL184YHL+Jmdl\nu+XrJsYBhwaec0dcYLu+hzw0dkcu/AvjbUmLgu36DqIgPB54zuQq9nURMgI8LjnyBibZrj8z2s/l\ntuvvVcJJbWvkXDoi8JzbKu0s8JxFtut/IqXgAPzOdv0/IiPnb5KhICAjpMGIEjAhPV1iu35HWsbA\nc25ObD8ZURAeqibENBqpTYnark8FBSHiakRBOMx2/cHpB29kSv4KooSlLRYnIcrBHcBXk7/Fdv0b\ngReAM23Xvz7wnJlVyFIJK3qfXUsj2/U/jiiiq4B9ktEytuv/Fhlpfx2xEnw31XxHYLfAc6bbrv8k\ncny/Bnwz8Jy/2q6/DTLd9F8Zu94ceXAeEHhOvM7MNbbrT0UU4vNs15+c2FY3gedcm/hNP0EUhDvL\nKMrJtkuIFPboWNWiIOSAO4HDE7/Dj67FSxEn21+m2pyOWDpuCDxn7fG2Xf8e4F1EIVsceE5oohgM\nXVBKjURuSEke11qXMhv3OPR553VO9Sb407yJZwTexO8FnnNV/qYj11XlAOCfSeUA1s4D/y36mp7f\nrAvb9fdGLDMzU8pBzMXIg2wsMhLKQiFhgxWVg5gM5SDm+uh9VHqD7fr7IlaNFcAJWb4UPcHLPvCc\n2YgVZn3gyIwq30AsQg8lQ+aiefUfR1/PzlB08sD9Udusfmsi2t+Q6GutjspnIE6L16dDaSN/irMR\np8dTbddPOxK/nwgxTZr8747e30SsEkNL7PvXGQrAVYgvwggK/gK9mXMyfuON0fvWkY9Dkp2i97uT\nhYHnLKNgURsDxknRUMz5FJ8XP22DHIbqSc9pxsSOW8ObtJ89ovdXbNcvpQC8j4zcdiTbnAoy4q2b\n6Ia3CYV5/Y0zqsXOf4/WEYveaq5GQuOOQaZekhydqJNkW2BLZF2UzhL/R+xE2XAIa+A52nb9lUho\nY63hd7GD5d1ZGwPPmW27/iuIUrkLXc/n9xP13rZd/yNgVezoF8n1NjAyyyKETGGl97fGdv1/IlaL\n3h7e+06WM2PgOQtt11+GTMcNo6vVJ1aWsyK+4nvFQjAKgiGBUmoshfnOmGe11vdl1Tf0GOaUKI9v\nlqrE9lqJb6b/Hb3KsU2Zba/VslPb9bdDfA0ORLz0N62iWWxVqMkc3iZuRuawP2u7/g6JKI9RSCTR\nYoodhOP/YgNKK2Ix2zZJzjnINMN2NbaL/4uiaIUE/0EUhB3pqiCkMwl2IscjXZZFJ/B2iW1xRtWR\nZWTqDcwps63U9f8Q0TSN7fp/iK0PtuvviPjmrCHyR1qrICilNkTmHjZDLsDke/JzOtwnzY1KqXcR\nR4cFiBab9XlRT87I19dQSo1GNPz0tJOxHvR8mhrOVobB0XuAOBiWo1zmwaqdXW3X3x+4BzGVv4SM\npN9AnPEg21McxMIArTs2dRN4zoe26/8NOA6xGJwfbYqV9b8GnrM81Sz+Lz5A0qOXo2y4Ww3MoT4F\nIY4+KTfNF58TaXN4VthstVNDitLKcdxvOjKmEj0tv0M953fs87E3Eul0B2JliBflOzfwnFcA+iul\n5iEmwQFNEBaK569L0amUWggcqrXO8gg2FKHG2CdW4Uem9XvBlUflu7RUaiByU3lPa92ZKN8cSav8\nfUQBTHKr1rrqueIsxp18/eg1azrLjSYB6NfRsY3G6Is9nDjDYxh4zundvbMotvtm5N50duA5P09t\nT0faJIkfirU+zNrF1YiC4FBQECZE73/JqB//F+u14r+ImIVEOB1iu/6ZNfhwzEamp7YuU2e7RN1m\noZBnW5YVIfZ1qNWfotw51yuIph++hET0bAkcikwpTAEuCjxnSly3PzIP0a8NcnYgD6SBlSoaIhQX\nV2UtVup24LBU6S7IyG+NUuodZP52awojrTSvIjeshlij9XdQKh2jXYRRDtpGfOCruQfEpmzbdn0V\ndP9iPLsgjnEryI67Lzd/PCt6/5Tt+v3LJXAqQ/z7ut2ZO/Ccx23XfxUYZbt+7D8xCngl8Jwsa80s\nZBS8ke36O7cg4ybA5UgegJ0QE/XN5auvZRaiIMQRF12wXX8TCv9ls6eERpOtIMR+EXNS5YsRh8dS\nTo/V+CzUck21i6uR5++4wHNeKFXJRDH0PfoR5fqmtHKwDDhCa73O5JA3lCSeF04v6Z3FPRTMzBO7\nS6AE8Q12PbomgYn5Xpm29yMPhu2RUK96iKMn9q6zfa38JXo/NHoly7oQeM5K4Iro60+jKINuJVJC\nYu/439uuX805A4VkWyfbrp+V/MdFnOmeCmpfFKsSRYMc2/U/DeyG3OfSjpOx5WmfVHmcuXFcFfus\n5ZpqObbrb45EtswqpxyAcVI0FDMbOFxrXeT9a+heopvnEArzolvashT0wmbEapdgGpIU5XDb9R9F\nYqrXQyyL8wPPeTeuGHjOMtv1T0VuqldH6W//jigNmyHOcAcBgwPPcZog20xkRLcJ8DPb9S9CRqM7\nI7kDvoDE1hfdxwLPWWy7/plI7oCLbNffHXm4zUQeRtsjGRP/EXhOKSfcABkpj49i5+9G/putgHmB\n5yxIN4iSF21C14V6Rtiu/yYSW15uHv4a4P8oKAedlPcvOAv4KmItfCTKKfAS8v8NR1ILHwnsl5GA\nqF7ORdYaGA48HGWyfBqYgViDRwCfQR72PkDgOU9E2TvHI4m0TgeeRczb30DyH2iKcyA0ymrgWNv1\nFyDK1NvIQ3tStN3LCH+9HUl29UPb9echFo8BUbtLEKfJtJ9EmgA59ifbrj8bCR3cGDlvZqdTLcPa\n9NCbUMhs2GFLKvPFSAKxZl7/CxEL8pgoA+QMxD+kE3HenAHcHnjOGmNB6Dt8iGjHWSFKK4HHkcQr\nOxvloLXYrr+77fqrEIejNyiE6P0WccZbabv+lFLtG+Ry5AY/BHkYfRDtR9M79QAAA3FJREFUcwYS\nNdCFwHPuQR6a7wHfAR5GMhk+i9xcT6G6KIOKBJ6zFBn9r0GUmBlIWN9ziHf/5yjO/phsfy2yqt4i\nxOJxF3INTI9k/Q7ZoV4xv0PC5LZCci4sQm6g08kYHdquvxy5lt4DwsSmF5EENCts1//Idv3M9LbR\negJTkEx4NvBA1joFifqLIjkeR6wcfwdeQfIFTEEcjHNU79RXkShvw95Ixs5+yOj/KuSh+ATiAHcq\nxb4fxwOXRfJMQc6zlxGF6B3g4MBznmmWnBFzEUfP0xDFcCGiAG+JHKushESXIdanjRBF4l3EInAj\n8vuOqWK/5yNRGaOQFNkfIhkOX6CQgwAA2/W3jkI3V0T7ejjatAFyXb2PXP/LbVnroWGi6bbzo697\nIlaWk5Br93wkk+jztusP7o94Lna7eaoMZU0cVXIAped7eqGZfP2ZqmPFl+ptrVf3n19UpvVMYLRS\nagBywxuEjLwWAe9qrTMXV2mUzs7OP/Xrp+6qt33Hmn5Zue3XNeZTOVoky5nqKiQkrNT883Qk3WvJ\nsMLAc1bbrv9Z5AH6KWRkOB+5wRWlWo7a3Ga7/mOIomAho/GFyI30YeDREru7ELlOq07TG3jONbbr\nT0Nu9KOQm+i/gFsDz3nTdv2fI2FbpdpfHnlpH4LcnHdAlIz5yLErqXgFnvOR7fo28lDYE7lu3kKO\nTdZ9K52xrhTl7knnUVB6SqVeTsr4apQU6lDEbG4hCsFbROsRBE1ebjrwnNB2/XGIGf5gRBkYhPyv\n7yDpjR9MtVkOnGK7/vWIgrFrVPcF4O8ZKbaXIuduWkH6KfL/JbkEsWClfWK2CDzHt10/jzhXjkGO\nyzNIZEiRD00ga3ocaLv+kUh2xo8hSuVURKmIUyiXVGYCWVzKQlJD7xrJNg85b9LX8RLgF6X6SpFU\n9Cpe28gaJgORqEEAbNffDLlvHIQoAndR8NEYilwjExD/nwuUiTQ0GAwGw7qC7fqjEUvKqsBzmhWd\nt05gu/5pyNoifw48J9N5PForxQeeNFMMBoPBYDD0DWL/llvK1In9jt4zCoLBYDAYDH2DePo5MwrJ\ndv0hFPwTnjBRDAaDwWAw9A3+hPgOHRPl25iK+FhsiuR4OARx0Lwf+J1REAwGg8Fg6AMEnvNklL78\nHMRRca/E5hVINNIVwI2B56z6/3ExLRI31pXNAAAAAElFTkSuQmCC\n",
|
|
170
|
"text": [
|
|
173
|
"text": [
|
|
171
|
"<IPython.core.display.Image at 0x106a91e10>"
|
|
174
|
"<IPython.core.display.Image object>"
|
|
172
|
]
|
|
175
|
]
|
|
173
|
}
|
|
176
|
}
|
|
174
|
],
|
|
177
|
],
|
|
175
|
"prompt_number": 7
|
|
178
|
"prompt_number": 8
|
|
176
|
},
|
|
179
|
},
|
|
177
|
{
|
|
180
|
{
|
|
178
|
"cell_type": "markdown",
|
|
181
|
"cell_type": "markdown",
|
|
179
|
"metadata": {},
|
|
182
|
"metadata": {},
|
|
180
|
"source": [
|
|
183
|
"source": [
|
|
181
|
"An image can also be displayed from raw data or a url"
|
|
184
|
"An image can also be displayed from raw data or a URL."
|
|
182
|
]
|
|
185
|
]
|
|
183
|
},
|
|
186
|
},
|
|
184
|
{
|
|
187
|
{
|
|
@@
-196,19
+199,19
b''
|
|
196
|
],
|
|
199
|
],
|
|
197
|
"metadata": {},
|
|
200
|
"metadata": {},
|
|
198
|
"output_type": "pyout",
|
|
201
|
"output_type": "pyout",
|
|
199
|
"prompt_number": 8,
|
|
202
|
"prompt_number": 9,
|
|
200
|
"text": [
|
|
203
|
"text": [
|
|
201
|
"<IPython.core.display.Image at 0x107005150>"
|
|
204
|
"<IPython.core.display.Image object>"
|
|
202
|
]
|
|
205
|
]
|
|
203
|
}
|
|
206
|
}
|
|
204
|
],
|
|
207
|
],
|
|
205
|
"prompt_number": 8
|
|
208
|
"prompt_number": 9
|
|
206
|
},
|
|
209
|
},
|
|
207
|
{
|
|
210
|
{
|
|
208
|
"cell_type": "markdown",
|
|
211
|
"cell_type": "markdown",
|
|
209
|
"metadata": {},
|
|
212
|
"metadata": {},
|
|
210
|
"source": [
|
|
213
|
"source": [
|
|
211
|
"SVG images are also supported out of the box (since modern browsers do a good job of rendering them):"
|
|
214
|
"SVG images are also supported out of the box."
|
|
212
|
]
|
|
215
|
]
|
|
213
|
},
|
|
216
|
},
|
|
214
|
{
|
|
217
|
{
|
|
@@
-216,7
+219,7
b''
|
|
216
|
"collapsed": false,
|
|
219
|
"collapsed": false,
|
|
217
|
"input": [
|
|
220
|
"input": [
|
|
218
|
"from IPython.display import SVG\n",
|
|
221
|
"from IPython.display import SVG\n",
|
|
219
|
"SVG(filename='images/python_logo.svg')"
|
|
222
|
"SVG(filename='../images/python_logo.svg')"
|
|
220
|
],
|
|
223
|
],
|
|
221
|
"language": "python",
|
|
224
|
"language": "python",
|
|
222
|
"metadata": {},
|
|
225
|
"metadata": {},
|
|
@@
-224,7
+227,7
b''
|
|
224
|
{
|
|
227
|
{
|
|
225
|
"metadata": {},
|
|
228
|
"metadata": {},
|
|
226
|
"output_type": "pyout",
|
|
229
|
"output_type": "pyout",
|
|
227
|
"prompt_number": 9,
|
|
230
|
"prompt_number": 10,
|
|
228
|
"svg": [
|
|
231
|
"svg": [
|
|
229
|
"<svg height=\"115.02pt\" id=\"svg2\" inkscape:version=\"0.43\" sodipodi:docbase=\"/home/sdeibel\" sodipodi:docname=\"logo-python-generic.svg\" sodipodi:version=\"0.32\" version=\"1.0\" width=\"388.84pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:cc=\"http://web.resource.org/cc/\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:inkscape=\"http://www.inkscape.org/namespaces/inkscape\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:sodipodi=\"http://inkscape.sourceforge.net/DTD/sodipodi-0.dtd\" xmlns:svg=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n",
|
|
232
|
"<svg height=\"115.02pt\" id=\"svg2\" inkscape:version=\"0.43\" sodipodi:docbase=\"/home/sdeibel\" sodipodi:docname=\"logo-python-generic.svg\" sodipodi:version=\"0.32\" version=\"1.0\" width=\"388.84pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:cc=\"http://web.resource.org/cc/\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:inkscape=\"http://www.inkscape.org/namespaces/inkscape\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:sodipodi=\"http://inkscape.sourceforge.net/DTD/sodipodi-0.dtd\" xmlns:svg=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n",
|
|
230
|
" <metadata id=\"metadata2193\">\n",
|
|
233
|
" <metadata id=\"metadata2193\">\n",
|
|
@@
-289,150
+292,25
b''
|
|
289
|
"</svg>"
|
|
292
|
"</svg>"
|
|
290
|
],
|
|
293
|
],
|
|
291
|
"text": [
|
|
294
|
"text": [
|
|
292
|
"<IPython.core.display.SVG at 0x107005250>"
|
|
295
|
"<IPython.core.display.SVG object>"
|
|
293
|
]
|
|
|
|
|
294
|
}
|
|
|
|
|
295
|
],
|
|
|
|
|
296
|
"prompt_number": 9
|
|
|
|
|
297
|
},
|
|
|
|
|
298
|
{
|
|
|
|
|
299
|
"cell_type": "heading",
|
|
|
|
|
300
|
"level": 2,
|
|
|
|
|
301
|
"metadata": {},
|
|
|
|
|
302
|
"source": [
|
|
|
|
|
303
|
"Links to local files"
|
|
|
|
|
304
|
]
|
|
|
|
|
305
|
},
|
|
|
|
|
306
|
{
|
|
|
|
|
307
|
"cell_type": "markdown",
|
|
|
|
|
308
|
"metadata": {},
|
|
|
|
|
309
|
"source": [
|
|
|
|
|
310
|
"If we want to create a link to one of them, we can call use the `FileLink` object."
|
|
|
|
|
311
|
]
|
|
|
|
|
312
|
},
|
|
|
|
|
313
|
{
|
|
|
|
|
314
|
"cell_type": "code",
|
|
|
|
|
315
|
"collapsed": false,
|
|
|
|
|
316
|
"input": [
|
|
|
|
|
317
|
"from IPython.display import FileLink, FileLinks\n",
|
|
|
|
|
318
|
"FileLink('Running Code.ipynb')"
|
|
|
|
|
319
|
],
|
|
|
|
|
320
|
"language": "python",
|
|
|
|
|
321
|
"metadata": {},
|
|
|
|
|
322
|
"outputs": [
|
|
|
|
|
323
|
{
|
|
|
|
|
324
|
"html": [
|
|
|
|
|
325
|
"<a href='Running Code.ipynb' target='_blank'>Running Code.ipynb</a><br>"
|
|
|
|
|
326
|
],
|
|
|
|
|
327
|
"metadata": {},
|
|
|
|
|
328
|
"output_type": "pyout",
|
|
|
|
|
329
|
"prompt_number": 10,
|
|
|
|
|
330
|
"text": [
|
|
|
|
|
331
|
"/Users/bgranger/Documents/Computing/IPython/code/ipython/examples/Notebook/Running Code.ipynb"
|
|
|
|
|
332
|
]
|
|
296
|
]
|
|
333
|
}
|
|
297
|
}
|
|
334
|
],
|
|
298
|
],
|
|
335
|
"prompt_number": 10
|
|
299
|
"prompt_number": 10
|
|
336
|
},
|
|
300
|
},
|
|
337
|
{
|
|
301
|
{
|
|
338
|
"cell_type": "markdown",
|
|
|
|
|
339
|
"metadata": {},
|
|
|
|
|
340
|
"source": [
|
|
|
|
|
341
|
"Alternatively, if we want to link to all of the files in a directory, we can use the `FileLinks` object, passing `'.'` to indicate that we want links generated for the current working directory. Note that if there were other directories under the current directory, `FileLinks` would work in a recursive manner creating links to files in all sub-directories as well."
|
|
|
|
|
342
|
]
|
|
|
|
|
343
|
},
|
|
|
|
|
344
|
{
|
|
|
|
|
345
|
"cell_type": "code",
|
|
|
|
|
346
|
"collapsed": false,
|
|
|
|
|
347
|
"input": [
|
|
|
|
|
348
|
"FileLinks('.')"
|
|
|
|
|
349
|
],
|
|
|
|
|
350
|
"language": "python",
|
|
|
|
|
351
|
"metadata": {},
|
|
|
|
|
352
|
"outputs": [
|
|
|
|
|
353
|
{
|
|
|
|
|
354
|
"html": [
|
|
|
|
|
355
|
"./<br>\n",
|
|
|
|
|
356
|
" <a href='./Animations Using clear_output.ipynb' target='_blank'>Animations Using clear_output.ipynb</a><br>\n",
|
|
|
|
|
357
|
" <a href='./Basic Output.ipynb' target='_blank'>Basic Output.ipynb</a><br>\n",
|
|
|
|
|
358
|
" <a href='./Connecting with the Qt Console.ipynb' target='_blank'>Connecting with the Qt Console.ipynb</a><br>\n",
|
|
|
|
|
359
|
" <a href='./Custom Display Logic.ipynb' target='_blank'>Custom Display Logic.ipynb</a><br>\n",
|
|
|
|
|
360
|
" <a href='./Display System.ipynb' target='_blank'>Display System.ipynb</a><br>\n",
|
|
|
|
|
361
|
" <a href='./Importing Notebooks.ipynb' target='_blank'>Importing Notebooks.ipynb</a><br>\n",
|
|
|
|
|
362
|
" <a href='./Index.ipynb' target='_blank'>Index.ipynb</a><br>\n",
|
|
|
|
|
363
|
" <a href='./Markdown Cells.ipynb' target='_blank'>Markdown Cells.ipynb</a><br>\n",
|
|
|
|
|
364
|
" <a href='./Plotting with Matplotlib.ipynb' target='_blank'>Plotting with Matplotlib.ipynb</a><br>\n",
|
|
|
|
|
365
|
" <a href='./Progress Bars.ipynb' target='_blank'>Progress Bars.ipynb</a><br>\n",
|
|
|
|
|
366
|
" <a href='./Raw Input.ipynb' target='_blank'>Raw Input.ipynb</a><br>\n",
|
|
|
|
|
367
|
" <a href='./Running Code.ipynb' target='_blank'>Running Code.ipynb</a><br>\n",
|
|
|
|
|
368
|
" <a href='./SymPy.ipynb' target='_blank'>SymPy.ipynb</a><br>\n",
|
|
|
|
|
369
|
" <a href='./Trapezoid Rule.ipynb' target='_blank'>Trapezoid Rule.ipynb</a><br>\n",
|
|
|
|
|
370
|
" <a href='./Typesetting Math Using MathJax.ipynb' target='_blank'>Typesetting Math Using MathJax.ipynb</a><br>\n",
|
|
|
|
|
371
|
" <a href='./User Interface.ipynb' target='_blank'>User Interface.ipynb</a><br>\n",
|
|
|
|
|
372
|
"./images/<br>\n",
|
|
|
|
|
373
|
" <a href='./images/animation.m4v' target='_blank'>animation.m4v</a><br>\n",
|
|
|
|
|
374
|
" <a href='./images/command_mode.png' target='_blank'>command_mode.png</a><br>\n",
|
|
|
|
|
375
|
" <a href='./images/edit_mode.png' target='_blank'>edit_mode.png</a><br>\n",
|
|
|
|
|
376
|
" <a href='./images/menubar_toolbar.png' target='_blank'>menubar_toolbar.png</a><br>\n",
|
|
|
|
|
377
|
" <a href='./images/python_logo.svg' target='_blank'>python_logo.svg</a><br>\n",
|
|
|
|
|
378
|
"./nbpackage/<br>\n",
|
|
|
|
|
379
|
" <a href='./nbpackage/__init__.py' target='_blank'>__init__.py</a><br>\n",
|
|
|
|
|
380
|
" <a href='./nbpackage/mynotebook.ipynb' target='_blank'>mynotebook.ipynb</a><br>\n",
|
|
|
|
|
381
|
"./nbpackage/nbs/<br>\n",
|
|
|
|
|
382
|
" <a href='./nbpackage/nbs/__init__.py' target='_blank'>__init__.py</a><br>\n",
|
|
|
|
|
383
|
" <a href='./nbpackage/nbs/other.ipynb' target='_blank'>other.ipynb</a><br>"
|
|
|
|
|
384
|
],
|
|
|
|
|
385
|
"metadata": {},
|
|
|
|
|
386
|
"output_type": "pyout",
|
|
|
|
|
387
|
"prompt_number": 11,
|
|
|
|
|
388
|
"text": [
|
|
|
|
|
389
|
"./\n",
|
|
|
|
|
390
|
" Animations Using clear_output.ipynb\n",
|
|
|
|
|
391
|
" Basic Output.ipynb\n",
|
|
|
|
|
392
|
" Connecting with the Qt Console.ipynb\n",
|
|
|
|
|
393
|
" Custom Display Logic.ipynb\n",
|
|
|
|
|
394
|
" Display System.ipynb\n",
|
|
|
|
|
395
|
" Importing Notebooks.ipynb\n",
|
|
|
|
|
396
|
" Index.ipynb\n",
|
|
|
|
|
397
|
" Markdown Cells.ipynb\n",
|
|
|
|
|
398
|
" Plotting with Matplotlib.ipynb\n",
|
|
|
|
|
399
|
" Progress Bars.ipynb\n",
|
|
|
|
|
400
|
" Raw Input.ipynb\n",
|
|
|
|
|
401
|
" Running Code.ipynb\n",
|
|
|
|
|
402
|
" SymPy.ipynb\n",
|
|
|
|
|
403
|
" Trapezoid Rule.ipynb\n",
|
|
|
|
|
404
|
" Typesetting Math Using MathJax.ipynb\n",
|
|
|
|
|
405
|
" User Interface.ipynb\n",
|
|
|
|
|
406
|
"./images/\n",
|
|
|
|
|
407
|
" animation.m4v\n",
|
|
|
|
|
408
|
" command_mode.png\n",
|
|
|
|
|
409
|
" edit_mode.png\n",
|
|
|
|
|
410
|
" menubar_toolbar.png\n",
|
|
|
|
|
411
|
" python_logo.svg\n",
|
|
|
|
|
412
|
"./nbpackage/\n",
|
|
|
|
|
413
|
" __init__.py\n",
|
|
|
|
|
414
|
" mynotebook.ipynb\n",
|
|
|
|
|
415
|
"./nbpackage/nbs/\n",
|
|
|
|
|
416
|
" __init__.py\n",
|
|
|
|
|
417
|
" other.ipynb"
|
|
|
|
|
418
|
]
|
|
|
|
|
419
|
}
|
|
|
|
|
420
|
],
|
|
|
|
|
421
|
"prompt_number": 11
|
|
|
|
|
422
|
},
|
|
|
|
|
423
|
{
|
|
|
|
|
424
|
"cell_type": "heading",
|
|
302
|
"cell_type": "heading",
|
|
425
|
"level": 3,
|
|
303
|
"level": 3,
|
|
426
|
"metadata": {},
|
|
304
|
"metadata": {},
|
|
427
|
"source": [
|
|
305
|
"source": [
|
|
428
|
"Embedded vs Non-embedded Images"
|
|
306
|
"Embedded vs non-embedded Images"
|
|
429
|
]
|
|
307
|
]
|
|
430
|
},
|
|
308
|
},
|
|
431
|
{
|
|
309
|
{
|
|
432
|
"cell_type": "markdown",
|
|
310
|
"cell_type": "markdown",
|
|
433
|
"metadata": {},
|
|
311
|
"metadata": {},
|
|
434
|
"source": [
|
|
312
|
"source": [
|
|
435
|
"By default, image data is embedded in the Notebook document so that the images can be viewed offline. However it is also possible to tell the `Image` class to only store a *link* to the image. Let's see how this works using a webcam at Berkeley."
|
|
313
|
"By default, image data is embedded in the notebook document so that the images can be viewed offline. However it is also possible to tell the `Image` class to only store a *link* to the image. Let's see how this works using a webcam at Berkeley."
|
|
436
|
]
|
|
314
|
]
|
|
437
|
},
|
|
315
|
},
|
|
438
|
{
|
|
316
|
{
|
|
@@
-488,7
+366,7
b''
|
|
488
|
"cell_type": "markdown",
|
|
366
|
"cell_type": "markdown",
|
|
489
|
"metadata": {},
|
|
367
|
"metadata": {},
|
|
490
|
"source": [
|
|
368
|
"source": [
|
|
491
|
"Here is today's image from same webcam at Berkeley, (refreshed every minutes, if you reload the notebook), visible only with an active internet connection, that should be different from the previous one. Notebooks saved with this kind of image will be lighter and always reflect the current version of the source, but the image won't display offline."
|
|
369
|
"Here is today's image from same webcam at Berkeley, (refreshed every minutes, if you reload the notebook), visible only with an active internet connection, that should be different from the previous one. Notebooks saved with this kind of image will be smaller and always reflect the current version of the source, but the image won't display offline."
|
|
492
|
]
|
|
370
|
]
|
|
493
|
},
|
|
371
|
},
|
|
494
|
{
|
|
372
|
{
|
|
@@
-526,349
+404,259
b''
|
|
526
|
"level": 2,
|
|
404
|
"level": 2,
|
|
527
|
"metadata": {},
|
|
405
|
"metadata": {},
|
|
528
|
"source": [
|
|
406
|
"source": [
|
|
529
|
"Audio"
|
|
407
|
"HTML"
|
|
530
|
]
|
|
408
|
]
|
|
531
|
},
|
|
409
|
},
|
|
532
|
{
|
|
410
|
{
|
|
533
|
"cell_type": "markdown",
|
|
411
|
"cell_type": "markdown",
|
|
534
|
"metadata": {},
|
|
412
|
"metadata": {},
|
|
535
|
"source": [
|
|
413
|
"source": [
|
|
536
|
"IPython makes it easy to work with sounds interactively. The `Audio` display class allows you to create an audio control that is embedded in the Notebook. The interface is analogous to the interface of the `Image` display class. All audio formats supported by the browser can be used. Note that no single format is presently supported in all browsers."
|
|
414
|
"Python objects can declare HTML representations that will be displayed in the Notebook. If you have some HTML you want to display, simply use the `HTML` class."
|
|
537
|
]
|
|
415
|
]
|
|
538
|
},
|
|
416
|
},
|
|
539
|
{
|
|
417
|
{
|
|
540
|
"cell_type": "code",
|
|
418
|
"cell_type": "code",
|
|
541
|
"collapsed": false,
|
|
419
|
"collapsed": false,
|
|
542
|
"input": [
|
|
420
|
"input": [
|
|
543
|
"from IPython.display import Audio\n",
|
|
421
|
"from IPython.display import HTML"
|
|
544
|
"Audio(url=\"http://www.nch.com.au/acm/8k16bitpcm.wav\")"
|
|
422
|
],
|
|
|
|
|
423
|
"language": "python",
|
|
|
|
|
424
|
"metadata": {},
|
|
|
|
|
425
|
"outputs": [],
|
|
|
|
|
426
|
"prompt_number": 11
|
|
|
|
|
427
|
},
|
|
|
|
|
428
|
{
|
|
|
|
|
429
|
"cell_type": "code",
|
|
|
|
|
430
|
"collapsed": false,
|
|
|
|
|
431
|
"input": [
|
|
|
|
|
432
|
"s = \"\"\"<table>\n",
|
|
|
|
|
433
|
"<tr>\n",
|
|
|
|
|
434
|
"<th>Header 1</th>\n",
|
|
|
|
|
435
|
"<th>Header 2</th>\n",
|
|
|
|
|
436
|
"</tr>\n",
|
|
|
|
|
437
|
"<tr>\n",
|
|
|
|
|
438
|
"<td>row 1, cell 1</td>\n",
|
|
|
|
|
439
|
"<td>row 1, cell 2</td>\n",
|
|
|
|
|
440
|
"</tr>\n",
|
|
|
|
|
441
|
"<tr>\n",
|
|
|
|
|
442
|
"<td>row 2, cell 1</td>\n",
|
|
|
|
|
443
|
"<td>row 2, cell 2</td>\n",
|
|
|
|
|
444
|
"</tr>\n",
|
|
|
|
|
445
|
"</table>\"\"\""
|
|
|
|
|
446
|
],
|
|
|
|
|
447
|
"language": "python",
|
|
|
|
|
448
|
"metadata": {},
|
|
|
|
|
449
|
"outputs": [],
|
|
|
|
|
450
|
"prompt_number": 12
|
|
|
|
|
451
|
},
|
|
|
|
|
452
|
{
|
|
|
|
|
453
|
"cell_type": "code",
|
|
|
|
|
454
|
"collapsed": false,
|
|
|
|
|
455
|
"input": [
|
|
|
|
|
456
|
"h = HTML(s)"
|
|
|
|
|
457
|
],
|
|
|
|
|
458
|
"language": "python",
|
|
|
|
|
459
|
"metadata": {},
|
|
|
|
|
460
|
"outputs": [],
|
|
|
|
|
461
|
"prompt_number": 13
|
|
|
|
|
462
|
},
|
|
|
|
|
463
|
{
|
|
|
|
|
464
|
"cell_type": "code",
|
|
|
|
|
465
|
"collapsed": false,
|
|
|
|
|
466
|
"input": [
|
|
|
|
|
467
|
"display(h)"
|
|
545
|
],
|
|
468
|
],
|
|
546
|
"language": "python",
|
|
469
|
"language": "python",
|
|
547
|
"metadata": {},
|
|
470
|
"metadata": {},
|
|
548
|
"outputs": [
|
|
471
|
"outputs": [
|
|
549
|
{
|
|
472
|
{
|
|
550
|
"html": [
|
|
473
|
"html": [
|
|
551
|
"\n",
|
|
474
|
"<table>\n",
|
|
552
|
" <audio controls=\"controls\" >\n",
|
|
475
|
"<tr>\n",
|
|
553
|
" <source src=\"http://www.nch.com.au/acm/8k16bitpcm.wav\" type=\"audio/x-wav\" />\n",
|
|
476
|
"<th>Header 1</th>\n",
|
|
554
|
" Your browser does not support the audio element.\n",
|
|
477
|
"<th>Header 2</th>\n",
|
|
555
|
" </audio>\n",
|
|
478
|
"</tr>\n",
|
|
556
|
" "
|
|
479
|
"<tr>\n",
|
|
|
|
|
480
|
"<td>row 1, cell 1</td>\n",
|
|
|
|
|
481
|
"<td>row 1, cell 2</td>\n",
|
|
|
|
|
482
|
"</tr>\n",
|
|
|
|
|
483
|
"<tr>\n",
|
|
|
|
|
484
|
"<td>row 2, cell 1</td>\n",
|
|
|
|
|
485
|
"<td>row 2, cell 2</td>\n",
|
|
|
|
|
486
|
"</tr>\n",
|
|
|
|
|
487
|
"</table>"
|
|
557
|
],
|
|
488
|
],
|
|
558
|
"metadata": {},
|
|
489
|
"metadata": {},
|
|
559
|
"output_type": "pyout",
|
|
490
|
"output_type": "display_data",
|
|
560
|
"prompt_number": 15,
|
|
|
|
|
561
|
"text": [
|
|
491
|
"text": [
|
|
562
|
"<IPython.lib.display.Audio at 0x1070b2510>"
|
|
492
|
"<IPython.core.display.HTML object>"
|
|
563
|
]
|
|
493
|
]
|
|
564
|
}
|
|
494
|
}
|
|
565
|
],
|
|
495
|
],
|
|
566
|
"prompt_number": 15
|
|
496
|
"prompt_number": 14
|
|
567
|
},
|
|
497
|
},
|
|
568
|
{
|
|
498
|
{
|
|
569
|
"cell_type": "markdown",
|
|
499
|
"cell_type": "markdown",
|
|
570
|
"metadata": {},
|
|
500
|
"metadata": {},
|
|
571
|
"source": [
|
|
501
|
"source": [
|
|
572
|
"A Numpy array can be auralized automatically. The Audio class normalizes and encodes the data and embed the result in the Notebook.\n",
|
|
502
|
"You can also use the `%%html` cell magic to accomplish the same thing."
|
|
573
|
"\n",
|
|
|
|
|
574
|
"For instance, when two sine waves with almost the same frequency are superimposed a phenomena known as [beats](https://en.wikipedia.org/wiki/Beat_%28acoustics%29) occur. This can be auralised as follows"
|
|
|
|
|
575
|
]
|
|
503
|
]
|
|
576
|
},
|
|
504
|
},
|
|
577
|
{
|
|
505
|
{
|
|
578
|
"cell_type": "code",
|
|
506
|
"cell_type": "code",
|
|
579
|
"collapsed": false,
|
|
507
|
"collapsed": false,
|
|
580
|
"input": [
|
|
508
|
"input": [
|
|
581
|
"import numpy as np\n",
|
|
509
|
"%%html\n",
|
|
582
|
"max_time = 3\n",
|
|
510
|
"<table>\n",
|
|
583
|
"f1 = 220.0\n",
|
|
511
|
"<tr>\n",
|
|
584
|
"f2 = 224.0\n",
|
|
512
|
"<th>Header 1</th>\n",
|
|
585
|
"rate = 8000.0\n",
|
|
513
|
"<th>Header 2</th>\n",
|
|
586
|
"L = 3\n",
|
|
514
|
"</tr>\n",
|
|
587
|
"times = np.linspace(0,L,rate*L)\n",
|
|
515
|
"<tr>\n",
|
|
588
|
"signal = np.sin(2*np.pi*f1*times) + np.sin(2*np.pi*f2*times)\n",
|
|
516
|
"<td>row 1, cell 1</td>\n",
|
|
589
|
"\n",
|
|
517
|
"<td>row 1, cell 2</td>\n",
|
|
590
|
"Audio(data=signal, rate=rate)"
|
|
518
|
"</tr>\n",
|
|
|
|
|
519
|
"<tr>\n",
|
|
|
|
|
520
|
"<td>row 2, cell 1</td>\n",
|
|
|
|
|
521
|
"<td>row 2, cell 2</td>\n",
|
|
|
|
|
522
|
"</tr>\n",
|
|
|
|
|
523
|
"</table>"
|
|
591
|
],
|
|
524
|
],
|
|
592
|
"language": "python",
|
|
525
|
"language": "python",
|
|
593
|
"metadata": {},
|
|
526
|
"metadata": {},
|
|
594
|
"outputs": [
|
|
527
|
"outputs": [
|
|
595
|
{
|
|
528
|
{
|
|
596
|
"html": [
|
|
529
|
"html": [
|
|
597
|
"\n",
|
|
530
|
"<table>\n",
|
|
598
|
" <audio controls=\"controls\" >\n",
|
|
531
|
"<tr>\n",
|
|
599
|
" <source src=\"data:audio/wav;base64,UklGRqS7AABXQVZFZm10IBAAAAABAAEAQB8AAIA+AAACABAAZGF0YYC7AAAAADUWvSvyPzdS/WHKbjt4Bn7+fxV+WXj3bjhifVJDQBYslBZiAC/qpdRswCGuU557kf2HJIIcgPWBoIfykKKdTa15v5rTEuk7/2kV8CopP3ZRSmEqbrJ3mH2vf+Z9TXgNb3Bi11K9QK0sQxcmAQPrhNVPwQOvLZ9IkreIxYKggFiC34cLkZOdFq0bvxbTbeh4/o0UASosPnNQSGAwbcd2w3z2fk9923fGblZi7FL/QBwt3hfoAefrg9ZlwiawVqBuk9OJzoOOgSSDg4iAkdadJa31vrvS3ue5/aIT8Sj/PDBP+F7da3t1h3vUfU98BncibuhhuVIJQWQtYRilAtjso9eqw4mxzKHtlE+LPYXkgleEiolTkm6ee60Hv4jSZuf//KsSwyeiO65NXF0zas9z5nlJfOh6zXUhbSdhPlLaQIItzBhbA9Xt39gexSmzjqPCliuNEYeihPKF9YqDk1mfGq5Uv3/SCOdN/KkReCYYOvBLd1szaMVx4HdYehp5MXTDaxNgfFFwQHUtHRkJBNvuN9q9xgW1l6XsmGOPR4nGhvKHwowPlZegAa/bv6LSxOak+58QFCVkOPhJSVnhZV9veXUCeOh2MnIIaqpecVDLPzwtUxmsBOjvp9uFyBm356dmm/aR3otOiVeK8Y73limiMLCewPHSneYG+48PmSOINslH11Y+Y6BssnJJdVF002/yZ+5cHU/rPtYsbBlEBfvwLd11ymO5e6ownuGU1I44jB+NgZE6mQ+kqLGcwW7Tk+Z1+noOCCKGNGVFI1ROYIppj28vcllxFG2CZeBagU3PPUMsZxnOBRHyyN6IzOC7T61GoSGYJZKBj0aQbpTXm0WmZ7PWwhjUp+by+WMNZCBhMtBCMFEUXSFmEWy4bgJu+Gm6YoFYnkt3PIIrQxlJBinzdOC9zo2+YLCkpLKbz5Unk8yTuJfLns2obrVMxPDU2+Z/+UwMsB4dMAxAAU6TWWdiPGjlak9qgWaaX9FVdEnjOpIq/xi0Bj/0L+IQ0WfBq7NHqJKfzpkml6yXXJsVoqSru7f9xffVL+ce+TYL7hy8LR09m0rOVWFeFGS6ZkJmsmImXNNSBEcVOXQpmhgMB1P19+N/02rELbctrL2jH557m+SbVp+zpciuTrroxy3XpefP+CQKIRtAKwY6/0bKURNanF87YuBhjV5gWIlPUEQMNycoFBhRB2P2yeUG1pTH4bpPsC+ovaIioHGgpKOhqTiyJL0OypHYPOiU+BgJSxmuKMo2M0OJTX9V2FpsXStdF1pKVPVLWUHKNKsmbBeCB2v3o+ej2OHKxb6stOOspacYpU6lQ6jdrfG1PMBtzCTa9ehu+BMIbhcHJm0zOT8RSatQzVVRWCdYUVXoTxlIID5PMgIloRadB2z4gulT203O08I+udax0qxXqneqLq1ksvC5k8MDz+Tb0ele+BcHjRVPI/MvFztmRJtLf1DvUtlSQVA9S/dDqTqeLysjtBWiB2P5ZOsS3tXRCccBvgK3P7Lcr+mvYrIytzK+KcfP0dHdz+pl+CYGqxOJIF4szzaMP1RG80pJTUVN6kpNRpQ/9ja3LCghpRSPB076Ru3e4HTVYcvxwmO86beitZ6127dEvLXC+srQ1Orf8OuE+EIFyRG5HbQoZzKIOtpALkVkR29HUUUbQfI6CDOcKfkecxNkByv7Ju+z4yjZ2M8JyPXByb2ju5K7lL2VwXXHA88E2C7iM+27+GsE6w/gGvck4i1eNTI7ND9HQV1BeT+sOxU25C5QJqAcHxIgB/r7AvGO5u3catREzbHH28PbwcHBiMMhx27MQ9No25zkmO4L+aQDEg4DGCshRSkTMGI1DDn2OhQ7aTkENgExiyrVIh4aqhDEBrr82PJt6b/gEdmd0pTNGcpFyCPIs8nlzJ3RtNf63jLnHfB0+e0CQAwkFVUdlCSsKm8vujJ2NJk0JTMnMLkrASYtH3QXEw9NBmj9pvRL7Jrkyt0Q2JfTfdDazrbOENDa0v3WVdy34u/pxPH3+UgCeApGEncZ1B8uJV0pQyzNLfEtsSwaKkImSiFbG6UUXQ2+BQP+aPYo73rokeKY3bXZA9eV1XLVmNb92IrcIeGd5tDsifOT+rYBuwhsD5UVCRueHzMjryUBJyInFCbiI6AgaRxiF7IRiAsVBYz+Hvj/8VzsYOcw4+rfpd1w3FLcSN1I30DiFeap6tTvbvVJ+zcBDAeZDLQRNxYAGvUcAh8YIDIgUx+FHdgaYxdEE54OlQlSBAD/xvnO9DzwNOzS6C/mXeRm41DjGeS25RroLevX7vjyb/cY/M0AbAXPCdYNYhFbFKoWQRgXGScZdBgHF+0UOxIGD2oLhgd3A2D/XvuS9xf0CPF67n/sJOtx6mfqBetD7BPuZfAl8zr2jPkA/XgA3AMRB/8JjwyxDlYQdBEEEgYSfBFuEOcO9QyqChoIWwWDAqr/5PxI+un32PUj9NXy9vGK8ZHxB/Ln8ib0uPWO95j5xPsA/jkAYAJiBDIGwwcKCQAKnwrmCtUKcQq/CcgIlQc0BrAEFwN3Ad7/V/7v/K/7n/rI+Sv5zPis+Mf4Gfme+U/6IvsQ/A79FP4Y/xAA9wDFAXQCAQNpA6sDyAPCA5wDWgMBA5cCIQKnAS4BvABUAPz/tv+D/2X/W/9j/3z/ov/Q/wIANABiAIcAngClAJkAeQBFAP7/pP87/8j+Tv7V/WD99/yg/GD8PPw5/Fn8nvwJ/Zn9S/4c/wMA/gACAgcDBQTxBMEFbgbwBj4HVAcuB8oGKQZMBTgE9QKJAQAAZv7G/C/7rflP+CH3L/aD9Sb1HfVr9RL2Dvdc+PL5x/vN/fb/MAJrBJUGmwhsCvgLLw0HDnQOcQ78DRMNvQsACucHggXiAhoAQP1p+q33IvXe8vXwd+9z7vXtA+6f7sjvd/Gj8zz2Mflq/NH/SgO8BgoKGg3RDxkS3hMOFZ4VhxXFFF0TVRG8DqMLIAhOBEkAMvwl+EX0sfCG7eDq1Oh259Pm9ObZ54Dp3+vk7nzyjPb1+pf/TATyCGQNfBEbFSAYdBoAHLYcjhyFG6EZ7RZ8E2cPzArMBY4APPv99fvwXuxM6OfkTOKR4Mbf9t8h4UHjSeYj6rTu2vNv+Uf/NQUNC58QvxVEGgge7CDXIrYjgSM1ItofgBw9GDITgw1bB+kAYPrx88/tLOg04xHf5NvK2dXYD9l72g/du+Bk5ejqHvHY9+L+BAYKDboT4BlKH8wjQieMKZgqWSrPKAMmCCL6HP8WQhD4CFgBnvkD8sbqHuRC3mHZotUn0wTSRtLt0/DWOduq4BvnW+409mn+ugboDrIW2h0oJGgpby0cMFYxEjFPLxcsgSevIcoaCBOjCtsB9fg18ODnOOB52dvTi8+tzFrLoMt+zenQydX821LjlOuE9N39VQemEIUZrCHaKNYubzN+Nuo3pTetNRAy5ixWJpEe0RVYDHECZ/iH7iDlfNze1IXOpMlixt3EIsUyxwDLcNBc147fyujJ8j791wdDEjEcUSVdLRM0PDmwPFA+DD7lO+k3MjLtKk8imhgXDhgD8/f77Iji7dh10GPJ8cNLwJG+0r4PwTnFMsvP0tbbAuYG8Y78Pgi+E7QeySitMRo50z6rQoFEQ0TyQZw9YTdvLwImYRveD9EDmPeR6xrgjtU/zHjEd75tuny4trgau5q/FcZazivYPuM97837jAgXFQ0hDyzHNec9L0RrSHhKQ0rNRyVDbTzXM6QpIh6pEZgEV/dK6tfdYdJByMm/O7nNtKSy0rJatSi6HMEAypLUgOBw7f76wAhNFjojIi+oOXdCSknqTTBQCFByTX5IUUEhODMt2yB3E24FL/cl6cDbaM9+xFm7QbRwrw2tLa3Sr+m0TbzGxQ7Rzd2i6yL63AhgFzslADJNPcdGIk4lU6VVjVXcUqNNCkZJPKswiCNGFVEGH/ck6NbZpcz4wCu3jK9ZqrunyqeHquCvrLexwaPNJtvU6Tr54AhPGA0nqDS0QNJKs1IXWNJazVoFWI9SkkpLQAg0JyYSFz8HJ/dH5xvYGsqxvUKzIKuNpbSir6J/pRKrPbPDvVTKkNgI6Ef4zAgbGbEoFzfaQ5dO+Va8XLJfw1/qXD1X5k4jREc3tSjbGDYIRveN5o7Wx8esuqKvAacPofud352+oISmBa8CuibHDNZD5kz3owjDGSYqTDm+RhJS8FoRYUJka2SGYapbAVPNR2U6LiueGjQJevf25THVsMXqt0ysMqPknJWZYJlJnDqiCKtwthrEntOF5Er2ZAhJGmsrRjtdSUJVl14RZX5owWjVZdBf31ZFS109jy1XHDkKwveB5QTU08NttUSptZ8PmYWVNJUimDmeSqcSszbBStHR4kP1EgisGoEsBT23SyNY6WG7aGJswWzSaaxjfFqITixA1i8FHkELHvgv5QbTM8I3s4qmjpySlc6RYJFOlIOaz6Psr3y+Ec8p4Tn0rQfuGmcthz7JTbVa5mQLbOtvaHB7bTpn1V2SUdBCADKlH0wMjPj95DjSz8BJsSGkvZlwknOO543RkB2XmqAArfC798yR3y/zNwcPGx0uzT+TT/Vcimf+bhdzs3PMcHhq5mBfVEVFCjQ1IVcNC/ns5JnRp7+jrwqiRpesj3eLy4qujQmUrp1SqpS5/soK3iXysQYQG6Uu1UAUUeJe1GmTceJ1nnbCc2FtrGPtVohH8TWyIl8OmPn75CnRvb5HrkagKZVHjd2IEIjnikyRDpvkp2u3KcmX3B3xHAbzGv4uoUFMUnxgw2vHc0p4KHlZdvJvJGY5WZZJszcaJGQPMvon5efQD74zrdaeaJNDi6eGuIV/iOeOv5i7pXi1e8c62xvwfAW4GikvMUI7U8JhVW2adU96TnuReCpyS2hAW21LTDlrJWMQ2fpw5dLQnr1qrLudBZKiidaExYN5ht2MwZbYo76z9sX22SDv0ARhGigvhELgU7Niim4Jd+17D31legV0H2r+XApNvDqjJloRifvV5enQaL3pq/Sc/pBliGuDOILWhDCLF5U+oj6yncTM2C7uHATvGfsunUI8VE9jYW8UeCN9Z37We4J1nWtzXmpO/ju+J0cSQfxU5izRbb2xq4KcVpCMh2iCE4GYg+OJxJPuoPywcsO/10ftYQNkGaMue0JQVJdj22+7ePJ9WH/gfJ92xWycX41PEj28KCgT//zr5pjRrL3Bq2ScDJAYh86BWIDBgveIyZLsn/qvdsLR1mzsoALBGCMuIEIcVItj92/9eFh+33+EfVt3k214YG9Q9T2aKfsTwv2Y5yzSI74ZrJqcH5AIh5yBBoBRgmyIKJI4nzmvrMED1qHr3AEJGHwtjUGhUyxjtW/beFZ+/H/AfbR3B24EYQ9Rpj5WKr8Uh/5b6ObS0b62rCKdjpBch9OBHYBJgkSI4ZHVnrquFsFZ1ebqFgE9F64sxEDiUntiF29UeOp9r3+Ufap3IG4/YWxRIj/vKnAVTf8w6cbTtL+XrfydWpEUiHKCn4CpgoCI9pHCnn+utMDT1D/qUABfFr4rxz/fUXphHm5rdxd9+H7/fDx33G0pYYRRaD9iKw4WEAAW6sjUy8C7riWfgJIviXmDioFygyCJaJIBn4quicBz1Kvpjv9xFasqlz6aUClgy2wfdt172X0DfGt2PW3AYFZRdz+vK5YW0gAL6+rVE8IgsJyg/5OqiuaE3oKihCOKNpOTn9uulsA61C7pz/51FHkpNz0WT4xeIWt0dD16UXyfejZ1QWwFYOJQTj/TKwgXjgEO7CzXi8PEsWCi1ZWGjLiGmoQ5homLYJR4oHOv3MAq1MnoFv5tEykoqDtUTaNcIGlpcjl4YnrVeJ9z6Gr2XiZQ7D7OK2EXQwIb7YrYMMWks22kAJi+ju6Iu4Y2iFKN5pWwoVKwW8FF1HzoZf1bEr4m7jlXS3Jay2YDcNN1DnimdqVxNGmVXSNPUD6eK6AX8AIx7gHa/8a9tcGmfppSkYWLQYmXinyPyJc6o3mxFMKK1EvovvxBETolCjghSftXJWRCbQxzV3UTdEtvJWfiW9lNej1DK8MXkgNO75Hb98gOuFqpS50/lHqOKYxbjQaSBJoXpeeyCMP71DboIfwiEJ8jADa2RkFVMWEqauhvQHIgcZJsvWTcWUhMaTy7KsoXKARv8DbdE8uTujSsZaCBl8yRcI9+kO2UmZxEp5y0NsSZ1T3okvv/DvAh0TMYREdS8l2+ZmpsyW7NbXxp/GGHV29KHTsHKrMXsQST8e7eU81JvUyvyaMWm3aVFJMAlDGYhZ/CqZe2n8Vk1mToEfvaDS8ggTFLQRFPa1oCY5Ro+Godagxm5V7iVFFIlzklKX4XKgW48rfgss8twKCycqf6nneZEpfcl86bx6KOrNi4Qsdc16nooPq2DGAeEy9QPqFLoFb4Xmpkz2YUZkNieVvvUe5F1jcWKCkXkgXb843iLtI8wyu2Xqspo8mdZpsQnMKfW6anr127H8mC2A7pQfqUC4MciiwtO/xHlFKkWvBfUWK2YSVevFewTkdD3TXZJrMW6AX79G/kxNRzxuq5ia+gp2miDKCZoAmkQKoLsyW+NcvW2ZTp9Pl3Cp0a6SnlNyVES04LVipbg10EXbVZsFMoS15AqjNvJR0WKwYW9lrmcNfNydi97rNarFSnAaVypaGocq63ti7BhM1X2zvqu/lfCa8YMid6NB9AykkxUR1WaFgEWPZUWE9YRzU9QDHYI2UVWQYp90voMNpIzfPBirhTsYSsQaqYqoWt77KqunfECdAE3QPrmPlQCLsWaSTwMPA7FUUbTMtQBVO6Uu1PuEpEQ845oC4UIowUcgY0+D/qAd3f0DbGV72GtvWxxq8GsLKys7ffvv3HxNLe3u3rivlLB8UUkSFMLZs3MUDMRjxLX00pTZ1K0kXuPio2zCslIJITdAY0+Tbs39+P1JzKUsLvu6K3jLW4tSS4urxUw73LstXj4Pjsk/lRBs8Srh6RKSUzITtKQXJFe0dXRwtFqkBaOk0yxCgLHnUSXwYo+ivuyOJV2CLPdceIwYe9jrupu9a9AcIGyLbP0tgS4yXutPlkBdsQwRvCJZEu6zWaO3Q/XEFIQTo/RjuLNTkuiyXHGzgRMwYO+x3wt+Us3MPTvcxOx57Dx8HUwcPDgsfyzOTTI9xr5XPv7fmFBOwOzxjkIeQpkzDBNUY5CjsCOzE5qDWFMPIpJCJaGdoP7gXk+wryq+gQ4HvYI9I6zeHJMcg0yOjJO80S0kXYoN/r5+LwPvq2AwMN2hX5HSIlHyvEL+4yiTSJNPMy1i9LK3olkB7HFlsOkAWr/O7zoOv/40XdpNdH00zQyM7Ezj3QJtNk19TcSeOR6nDyqPr5AiML5hIHGlEgkyWoKXIs3i3kLYcs1CniJdQg0xoOFL0MGQVf/cn1k+705x3iOt1w2djWhdV+1cDWPtni3I7hG+db7R30LPtOAk4J9Q8RFnMb9B9zI9clECcXJ/AlpyNPIAYc7hYzEQELiQQB/pj3gfHr6/7m4eKv34HdY9xc3Gndft+K4nDmEutI8On1yPu1AYUHCg0aEo8WSBoqHSIfJCApIDYfVB2VGhEX5hI2DicJ4QOP/ln5aPTg7+XrkugA5kDkXONZ4zPk4uVV6HbrK+9V89H3ffwxAcwFKQomDqcRkhTTFlsYIBkfGV0Y4Ba5FPsRvQ4aCzAHIAMJ/wv7RPfR88zwSu5c7A/raupu6hrrZOxA7pzwY/N/9tX5Sv3CACMEUwc5CsEM2Q5zEIURChIAEmoRUhDBDscMdgrhBx8FRgJu/6v8E/q697D1A/S+8unxhvGX8Rby/vJF9N31uPfF+fP7MP5oAIwCiwRWBuEHIgkQCqgK6ArQCmUKrQmwCHoHFQaOBPUCVQG9/zj+0vyW+4v6uPkh+cf4rPjL+CP5rPlf+jX7JPwk/Sr+Lf8kAAkB1AGBAgsDcAOvA8kDwAOXA1MD+AKNAhcCnQEkAbIATAD2/7H/gP9j/1v/Zf9//6X/1P8GADgAZQCJAJ8ApQCXAHYAQAD3/5z/Mv++/kT+y/1X/e/8mvxc/Dr8Ovxd/Kb8FP2n/Vz+Lv8YABMBGAIdAxkEAwXRBXsG+AZCB1MHKAe/BhkGNwUfBNgCaQHf/0T+pPwO+475NPgL9x72efUi9SD1dvUj9if3e/gX+vD7+v0kAGACmgTCBsQIkAoVDEUNFA54DmwO7Q37DJsL1gm3B0wFqALe/wP9Lfp19+/0svLQ8FzvZO7x7Qrusu7n76Hx1/N49nP5svwaAJQDBAdOClcNBhBEEv0TIBWjFX0VrRQ3EyMRfg5bC9EH+gPz/9r70ff282nwSe2u6rDoYefO5v/m9ees6RnsLO/O8uf2Vvv7/7EEVAm/Dc8RYRVZGJ0aGBy7HIAcZRtvGaoWKxMKD2QKXgUdAMv6j/WU8AHs/eeo5B7id+DB3wXgReF545Pmfuod70306fnF/7MFhwsRESYWnBpPHh8h9CK8I3AjDSKcHy0c2Re+EgMN0wZeANX5avNR7bvn0+LD3q3bqtnO2CLZp9pT3RXh0eVm66rxbPh6/5wGnA1DFFsatB8hJH4nrymfKkUqoCi6JaYhgxx2FqsPWAizAPn4ZPEx6pnj0N0F2WHVAdP80VzSINQ/16PbK+Gv5/7u4PYa/2sHkw9SF2oeoyTKKbYtRDBfMfswGC/CKxEnJSEsGloS6gkdATj4fu81557f9thy0z/PgsxQy7jLuM1D0UHWjtz6403sSPWm/h8IaRE7Gk8iZilGL8AzrTb1N4s3cDWwMWcsvCXfHQ0ViAubAZH3ue1f5M7bStQOzk7JMcbRxDzFcsdky/bQ/9dK4JnppfMg/rgIHRP8HAkm+i2RNJc55TxdPvE9ojt/N6YxQiqKIcEXMA0rAgb3Fuyy4SzYz8/eyJHDE8CDvu6+VcGnxcXLg9Ol3Obm+PGH/TYJrxSVH5MpWjKlOTg/5kKQRCZEqUEpPcc2sy4qJXMa4A7MApT2luov37rUicvmww2+L7psuNS4ZrsSwLTGHc8M2TbkRfDd/JsJHRYCIuwshTaAPp5ErEiKSiVKf0epQsc7DDO6KCAdlxB+Az32OenY3HvRfMcqv8e4ibSRsvGyqrWousfB0sqE1Yzhje4j/OUJaBdDJBIwdjodQ8NJMk5FUOlPH036R6BASDc4LMYfUBI/BAD2AOit2nDOqMOsusOzJa/3rE2tJ7BwtQO9psYR0uve0uxb+xUKjxhXJgEzKj55R6VOc1O9VW1VhFIYTU5FYzuhL2IiDBQNBdz16+ax2JzLE8BytgWvB6qip+un4KpvsG24nsK1zlXcF+uH+i0Kkhk8KLk1oEGRSz9TbFjsWqxaqlf9Uc1JWD/vMvAkxhXoBdH1++Xj1gDJvrx9spCqNaWYos+i3KWoqwe0vL51y8/ZXemn+SwKcBryKTg41ERiT45XF13QX6JfjFylVhdOJEMgNm0nfhfNBt31L+VG1Z7Gq7nRrmimsaDcnQCeHqEgp9ivBrtUyFvXqOe9+BQKKht3K306xkfpUo9bcmFkZEpkJmELWypSxEYwOdgpMRm7BwD2h+TY03fE3LZwq5CigJxymYCZqpzbouOrf7dVxfvU+eXL9+YJwBvMLIY8ckojVj5feWWjaKFocmUtXwBWMkocPCws2xqwCDn2A+Sc0o3CU7RdqAqfpJhelVOVhZjeniyoKrR8wrPSU+TT9qMJMhzwLVI+10wPWZhiKGmKbKJsbmkFY5dZbE3hPmcufByrCYb2ouOQ0d/AEbKZpdqbIZWkkX6Rs5Qsm7ekDLHMv4bQuOLX9UwJghzjLuE/9U6qW51lfmwXcEtwFm2QZupcblB8QYYwEB6oCuf2Y+O10G+/GLAnowKZ+pFFjgOON5HJl4ehJ65IvXbOLOHY9OIIsBymLzJByVDzXUhod29Gc5dzZnDKafZfNVPoQ4YylR+oC1n3RuML0D2+aK4HoYSWMI9Gi+aKFI64lJ+ef6v0uobMr9/Z82cIvBw4MEVCVFLpX5lqEXIVdoV2W3OxbLhivVUkRmU0CSGmDNz3SuOQz0m9Aq07n2CUxoypiCmITYv8kQOcF6nRuLnKRN7b8t0HqBybMBpDlVOLYY9sSnSBeBB583VBby1lBFgsSB82aSKjDW74beNFz5K856vEnZmSvopvhs+F5IiYj7aZ8abkthLJ79zh8UUHdhzPMLJDi1TXYiduInaIejh7K3h4cVJnCFr/SbM3tCOaDgz5r+Mozxm8FqujnDCRGImahNqD3YaOjbqXEaUttZLHsNvs8KAGJhzVMAxEN1XOY2FvlXcqfPt8AXpUcyVpxFuYSx455iSMD7b5DeQ5z927j6rWmyWQ14csg0uCOYXiixGWeaOxszzGitr/7/EFuhutMCpEmFVwZD1wpHhkfVZ+c3vRdKNqOF33TF46/iV1EGr6h+R3z927U6pgm3iP+oYmgiSB+oOUir6UKqJxshPFgNkb7zoFMxtbMA1EsFW8ZLpwT3k2fkl/gHzvdctrYV4YTnE7+iZTESX7GuXfzxi8X6o+myqPgoaJgWWAIYOmicKTKKFusRjElNhD7nsEkxrdL7VDgFWzZNlwlHmfftJ/JX2tdptsPV/7TlM81yclEub7xuVx0Iy8tKpxmzqPb4ZUgRGAroIZiR+Tc6CssE7Dxtd47bgD3Bk3LyRDCFVXZJtwdHmffvJ/ZH0IdxFtyl+dTwU9lCjoEqv8iOYq0Tm9T6v3m6iPwYaJgSaApILviNaSDKArsLXCGte87PECEBlqLlxCSVSnY/9v8Hg2fqh/O30BdyxtCWD8T4Q9LymcE3P9XucK0h2+MKzPnHKQeIcmgqWAAYMoieiS95/ur1HCkdYR7CoCMBh4LV5BRlOmYgdvCHhlffR+qXyXdu1s9l8YUM49pik9FDr+R+gO0zW/Va35nZiRkYgqg46BxoPDiVWTMqD0ryHCLdZ662MBPxdjLCxAAFJVYbRtvnYtfNd9sHvJdVJskl/vT+I99ynKFAD/QOk01IDAvK5xnxeTDIqWhN+C84TCih+UvqA/sCjC7tX36p4APhYsK8g+eVC2XwlsE3WOelJ8UHqZdFpr3V6BT789IipCFcL/SOp71fzBYrA3oe6U54tnhpiEh4YkjEOVnaHQsGfC19WL6uD/LxXXKTU9s07KXQZqCHOLeGZ6iXgGcwhq1V3NTmU9JSqjFX4AXOvf1qbDRrJHoxuXII6biLeGgIjojcSWzqKosd7C6dU26ib/FhRlKHQ7sUyWW69noXAmdhR4XnYScVpoe1zSTdI8/inrFTQBe+xe2HzFZrSfpZuZtZAxizqJ3YoMkJ+YUKTGso3DJdb76XX+8xLYJok5dkoaWQdl321gc191z3O+blJm0FqRTAU8rikZFuABoe332XvHvbY9qGyco5MnjiCMnI2QktOaJKYqtHfEi9ba6c39yRE0JXY3A0hbVg9ixWo8cEly4HALbPFj1FgKS/86MiksFoICzu6n26HJSrkdq4qf6JZ4kWWPvJBylWCdSKjUtZnFHNfV6TH9mhB6Iz41XUVaU8teV2e9bNVukW37aDlhiFY9ScA5iigiFhgD/+9r3evLCbw9rvOif5ojlQeTOpSvmESgvKrEt/XG2tft6aP8aA+tIeMyhkIcUD5bl2PmaAZr5mmRZSpe7VMrR0c4tyf7FZ8DMvFA31bO976ZsaKmZ54lmQOXEphGnH2jfa34uYvIxNgj6iP8NQ7PH2kwgT+kTG1XiV+8ZN5m4WXPYchaBVHURJU2tya2FRcEZPIl4d/QEsIttZWqmqJ4nVabQpwzoAini7BwvFnK2tl46rP7Aw3kHdItUjz1SFlTMVtAYGFihmG3XRRX0007Qqo0iiVRFX4ElfMW44PTVMX2uMeuFqcbovufxqBzpOOq47Mqv2DMHdvt6lX71AvtGyEr/DgTRQlPk1Z4W5Rd2VxOWRJTVkphP4gyMiTNFNMEwfQS5T/WvMjwvDWz1asHp/Ckm6UEqQyvgrckwp3Oi9yB6wr7qwruGVsogzUCQX9Ks1FoVnpY3VeXVMROlEZHPC8wrSIpFBUF6PUV5xDZRcwXwdq31LA6rC6qvarhrX6zaLtexRHRJt427NL6iAnoF4El6zHHPMFFlkwTURhTllKVTy5KjULvOKEt/CBjE0IFBvcd6fLb7M9mxbG8DravsbOvKLAHsze4j7/UyLrT7d8L7bD6bgjeFZciNy5kONJAQEeAS3JNCU1MSlJFRT5bNd4qIB9+ElkFG/gn6+PerNPaybbBfrtgt3m11rVxuDS998OEzJbW3eEB7qP6XwfUE6EfayrfM7c7t0GyRY1HO0fBRDZAvjmPMeonGx13EVsFJPkx7d7hg9duzuXGIMFJvXu7w7scvnDCm8hs0KPZ+OMY7636XAbKEaAciiY9L3U2/zuwP25BMEH4Ptw6/jSMLcUk7BpQEEUFIfo57+LkbNsf0znM7sZkw7XB68ECxObHeM2I1N/cOuZP8M/6ZgXFD5oZmiKAKhExHTZ9ORs77Tr2OEk1BjBWKXEhlRgJDxcFD/s88evnZN/n16zR48ytySHISMgfypTNidLX2EngpOim8Qj7gATFDZAWnB6uJZArFjAgM5g0dzTAMoIv2yrwJPIdGRaiDdIE7vs48/bqZuPB3DrX+dId0LnO1c5u0HPTzNdU3d3jNOsd81r7qQPNC4UTlhrMIPYl8CmeLOwt1C1aLIspgSVdIEkadxMdDHQEu/wr9f/tb+er4d7cLNmv1njVjNXp1oHZPN384Zrn5+2y9MT75QLgCX0QjBbdG0kgsSP8JRwnCifKJWkj/B+gG3oWshB5Cv4Ddv0S9wTxeuue5pPid99e3VjcaNyL3bbf1eLM5nzrvPBk9kb8MwL/B3sNgBLmFo4aXR1BHy4gHiAXHyEdURq+FoYSzQ24CG8DHv7t+AP0hu+X61To0uUk5FPjY+NP5A/mkejA64DvsvM0+OH8lQEsBoIKdg7sEckU+xZyGCcZFhlEGLkWhBS6EXIOyArbBsgCsv64+vf2jPOR8BvuOuz76mPqduov64bsbe7T8KPzxPYe+pX9CwFpBJQHcwrzDAEPjxCWEQ4S+BFYETUQmw6ZDEEKqAfjBAkCMv9y/N75i/eI9eTzqPLc8YPxnfEm8hbzZPQC9uL38/kj/GD+lwC4ArQEegb/BzkJIAqxCukKygpZCpsJmQheB/UFbQTSAjIBnP8Z/rb8fvt4+qn5F/nD+Kz40fgs+bn5cPpI+zn8Ov0//kL/OAAbAeQBjgIVA3cDswPKA74DkwNMA/AChAINApMBGwGpAEQA7/+s/33/Yv9b/2b/gf+p/9j/CgA8AGkAiwCgAKQAlQByADoA8P+T/yn/tP46/sH9Tv3n/JT8WPw5/Dv8Yvyt/B/9tf1s/kH/LAApAS4CMgMuBBUF4QWHBgAHRgdSByIHtAYIBiIFBgS6AkkBvv8h/oH87fpw+Rn49PYN9m71HvUk9YH1NvZA95v4PPoa/Cf+UwCQAskE7wbtCLMKMgxaDSAOfA5mDt0N4gx5C6wJhgcWBW0Cov/G/PL5Pfe89IbyrfBD71Xu7e0T7sfuB/DM8Qv0tfa2+fn8ZADfA0wHkgqUDTsQbhIbFDEVphVyFZUUERPwEEAOFAuCB6UDnP+D+3z3p/Mi8AvtfeqN6E3ny+YM5xPo2elU7HTvIvND97j7XgAVBbUJGg4gEqcVkRjEGi4cvxxxHEMbOxlnFtkSqw78CfAErf9a+iL1LvCm66/naeTy4V7gvd8W4Gvhs+Pf5trqhu/C9GT6QwAxBgEMgxGMFvMalB5QIQ8jwSNdI+MhXB/ZG3MXSRKDDEwG0/9K+eXy1exL53Tid95324zZydg32dXamd1x4UHm5us28gD5EQA0By8OyxTVGhwgdCS5J9AppSovKm4obiVCIQoc6xUUD7cHDgBV+MbwnukV41/drNgh1d7S9tF00lbUkdcO3K3hROih7473zP8bCD0Q8Bf4HhwlKir6LWowZTHhMN8uayueJpogjRmrETEJXwB798jui+YG33TYC9P2zlnMScvTy/TNoNG71iLdo+QH7Q32cf/oCCoS7xrxIvAptC8ONNk2/TdvNzA1TjHmKx8lKx1IFLcKxAC89uzsoOMj27jTms37yALGyMRaxbbHy8t+0aTYCOFp6oH0Av+ZCfYTxh2+JpQuDDXvORY9Zj7SPVs7EzcXMZQpwyDmFkkMPQEZ9jLr3eBt1yzPXMg0w9+/eL4Ov5/BGcZbzDnUdd3L5+vygP4vCp4VdCBbKgUzLjqaPx5Dm0QFRFxBszwrNvUtTySDGeINyAGR9ZvpRt7p09bKV8OnvfW5X7j1uLW7jMBXx+PP79kw5U7x7f2pCiIX9iLHLUA3FT8JRepIl0oCSixHKkIeOz8yzicdHIMPYwIk9Sno2tuX0LnGjr5XuEi0grIVs/+1LLt2wqfLedaZ4qvvSf0JC4IYSyX+MEA7v0M4SnZOVVDFT8hMckfrP2w2OyuvHikRDwPR9NvmnNl6zdbCBLpKs96u5axxrYCw/LW+vYrHFtMK4APulfxOC70Zcif/MwQ/KEgjT71Tz1VIVSlSiEyORHk6ky45IdESygOZ9LPljdeVyjK/vbWCrrqpjqcQqD6rArExuY7Dys+H3Vvs1Pt5C9MaaSnINohCTEzHU7xYAluHWktXZlEDSWE+0jG2I3kUkQR69LDkrtXpx867vLEEquKkgaL1oj2mQqzWtLm/mMwR27PqB/uMC8QbMCtXOctFKVAfWG1d6V99XylcB1ZETSJC9TQkJiAWZAV19NLj/9N4xa24Ba7TpVigwp0lnoKhwKewsA+8hcms2A7pLvqFC48cxiyrO8pIu1MoXM5hf2QlZMBgaFpOUbZF+TeAKMIXQgaH9BnjgtJCw9G1maryoSGcVZmlmRGdgaPDrJK4k8Za1m/nTPlnCzUdKi7CPYJLAFffX9tlwmh8aAplhV4dVRpJ2TrGKl4ZJwew9IbiNtFKwTyze6dknj+YPZV4le+YiJ8TqUa1xcMf1NflY/gzC7cdXS+bP/RN9llCY5BprWx+bARpWGKtWEtMkz31LPEaEwjv9BbiHdCPv++wrqQtm7eUgJGikR6V2pukpTCyH8H+0UnkdffqChQeXTA3QR1Qm1xOZutsPXAocKts4GX6W0ZPJEAJL3kcBAlC9crhNc8TvuuuMqJNmIqRHo4mjqOReph5olOvpL74z8jigvaNCk4eLDGTQvtR7V4Baepvb3N1c/pvF2kCXwZSiEL/MPMd+Amp9aHhf87WvDGtCqDHlbuOG4sHi4CObJWWn7GsWLwRzlXhjvUdCmYeyjGxQ5BT62BZa4lyQXZkdu9y/GvAYYlUvUTWMl4f7Qoh9pvh+s3Yu8KrNp6dk0yMeohJiLmLspL+nE6qPLpMzPPfmfSdCVweNjKPRNlUlGJVbcd0sXjyeId1i24xZMtWv0aJNLYg4Aup9rXhps0Zu5+quJzQkT6KPYbthVGJT5Czmi2oU7iryqXep/MNCTIecjIvRdZV52PzbqN2vHoce8B3wXBUZstYjUgXNvoh0QxA9+7hgc2ZusepkJtikJSIZYT1g0mHRo65mE+mobYwyWzdufJvCOkdfzKQRYlW5GQycBt4YHzgfJZ5nHImaIVaI0p+NycjvA3k90bijM1WujqpvppSj0+H9IJkgqOFmYwRl7mkKLXex0vc0PHGB4MdXjK0RfBWi2UTcS55nX0+fgp7GnSjafdbf0u7ODwkoQ6T+LvixM1RuvmoQpqhjm6G64E7gWKES4u+lWuj6bO3xkTb8PASBwAdDzKbRQxX22WUcdx5cn4zfxh8OXXLaiBdoEzMOTUlfA9L+UvjKc6IugGpHZpPjvOFS4F6gIeDW4rBlGii57K9xVnaGvBWBmMclTFHRd9W1mW2cSR63n6/f8B8+HWca/1dgk2uOhImTRAK+vXjuM76ulOpTZpcjt6FE4EjgBODzYkclLKhJLLyxIvZT++UBa4b8TC4RGlWfGV6cQd64X7hfwF9VnYVbIxeJk5hO88mERHQ+rbkcc+lu+2p0ZrIji2GRYE1gAWDoInRk0qhobFYxN7Yku7MBOEaJDDwQ6xVzWTgcIV5e36af9p8UnYzbM1eiE7iO2wnxhGY+43lUdCJvM2qqZuQj+KG4IGygGCD1YnfkzChYLHxw1LY5e0DBP8ZMS/xQqhUzWPpb594rH3pfkx863X3a75eqE4wPOcnaxJj/HnmV9GivfOr0py1kPmH44KXgSKEbYpJlGehYrG9w+nXSu04AwsZGS69QWFTe2KXblZ3dXzOfVZ7InVga19ehE5JPD4o/RIt/XbngdLwvlutS540knOJTITmgkuFaIsNle6hqLG+w6XXwexuAgUY3ixWQNhR2mDrbKt12XpMfPp59nNvaq9dHE4tPG8oexP1/YPozNNwwAWvE6AMlE6LHIachNuGxYwtlseiMrL2w4fXTuyoAfEWgyu+Pg5Q7V7naqFz13hiejd4aHIiaa5cb03aO3ko5BO6/p7pNtUfwu6wJqI7loiNT4i5htCIhI6nl/GjArNkxJDX8evmANAVCir4PAhOtVyOaDlxcnYTeBB2eXB7Z1xbfUxQO1woNRR4/8Xqvdb8wxKzgqS9mB2Q5Io6iSmLo5B7mWulF7QKxcLXq+srAKMUdSgGO8ZLNVrjZXZurXNhdYVzKm56ZblZRUuOOhYobhQuAPbrX9gDxnC1JaeRmw2T2Y0djOWNIZOomzancbXpxR3Yf+t5/28TxybqOExJcFfnYlpriXBNcppwfWshY8ZXyEmTOaYnjRTcAC7tGdozyAW4DKq0nlSWK5FgjwCR/JUtnlGpELcAx6LYbuvR/jQSAiWoNp5GaVSfX+lnCm3bbk9tdGhwYIRVBkhgOAsnkBR/AWvu6duHys26M60hou6Z1pQAk3mUM5kIobqr9LhPyFLZeOs1/vQQKCNCNL1DI1ENXCdkM2kNa6hpEGVqXfRSAEb0NkYmeBQVAqzvy93+zMW9lrDXpdmd2Jj7lk2Yw5w4pHCuHLvXyS3an+um/bMPPSG7Ma5Aok01WBVgB2XnZqhlVWESWhhQt0NRNVUlQhScAu7wvt+Uz+rAM7TQqRCiLZ1Mm3mcqaC5p3Kxhr2WyzPb5Osm/XEOQx8XL3M96kkbVLlbimBsYlJhRV1oVvFMLEF1Mzkk7xMUAy/yv+FG0jnEBrgKrpCm0aHwn/mg4qSLq760MsCNzWXcR+y2/DENPB1YLBE6/UXCTxZXwVugXalc41hvUoFJYD5jMfIifBN8A23zy+MR1a7HC7yAslWrwKbjpMqla6mpr1G4HsO6z8LdyexY/PYLKxuBKYo24UEwSzFSrlaHWLFXM1QsTstFVTscL38h6xLQA6b04OXy10bLPcAtt1qw9ashqueqQa4RtCm8R8Yc0krfau0N/MAKExmXJuMymT1oRg1NV1EmU25SOU+gSdJBDTifLOIfOhISBNj1++fl2vvOmsQOvJq1bbGlr02wX7PAuEPArcmz1P3gK+7V+5EJ9habIx8vKjlvQbFHwEuATeZM+EnQRJg9ijTvKRoeaRE+BAL3Gero3czSG8kewRG7Ibdrtfi1wrixvZ3ETc1819niC++z+20I1xSSIEMrlzRKPCBC70WbRxtHdES+PyA5zzANJykceBBWBCH4OOz34LTWvs1YxrrADr1tu+G7Zb7iwjLJI9F22t7kDPCn+1MHuRJ+HVEn5i/9NmA86D99QRNBsz5wOm003Sz8IxAaaA9XBDX5Vu4P5K/afdK3y5HGLsOnwQbCRMRNyADOL9We3QvnLPGx+0cGnRBjGk4jGiuMMXU2sTkpO9Q6uDjoNIQvuSi9IM8XOA5BBDr6b/At57neVdc30Y7Me8kTyF/IWcrvzQPTa9nz4F/pbPLS+0gFhg5DFz4fOCb+K2YwTzOlNGI0iTIsL2gqZSRSHWkV6QwUBDH7g/JN6s7iQNzT1q7S8c+tzunOoNDE0zfY1t1z5NjryvML/FoEdwwjFCQbRSFXJjcqxyz4LcItKyxBKR4l5B++Gd4SewvPAxf8jfRt7evmOuGE3OvYidZt1Z3VFNfF2ZjdbOIa6HTuR/Vc/HwDcQoFEQUXRBycIO0jICYmJ/smoiUqI6gfOhsEFjEQ8AlyA+z8jfaJ8AzrP+ZH4kDfPt1O3HbcsN3w3yLjKufn6zLx4PbF/LECdwjsDeQSPBfSGo8dXx82IBIg9h7uHAwaahYmEmMNSAj+Aq79gfie8yzvS+sW6KblCuRM427jbeQ95s/oC+zV7w/0lvhG/fkBiwbaCsUOLxL/FCIXiRgtGQwZKhiQFk4UeREoDncKhQZxAlz+Zfqq9kjzV/Dt7Rns5+pf6n/qRuup7JzuC/Hj8wr3Z/rf/VQBrwTUB6wKIw0nD6sQpRESEvARRBEXEHMOagwMCm4HpgTMAfb+Ofyq+V33YfXF85Py0PGB8aTxNvIu84P0KPYM+CD6UvyP/sUA5ALcBJ0GHAhPCTAKuQrqCsQKTAqHCYAIQQfWBUsErwIQAXr/+v2b/Gb7ZPqb+Q75v/it+Nb4NvnH+YH6XPtO/E/9Vf5X/0wALQHzAZsCHwN9A7YDygO7A44DRQPnAnoCAwKJAREBoAA8AOn/p/96/2H/W/9o/4T/rP/c/w4AQABsAI4AoQCkAJMAbgA1AOn/i/8f/6r+MP63/UX94PyO/FT8OPw9/Gb8tfwq/cP9ff5U/0EAPgFEAkgDQgQoBfAFkwYIB0kHUAcbB6gG9wUMBewDnQIpAZz//v1f/Mz6Uvn/99/2/fVk9Rz1KPWM9Un2Wve7+GL6RPxV/oMAvwL4BBsHFQnWCk4Mbw0sDn4OXw7MDcgMVwuBCVUH3wQzAmX/ify3+QX3ivRb8orwKu9H7uvtHO7c7ifw9/FA9PL2+vlB/a4AKQSUB9UK0Q1uEJcSOBRCFagVZhV7FOkSvBABDssKMgdQA0X/LPso91jz3O/P7E3qa+g758nmG+cx6Afqkey973bzn/ca/MMAeQUVCnQOcRLrFccY6hpCHMEcYRwgGwcZIhaFEkwOlAmBBDv/6fm19MjvS+ti5y3kx+FH4LvfKeCS4e7jLec36/HvNvXg+sEArwZ6DPQR8RZJG9gefyEoI8MjSCO3IRsfhBsMF9QRAgzDBUj/wPhf8lns3OYW4i3eQ9tx2cfYTtkF2+HdzuGy5mfsw/KV+aoAywfADlIVThuCIMQk8SfuKagqFio6KCAl3SCQG2AVew4WB2r/svcp8AvpkuLw3FTY5NS90vPRj9KO1OXXe9ww4troRvA7+HwAywjmEI0YhB+TJYgqPC6OMGkxxTCjLhErKSYNIOwY+xB3CKL/v/YT7uPlcN7116bSsM4zzEXL8cs0zv/RONe43U7lwu3T9joAsAnrEqIbkSN4Kh8wWTQCNwI4TzftNOkwYiuAJHYcgRPmCe//6PUf7OLiedoo0yjNq8jWxcPEe8X8xzbMCdJM2cfhO+te9eT/eQrOFI8ecSctL4Q1RDpFPWw+sD0RO6M2hTDkKPofChZgC08ALfVP6grgsdaMzt7H28Kuv3G+Mr/swY3G9Mzx1Ejesujf83r/JguMFlEhISuuM7M6+D9SQ6NE4EMMQTk8izU1LXMjkhjkDMMAjvSi6F7dGdMmysvCRL2+uVa4G7kJvAvB/cer0NXaK+ZY8v3+twsmGOgjny74N6c/cEUjSaFK3EnWRqZBcjpuMeAmFxtvDkgBC/Qa597atc/5xfW967cMtHeyPLNYtrS7KcN/zHDXqOPJ8G7+LQybGVAm6DEIPF5EqUq1TmFQnU9tTOZGMz+MNTwqlx0AEN8Bo/O45Y3Yh8wHwl+51LKbrtismq3esIy2fL5wyB7ULOE279D9hwzqGooo+zTaP9NInU8CVN5VH1XJUfRLy0OLOYMtDiCVEYUCV/N85GvWkclUvgy1A65yqX6nOqigq5qx+rmCxOLQut6g7SL9xgwTHJQq1DdtQwNNSlQHWRNbXVrnVspQNUhnPbMweiIrEzoDJfNm43rU1cbiugCxfKmUpG+iH6OjpuCsqbW6wL/NVdwK7Gf86gwWHWwsczq+RutQq1i+XfxfUl/CW2VVbUwbQcgz2CTAFPsDDfN34rvSVMS0tz2tQqUEoK2dUJ7soWWojLEbvbnK/9l26qD79gzzHRIu1jzKSYhUvFwlYpZk+mNVYMBZblCkRL42JSdSFsgEDvOt4S7REMLLtMapWaHHmz2Z0Jl+nSukp62oudTHvNfm6M766AypHoYv+z6PTNhXfGA3ZttoUmidZNddNVT/R5I5XinfF54FJ/MK4dPPCsApsp6mxJ3glyOVopVdmTig/qlnthHFjtVd5/T5www6H8cw4kAMT9ha52PyaclsVGyVaKdhvlcnS0E8gCtlGXwGWPOM4KzOQ77Rr8ejhJpSlGKRzJGOlY6clqZZs3bCeNPc5RP5iAylH9UxiUJAUYZd+2ZTbV1w/m86bCplBVsZTsg+iS3hGmAHnvMz4LfNu7zCrUKhnZcfkf2NT44UkjKZcaODsATAfdFm5C34NwzsH7Ay8UMpU+FftWlXcJJzTXOIb19oCF7SUCRBdi9QHEgI+PP+3/bMc7v+qxGfEZVLjveKL4vyjiaWkqDorb+9n8/94kP30wsPIFgzGUXHVOdhE2z7cmh2PXZ8ckFrwmBPU1FDRDGxHTIJZvTt32fMa7qHqjad4JLXi1OIb4gsjG6T/p2Kq6q74s2k4Vj2XAsPIM4zAUYYVphjFW4+ddp4zXgUdc5tMGONVU5F8DIBHx0K5fT+3wnMo7lcqbGbDZHFiRKGEYbDiQ2Rtpttqce5R8xd4G711QrtHxM0qUYeV/JkuW8ed+h6+HpNdwNwUWWJVxdHeDQ/IAYLdfUw4N3LG7l9qIKamY8XiDeEGIS6hwSPvZmSpxm40soq34b0PgqsHyc0EUfWV/Rl/XCaeJB8v3wled5xIWdBWalI2zVnIewLEvaB4OHL07jqp6uZhI7OhsOChIIUhleNFpj+paK2g8kO3qPzmglLHws0OkdDWKBm4nGxedB9H36aelxznmiyWgNKFDd3IswMvPbx4BTMyLijpyuZz43phbeBWIHShAiMw5axpGW1X8gK3cby6gjMHsEzJkdkWPVmZ3Jjeqh+Fn+qe310xmnaWyNLIzhvI6UNcfd94XXM+7iopwGZeo1rhROBlYD0gxeLxpWuo2S0Zscg3PLxMQgyHkoz1UY6WPNmjXKuehd/pX9UfD11mGq3XAZMBjlKJHUOL/gl4gLNa7n3py6ZhI1ThdmAO4B+g4aKH5X2oqCzmsZT2yjxbwd+HacySEbGV5tmU3KTehx/yn+XfJ51E2tJXatMujkJJTkP9Pjm4rrNFbqPqLGZ7Y2ghQmBS4Bug1eK0ZSMohuz/8Wk2mrwpwaxHNsxgUUKV+5lu3EUerh+hX90fJx1NGuMXQ9NPTqoJfAPvvm+45vO+LpvqYeatY5ShqGBxYDFg4mK3ZRvoteylMUV2rrv2wXOG+YwgUQGVu5kxXAveex91n7oezl1/GqCXTNNjzomJpgQjPqs5KLPE7yVqrGb2Y9oh6GCqIGEhB6LQpWiotSyW8Wo2RvvDQXWGswvS0O+VJxjc2/nd7d8v332enN0amonXRRNrTqCJi8RW/ut5c/QY70ArCudWJHiiAmE9IKqhRSMApYkoxSzV8Ve2Y3uPgTMGY0u4UEyU/phx209dhx7P3ydeUxzfWl9XLJMmDq6JrMRKfzA5h/S576srfSeMZO8iteFqIQ2h22NG5f2o5izh8U42RLucQOxGCwtREBlUQpgwmszdBx5WHred8NxNmiDWw1MTDrMJiQS9fzi55DTnMCZrwqhYZX2jAmIwoYniSaPj5gYpWC07sU52aztpwKIF6wreD5aT89dZ2nLcbl2DHi7ddlvlWY4WiNLyzm4Jn4SvP0R6R/Vf8LDsWuj5peMj56KQIl8iz+RXJqLpmy1isZh2V3t4gFTFg8qfzwSTUpbuWYHb/RzXHU1c5BtnGSeWPVJEzl8JsISfv5M6srWjsQntBKmvZp9kpKNIYwzjreTgpxNqLy2Xsex2SbtJQEUFVcoWjqSSoBYumPqa9FwS3JNcOpqSmK0VoJIIzgYJuwSN/+P647Yx8bDtv+o453FleOQYY9KkYyW/55eqlC4acgq2gjtcADNE4cmDjjbR3JVbWB3aFJt224Hbedno198VMxG/TaLJf0S5//Z7GnaJsmUuSysVaFimY+UAJO+lLyZ0aG9rCm6q8nM2gTtx/+AEqIknjXxRCVS1lyxZHppD2tlaYpkplz3UdJEnzXTJPMSigAo7lncqMuWvJivEKVQnZGY+JaOmEWd+KRor0O8JcuY2xztKP8wEakiCzPXQZxO+FicYE5l62ZpZdZgVlkmT5ZCCjTyI84SIgF571reSs7Hvz6zEKmLoeecR5u1nCShcKhesqC+1syO3FDtmP7fD6AgWTCRPtpK11Q8XNBgcmIYYc1ctlULTBlAPjLmIosSqwHK8GrgCtEiwxq3Ua0Qpo2h6Z8woValN6ydtT7BvM6v3aLtF/6ODokejC0iO+RGeFCUVwRcp11zXHNYyFGoSFw9PDCwISsSJAIa8ofi5NOkxiq7z7HZqn2m26T9pdepS7AjuRrE2dD73hHupv1ADWccpiqON71C3UuqUu9WkFiAV8tTj00ARWA6BS5QIKwRjAJm863k1dZJymi/hbbkr7WrGKoWq6WuqLTuvDTHKtNw4J/uR/33Cz0aqifYM2k+DEeATZZRL1NCUthODkkUQSg3myvGHg8R4QKs9Nvm2tkOztDDb7sqtS+xm694sLyzTLn6wIrKrtUP4kvv+/y0Cg0YnSQFMO05CUIeSPxLik2+TJ9JSUToPLYz/SgTHVMQIwPq9Q3p79zv0V/IicCouue2YLUethe5Mr5GxRjOZNjX4xbww/x6CdoVgSEYLE012TyGQihGpkf3RiNEQz9+OAwwLyY2G3gPUQMf90DrEeDn1RDNzsVZwNe8YrsDvLK+V8PNyd7RStvH5QHxofxKCKYTWh4VKI0wgTe+PB1Ah0H0QGo+ADrbMywsMSMzGX4OaQNJ+HTtPeP02d7ROcs3xvvCnMEjwonEt8iMztfVXt7e5wryk/wnB3QRKhsAJLErBTLLNuI5Mzu4Onc4hDQBLxkoByAIF2YNawNm+aTvb+YQ3sXWxdA9zE3JCch5yJbKTs6A0wLan+Eb6jLznfwRBkYP9hfdH8AmaiyzMHszrzRKNFAy1C70KdcjsRy5FC8MVgN1+s7xpek54sDbbdZm0sfPo87/ztbQFtSk2FreCuV97Hj0vfwKBSANwBSwG7whtiZ6Ku4sAS6uLfkr9Ci4JGkfMhlFEtoKKgN0+/Hz2+xp5szgLNys2GXWZNWw1ULXDNr23d7inOgC79z19fwTBAILixF9F6oc7SAnJEEmLifqJnkl6SJSH9IajRWvD2cJ5wJi/An2DvCe6uLl/eEL3x/dR9yG3NbdK+Bw44jnU+yo8V33RP0uA+8IWw5HE5AXFRu/HXofPSADINMeuBzFGRUWxRH5DNkHjAI+/RX4O/PT7v/q2+d85fLjRuN744zkbeYO6VfsLPBt9Pn4q/1cAuoGMgsTD3ESMxVHF54YMhkAGQ4YZhYXFDYR3A0lCi4GGQIG/hP6XvYF8x7wwO3569bqW+qK6l7rzuzL7kTxI/RQ97H6Kf6dAfUEFAjlClMNTA/FELQRFBLnETAR+A9MDjoM1gk0B2oEjwG6/gD8dvkv9zv1qPN+8sXxgPGs8UfyR/Ok9E72N/hO+oL8v/70ABADAwXABjkIZQk+CsAK6gq9Cj4KdAloCCQHtgUpBI0C7QBZ/9v9f/xP+1H6jfkF+bv4rvjc+EH51fmS+m/7Y/xl/Wv+bP9fAD4BAwKnAigDgwO5A8oDuQOJAz4D3wJwAvkBfwEHAZgANQDj/6P/d/9f/1z/av+H/7D/4f8TAEQAbwCQAKIAowCRAGoALwDi/4L/Fv+g/ib+rf08/dj8iPxR/Df8P/xs/L78Nf3R/Y7+Z/9VAFQBWQJdA1YEOgX/BZ8GEAdMB04HFAebBuYF9gTRA38CCQF6/9z9Pfyr+jT55PfJ9u71W/UZ9S31mfVc9nX32/iI+m/8gv6yAO8CJwVHBz0J+QpqDIINNw6ADlcOuw2tDDMLVgkjB6gE+AEo/0z8fPnO9lj0MPJp8BLvOu7q7Sfu8u5J8CTydvQv9z36if34AHIE2wcYCw0OoRDAElQUUBWpFVkVXxTBEocQwA2CCuIG+wLt/tX61PYK85bvlOwf6kvoKufI5irnUeg36s/sCPDL8/z3fPwnAd0FdQrNDsASLxb8GA8bVRzCHE4c+xrQGNsVMRLrDSoJEgTJ/nj5SfRk7/LqFufx457hMuC63z7gu+Er5Hvnlutd8Kz1XPtAAS0H8gxjElQXnRsZH60hQCPDIzEjiSHXHiwboxZdEYELOwW8/jX42/He62/muuHl3RHbV9nG2GfZN9sq3i7iJOfp7FDzK/pCAWIIUQ/YFcUb5yATJSgoCiqoKvspBCjQJHUgFBvTFOENdAbF/g73jO966BHig9z/16nUn9Ly0azSyNQ72OvctuJy6evw6fguAXsJjxEqGQ8gCCbkKnsurjBqMaYwZS61KrIlfh9KGEsQvQfk/gP2X+085dvdd9dE0mzOD8xEyxLMds5h0rfXUN775X7umfcEAXgKqxNUHC8k/SqIMKE0JzcEOC03pzSCMNwq3yO/G7oSFAkZ/xT1VOsm4tLZmtK5zF7IrsXAxJ/FRsijzJfS9tmI4g3sPPbFAFkLpBVWHyIowi/6NZU6cD1vPoo9xDowNvAvMSgvHywVdwpi/0H0bek53/bV7s1ix4XCgL9uvlm/PMIFx5DNrNUd35rp1PRyAB0MeRctIuUrUzQ1O1NAgkOnRLhDuEC8O+k0cSyVIp8X5Au//4vzqud43E3SeclDwuW8i7lRuEW5YLyNwabId9G82yjnYvMMAMUMKRnYJHUvrTg2QNRFWUmnSrFJfUYgQcI5mzDvJREaWg0tAPLyDebk2dfOPMVgvYO307NwsmiztLY/vN7DWs1p2Ljk6fGU/1ANsxpUJ9AyzDz5RBZL8E5oUHBPDUxXRnc+qjQ6KX0c1g6vAHXyl+SA15fLO8G+uGOyXa7QrMetQLEgtz2/Wcko1U/iavAK/74NFhygKfM1rUB6SRNQQ1TnVfFUZFFcSwRDmzhxLOIeVxBBARXyR+NM1ZHIer1ftImtL6l0p2ioB6w2sse6ecX80e/f5+5w/hEOUh28K904T0S2TchUTVkfWy1aflYrUGNHaTyRLz0h2xHjAdDxHuJJ08TF+rlHsPmoSqRhok+jDqeErYC2vsHozprdY+3H/UgOZx6lLYw7rUepUTJZCl4LYCJfVVu/VJFLEUCXMosjXxOSAqbxHeF50TTDvrZ5rLektZ+dnYCeWqIPqWyyKr7wy1Tb3+sS/WUOVR9cL/09xkpRVUxddmKnZMpj5V8TWYlPj0OANcgl4RRNA5bxQ+Dcz+HAyLP4qMagc5sqmQCa753bpJCuw7oYyR/ZX+pR/GgOGyDfMDBAmE2rWBRhjmbvaCFoKmQlXUlT30ZIOPQnYBYUBKDxkN9zzs6+G7HGpSidhpcNldOV0ZntoO+qi7dhxv/W5OiF+1IOuyAuMiRCIVC1W4ZkT2rgbCRsH2jvYMtW/knsOgkq1xfjBMHxBN8+zfq8t67louGZ85NJkfuRBJZHnY2nhrTQw/XUcOey+iUONCFJM9hDX1JtXqFntW12cM9vw2tvZAxa6ExqPQcsRxm6Bfrxnt49zGa7nqxXoPOWu5DijX6OjJLumW2kt7FowQTTBebY+eENhyExNEtFU1TQYGJqvXCvcx9zEG+gZwldmk+9P+otqxqXBknyXd5vyxO60KoenmCU4o3Zil2La4/mlpOhI68rvzDRp+T5+IgNtiHkNH5G+VXeYsdsZ3OHdhB2BHKAar5fEVLjQa8vAxx3B6zyQd7WygK5UKk7nCmSaYsxiJuIpYwwlAOfyqwcvXrPV+MY+BsNwCFkNW5HU1eWZM9urnX9eKF4m3QLbSliSlTZQ1QxSx1ZCCLzSd5wyjK4HaivmlCQU4nuhTyGPIrQkb6csao/u+bNF+I295wMpyGxNR5IYFj3ZXhwk3cOe8561XY/b0dkQ1adRdcygh47Carzct48yqK3N6d6mdeOoIcPhEGEM4jIj8ea2qiVuXbM6uBU9g0MbCHMNY5IH1n/ZsJxE3m5fJd8rXgZcRZm+FcsRzQ0pB8bCkH0vt45ylO3nqadmL2NU4aYgquCi4YcjiGZSKchuCvL0t929W4LESG2Nb1IkVmwZ6xyLnr8ffl9I3qYcpJnZ1mESGs1sSD3Cub0KN9nykO3U6YZmASNa4WJgX2BR4XLjM+X/KXmtgnK0d6d9MIKlyBwNa1ItlkJaDVz43rXfvN+NXu6c7toj1qiSXg2piHNC5j1sd/EynO3U6bsl6uM6YTjgLiAaITZi9CW+aTltRHJ6d3L8wsK/x/8NF9IkFkKaF1zMXtJf4R/4Xt8dI9pbVuFSlo3gSKbDFT2V+BPy9+3oKYWmLKMzoSmgFuA74NHiyiWQKQgtUbIHN0B80oJTB9bNNRHHlm1ZyZzGXtRf6t/J3zfdAtqAFwrSw84QCNgDRn3F+EGzIi4NqeWmBmNGYXTgGmA3YMVi9iV06OZtKjHa9xC8oIIfx6PMw1HY1gKZ5BynHrvfml/BnzgdC9qR1yTS5U44SMZDuX38OHnzGy5Fqhsmd+NyYVpgeCAMYREi+CVs6NRtDrH2tuQ8bQHmh2ZMg1GYFcKZptxuXklfr1+fnuAdPtpQFy6S+s4YyTEDrX44eLxzYi6PKmVmgKP3oZngsCB7YTUi0GW4aNKtP3GaNvs8OIGnxx8MdZEFla4ZEpwcnjzfKl9j3q/c21p6luhSw45xCRgD4j55uMhz9u7qaoQnIGQVojNgwmDD4bHjPyWXqSFtPPGGNtZ8A4GkBs5MGhDiFQUY51uyXZZeyx8OnmccoZoRltFS/84AiXqD1z6/uR10GK9WKzbnVuSMIqZhbqEl4cajhCYKqUCtRzH7NrX7zoFcBrTLsdBuFIiYZdsv3RbeUd6f3cYcUVnU1qnSrs4HCViEDD7J+bs0Ry/Sa70n4yUaozKh9GGhInOj32ZRabCtXrH5Npp72gEPxlNLfU/p1DjXjtqVnL4dv53YHU0b6tlEFnFSUM4EiXGEAD8XueC0wbBeLBYohOXAY9dikyJ1YvikUObr6fFtg3IAtsQ75kDARinK/Q9Wk5bXIpnkW81dFF13nLxbLljflehSJU34CQUEcz8o+g21R3D4rIEpe6Z85FRjSuMh45UlGGdaakLuNbIR9vN7tECtxbmKcg700uLWYdkc2wScUJy+29Qam9hnlU5R7E2iCRLEZH98ekF117FhrX2pxidPZWikGmPmpEil9afcKuUudXJs9uj7g8CZRULKHI5FEl4VjZh/miTbdVuumxUZ9BecFOORZc1CCRpEU7+SOvr2MfHX7grq4+g3JhNlASTCpVLmqCixK1huwvLSNyR7lcBCxQZJvY2IUYjU5pdNmW8aQxrHGn/Y9xb9VChQ0Y0XyNuEQH/pOzo2lXKa7uerk+kzZxQmPuW1JjNnb2lZLBvvXbMBd2a7qoArBITJFg0/UKST7dZHWGPZepmJWVSYJZYME5yQcAyjSJYEaj/BO733ATNpr5MslWoC6GnnEib9pykoSupTrO+vxjO7N2+7goASxH7IZkxqz/HS49VuVwQYXJi2WBRXABVIUsDPwMxkiEmEUEAZu8X39LPDcIztp2slKVNoeifbaHOpeisgbZNwu/P+9797nj/6Q/UH70uMDzHRyhRDVhDXKpdOVz+Vx1Ry0dUPBIvbSDYEMwAx/BE4bvSnMVMuiKxYqpAptikNaZIqvGw+rkaxfrRNeBa7/T+iQ6hHcgrjziVQ4ZMHlMsV5NYS1deU+9MMERoOe0sHx9tEEcBJvJ847zVT8mWvuG1cq95qxOqSasOr0S1t70kyDnUl+HU74L+LQ1lG7woyzQ1P6xH703RUTRTEVJzTnlIUkBBNpQqqR3kD7EBgPO85dHYI80Kw9S6vrT2sJavprAdtNy5tcFpy6vWIuNs8CH+1gsiGZ0l6DCsOqBChkg0TJBNkkxCSb9DNDzfMgooCRw9DwgC0/QB6PjbE9Gmx/i/Q7qwtlq1R7Zvube+8sXnzk7Z1eQi8dT9hwraFm8i6yz/NWU96EJdRq1H0EbPQ8Q+2TdGL08lQhp4DkwCHfZK6i3fHdVlzEjF+r+kvFu7KbwCv9DDasqb0iDcsOb28Zr9QQmSFDQf1ygwMQI4GD1PQI5B0UAePo05RTN4K2UiVBiVDXsCXveT7G3iOtlB0b7K4MXLwpXBRMLRxCTJGs+C1iHfsejo8nb9BghKEvAbsCRGLHoyHjcPOjs7mTozOB00ei54J08fQBaTDJQCkvjZ7rTlad041lbQ7sshyQLIlsjWyq/O/tOa2k3i2Or582f92QYGEKcYeyBFJ9Ms/TCkM7Y0LzQUMnkufSlIIw4cBxR0C5gCufka8f/opOFD2wrWINKgz5zOGM8O0WvUFNng3qLlI+0n9W/9uQXIDVsVOhwxIhMnvCoTLQguly3FK6UoUSTtHqQYqxE3CoUC0fpU80vs6eVf4Nbbb9hD1l7VxdVy11XaVd5R4x/pkO9y9o39qQSSCxAS8xcPHT0hXyRhJjQn1iZNJaYi+h5oGhUVLQ/eCFsC2PuF9ZTvMuqG5bXh194D3ULcl9z+3Wjgv+Po58DsHvLZ98L9qwNnCckOqRPjF1cb7R2UH0Eg8x+vHoEcfhm+FWMRjwxpBxoCzfyq99jye+616qDnUuXb40LjieOs5J7mTumj7IPwzPRc+Q/+vwJJB4kLYQ+yEmcVaxeyGDUZ9BjyFzsW3xPzEJAN0gnYBcIBsP3B+RP2wvLm75Tt2+vF6ljqlep36/Ps/O5+8WX0l/f6+nP+5gE6BVQIHQuBDXEP3hDBERYS3REbEdkPIw4KDKAJ+gYtBFIBf/7I+0P5AvcW9YvzavK78X/xtfFY8mHzxPR09mL4fPqx/O/+IgE7AysF4gZVCHsJTQrHCuoKtgowCmAJTwgHB5YFBwRqAssAOP+9/WT8N/s++n/5/Pi3+LD44/hL+eP5o/qD+3j8e/2B/oH/cwBQARICswIxA4kDvAPKA7YDgwM3A9YCZwLvAXUB/QCPAC0A3f+e/3T/Xv9c/2z/iv+0/+X/FwBIAHMAkgCjAKMAjwBmACkA2v96/wz/lv4b/qP9M/3Q/IL8Tfw2/EH8cfzG/EH94P2f/nr/agBpAW8CcwNqBEsFDgaqBhcHTgdMBwwHjgbUBd8EtwNhAugAV/+5/Rv8i/oW+cv3tPbf9VP1GPUz9ab1cfaQ9/34rvqa/LD+4gAfA1UFcgdlCRoLhQyVDUEOgQ5ODqkNkgwPCyoJ8AZwBL0B6/4P/EH5l/Yn9AbySPD77i7u6e0y7grvbPBR8qz0bveC+tH9QgG8BCMIWgtIDtMQ5xJvFF4VqRVLFUMUlxJREIANOAqRBqYClv5/+oH2vfJR71rs8eks6BvnyeY753PoaOoO7VPwIPRZ+N78jAFABtUKJQ8PE3EWLxkyG2ccwRw7HNUamRiUFdsRig3BCKIDWP4I+d3zAO+Z6szmt+N34R7gvN9U4ObhaeTM5/bryfAi9tj7vwGqB2oN0hK3F+8bWh/YIVUjwiMYI1ohkh7UGjkW5RD+CrEEMf6s91fxZOsD5l/hnt3h2j/ZyNiC2Wvbdt6P4pjnbO3f88D62wH4COEPXRY7HEkhYCVcKCQqpirdKcsnfiQMIJYaRRRHDdIFIP5r9vDu6ueR4RjcrNdx1IPS9NHL0gXVk9hc3T3jCuqR8Zj54AEqCjYSxBmYIHsmPiu4Ls0waDGEMCQuVyo4Je4epheZDwIHJv5H9avsl+RJ3fzW5NErzu/LRcs1zLvOxtI42OreqeY872D4zwFAC2oUBR3LJIEr7jDnNEo3AjgHN140FzBTKjwjBhvxEUEIQv5A9Inqa+Es2Q/STMwUyInFwcTGxZLIE80n06LaS+Ph7Bv3qAE5DHoWHCDRKFUwbDbkOpc9bz5hPXQ6uzVZL30nYh5NFI0JdP5W84zoad4+1VPN6cYywla/br6Dv5DCgMcuzmnW89+E6sn1bAEUDWUYByOmLPY0tDuqQK5DqESMQ2FAPDtENKwrtSGrFuQKuv6J8rPmlNuC0c7IvsGJvFy5ULhyubq8EsJSyUXSptwm6G30HAHSDSsaxiVIMF85wkA0RotJqUqCSR9GlkAQOcUv/SQIGUQME//a8QHl7Nj7zYLEz7wet5+zbrKYsxW3zryXxDfOZdnL5QnzuQByDskbVii1M409kUV/SydPbFA/T6lLw0W4PcUzNShhG6wNgP9J8XbjddaqynPAIbj2sSSuy6z5raaxuLcCwEbKNdZ0457xRAD1DkAdtSrpNn1BHUqFUH9U7FW+VPxQwEo5Qqc3XCu0HRkP/v/U8BPiLtSTx6O8trMTrfCobqecqHKs1rKXu3TGGdMm4S7wvv9cD5Ae4izjOSxFZE5CVY9ZJlv5WRBWh0+NRmg7bC79H4oQiwB88NjgGtK2xBW5k697qAakWaKEo36nLK5at8XCFNDi3rzuKP+mD7cf3S6hPJhIY1K0WVFeFGDtXuNaE1SxSgQ/ZDE7Iv0RKAFA8MXfOdAXwsy1uqsxpGyfk522ns6ivalQsz6/Ks2s3ErthP7UD7UgozAhP75LFVbWXcNismSUY29fYlihTnZCPzRqJG8T0wEf8Nrejc62v8qyL6g3oCSbHpk2mmaekKV9r+G7XsqF2tnr0/3oD4whNjJjQZxOelmmYeBm/WjrZ7FjblxYUrxF+zaHJt4UigIY8BjeFc2VvRCw8qSSnDKX/pQJlkuap6Hjq7O4tMdy2GzqF/3hDzoikzNkQzBRjVwgZaVq8Wzua6RnM2DSVdFIlDmQKEkWSwMs8H3d0su0u6GtCKJEmZqTN5ExkoCWBp6IqLe1LcV01gXpUfzCD8EiuzQkRXpTTl9CaBBuinCab0ZrrmMNWbNLBzyCKqwXFQRX8ArdxMoVun6rcZ9Oll2QzY2zjgqTsZpvpfCyzsKO1Kbng/uKDyEjrzWiRndVumEKax5xxXPqcpFu3GYFXF5OUj5bLAUZ5gSa8L3c7Mm4uKepMJ20k3+NwYqRi+qPq5eaomKwmcDD0lLmsPo8D1sjbTbeRydX0GN2bcxzoXbddYRxuWm2Xs9QcEAXLlMavAXy8JfcSMmctx6oRZt4kQGLFojOiCSN+JQNoA+ukr4W0Qvl2PnaDm8j9jbYSIpYj2WEbxh2GXlveBx0QmwdYQNTYEK1L5MblQZf8ZXc2cjDtuOmspmZj+eI0IVthruKmZLLnfururyIz9Pj/vhjDl4jTDeQSZ1Z9mYycQF4LnueelZ2dW45Y/hUH0QyMcMccAff8bfcncgttvald5gajjCH74NwhLKIk5DXmyeqFbsdzqziI/jaDSsjbjcGSmNaBWiBcoV523xofC94T3AGZapWqkWLMuAdSghw8vzclMjXtVillZf8jN+FdILZggmH5o4ympeopLnWzJnhSvdBDdUiXjc7Stpaumhvc6R6In7MfaZ5znGCZhhYAEe/M+keIQkR82LdvcjDtQelDJc/jPOEYoGpgcSFlY3fmEynari3y5vgdPaZDGAiHTcwSgRbF2n8c1x7/37Ifrl68HKrZz9ZHUjKNNwf9Qm/8+fdFsnutQSl25bii26EuoDhgOOEoozgl0imarfAyrTfpPXlC8shrDblSeFaHGkodK57c39cf2d7tXN/aB5aAEmsNbYgwQp69IrenslYtk2lA5fni1CEeoCCgGiEDYw3l46lpLb0yefe2/QlCxkhDDZcSXJayWjzc5h7fn+Gf7B7GXT9aLNaqEliNnYhhgs/9UrfVMoAt+KlgZdLjJmEpICNgFKE2Ivklh+lG7ZUyTXeG/RcCkwgQDWWSLhZIGhecx17H39Gf5J7HnQlafxaEkrqNhkiQQwL9iTgNsvjt8GmVZgQjUeFOIEBgaSEBIzplvyk0LXjyKDdZ/OMCWUfSTSWR7RYIWdrcjx6V36efg17wXP0aPlaPUpDN54i7wzf9hfhQcwAueinfpkyjlqGNILegVyFkYxGlyalxbWiyCvdv/K2CGceKjNcRmlXzmUacfd4J32MfSF6BHNraKhaKUpsNwQjkA229yDidc1Wulap+pqxj9GHmIMlg3uGf437l52l+rWSyNXcJvLdB1Qd4zHrRNlVKWRtb053kHsRfNB45nGJZwpa00ljN0kjIQ6Q+D3jzs7huwirx5yLkaqJYoXShP+Hzo4KmWOmcLa0yKLcnfECBy0ceDBGQwVUNWJnbUV1k3kwehl3Z3BOZh1ZPUknN2sjoQ5r+W3kS9Cgvf2s456+k+SLkYfnhuiJfJBxmnanKLcKyZHcJvEoBvUa6i5uQfFR818Ia9xyMnfqd/90iG67ZOJXZEi4NmkjDg9E+q3l6dGQvzGvSqFHlnyOI4pfiTSMipIwnNmoIriTyaXcxPBQBa4ZPS1nP55PZl1VaBZwb3Q/dYFyTGzQYllWSEcUNkMjZg8a+/vmpdOuwaKx+6MkmW+RFo07jOKO9pRGnomqXrlRyt/cdvB9BFoYcisyPRBNkVpPZfZsTXEzcqNvsmmPYIJU60U8NfYiqQ/r+1ToftX5w02086ZSnLqUZpB2j/CRvpeyoIas3LpFyz/dPvCvA/sWjCnTOklKeFf6YYBpz23JbmZsvGb4XV9STEQuNIMi1A+1/LfpcNdsxi+3LqrNn1yYEpQPk1uV4Jpzo9CunLxtzMbdH/DpApQVjidMOE1HHVRZXrVl92kCa85obmMOW/BPa0LrMugh6A92/SLredkFyUS6qK2So0+cFZgDlyCZWp6GpmSxnb7KzXTeGPAtAicUeyWiNR9Eg1BwWpphymXiZtxkyV/RVzZNSkBzMSYh4Q8t/pHsltvBy4q9X7Gep5GgbJxOmz2dKqLrqUK038Bdz0vfLPB8AbYSVCPWMsJAsExDVjJdSmFtYpRgz1tGVDRK6T3HLzsgwA/Y/gPuxd2czvzAT7Xtqx2lE6Hsn6+hTKadrWi3X8Mj0UngWvDYAEQRHiHsLzs9pkjUUYJYfFynXfpbhVdtUOtGSjvmLSgfhA91/3bvA+CU0ZjEc7l5sPCpB6bapHGmvqqcsdS6HcYe03DhpPBCANIP2h7nLIw5aUQqTY5TZFeSWBBX7VJKTF1DbTjSK+0dLA8CAOfwTOKk1FnIx71AtQSvQqsUqoGre6/jtYO+F8lL1cDiC/G8/2IOjBzLKbo1/j9ISFpOB1I1U9xRCk7fR40/VjWLKYoctw6AAFTyn+TL1zvMSMI9ule0wbCUr9mwgbRvunPCS8yq1zfkjvFH//cMNRqbJskxaTsyQ+tIaEySTWFM4kgxQ347BTIUJ/8aJg7tALzz+OYD2zvQ8MZqv+G5frZXtXW2zLk+v6HGuM862tXlLvLk/pML2hdaI7strjbuPUZDjkawR6RGd0NCPjI3fi5sJE0Zdw1GARz1VelL3lTUvMvExJ+/dLxYu1K8Vr9MxArLWtP53Jvn7PKU/jcKfBUNIJcp0jGAOHA9fUCSQapAzj0XOa0ywiqXIXQXqgyMAXP2s+ue4YPYp9BFyozFn8KRwWnCHMWUyavPL9fk34bpx/NY/uUIHxO1HF4l2SztMm43Ojo/O3c67De0M/Et1CaVHncVwAu+Ab/3D+765MTcrdXpz6LL+cj+x7bIGcsSz3/UNdv74pbrwPQx/qAHxBBXGRYhyCc6LUUxyzO7NBE01TEcLgQptyJpG1UTuQraAf74Z/Ba6BLhyNqp1dzRfM+YzjPPSNHC1IXZaN885srt1vUg/mgGbw72FcMcpCJtJ/sqNS0MLn0tjytUKOgjbx4WGBARlQngAS76ufK762rl9N+C2zXYI9Za1dzVpNeg2rfexeOj6R/wCPcl/kAFIQyUEmgYcR2KIZUkfiY4J8EmHyViIqEe/RmcFKkOVAjPAU/7AvUb78fpLOVu4abe6Nw+3KvcKN6m4BHkSegu7ZbyVvhB/igE3gk3DwoUNBiXGxoerB9EIOIfiR5JHDQZZxUAESMM+AaoAV78P/d28iXubOpn5yvlxeM/45njzuTR5o/p8ezb8Cv1wPl0/iIDpwfgC60P8hKYFY0XxRg3GeUY1BcPFqYTrxBDDX8JgQVqAVr9b/nI9YDyr+9p7b3rtepX6qLqkesZ7S3vuPGm9N33RPu+/i8CfgWSCFQLrw2UD/YQzhEXEtIRBRG4D/oN2QtpCb8G8QMVAUP+kPsQ+db28fRu81fysvF/8b/xa/J78+b0m/aO+Kv64fwe/1ABZgNSBQMHcAiPCVoKzQroCq0KIQpMCTUI6gZ1BeUDRwKpABj/n/1J/CH7LPpy+fT4tPiy+On4Vvny+bX6lvuN/JH9l/6W/4YAYQEgAr8COgOPA78DygOzA34DMAPNAl0C5QFqAfQAhgAmANf/mv9x/13/Xf9u/43/uP/p/xsATAB2AJQApACiAIwAYgAjANP/cf8D/4v+Ef6Z/Sr9yfx9/Er8NvxE/Hf8z/xN/e79sP6N/38AfwGFAogDfQRdBR0GtQYdB1AHSQcEB4EGwgXJBJwDQwLIADX/lv35+2r6+fix96D20PVK9Rb1OfWz9YX2q/ce+dX6xfze/hEBTwOEBZ4HjAk8C58MqA1LDoEORQ6WDXUM6gr+CL0GOASBAa7+0/sG+WD29vPd8Sfw5e4j7urtP+4i74/wf/Lj9Kz3xvoa/o0BBgVpCJsLgg4EEQ0TiRRrFagVOxUlFGwSGhA+De0JPwZQAj7+KPou9nDyDe8h7MXpDugM58vmTueV6JnqTu2f8Hf0t/hB/fEBpAY0C30PXROyFmIZVBt3HL4cJRyuGmAYSxWFESgNVggzA+b9l/hx853uQuqC5n/jUeEN4L/fbOAT4qnkHehX7DfxmfZV/D4CJwjiDUATGBhBHJgfAiJpI74j/SIpIUseehrOFWwQewooBKX9IvfT8OvqmOUG4Vrds9oq2czYn9mh28Pe8eIN6PDtbvRX+3MCjglwEOEWrxyrIasljig7KqIqvSmRJyokoR8XGrUTrAwvBXv9yfVV7lznE+Gv21vXO9Rp0vjR7dJE1e3Yz93G46XqOPJH+pEC2QrdEl4aICHsJpUr8i7oMGQxYDDgLfYpvSRcHgEX5g5HBmj9jPT56/LjuNyD1ofR7M3Ry0rLXMwDzy3Tu9iF31nn+u8n+ZkCBwwoFbMdZiUCLFExKjVqN/433zYSNKovyCmXIkwaJxFuB2z9bfPA6bHgiNiG0ePLzcdnxcXE8cXiyIbNutNQ2xDktu3694oCGA1PF98gfinmMNw2Lzu8PWs+NT0gOkI1vy7GJpMdbROiCIX9a/Ks55vdiNS7zHPG4sEvv3K+sb/owv7H0M4p18zgbuu/9mYCCg5QGeAjZS2WNTA8/kDXQ6VEXEMGQLg6mzPjKtMgthXjCbT9iPG+5bHautAnyDzBMbwwuVO4o7kYvZvCAcoV05HdJul59SwC3g4rG7ImGTEOOklBkUa5SaZKUEm9RQhAWjjtLggk/xctC/j9w/D34/bXIc3Mw0G8vrZus3CyzLN6t2C9VMUYz2Pa3uYq9N8BlA/eHFUplzRLPiRG40taT2pQCk9CSyxF9jzdMi8nRBqADE/+HPBX4mzVv8muv4e3jbHvrcysL64RslS4y8A1y0TXm+TT8n4BLBBpHscr3DdJQrxK8lC3VO1Vh1SOUB9KakGxNkQqhBzaDbn+k+/h4BPTmMbQuxGzoqy1qG2n1KjirHqza7xxxzjUX+J38QwBphDLHwYu5joGRg9PuFXLWShbwFmeVd5OtEVkOkUtvB45DzT/KO+T3+7QrMM1uOOuAqjHo1aivaPzp9iuObjQw0PRLOAX8IgAAxEFIREwsz1/SRhTMlqTXhhgs15sWmNTzUnzPS4w6SCaEL//2u5u3v3O/cDftACrr6Mnn46d8J5Ho3GqObRVwGfOBd617vb/QhEUIugxQkCyTNVWXF4KY7hkWWP1XqtXtE1aQfwyCSP8EVgAqO5z3UDNjr7QsWqnrp/bmhaZcZrjnkmmbrADvajL7dtU7Vb/ZhH7IoozkUKcT0NaM2IsZwVpsGczY7FbYlGVRKs1GCVcE/8Aku6h3LrLX7wLrySkAZzklvSURJbKmmai3azfuQrJ59n166n+bxG4I/U0n0Q8UmBdtWX2avxss2skZ3Ff1VShRzk4FSe4FLIBl+7422nKcrqQrDChrJhGkyuRbZICl8qeiKnsto7G9deb6vH9XRFNJCs2bEaQVCpg3mhmbpdwXm/DauhiClh6SqI6+ygPFm8Cte5420/Jx7hiqpGesJUFkL6N7o6Nk3mbdaYttDjEGtZJ6S/9MxG5JCo39UeXVp9irGt5cdVzr3INbhJm/FoeTeM8yipdFzQD7O4g22vIX7eCqEecD5Mija+Ky4tvkHaYpaOmsQzCWdT/52f88BD+JPM3O0lRWL1kHm4rdLR2o3X/cO1oqF2IT/o+fiyiGAAEOu/u2r3HO7bwplWazJCgigKICImqjcWVHaFZrwvAs9LB5pj7lxAcJYY4Pkq7WYNmMnB8di95NniWc3RrDGC3UeRAFC7ZGdAEnu/k2kXHWbWtpbuY6I6BiLmFpYZBi2mT3p5IrTm+LdGQ5cb6KRAUJeQ4/krWWvBn5nFpeEZ7Z3rQdaVtJWKoU55Ciy8CG6QFFvD+2gHHu7S6pHqXZI3GhtSDp4Q3iWOR7Jx4q5i8x89w5PL5pw/oJA05e0uiWwRpOXPxefd8M3yqd39v8GNXVSVE3zAaHHgGoPA82/LGX7QWpJOWQYxxhVeCDYOOh7aPSJvqqSq7hM5h4x75FA+YJAM5tksfXL9pLHQTe0B+mX0ief5wa2XEVnhFDzIfHUsHPPGd2xXHRrTAowWWgIuChEOB24FHhmWO9pmgqPO5Z81m4kz4cA4mJMY4r0tNXCBqvHTPeyB/l343eiFylGbqV5RGGTMQHhsI5/Ef3GvHbbS5o9GVIIv6g5eAEYFkhXCN9pidp/O4ccyB4X73vg2VI1g4Z0stXChq63QjfJd/LX/neudyamfKWHhH+jPpHucIoPLA3PHH1bQApPWVIYvZg1WAr4DnhNqMS5jipiy4pcu04Lb2/wzkIro34ErAW9hpuXQRfKV/Wn8ye05z6mdgWSFIsTSpH6wJZfN/3abIe7WTpHGWhIsfhHyAt4DPhKOM9pdwpqG3BMsB4PX1NQwXIu82G0oHWzBpJ3SYe0h/HX8Xe1VzFGitWY1IPDVPIGgKM/Ra3ojJXrZxpUWXRozLhA2BKYEdhcuM95dKplO3kMpp3z71YwsvIfc1GkkEWjFoNXO5eoN+d36Vevxy52etWb1ImTXYIBoLCfVP35XKfLeZpm6YaI3dhQeCBILShVSNUJhvpkO3Ssrv3pL0igouINU030e4WN9m5HF1eVV9aH2teUNyY2diWa1IxzVCIb8L5fVc4MzL1LgIqOqZ545Th2mDR4Pthj6OAZnhpnK3NMqU3vPzrAkWH4oza0YmVzllOHDNd7978XtgeClxhmbJWF5IxDWOIVYMxfZ+4SnNY7q9qbmbwZAriTKF8oRtiIiPCZqgp+K3T8pZ3mTzygjpHRoywURPVUJjMG7EdcR5EnqtdrBvUWXjV85HkDW3Id4Mp/e14qzOJ7y2q9ed9ZJli1+HA4dSijGRaputqJK4nMpA3uXy6AepHIYw5EI2U/1g0Gtbc2V3z3eXdNdtxWOwVv5GKjW/IVQNifj941HQHb7vrUKggJX8jfCJeYmZjDmTIp0HqoK5HMtK3njyBwdZG9Au1UDdUG1eGmmVcKN0J3UecqBr4mEwVe1FkTSjIbcNaflV5RbSQ8BmsPeiYJjwkOGMUYxDj56VMJ+tq7W6z8t53h/yKAb7GfwsmD5JTpNbEmZ0bYJxHnJFbw1pqV9iU5pEwzNiIQYORvq55vnTlsIYs/SlkZs9lDGQio9Lkl+Yk6GhrSi8t8zM3tvxTgWQGAsrMDx6S3NYuWL8aQVut24NbB9mG11JUQZDwjL8ID8OHfsp6PfVFMUCtjWpEZ/hl9yTIJOxlXqbS6Tfr9y90s1F367xewQcFwEpnzl1SBFVE18vZi1q82p6aNhiOlrlTjJBjTFwIGAO7Pug6QzYuMchubes26LWm9+XEZdymeyeVadostC/Ic/l35jxrwOhFeEm6DY9RXBRJVsRYgBm1maNZDpfCFc4TB8/JDC9H2oOs/wf6zjagMpxvHew7aYboDacWZuKnbSir6o6tQPCpNCr4Jvx7gIhFKwkEDTWQZRN8VamXYBhY2JLYElbh1NCScw8hy7jHloObv2h7HXcac3vv2+0QaurpN6g9Z/2oc6mV65TuHTEW9KZ4bjxOQKdEmYiGDFCPoBJfFLyWLFcn122WwdXuU8GRjw6tyziHTAOHf4l7sPeb9CXw5241a+CqdOl4aSzpjirSrKxuyPHRNSu4u/xkAEZEREgBC6HOjlFyk35U5hXjFjRVndSoUuGQm83tCq5HOsNv/6p7x7hj9Nlx/y8pLScrg+rGaq9q+2vhrZTvw3KYNbq40Ly9gCWD7Ed2CqnNsNA4EjATjlSMFOjUZ1NQkfFPmk0gChpG4sNUf8q8YPjxtZWy4nBqbnzs5CwmK8Qseq0B7s0wzDNrNhN5bDybAAXDkgblyemMiI8wUNMSZhMkE0tTH1IoELEOikxHCbzGQ4N0/+m8u/lEdplzz7G4L6DuU+2WbWntiy6yr9Tx4vQKNvX5jvz9P+eDNgYRCSJLlo3cz6gQ7tGr0d1RhtDvT2HNrMtiCNWGHUMQQAc9GHoa92P0xfLRMRIv0i8Wbt+vK2/y8StyxvU092H6OPzjv8sC2YW4yBUKnAy+zjEPadAkkGAQHs9njgSMgoqxyCTFr8LngCJ9dTq0eDP1xDQ0Mk8xXbCkcGQwmvFBso+0N7XquBc6qf0O//ECfMTeB0KJmktXTO6N2E6QDtSOqI3RzNmLS4m2h2sFOwK5wDs9kbtQeQh3CTVfs9Zy9PI/MfZyF/LeM8D1dHbrONV7Ij1/P5nCIIRBRqwIUkony2KMe4zvDTxM5QxvC2JKCUixBqhEv0JHAFD+LXvtueC4E7aS9Wb0VrPls5Sz4XRHNX42fHf1uZx7oX20v4XBxUPjhZKHRUjxSc4K1QtDi5hLVcrASh9I+8dhhd0EPIIOwGM+R/yLevs5IvfMNv81wXWWNX21djX7doZ3zvkKOqv8J73vv7VBbAMFxPcGNId1iHJJJkmOiepJu8kGyJGHpEZIhQlDssHRAHF+n/0o+5d6dTkKeF33s/cPdzA3FPe5+Bj5Kzone0O89P4wP6kBFQKow9qFIUY1RtFHsIfRiDOH2IeDxzqGA4VnBC3C4gGNwHu+9b2FfLP7SXqMOcF5bLjPuOr4/HkBOfR6UDtM/GL9SP62f6EAwQINQz4DzETyRWvF9YYOBnWGLUX4RVsE2oQ9gwsCSsFEwEF/R75fvVA8nnvP+2h66fqV+qw6qzrQO1f7/Px6PQl+I77CP93AsMF0QiKC9wNtw8OEdkRFhLGEe4Qlw/QDagLMgmEBrQD2AAI/lj73fiq9s30U/NF8qnxgPHJ8X7ylvMH9cP2ufjZ+hH9Tv9+AZEDeAUlB4sIpAlnCtMK5wqlChIKNwkcCMwGVQXDAyQChgD3/oH9L/wK+xr6Zfns+LL4tPjw+GH5AfrG+qr7o/yn/az+q/+ZAHIBLwLLAkIDlAPBA8kDrwN4AygDxAJTAtoBYAHqAH4AHgDR/5b/b/9d/17/cP+R/7z/7f8fAFAAeQCWAKQAoQCJAF0AHQDL/2j/+f6B/gf+kP0h/cL8d/xH/Db8R/x9/Nj8Wf39/cL+of+UAJUBmwKdA5EEbgUrBr8GJAdSB0UH+wZzBq8FsQSBAyUCpwAT/3P91/tK+tz4mPeM9sL1Q/UW9UD1wvWb9sf3QPn9+vD8DP9BAX4DsgXJB7IJXAu5DLkNVA6ADjsOgg1YDMUK0QiKBgAERgFx/pb7zPgq9sbztPEI8NDuGe7s7UzuO++08K3yG/Xs9wv7Y/7XAU8FsAjdC7wONREyE6IUdhWlFSoVBxRAEuIP+wyiCe0F+gHn/dL52/Uk8sru6eua6fLnAOfO5mLnuejN6o/t7fDO9Bb5pP1VAgcHkwvUD6kT8haTGXQbhRy6HA4chBolGAEVLRHFDOsHwgJ0/Sf4B/M77uvpO+ZI4y3h/d/D34bgQeLr5HDoueyl8RH30vy8AqMIWA6tE3gYkBzVHyoieiO5I+Ei9SADHh4aYhXyD/cJngMZ/Zn2UfBz6i7lruAX3YfaFtnS2L/Z2dsT31bjg+h17v707fsLAyQK/hBkFyIdCiL0Jb4oUCqcKpspVCfUIzQflxklEw8MjATW/Cb1u+3O5pfgSNsM1wfUUtL/0RLThtVK2UTeUORA6+Dy9vpDA4gLgxP2GqYhXCfqKyovATFdMTkwmi2TKUAkxx1bFjIOiwWq/NHzR+tP4yncDNYs0bDNtstRy4XMTc+W00DZI+AK6Lrw7/ljA84M5RVhHv4lgCyyMWo1hzf3N7M2wzM7Lzsp8CGRGVwQmgaV/Jry+Oj53+fX/9B8y4nHSMXNxB7GNcn7zU/UANzW5Izu2fhtA/YNIhiiISkqdDFJN3c73T1kPgU9yTnHNCIuDCbDHIwStweX/ILxzebP3NTTJcwAxpbBDL95vuO/QsN/yHPP69em4VrstvdfA/8OORq2JCIuMzapPE5B/UOeRClDpz8yOvAyGSrvH8AU4Qiv/IjwyuTR2fTPgse9wN27CblauNi5er0nw7PK6NN/3ibqhvY9A+oPKRycJ+gxujrOQelG4kmgShlJWEV3P6E3ES4RI/MWFgrd/K3v7eID10rMGMO3u2G2QrN2sgS04rf3vRPG+89j2/PnTPUFA7UQ8R1SKnY1Bj+0RkRMiE9lUNFO1kqRRDA88jEmJiUZVAsf/fHuOuFl1NjI7L7ytiixvq3RrGqugLL0uJfBKMxW2MPlCfS5AmERkB/WLMw4EkNYS1tR6lToVUtUHFB7SZhAtzUrKVMbmgx0/VTusN/70aDFALtxsjWsgKhwpxGpVq0jtEO9csha1ZnjwPJaAu8RBSEnL+Y73Ua1TylWA1olW4NZJ1UxTtZEXDkcLHkd5g3c/dXtUN7Ez6TCWLc4ro2njaNZovyjbKiIrxy53sR00nfhcvHpAV4SUSJEMcI+Y0rJU6pa0F4XYHNe8FmvUuZI3jz2LpYfNg9V/nXtGt3Czee/9bNKqjOj6J6OnTCfxKMpqya1b8Gnz2DfIfBoAbASciMqM2BBok2QV9xeS2O5ZBljdV7wVsJMOUC2MaYhhxDe/jLtDtz2y2q92rCqpiqfl5oVmbKaZJ8Ip2SxKb71zFfd0O7YAOQSaCTbNL1DmFAIW7ticmcIaW9nsGLwWmhQakNYNKcj2BF2/w3tLdthyi67Ca5ao3abm5bxlIaWT5sqo9utD7tiyl7bgO05APwSNCVVNtdFQ1MvXkRmQmsAbXFrnmarXtRTbEbaNpclJxMZAAPtddoDyTS5hKtdoBmY+ZIlka6SiZeTn46qJbjyx3nZM+yQ//gS1iWXN7BHolUBYXRptm6fcB1vO2odYgFXPUk5OXIncRTJABTt6Nndx363TKm2nRaVs4+1jS+PFpRGnICnbrWmxanX7Orb/toSTyaiOERJs1d+Y0lszXHfc25yg21DZe5Z2UtyOzYptBWCAT7thNntxgu2Yqdkm3CSy4ykigyM+ZBHmbak7rKBw/HVreke/qMSnyZ2OZRKdVmkZcFuhHTAdmJ1dHAaaJVcPU6BPeEq7xZEAoLtSNk1xt20yKVrmSeQRYr0h0eJNY6ZljGiprCIwVTUeOhZ/VQSxyYSOqBL6FpxZ9pw2XY+efd3CnOfavZeZ1BkP3AsHhgLA9ztNNm0xfOzfaTKlz2OIoioheSGzYs+lPafm668v9TST+eP/O4RyCZ5OmhMClzlaJNyynhYeyl6RHXPbAxhVFIZQeEtQBnXA03uRtloxU6zg6ODlrSMY4bBg+SEw4k5kgaezqwfvnPRNObC+3MRoiapOuxM3Fz+aexzVnoMffd7HneobtViAFSdQjEvUxqlBNHuftlTxeyy2aKWlY2LCoVBgkmDGYiNkGScQqu1vDTQKuXz+uUQWCalOixNXl2+auJ0fHtYfl99mHgncE9ka1XtQ14wVBt0BWjv2tlxxc2yfqIElceKGIQqgRSC0YY7jxKb+ql/uxrPMuQl+kYQ6yVsOilNkV0ja3d1O3w7f19+rnlLcXllkVYIRWUxQhxCBhDwWNrDxfGydKLMlGSKjIN7gEiB7IVFjhKa9qh/uiXOT+NZ+ZYPXCUBOuVMdF0va6l1kny1f/d+YHoTck9mcVfrRUYyGh0MB8fw99pGxlWzt6LtlGKKaYM2gOSAbYWtjWWZOqi4uVnNguKR+NgOrSRmOWBMCl3hanp1gnzFfyd/rXp8ctJmCViVRv4y2x3RB4vxttv6xvqzSaNolcOKrINbgOmAUoVzjQ2ZxqcrubbMzuHP9w4O4COaOJxLUlw6aul0DHxrf+1+lXqGcv9mWFgFR4szgx6PCFvykdzdx920JqQ6loOLVoTqgFiBnYWZjQuZnKfauD/MNOEW9zoN9iKhN5tKT1s9afhzLnuofkl+F3oxctVmXVg4R+wzDx9ECTTzid3syP21TqVil6SMZoXhgTCCT4YejmCZvafGuPXLteBm9l0M8iF9Nl5JAlrqZ6ly7Hl8fT19Mnl8cVVmFlgtRx80fx/uCRT0md4lyle3v6bfmCKO24ZBg3CDZocDjwyaKqjvuNnLVODC9XoL1iAuNedHblhDZvxwRnjoe8l76XdncH5lg1flRiM00B+LCvr0wd+Iy+m4d6ivmv2Ps4gIhRiF4ohHkA6b4qhXue3LE+Ar9ZIKox+5MzlGk1ZKZPNuPXbvee55O3bzbk9kpFZdRvczAiAbC+P1/+AQzbK6c6rQnDKS7IozhyaHworrkWic6Kn/uTLM8d+k9KgJXB4eMlZEdlQCYpJs1HORd613KXQgbcpieVWVRZkzEyCaC872T+K8zq+8saw+n7+UhI3DiZiJBY3tkxmeOavnuqjM8d8t9L0IAx1hMEFCGFJuX9ppDnHRdAl1tXHvau9gAlSNRAozAiAIDLj3sOOK0Ny+Lq/4oaGXeJCzjG6MqY9Llh+g16wPvFDNFODJ89MHmhuDLvw/fU+PXM5m7G2xcQNy4W5jaL5ePlJFQ0kyzR9iDKD4H+V30jjB57H7pNaaxpMCkKOPrZIFmXqiwK53vSvOW+B48+0GJBqILIo9p0xqWXJjcmo0bp5urmt8ZTlcL1C9QVQxdB+oDIT5m+aA1L/D2bRCqFmea5eskzeTDpYZnCil9LAevznPxuA98wwGoxhyKu86mUkCVshfo2Zeat1qIGg8YmJZ1032Py0w9h7ZDGL6Ieii1m7GAbjLqymiY5uulyWXyZmEnyiocbMFwXrQV+EY8zIFGhdEKCw4WEZZUtVbgmIwZsNmOWSnXjpWNUvwPdIuUx7yDDj7runb2ELJXLuSr0Cmq58GnGqb251Eo3irNrYqw+7RDeIK82AEihUBJkc15UJ0TptXFF6wYVNi/F++WsNSTEisO0UtiR3zDAX8QOso2zjM5b6Ts5uqPqSuoASgQqJVpxWvQrmNxZTT6uIW85kD9hOrI0EyRj9XSiBTXVnhXJFdbFuEVgBPHkUrOYYrmhzbDMb81eyG3U3PmcLLtzavGamjpe2k+aa2q/2yk7wsyGzV7eM6894CYBJGIR4vfjsGRmZOYFTGV4JYjlb9UfRKrEFvNpUphBupDHv9a+7y333SdcY1vAy0N67hqiKq/qtjsC23JsAFy3bXFuV58zACyhDUHuIrkDeEQXRJIk9mUihTZVEsTaFG+T15M3MnSBpdDCH+APBp4sTVdMrNwBq5k7NjsJ+vS7FXtaK7+MMYzrDZZebT85IBNw9YHJAogTPXPExEqEnETIlN9EsVSAtCBzpLMCIl5hj1C7j+kfHp5CDZks6OxVq+Krkktl+13baQulnACMhh0Rjc2udJ9AMBqA3VGSslVS8DOPU+90PlRqpHQka8QjU92jXnLKIiXhdyCz3/HPNu543cy9J1ysfD9L4gvF27rrwIwE3FUszf1K/edOna9IYAIQxOF7ghDysMM3M5FD7OQI9BUkAlPSI4dDFPKfYfsRXTCrH/oPT26QbgHNd7z13J78RQwpTBu8K8xXzK09CP2HHhMuuH9RwAogrFFDketCb3LcozBDiFOj07KjpVN9gy2CyHJR4d4RMYChEAGvZ/7IrjgNue1BfPE8uxyP7H/siny+HPiNVv3F7kFe1Q9sb/LQk+ErIaSCLIKAEuzDEPNLs0zTNQMVotCyiQIR0a7RFBCV4AifcF7xTn89/X2e/UXdE7z5fOcs/E0XjVbdp84HPnGu8194T/xQe6DyYX0B2FIxsocitxLQ0uQy0cK6wnECNuHfUW1w9OCJYA6viF8aDqcOQj3+Daxtfq1VjVEtYP2Dzbft+y5K7qQPE1+Fb/awY9DZkTThkyHh8i+ySyJjknjya9JNMh6h0kGacToQ1AB7gAPfr+8yzu9Oh85OXgSd643D3c2NyB3ijht+QP6QzuhvNR+T//IAXKCg8QyRTTGBIcbh7XH0UguR85HtMbnhi1FDgQSwsXBsUAf/ts9rTxe+3e6fnm4OSf4z/jvuMW5TnnFeqP7Yzx6/WH+j3/5gNhCIoMQxBvE/kVzxflGDcZxRiVF7MVMRMkEKgM2AjUBLsAsPzO+DX1//FE7xftheua6ljqvurI62ntku8v8iv1bPjX+1L/vwIGBg4JwAsJDtkPJBHkERUSuRHWEHYPpQ12C/sISQZ3A5sAzf0h+6v4f/ap9DjzNPKh8YLx1PGR8rLzKvXr9uX4CPtB/X3/qwG8A54FRQemCLcJdArYCuQKnAoDCiEJAQiuBjQFoQMCAmQA1/5j/RT89PoJ+lj55fiw+Lf4+Pht+RD62Pq++7j8vP3C/r//rACDAT0C1gJLA5oDwwPIA6wDcgMgA7sCSQLQAVYB4QB1ABcAy/+S/23/XP9f/3L/lP/A//L/JABUAHwAmAClAJ8AhgBZABcAxP9g/+/+d/79/Yb9Gf27/HL8Rfw2/Er8g/zh/GX9Df7T/rT/qQCrAbECsgOkBH8FOQbKBioHUwdBB/IGZQacBZoEZQMGAoYA8P5R/bX7Kvq/+ID3efa09Tz1FvVH9dD1sfbk92P5JPsc/Tv/cQGuA+AF9AfYCX0L0gzKDVwOfw4wDm0NOwyfCqMIVgbHAwoBNP5a+5L49PWW843x6e+87hDu7u1b7lXv2fDd8lT1LPhR+6z+IQKZBfYIHQz1DmQRVxO6FIEVoRUZFecTExKpD7gMVgmbBaQBj/17+Yn12PGH7rLrcOnW5/Tm0+Z3597oAevR7TvxJvV1+Qf+ugJqB/ELKxD1EzEXwxmTG5IctBz2G1oa6he1FNQQYgx/B1ICAv24953y2u2W6fTlEuMK4e7fyt+h4HHiLuXE6BztFPKJ90/9OwMgCc4OGRTWGN4cECBQIoojsiPCIsAguR3BGfQUdw9zCRQDjvwQ9s/v/OnG5Fjg1txe2gXZ2tjg2RPcZN+84/vo++6P9YT8pAO5CowR5heUHWgiOybsKGMqkyp3KRUnfCPGHhUZkxJzC+kDMfyF9CLtQuYc4OLav9bV0z7SCNI508nVqdm73tzk3euJ86b79QM2DCgUjRsqIsknPCxgLxcxUzEPMFItLSnAIzIdsxV9Dc8E7PsX85fqruKb25jV1NB3zZ7LW8uxzJrPAtTI2cLgveh68bj6LgSUDaEWDR+VJv0sETKnNaE37TeFNnIzyS6rKEch0xiRD8YFv/vI8THoQ99H13zQGMtIxyzF18RPxovJdM7m1LLcneVj77n5TwTUDvUYYiLRKgAysze8O/o9WT7SPG85STSDLVEl8RuqEcsGqfuY8PDlBNwj05PLkMVNwe2+g74YwKDDA8ka0K/YguJH7a34WQT0DyIbiiXdLs42Hj2bQR9Ek0TyQkY/qDlCMkwpCR/IE98HqvuI79fj89gxz+DGQsCMu+W4ZbgRuuC9tsNpy73Ubt8p65P3TQT1ECcdhCizMmM7T0I+RwhKlUrfSO9E4j7lNjQtGCLnFf4IwvuX7ubhEdZ2y2jCMLsIthqzgLJAtE+4kb7WxuHQZdwK6W/2KwTVEQMfTStTNr0/QEehTLNPW1CTTmZK8kNmOwUxGyUFGCgK7vvG7R7gYdPzxy6+YLbHsJKt2qyprvOymLlnwh3Nadnt5kD18wOWErYg5C25OddD70u/URlV31ULVKZP00jDP7o0DiggGloLMPwV7YHe5NCrxDW61LHNq0+oeadSqc+t0LQfvnbJf9bV5Ar0qAM3Ez4iRjDiPK9HV1CVVjZaHVtAWatUgE31Q1I47yo1HJMMhPyE7A7dnc6gwX+2ka0dp1ejYKI/pOqoPrADuu/FqNPE4s/ySgO5E5sjczLOP0JLdVQeWwdfEGAvXnBZ9lH6R8c7ui1BHtEN7PwR7Mfbi8zUvg+zmKm7oq6elJ12n0ek5asWto3C6dC94I/x2gIcFM0kajR6Qo5OR1hXX4djtGTTYvBdMFbNSxY/bDBCIBIPZP2+66var8pJvOiv7qWrnliaGZn5muufy6deslK/Rc7D3k3wWgJhFNMlKTbkRJBRyFs9Y7NnBWkoZydiKVpqTztCAjM1IlQQ6/2I67rZDMkAugytlqLwmliW85TNltmb86PdrkO8vsvY3AzvywGIFK4msTcMR0ZU+F7NZodrAG0qaxJm313NUjNFeTUXJJURgf5w6/XYoMf6t3yqkJ+Ml7GSJZH2kheYYaCXq2K5WMn+2sztLwGSFF4nADnwSK9W02EEagBvoHDVbqxpTGH0VftHzTfnJdISJP9z61rYbcY4tjqo35yDlGaPs413j6aUGZ2QqLS2Fsc52ZHshwCBFOMnFzqPSspYWGTfbBty43MncvNsb2TbWJBK/TmhJwoU0v+S6+rXcsW7tEemhprWkXuMn4pTjIqRHZrLpTq0+sSL113r1f9VFD4o9jrpS5VahWZdb9d0xnYcdeNvQ2d+W+5MBDxDKTsViADL66TXsMSDs6SkhZiHj/CJ7YeOiceOcpdLo/ixCMP21TDqGv8PFHAonDv+TA9cWWh8cTB3R3mxd3hyxWnaXRJP4T3KKmIWRgEc7IfXJsSRslKj3paYjcmHnoUph1+MGZUTofKvQsF91A/pWP6yE3koCjzOTTld02k7cyV5ZHvkebJ09GvtX/tQkD80LH0XCwKF7JHX08PksVGikZUKjAaGtIMnhVWKFZMmnyiuqr8i0/vnkv0/E1soQjxYThJe82qYdLV6Gn20e412zG21YaVSEEF/LYoY0wID7cLXt8N8saGhoJTeiqqEMoKLg6qIaZGFnZ+sQ77n0fXmyPy2EhcoQzyeTplet2uTdd57aX4dfQd4S28uYw1UXkKpLocZnQOV7RnY0MNYsUKhCZQVirSDF4FUgmGHF5AznFirD73P0AHm/fsbEq4nDzygTtBeIWwrdqB8Tn8gfh55cHBXZDNVd0OvL3MaaAQ67pTYHsR4sTOhzZOuiSaDZoCFgXuGII8zm1SqELzczx/lNPtuESInqDtfTrZeL2xgdvt8y3+7ftN5OHEvZRNWW0SPMEobMAXv7jHZn8TasXSh65Oqif+CH4AfgfmFho6EmpepSLsPz1LkbPqxEHUmDjvcTU5e5Gszdu183X/tfiJ6pHGzZa1WBkVIMQsc9gWz7+7ZUsV+sgOiZJQIikCDQYAigdyFSo4qmiGpubprzp3jqvnmD6clQzoZTZhdP2uldXl8hn+1fg16sXHjZf9WeEXXMbUctQaE8MvaNMZgs+CiNZXHiuiDzYCOgSSGbI4lmvSoZbrxzQDj7vgQD7wkSTkXTJVcQmq1dJ57xX4VfpJ5X3G+ZQdXr0U8MkUdbQdf8cTbRceBtAmkXZbmi/aEwoFjgtKG7Y51mhCpTLqizX3iOvgwDrUjIjjYSkdb72hnc116nH0MfbF4rnBCZcZWqkV0MrodHAhE8tncgsjdtXul2pdkjWqGIIOgg+WHzo8cm3epcLqBzRfikfdHDZQi0DZfSbFZR2e6cbd4C3ybe2x3nm9wZDlWZ0V/MhIewAgv8wbe6clztzWnrJk/j0CI5IREhV2JDZEZnCqq0bqOzc7h8/ZZDFshVTWtR9NXTWWxb692E3rDecJ1MG5IY2FV50RaMkseVwkg9Erfd8tBuTWpz5t1kXmKDodPhzmLq5JsnSercbvKzaThY/ZnCw0gtDPERbJVAmNObUd0t3eGd7RzY2zKYT5UKEQGMmUe3wkT9aLgKs1Du3erQJ4ElBGNnIm/iXeNp5QVn3CsT7w2zprh4/VyCqse7zGoQ09TamCUaoBx+XTldEVxOWr2X89SKkOBMV8eVwoI9g3iAc94vfqt/qDplgaQi4yRjBaQ/5YToQWubb3UzrLhc/V+CTgdCDBcQa1Qh12GZ11u2nHicXZus2fOXRVR7UHLMDYevgr89ofj99Dcv7qwBqQgmlWT2I/DjxWTspllo+Ovyb6jz+zhFvWLCLcbAi7hPtBNXFomZOJqXm6Abklr02RSWxFPcUDjL+odEQvt9w/lC9NtwrWzU6eonfyWgpNTk3CWvpwKpgyyZcCj0EnizfSdByka4Ss7PLpK7VZ4YBFniGrDasFnnGGFWMRMtj7KLnodUAvZ+KLmOtUnxea246p7ofaahJc+lyWaIaAAqX60PsLW0cvimfS0BpEYpiltOW5HPVN/XO9iW2arZt9jDl5nVS9Kvjx+LecceQu++T7ogNcHyEq6sq6YpUCf25uBmzKe2KNFrDa3VcQ603Hje/TSBfIWVCd7NvFDUE9AWH5e22E+YqhfLVr7UVNHiDoBLC4ciwuc+uDp3NkLy969vLL5qdejg6AXoJOi4afXrzW6qcbQ1DzkdPT5BE0V7yRoM0dAKku+U8NZC11/XR5b/FVETjJEFzhSKlAbhgtv+4frStwuzp/B/baarrWoeaX+pESnOay0s3i9OMmX1i3lh/QsBKUTeSI2MHI8z0b+TsJU8FdyWEZWflFDSs5AazVzKE0aZws2/C/tx95t0YfFcrt4s9etuKoxqkOs3bDYt/zAAcyO2EPmsvRrA/0R9h/qLHY4QkIESoBPj1IbUyJRtkz8RSo9hjJkJiUZLwvx/NfuUeHF1JTJFcCOuDizO7Crr4qxyLVBvMDEAs+12n7n9/S3AlUQZx2HKVk0ij3URAFK60x+TbhLqUdyQUc5aS8mJNcX3Aqd/X3w4+My2MHN4sTWvdS4/rVptRa397rrwMDIOdIK3d7oV/UTArIO0BoRJh0wqTh0P0tEC0ehRwtGWUKpPCo1Fyy6IWUWbwo4/h7yfeax2wvS1clNw6S++7tlu+K8ZsDSxfvMpdWM32Lq0fWAARUNNRiLIscrpTPnOWE+8kCIQSFAzDykN9QwkygjH84U5wnD/rfzGuk932zW6c7tyKXELsKawerCEcb0ymzRQtk64grsZ/b+AH8LlxX4Hlwngi41NEo4pjo4O/45BTdmMkgs3SRgHBQTRAk8/0n1uOvV4uHaGtSyztDKkcgDyCfJ8stM0BDWD90R5dbtGPePAPMJ+RJdG94iRSlgLgwyLTS3NKczCjH1LIwn+iB1GTgRhQih/8/2Ve5z5mbfYtmV1CHRH8+bzpbPBtLW1eTaCOEQ6MPv5fc0AHIIXxC8F1Me8iNvKKorjC0KLiIt3ypUJ6Ei6xxiFjoPqwfy/0n47PAV6vbjvt6S2pLX0dVb1TDWR9iM2+TfK+U169HxzPjv/wAHyg0aFL8Zjx5nIislySY3J3QmiSSJIYwdtRgrExsNtgYtALT5ffO37Y3oJ+Sk4B3eo9w/3PHcsN5s4Q3ldOl97v/zz/m9/5wFPgt6ECYVIRlNHJUe6h9DIKIfDh6XG1EYWhTSD94KpgVTABD7BPZV8SftmenF5r3kj+NB49LjPOVv51nq4O3m8Uv26/qi/0gEvQjeDIwQrBMnFu0X9Bg1GbMYcxeDFfUS3g9ZDIQIfQRkAFv8fvjs9MDxEO/v7Gvrjupa6s/q5euS7cXvbPJu9bT4Ifyc/wcDSgZLCfULNA75DzkR7RETEqsRvRBTD3oNRAvDCA4GOgNeAJP96vp6+FT2h/Qe8yPymvGE8eDxpvLO8031E/cR+Tf7cP2t/9kB5gPEBWUHwAjKCX8K3AriCpIK8wkMCecHkAYTBX8D3wFCALf+Rv36+976+PlM+d74rvi6+AD5efkf+uv60vvO/NL91/7U/78AlAFLAuECUwOeA8UDxwOoA2wDGQOyAj8CxgFMAdcAbQAQAMb/jv9r/1z/YP91/5f/xP/2/ygAVwB/AJoApQCeAIMAVAARALz/V//l/m3+8/18/RD9tPxt/EL8NvxN/In86/xy/Rz+5f7I/74AwQHGAscDuASQBUcG1AYvB1QHPQfpBlcGiAWCBEoD5wFkAM7+Lv2T+wv6ovhn92X2p/U29Rf1T/Xg9cf2AfiG+Uz7SP1p/6AB3QMNBh4I/gmcC+oM2g1jDn0OJA5YDRwMeAp1CCIGjgPOAPf9HftY+L/1Z/Nl8cvvqO4I7vLtau5x7//wDfON9Wz4l/v1/msC4gU8CV0MLQ+TEXoT0RSKFZ0VBRXGE+URbw90DAkJSAVOATj9Jfk49Y7xRu5860fpvOfq5tnmjucF6TfrFO6K8X711Plr/h8DzAdODIAQQBRvF/EZsRudHK0c3BsuGqwXaRR6EP0LEwfiAZH8SPcz8nrtQumv5d/i6eDi39Lfv+Cj4nLlGumA7YXyAfjN/boDnAlED4QUNBkrHUogdSKYI6gjoiKJIG0dYhmGFPwO7giKAgL8h/VO74bpYOQE4JfcNtr22OTYBNpP3LffI+R06YPvIPYb/TwETgsZEmYYBB7EIn8mFyl0KogqUSnUJiIjVR6RGAES1QpFA4z74/OJ7Lflo99/2nXWptMs0hTSYtMQ1graNN9q5XvsM/RX/KYE4wzMFCMcrCI0KI0ski8rMUcx4y8HLcYoPyOaHAoVyAwSBC77XvLn6Q7iENsl1X7QQM2Jy2jL4Mzqz3DUUtpk4XDpO/KA+/gEWg5cF7cfKSd3LWwy4TW4N983UzYdM1QuGSicIBUYxA7xBOn69/Br54/eqtb6z7fKCscTxeXEg8bjye/OgNVm3WbmO/Ca+jEFsQ/GGSEjeCuIMho4/jsVPks+nDwSOccz4SyUJB4bxxDfBbv6sO8U5TvbdNICyyTFCMHQvpK+UMABxIvJw9B22WDjNu6k+VMF6BAIHF0mlC9lN5A95EE9RIVEt0LgPhs5kjF9KCIezxLcBqX6ie7l4hbYcc5Cxsq/P7vFuHO4TrpJvknEIcyV1V/gLOyh+F0F/xEjHmopfDMJPMxCj0cqSodKoEiCREo+JjZULB0h2RTlB6f6gu3g4CLVpcq7wa66tLX3so6ygLTAuC6/nMfJ0WndIuqS91AF9RITIEYsLDdxQMlH+UzYT01QUU7ySU9DmjoUMA4k4xb6CL76newE31/SEcdzvdK1a7Bqreis7a5qsz+6OcMVzn/aGOh49i4FyhPaIe8uojqYRIJMH1JDVdJVxlMsTyZI6T67M/Am6xgYCuv61+tT3dHPucNsuTyxaasjqIanmKlNroG1/r59yqXXEuZV9fYEfxR1I2Mx3D1+SPRQ/FZlWhBb+VgrVMtMEENEN8Ep7ho/Cy37M+vO23jNn8Cqte6ssqYno2yiiKRtqfew7boEx9/UE+Qs9KsEExXjJKAz1kAdTB1VjVs6XwVg5V3qWDlRCkesOn0s6hxrDIL7r+p22lbLxb0tsuyoSaJ6np+dwJ/PpKesC7euwy7SHOL98k0EiBUmJqc1kEN1T/hYzV++Y6pkiGJmXWtV00ruPSEv2x6cDen7SupJ2WvJLLv7rjilMZ4fmiKZRJt3oJOoXLN/wJfPMeDL8d0D3RU8J3U3CEaDUoNcumPuZ/1o22aZYV5ZZ04JQaoxwCDODmH8BepJ2LnH1bgTrNahb5oalvqUGpdpnMKk5K96vR3NU96Y8F0DExYmKAs5PEhEVbxfUWfGa/ls3WqBZQ1dw1H3QxU0lSIBEOj83ul210DGw7Z4qceeBZdvkiuRQ5OpmDWhpqyjusLKhtxm788CKxbkKGc6LEq4V6BijmpEb5twiG4YaXZg41S2Rl82WSQyEX791OnO1gHF9rQspw+c9ZMgj7eNxI87lfGdpan9t4rIzNo37jMCJhZ1KYk71kvcWS1lcG1kcuBz2XFdbJRjw1dDSYU4CSZfEiD+5+lS1vvDb7Mwpa6ZQpExjKGKoIwhkvma5qaKtXfGKNkN7YsBBRbbKXM8Ok2wW2Fn9G8jdcZ2z3RLb2VmYVqaS4Q6oieFE8z+FeoC1i7DLrKFo6aX7o6iieyH2olfj1GYaqRPs4zEm9fq69oAyhUXKiI9WE4yXTxpGHKAd0l5ZXfgceVouVy6TVo8ISmkFIL/Xerb1ZvCM7EroviV+ox3h5qFdYf4jPqVNqJNscvCKdbR6iAAdRUpKpk9ME9jXr1q3HN5eWh7mXkZdBJryV6eTwQ+hSq4FT4Avure1UHCf7AjoaaUZ4uwha6DcoXtiveTSqCHrzjB1NTC6WL/CRUSKtg9wU9CX+FrPnUNeyF9anv0delsj2BEUYA/zCvAFgABNusJ1h7CEbBuoK6TN4pQhCmC04NCiUySq54ArtS/ndPB6J3+hhTTKd89DFDOX6tsPXY6fHJ+1nxvd2huB2KrUstA8iy5F8YBw+ta1jLC6K8KoBOTaYlXgwyBm4L4h/mQWp26rKK+iNLQ59b97xNvKa89ElAJYBht2Hb/fFt/2n2IeI5vMWPQU+NB9i2iGI0CZOzR1nzCBLD3n9SS/4jFgliAyoEQhwGQWZy3q6S9ltHw5g/9RBPmKEs91U/0XyptEXdcfdp/d34/eVhwCWSxVMdC1i54GVUDGO1s1/vCY7A2oO+S+Iicgg6AYYGMhmWPqZv4qty8ydAk5kj8iBI6KLI8VE+NX+Fs53ZSfe9/rH6RecZwj2RMVXRDjy86GhoE2+0p2K3DBbHDoGWTU4nbgi6AYYFshiePTZuAqku8I9Bt5YX7vRFsJ+g7kk7YXj5sWnbffJt/d35+edZwwmShVehDITDmGtsEre4G2Y/E6LGfoTWUEYqAg7eAyoGxhkaPRJtQqvO7pc/N5Mb65RCAJu06j03WXUJrbHUGfNx+2n0GeYhwoGStVSNEiTB5G5YFi+8C2qLFCbPIol2VL4uNhKqBnIJch8OPkJtoqta7U89G5A/6ARB2JcQ5T0yHXO9pHnTHerV91HwpeNtvKmRxVSNExzDzG0oGdPAa2+LGaLQ8pNuWrIz/hQWD1oNriJ+QMpzJqvS7K8/a42D5FA9QJG4400rvWkZocnIjeSZ8ZnvodtBuXWPqVOdD2DBRHPQGZvFM3E3IAbb4pa6YiI7Vh8iEeIXeidmRKZ11q068Mc+K47v4Hw4RI+42HEkPWUpmaHAcdzF6kXlCdWdtPGIZVG5DuzCTHJIHXfKX3eHJ1Lf8p9Oav5ANivCGf4e2i3GTdZ5rrOa8Zc9Y4yP4JQ28IUc1L0fpVv1jBG6zdNd3V3c6c6BrxWD+UrdCcDC2HCQIWvP33pvL3LlDqkidT5OljHuJ64nvjWeVF6Csrbu9yM9E45n3JwxRIHozDEWBVGFhSGvscRp1unTQcHxp+V6YUcNB9S+6HKcIWPRr4HrNGLzLrAqgNpaaj2mMuoyJkLiXDaI3r86+WtBQ4x73KAvUHooxuELZUXleN2jJbv1xu3EGbv5m2VzoT5FASy+dHBkJWPXw4XrPhL6SrxajcJnqkrWP6Y+Ck2OaVqQLsR/AHdF+47T2KQpIHXovNED0Tklb1GRNa4JuXG7faiZkZ1rvTSE/cC5eHHoJVfaE45nRH8GUsmmm+5ySll6TdpPYlmid8aYps67BENLO4132LQmtG00thD3WS9RXImF7Z61qompcZ/Zgo1etS3M9ZC39G8cJUPcl5dTT5MPOtQCq06COml+XXZeHmsKg3amOtXrDNNNA5Br2NQgHGgUrqzqBSB1UJV1WY4BmjmaAY3BdkFQkSYk7KCx5GwAKRfjP5ijW0MY8udat9aTanrabnJuOnnGkF606uIPFidTW5Oz1QwdYGKUorDf6RChQ4FjiXgBiJGJPX5hZL1FVRmI5uirRGiMKM/mC6JPY4MncvOmxW6l0o16gMKDponKonrAsu8jHDtaQ5dT1WQajFjEmizREQflLWFQkWjFdaF3LWnBVg01CQwA3HSkFGi8KGPo66hDbEc2owDO2A65WqFSlFKWUp8Gsb7RgvkfKxNdu5tP1eQXpFKsjSzFiPZNHkU8gVRVYXlj5VftQjkntP2Q0TycVGSQK8/r0657dX9CdxLK66LJ8rZOqQ6qNrFuxh7jWwf/Mqdlx5+v1pQQuExUh7y1aOf1CkErZT7NSCVPbUD1MVEVYPJAxUyUAGAAKwfuw7TrgyNO4yGC/Brjhshewu6/OsT2247yKxe7PvduY6Bv23QNzEXQefCouNTk+WEVWSg9Nb013SzlH1kCEOIUuKCPHFsMJgvxp7+DiRtf0zDnEV72BuNu1drVUt2K7gMF7yRTT/t3j6WX2IwO7D8ob9CbjMEw57j+aRCxHlEfRRfNBGjx3NEYr0SBqFWwJNP0g8Y3l1tpN0TnJ18JXvtq7cLsavcjAW8amzW3Wa+BR68r2eQIIDhoZWyN9LDs0WTqrPhJBfUHtP288IjcxMNQnTh7qE/oI1f3Q8j/odt6+1VrOgchexA/Co8Ebw2nGb8sG0vfZBOPj7Ej34AFbDGcWth8BKAovnDSOOMQ6LzvPObI28jG2KzIkoRtHEm8IZf549PPqIeJE2pnTUM6QynXIC8hTyUDMutCa1rHdxeWX7uH3WgG4CrMTBhxyI78pvS5IMkg0sDR+M8EwjiwKJ2IgyxiCEMgH4/4W9qbt1OXb3u/YPtTo0AXPoc68z0rSNtZd25bhruht8JX45gAgCQIRURjVHl0kwSjgK6QtBC7/LJ8q+yYwImcczxWcDgcHTf+o91Xwiul941reRtpg17vVYdVR1oLY39tM4KXlvetk8mT5hgCUB1YOmhQvGuserSJZJd4mMidWJlMkPSEtHUUYrxKWDCsGov8t+f3yQu0n6NPjZODz3ZDcRNwM3eHeseFk5drp7+559E36OwAXBrML4xCCFW0Zhxy7HvsfPyCJH+IdWBsDGP8TbA9xCjUF4/+i+pz19vDV7Fbpkeab5IDjRePo42Plp+ef6jHuQfKs9k/7BQCqBBkJMg3UEOcTVBYLGAEZMhmfGFAXUhW3EpcPCgwvCCYEDQAG/C/4pfSC8d3uyexT64PqXerg6gPsvO3676nysvX8+Gz85v9OA40GiAkpDF8OGRBOEfYRDxKcEaQQMA9ODRELiwjTBf0CIgBY/bT6Sfgq9mX0BfMT8pTxiPHs8bvy6/Nw9Tz3Pvlm+6D93P8GAhAE6QWFB9kI3QmKCuAK3gqHCuIJ9QjMB3IG8gRcA7wBIQCX/ij94fvJ+uf5QfnY+K34vvgI+YX5L/r9+uf74/zo/e3+6P/SAKQBWQLsAloDowPGA8YDpANmAxEDqQI1ArwBQgHOAGQACQDA/4r/af9b/2H/d/+b/8j/+v8sAFsAgQCbAKUAnQCAAE8ACgC0/07/3P5j/un9c/0I/a38afxA/Df8UfyQ/PX8f/0s/vf+3P/TANYB3ALcA8sEoQVUBt0GNQdUBzkH3wZIBnUFagQuA8gBQwCr/gv9cvvr+Yb4UPdT9pv1MPUY9Vj18PXe9h/4qvl1+3T9mP/QAQ0EOwZICCMKuwsCDeoNaQ56DhcOQg39C1AKRgjtBVUDkgC6/eH6H/iK9TnzP/Gu75buAO727Xvuje8n8T/zx/Wt+N37Pv+2AisGgQmdDGQPwBGcE+YUkhWWFfEUpBO2ETQPLwy8CPUE9wDg/ND45vRD8QXuR+sg6aPn4ebg5qXnLelu61nu2vHX9TT6z/6DAy8IqwzVEIoUqxceGs0bpxykHMAbABpuFxsUIBCYC6cGcQEf/Nn2yvEa7e/oa+Ws4srg19/c397g1uK45XHp5u328nv4S/44BBcKuA/uFJAZdh2CIJcipCOdI38iUSAfHQIZFRR/DmgI/wF3+//0ze4S6frjsd9Z3BDa6djw2CnajdwM4I3k7+kL8LL2sv3UBOMLpRLlGHIeHiPCJkApgip7KigpkCbGIuMdDBhtETcKoQLn+kPz8ust5SzfHtos1nnTHNIi0o7TWNZt2q/f+eUa7d30B/1YBZANbxW3HCwjnCjaLMMvPDE4MbQvuSxcKLsiARxgFBIMVQNw+qXxOelw4YbatdQq0A3Nd8t3yxLNPNDh1N7aB+Im6v3ySvzCBR4PFRhgILsn7i3FMhg2zDfPNx82xjLdLYUn8B9VF/YNHAQS+ibwpubc3Q7We89Yys/G/sT2xLrGP8ptzxzWHN4x5xTxe/sTBo0QlRrdIxwsDjN+OD08LD45PmI8sjhDMz0s1CNJGuMP8gTN+cjuOeR12sfRdcq6xMbAuL6kvozAZsQVym/RPto/5CXvnPpMBtsR7hwuJ0ow+jf/PSpCV0RyRHlCeD6LON4wqyc4HdUR2AWh+Yvt9eE817PNpsVWv/W6qbiFuI66tr7fxNvMb9ZS4THtr/ltBggTHR9OKkM0rDxGQ9xHSEp0Sl5IEUSuPWQ1cSshIMoTzAaM+W7s29801NbJEsEuumO117KhssS0NLnPv2XItNJv3jvrtfh2BhMUIiE8LQM4IUFNSE5N+k86UAtOekmpQso5IS//IsEVzAeO+XTr7N1g0TLGvLxItROwRq37rDWv5bPruhDEEM+X20XpsPdoBv0U/CL3L4k7VkURTXtSaFW/VXxTrU52Rw0+uDLQJbUX1win+ZvqKNzAzsvCqLiosAqr/KeYp+Opz642tuG/hsvO2FHnofZFBsUVqSR8MtI+SUmOUV9Xjlr/WqxYplMSTChCMzaQKKYZ6gnV+ePpkdpWzKK/2LRQrEum/KJ9otak9am1sdu7G8gX1mPlifUMBmwWKibLNNtB9UzAVfdbZ1/0X5ddYFh3UBZGjTk8K5EbBQsY+k3pJ9kjyrm8ULFEqNuhSp6vnRCgXKVsrQS408R2033jbPS/BfIWfifhNqNEWVClWT5g8GOaZDdi11yiVNVJxDzSLXMdJQxu+tfo6tcqyBK6Ea6HpL2d7JkxmZabCKFgqV+0sMHt0KDhSvNgBVcXpCi+OChHclM5XTJkJGjuaIlmBmGOWGBN0z9OMEkfSA3W+oLo29Zpxq+3HqsbofSZ45UIlWyX/pyVpe+wtb5/ztHfJvLvBJwXnClhOmlJPlZ7YM9nAGzsbIpq6mQ3XLRQt0KtMhIhbQ5P+03o+dXjxJG1eagEnoSWM5I3kZaTQpkOormt6LsvzBDeAfFuBMMXZyrKO2RLvFhnYxNrgm+QcDRuf2ibX8xTbUXtNMoikQ/Y+zboRdWXw7izJKZDm26T4I7AjRiQ1pXPnr+qSrkAymHc3u/fA8oXBSv4PBlN6Vr8ZfptpXLXc4ZxwWu1YqZW8kcJN28kshBu/D3ovdSGwieyHqTbmLWQ7YupivSMvpLbmwWo37b2x8bav+5CA7UXdivsPYdOxlw4aIRwaXW/dnt0rm6CZT9ZQ0oBOf8lzxEQ/WDoYtSwwd2wa6LMlluOWonyhy2K/Y81mY6lqbQSxkLZpe2bAoQXuyulPq5PUF4aaq5yyndFeRJ3QnEAaJNbXEzQOnYn5RK9/Z/oMtQUwdqvCqEYlWGMK4eehceHl43gll2jrLJYxNfXk+zqATcX1iskP41QiF+ga3d0x3lme0h5enMraqBdPE51PNQo8hNy/vjoLdSywB6v+5+/k8qKYYWvg8OFjIvflHSh6rDJwofWi+sxAdIWxitqPyVRbWDKbN11XnsifRp7VnUBbGRf4E/tPRYq9RQu/2rpUdSJwKquQJ/DkpWJ/YMngiOE4Yk1k9efZq9pwVXVj+pyAFUWjSt3P3ZR/2CYbeB2jnx2fod80XaAbdtgRVE1Pzgr6hXw//LpntSYwHyu154kksSIAYMIgemClYjikYaeIa45wELUoemw/8EVLStMP4FRPmEKboB3V31hf4597HembgRiaVJMQDos0BazAJDqEdXewJSuwZ7gkVaIbIJRgBaCrIfpkIWdHq08v1LTw+jq/hoVpyrqPkZRK2Efbrx3t33jfy1+pHhyb95iSlMvQRotpRd5AUHrqtVawfGu/J75kUyIQIIEgKqBJYdLkNScX6xzvoTS9+ck/l8U/SlUPsdQyGDYbZR3r336f2R++Hjhb2Zj51PdQdQtaBg+AgXsZtYLwpGviJ9tkqWIfIIhgKiBA4cJkHWc5Kvgvd3RP+dg/ZQTLymKPQZQFGA3bQl3P32ofzJ+6Hj0b5xjP1RUQmguFRkBA9jsRNfuwnOwZKA7k2GJIIOogA6CRYclkGmcsKuFvV3RnOaf/LkSQSiOPARPEl88bB12aHztfph9dHiqb35jT1STQtQurBm/A7ntQtgCxJaxjaFjlH6KKoSZgd2C7IefkLGcxKtjvQXREebk+9IRNCdjO8JNwl3patB0KnvIfZV8m3cCbwxjF1SYQhcvKxp3BKbuXdlExfayAqPhlfuLm4XxghOE94h2kU2dIKx8vdjQn+Uw++AQCiYKOkJMKFw/aSNzh3k7fCp7Xnb7bUVillNiQi4vkBonBZ3vldq0xpO0wKS1l9aNb4eyhLGFZoqrkj6exazPvdfQSOWE+uUPxiSFOIhKRVpBZxlxgXdIell5vXSYbCphzVLxQRkv2RrOBZzw5ttNyGq2x6bcmQ6Qp4nYhraHOYw9lISftK1fvgLRDeXk+eMOaSPXNpVIHFjyZLRuGXXwdyN3uXLXarpfuVFDQdcuBRtoBqHxTt0Pyni4E6lUnJ+SPoxiiR6KbY4slh6h7K4rv1vR8ORP+dsN9iECNWxGrlVSYvdrUnI1dYl0VHC6aPZdXVBZQGcuFBv1Bqnyy972y7u6oasan4iVNI9NjOmMApF2mAujbbAzwOPR8eTJ+NEMbyAJMxBEAFNmX+NoL28Zco1xkG1DZt9bt04xP8gtAxt0B7TzW+AAzjC9bq4rosaYhZKYjxWQ9ZMam0ulN7J5wZnSEuVT+McL1x7vMIRBFFAxXH1lsmugbjJubmpyY3ZZyUzNPfos0RriB7/0++Eq0NS/eLGEpVScLpY/k56TRZcXnt2nSbT7wn/TVOXu970KLx22Lso+7ky2WMdh3mfMantq8WZLYLxWk0otPPwrfxo+CMf1qeNx0qPCu7QhqTCgK5o/l4KX75ppob6qo7a6xJXUt+Wc97YJextiLOY7kEn4VMZdt2OgZmtmHGPOXLRTFkhQOs8qChqGCMz2YuXS1JvFM7j/rFakep6Vm76b754Qpe6tQrm0xtrVPeZd97QIvRn0Kdo4/kX7UHxZQl8hYgVi8V7/WF5QVEU5OHIpcxm6CMr3JedL17nI3bsascOoFqM9oE6gRKMHqWmxJrzpyE/X5eY097kH+BdwJ6w1PULDTO5UgVpRXUxdc1rgVL5MT0LmNeUnuRjZCMH47ujZ2fjLtb9utXGt+6czpS6l6adNrS61TL9Yy/PYsecg98YGLBbaJF0yTz5USCBQeVU2WEVYp1V0UNVICD9bMyom3BfhCK/5uup43FXPt8P2uV2yJK1zqluq26zesTm5s8IAzsXaoOgk994FXhQzIvIuOjqzQxdLLlDTUvNSkFC/S6dEgjuYMEAk2xbRCJL6iewl383S38evvoK3jrL4r9CvFrK2tom9WMbe0Mbcs+lA9wIFkBKAH24rADbkPthFpkouTVxNM0vFRjdAvzefLSkithWpCGj7V+7e4VzWKcyTw9u8M7i9tYi1lbfRuxnCOcrx0/Pe6ep09zMEwxDCHNUnpjHrOWZA5kRKR4RHk0WJQYg7wTNyKuYfbxRoCC/8IvCf5P7ZkdCfyGTCDr69u3+7Vb0twebGU84310zhQuzC93ID+g7+GSokMS3ONMc68T4uQW9BtT8PPJ02iy8TJ3gdBRMNCOj86fFm57HdE9XOzRfIG8T0wbDBUMPExu3Lo9Kv2s/jve0p+MICNw02F3IgpCiQLwA1zjjeOiM7njlcNnsxIiuEI+AaeRGZB4/9qPMv6m/hqtka0/DNU8pbyBbIgsmRzCrRJtdU3nvmWu+r+CMCfAtsFK4cBCQ3KhcvgjJgNKY0UzN1MCUshybIHyAYyw8LByX+XfX47DblUd5/2OnTsdDuzqrO5M+R0pjW2Nsm4k7pGPFG+ZcBzAmlEeUYVh/HJBApEyy6Lfwt2SxeKp8mviHiGzoV/Q1iBqj+CPe+7wHpBuP43f3ZMden1WjVdNa+2DTctuAg5kbs9vL8+R4BKAjiDhgVnBpFH/EihSXxJisnNiYcJO8gzBzUFzESDwygBRf/pfh98s7sw+eA4ybgy91/3ErcKd0U3/jhvOVB6mHv8/TL+rkAkQYmDEwR3RW3Gb8c3x4KIDogbx+0HRkbtBeiEwUPAwrEBHL/NPo09ZnwhOwT6V/me+Ry40rjAOSM5eDn5eqE7pzyDve0+2kACwV0CYQNHBEhFIAWJxgMGS0ZihgsFyAVehJPD7sL2wfOA7f/svvg9130RPGr7qPsO+t56mLq8uoi7OftL/Dm8vb1RPm2/C8AlgPPBsQJXQyJDjgQYRH9EQsSjRGJEAsPIg3eClMIlwXAAub/Hv1++hn4APZD9O3yBPKP8Yzx+fHR8gj0lPVl92v5lfvQ/QoAMwI5BA4GpAfyCO4JlQrjCtoKfQrRCd8IsQdTBtEEOgOaAQAAd/4L/cj7tPrX+Tb50vis+ML4EPmS+T/6D/v7+/n8/v0C//3/5AC1AWcC9wJiA6cDxwPEA6ADYAMJA6ACKwKyATgBxQBcAAIAu/+H/2f/W/9i/3n/nv/M//7/MABeAIQAnQClAJsAfQBKAAQArP9E/9L+Wf7f/Wn9//ym/GT8Pvw4/FX8l/z//Iz9O/4J//D/6ADsAfIC8APeBLEFYgbnBjkHVAc0B9UGOAZhBVEEEQOpASIAif7p/FD7zPlr+Dj3QfaP9Sv1GvVh9QD29vY9+M75nvug/cf/AAI8BGgGcghICtoLGQ35DW8Odg4KDisN3QsoChcIuAUcA1YAff2l+ub3VvUL8xnxku+E7vrt/O2M7qrvT/Fx8wH27/gk/Ij/AAN0BsYJ2wybD+0RvRP7FJkVjxXcFIEThhH4DukLbgiiBKAAifx6+Jb0+vDF7RPr+eiM59nm6ea/51bppeue7iryMfaU+jP/6AORCAgNKRHTFOYXShrnG7AcmhyjG9EZLhfME8QPMgs6BgABrvtr9mLxvOyd6Cjle+Kt4M7f6N/+4AvjAObJ6UzuZ/P0+Mn+twSSCiwQVxXrGcAduCC4Iq4jkCNbIhYg0BygGKQTAQ7iB3QB6/p49E7unuiX42DfHtzs2d7Y/9hR2s3cYuD35GvqlPBF90r+bQV3DDATYxnfHnYjAydoKY4qayr9KEsmaCJvHYYX2BCYCf0BQvqj8lvrpeS23r7Z5tVP0w/SM9K906PW0tos4Inmuu2I9bj9CQY8DhEWSR2rIwMpJi3wL0oxJjGDL2ks8Cc2ImYbtRNaC5gCs/nt8Izo0+D/2UfU2c/bzGfListGzZHQVNVs26vi3OrA8xP9jAbjD84YBiFMKGMuGzNNNt03uzfnNWwyYy3vJkEfkxYoDUYDPPlW7+LlK9111f/O/MmXxuzECsX0xp7K7c+71tXe/efu8Vz89QZoEWQbmCS9LJIz3zh4PD8+JT4lPE84vDKWKxMjchn+DgYE4Pjh7WDjsNkc0evJVMSHwKO+ub7MwM7Eosoe0gnbIOUV8JX7RQfNEtId/Cf9MIs4az5sQm5EXUQ3Qgs+9zcoMNgmTRzaENUEnPiN7AfhZNb4zA7F5b6vupG4nLjSuia/eMWZzUzXR+I37r76fAcQFBYgMCsGNUs9vEMlSGJKXkoXSJ1DDz2fNIwqIh+6ErIFcfhb69jeSdMKyWzAs7kWtbuyt7INtay5dMAxyaLTd99V7Nr5mwcxFS8iMS7XOM5BzkieTRdQJFDBTf5I/0H3OCsu7iGcFJ0GXvhM6tXcYtBXxQm8w7S/ryetEa2Br2W0mrvpxA3Qsdxz6un4ogcvFhwk/TBtPBBGnE3SUolVqVUuUypOwkYtPbMxrSR+FpQHY/hf6f7asc3gwee3GLCvqtmnr6czqlWv77bHwJPM+dmS6O33kgcLF9wlkzPEPw9KI1K9V7Ja6FpbWB1TVEs7QR81XSddGJUIfviU6FXZNsunvgu0tqvppdWilKIopYGqd7LNvDbJUte15uj2bAfEF28n8jXcQshNX1ZcXI9f3l9DXdFXsU8fRWw4+ik3Gp0Jr/js59nX9Miwu3ewoKdzoSCexZ1koO2lNq4BufrFwNTf5Nz1MQdbGNMoGDiyRThRTVqqYBxkhWThYUNc01PTSJY7gSwJHK0K9Phm54zW68b8uC2t2qNOnb6ZRpnsm5+hMqpltePCRNIS48r04gbRGAkqAzpFSFxU612kZFRo2mgyZm5guVdVTJk+8C7RHcELTPkB527VHcWMti+qZqB/mbGVG5XEl5mdbab/sfS/489Q4bTzgQYlGRArtDuSSjNXNWFIaDRs2Wwxak5kXFugT3NBQzGMH9cMt/m95n7UicNitH+nRp0Ilv6RSJHvk9+Z7KLQrjC9n82c353yDgZZGegrKj2ZTLtZKWSSa7pvf3Dbbd9nul6xUiBEeDM4Ie8NMvqZ5r3TMcJ/siClfprskqeO0Y1xkHaWsp/dq5u6esv43YbxiwVtGZIsZD5YTvFbxmZ/buFyyHMscR9r0GGFVZ1GizXTIgUPvPqU5irTFcHjsBKjDpgtkK+Lt4pOjWCTwpwpqTe4eMln3HHw+gRjGQ8tYj/QT9ddCWkPcal1snYidApummQZWOdIezdZJBgQVPut5sTSNcCPr1ah+JXOjRiJ/oeHiqGQH5q3pgi2nMfs2mHvXAQ8GV4tJUD/UGlf8Wo+cw54Onm5dp1wFGdpWvtKQznJJSUR9/vj5ovSkL+Eru2fPZTPi+aGqIUgiDuOzZeJpBC06MWI2VfuswP4GIEtrEDmUadgfWwLdQ56XnvveNVyPmlyXNdM4johJysSpfw0537SJr/Crdme35IzihiFt4MahjGMzZWkolKyXsQ92FXtAQOaGHgt+UCFUpJhrW12dql7HH3DerF0E2s0XndOVjxdKCgTW/2f55zS975HrRie3pH6iLGDLIJ5hIWKI5QIodCwAcMP117sRwIiGEUtC0HbUipigG59d9x8cn4yfC12kmyqX9pPmz19KRkUGP4i6OTSAb8UraqdOpEliLGCCoE9gzmJ0JK4n42v1MH/1XPriAGTF+os5UDqUm1i9W4heKh9YH87fUl3uG3TYP1QsT58Kv0U2v696FPTQ78prZCd85CzhxqCUYBogk6I1pG2noqu18AQ1ZfqxQDuFmYsh0CzUl5iDm9geAt+5H/cfQN4hW6tYd9RlD9bK9EVnv9s6erTvb+DrcidCZGnh+uBAYD6gcWHNpEDnsmtDsBD1MvpAAA=\" type=\"audio/wav\" />\n",
|
|
532
|
"<th>Header 1</th>\n",
|
|
600
|
" Your browser does not support the audio element.\n",
|
|
533
|
"<th>Header 2</th>\n",
|
|
601
|
" </audio>\n",
|
|
534
|
"</tr>\n",
|
|
602
|
" "
|
|
535
|
"<tr>\n",
|
|
|
|
|
536
|
"<td>row 1, cell 1</td>\n",
|
|
|
|
|
537
|
"<td>row 1, cell 2</td>\n",
|
|
|
|
|
538
|
"</tr>\n",
|
|
|
|
|
539
|
"<tr>\n",
|
|
|
|
|
540
|
"<td>row 2, cell 1</td>\n",
|
|
|
|
|
541
|
"<td>row 2, cell 2</td>\n",
|
|
|
|
|
542
|
"</tr>\n",
|
|
|
|
|
543
|
"</table>"
|
|
603
|
],
|
|
544
|
],
|
|
604
|
"metadata": {},
|
|
545
|
"metadata": {},
|
|
605
|
"output_type": "pyout",
|
|
546
|
"output_type": "display_data",
|
|
606
|
"prompt_number": 16,
|
|
|
|
|
607
|
"text": [
|
|
547
|
"text": [
|
|
608
|
"<IPython.lib.display.Audio at 0x10828a050>"
|
|
548
|
"<IPython.core.display.HTML object>"
|
|
609
|
]
|
|
549
|
]
|
|
610
|
}
|
|
550
|
}
|
|
611
|
],
|
|
551
|
],
|
|
612
|
"prompt_number": 16
|
|
552
|
"prompt_number": 15
|
|
613
|
},
|
|
553
|
},
|
|
614
|
{
|
|
554
|
{
|
|
615
|
"cell_type": "heading",
|
|
555
|
"cell_type": "heading",
|
|
616
|
"level": 2,
|
|
556
|
"level": 2,
|
|
617
|
"metadata": {},
|
|
557
|
"metadata": {},
|
|
618
|
"source": [
|
|
558
|
"source": [
|
|
619
|
"Video"
|
|
559
|
"JavaScript"
|
|
620
|
]
|
|
560
|
]
|
|
621
|
},
|
|
561
|
},
|
|
622
|
{
|
|
562
|
{
|
|
623
|
"cell_type": "markdown",
|
|
563
|
"cell_type": "markdown",
|
|
624
|
"metadata": {},
|
|
564
|
"metadata": {},
|
|
625
|
"source": [
|
|
565
|
"source": [
|
|
626
|
"More exotic objects can also be displayed, as long as their representation supports the IPython display protocol. For example, videos hosted externally on YouTube are easy to load (and writing a similar wrapper for other hosted content is trivial):"
|
|
566
|
"The Notebook also enables objects to declare a JavaScript representation. At first, this may seem odd as output is inherently visual and JavaScript is a programming language. However, this opens the door for rich output that leverages the full power of JavaScript and associated libraries such as [d3.js](http://d3js.org) for output."
|
|
627
|
]
|
|
567
|
]
|
|
628
|
},
|
|
568
|
},
|
|
629
|
{
|
|
569
|
{
|
|
630
|
"cell_type": "code",
|
|
570
|
"cell_type": "code",
|
|
631
|
"collapsed": false,
|
|
571
|
"collapsed": false,
|
|
632
|
"input": [
|
|
572
|
"input": [
|
|
633
|
"from IPython.display import YouTubeVideo\n",
|
|
573
|
"from IPython.display import Javascript"
|
|
634
|
"YouTubeVideo('sjfsUzECqK0')"
|
|
|
|
|
635
|
],
|
|
574
|
],
|
|
636
|
"language": "python",
|
|
575
|
"language": "python",
|
|
637
|
"metadata": {},
|
|
576
|
"metadata": {},
|
|
638
|
"outputs": [
|
|
577
|
"outputs": [],
|
|
639
|
{
|
|
578
|
"prompt_number": 16
|
|
640
|
"html": [
|
|
|
|
|
641
|
"\n",
|
|
|
|
|
642
|
" <iframe\n",
|
|
|
|
|
643
|
" width=\"400\"\n",
|
|
|
|
|
644
|
" height=300\"\n",
|
|
|
|
|
645
|
" src=\"https://www.youtube.com/embed/sjfsUzECqK0\"\n",
|
|
|
|
|
646
|
" frameborder=\"0\"\n",
|
|
|
|
|
647
|
" allowfullscreen\n",
|
|
|
|
|
648
|
" ></iframe>\n",
|
|
|
|
|
649
|
" "
|
|
|
|
|
650
|
],
|
|
|
|
|
651
|
"metadata": {},
|
|
|
|
|
652
|
"output_type": "pyout",
|
|
|
|
|
653
|
"prompt_number": 20,
|
|
|
|
|
654
|
"text": [
|
|
|
|
|
655
|
"<IPython.lib.display.YouTubeVideo at 0x10a0d8190>"
|
|
|
|
|
656
|
]
|
|
|
|
|
657
|
}
|
|
|
|
|
658
|
],
|
|
|
|
|
659
|
"prompt_number": 20
|
|
|
|
|
660
|
},
|
|
579
|
},
|
|
661
|
{
|
|
580
|
{
|
|
662
|
"cell_type": "markdown",
|
|
581
|
"cell_type": "markdown",
|
|
663
|
"metadata": {},
|
|
582
|
"metadata": {},
|
|
664
|
"source": [
|
|
583
|
"source": [
|
|
665
|
"Using the nascent video capabilities of modern browsers, you may also be able to display local\n",
|
|
584
|
"Pass a string of JavaScript source code to the `JavaScript` object and then display it."
|
|
666
|
"videos. At the moment this doesn't work very well in all browsers, so it may or may not work for you;\n",
|
|
|
|
|
667
|
"we will continue testing this and looking for ways to make it more robust. \n",
|
|
|
|
|
668
|
"\n",
|
|
|
|
|
669
|
"The following cell loads a local file called `animation.m4v`, encodes the raw video as base64 for http\n",
|
|
|
|
|
670
|
"transport, and uses the HTML5 video tag to load it. On Chrome 15 it works correctly, displaying a control\n",
|
|
|
|
|
671
|
"bar at the bottom with a play/pause button and a location slider."
|
|
|
|
|
672
|
]
|
|
585
|
]
|
|
673
|
},
|
|
586
|
},
|
|
674
|
{
|
|
587
|
{
|
|
675
|
"cell_type": "code",
|
|
588
|
"cell_type": "code",
|
|
676
|
"collapsed": false,
|
|
589
|
"collapsed": false,
|
|
677
|
"input": [
|
|
590
|
"input": [
|
|
678
|
"from IPython.display import HTML\n",
|
|
591
|
"js = Javascript('alert(\"hi\")');"
|
|
679
|
"from base64 import b64encode\n",
|
|
|
|
|
680
|
"video = open(\"images/animation.m4v\", \"rb\").read()\n",
|
|
|
|
|
681
|
"video_encoded = b64encode(video).decode('ascii')\n",
|
|
|
|
|
682
|
"video_tag = '<video controls alt=\"test\" src=\"data:video/x-m4v;base64,{0}\">'.format(video_encoded)\n",
|
|
|
|
|
683
|
"HTML(data=video_tag)"
|
|
|
|
|
684
|
],
|
|
|
|
|
685
|
"language": "python",
|
|
|
|
|
686
|
"metadata": {},
|
|
|
|
|
687
|
"outputs": [
|
|
|
|
|
688
|
{
|
|
|
|
|
689
|
"html": [
|
|
|
|
|
690
|
"<video controls alt=\"test\" src=\"data:video/x-m4v;base64,AAAAHGZ0eXBNNFYgAAACAGlzb21pc28yYXZjMQAAAAhmcmVlAAAqiW1kYXQAAAKMBgX//4jcRem95tlIt5Ys2CDZI+7veDI2NCAtIGNvcmUgMTE4IC0gSC4yNjQvTVBFRy00IEFWQyBjb2RlYyAtIENvcHlsZWZ0IDIwMDMtMjAxMSAtIGh0dHA6Ly93d3cudmlkZW9sYW4ub3JnL3gyNjQuaHRtbCAtIG9wdGlvbnM6IGNhYmFjPTEgcmVmPTMgZGVibG9jaz0xOjA6MCBhbmFseXNlPTB4MzoweDExMyBtZT1oZXggc3VibWU9NyBwc3k9MSBwc3lfcmQ9MS4wMDowLjAwIG1peGVkX3JlZj0xIG1lX3JhbmdlPTE2IGNocm9tYV9tZT0xIHRyZWxsaXM9MSA4eDhkY3Q9MSBjcW09MCBkZWFkem9uZT0yMSwxMSBmYXN0X3Bza2lwPTEgY2hyb21hX3FwX29mZnNldD0tMiB0aHJlYWRzPTEgc2xpY2VkX3RocmVhZHM9MCBucj0wIGRlY2ltYXRlPTEgaW50ZXJsYWNlZD0wIGJsdXJheV9jb21wYXQ9MCBjb25zdHJhaW5lZF9pbnRyYT0wIGJmcmFtZXM9MyBiX3B5cmFtaWQ9MiBiX2FkYXB0PTEgYl9iaWFzPTAgZGlyZWN0PTEgd2VpZ2h0Yj0xIG9wZW5fZ29wPTAgd2VpZ2h0cD0yIGtleWludD0yNTAga2V5aW50X21pbj0yNSBzY2VuZWN1dD00MCBpbnRyYV9yZWZyZXNoPTAgcmNfbG9va2FoZWFkPTQwIHJjPWNyZiBtYnRyZWU9MSBjcmY9MjMuMCBxY29tcD0wLjYwIHFwbWluPTAgcXBtYXg9NjkgcXBzdGVwPTQgaXBfcmF0aW89MS40MCBhcT0xOjEuMDAAgAAACqVliIQAV/0TAAI/3gU2tIW7KawwaCmQGTGHKmuYAAADACBcshU+yICkgAA14AHowiEeT6ei7v7h3Hu0i2fpUBLGBIkbCMP3Vfz+9BVGCDXnw9Uv5o3iN030tb7eq6rsEEhHs2azbdTiE9Csz5Zm6SiUWRdmB43hbD5i6syATuODUJd7LM3d9cbFpc7zFlu5y3vUmNGd6urpvKKT9iyleIyTuR1sVS431DhevGfkUllVeIznYUe2USoMW1tufETjyRdmGldN6eNlhAOsGAH4z+HkrwKecPPU7Q5T4gDAIxj9hW84jVExMTSTHxkPTq1I4OotgUxURCGTsw60k/ezPNmNg38j1bqaGmPcruDKEIBDsK5qEytFB90Q68s0h2wmlf2KXd5bleBefiK+/p47ZsyUO4IdlW25rRy+HLjt6wQXfYee3IkiQOoOK+U7u/lxcl78zfxwIoEMjUUSKNZjkp8clnmecDDJ3Kz+viF7bPklk7N6QRyizAKPIIpnNJUuMWQmqeL2Or6cr4D0/0tOym+4tficxmhuEONKUtO2pPn3hRjMllkd12tXp70fLTfxy0dwB70ML9iLEcItHb7zVupHlP5RxdvecpREw+OsIPr9KWilIesNE19jgIbT+TkiRBjOoKvUuwcQnKg7fOTHVoLvnKuAfea+oujEdm1Rwd2tEOnkF+ZC11WaNQsiNR/eJ9EnUXjXDYGfhB+Oe7qj8nYTT+eOXg1cuJNgLXEs4vOheWEjQOqfIWMQc3DmTof5s0ksBmUQ3PQ+UHPxZSnmOEZB+j6xT3wbm7HGzDjWtSg1SjTxd1EiJ8xA4SIxxR8WIKLg+TwFxJNS7Laxq7Uglu3AkXe82P1JCdJX5PsbFbxuDbuJgakzRcTwMLLSKCiizS/eCW0uJed/lev9yb80kKlVET4S219cn/zhkpeDV83cHYOr+sJQKDRk/Wh2c7fsuxfxaEH/6reSmvFDsAnXAyPXliJ3G4VG3OkEM5K5WyGGrBizZbTrdGsBnzj5VSGGOJdCKuRrUluw/8es2vYRPs9BcTqAqvHk9M52SSIf+1T6L53EZP8VbtXB+G29CMW4xVCK/B/YDjaNmqMwJ61dapugjnWJfqeXlGGa3Ch3aA7gi30T8PucNRBjLK3lF67ZDDvkWXRQXd+VMnKWHkBbCkQ/F/fMuNpHO3C00Y2pljna1qImBhVMvPe0F7Qx7G/YyxLRzhyUU8e23HGzp0agtNJRbydbrPV+TqJMSifJMNcZIf8wkdnC3/xdpcXnLf2Ye3Kbd0o7utciTG+q5h6WTEk+PaNbXLLA0YyZ2VnLTcyV1QTS76aNCbV9Q1/OQ7QU81Gg0hPa9aSiscGary6jLVwDQaik4zLsi7jPqgPVdup7pwx7uJDqRCVcVi5QoZFp/GHdex5sJTF69A6sja69/NLkFIWNSIeRcuGahXpF+wZeYIrqJv975s1TKYKAvp1WtzgtgWNkcbzCtROqf8rPtlAIxkX8GLcEo9zfExyfimeXQ64qfFxEy0IMy2Hsxau9fSMqUnIjntuVVjCQtBL+94gx1RZLndE6wROVTq/wHwHrQzo9QL9cpPqPFJjiZ/NGZIFuudS+wsBFe6Hu8Oitf5zToLqLdtU4Smwh4ne3JsiT9lOzN+4PPw3VSx9l5FppVwdKUWELw1dYpCOppyVWlJ3YQ8H4FQQM8EcYMG9N3Bxu79y1J1ikuvuhMmLQlehLTbguhbix74hd1VIQC8EjHmOZSSWbssulYwPbr6FF49tifk6PymJvulR9/u+2585HkRfbxveGeWCz0ix1pIVfaNpESKmtLy/0mcbMg9hYDz2werz9oe0lT2BiMV6uAin6RaQcT8Vk9MPctfwae+gkvtnZA/sOBk8MbpylaHqc0KIVHhhLFMNnkOFiucjtGo/JWTa/F6g8wWeow5ZuIJUORaYHWqegZbTgM9dCsYYsfZGjjVMuSlDIvpYvIvFFooGPC7Ye2Jfawmq4Ut7EL/nv/dyAd2HRc5msmUhzeu/XpX3rVlzRmf9/Qan8Dbve3QfW1Ym0o5J/KAc3z1VBho7JBr5PgCL68RiD9jZHN0VvsT4gzsEjNlW3D91Uy4RduaodBFoNTzXwlfUYULBzdiTbH75l/UmVMC4TKeTWhNzw2UezaqeGd8at3WSY7W/VR3+hvZHDpkIjgKuNNH0DsCRa/Kk56XQoHIyvvUH/eNekNvziReqS4qgLnXUT4BRGt2BOtCifI6+X/DGHUOmWlX7TN5b4pw5U7jwfwshtbhGZM49T8JMk15Mzrc7tM6J11TYxb5R3mQhZ8TZumJ0bMJXPM69HFyihr5dJSEJMycxJVUh6NTQALUOoRTHIOwE+FpWI6feTv1SiZ0YpYe5DbkYJJbN7zAHbAKw25XvqR2mAjQmOlsfX/tK8DPjP/8h5/xgAF4EUbj1tOnQCBQL8jk9vHtfsXncsprww4Z+P/Z/UrKifuFyEpBWN8kLpF7yywE2iYdDruV9+/qKR8rC9ozNKyqQNIwtxrzYkWpE5t8K7gG4JFnrHona/Rp8dOX6VW41+jb5LB1LEtE8MwjLp3RCUOq/+6yLzaOEgBTqzvEjDeFpg/u9DMHMr4/2TOchfjg7dl+uQ6Gsx+4Ia9W7vivG95027p25eKL0nHvx/OqmAQEZYJL/JO58lOj0zPdJxrQ5dZksjMISzVZNn7DsxqE3zgBBuNzk50R8lTK3U8P12QiOAQYSTeGlYlkvfeofrfO1AitEj02m9aUkxTFd1ZZJoLQT2d3zEU5PmE4lxMVfL5ttNnIbqfcIU2RJKNWqdw77xfjfrNc/eNpRKPZ/6z50LzBprgjzBHRfKgSWWkDxHrX0aTbgwQFwd51+PoUWH4DkQg26uGslF5Hn3hB58+fkeLTosTANOIBNAeFZtTc4PIaLHw759zae7scY55xcTabzlilYIftst2RZ6ntsRC3zFxduCKvL6wLfYT+TiIWJn5P7sTwZwXuSzXY+9Q3xMZ5o4Xcpz6vD9FtTjzS69iefEYt4pXiDrZUo4ePGiLeoIFIwYB/v6GXdmG5VLLk+eKbOc9AmsX2zmvqtcvDRGQbzugXbH/kTH/lkNPBTmqN3ZJODUEXVohPEJ6th0xna0EVleB73Q3eNvaVUvhlJbjs3D/T17FRCebN7AOXvzzbLE/I5kNfEmJcv4dxtIeo2uQ/z9ohSpiZzbDj1u40nJRyJxUK60wEv0nA9f/NuJ6/PEyU0bkK16z2KH12k3Lc4+1f5fawIzkK2qJRB4wnj8VHhUW9mbJhs9vgfFmU3xrXSShY67Ygb+gYNPxxtn4K/9eTSwIA9fv/nR33lA2lZoXALRUTmOZIl3R0gAM5h6oX1y1thIyqViBK95VZc8Pvy7G3O90M9S4zkpyFQ36jrMazvMveMA4d39fvoaC7p90quiJfjI4yrl+ECVkCJL5MxRSa+iVcIL7Xbl0jVaGhZIcMYmcGOBbLzhJgloM1x1zFnnj3ggJRFAM8yNnXxhavk+mA18JC+y3lqGsp6vPReRxGlGHMou17L4It070LzkoeCzarpv8Apw59smdS5KN9qVN1WgeL7OSN8BHg94ubCvS7DW6H3/PbtRB62jFLsBhUV5YqCIbIN5VZ81AAACpUGaIWxFfwAru8x8uT3FuOjrAeSWXmAWqq9jCNGE+N5AOv//9//xjk4uBAcADN96c97AVGmzRtnWwPsgcCbLrVdQJgbKp4QSmPwQnVhv0hXyBjeFWWlcvx70urEN3FK6/lvk2tQeZgbtlbzXluvTfnSj/Ctz7vZ+O1FjhDzzdpL7uLzewzCIW5VWLAEKUVuS2J6wNk6MR7UblcEd4EtOY+R4/qJgfojCsfRvA0oC5dc41Vd0erZbSkrmPTjLCn815bxlchUJMS8gQD5hJNwoKHvNLNwn7XKuTtYIhH2wVNZvDWgzCjlPeQajnrcMsb6bZYJvNJU8HuGHvm50r7VG8qifEwmuyegAZXojh5Ul5VvjDW7kSAZyw8a7I6mHY3FZHd+OA3V4JZMbNliI3Tj1L6+MKTmilVialmyZagRtEMeKRdtxUPd3vVEtrOBVIVYWdgAGA7HmZiHQUQNxLkWxbLyWVlrh5EM0Do2NdbclHxxArz90d+MSVeUOIXQ/4V9quq8C8qVflo1gPtPMkjO2/UrdOYqhY404ReObOu/fdp4hAEDq6jhy64vOeT7XUK/Onq0rXTldtA6kvgQaJg+mgYSR9hfXtMbOUSLgLj/RmBSO8aAMHuJJZqf1tCM5pZ9eYUsrHmy+/z2NGalon0//uF6+33bQzT/RLRfBbYTjy9QrJqHLlw46lggWPGkHuPKSqk/CB7U4pNPXUbR0DdcJy9Db00wCzVzxVc6h7jfCFgiL2Y0HVqd6bgIaVUqn/gJCEyCDVplnzebv0gg3XwMJAGu639lHu7rEvxTp1smIYjWp9R5L4SspVvS07Nb+Smk1FgsMp1K3EMUT8X2Fty4VG54/Ec6bE8tNVw4/QV1VzBw7Px2/2eEhhUS+FMfbHAlD28x00jRgAAACW0GaQjwhkymEVwArOUkEOhoFqiELtH8wgecFLiUq6WqmwAP7iGEwbYzfnHacfqUNXAfD+CGR2ap0lAHL25ipuYtd5j2O0PU/MpaWPG/n2y5OkfTzaOpotaR5tWjN55B2XblVVqsFfBC/mvsiPvCBWUHFChacdY5whj5mP5rqQ0dqLJCsWjrs4TWnIbL2V/Iwfj3hwI35jfo1JkTOeR+8GhOdma9rgiKWafCbQyhYMTDmVdvhND60Flm97EDSTjF0OC+0gD9b8Yn4tNeHipCa/aWyt0n79bMmjfcjntBCPjrcB5ecRTpfGHbEHy1IRj2cjkGXKC+VYoYJXBp4rd4cMd8ygLCk5nBSd8/cTaKNRjdBscOeTXG6QEjSxj9/2pVwx9DMRVtWQR0BSaAcQcZ8W2KPSaeRC4QwmNMu2xx25CSyrDiq2rFSK/JJtmvoIjAKq0ciEXoOgw+Ke+Ylb7ULKCS3k1p/613UNRp450uSq5b7CAHo7S0b7fBMLfNmwSjRYEhLlo0HUaRe/I+IX2Z6XdZH9Hty/399ZA1PwZGC6EfvUJIf7CBeaxv7cu6IT2/s0zPRGthpvXpYw6A7P4Wwz5C4V98KnIUNUanadqabKP6eXWhvbvcQHxAjiOOiKZgXZplZW2g+B2NNyJSLiR+g48DqvWR6t9S2aGfFjdOW1Gi6oTtZ1d4p5XIslAr8mryeZ6+htSSQe4AcfVt7k+V6mOthBCYtr/LEU4ZHtl0mW9876PK8mRFAaT8DJOUFVz1lPfzRApuPggkkyq+UMvyfKTUbCk7/DpfX8Y4s4QAAAg9BmmNJ4Q8mUwIr/wAsWUPjZw3ksgRsxZ6n4fQjprPbkj2aUh30y0bZJnLmiXnWskvOGnCPwBnG9dEhatwX3hoxk7BNyG+wQ4emZUpcVzcWl2T9nKQB1euucuZWHTg7TCtM/iHyfPO2vbmGsfzs70b/egIbywUH4y4BQSL1nWc1SmpHm2zHMBcUjYLDZ5gL5vdfxn0V8FFw66G88c/LN4I5icUa7xf4fcSBKywU0ajbp1P+aJYjBgWT6Ggu0MDLDNl54tfqd42lKosQtM1aif4WXAZFP5Ww3vrQ1rH9+utSYxqZd6N6gGtNbSNMcViaKn5LcnjsbBi3T3EmGqshEbcme8VHKwR3kSfBOAprrIsv6K8R+X6az+MD23rWka/2v64m1qM69D7Xa+Kcs/n0KLCJdTilyaGadopLeaAn3eYvWTeHcucMM1Fp1KgHD1tiFeO6HvobLkZlRximsA3/7MiohYklLIcJrZL22BH+6W9d6kZsYIsej9RM681nU6mWNjepBAfAfTbrGRrVB/h2DxC5B8YyRjgSIzQjNYrse0rzChqbrsLl7mQ7W+1bsNKze5//9ZIa8rSsF+BXh/vgoRTDkPW/ws95B7VPCZEFChfX0icw+tpcpN/q7NY87tUn4vESdSiMMlyhKklMjQu/G51J69ZRQLs2oUO6YfoJFqliy4qCFCrf8SZE9Fc6DcCagAAAAodBmoRJ4Q8mUwIr/wArPWF/KOw78THwadfPqhJO0CnmR/M74/XYZLqVYKlNcEaYauf+vrRUDJPmu75sMKy2Y+Bnslc/iAISSyWtw/h/3CF8fE5ZrbrwSNst+MSyCoNWP+8imtoX2eyojpdCk8YP5K+cbK4SJPCkZXbYqSXYk7hO8AdSemBHgXKWiZ+UOr802aJo+98ZOIjX9hWL9bo31Gqx7cy4ZG+W/ar/WGlzDa1xPWnPRsEdrIcZlEVGV/jGmbirkxw1lyUYoqj8Vv7Bxube9XPQlBkXOV6Lc1LT2IzNq0V7WwVhF0kA6yxfAsFxc9krNEH8vGGntTWI608ovjatXc/CKKXw7AjJSftlTcLI0hIIGXbRUr0NCYNp7M4cVd/n73Rjetnixz4SAKpcz/P47UsijZG7T3SxzK2D79WS42aEalc12hQwCZ01LfmF/H2mmGEvOzPBie1D0YT7Jh19vxa4Dd3SQ1FrDfmSUpvv4DjbYcZ2PrPpFpWtMjWqHBeoyMiZf6RP3EfYR6z9jsVNIIHxM0bzzBQF8eeYkPgDySydxPXv9Izo+QUY94N8kWi16fI6eZSDc1G0Yo0L91jcRQuDMGGS7B2zuf/0GbJyRhUO48UbMrqnILMrbQg1LF00Q3pH9nbGEK/RRQpRN3T/J/4IZQjwW2Ft2ipWGztg1Jn9I4DmffKS60QC+JQcyakdVON6zDcKttIKlqeTcmAi4xzmo4QXa2dRKleS+fs3EtTdBBtony2wK9T2Imj+NCziOSEL7Q7VuIU8kclUHrJJsSneFcxGRgIgGGUEQM8/pklwTOqab7mMmJeRiaBrjJDEnDpkR4Vz3qXxgyn4/5x24FuTMNVPwQAAAhtBmqVJ4Q8mUwIr/wApcLwPT0/Xh9UdWqWXIs8Wbj5K1hivmN6qIQnq+aolcegdlM/63MbHsdC6xYZC1e/Q8UjQCt9N/Ejqwms8DzeWv2qxskeliZH0kt1QWkErWSEodq7V0ZNksctLkMGWayX33gBT368EehfIeGDolBZoqIbJfb4nqcfU+ev4OzVv9zVqWyLck315GFmXxQKIM8pICQc8Q5es34LH1+DmnMnW8kQpVGrztQcDXhjCU3F0fOgoSsXSVWCjc6XKqGbCwQDfJUxCfXfIT6YmQoPpVp1mpGy1wQypXus9z0bScDpyDu23hViYDntdj1O45ea0znKZkj1+tLHbBtqAGJ1WTcbGlF6Vya6hQhEsiiZUIC2fRxIj8/wEXCICIbr0gZ/m6gcOhE10tenvE7iy+BKY81wLWrnzos3S6FWxYtmCRes+LLhNGOKWRuQo6SyePH2OZ90xZm8oA1MuTe3V59euVNxjAt0FLkAc9TEiFhP/8CB+gA8mF+A8h1U01f4DVX55GzCH51jHI2xUS0L9GtsHoBxLPLK/NNel8zcnwG4X+UusfcfEb5hh+ffnXteCE9vRGbs2n9wYW0xA3ZicklfadmWKUtMiHYBfkMSULWnkBQr4CXxjpYOs6ygeEoA5+5B0B1SZObgZ42wWqddyyYE0NfwQAl75tfdJGqOa7OMHwBYNeatJaJK0zT2+bFaw2qWCWwAAAitBmsZJ4Q8mUwIr/wAstkdsayRXchoFk703izqzduZ5WsyXriI9cfUdMUWvm0iGHwYIrUujvz3Yjou+JLwv9df2kt7MJo8u+3P5CjEKbwlz4vkE5AHTAbgXn3+Xc/MMJLgW5cm7iX3KiGNnBpbphhwJRlb3u91NRDr0d1IR2up/z7lKxE7XPAPFe0siPMYVlIqWNSn5KqLABPeuxxbOsvMEb27/nH1LUVM8I2F95c1I3Lv1SpkhZXjs1JsmS9X7gsoTxkXyShGC2+zRJSGUbhCPo/q1XSFMHQyMWJ79FKPQSL/RpVsacN2bYwdKo4TFBw1SsKq/L1iOmqMI+4Gxnbbjojdk0ek0JIcDb4bHv1czxchF7FX1Ym8H6IpPuE8CeNKjzQ1a1wqhEu+wl1N0x3Y37ZryCCKJRkxj0FT7bOoH3L38/yMUuh/v3aCmxY4eCkykb2p6ZrYMFE044anM/nMjmbErMibfRFuCz58Io1rBlF7JfkIz0R2/5vjUMVskcdbX2mm7DntncOsWDIdg/XVmgsC9CzVzUyq4VsS/sk97lJggcddpWLNw/29egz8iLyzWHOAXCvl2fTIPkviYAOQXfVhZUQdxsyJUNFMTiALrZCmoQLMp2LmDbfbW8JQriDeR3fVz6P1sjT8C2yEDvzkCn7sh0aTBK+sx7BKH1nb4320+caQepQj4TCJtCeNXjdrVcNEnjvwlcRJwFT1pT+Y7HREbHnT71XYNh4EAAAGEQZrnSeEPJlMCK/8AKIjxcI58rm/ML255fOJW1zbznFna7lfgMQrka7OTPPsvVAV4EJXye/Uxiu9dlftmRypJqfDot3xwDe8lX/qAVf6pBkSlUsaLyBYtww/SUSa1bGl1JvrJCN7FXCCXbLd5R4PoYlPiDIm/DQH2puO0StIWmrR77Isc/J1pRvdu5+mQa/n0SEHUeM2KkoRzCznfD9zaaRO7BDtvC9SYIT0uYZxrwTjxQ7N7UERTrYG0P+vRLAhxkfohFIYl3HXyjPOvnlbUFP2oiiy6nkUFuaIyQcJawJv3GU8k4ObcKsC1cNDXjSpsyQRrxLFaCCjke4mikyt7vs0iN0bnrNWv9HXruG9zOFEOer1ggIFTsT1Eos5CXRkgja5HN4QUM6MhWpc5du/HgBIH8ANFcoo2kJpqcadw9r/0qk25X91MQSDJQiH8Hny2dQhqR+LFWEawiW753SJhn0ngZcv/mPj3mwcHv1SL9ErBqAjm4JGiDetPKYtFwANYY11OyQAAAVdBmwhJ4Q8mUwIr/wArOx5HV2505jRePGgMxptW4PGIHEszV1xGZS+flSkF+aq30AaqO7u6XK9jJsuWXTfYCRQTn1bZfFQ22DbO5DXAxK/TUmbQleCflFzeS6/czxkL4PJ8AwOs2U+oehekgCZC8gZyHHaQSaKbNJ46gTjNsLy84ACQ5uNt11TPuCPqPTuh+schdw9S+/lU/6m+EyaqGZ49wDFPiBFBYXglQQBjyP9k/rqq0xL7SiLjpe4riYg8SFUuUtOzPdWHyvxnI7Ug/0VLPGAAhgMISUnqe01d5QFf36yHpwMAHexjAZFIGQHAFautuMuEw6HzUZVzNdeHYxvEYOGkTo007bLwbuf/nxzrywGOxlRTYJLRdYI0mk0SdN3+LeTv1RIJwv21+e9rT5iFOTCgzeQoekEWXLYz0X8YLq5bVCtijP7/T7w1Ck71j0aqfrEn6wtIAAABNUGbKUnhDyZTAiv/ACcySi7VBgOid6qZNXvhh/JsllHkMLLq0yNbQTqv/Wk2EBoSKICZwFwAD0WRzhvvReCGirep1Fe4bxjm49/UR+OYrXRmHR18T0C83AUVeBk7KvDZmb/eHzuzEN4yfXucr/NWFJl+USVMY4r4UQ9CayrfEY9v6AQ6mzAdLy2UMfFxrRJ99g/Rfl8qx+m4jIZNjlrTaThzJ/3OpVmAliDfxVyg8+CVIlI31IykiwQrXcebgajG+av8XU1SfyAG5ibvwbtdSAxkGBcJWL387V+uTdY56w3KN2vBtoQpVKD2zb3yazIcATZ02upwIytNcM/rpaLCdMb1myWcikE25agzLhDhOS+4zwjYz2DnW6VY0gFBAPsphhsUMnauVVdUVHzCTSdvzEve/H8q4AAAAVdBm0pJ4Q8mUwIr/wAo+x5XKuiN1am7SkJKSMonFZDPU3f5XFcDQSs0FLVq2idfsKwuIkt1mxIq8NgMHpzofTnDHqs/WedvAmhBgL0N5azdQa5MNKG2rJ4IAvGQY/uFm3jKQAKzvhSS01gO1oIfizF817z9IShS4QK2WT0PeFPELqLSpED8eNOpVTR96vmwpk/WBKRVJdTQJzjiCQ5pgEwjtvk7KqoS0+lwXSbvIrXkYm8DignEts3DLNoLHrPjXlQmbIop76JZSyJEtB+91GrLwo6Km5GeebyA2E6qGL3xSkpppej/ruoFprSKrH60UMbrq/SK7eCo+1QFoySPQmqDFsMGiQFqvtld5BXDYdVI4yRaoyN7Y7wi83HRC6eVazuHU9OtIY3xJJApBWq1aJOsYwc38aTC3ee863Aa/4n9Lk4DAtyFYHNZjB5m2e2vk8G2Gny9YFlBAAABQEGba0nhDyZTAiv/ACoZSZQfHxhfQxEqOBQrP+L3DmgvHSJQtB1iVkcLTxm+vagLHBLG91OGnopwrr7gT/loDypIhoRxjcwAAOeg/jN4WBbXzCJtnWGGllUCSdtUZQzKOSp9iM4yX18C6jrY4Sq6R9PUV/lEGNveJR4gw4FMve7110XdEPL1O2VTdHvdqeANyaq0nLdEmtXnrzvdrFlBaUvmaR4EdlkqGkvkZKWJej8Vq+msbKa7JdbxjwZtRufiyGfD/NVqMgSrYRzw9z/a8Zwbr+9+19CxlWD5bCuAEfPmjY6kZJE2L/CQI6+tnCBTXOmWZtZMBoCLGOf7G2uAC3+kFlboh9as5WCkO6+iqXq29dyhKnsHInorRYsPlgxIXyU1Om/Kyhj1DJV0Am9WJK3Dln0zNUH0q6ZTOnZcFD36AAABYkGbjEnhDyZTAiv/ACcwdIOLRFfoGK2ZkKsvgMwG0m0qsY0vMLPSzefc+ebp/aztyF7MlsBz/fBeNtxFBcsKgR4pf65GvdfOMHah0ltZ918sMDmXUEZMeRHy/xpnWpTLeGz6uTs/7MATPmU5BgHbT/DkD8QeaZnFAzidyFCXDz2l/jaKhEdgqipbB2pH0+fQ039r05z9axxEWGmaLQjg6x9+po1o24yhkVO7m03YwWmPyCgy8cOwrvRyJkXJpRN4m8ZBS1zwY80HeN/VyMQQJSMwsTo7R1XMerSFuyx0nz+8qOuhiqykc2ohCCsXia/+kIKbJ5Vs+cbWtvkqBKIDSfU7FhAd3GjcY/xar0EVmi6wWFTugAogR3I7mTrQDdlTAqYgqO7Gn5NMXQVHu2i1zhFSdo9GjMbeGnbkJwsFbQ2XkoKRIDpuW7AewC9AEBt0Ox/Ah6dGXfXO1jl8pEApj2RFmgAAAPlBm61J4Q8mUwIr/wAlR+eW/VZ7bSrmwwMA62G05DZ7p/5FUugsSsQdonUq6abtbU5hjFr+I1lPgoiV5c3CkTQZS+K5zivdo+Ti2P4K90xXANp8dSMAu85uJIOCQn2TXbEnNDifLB+3V84ht5tj4lvTaZx317BcliV8D5v2zZQW8RO1mUbuJEBItst8E7hfE+ZXj7tfDxNZPTvtpFyUv0fH1cTg1pr2VLy0d0zQLiA58dg+GkRvR1/hs2LyifBgHcj6eTWz0vsypVn9iPXRH/unJ6i8cfFL69NO24tQ9QQB+nDFhoP2cRhkAvhHwn56n5PppBD/oxni2f8AAAE9QZvOSeEPJlMCK/8AJjAXVGf+Kj2XNJnFeKC/gr7dJDTC2ngpd4WeAHlg04GuJKnn9hAmiECxxo9qM1IYMRiB85t6gALnlm9sRqGmioyzAm18RJndc9Ah8RlpGzr+44a6ntRaPx0cIwNIWAA8buL2JP00dmfjNqEiAlCa8OdV8FQxjp1vDXsGcAGF3Qbd62KEpkimeI3wH2nuXpbDHm8/ZKOR49s5ifUCkxCoJpfp43aC0lTzh2NXpcfVw6h0QnK8G60R4ZAxOxaJB7c0nn8ixXSU2JVY24EtGMF53nxJnHfzUheewUfBOGYSxeo8oK7oUCqX4rztzDwoc2QywNqQUJUkFrqIN+sb5ecYvX24Zujn+ZzTW6UDAF3R6WdNyJyRAremgC8spSflTqygQNGfHyGkfIEEJJaFo/pBCBkAAAEWQZvvSeEPJlMCK/8AKI41fuekXG59Knbw4Y6YJritsh9VtQgc3QKvVmxrzzo7f4aXn8N74eyP4b2lV1Z2Q+rohxps7EHTkOY9jLdqxI3MXe7je4g2qepz71+hY+jYdX+9LO0kA0Zg3NfyAlIRX7k6c/YHAZNtNaGZgTBMqiPgmEjiJH9Luk7shbgr+srfwiYwBX9rdS3fQNNFwcT8orQC+F60LAY9+GbFo2Sw3Ld4Tw9jq9yJtrY8RtHAdzytyek/mv2+j2TbTvAQKbbCYtdC8E/KtR4V5ZTSScr5Wb63vmbw7UpddEXYvl55pARyyvMxWNSh3Li4GF8Jk5JBi5B5ASQwxCMYpX5hkAMc+d8tl2bT+IEvUTsAAAElQZoQSeEPJlMCK/8AJIAzFZs00JJ0yfm8CZiew4xWdArLklEvBVXo/+ukPLu3XP9HFOfsme3T6BJEKmPPgZw/Lxnraq6Sl2kLVW19YU1qmqgfv+80LkZaWU5gRAH4hqyo3bFYcbuY2SC3IW5Wm69gtYyAXOdbAYSEHA16fvCeRQjHEsxKVndJdrRAlrGHsKgUBQ3Up/ZXIy1vkdFOfKSjpuZnswkuqr8NZI5tJ/dnBSErBTNWPaNwWV7nNomC0EYVGo+geGBhLXzaLw0UAOCYGjiPc3803BDw1GLoLIXjrIFJxwRfBNIAXYZAglu30oYzhpAfRWSprkeULMWYJTlWvbUQ5CNewSZssuDWIRAc3w8AcFaywwn+YSGhtR8VI1OGjYkfBbcAAAD8QZoxSeEPJlMCK/8AJdokjCUETRw/nciVPtaZQSBP/VxAQSITASEzlJBl9Na1r0DJhLOz279+KQLtl/xHZ8vAKc528mTMTqtWs4sFbeVgHWyBpHcHEtgTzjIqEinp/MPuUXF5poo8YLSSMFn9Ozx2FbU5/Kh9A39oN9NHQflVxV1NA6yT/84HHyfMtfdSMS8KTvAEE2lDs14VQayNs5ctjXboQT7xMBf5OLj6thhPvgaDrFB2o/PV9ouK147lruWTP2mkoA9oDIMYW1pcBx4yyV/t9GOPZ3aXneMUb2fFmUCX43BjXfUDMaa4GO2/Ankj3UEQwDxA7ZlNUQK2AAAA4UGaUknhDyZTAiv/ACJHv33I08bkhybYiJ/JiiheW5zMPBu4n5CxGr3frhE7TkLh0vPktM8m/AhaDiJisdk5QXNe/4WmxEDSAyaVi4eUVu0iHT2ly/KNTGqiORqA2oKpTjh84nYbrpXwnGv9SOf/34Z06xN6Yo3t35UZrP8nlcs/63GtnEmnUwVZHBYfPM6bs5M5AeBfAQ/9mIqu7vnEst+5O2wpPjzdItjwGCZ2ApHVjGnYYFomlA9nm6AXnxNIWHIsDgxCk3zx+6QbXipu/CWLG1Wf0WIbt4C0JPVl3TEb0QAAAMlBmnNJ4Q8mUwIr/wAVV64OfTKmlktYOqZHH1W1DhPy/X/6sD4T6hRdzfOgNtTOX2IckRJHshfBQVkJIzns079io6kpJFCcS3VD4zrWCn/dNaGV0kWTpFBRuusfn8F0C0R/EhsQeyTsdZftEkLGb5tq+nrir3vfmeb7rjmWJRXkIrTEKu8pIuAd+4FBGp8ARgGe80Jqpp//s1433HqBFqXsIFJTmU8j/toF9HyueI1Ea4uvsQ6NANGcYCbOAKCmbNiwABMCFaiUTMAAAAPSbW9vdgAAAGxtdmhkAAAAAHwlsIB8JbCAAAAD6AAAAyAAAQAAAQAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAv10cmFrAAAAXHRraGQAAAAPfCWwgHwlsIAAAAABAAAAAAAAAyAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAABAAAAAAY4AAAGGAAAAAAAkZWR0cwAAABxlbHN0AAAAAAAAAAEAAAMgAAAAAgABAAAAAAJ1bWRpYQAAACBtZGhkAAAAAHwlsIB8JbCAAAAAGQAAABRVxAAAAAAALWhkbHIAAAAAAAAAAHZpZGUAAAAAAAAAAAAAAABWaWRlb0hhbmRsZXIAAAACIG1pbmYAAAAUdm1oZAAAAAEAAAAAAAAAAAAAACRkaW5mAAAAHGRyZWYAAAAAAAAAAQAAAAx1cmwgAAAAAQAAAeBzdGJsAAAAtHN0c2QAAAAAAAAAAQAAAKRhdmMxAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAY4BhgBIAAAASAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGP//AAAAMmF2Y0MBZAAV/+EAGWdkABWs2UGQz6mhAAADAAEAAAMAMg8WLZYBAAZo6+PLIsAAAAAcdXVpZGtoQPJfJE/FujmlG88DI/MAAAAAAAAAGHN0dHMAAAAAAAAAAQAAABQAAAABAAAAFHN0c3MAAAAAAAAAAQAAAAEAAAAYY3R0cwAAAAAAAAABAAAAFAAAAAIAAAAcc3RzYwAAAAAAAAABAAAAAQAAAAEAAAABAAAAZHN0c3oAAAAAAAAAAAAAABQAAA05AAACqQAAAl8AAAITAAACiwAAAh8AAAIvAAABiAAAAVsAAAE5AAABWwAAAUQAAAFmAAAA/QAAAUEAAAEaAAABKQAAAQAAAADlAAAAzQAAAGBzdGNvAAAAAAAAABQAAAAsAAANZQAAEA4AABJtAAAUgAAAFwsAABkqAAAbWQAAHOEAAB48AAAfdQAAINAAACIUAAAjegAAJHcAACW4AAAm0gAAJ/sAACj7AAAp4AAAAGF1ZHRhAAAAWW1ldGEAAAAAAAAAIWhkbHIAAAAAAAAAAG1kaXJhcHBsAAAAAAAAAAAAAAAALGlsc3QAAAAkqXRvbwAAABxkYXRhAAAAAQAAAABMYXZmNTIuMTExLjA=\">"
|
|
|
|
|
691
|
],
|
|
|
|
|
692
|
"metadata": {},
|
|
|
|
|
693
|
"output_type": "pyout",
|
|
|
|
|
694
|
"prompt_number": 18,
|
|
|
|
|
695
|
"text": [
|
|
|
|
|
696
|
"<IPython.core.display.HTML at 0x1070b3050>"
|
|
|
|
|
697
|
]
|
|
|
|
|
698
|
}
|
|
|
|
|
699
|
],
|
|
|
|
|
700
|
"prompt_number": 18
|
|
|
|
|
701
|
},
|
|
|
|
|
702
|
{
|
|
|
|
|
703
|
"cell_type": "heading",
|
|
|
|
|
704
|
"level": 2,
|
|
|
|
|
705
|
"metadata": {},
|
|
|
|
|
706
|
"source": [
|
|
|
|
|
707
|
"HTML"
|
|
|
|
|
708
|
]
|
|
|
|
|
709
|
},
|
|
|
|
|
710
|
{
|
|
|
|
|
711
|
"cell_type": "markdown",
|
|
|
|
|
712
|
"metadata": {},
|
|
|
|
|
713
|
"source": [
|
|
|
|
|
714
|
"Python objects can declare HTML representations that will be displayed in the Notebook. If you have some HTML you want to display, simply use the `HTML` class."
|
|
|
|
|
715
|
]
|
|
|
|
|
716
|
},
|
|
|
|
|
717
|
{
|
|
|
|
|
718
|
"cell_type": "code",
|
|
|
|
|
719
|
"collapsed": false,
|
|
|
|
|
720
|
"input": [
|
|
|
|
|
721
|
"from IPython.display import HTML"
|
|
|
|
|
722
|
],
|
|
|
|
|
723
|
"language": "python",
|
|
|
|
|
724
|
"metadata": {},
|
|
|
|
|
725
|
"outputs": [],
|
|
|
|
|
726
|
"prompt_number": 19
|
|
|
|
|
727
|
},
|
|
|
|
|
728
|
{
|
|
|
|
|
729
|
"cell_type": "code",
|
|
|
|
|
730
|
"collapsed": false,
|
|
|
|
|
731
|
"input": [
|
|
|
|
|
732
|
"s = \"\"\"<table>\n",
|
|
|
|
|
733
|
"<tr>\n",
|
|
|
|
|
734
|
"<th>Header 1</th>\n",
|
|
|
|
|
735
|
"<th>Header 2</th>\n",
|
|
|
|
|
736
|
"</tr>\n",
|
|
|
|
|
737
|
"<tr>\n",
|
|
|
|
|
738
|
"<td>row 1, cell 1</td>\n",
|
|
|
|
|
739
|
"<td>row 1, cell 2</td>\n",
|
|
|
|
|
740
|
"</tr>\n",
|
|
|
|
|
741
|
"<tr>\n",
|
|
|
|
|
742
|
"<td>row 2, cell 1</td>\n",
|
|
|
|
|
743
|
"<td>row 2, cell 2</td>\n",
|
|
|
|
|
744
|
"</tr>\n",
|
|
|
|
|
745
|
"</table>\"\"\""
|
|
|
|
|
746
|
],
|
|
592
|
],
|
|
747
|
"language": "python",
|
|
593
|
"language": "python",
|
|
748
|
"metadata": {},
|
|
594
|
"metadata": {},
|
|
749
|
"outputs": [],
|
|
595
|
"outputs": [],
|
|
750
|
"prompt_number": 20
|
|
596
|
"prompt_number": 17
|
|
751
|
},
|
|
597
|
},
|
|
752
|
{
|
|
598
|
{
|
|
753
|
"cell_type": "code",
|
|
599
|
"cell_type": "code",
|
|
754
|
"collapsed": false,
|
|
600
|
"collapsed": false,
|
|
755
|
"input": [
|
|
601
|
"input": [
|
|
756
|
"h = HTML(s); h"
|
|
602
|
"display(js)"
|
|
757
|
],
|
|
603
|
],
|
|
758
|
"language": "python",
|
|
604
|
"language": "python",
|
|
759
|
"metadata": {},
|
|
605
|
"metadata": {},
|
|
760
|
"outputs": [
|
|
606
|
"outputs": [
|
|
761
|
{
|
|
607
|
{
|
|
762
|
"html": [
|
|
608
|
"javascript": [
|
|
763
|
"<table>\n",
|
|
609
|
"alert(\"hi\")"
|
|
764
|
"<tr>\n",
|
|
|
|
|
765
|
"<th>Header 1</th>\n",
|
|
|
|
|
766
|
"<th>Header 2</th>\n",
|
|
|
|
|
767
|
"</tr>\n",
|
|
|
|
|
768
|
"<tr>\n",
|
|
|
|
|
769
|
"<td>row 1, cell 1</td>\n",
|
|
|
|
|
770
|
"<td>row 1, cell 2</td>\n",
|
|
|
|
|
771
|
"</tr>\n",
|
|
|
|
|
772
|
"<tr>\n",
|
|
|
|
|
773
|
"<td>row 2, cell 1</td>\n",
|
|
|
|
|
774
|
"<td>row 2, cell 2</td>\n",
|
|
|
|
|
775
|
"</tr>\n",
|
|
|
|
|
776
|
"</table>"
|
|
|
|
|
777
|
],
|
|
610
|
],
|
|
778
|
"metadata": {},
|
|
611
|
"metadata": {},
|
|
779
|
"output_type": "pyout",
|
|
612
|
"output_type": "display_data",
|
|
780
|
"prompt_number": 21,
|
|
|
|
|
781
|
"text": [
|
|
613
|
"text": [
|
|
782
|
"<IPython.core.display.HTML at 0x108313a90>"
|
|
614
|
"<IPython.core.display.Javascript object>"
|
|
783
|
]
|
|
615
|
]
|
|
784
|
}
|
|
616
|
}
|
|
785
|
],
|
|
617
|
],
|
|
786
|
"prompt_number": 21
|
|
618
|
"prompt_number": 18
|
|
787
|
},
|
|
619
|
},
|
|
788
|
{
|
|
620
|
{
|
|
789
|
"cell_type": "markdown",
|
|
621
|
"cell_type": "markdown",
|
|
790
|
"metadata": {},
|
|
622
|
"metadata": {},
|
|
791
|
"source": [
|
|
623
|
"source": [
|
|
792
|
"If you want to write HTML or Javascript straight to the frontend,\n",
|
|
624
|
"The same thing can be accomplished using the `%%javascript` cell magic:"
|
|
793
|
"you can use `%%html` or `%%javascript` cell magics. These are exactly the same as writing `display(HTML(\"\"\"cell contents\"\"\"))`, etc."
|
|
|
|
|
794
|
]
|
|
625
|
]
|
|
795
|
},
|
|
626
|
},
|
|
796
|
{
|
|
627
|
{
|
|
797
|
"cell_type": "code",
|
|
628
|
"cell_type": "code",
|
|
798
|
"collapsed": false,
|
|
629
|
"collapsed": false,
|
|
799
|
"input": [
|
|
630
|
"input": [
|
|
800
|
"%%html\n",
|
|
631
|
"%%javascript\n",
|
|
801
|
"<table>\n",
|
|
632
|
"\n",
|
|
802
|
"<tr>\n",
|
|
633
|
"alert(\"hi\");"
|
|
803
|
"<th>Header 1</th>\n",
|
|
|
|
|
804
|
"<th>Header 2</th>\n",
|
|
|
|
|
805
|
"</tr>\n",
|
|
|
|
|
806
|
"<tr>\n",
|
|
|
|
|
807
|
"<td>row 1, cell 1</td>\n",
|
|
|
|
|
808
|
"<td>row 1, cell 2</td>\n",
|
|
|
|
|
809
|
"</tr>\n",
|
|
|
|
|
810
|
"<tr>\n",
|
|
|
|
|
811
|
"<td>row 2, cell 1</td>\n",
|
|
|
|
|
812
|
"<td>row 2, cell 2</td>\n",
|
|
|
|
|
813
|
"</tr>\n",
|
|
|
|
|
814
|
"</table>"
|
|
|
|
|
815
|
],
|
|
634
|
],
|
|
816
|
"language": "python",
|
|
635
|
"language": "python",
|
|
817
|
"metadata": {},
|
|
636
|
"metadata": {},
|
|
818
|
"outputs": [
|
|
637
|
"outputs": [
|
|
819
|
{
|
|
638
|
{
|
|
820
|
"html": [
|
|
639
|
"javascript": [
|
|
821
|
"<table>\n",
|
|
640
|
"\n",
|
|
822
|
"<tr>\n",
|
|
641
|
"alert(\"hi\");"
|
|
823
|
"<th>Header 1</th>\n",
|
|
|
|
|
824
|
"<th>Header 2</th>\n",
|
|
|
|
|
825
|
"</tr>\n",
|
|
|
|
|
826
|
"<tr>\n",
|
|
|
|
|
827
|
"<td>row 1, cell 1</td>\n",
|
|
|
|
|
828
|
"<td>row 1, cell 2</td>\n",
|
|
|
|
|
829
|
"</tr>\n",
|
|
|
|
|
830
|
"<tr>\n",
|
|
|
|
|
831
|
"<td>row 2, cell 1</td>\n",
|
|
|
|
|
832
|
"<td>row 2, cell 2</td>\n",
|
|
|
|
|
833
|
"</tr>\n",
|
|
|
|
|
834
|
"</table>"
|
|
|
|
|
835
|
],
|
|
642
|
],
|
|
836
|
"metadata": {},
|
|
643
|
"metadata": {},
|
|
837
|
"output_type": "display_data",
|
|
644
|
"output_type": "display_data",
|
|
838
|
"text": [
|
|
645
|
"text": [
|
|
839
|
"<IPython.core.display.HTML object>"
|
|
646
|
"<IPython.core.display.Javascript object>"
|
|
840
|
]
|
|
647
|
]
|
|
841
|
}
|
|
648
|
}
|
|
842
|
],
|
|
649
|
],
|
|
843
|
"prompt_number": 1
|
|
650
|
"prompt_number": 20
|
|
844
|
},
|
|
651
|
},
|
|
845
|
{
|
|
652
|
{
|
|
846
|
"cell_type": "markdown",
|
|
653
|
"cell_type": "markdown",
|
|
847
|
"metadata": {},
|
|
654
|
"metadata": {},
|
|
848
|
"source": [
|
|
655
|
"source": [
|
|
849
|
"Pandas makes use of this capability to allow `DataFrames` to be represented as HTML tables."
|
|
656
|
"Here is a more complicated example that loads `d3.js` from a CDN, uses the `%%html` magic to load CSS styles onto the page and then runs ones of the `d3.js` examples."
|
|
850
|
]
|
|
657
|
]
|
|
851
|
},
|
|
658
|
},
|
|
852
|
{
|
|
659
|
{
|
|
853
|
"cell_type": "heading",
|
|
|
|
|
854
|
"level": 2,
|
|
|
|
|
855
|
"metadata": {},
|
|
|
|
|
856
|
"source": [
|
|
|
|
|
857
|
"JavaScript"
|
|
|
|
|
858
|
]
|
|
|
|
|
859
|
},
|
|
|
|
|
860
|
{
|
|
|
|
|
861
|
"cell_type": "code",
|
|
|
|
|
862
|
"collapsed": false,
|
|
|
|
|
863
|
"input": [
|
|
|
|
|
864
|
"from IPython.display import Javascript"
|
|
|
|
|
865
|
],
|
|
|
|
|
866
|
"language": "python",
|
|
|
|
|
867
|
"metadata": {},
|
|
|
|
|
868
|
"outputs": [],
|
|
|
|
|
869
|
"prompt_number": 2
|
|
|
|
|
870
|
},
|
|
|
|
|
871
|
{
|
|
|
|
|
872
|
"cell_type": "code",
|
|
660
|
"cell_type": "code",
|
|
873
|
"collapsed": false,
|
|
661
|
"collapsed": false,
|
|
874
|
"input": [
|
|
662
|
"input": [
|
|
@@
-885,13
+673,13
b''
|
|
885
|
],
|
|
673
|
],
|
|
886
|
"metadata": {},
|
|
674
|
"metadata": {},
|
|
887
|
"output_type": "pyout",
|
|
675
|
"output_type": "pyout",
|
|
888
|
"prompt_number": 8,
|
|
676
|
"prompt_number": 21,
|
|
889
|
"text": [
|
|
677
|
"text": [
|
|
890
|
"<IPython.core.display.Javascript object>"
|
|
678
|
"<IPython.core.display.Javascript object>"
|
|
891
|
]
|
|
679
|
]
|
|
892
|
}
|
|
680
|
}
|
|
893
|
],
|
|
681
|
],
|
|
894
|
"prompt_number": 8
|
|
682
|
"prompt_number": 21
|
|
895
|
},
|
|
683
|
},
|
|
896
|
{
|
|
684
|
{
|
|
897
|
"cell_type": "code",
|
|
685
|
"cell_type": "code",
|
|
@@
-950,7
+738,7
b''
|
|
950
|
]
|
|
738
|
]
|
|
951
|
}
|
|
739
|
}
|
|
952
|
],
|
|
740
|
],
|
|
953
|
"prompt_number": 4
|
|
741
|
"prompt_number": 22
|
|
954
|
},
|
|
742
|
},
|
|
955
|
{
|
|
743
|
{
|
|
956
|
"cell_type": "code",
|
|
744
|
"cell_type": "code",
|
|
@@
-1045,308
+833,311
b''
|
|
1045
|
]
|
|
833
|
]
|
|
1046
|
}
|
|
834
|
}
|
|
1047
|
],
|
|
835
|
],
|
|
1048
|
"prompt_number": 7
|
|
836
|
"prompt_number": 23
|
|
1049
|
},
|
|
837
|
},
|
|
1050
|
{
|
|
838
|
{
|
|
1051
|
"cell_type": "heading",
|
|
839
|
"cell_type": "heading",
|
|
1052
|
"level": 2,
|
|
840
|
"level": 2,
|
|
1053
|
"metadata": {},
|
|
841
|
"metadata": {},
|
|
1054
|
"source": [
|
|
842
|
"source": [
|
|
1055
|
"Pandas"
|
|
843
|
"LaTeX"
|
|
1056
|
]
|
|
844
|
]
|
|
1057
|
},
|
|
845
|
},
|
|
1058
|
{
|
|
846
|
{
|
|
1059
|
"cell_type": "code",
|
|
847
|
"cell_type": "markdown",
|
|
1060
|
"collapsed": false,
|
|
|
|
|
1061
|
"input": [
|
|
|
|
|
1062
|
"import pandas"
|
|
|
|
|
1063
|
],
|
|
|
|
|
1064
|
"language": "python",
|
|
|
|
|
1065
|
"metadata": {},
|
|
848
|
"metadata": {},
|
|
1066
|
"outputs": [],
|
|
849
|
"source": [
|
|
1067
|
"prompt_number": 9
|
|
850
|
"The IPython display system also has builtin support for the display of mathematical expressions typeset in LaTeX, which is rendered in the browser using [MathJax](http://mathjax.org)."
|
|
|
|
|
851
|
]
|
|
1068
|
},
|
|
852
|
},
|
|
1069
|
{
|
|
853
|
{
|
|
1070
|
"cell_type": "markdown",
|
|
854
|
"cell_type": "markdown",
|
|
1071
|
"metadata": {},
|
|
855
|
"metadata": {},
|
|
1072
|
"source": [
|
|
856
|
"source": [
|
|
1073
|
"Here is a small amount of stock data for APPL:"
|
|
857
|
"You can pass raw LaTeX test as a string to the `Math` object:"
|
|
1074
|
]
|
|
858
|
]
|
|
1075
|
},
|
|
859
|
},
|
|
1076
|
{
|
|
860
|
{
|
|
1077
|
"cell_type": "code",
|
|
861
|
"cell_type": "code",
|
|
1078
|
"collapsed": false,
|
|
862
|
"collapsed": false,
|
|
1079
|
"input": [
|
|
863
|
"input": [
|
|
1080
|
"%%writefile data.csv\n",
|
|
864
|
"from IPython.display import Math\n",
|
|
1081
|
"Date,Open,High,Low,Close,Volume,Adj Close\n",
|
|
865
|
"Math(r'F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx')"
|
|
1082
|
"2012-06-01,569.16,590.00,548.50,584.00,14077000,581.50\n",
|
|
|
|
|
1083
|
"2012-05-01,584.90,596.76,522.18,577.73,18827900,575.26\n",
|
|
|
|
|
1084
|
"2012-04-02,601.83,644.00,555.00,583.98,28759100,581.48\n",
|
|
|
|
|
1085
|
"2012-03-01,548.17,621.45,516.22,599.55,26486000,596.99\n",
|
|
|
|
|
1086
|
"2012-02-01,458.41,547.61,453.98,542.44,22001000,540.12\n",
|
|
|
|
|
1087
|
"2012-01-03,409.40,458.24,409.00,456.48,12949100,454.53"
|
|
|
|
|
1088
|
],
|
|
866
|
],
|
|
1089
|
"language": "python",
|
|
867
|
"language": "python",
|
|
1090
|
"metadata": {},
|
|
868
|
"metadata": {},
|
|
1091
|
"outputs": [
|
|
869
|
"outputs": [
|
|
1092
|
{
|
|
870
|
{
|
|
1093
|
"output_type": "stream",
|
|
871
|
"latex": [
|
|
1094
|
"stream": "stdout",
|
|
872
|
"$$F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx$$"
|
|
|
|
|
873
|
],
|
|
|
|
|
874
|
"metadata": {},
|
|
|
|
|
875
|
"output_type": "pyout",
|
|
|
|
|
876
|
"prompt_number": 24,
|
|
1095
|
"text": [
|
|
877
|
"text": [
|
|
1096
|
"Writing data.csv\n"
|
|
878
|
"<IPython.core.display.Math object>"
|
|
1097
|
]
|
|
879
|
]
|
|
1098
|
}
|
|
880
|
}
|
|
1099
|
],
|
|
881
|
],
|
|
1100
|
"prompt_number": 10
|
|
882
|
"prompt_number": 24
|
|
1101
|
},
|
|
883
|
},
|
|
1102
|
{
|
|
884
|
{
|
|
1103
|
"cell_type": "markdown",
|
|
885
|
"cell_type": "markdown",
|
|
1104
|
"metadata": {},
|
|
886
|
"metadata": {},
|
|
1105
|
"source": [
|
|
887
|
"source": [
|
|
1106
|
"Read this as into a `DataFrame`:"
|
|
888
|
"With the `Latex` class, you have to include the delimiters yourself. This allows you to use other LaTeX modes such as `eqnarray`:"
|
|
1107
|
]
|
|
889
|
]
|
|
1108
|
},
|
|
890
|
},
|
|
1109
|
{
|
|
891
|
{
|
|
1110
|
"cell_type": "code",
|
|
892
|
"cell_type": "code",
|
|
1111
|
"collapsed": false,
|
|
893
|
"collapsed": false,
|
|
1112
|
"input": [
|
|
894
|
"input": [
|
|
1113
|
"df = pandas.read_csv('data.csv')"
|
|
895
|
"from IPython.display import Latex\n",
|
|
|
|
|
896
|
"Latex(r\"\"\"\\begin{eqnarray}\n",
|
|
|
|
|
897
|
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
|
|
|
|
|
898
|
"\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
|
|
|
|
|
899
|
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
|
|
|
|
|
900
|
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0 \n",
|
|
|
|
|
901
|
"\\end{eqnarray}\"\"\")"
|
|
1114
|
],
|
|
902
|
],
|
|
1115
|
"language": "python",
|
|
903
|
"language": "python",
|
|
1116
|
"metadata": {},
|
|
904
|
"metadata": {},
|
|
1117
|
"outputs": [],
|
|
905
|
"outputs": [
|
|
1118
|
"prompt_number": 11
|
|
906
|
{
|
|
|
|
|
907
|
"latex": [
|
|
|
|
|
908
|
"\\begin{eqnarray}\n",
|
|
|
|
|
909
|
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
|
|
|
|
|
910
|
"\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
|
|
|
|
|
911
|
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
|
|
|
|
|
912
|
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0 \n",
|
|
|
|
|
913
|
"\\end{eqnarray}"
|
|
|
|
|
914
|
],
|
|
|
|
|
915
|
"metadata": {},
|
|
|
|
|
916
|
"output_type": "pyout",
|
|
|
|
|
917
|
"prompt_number": 25,
|
|
|
|
|
918
|
"text": [
|
|
|
|
|
919
|
"<IPython.core.display.Latex object>"
|
|
|
|
|
920
|
]
|
|
|
|
|
921
|
}
|
|
|
|
|
922
|
],
|
|
|
|
|
923
|
"prompt_number": 25
|
|
1119
|
},
|
|
924
|
},
|
|
1120
|
{
|
|
925
|
{
|
|
1121
|
"cell_type": "markdown",
|
|
926
|
"cell_type": "markdown",
|
|
1122
|
"metadata": {},
|
|
927
|
"metadata": {},
|
|
1123
|
"source": [
|
|
928
|
"source": [
|
|
1124
|
"And view the HTML representation:"
|
|
929
|
"Or you can enter LaTeX directly with the `%%latex` cell magic:"
|
|
1125
|
]
|
|
930
|
]
|
|
1126
|
},
|
|
931
|
},
|
|
1127
|
{
|
|
932
|
{
|
|
1128
|
"cell_type": "code",
|
|
933
|
"cell_type": "code",
|
|
1129
|
"collapsed": false,
|
|
934
|
"collapsed": false,
|
|
1130
|
"input": [
|
|
935
|
"input": [
|
|
1131
|
"df"
|
|
936
|
"%%latex\n",
|
|
|
|
|
937
|
"\\begin{align}\n",
|
|
|
|
|
938
|
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
|
|
|
|
|
939
|
"\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
|
|
|
|
|
940
|
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
|
|
|
|
|
941
|
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n",
|
|
|
|
|
942
|
"\\end{align}"
|
|
1132
|
],
|
|
943
|
],
|
|
1133
|
"language": "python",
|
|
944
|
"language": "python",
|
|
1134
|
"metadata": {},
|
|
945
|
"metadata": {},
|
|
1135
|
"outputs": [
|
|
946
|
"outputs": [
|
|
1136
|
{
|
|
947
|
{
|
|
1137
|
"html": [
|
|
948
|
"latex": [
|
|
1138
|
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
|
|
949
|
"\\begin{align}\n",
|
|
1139
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
950
|
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
|
|
1140
|
" <thead>\n",
|
|
951
|
"\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
|
|
1141
|
" <tr style=\"text-align: right;\">\n",
|
|
952
|
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
|
|
1142
|
" <th></th>\n",
|
|
953
|
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n",
|
|
1143
|
" <th>Date</th>\n",
|
|
954
|
"\\end{align}"
|
|
1144
|
" <th>Open</th>\n",
|
|
|
|
|
1145
|
" <th>High</th>\n",
|
|
|
|
|
1146
|
" <th>Low</th>\n",
|
|
|
|
|
1147
|
" <th>Close</th>\n",
|
|
|
|
|
1148
|
" <th>Volume</th>\n",
|
|
|
|
|
1149
|
" <th>Adj Close</th>\n",
|
|
|
|
|
1150
|
" </tr>\n",
|
|
|
|
|
1151
|
" </thead>\n",
|
|
|
|
|
1152
|
" <tbody>\n",
|
|
|
|
|
1153
|
" <tr>\n",
|
|
|
|
|
1154
|
" <th>0</th>\n",
|
|
|
|
|
1155
|
" <td> 2012-06-01</td>\n",
|
|
|
|
|
1156
|
" <td> 569.16</td>\n",
|
|
|
|
|
1157
|
" <td> 590.00</td>\n",
|
|
|
|
|
1158
|
" <td> 548.50</td>\n",
|
|
|
|
|
1159
|
" <td> 584.00</td>\n",
|
|
|
|
|
1160
|
" <td> 14077000</td>\n",
|
|
|
|
|
1161
|
" <td> 581.50</td>\n",
|
|
|
|
|
1162
|
" </tr>\n",
|
|
|
|
|
1163
|
" <tr>\n",
|
|
|
|
|
1164
|
" <th>1</th>\n",
|
|
|
|
|
1165
|
" <td> 2012-05-01</td>\n",
|
|
|
|
|
1166
|
" <td> 584.90</td>\n",
|
|
|
|
|
1167
|
" <td> 596.76</td>\n",
|
|
|
|
|
1168
|
" <td> 522.18</td>\n",
|
|
|
|
|
1169
|
" <td> 577.73</td>\n",
|
|
|
|
|
1170
|
" <td> 18827900</td>\n",
|
|
|
|
|
1171
|
" <td> 575.26</td>\n",
|
|
|
|
|
1172
|
" </tr>\n",
|
|
|
|
|
1173
|
" <tr>\n",
|
|
|
|
|
1174
|
" <th>2</th>\n",
|
|
|
|
|
1175
|
" <td> 2012-04-02</td>\n",
|
|
|
|
|
1176
|
" <td> 601.83</td>\n",
|
|
|
|
|
1177
|
" <td> 644.00</td>\n",
|
|
|
|
|
1178
|
" <td> 555.00</td>\n",
|
|
|
|
|
1179
|
" <td> 583.98</td>\n",
|
|
|
|
|
1180
|
" <td> 28759100</td>\n",
|
|
|
|
|
1181
|
" <td> 581.48</td>\n",
|
|
|
|
|
1182
|
" </tr>\n",
|
|
|
|
|
1183
|
" <tr>\n",
|
|
|
|
|
1184
|
" <th>3</th>\n",
|
|
|
|
|
1185
|
" <td> 2012-03-01</td>\n",
|
|
|
|
|
1186
|
" <td> 548.17</td>\n",
|
|
|
|
|
1187
|
" <td> 621.45</td>\n",
|
|
|
|
|
1188
|
" <td> 516.22</td>\n",
|
|
|
|
|
1189
|
" <td> 599.55</td>\n",
|
|
|
|
|
1190
|
" <td> 26486000</td>\n",
|
|
|
|
|
1191
|
" <td> 596.99</td>\n",
|
|
|
|
|
1192
|
" </tr>\n",
|
|
|
|
|
1193
|
" <tr>\n",
|
|
|
|
|
1194
|
" <th>4</th>\n",
|
|
|
|
|
1195
|
" <td> 2012-02-01</td>\n",
|
|
|
|
|
1196
|
" <td> 458.41</td>\n",
|
|
|
|
|
1197
|
" <td> 547.61</td>\n",
|
|
|
|
|
1198
|
" <td> 453.98</td>\n",
|
|
|
|
|
1199
|
" <td> 542.44</td>\n",
|
|
|
|
|
1200
|
" <td> 22001000</td>\n",
|
|
|
|
|
1201
|
" <td> 540.12</td>\n",
|
|
|
|
|
1202
|
" </tr>\n",
|
|
|
|
|
1203
|
" <tr>\n",
|
|
|
|
|
1204
|
" <th>5</th>\n",
|
|
|
|
|
1205
|
" <td> 2012-01-03</td>\n",
|
|
|
|
|
1206
|
" <td> 409.40</td>\n",
|
|
|
|
|
1207
|
" <td> 458.24</td>\n",
|
|
|
|
|
1208
|
" <td> 409.00</td>\n",
|
|
|
|
|
1209
|
" <td> 456.48</td>\n",
|
|
|
|
|
1210
|
" <td> 12949100</td>\n",
|
|
|
|
|
1211
|
" <td> 454.53</td>\n",
|
|
|
|
|
1212
|
" </tr>\n",
|
|
|
|
|
1213
|
" </tbody>\n",
|
|
|
|
|
1214
|
"</table>\n",
|
|
|
|
|
1215
|
"<p>6 rows \u00d7 7 columns</p>\n",
|
|
|
|
|
1216
|
"</div>"
|
|
|
|
|
1217
|
],
|
|
955
|
],
|
|
1218
|
"metadata": {},
|
|
956
|
"metadata": {},
|
|
1219
|
"output_type": "pyout",
|
|
957
|
"output_type": "display_data",
|
|
1220
|
"prompt_number": 12,
|
|
|
|
|
1221
|
"text": [
|
|
958
|
"text": [
|
|
1222
|
" Date Open High Low Close Volume Adj Close\n",
|
|
959
|
"<IPython.core.display.Latex object>"
|
|
1223
|
"0 2012-06-01 569.16 590.00 548.50 584.00 14077000 581.50\n",
|
|
|
|
|
1224
|
"1 2012-05-01 584.90 596.76 522.18 577.73 18827900 575.26\n",
|
|
|
|
|
1225
|
"2 2012-04-02 601.83 644.00 555.00 583.98 28759100 581.48\n",
|
|
|
|
|
1226
|
"3 2012-03-01 548.17 621.45 516.22 599.55 26486000 596.99\n",
|
|
|
|
|
1227
|
"4 2012-02-01 458.41 547.61 453.98 542.44 22001000 540.12\n",
|
|
|
|
|
1228
|
"5 2012-01-03 409.40 458.24 409.00 456.48 12949100 454.53\n",
|
|
|
|
|
1229
|
"\n",
|
|
|
|
|
1230
|
"[6 rows x 7 columns]"
|
|
|
|
|
1231
|
]
|
|
960
|
]
|
|
1232
|
}
|
|
961
|
}
|
|
1233
|
],
|
|
962
|
],
|
|
1234
|
"prompt_number": 12
|
|
963
|
"prompt_number": 26
|
|
1235
|
},
|
|
964
|
},
|
|
1236
|
{
|
|
965
|
{
|
|
1237
|
"cell_type": "heading",
|
|
966
|
"cell_type": "heading",
|
|
1238
|
"level": 2,
|
|
967
|
"level": 2,
|
|
1239
|
"metadata": {},
|
|
968
|
"metadata": {},
|
|
1240
|
"source": [
|
|
969
|
"source": [
|
|
1241
|
"SymPy"
|
|
970
|
"Audio"
|
|
1242
|
]
|
|
971
|
]
|
|
1243
|
},
|
|
972
|
},
|
|
1244
|
{
|
|
973
|
{
|
|
1245
|
"cell_type": "code",
|
|
974
|
"cell_type": "markdown",
|
|
1246
|
"collapsed": false,
|
|
|
|
|
1247
|
"input": [
|
|
|
|
|
1248
|
"from sympy.interactive.printing import init_printing\n",
|
|
|
|
|
1249
|
"init_printing(use_latex='mathjax')"
|
|
|
|
|
1250
|
],
|
|
|
|
|
1251
|
"language": "python",
|
|
|
|
|
1252
|
"metadata": {},
|
|
975
|
"metadata": {},
|
|
1253
|
"outputs": [],
|
|
976
|
"source": [
|
|
1254
|
"prompt_number": 13
|
|
977
|
"IPython makes it easy to work with sounds interactively. The `Audio` display class allows you to create an audio control that is embedded in the Notebook. The interface is analogous to the interface of the `Image` display class. All audio formats supported by the browser can be used. Note that no single format is presently supported in all browsers."
|
|
|
|
|
978
|
]
|
|
1255
|
},
|
|
979
|
},
|
|
1256
|
{
|
|
980
|
{
|
|
1257
|
"cell_type": "code",
|
|
981
|
"cell_type": "code",
|
|
1258
|
"collapsed": false,
|
|
982
|
"collapsed": false,
|
|
1259
|
"input": [
|
|
983
|
"input": [
|
|
1260
|
"from __future__ import division\n",
|
|
984
|
"from IPython.display import Audio\n",
|
|
1261
|
"import sympy as sym\n",
|
|
985
|
"Audio(url=\"http://www.nch.com.au/acm/8k16bitpcm.wav\")"
|
|
1262
|
"from sympy import *\n",
|
|
|
|
|
1263
|
"x, y, z = symbols(\"x y z\")\n",
|
|
|
|
|
1264
|
"k, m, n = symbols(\"k m n\", integer=True)\n",
|
|
|
|
|
1265
|
"f, g, h = map(Function, 'fgh')"
|
|
|
|
|
1266
|
],
|
|
986
|
],
|
|
1267
|
"language": "python",
|
|
987
|
"language": "python",
|
|
1268
|
"metadata": {},
|
|
988
|
"metadata": {},
|
|
1269
|
"outputs": [],
|
|
989
|
"outputs": [
|
|
1270
|
"prompt_number": 14
|
|
990
|
{
|
|
|
|
|
991
|
"html": [
|
|
|
|
|
992
|
"\n",
|
|
|
|
|
993
|
" <audio controls=\"controls\" >\n",
|
|
|
|
|
994
|
" <source src=\"http://www.nch.com.au/acm/8k16bitpcm.wav\" type=\"audio/x-wav\" />\n",
|
|
|
|
|
995
|
" Your browser does not support the audio element.\n",
|
|
|
|
|
996
|
" </audio>\n",
|
|
|
|
|
997
|
" "
|
|
|
|
|
998
|
],
|
|
|
|
|
999
|
"metadata": {},
|
|
|
|
|
1000
|
"output_type": "pyout",
|
|
|
|
|
1001
|
"prompt_number": 28,
|
|
|
|
|
1002
|
"text": [
|
|
|
|
|
1003
|
"<IPython.lib.display.Audio object>"
|
|
|
|
|
1004
|
]
|
|
|
|
|
1005
|
}
|
|
|
|
|
1006
|
],
|
|
|
|
|
1007
|
"prompt_number": 28
|
|
|
|
|
1008
|
},
|
|
|
|
|
1009
|
{
|
|
|
|
|
1010
|
"cell_type": "markdown",
|
|
|
|
|
1011
|
"metadata": {},
|
|
|
|
|
1012
|
"source": [
|
|
|
|
|
1013
|
"A NumPy array can be auralized automatically. The `Audio` class normalizes and encodes the data and embeds the resulting audio in the Notebook.\n",
|
|
|
|
|
1014
|
"\n",
|
|
|
|
|
1015
|
"For instance, when two sine waves with almost the same frequency are superimposed a phenomena known as [beats](https://en.wikipedia.org/wiki/Beat_%28acoustics%29) occur. This can be auralised as follows:"
|
|
|
|
|
1016
|
]
|
|
1271
|
},
|
|
1017
|
},
|
|
1272
|
{
|
|
1018
|
{
|
|
1273
|
"cell_type": "code",
|
|
1019
|
"cell_type": "code",
|
|
1274
|
"collapsed": false,
|
|
1020
|
"collapsed": false,
|
|
1275
|
"input": [
|
|
1021
|
"input": [
|
|
1276
|
"Rational(3,2)*pi + exp(I*x) / (x**2 + y)"
|
|
1022
|
"import numpy as np\n",
|
|
|
|
|
1023
|
"max_time = 3\n",
|
|
|
|
|
1024
|
"f1 = 220.0\n",
|
|
|
|
|
1025
|
"f2 = 224.0\n",
|
|
|
|
|
1026
|
"rate = 8000.0\n",
|
|
|
|
|
1027
|
"L = 3\n",
|
|
|
|
|
1028
|
"times = np.linspace(0,L,rate*L)\n",
|
|
|
|
|
1029
|
"signal = np.sin(2*np.pi*f1*times) + np.sin(2*np.pi*f2*times)\n",
|
|
|
|
|
1030
|
"\n",
|
|
|
|
|
1031
|
"Audio(data=signal, rate=rate)"
|
|
1277
|
],
|
|
1032
|
],
|
|
1278
|
"language": "python",
|
|
1033
|
"language": "python",
|
|
1279
|
"metadata": {},
|
|
1034
|
"metadata": {},
|
|
1280
|
"outputs": [
|
|
1035
|
"outputs": [
|
|
1281
|
{
|
|
1036
|
{
|
|
1282
|
"latex": [
|
|
1037
|
"html": [
|
|
1283
|
"$$\\frac{3 \\pi}{2} + \\frac{e^{i x}}{x^{2} + y}$$"
|
|
1038
|
"\n",
|
|
|
|
|
1039
|
" <audio controls=\"controls\" >\n",
|
|
|
|
|
1040
|
" <source src=\"data:audio/wav;base64,UklGRqS7AABXQVZFZm10IBAAAAABAAEAQB8AAIA+AAACABAAZGF0YYC7AAAAADUWvSvyPzdS/WHKbjt4Bn7+fxV+WXj3bjhifVJDQBYslBZiAC/qpdRswCGuU557kf2HJIIcgPWBoIfykKKdTa15v5rTEuk7/2kV8CopP3ZRSmEqbrJ3mH2vf+Z9TXgNb3Bi11K9QK0sQxcmAQPrhNVPwQOvLZ9IkreIxYKggFiC34cLkZOdFq0bvxbTbeh4/o0UASosPnNQSGAwbcd2w3z2fk9923fGblZi7FL/QBwt3hfoAefrg9ZlwiawVqBuk9OJzoOOgSSDg4iAkdadJa31vrvS3ue5/aIT8Sj/PDBP+F7da3t1h3vUfU98BncibuhhuVIJQWQtYRilAtjso9eqw4mxzKHtlE+LPYXkgleEiolTkm6ee60Hv4jSZuf//KsSwyeiO65NXF0zas9z5nlJfOh6zXUhbSdhPlLaQIItzBhbA9Xt39gexSmzjqPCliuNEYeihPKF9YqDk1mfGq5Uv3/SCOdN/KkReCYYOvBLd1szaMVx4HdYehp5MXTDaxNgfFFwQHUtHRkJBNvuN9q9xgW1l6XsmGOPR4nGhvKHwowPlZegAa/bv6LSxOak+58QFCVkOPhJSVnhZV9veXUCeOh2MnIIaqpecVDLPzwtUxmsBOjvp9uFyBm356dmm/aR3otOiVeK8Y73limiMLCewPHSneYG+48PmSOINslH11Y+Y6BssnJJdVF002/yZ+5cHU/rPtYsbBlEBfvwLd11ymO5e6ownuGU1I44jB+NgZE6mQ+kqLGcwW7Tk+Z1+noOCCKGNGVFI1ROYIppj28vcllxFG2CZeBagU3PPUMsZxnOBRHyyN6IzOC7T61GoSGYJZKBj0aQbpTXm0WmZ7PWwhjUp+by+WMNZCBhMtBCMFEUXSFmEWy4bgJu+Gm6YoFYnkt3PIIrQxlJBinzdOC9zo2+YLCkpLKbz5Unk8yTuJfLns2obrVMxPDU2+Z/+UwMsB4dMAxAAU6TWWdiPGjlak9qgWaaX9FVdEnjOpIq/xi0Bj/0L+IQ0WfBq7NHqJKfzpkml6yXXJsVoqSru7f9xffVL+ce+TYL7hy8LR09m0rOVWFeFGS6ZkJmsmImXNNSBEcVOXQpmhgMB1P19+N/02rELbctrL2jH557m+SbVp+zpciuTrroxy3XpefP+CQKIRtAKwY6/0bKURNanF87YuBhjV5gWIlPUEQMNycoFBhRB2P2yeUG1pTH4bpPsC+ovaIioHGgpKOhqTiyJL0OypHYPOiU+BgJSxmuKMo2M0OJTX9V2FpsXStdF1pKVPVLWUHKNKsmbBeCB2v3o+ej2OHKxb6stOOspacYpU6lQ6jdrfG1PMBtzCTa9ehu+BMIbhcHJm0zOT8RSatQzVVRWCdYUVXoTxlIID5PMgIloRadB2z4gulT203O08I+udax0qxXqneqLq1ksvC5k8MDz+Tb0ele+BcHjRVPI/MvFztmRJtLf1DvUtlSQVA9S/dDqTqeLysjtBWiB2P5ZOsS3tXRCccBvgK3P7Lcr+mvYrIytzK+KcfP0dHdz+pl+CYGqxOJIF4szzaMP1RG80pJTUVN6kpNRpQ/9ja3LCghpRSPB076Ru3e4HTVYcvxwmO86beitZ6127dEvLXC+srQ1Orf8OuE+EIFyRG5HbQoZzKIOtpALkVkR29HUUUbQfI6CDOcKfkecxNkByv7Ju+z4yjZ2M8JyPXByb2ju5K7lL2VwXXHA88E2C7iM+27+GsE6w/gGvck4i1eNTI7ND9HQV1BeT+sOxU25C5QJqAcHxIgB/r7AvGO5u3catREzbHH28PbwcHBiMMhx27MQ9No25zkmO4L+aQDEg4DGCshRSkTMGI1DDn2OhQ7aTkENgExiyrVIh4aqhDEBrr82PJt6b/gEdmd0pTNGcpFyCPIs8nlzJ3RtNf63jLnHfB0+e0CQAwkFVUdlCSsKm8vujJ2NJk0JTMnMLkrASYtH3QXEw9NBmj9pvRL7Jrkyt0Q2JfTfdDazrbOENDa0v3WVdy34u/pxPH3+UgCeApGEncZ1B8uJV0pQyzNLfEtsSwaKkImSiFbG6UUXQ2+BQP+aPYo73rokeKY3bXZA9eV1XLVmNb92IrcIeGd5tDsifOT+rYBuwhsD5UVCRueHzMjryUBJyInFCbiI6AgaRxiF7IRiAsVBYz+Hvj/8VzsYOcw4+rfpd1w3FLcSN1I30DiFeap6tTvbvVJ+zcBDAeZDLQRNxYAGvUcAh8YIDIgUx+FHdgaYxdEE54OlQlSBAD/xvnO9DzwNOzS6C/mXeRm41DjGeS25RroLevX7vjyb/cY/M0AbAXPCdYNYhFbFKoWQRgXGScZdBgHF+0UOxIGD2oLhgd3A2D/XvuS9xf0CPF67n/sJOtx6mfqBetD7BPuZfAl8zr2jPkA/XgA3AMRB/8JjwyxDlYQdBEEEgYSfBFuEOcO9QyqChoIWwWDAqr/5PxI+un32PUj9NXy9vGK8ZHxB/Ln8ib0uPWO95j5xPsA/jkAYAJiBDIGwwcKCQAKnwrmCtUKcQq/CcgIlQc0BrAEFwN3Ad7/V/7v/K/7n/rI+Sv5zPis+Mf4Gfme+U/6IvsQ/A79FP4Y/xAA9wDFAXQCAQNpA6sDyAPCA5wDWgMBA5cCIQKnAS4BvABUAPz/tv+D/2X/W/9j/3z/ov/Q/wIANABiAIcAngClAJkAeQBFAP7/pP87/8j+Tv7V/WD99/yg/GD8PPw5/Fn8nvwJ/Zn9S/4c/wMA/gACAgcDBQTxBMEFbgbwBj4HVAcuB8oGKQZMBTgE9QKJAQAAZv7G/C/7rflP+CH3L/aD9Sb1HfVr9RL2Dvdc+PL5x/vN/fb/MAJrBJUGmwhsCvgLLw0HDnQOcQ78DRMNvQsACucHggXiAhoAQP1p+q33IvXe8vXwd+9z7vXtA+6f7sjvd/Gj8zz2Mflq/NH/SgO8BgoKGg3RDxkS3hMOFZ4VhxXFFF0TVRG8DqMLIAhOBEkAMvwl+EX0sfCG7eDq1Oh259Pm9ObZ54Dp3+vk7nzyjPb1+pf/TATyCGQNfBEbFSAYdBoAHLYcjhyFG6EZ7RZ8E2cPzArMBY4APPv99fvwXuxM6OfkTOKR4Mbf9t8h4UHjSeYj6rTu2vNv+Uf/NQUNC58QvxVEGgge7CDXIrYjgSM1ItofgBw9GDITgw1bB+kAYPrx88/tLOg04xHf5NvK2dXYD9l72g/du+Bk5ejqHvHY9+L+BAYKDboT4BlKH8wjQieMKZgqWSrPKAMmCCL6HP8WQhD4CFgBnvkD8sbqHuRC3mHZotUn0wTSRtLt0/DWOduq4BvnW+409mn+ugboDrIW2h0oJGgpby0cMFYxEjFPLxcsgSevIcoaCBOjCtsB9fg18ODnOOB52dvTi8+tzFrLoMt+zenQydX821LjlOuE9N39VQemEIUZrCHaKNYubzN+Nuo3pTetNRAy5ixWJpEe0RVYDHECZ/iH7iDlfNze1IXOpMlixt3EIsUyxwDLcNBc147fyujJ8j791wdDEjEcUSVdLRM0PDmwPFA+DD7lO+k3MjLtKk8imhgXDhgD8/f77Iji7dh10GPJ8cNLwJG+0r4PwTnFMsvP0tbbAuYG8Y78Pgi+E7QeySitMRo50z6rQoFEQ0TyQZw9YTdvLwImYRveD9EDmPeR6xrgjtU/zHjEd75tuny4trgau5q/FcZazivYPuM97837jAgXFQ0hDyzHNec9L0RrSHhKQ0rNRyVDbTzXM6QpIh6pEZgEV/dK6tfdYdJByMm/O7nNtKSy0rJatSi6HMEAypLUgOBw7f76wAhNFjojIi+oOXdCSknqTTBQCFByTX5IUUEhODMt2yB3E24FL/cl6cDbaM9+xFm7QbRwrw2tLa3Sr+m0TbzGxQ7Rzd2i6yL63AhgFzslADJNPcdGIk4lU6VVjVXcUqNNCkZJPKswiCNGFVEGH/ck6NbZpcz4wCu3jK9ZqrunyqeHquCvrLexwaPNJtvU6Tr54AhPGA0nqDS0QNJKs1IXWNJazVoFWI9SkkpLQAg0JyYSFz8HJ/dH5xvYGsqxvUKzIKuNpbSir6J/pRKrPbPDvVTKkNgI6Ef4zAgbGbEoFzfaQ5dO+Va8XLJfw1/qXD1X5k4jREc3tSjbGDYIRveN5o7Wx8esuqKvAacPofud352+oISmBa8CuibHDNZD5kz3owjDGSYqTDm+RhJS8FoRYUJka2SGYapbAVPNR2U6LiueGjQJevf25THVsMXqt0ysMqPknJWZYJlJnDqiCKtwthrEntOF5Er2ZAhJGmsrRjtdSUJVl14RZX5owWjVZdBf31ZFS109jy1XHDkKwveB5QTU08NttUSptZ8PmYWVNJUimDmeSqcSszbBStHR4kP1EgisGoEsBT23SyNY6WG7aGJswWzSaaxjfFqITixA1i8FHkELHvgv5QbTM8I3s4qmjpySlc6RYJFOlIOaz6Psr3y+Ec8p4Tn0rQfuGmcthz7JTbVa5mQLbOtvaHB7bTpn1V2SUdBCADKlH0wMjPj95DjSz8BJsSGkvZlwknOO543RkB2XmqAArfC798yR3y/zNwcPGx0uzT+TT/Vcimf+bhdzs3PMcHhq5mBfVEVFCjQ1IVcNC/ns5JnRp7+jrwqiRpesj3eLy4qujQmUrp1SqpS5/soK3iXysQYQG6Uu1UAUUeJe1GmTceJ1nnbCc2FtrGPtVohH8TWyIl8OmPn75CnRvb5HrkagKZVHjd2IEIjnikyRDpvkp2u3KcmX3B3xHAbzGv4uoUFMUnxgw2vHc0p4KHlZdvJvJGY5WZZJszcaJGQPMvon5efQD74zrdaeaJNDi6eGuIV/iOeOv5i7pXi1e8c62xvwfAW4GikvMUI7U8JhVW2adU96TnuReCpyS2hAW21LTDlrJWMQ2fpw5dLQnr1qrLudBZKiidaExYN5ht2MwZbYo76z9sX22SDv0ARhGigvhELgU7Niim4Jd+17D31legV0H2r+XApNvDqjJloRifvV5enQaL3pq/Sc/pBliGuDOILWhDCLF5U+oj6yncTM2C7uHATvGfsunUI8VE9jYW8UeCN9Z37We4J1nWtzXmpO/ju+J0cSQfxU5izRbb2xq4KcVpCMh2iCE4GYg+OJxJPuoPywcsO/10ftYQNkGaMue0JQVJdj22+7ePJ9WH/gfJ92xWycX41PEj28KCgT//zr5pjRrL3Bq2ScDJAYh86BWIDBgveIyZLsn/qvdsLR1mzsoALBGCMuIEIcVItj92/9eFh+33+EfVt3k214YG9Q9T2aKfsTwv2Y5yzSI74ZrJqcH5AIh5yBBoBRgmyIKJI4nzmvrMED1qHr3AEJGHwtjUGhUyxjtW/beFZ+/H/AfbR3B24EYQ9Rpj5WKr8Uh/5b6ObS0b62rCKdjpBch9OBHYBJgkSI4ZHVnrquFsFZ1ebqFgE9F64sxEDiUntiF29UeOp9r3+Ufap3IG4/YWxRIj/vKnAVTf8w6cbTtL+XrfydWpEUiHKCn4CpgoCI9pHCnn+utMDT1D/qUABfFr4rxz/fUXphHm5rdxd9+H7/fDx33G0pYYRRaD9iKw4WEAAW6sjUy8C7riWfgJIviXmDioFygyCJaJIBn4quicBz1Kvpjv9xFasqlz6aUClgy2wfdt172X0DfGt2PW3AYFZRdz+vK5YW0gAL6+rVE8IgsJyg/5OqiuaE3oKihCOKNpOTn9uulsA61C7pz/51FHkpNz0WT4xeIWt0dD16UXyfejZ1QWwFYOJQTj/TKwgXjgEO7CzXi8PEsWCi1ZWGjLiGmoQ5homLYJR4oHOv3MAq1MnoFv5tEykoqDtUTaNcIGlpcjl4YnrVeJ9z6Gr2XiZQ7D7OK2EXQwIb7YrYMMWks22kAJi+ju6Iu4Y2iFKN5pWwoVKwW8FF1HzoZf1bEr4m7jlXS3Jay2YDcNN1DnimdqVxNGmVXSNPUD6eK6AX8AIx7gHa/8a9tcGmfppSkYWLQYmXinyPyJc6o3mxFMKK1EvovvxBETolCjghSftXJWRCbQxzV3UTdEtvJWfiW9lNej1DK8MXkgNO75Hb98gOuFqpS50/lHqOKYxbjQaSBJoXpeeyCMP71DboIfwiEJ8jADa2RkFVMWEqauhvQHIgcZJsvWTcWUhMaTy7KsoXKARv8DbdE8uTujSsZaCBl8yRcI9+kO2UmZxEp5y0NsSZ1T3okvv/DvAh0TMYREdS8l2+ZmpsyW7NbXxp/GGHV29KHTsHKrMXsQST8e7eU81JvUyvyaMWm3aVFJMAlDGYhZ/CqZe2n8Vk1mToEfvaDS8ggTFLQRFPa1oCY5Ro+Godagxm5V7iVFFIlzklKX4XKgW48rfgss8twKCycqf6nneZEpfcl86bx6KOrNi4Qsdc16nooPq2DGAeEy9QPqFLoFb4Xmpkz2YUZkNieVvvUe5F1jcWKCkXkgXb843iLtI8wyu2Xqspo8mdZpsQnMKfW6anr127H8mC2A7pQfqUC4MciiwtO/xHlFKkWvBfUWK2YSVevFewTkdD3TXZJrMW6AX79G/kxNRzxuq5ia+gp2miDKCZoAmkQKoLsyW+NcvW2ZTp9Pl3Cp0a6SnlNyVES04LVipbg10EXbVZsFMoS15AqjNvJR0WKwYW9lrmcNfNydi97rNarFSnAaVypaGocq63ti7BhM1X2zvqu/lfCa8YMid6NB9AykkxUR1WaFgEWPZUWE9YRzU9QDHYI2UVWQYp90voMNpIzfPBirhTsYSsQaqYqoWt77KqunfECdAE3QPrmPlQCLsWaSTwMPA7FUUbTMtQBVO6Uu1PuEpEQ845oC4UIowUcgY0+D/qAd3f0DbGV72GtvWxxq8GsLKys7ffvv3HxNLe3u3rivlLB8UUkSFMLZs3MUDMRjxLX00pTZ1K0kXuPio2zCslIJITdAY0+Tbs39+P1JzKUsLvu6K3jLW4tSS4urxUw73LstXj4Pjsk/lRBs8Srh6RKSUzITtKQXJFe0dXRwtFqkBaOk0yxCgLHnUSXwYo+ivuyOJV2CLPdceIwYe9jrupu9a9AcIGyLbP0tgS4yXutPlkBdsQwRvCJZEu6zWaO3Q/XEFIQTo/RjuLNTkuiyXHGzgRMwYO+x3wt+Us3MPTvcxOx57Dx8HUwcPDgsfyzOTTI9xr5XPv7fmFBOwOzxjkIeQpkzDBNUY5CjsCOzE5qDWFMPIpJCJaGdoP7gXk+wryq+gQ4HvYI9I6zeHJMcg0yOjJO80S0kXYoN/r5+LwPvq2AwMN2hX5HSIlHyvEL+4yiTSJNPMy1i9LK3olkB7HFlsOkAWr/O7zoOv/40XdpNdH00zQyM7Ezj3QJtNk19TcSeOR6nDyqPr5AiML5hIHGlEgkyWoKXIs3i3kLYcs1CniJdQg0xoOFL0MGQVf/cn1k+705x3iOt1w2djWhdV+1cDWPtni3I7hG+db7R30LPtOAk4J9Q8RFnMb9B9zI9clECcXJ/AlpyNPIAYc7hYzEQELiQQB/pj3gfHr6/7m4eKv34HdY9xc3Gndft+K4nDmEutI8On1yPu1AYUHCg0aEo8WSBoqHSIfJCApIDYfVB2VGhEX5hI2DicJ4QOP/ln5aPTg7+XrkugA5kDkXONZ4zPk4uVV6HbrK+9V89H3ffwxAcwFKQomDqcRkhTTFlsYIBkfGV0Y4Ba5FPsRvQ4aCzAHIAMJ/wv7RPfR88zwSu5c7A/raupu6hrrZOxA7pzwY/N/9tX5Sv3CACMEUwc5CsEM2Q5zEIURChIAEmoRUhDBDscMdgrhBx8FRgJu/6v8E/q697D1A/S+8unxhvGX8Rby/vJF9N31uPfF+fP7MP5oAIwCiwRWBuEHIgkQCqgK6ArQCmUKrQmwCHoHFQaOBPUCVQG9/zj+0vyW+4v6uPkh+cf4rPjL+CP5rPlf+jX7JPwk/Sr+Lf8kAAkB1AGBAgsDcAOvA8kDwAOXA1MD+AKNAhcCnQEkAbIATAD2/7H/gP9j/1v/Zf9//6X/1P8GADgAZQCJAJ8ApQCXAHYAQAD3/5z/Mv++/kT+y/1X/e/8mvxc/Dr8Ovxd/Kb8FP2n/Vz+Lv8YABMBGAIdAxkEAwXRBXsG+AZCB1MHKAe/BhkGNwUfBNgCaQHf/0T+pPwO+475NPgL9x72efUi9SD1dvUj9if3e/gX+vD7+v0kAGACmgTCBsQIkAoVDEUNFA54DmwO7Q37DJsL1gm3B0wFqALe/wP9Lfp19+/0svLQ8FzvZO7x7Qrusu7n76Hx1/N49nP5svwaAJQDBAdOClcNBhBEEv0TIBWjFX0VrRQ3EyMRfg5bC9EH+gPz/9r70ff282nwSe2u6rDoYefO5v/m9ees6RnsLO/O8uf2Vvv7/7EEVAm/Dc8RYRVZGJ0aGBy7HIAcZRtvGaoWKxMKD2QKXgUdAMv6j/WU8AHs/eeo5B7id+DB3wXgReF545Pmfuod70306fnF/7MFhwsRESYWnBpPHh8h9CK8I3AjDSKcHy0c2Re+EgMN0wZeANX5avNR7bvn0+LD3q3bqtnO2CLZp9pT3RXh0eVm66rxbPh6/5wGnA1DFFsatB8hJH4nrymfKkUqoCi6JaYhgxx2FqsPWAizAPn4ZPEx6pnj0N0F2WHVAdP80VzSINQ/16PbK+Gv5/7u4PYa/2sHkw9SF2oeoyTKKbYtRDBfMfswGC/CKxEnJSEsGloS6gkdATj4fu81557f9thy0z/PgsxQy7jLuM1D0UHWjtz6403sSPWm/h8IaRE7Gk8iZilGL8AzrTb1N4s3cDWwMWcsvCXfHQ0ViAubAZH3ue1f5M7bStQOzk7JMcbRxDzFcsdky/bQ/9dK4JnppfMg/rgIHRP8HAkm+i2RNJc55TxdPvE9ojt/N6YxQiqKIcEXMA0rAgb3Fuyy4SzYz8/eyJHDE8CDvu6+VcGnxcXLg9Ol3Obm+PGH/TYJrxSVH5MpWjKlOTg/5kKQRCZEqUEpPcc2sy4qJXMa4A7MApT2luov37rUicvmww2+L7psuNS4ZrsSwLTGHc8M2TbkRfDd/JsJHRYCIuwshTaAPp5ErEiKSiVKf0epQsc7DDO6KCAdlxB+Az32OenY3HvRfMcqv8e4ibSRsvGyqrWousfB0sqE1Yzhje4j/OUJaBdDJBIwdjodQ8NJMk5FUOlPH036R6BASDc4LMYfUBI/BAD2AOit2nDOqMOsusOzJa/3rE2tJ7BwtQO9psYR0uve0uxb+xUKjxhXJgEzKj55R6VOc1O9VW1VhFIYTU5FYzuhL2IiDBQNBdz16+ax2JzLE8BytgWvB6qip+un4KpvsG24nsK1zlXcF+uH+i0Kkhk8KLk1oEGRSz9TbFjsWqxaqlf9Uc1JWD/vMvAkxhXoBdH1++Xj1gDJvrx9spCqNaWYos+i3KWoqwe0vL51y8/ZXemn+SwKcBryKTg41ERiT45XF13QX6JfjFylVhdOJEMgNm0nfhfNBt31L+VG1Z7Gq7nRrmimsaDcnQCeHqEgp9ivBrtUyFvXqOe9+BQKKht3K306xkfpUo9bcmFkZEpkJmELWypSxEYwOdgpMRm7BwD2h+TY03fE3LZwq5CigJxymYCZqpzbouOrf7dVxfvU+eXL9+YJwBvMLIY8ckojVj5feWWjaKFocmUtXwBWMkocPCws2xqwCDn2A+Sc0o3CU7RdqAqfpJhelVOVhZjeniyoKrR8wrPSU+TT9qMJMhzwLVI+10wPWZhiKGmKbKJsbmkFY5dZbE3hPmcufByrCYb2ouOQ0d/AEbKZpdqbIZWkkX6Rs5Qsm7ekDLHMv4bQuOLX9UwJghzjLuE/9U6qW51lfmwXcEtwFm2QZupcblB8QYYwEB6oCuf2Y+O10G+/GLAnowKZ+pFFjgOON5HJl4ehJ65IvXbOLOHY9OIIsBymLzJByVDzXUhod29Gc5dzZnDKafZfNVPoQ4YylR+oC1n3RuML0D2+aK4HoYSWMI9Gi+aKFI64lJ+ef6v0uobMr9/Z82cIvBw4MEVCVFLpX5lqEXIVdoV2W3OxbLhivVUkRmU0CSGmDNz3SuOQz0m9Aq07n2CUxoypiCmITYv8kQOcF6nRuLnKRN7b8t0HqBybMBpDlVOLYY9sSnSBeBB583VBby1lBFgsSB82aSKjDW74beNFz5K856vEnZmSvopvhs+F5IiYj7aZ8abkthLJ79zh8UUHdhzPMLJDi1TXYiduInaIejh7K3h4cVJnCFr/SbM3tCOaDgz5r+Mozxm8FqujnDCRGImahNqD3YaOjbqXEaUttZLHsNvs8KAGJhzVMAxEN1XOY2FvlXcqfPt8AXpUcyVpxFuYSx455iSMD7b5DeQ5z927j6rWmyWQ14csg0uCOYXiixGWeaOxszzGitr/7/EFuhutMCpEmFVwZD1wpHhkfVZ+c3vRdKNqOF33TF46/iV1EGr6h+R3z927U6pgm3iP+oYmgiSB+oOUir6UKqJxshPFgNkb7zoFMxtbMA1EsFW8ZLpwT3k2fkl/gHzvdctrYV4YTnE7+iZTESX7GuXfzxi8X6o+myqPgoaJgWWAIYOmicKTKKFusRjElNhD7nsEkxrdL7VDgFWzZNlwlHmfftJ/JX2tdptsPV/7TlM81yclEub7xuVx0Iy8tKpxmzqPb4ZUgRGAroIZiR+Tc6CssE7Dxtd47bgD3Bk3LyRDCFVXZJtwdHmffvJ/ZH0IdxFtyl+dTwU9lCjoEqv8iOYq0Tm9T6v3m6iPwYaJgSaApILviNaSDKArsLXCGte87PECEBlqLlxCSVSnY/9v8Hg2fqh/O30BdyxtCWD8T4Q9LymcE3P9XucK0h2+MKzPnHKQeIcmgqWAAYMoieiS95/ur1HCkdYR7CoCMBh4LV5BRlOmYgdvCHhlffR+qXyXdu1s9l8YUM49pik9FDr+R+gO0zW/Va35nZiRkYgqg46BxoPDiVWTMqD0ryHCLdZ662MBPxdjLCxAAFJVYbRtvnYtfNd9sHvJdVJskl/vT+I99ynKFAD/QOk01IDAvK5xnxeTDIqWhN+C84TCih+UvqA/sCjC7tX36p4APhYsK8g+eVC2XwlsE3WOelJ8UHqZdFpr3V6BT789IipCFcL/SOp71fzBYrA3oe6U54tnhpiEh4YkjEOVnaHQsGfC19WL6uD/LxXXKTU9s07KXQZqCHOLeGZ6iXgGcwhq1V3NTmU9JSqjFX4AXOvf1qbDRrJHoxuXII6biLeGgIjojcSWzqKosd7C6dU26ib/FhRlKHQ7sUyWW69noXAmdhR4XnYScVpoe1zSTdI8/inrFTQBe+xe2HzFZrSfpZuZtZAxizqJ3YoMkJ+YUKTGso3DJdb76XX+8xLYJok5dkoaWQdl321gc191z3O+blJm0FqRTAU8rikZFuABoe332XvHvbY9qGyco5MnjiCMnI2QktOaJKYqtHfEi9ba6c39yRE0JXY3A0hbVg9ixWo8cEly4HALbPFj1FgKS/86MiksFoICzu6n26HJSrkdq4qf6JZ4kWWPvJBylWCdSKjUtZnFHNfV6TH9mhB6Iz41XUVaU8teV2e9bNVukW37aDlhiFY9ScA5iigiFhgD/+9r3evLCbw9rvOif5ojlQeTOpSvmESgvKrEt/XG2tft6aP8aA+tIeMyhkIcUD5bl2PmaAZr5mmRZSpe7VMrR0c4tyf7FZ8DMvFA31bO976ZsaKmZ54lmQOXEphGnH2jfa34uYvIxNgj6iP8NQ7PH2kwgT+kTG1XiV+8ZN5m4WXPYchaBVHURJU2tya2FRcEZPIl4d/QEsIttZWqmqJ4nVabQpwzoAini7BwvFnK2tl46rP7Aw3kHdItUjz1SFlTMVtAYGFihmG3XRRX0007Qqo0iiVRFX4ElfMW44PTVMX2uMeuFqcbovufxqBzpOOq47Mqv2DMHdvt6lX71AvtGyEr/DgTRQlPk1Z4W5Rd2VxOWRJTVkphP4gyMiTNFNMEwfQS5T/WvMjwvDWz1asHp/Ckm6UEqQyvgrckwp3Oi9yB6wr7qwruGVsogzUCQX9Ks1FoVnpY3VeXVMROlEZHPC8wrSIpFBUF6PUV5xDZRcwXwdq31LA6rC6qvarhrX6zaLtexRHRJt427NL6iAnoF4El6zHHPMFFlkwTURhTllKVTy5KjULvOKEt/CBjE0IFBvcd6fLb7M9mxbG8DravsbOvKLAHsze4j7/UyLrT7d8L7bD6bgjeFZciNy5kONJAQEeAS3JNCU1MSlJFRT5bNd4qIB9+ElkFG/gn6+PerNPaybbBfrtgt3m11rVxuDS998OEzJbW3eEB7qP6XwfUE6EfayrfM7c7t0GyRY1HO0fBRDZAvjmPMeonGx13EVsFJPkx7d7hg9duzuXGIMFJvXu7w7scvnDCm8hs0KPZ+OMY7636XAbKEaAciiY9L3U2/zuwP25BMEH4Ptw6/jSMLcUk7BpQEEUFIfo57+LkbNsf0znM7sZkw7XB68ECxObHeM2I1N/cOuZP8M/6ZgXFD5oZmiKAKhExHTZ9ORs77Tr2OEk1BjBWKXEhlRgJDxcFD/s88evnZN/n16zR48ytySHISMgfypTNidLX2EngpOim8Qj7gATFDZAWnB6uJZArFjAgM5g0dzTAMoIv2yrwJPIdGRaiDdIE7vs48/bqZuPB3DrX+dId0LnO1c5u0HPTzNdU3d3jNOsd81r7qQPNC4UTlhrMIPYl8CmeLOwt1C1aLIspgSVdIEkadxMdDHQEu/wr9f/tb+er4d7cLNmv1njVjNXp1oHZPN384Zrn5+2y9MT75QLgCX0QjBbdG0kgsSP8JRwnCifKJWkj/B+gG3oWshB5Cv4Ddv0S9wTxeuue5pPid99e3VjcaNyL3bbf1eLM5nzrvPBk9kb8MwL/B3sNgBLmFo4aXR1BHy4gHiAXHyEdURq+FoYSzQ24CG8DHv7t+AP0hu+X61To0uUk5FPjY+NP5A/mkejA64DvsvM0+OH8lQEsBoIKdg7sEckU+xZyGCcZFhlEGLkWhBS6EXIOyArbBsgCsv64+vf2jPOR8BvuOuz76mPqduov64bsbe7T8KPzxPYe+pX9CwFpBJQHcwrzDAEPjxCWEQ4S+BFYETUQmw6ZDEEKqAfjBAkCMv9y/N75i/eI9eTzqPLc8YPxnfEm8hbzZPQC9uL38/kj/GD+lwC4ArQEegb/BzkJIAqxCukKygpZCpsJmQheB/UFbQTSAjIBnP8Z/rb8fvt4+qn5F/nD+Kz40fgs+bn5cPpI+zn8Ov0//kL/OAAbAeQBjgIVA3cDswPKA74DkwNMA/AChAINApMBGwGpAEQA7/+s/33/Yv9b/2b/gf+p/9j/CgA8AGkAiwCgAKQAlQByADoA8P+T/yn/tP46/sH9Tv3n/JT8WPw5/Dv8Yvyt/B/9tf1s/kH/LAApAS4CMgMuBBUF4QWHBgAHRgdSByIHtAYIBiIFBgS6AkkBvv8h/oH87fpw+Rn49PYN9m71HvUk9YH1NvZA95v4PPoa/Cf+UwCQAskE7wbtCLMKMgxaDSAOfA5mDt0N4gx5C6wJhgcWBW0Cov/G/PL5Pfe89IbyrfBD71Xu7e0T7sfuB/DM8Qv0tfa2+fn8ZADfA0wHkgqUDTsQbhIbFDEVphVyFZUUERPwEEAOFAuCB6UDnP+D+3z3p/Mi8AvtfeqN6E3ny+YM5xPo2elU7HTvIvND97j7XgAVBbUJGg4gEqcVkRjEGi4cvxxxHEMbOxlnFtkSqw78CfAErf9a+iL1LvCm66/naeTy4V7gvd8W4Gvhs+Pf5trqhu/C9GT6QwAxBgEMgxGMFvMalB5QIQ8jwSNdI+MhXB/ZG3MXSRKDDEwG0/9K+eXy1exL53Tid95324zZydg32dXamd1x4UHm5us28gD5EQA0By8OyxTVGhwgdCS5J9AppSovKm4obiVCIQoc6xUUD7cHDgBV+MbwnukV41/drNgh1d7S9tF00lbUkdcO3K3hROih7473zP8bCD0Q8Bf4HhwlKir6LWowZTHhMN8uayueJpogjRmrETEJXwB798jui+YG33TYC9P2zlnMScvTy/TNoNG71iLdo+QH7Q32cf/oCCoS7xrxIvAptC8ONNk2/TdvNzA1TjHmKx8lKx1IFLcKxAC89uzsoOMj27jTms37yALGyMRaxbbHy8t+0aTYCOFp6oH0Av+ZCfYTxh2+JpQuDDXvORY9Zj7SPVs7EzcXMZQpwyDmFkkMPQEZ9jLr3eBt1yzPXMg0w9+/eL4Ov5/BGcZbzDnUdd3L5+vygP4vCp4VdCBbKgUzLjqaPx5Dm0QFRFxBszwrNvUtTySDGeINyAGR9ZvpRt7p09bKV8OnvfW5X7j1uLW7jMBXx+PP79kw5U7x7f2pCiIX9iLHLUA3FT8JRepIl0oCSixHKkIeOz8yzicdHIMPYwIk9Sno2tuX0LnGjr5XuEi0grIVs/+1LLt2wqfLedaZ4qvvSf0JC4IYSyX+MEA7v0M4SnZOVVDFT8hMckfrP2w2OyuvHikRDwPR9NvmnNl6zdbCBLpKs96u5axxrYCw/LW+vYrHFtMK4APulfxOC70Zcif/MwQ/KEgjT71Tz1VIVSlSiEyORHk6ky45IdESygOZ9LPljdeVyjK/vbWCrrqpjqcQqD6rArExuY7Dys+H3Vvs1Pt5C9MaaSnINohCTEzHU7xYAluHWktXZlEDSWE+0jG2I3kUkQR69LDkrtXpx867vLEEquKkgaL1oj2mQqzWtLm/mMwR27PqB/uMC8QbMCtXOctFKVAfWG1d6V99XylcB1ZETSJC9TQkJiAWZAV19NLj/9N4xa24Ba7TpVigwp0lnoKhwKewsA+8hcms2A7pLvqFC48cxiyrO8pIu1MoXM5hf2QlZMBgaFpOUbZF+TeAKMIXQgaH9BnjgtJCw9G1maryoSGcVZmlmRGdgaPDrJK4k8Za1m/nTPlnCzUdKi7CPYJLAFffX9tlwmh8aAplhV4dVRpJ2TrGKl4ZJwew9IbiNtFKwTyze6dknj+YPZV4le+YiJ8TqUa1xcMf1NflY/gzC7cdXS+bP/RN9llCY5BprWx+bARpWGKtWEtMkz31LPEaEwjv9BbiHdCPv++wrqQtm7eUgJGikR6V2pukpTCyH8H+0UnkdffqChQeXTA3QR1Qm1xOZutsPXAocKts4GX6W0ZPJEAJL3kcBAlC9crhNc8TvuuuMqJNmIqRHo4mjqOReph5olOvpL74z8jigvaNCk4eLDGTQvtR7V4Baepvb3N1c/pvF2kCXwZSiEL/MPMd+Amp9aHhf87WvDGtCqDHlbuOG4sHi4CObJWWn7GsWLwRzlXhjvUdCmYeyjGxQ5BT62BZa4lyQXZkdu9y/GvAYYlUvUTWMl4f7Qoh9pvh+s3Yu8KrNp6dk0yMeohJiLmLspL+nE6qPLpMzPPfmfSdCVweNjKPRNlUlGJVbcd0sXjyeId1i24xZMtWv0aJNLYg4Aup9rXhps0Zu5+quJzQkT6KPYbthVGJT5Czmi2oU7iryqXep/MNCTIecjIvRdZV52PzbqN2vHoce8B3wXBUZstYjUgXNvoh0QxA9+7hgc2ZusepkJtikJSIZYT1g0mHRo65mE+mobYwyWzdufJvCOkdfzKQRYlW5GQycBt4YHzgfJZ5nHImaIVaI0p+NycjvA3k90bijM1WujqpvppSj0+H9IJkgqOFmYwRl7mkKLXex0vc0PHGB4MdXjK0RfBWi2UTcS55nX0+fgp7GnSjafdbf0u7ODwkoQ6T+LvixM1RuvmoQpqhjm6G64E7gWKES4u+lWuj6bO3xkTb8PASBwAdDzKbRQxX22WUcdx5cn4zfxh8OXXLaiBdoEzMOTUlfA9L+UvjKc6IugGpHZpPjvOFS4F6gIeDW4rBlGii57K9xVnaGvBWBmMclTFHRd9W1mW2cSR63n6/f8B8+HWca/1dgk2uOhImTRAK+vXjuM76ulOpTZpcjt6FE4EjgBODzYkclLKhJLLyxIvZT++UBa4b8TC4RGlWfGV6cQd64X7hfwF9VnYVbIxeJk5hO88mERHQ+rbkcc+lu+2p0ZrIji2GRYE1gAWDoInRk0qhobFYxN7Yku7MBOEaJDDwQ6xVzWTgcIV5e36af9p8UnYzbM1eiE7iO2wnxhGY+43lUdCJvM2qqZuQj+KG4IGygGCD1YnfkzChYLHxw1LY5e0DBP8ZMS/xQqhUzWPpb594rH3pfkx863X3a75eqE4wPOcnaxJj/HnmV9GivfOr0py1kPmH44KXgSKEbYpJlGehYrG9w+nXSu04AwsZGS69QWFTe2KXblZ3dXzOfVZ7InVga19ehE5JPD4o/RIt/XbngdLwvlutS540knOJTITmgkuFaIsNle6hqLG+w6XXwexuAgUY3ixWQNhR2mDrbKt12XpMfPp59nNvaq9dHE4tPG8oexP1/YPozNNwwAWvE6AMlE6LHIachNuGxYwtlseiMrL2w4fXTuyoAfEWgyu+Pg5Q7V7naqFz13hiejd4aHIiaa5cb03aO3ko5BO6/p7pNtUfwu6wJqI7loiNT4i5htCIhI6nl/GjArNkxJDX8evmANAVCir4PAhOtVyOaDlxcnYTeBB2eXB7Z1xbfUxQO1woNRR4/8Xqvdb8wxKzgqS9mB2Q5Io6iSmLo5B7mWulF7QKxcLXq+srAKMUdSgGO8ZLNVrjZXZurXNhdYVzKm56ZblZRUuOOhYobhQuAPbrX9gDxnC1JaeRmw2T2Y0djOWNIZOomzancbXpxR3Yf+t5/28TxybqOExJcFfnYlpriXBNcppwfWshY8ZXyEmTOaYnjRTcAC7tGdozyAW4DKq0nlSWK5FgjwCR/JUtnlGpELcAx6LYbuvR/jQSAiWoNp5GaVSfX+lnCm3bbk9tdGhwYIRVBkhgOAsnkBR/AWvu6duHys26M60hou6Z1pQAk3mUM5kIobqr9LhPyFLZeOs1/vQQKCNCNL1DI1ENXCdkM2kNa6hpEGVqXfRSAEb0NkYmeBQVAqzvy93+zMW9lrDXpdmd2Jj7lk2Yw5w4pHCuHLvXyS3an+um/bMPPSG7Ma5Aok01WBVgB2XnZqhlVWESWhhQt0NRNVUlQhScAu7wvt+Uz+rAM7TQqRCiLZ1Mm3mcqaC5p3Kxhr2WyzPb5Osm/XEOQx8XL3M96kkbVLlbimBsYlJhRV1oVvFMLEF1Mzkk7xMUAy/yv+FG0jnEBrgKrpCm0aHwn/mg4qSLq760MsCNzWXcR+y2/DENPB1YLBE6/UXCTxZXwVugXalc41hvUoFJYD5jMfIifBN8A23zy+MR1a7HC7yAslWrwKbjpMqla6mpr1G4HsO6z8LdyexY/PYLKxuBKYo24UEwSzFSrlaHWLFXM1QsTstFVTscL38h6xLQA6b04OXy10bLPcAtt1qw9ashqueqQa4RtCm8R8Yc0krfau0N/MAKExmXJuMymT1oRg1NV1EmU25SOU+gSdJBDTifLOIfOhISBNj1++fl2vvOmsQOvJq1bbGlr02wX7PAuEPArcmz1P3gK+7V+5EJ9habIx8vKjlvQbFHwEuATeZM+EnQRJg9ijTvKRoeaRE+BAL3Gero3czSG8kewRG7Ibdrtfi1wrixvZ3ETc1819niC++z+20I1xSSIEMrlzRKPCBC70WbRxtHdES+PyA5zzANJykceBBWBCH4OOz34LTWvs1YxrrADr1tu+G7Zb7iwjLJI9F22t7kDPCn+1MHuRJ+HVEn5i/9NmA86D99QRNBsz5wOm003Sz8IxAaaA9XBDX5Vu4P5K/afdK3y5HGLsOnwQbCRMRNyADOL9We3QvnLPGx+0cGnRBjGk4jGiuMMXU2sTkpO9Q6uDjoNIQvuSi9IM8XOA5BBDr6b/At57neVdc30Y7Me8kTyF/IWcrvzQPTa9nz4F/pbPLS+0gFhg5DFz4fOCb+K2YwTzOlNGI0iTIsL2gqZSRSHWkV6QwUBDH7g/JN6s7iQNzT1q7S8c+tzunOoNDE0zfY1t1z5NjryvML/FoEdwwjFCQbRSFXJjcqxyz4LcItKyxBKR4l5B++Gd4SewvPAxf8jfRt7evmOuGE3OvYidZt1Z3VFNfF2ZjdbOIa6HTuR/Vc/HwDcQoFEQUXRBycIO0jICYmJ/smoiUqI6gfOhsEFjEQ8AlyA+z8jfaJ8AzrP+ZH4kDfPt1O3HbcsN3w3yLjKufn6zLx4PbF/LECdwjsDeQSPBfSGo8dXx82IBIg9h7uHAwaahYmEmMNSAj+Aq79gfie8yzvS+sW6KblCuRM427jbeQ95s/oC+zV7w/0lvhG/fkBiwbaCsUOLxL/FCIXiRgtGQwZKhiQFk4UeREoDncKhQZxAlz+Zfqq9kjzV/Dt7Rns5+pf6n/qRuup7JzuC/Hj8wr3Z/rf/VQBrwTUB6wKIw0nD6sQpRESEvARRBEXEHMOagwMCm4HpgTMAfb+Ofyq+V33YfXF85Py0PGB8aTxNvIu84P0KPYM+CD6UvyP/sUA5ALcBJ0GHAhPCTAKuQrqCsQKTAqHCYAIQQfWBUsErwIQAXr/+v2b/Gb7ZPqb+Q75v/it+Nb4NvnH+YH6XPtO/E/9Vf5X/0wALQHzAZsCHwN9A7YDygO7A44DRQPnAnoCAwKJAREBoAA8AOn/p/96/2H/W/9o/4T/rP/c/w4AQABsAI4AoQCkAJMAbgA1AOn/i/8f/6r+MP63/UX94PyO/FT8OPw9/Gb8tfwq/cP9ff5U/0EAPgFEAkgDQgQoBfAFkwYIB0kHUAcbB6gG9wUMBewDnQIpAZz//v1f/Mz6Uvn/99/2/fVk9Rz1KPWM9Un2Wve7+GL6RPxV/oMAvwL4BBsHFQnWCk4Mbw0sDn4OXw7MDcgMVwuBCVUH3wQzAmX/ify3+QX3ivRb8orwKu9H7uvtHO7c7ifw9/FA9PL2+vlB/a4AKQSUB9UK0Q1uEJcSOBRCFagVZhV7FOkSvBABDssKMgdQA0X/LPso91jz3O/P7E3qa+g758nmG+cx6Afqkey973bzn/ca/MMAeQUVCnQOcRLrFccY6hpCHMEcYRwgGwcZIhaFEkwOlAmBBDv/6fm19MjvS+ti5y3kx+FH4LvfKeCS4e7jLec36/HvNvXg+sEArwZ6DPQR8RZJG9gefyEoI8MjSCO3IRsfhBsMF9QRAgzDBUj/wPhf8lns3OYW4i3eQ9tx2cfYTtkF2+HdzuGy5mfsw/KV+aoAywfADlIVThuCIMQk8SfuKagqFio6KCAl3SCQG2AVew4WB2r/svcp8AvpkuLw3FTY5NS90vPRj9KO1OXXe9ww4troRvA7+HwAywjmEI0YhB+TJYgqPC6OMGkxxTCjLhErKSYNIOwY+xB3CKL/v/YT7uPlcN7116bSsM4zzEXL8cs0zv/RONe43U7lwu3T9joAsAnrEqIbkSN4Kh8wWTQCNwI4TzftNOkwYiuAJHYcgRPmCe//6PUf7OLiedoo0yjNq8jWxcPEe8X8xzbMCdJM2cfhO+te9eT/eQrOFI8ecSctL4Q1RDpFPWw+sD0RO6M2hTDkKPofChZgC08ALfVP6grgsdaMzt7H28Kuv3G+Mr/swY3G9Mzx1Ejesujf83r/JguMFlEhISuuM7M6+D9SQ6NE4EMMQTk8izU1LXMjkhjkDMMAjvSi6F7dGdMmysvCRL2+uVa4G7kJvAvB/cer0NXaK+ZY8v3+twsmGOgjny74N6c/cEUjSaFK3EnWRqZBcjpuMeAmFxtvDkgBC/Qa597atc/5xfW967cMtHeyPLNYtrS7KcN/zHDXqOPJ8G7+LQybGVAm6DEIPF5EqUq1TmFQnU9tTOZGMz+MNTwqlx0AEN8Bo/O45Y3Yh8wHwl+51LKbrtismq3esIy2fL5wyB7ULOE279D9hwzqGooo+zTaP9NInU8CVN5VH1XJUfRLy0OLOYMtDiCVEYUCV/N85GvWkclUvgy1A65yqX6nOqigq5qx+rmCxOLQut6g7SL9xgwTHJQq1DdtQwNNSlQHWRNbXVrnVspQNUhnPbMweiIrEzoDJfNm43rU1cbiugCxfKmUpG+iH6OjpuCsqbW6wL/NVdwK7Gf86gwWHWwsczq+RutQq1i+XfxfUl/CW2VVbUwbQcgz2CTAFPsDDfN34rvSVMS0tz2tQqUEoK2dUJ7soWWojLEbvbnK/9l26qD79gzzHRIu1jzKSYhUvFwlYpZk+mNVYMBZblCkRL42JSdSFsgEDvOt4S7REMLLtMapWaHHmz2Z0Jl+nSukp62oudTHvNfm6M766AypHoYv+z6PTNhXfGA3ZttoUmidZNddNVT/R5I5XinfF54FJ/MK4dPPCsApsp6mxJ3glyOVopVdmTig/qlnthHFjtVd5/T5www6H8cw4kAMT9ha52PyaclsVGyVaKdhvlcnS0E8gCtlGXwGWPOM4KzOQ77Rr8ejhJpSlGKRzJGOlY6clqZZs3bCeNPc5RP5iAylH9UxiUJAUYZd+2ZTbV1w/m86bCplBVsZTsg+iS3hGmAHnvMz4LfNu7zCrUKhnZcfkf2NT44UkjKZcaODsATAfdFm5C34NwzsH7Ay8UMpU+FftWlXcJJzTXOIb19oCF7SUCRBdi9QHEgI+PP+3/bMc7v+qxGfEZVLjveKL4vyjiaWkqDorb+9n8/94kP30wsPIFgzGUXHVOdhE2z7cmh2PXZ8ckFrwmBPU1FDRDGxHTIJZvTt32fMa7qHqjad4JLXi1OIb4gsjG6T/p2Kq6q74s2k4Vj2XAsPIM4zAUYYVphjFW4+ddp4zXgUdc5tMGONVU5F8DIBHx0K5fT+3wnMo7lcqbGbDZHFiRKGEYbDiQ2Rtpttqce5R8xd4G711QrtHxM0qUYeV/JkuW8ed+h6+HpNdwNwUWWJVxdHeDQ/IAYLdfUw4N3LG7l9qIKamY8XiDeEGIS6hwSPvZmSpxm40soq34b0PgqsHyc0EUfWV/Rl/XCaeJB8v3wled5xIWdBWalI2zVnIewLEvaB4OHL07jqp6uZhI7OhsOChIIUhleNFpj+paK2g8kO3qPzmglLHws0OkdDWKBm4nGxedB9H36aelxznmiyWgNKFDd3IswMvPbx4BTMyLijpyuZz43phbeBWIHShAiMw5axpGW1X8gK3cby6gjMHsEzJkdkWPVmZ3Jjeqh+Fn+qe310xmnaWyNLIzhvI6UNcfd94XXM+7iopwGZeo1rhROBlYD0gxeLxpWuo2S0Zscg3PLxMQgyHkoz1UY6WPNmjXKuehd/pX9UfD11mGq3XAZMBjlKJHUOL/gl4gLNa7n3py6ZhI1ThdmAO4B+g4aKH5X2oqCzmsZT2yjxbwd+HacySEbGV5tmU3KTehx/yn+XfJ51E2tJXatMujkJJTkP9Pjm4rrNFbqPqLGZ7Y2ghQmBS4Bug1eK0ZSMohuz/8Wk2mrwpwaxHNsxgUUKV+5lu3EUerh+hX90fJx1NGuMXQ9NPTqoJfAPvvm+45vO+LpvqYeatY5ShqGBxYDFg4mK3ZRvoteylMUV2rrv2wXOG+YwgUQGVu5kxXAveex91n7oezl1/GqCXTNNjzomJpgQjPqs5KLPE7yVqrGb2Y9oh6GCqIGEhB6LQpWiotSyW8Wo2RvvDQXWGswvS0O+VJxjc2/nd7d8v332enN0amonXRRNrTqCJi8RW/ut5c/QY70ArCudWJHiiAmE9IKqhRSMApYkoxSzV8Ve2Y3uPgTMGY0u4UEyU/phx209dhx7P3ydeUxzfWl9XLJMmDq6JrMRKfzA5h/S576srfSeMZO8iteFqIQ2h22NG5f2o5izh8U42RLucQOxGCwtREBlUQpgwmszdBx5WHred8NxNmiDWw1MTDrMJiQS9fzi55DTnMCZrwqhYZX2jAmIwoYniSaPj5gYpWC07sU52aztpwKIF6wreD5aT89dZ2nLcbl2DHi7ddlvlWY4WiNLyzm4Jn4SvP0R6R/Vf8LDsWuj5peMj56KQIl8iz+RXJqLpmy1isZh2V3t4gFTFg8qfzwSTUpbuWYHb/RzXHU1c5BtnGSeWPVJEzl8JsISfv5M6srWjsQntBKmvZp9kpKNIYwzjreTgpxNqLy2Xsex2SbtJQEUFVcoWjqSSoBYumPqa9FwS3JNcOpqSmK0VoJIIzgYJuwSN/+P647Yx8bDtv+o453FleOQYY9KkYyW/55eqlC4acgq2gjtcADNE4cmDjjbR3JVbWB3aFJt224Hbedno198VMxG/TaLJf0S5//Z7GnaJsmUuSysVaFimY+UAJO+lLyZ0aG9rCm6q8nM2gTtx/+AEqIknjXxRCVS1lyxZHppD2tlaYpkplz3UdJEnzXTJPMSigAo7lncqMuWvJivEKVQnZGY+JaOmEWd+KRor0O8JcuY2xztKP8wEakiCzPXQZxO+FicYE5l62ZpZdZgVlkmT5ZCCjTyI84SIgF571reSs7Hvz6zEKmLoeecR5u1nCShcKhesqC+1syO3FDtmP7fD6AgWTCRPtpK11Q8XNBgcmIYYc1ctlULTBlAPjLmIosSqwHK8GrgCtEiwxq3Ua0Qpo2h6Z8woValN6ydtT7BvM6v3aLtF/6ODokejC0iO+RGeFCUVwRcp11zXHNYyFGoSFw9PDCwISsSJAIa8ofi5NOkxiq7z7HZqn2m26T9pdepS7AjuRrE2dD73hHupv1ADWccpiqON71C3UuqUu9WkFiAV8tTj00ARWA6BS5QIKwRjAJm863k1dZJymi/hbbkr7WrGKoWq6WuqLTuvDTHKtNw4J/uR/33Cz0aqifYM2k+DEeATZZRL1NCUthODkkUQSg3myvGHg8R4QKs9Nvm2tkOztDDb7sqtS+xm694sLyzTLn6wIrKrtUP4kvv+/y0Cg0YnSQFMO05CUIeSPxLik2+TJ9JSUToPLYz/SgTHVMQIwPq9Q3p79zv0V/IicCouue2YLUethe5Mr5GxRjOZNjX4xbww/x6CdoVgSEYLE012TyGQihGpkf3RiNEQz9+OAwwLyY2G3gPUQMf90DrEeDn1RDNzsVZwNe8YrsDvLK+V8PNyd7RStvH5QHxofxKCKYTWh4VKI0wgTe+PB1Ah0H0QGo+ADrbMywsMSMzGX4OaQNJ+HTtPeP02d7ROcs3xvvCnMEjwonEt8iMztfVXt7e5wryk/wnB3QRKhsAJLErBTLLNuI5Mzu4Onc4hDQBLxkoByAIF2YNawNm+aTvb+YQ3sXWxdA9zE3JCch5yJbKTs6A0wLan+Eb6jLznfwRBkYP9hfdH8AmaiyzMHszrzRKNFAy1C70KdcjsRy5FC8MVgN1+s7xpek54sDbbdZm0sfPo87/ztbQFtSk2FreCuV97Hj0vfwKBSANwBSwG7whtiZ6Ku4sAS6uLfkr9Ci4JGkfMhlFEtoKKgN0+/Hz2+xp5szgLNys2GXWZNWw1ULXDNr23d7inOgC79z19fwTBAILixF9F6oc7SAnJEEmLifqJnkl6SJSH9IajRWvD2cJ5wJi/An2DvCe6uLl/eEL3x/dR9yG3NbdK+Bw44jnU+yo8V33RP0uA+8IWw5HE5AXFRu/HXofPSADINMeuBzFGRUWxRH5DNkHjAI+/RX4O/PT7v/q2+d85fLjRuN744zkbeYO6VfsLPBt9Pn4q/1cAuoGMgsTD3ESMxVHF54YMhkAGQ4YZhYXFDYR3A0lCi4GGQIG/hP6XvYF8x7wwO3569bqW+qK6l7rzuzL7kTxI/RQ97H6Kf6dAfUEFAjlClMNTA/FELQRFBLnETAR+A9MDjoM1gk0B2oEjwG6/gD8dvkv9zv1qPN+8sXxgPGs8UfyR/Ok9E72N/hO+oL8v/70ABADAwXABjkIZQk+CsAK6gq9Cj4KdAloCCQHtgUpBI0C7QBZ/9v9f/xP+1H6jfkF+bv4rvjc+EH51fmS+m/7Y/xl/Wv+bP9fAD4BAwKnAigDgwO5A8oDuQOJAz4D3wJwAvkBfwEHAZgANQDj/6P/d/9f/1z/av+H/7D/4f8TAEQAbwCQAKIAowCRAGoALwDi/4L/Fv+g/ib+rf08/dj8iPxR/Df8P/xs/L78Nf3R/Y7+Z/9VAFQBWQJdA1YEOgX/BZ8GEAdMB04HFAebBuYF9gTRA38CCQF6/9z9Pfyr+jT55PfJ9u71W/UZ9S31mfVc9nX32/iI+m/8gv6yAO8CJwVHBz0J+QpqDIINNw6ADlcOuw2tDDMLVgkjB6gE+AEo/0z8fPnO9lj0MPJp8BLvOu7q7Sfu8u5J8CTydvQv9z36if34AHIE2wcYCw0OoRDAElQUUBWpFVkVXxTBEocQwA2CCuIG+wLt/tX61PYK85bvlOwf6kvoKufI5irnUeg36s/sCPDL8/z3fPwnAd0FdQrNDsASLxb8GA8bVRzCHE4c+xrQGNsVMRLrDSoJEgTJ/nj5SfRk7/LqFufx457hMuC63z7gu+Er5Hvnlutd8Kz1XPtAAS0H8gxjElQXnRsZH60hQCPDIzEjiSHXHiwboxZdEYELOwW8/jX42/He62/muuHl3RHbV9nG2GfZN9sq3i7iJOfp7FDzK/pCAWIIUQ/YFcUb5yATJSgoCiqoKvspBCjQJHUgFBvTFOENdAbF/g73jO966BHig9z/16nUn9Ly0azSyNQ72OvctuJy6evw6fguAXsJjxEqGQ8gCCbkKnsurjBqMaYwZS61KrIlfh9KGEsQvQfk/gP2X+085dvdd9dE0mzOD8xEyxLMds5h0rfXUN775X7umfcEAXgKqxNUHC8k/SqIMKE0JzcEOC03pzSCMNwq3yO/G7oSFAkZ/xT1VOsm4tLZmtK5zF7IrsXAxJ/FRsijzJfS9tmI4g3sPPbFAFkLpBVWHyIowi/6NZU6cD1vPoo9xDowNvAvMSgvHywVdwpi/0H0bek53/bV7s1ix4XCgL9uvlm/PMIFx5DNrNUd35rp1PRyAB0MeRctIuUrUzQ1O1NAgkOnRLhDuEC8O+k0cSyVIp8X5Au//4vzqud43E3SeclDwuW8i7lRuEW5YLyNwabId9G82yjnYvMMAMUMKRnYJHUvrTg2QNRFWUmnSrFJfUYgQcI5mzDvJREaWg0tAPLyDebk2dfOPMVgvYO307NwsmiztLY/vN7DWs1p2Ljk6fGU/1ANsxpUJ9AyzDz5RBZL8E5oUHBPDUxXRnc+qjQ6KX0c1g6vAHXyl+SA15fLO8G+uGOyXa7QrMetQLEgtz2/Wcko1U/iavAK/74NFhygKfM1rUB6SRNQQ1TnVfFUZFFcSwRDmzhxLOIeVxBBARXyR+NM1ZHIer1ftImtL6l0p2ioB6w2sse6ecX80e/f5+5w/hEOUh28K904T0S2TchUTVkfWy1aflYrUGNHaTyRLz0h2xHjAdDxHuJJ08TF+rlHsPmoSqRhok+jDqeErYC2vsHozprdY+3H/UgOZx6lLYw7rUepUTJZCl4LYCJfVVu/VJFLEUCXMosjXxOSAqbxHeF50TTDvrZ5rLektZ+dnYCeWqIPqWyyKr7wy1Tb3+sS/WUOVR9cL/09xkpRVUxddmKnZMpj5V8TWYlPj0OANcgl4RRNA5bxQ+Dcz+HAyLP4qMagc5sqmQCa753bpJCuw7oYyR/ZX+pR/GgOGyDfMDBAmE2rWBRhjmbvaCFoKmQlXUlT30ZIOPQnYBYUBKDxkN9zzs6+G7HGpSidhpcNldOV0ZntoO+qi7dhxv/W5OiF+1IOuyAuMiRCIVC1W4ZkT2rgbCRsH2jvYMtW/knsOgkq1xfjBMHxBN8+zfq8t67louGZ85NJkfuRBJZHnY2nhrTQw/XUcOey+iUONCFJM9hDX1JtXqFntW12cM9vw2tvZAxa6ExqPQcsRxm6Bfrxnt49zGa7nqxXoPOWu5DijX6OjJLumW2kt7FowQTTBebY+eENhyExNEtFU1TQYGJqvXCvcx9zEG+gZwldmk+9P+otqxqXBknyXd5vyxO60KoenmCU4o3Zil2La4/mlpOhI68rvzDRp+T5+IgNtiHkNH5G+VXeYsdsZ3OHdhB2BHKAar5fEVLjQa8vAxx3B6zyQd7WygK5UKk7nCmSaYsxiJuIpYwwlAOfyqwcvXrPV+MY+BsNwCFkNW5HU1eWZM9urnX9eKF4m3QLbSliSlTZQ1QxSx1ZCCLzSd5wyjK4HaivmlCQU4nuhTyGPIrQkb6csao/u+bNF+I295wMpyGxNR5IYFj3ZXhwk3cOe8561XY/b0dkQ1adRdcygh47Carzct48yqK3N6d6mdeOoIcPhEGEM4jIj8ea2qiVuXbM6uBU9g0MbCHMNY5IH1n/ZsJxE3m5fJd8rXgZcRZm+FcsRzQ0pB8bCkH0vt45ylO3nqadmL2NU4aYgquCi4YcjiGZSKchuCvL0t929W4LESG2Nb1IkVmwZ6xyLnr8ffl9I3qYcpJnZ1mESGs1sSD3Cub0KN9nykO3U6YZmASNa4WJgX2BR4XLjM+X/KXmtgnK0d6d9MIKlyBwNa1ItlkJaDVz43rXfvN+NXu6c7toj1qiSXg2piHNC5j1sd/EynO3U6bsl6uM6YTjgLiAaITZi9CW+aTltRHJ6d3L8wsK/x/8NF9IkFkKaF1zMXtJf4R/4Xt8dI9pbVuFSlo3gSKbDFT2V+BPy9+3oKYWmLKMzoSmgFuA74NHiyiWQKQgtUbIHN0B80oJTB9bNNRHHlm1ZyZzGXtRf6t/J3zfdAtqAFwrSw84QCNgDRn3F+EGzIi4NqeWmBmNGYXTgGmA3YMVi9iV06OZtKjHa9xC8oIIfx6PMw1HY1gKZ5BynHrvfml/BnzgdC9qR1yTS5U44SMZDuX38OHnzGy5Fqhsmd+NyYVpgeCAMYREi+CVs6NRtDrH2tuQ8bQHmh2ZMg1GYFcKZptxuXklfr1+fnuAdPtpQFy6S+s4YyTEDrX44eLxzYi6PKmVmgKP3oZngsCB7YTUi0GW4aNKtP3GaNvs8OIGnxx8MdZEFla4ZEpwcnjzfKl9j3q/c21p6luhSw45xCRgD4j55uMhz9u7qaoQnIGQVojNgwmDD4bHjPyWXqSFtPPGGNtZ8A4GkBs5MGhDiFQUY51uyXZZeyx8OnmccoZoRltFS/84AiXqD1z6/uR10GK9WKzbnVuSMIqZhbqEl4cajhCYKqUCtRzH7NrX7zoFcBrTLsdBuFIiYZdsv3RbeUd6f3cYcUVnU1qnSrs4HCViEDD7J+bs0Ry/Sa70n4yUaozKh9GGhInOj32ZRabCtXrH5Npp72gEPxlNLfU/p1DjXjtqVnL4dv53YHU0b6tlEFnFSUM4EiXGEAD8XueC0wbBeLBYohOXAY9dikyJ1YvikUObr6fFtg3IAtsQ75kDARinK/Q9Wk5bXIpnkW81dFF13nLxbLljflehSJU34CQUEcz8o+g21R3D4rIEpe6Z85FRjSuMh45UlGGdaakLuNbIR9vN7tECtxbmKcg700uLWYdkc2wScUJy+29Qam9hnlU5R7E2iCRLEZH98ekF117FhrX2pxidPZWikGmPmpEil9afcKuUudXJs9uj7g8CZRULKHI5FEl4VjZh/miTbdVuumxUZ9BecFOORZc1CCRpEU7+SOvr2MfHX7grq4+g3JhNlASTCpVLmqCixK1huwvLSNyR7lcBCxQZJvY2IUYjU5pdNmW8aQxrHGn/Y9xb9VChQ0Y0XyNuEQH/pOzo2lXKa7uerk+kzZxQmPuW1JjNnb2lZLBvvXbMBd2a7qoArBITJFg0/UKST7dZHWGPZepmJWVSYJZYME5yQcAyjSJYEaj/BO733ATNpr5MslWoC6GnnEib9pykoSupTrO+vxjO7N2+7goASxH7IZkxqz/HS49VuVwQYXJi2WBRXABVIUsDPwMxkiEmEUEAZu8X39LPDcIztp2slKVNoeifbaHOpeisgbZNwu/P+9797nj/6Q/UH70uMDzHRyhRDVhDXKpdOVz+Vx1Ry0dUPBIvbSDYEMwAx/BE4bvSnMVMuiKxYqpAptikNaZIqvGw+rkaxfrRNeBa7/T+iQ6hHcgrjziVQ4ZMHlMsV5NYS1deU+9MMERoOe0sHx9tEEcBJvJ847zVT8mWvuG1cq95qxOqSasOr0S1t70kyDnUl+HU74L+LQ1lG7woyzQ1P6xH703RUTRTEVJzTnlIUkBBNpQqqR3kD7EBgPO85dHYI80Kw9S6vrT2sJavprAdtNy5tcFpy6vWIuNs8CH+1gsiGZ0l6DCsOqBChkg0TJBNkkxCSb9DNDzfMgooCRw9DwgC0/QB6PjbE9Gmx/i/Q7qwtlq1R7Zvube+8sXnzk7Z1eQi8dT9hwraFm8i6yz/NWU96EJdRq1H0EbPQ8Q+2TdGL08lQhp4DkwCHfZK6i3fHdVlzEjF+r+kvFu7KbwCv9DDasqb0iDcsOb28Zr9QQmSFDQf1ygwMQI4GD1PQI5B0UAePo05RTN4K2UiVBiVDXsCXveT7G3iOtlB0b7K4MXLwpXBRMLRxCTJGs+C1iHfsejo8nb9BghKEvAbsCRGLHoyHjcPOjs7mTozOB00ei54J08fQBaTDJQCkvjZ7rTlad041lbQ7sshyQLIlsjWyq/O/tOa2k3i2Or582f92QYGEKcYeyBFJ9Ms/TCkM7Y0LzQUMnkufSlIIw4cBxR0C5gCufka8f/opOFD2wrWINKgz5zOGM8O0WvUFNng3qLlI+0n9W/9uQXIDVsVOhwxIhMnvCoTLQguly3FK6UoUSTtHqQYqxE3CoUC0fpU80vs6eVf4Nbbb9hD1l7VxdVy11XaVd5R4x/pkO9y9o39qQSSCxAS8xcPHT0hXyRhJjQn1iZNJaYi+h5oGhUVLQ/eCFsC2PuF9ZTvMuqG5bXh194D3ULcl9z+3Wjgv+Po58DsHvLZ98L9qwNnCckOqRPjF1cb7R2UH0Eg8x+vHoEcfhm+FWMRjwxpBxoCzfyq99jye+616qDnUuXb40LjieOs5J7mTumj7IPwzPRc+Q/+vwJJB4kLYQ+yEmcVaxeyGDUZ9BjyFzsW3xPzEJAN0gnYBcIBsP3B+RP2wvLm75Tt2+vF6ljqlep36/Ps/O5+8WX0l/f6+nP+5gE6BVQIHQuBDXEP3hDBERYS3REbEdkPIw4KDKAJ+gYtBFIBf/7I+0P5AvcW9YvzavK78X/xtfFY8mHzxPR09mL4fPqx/O/+IgE7AysF4gZVCHsJTQrHCuoKtgowCmAJTwgHB5YFBwRqAssAOP+9/WT8N/s++n/5/Pi3+LD44/hL+eP5o/qD+3j8e/2B/oH/cwBQARICswIxA4kDvAPKA7YDgwM3A9YCZwLvAXUB/QCPAC0A3f+e/3T/Xv9c/2z/iv+0/+X/FwBIAHMAkgCjAKMAjwBmACkA2v96/wz/lv4b/qP9M/3Q/IL8Tfw2/EH8cfzG/EH94P2f/nr/agBpAW8CcwNqBEsFDgaqBhcHTgdMBwwHjgbUBd8EtwNhAugAV/+5/Rv8i/oW+cv3tPbf9VP1GPUz9ab1cfaQ9/34rvqa/LD+4gAfA1UFcgdlCRoLhQyVDUEOgQ5ODqkNkgwPCyoJ8AZwBL0B6/4P/EH5l/Yn9AbySPD77i7u6e0y7grvbPBR8qz0bveC+tH9QgG8BCMIWgtIDtMQ5xJvFF4VqRVLFUMUlxJREIANOAqRBqYClv5/+oH2vfJR71rs8eks6BvnyeY753PoaOoO7VPwIPRZ+N78jAFABtUKJQ8PE3EWLxkyG2ccwRw7HNUamRiUFdsRig3BCKIDWP4I+d3zAO+Z6szmt+N34R7gvN9U4ObhaeTM5/bryfAi9tj7vwGqB2oN0hK3F+8bWh/YIVUjwiMYI1ohkh7UGjkW5RD+CrEEMf6s91fxZOsD5l/hnt3h2j/ZyNiC2Wvbdt6P4pjnbO3f88D62wH4COEPXRY7HEkhYCVcKCQqpirdKcsnfiQMIJYaRRRHDdIFIP5r9vDu6ueR4RjcrNdx1IPS9NHL0gXVk9hc3T3jCuqR8Zj54AEqCjYSxBmYIHsmPiu4Ls0waDGEMCQuVyo4Je4epheZDwIHJv5H9avsl+RJ3fzW5NErzu/LRcs1zLvOxtI42OreqeY872D4zwFAC2oUBR3LJIEr7jDnNEo3AjgHN140FzBTKjwjBhvxEUEIQv5A9Inqa+Es2Q/STMwUyInFwcTGxZLIE80n06LaS+Ph7Bv3qAE5DHoWHCDRKFUwbDbkOpc9bz5hPXQ6uzVZL30nYh5NFI0JdP5W84zoad4+1VPN6cYywla/br6Dv5DCgMcuzmnW89+E6sn1bAEUDWUYByOmLPY0tDuqQK5DqESMQ2FAPDtENKwrtSGrFuQKuv6J8rPmlNuC0c7IvsGJvFy5ULhyubq8EsJSyUXSptwm6G30HAHSDSsaxiVIMF85wkA0RotJqUqCSR9GlkAQOcUv/SQIGUQME//a8QHl7Nj7zYLEz7wet5+zbrKYsxW3zryXxDfOZdnL5QnzuQByDskbVii1M409kUV/SydPbFA/T6lLw0W4PcUzNShhG6wNgP9J8XbjddaqynPAIbj2sSSuy6z5raaxuLcCwEbKNdZ0457xRAD1DkAdtSrpNn1BHUqFUH9U7FW+VPxQwEo5Qqc3XCu0HRkP/v/U8BPiLtSTx6O8trMTrfCobqecqHKs1rKXu3TGGdMm4S7wvv9cD5Ae4izjOSxFZE5CVY9ZJlv5WRBWh0+NRmg7bC79H4oQiwB88NjgGtK2xBW5k697qAakWaKEo36nLK5at8XCFNDi3rzuKP+mD7cf3S6hPJhIY1K0WVFeFGDtXuNaE1SxSgQ/ZDE7Iv0RKAFA8MXfOdAXwsy1uqsxpGyfk522ns6ivalQsz6/Ks2s3ErthP7UD7UgozAhP75LFVbWXcNismSUY29fYlihTnZCPzRqJG8T0wEf8Nrejc62v8qyL6g3oCSbHpk2mmaekKV9r+G7XsqF2tnr0/3oD4whNjJjQZxOelmmYeBm/WjrZ7FjblxYUrxF+zaHJt4UigIY8BjeFc2VvRCw8qSSnDKX/pQJlkuap6Hjq7O4tMdy2GzqF/3hDzoikzNkQzBRjVwgZaVq8Wzua6RnM2DSVdFIlDmQKEkWSwMs8H3d0su0u6GtCKJEmZqTN5ExkoCWBp6IqLe1LcV01gXpUfzCD8EiuzQkRXpTTl9CaBBuinCab0ZrrmMNWbNLBzyCKqwXFQRX8ArdxMoVun6rcZ9Oll2QzY2zjgqTsZpvpfCyzsKO1Kbng/uKDyEjrzWiRndVumEKax5xxXPqcpFu3GYFXF5OUj5bLAUZ5gSa8L3c7Mm4uKepMJ20k3+NwYqRi+qPq5eaomKwmcDD0lLmsPo8D1sjbTbeRydX0GN2bcxzoXbddYRxuWm2Xs9QcEAXLlMavAXy8JfcSMmctx6oRZt4kQGLFojOiCSN+JQNoA+ukr4W0Qvl2PnaDm8j9jbYSIpYj2WEbxh2GXlveBx0QmwdYQNTYEK1L5MblQZf8ZXc2cjDtuOmspmZj+eI0IVthruKmZLLnfururyIz9Pj/vhjDl4jTDeQSZ1Z9mYycQF4LnueelZ2dW45Y/hUH0QyMcMccAff8bfcncgttvald5gajjCH74NwhLKIk5DXmyeqFbsdzqziI/jaDSsjbjcGSmNaBWiBcoV523xofC94T3AGZapWqkWLMuAdSghw8vzclMjXtVillZf8jN+FdILZggmH5o4ympeopLnWzJnhSvdBDdUiXjc7Stpaumhvc6R6In7MfaZ5znGCZhhYAEe/M+keIQkR82LdvcjDtQelDJc/jPOEYoGpgcSFlY3fmEynari3y5vgdPaZDGAiHTcwSgRbF2n8c1x7/37Ifrl68HKrZz9ZHUjKNNwf9Qm/8+fdFsnutQSl25bii26EuoDhgOOEoozgl0imarfAyrTfpPXlC8shrDblSeFaHGkodK57c39cf2d7tXN/aB5aAEmsNbYgwQp69IrenslYtk2lA5fni1CEeoCCgGiEDYw3l46lpLb0yefe2/QlCxkhDDZcSXJayWjzc5h7fn+Gf7B7GXT9aLNaqEliNnYhhgs/9UrfVMoAt+KlgZdLjJmEpICNgFKE2Ivklh+lG7ZUyTXeG/RcCkwgQDWWSLhZIGhecx17H39Gf5J7HnQlafxaEkrqNhkiQQwL9iTgNsvjt8GmVZgQjUeFOIEBgaSEBIzplvyk0LXjyKDdZ/OMCWUfSTSWR7RYIWdrcjx6V36efg17wXP0aPlaPUpDN54i7wzf9hfhQcwAueinfpkyjlqGNILegVyFkYxGlyalxbWiyCvdv/K2CGceKjNcRmlXzmUacfd4J32MfSF6BHNraKhaKUpsNwQjkA229yDidc1Wulap+pqxj9GHmIMlg3uGf437l52l+rWSyNXcJvLdB1Qd4zHrRNlVKWRtb053kHsRfNB45nGJZwpa00ljN0kjIQ6Q+D3jzs7huwirx5yLkaqJYoXShP+Hzo4KmWOmcLa0yKLcnfECBy0ceDBGQwVUNWJnbUV1k3kwehl3Z3BOZh1ZPUknN2sjoQ5r+W3kS9Cgvf2s456+k+SLkYfnhuiJfJBxmnanKLcKyZHcJvEoBvUa6i5uQfFR818Ia9xyMnfqd/90iG67ZOJXZEi4NmkjDg9E+q3l6dGQvzGvSqFHlnyOI4pfiTSMipIwnNmoIriTyaXcxPBQBa4ZPS1nP55PZl1VaBZwb3Q/dYFyTGzQYllWSEcUNkMjZg8a+/vmpdOuwaKx+6MkmW+RFo07jOKO9pRGnomqXrlRyt/cdvB9BFoYcisyPRBNkVpPZfZsTXEzcqNvsmmPYIJU60U8NfYiqQ/r+1ToftX5w02086ZSnLqUZpB2j/CRvpeyoIas3LpFyz/dPvCvA/sWjCnTOklKeFf6YYBpz23JbmZsvGb4XV9STEQuNIMi1A+1/LfpcNdsxi+3LqrNn1yYEpQPk1uV4Jpzo9CunLxtzMbdH/DpApQVjidMOE1HHVRZXrVl92kCa85obmMOW/BPa0LrMugh6A92/SLredkFyUS6qK2So0+cFZgDlyCZWp6GpmSxnb7KzXTeGPAtAicUeyWiNR9Eg1BwWpphymXiZtxkyV/RVzZNSkBzMSYh4Q8t/pHsltvBy4q9X7Gep5GgbJxOmz2dKqLrqUK038Bdz0vfLPB8AbYSVCPWMsJAsExDVjJdSmFtYpRgz1tGVDRK6T3HLzsgwA/Y/gPuxd2czvzAT7Xtqx2lE6Hsn6+hTKadrWi3X8Mj0UngWvDYAEQRHiHsLzs9pkjUUYJYfFynXfpbhVdtUOtGSjvmLSgfhA91/3bvA+CU0ZjEc7l5sPCpB6bapHGmvqqcsdS6HcYe03DhpPBCANIP2h7nLIw5aUQqTY5TZFeSWBBX7VJKTF1DbTjSK+0dLA8CAOfwTOKk1FnIx71AtQSvQqsUqoGre6/jtYO+F8lL1cDiC/G8/2IOjBzLKbo1/j9ISFpOB1I1U9xRCk7fR40/VjWLKYoctw6AAFTyn+TL1zvMSMI9ule0wbCUr9mwgbRvunPCS8yq1zfkjvFH//cMNRqbJskxaTsyQ+tIaEySTWFM4kgxQ347BTIUJ/8aJg7tALzz+OYD2zvQ8MZqv+G5frZXtXW2zLk+v6HGuM862tXlLvLk/pML2hdaI7strjbuPUZDjkawR6RGd0NCPjI3fi5sJE0Zdw1GARz1VelL3lTUvMvExJ+/dLxYu1K8Vr9MxArLWtP53Jvn7PKU/jcKfBUNIJcp0jGAOHA9fUCSQapAzj0XOa0ywiqXIXQXqgyMAXP2s+ue4YPYp9BFyozFn8KRwWnCHMWUyavPL9fk34bpx/NY/uUIHxO1HF4l2SztMm43Ojo/O3c67De0M/Et1CaVHncVwAu+Ab/3D+765MTcrdXpz6LL+cj+x7bIGcsSz3/UNdv74pbrwPQx/qAHxBBXGRYhyCc6LUUxyzO7NBE01TEcLgQptyJpG1UTuQraAf74Z/Ba6BLhyNqp1dzRfM+YzjPPSNHC1IXZaN885srt1vUg/mgGbw72FcMcpCJtJ/sqNS0MLn0tjytUKOgjbx4WGBARlQngAS76ufK762rl9N+C2zXYI9Za1dzVpNeg2rfexeOj6R/wCPcl/kAFIQyUEmgYcR2KIZUkfiY4J8EmHyViIqEe/RmcFKkOVAjPAU/7AvUb78fpLOVu4abe6Nw+3KvcKN6m4BHkSegu7ZbyVvhB/igE3gk3DwoUNBiXGxoerB9EIOIfiR5JHDQZZxUAESMM+AaoAV78P/d28iXubOpn5yvlxeM/45njzuTR5o/p8ezb8Cv1wPl0/iIDpwfgC60P8hKYFY0XxRg3GeUY1BcPFqYTrxBDDX8JgQVqAVr9b/nI9YDyr+9p7b3rtepX6qLqkesZ7S3vuPGm9N33RPu+/i8CfgWSCFQLrw2UD/YQzhEXEtIRBRG4D/oN2QtpCb8G8QMVAUP+kPsQ+db28fRu81fysvF/8b/xa/J78+b0m/aO+Kv64fwe/1ABZgNSBQMHcAiPCVoKzQroCq0KIQpMCTUI6gZ1BeUDRwKpABj/n/1J/CH7LPpy+fT4tPiy+On4Vvny+bX6lvuN/JH9l/6W/4YAYQEgAr8COgOPA78DygOzA34DMAPNAl0C5QFqAfQAhgAmANf/mv9x/13/Xf9u/43/uP/p/xsATAB2AJQApACiAIwAYgAjANP/cf8D/4v+Ef6Z/Sr9yfx9/Er8NvxE/Hf8z/xN/e79sP6N/38AfwGFAogDfQRdBR0GtQYdB1AHSQcEB4EGwgXJBJwDQwLIADX/lv35+2r6+fix96D20PVK9Rb1OfWz9YX2q/ce+dX6xfze/hEBTwOEBZ4HjAk8C58MqA1LDoEORQ6WDXUM6gr+CL0GOASBAa7+0/sG+WD29vPd8Sfw5e4j7urtP+4i74/wf/Lj9Kz3xvoa/o0BBgVpCJsLgg4EEQ0TiRRrFagVOxUlFGwSGhA+De0JPwZQAj7+KPou9nDyDe8h7MXpDugM58vmTueV6JnqTu2f8Hf0t/hB/fEBpAY0C30PXROyFmIZVBt3HL4cJRyuGmAYSxWFESgNVggzA+b9l/hx853uQuqC5n/jUeEN4L/fbOAT4qnkHehX7DfxmfZV/D4CJwjiDUATGBhBHJgfAiJpI74j/SIpIUseehrOFWwQewooBKX9IvfT8OvqmOUG4Vrds9oq2czYn9mh28Pe8eIN6PDtbvRX+3MCjglwEOEWrxyrIasljig7KqIqvSmRJyokoR8XGrUTrAwvBXv9yfVV7lznE+Gv21vXO9Rp0vjR7dJE1e3Yz93G46XqOPJH+pEC2QrdEl4aICHsJpUr8i7oMGQxYDDgLfYpvSRcHgEX5g5HBmj9jPT56/LjuNyD1ofR7M3Ry0rLXMwDzy3Tu9iF31nn+u8n+ZkCBwwoFbMdZiUCLFExKjVqN/433zYSNKovyCmXIkwaJxFuB2z9bfPA6bHgiNiG0ePLzcdnxcXE8cXiyIbNutNQ2xDktu3694oCGA1PF98gfinmMNw2Lzu8PWs+NT0gOkI1vy7GJpMdbROiCIX9a/Ks55vdiNS7zHPG4sEvv3K+sb/owv7H0M4p18zgbuu/9mYCCg5QGeAjZS2WNTA8/kDXQ6VEXEMGQLg6mzPjKtMgthXjCbT9iPG+5bHautAnyDzBMbwwuVO4o7kYvZvCAcoV05HdJul59SwC3g4rG7ImGTEOOklBkUa5SaZKUEm9RQhAWjjtLggk/xctC/j9w/D34/bXIc3Mw0G8vrZus3CyzLN6t2C9VMUYz2Pa3uYq9N8BlA/eHFUplzRLPiRG40taT2pQCk9CSyxF9jzdMi8nRBqADE/+HPBX4mzVv8muv4e3jbHvrcysL64RslS4y8A1y0TXm+TT8n4BLBBpHscr3DdJQrxK8lC3VO1Vh1SOUB9KakGxNkQqhBzaDbn+k+/h4BPTmMbQuxGzoqy1qG2n1KjirHqza7xxxzjUX+J38QwBphDLHwYu5joGRg9PuFXLWShbwFmeVd5OtEVkOkUtvB45DzT/KO+T3+7QrMM1uOOuAqjHo1aivaPzp9iuObjQw0PRLOAX8IgAAxEFIREwsz1/SRhTMlqTXhhgs15sWmNTzUnzPS4w6SCaEL//2u5u3v3O/cDftACrr6Mnn46d8J5Ho3GqObRVwGfOBd617vb/QhEUIugxQkCyTNVWXF4KY7hkWWP1XqtXtE1aQfwyCSP8EVgAqO5z3UDNjr7QsWqnrp/bmhaZcZrjnkmmbrADvajL7dtU7Vb/ZhH7IoozkUKcT0NaM2IsZwVpsGczY7FbYlGVRKs1GCVcE/8Aku6h3LrLX7wLrySkAZzklvSURJbKmmai3azfuQrJ59n166n+bxG4I/U0n0Q8UmBdtWX2avxss2skZ3Ff1VShRzk4FSe4FLIBl+7422nKcrqQrDChrJhGkyuRbZICl8qeiKnsto7G9deb6vH9XRFNJCs2bEaQVCpg3mhmbpdwXm/DauhiClh6SqI6+ygPFm8Cte5420/Jx7hiqpGesJUFkL6N7o6Nk3mbdaYttDjEGtZJ6S/9MxG5JCo39UeXVp9irGt5cdVzr3INbhJm/FoeTeM8yipdFzQD7O4g22vIX7eCqEecD5Mija+Ky4tvkHaYpaOmsQzCWdT/52f88BD+JPM3O0lRWL1kHm4rdLR2o3X/cO1oqF2IT/o+fiyiGAAEOu/u2r3HO7bwplWazJCgigKICImqjcWVHaFZrwvAs9LB5pj7lxAcJYY4Pkq7WYNmMnB8di95NniWc3RrDGC3UeRAFC7ZGdAEnu/k2kXHWbWtpbuY6I6BiLmFpYZBi2mT3p5IrTm+LdGQ5cb6KRAUJeQ4/krWWvBn5nFpeEZ7Z3rQdaVtJWKoU55Ciy8CG6QFFvD+2gHHu7S6pHqXZI3GhtSDp4Q3iWOR7Jx4q5i8x89w5PL5pw/oJA05e0uiWwRpOXPxefd8M3yqd39v8GNXVSVE3zAaHHgGoPA82/LGX7QWpJOWQYxxhVeCDYOOh7aPSJvqqSq7hM5h4x75FA+YJAM5tksfXL9pLHQTe0B+mX0ief5wa2XEVnhFDzIfHUsHPPGd2xXHRrTAowWWgIuChEOB24FHhmWO9pmgqPO5Z81m4kz4cA4mJMY4r0tNXCBqvHTPeyB/l343eiFylGbqV5RGGTMQHhsI5/Ef3GvHbbS5o9GVIIv6g5eAEYFkhXCN9pidp/O4ccyB4X73vg2VI1g4Z0stXChq63QjfJd/LX/neudyamfKWHhH+jPpHucIoPLA3PHH1bQApPWVIYvZg1WAr4DnhNqMS5jipiy4pcu04Lb2/wzkIro34ErAW9hpuXQRfKV/Wn8ye05z6mdgWSFIsTSpH6wJZfN/3abIe7WTpHGWhIsfhHyAt4DPhKOM9pdwpqG3BMsB4PX1NQwXIu82G0oHWzBpJ3SYe0h/HX8Xe1VzFGitWY1IPDVPIGgKM/Ra3ojJXrZxpUWXRozLhA2BKYEdhcuM95dKplO3kMpp3z71YwsvIfc1GkkEWjFoNXO5eoN+d36Vevxy52etWb1ImTXYIBoLCfVP35XKfLeZpm6YaI3dhQeCBILShVSNUJhvpkO3Ssrv3pL0igouINU030e4WN9m5HF1eVV9aH2teUNyY2diWa1IxzVCIb8L5fVc4MzL1LgIqOqZ545Th2mDR4Pthj6OAZnhpnK3NMqU3vPzrAkWH4oza0YmVzllOHDNd7978XtgeClxhmbJWF5IxDWOIVYMxfZ+4SnNY7q9qbmbwZAriTKF8oRtiIiPCZqgp+K3T8pZ3mTzygjpHRoywURPVUJjMG7EdcR5EnqtdrBvUWXjV85HkDW3Id4Mp/e14qzOJ7y2q9ed9ZJli1+HA4dSijGRaputqJK4nMpA3uXy6AepHIYw5EI2U/1g0Gtbc2V3z3eXdNdtxWOwVv5GKjW/IVQNifj941HQHb7vrUKggJX8jfCJeYmZjDmTIp0HqoK5HMtK3njyBwdZG9Au1UDdUG1eGmmVcKN0J3UecqBr4mEwVe1FkTSjIbcNaflV5RbSQ8BmsPeiYJjwkOGMUYxDj56VMJ+tq7W6z8t53h/yKAb7GfwsmD5JTpNbEmZ0bYJxHnJFbw1pqV9iU5pEwzNiIQYORvq55vnTlsIYs/SlkZs9lDGQio9Lkl+Yk6GhrSi8t8zM3tvxTgWQGAsrMDx6S3NYuWL8aQVut24NbB9mG11JUQZDwjL8ID8OHfsp6PfVFMUCtjWpEZ/hl9yTIJOxlXqbS6Tfr9y90s1F367xewQcFwEpnzl1SBFVE18vZi1q82p6aNhiOlrlTjJBjTFwIGAO7Pug6QzYuMchubes26LWm9+XEZdymeyeVadostC/Ic/l35jxrwOhFeEm6DY9RXBRJVsRYgBm1maNZDpfCFc4TB8/JDC9H2oOs/wf6zjagMpxvHew7aYboDacWZuKnbSir6o6tQPCpNCr4Jvx7gIhFKwkEDTWQZRN8VamXYBhY2JLYElbh1NCScw8hy7jHloObv2h7HXcac3vv2+0QaurpN6g9Z/2oc6mV65TuHTEW9KZ4bjxOQKdEmYiGDFCPoBJfFLyWLFcn122WwdXuU8GRjw6tyziHTAOHf4l7sPeb9CXw5241a+CqdOl4aSzpjirSrKxuyPHRNSu4u/xkAEZEREgBC6HOjlFyk35U5hXjFjRVndSoUuGQm83tCq5HOsNv/6p7x7hj9Nlx/y8pLScrg+rGaq9q+2vhrZTvw3KYNbq40Ly9gCWD7Ed2CqnNsNA4EjATjlSMFOjUZ1NQkfFPmk0gChpG4sNUf8q8YPjxtZWy4nBqbnzs5CwmK8Qseq0B7s0wzDNrNhN5bDybAAXDkgblyemMiI8wUNMSZhMkE0tTH1IoELEOikxHCbzGQ4N0/+m8u/lEdplzz7G4L6DuU+2WbWntiy6yr9Tx4vQKNvX5jvz9P+eDNgYRCSJLlo3cz6gQ7tGr0d1RhtDvT2HNrMtiCNWGHUMQQAc9GHoa92P0xfLRMRIv0i8Wbt+vK2/y8StyxvU092H6OPzjv8sC2YW4yBUKnAy+zjEPadAkkGAQHs9njgSMgoqxyCTFr8LngCJ9dTq0eDP1xDQ0Mk8xXbCkcGQwmvFBso+0N7XquBc6qf0O//ECfMTeB0KJmktXTO6N2E6QDtSOqI3RzNmLS4m2h2sFOwK5wDs9kbtQeQh3CTVfs9Zy9PI/MfZyF/LeM8D1dHbrONV7Ij1/P5nCIIRBRqwIUkony2KMe4zvDTxM5QxvC2JKCUixBqhEv0JHAFD+LXvtueC4E7aS9Wb0VrPls5Sz4XRHNX42fHf1uZx7oX20v4XBxUPjhZKHRUjxSc4K1QtDi5hLVcrASh9I+8dhhd0EPIIOwGM+R/yLevs5IvfMNv81wXWWNX21djX7doZ3zvkKOqv8J73vv7VBbAMFxPcGNId1iHJJJkmOiepJu8kGyJGHpEZIhQlDssHRAHF+n/0o+5d6dTkKeF33s/cPdzA3FPe5+Bj5Kzone0O89P4wP6kBFQKow9qFIUY1RtFHsIfRiDOH2IeDxzqGA4VnBC3C4gGNwHu+9b2FfLP7SXqMOcF5bLjPuOr4/HkBOfR6UDtM/GL9SP62f6EAwQINQz4DzETyRWvF9YYOBnWGLUX4RVsE2oQ9gwsCSsFEwEF/R75fvVA8nnvP+2h66fqV+qw6qzrQO1f7/Px6PQl+I77CP93AsMF0QiKC9wNtw8OEdkRFhLGEe4Qlw/QDagLMgmEBrQD2AAI/lj73fiq9s30U/NF8qnxgPHJ8X7ylvMH9cP2ufjZ+hH9Tv9+AZEDeAUlB4sIpAlnCtMK5wqlChIKNwkcCMwGVQXDAyQChgD3/oH9L/wK+xr6Zfns+LL4tPjw+GH5AfrG+qr7o/yn/az+q/+ZAHIBLwLLAkIDlAPBA8kDrwN4AygDxAJTAtoBYAHqAH4AHgDR/5b/b/9d/17/cP+R/7z/7f8fAFAAeQCWAKQAoQCJAF0AHQDL/2j/+f6B/gf+kP0h/cL8d/xH/Db8R/x9/Nj8Wf39/cL+of+UAJUBmwKdA5EEbgUrBr8GJAdSB0UH+wZzBq8FsQSBAyUCpwAT/3P91/tK+tz4mPeM9sL1Q/UW9UD1wvWb9sf3QPn9+vD8DP9BAX4DsgXJB7IJXAu5DLkNVA6ADjsOgg1YDMUK0QiKBgAERgFx/pb7zPgq9sbztPEI8NDuGe7s7UzuO++08K3yG/Xs9wv7Y/7XAU8FsAjdC7wONREyE6IUdhWlFSoVBxRAEuIP+wyiCe0F+gHn/dL52/Uk8sru6eua6fLnAOfO5mLnuejN6o/t7fDO9Bb5pP1VAgcHkwvUD6kT8haTGXQbhRy6HA4chBolGAEVLRHFDOsHwgJ0/Sf4B/M77uvpO+ZI4y3h/d/D34bgQeLr5HDoueyl8RH30vy8AqMIWA6tE3gYkBzVHyoieiO5I+Ei9SADHh4aYhXyD/cJngMZ/Zn2UfBz6i7lruAX3YfaFtnS2L/Z2dsT31bjg+h17v707fsLAyQK/hBkFyIdCiL0Jb4oUCqcKpspVCfUIzQflxklEw8MjATW/Cb1u+3O5pfgSNsM1wfUUtL/0RLThtVK2UTeUORA6+Dy9vpDA4gLgxP2GqYhXCfqKyovATFdMTkwmi2TKUAkxx1bFjIOiwWq/NHzR+tP4yncDNYs0bDNtstRy4XMTc+W00DZI+AK6Lrw7/ljA84M5RVhHv4lgCyyMWo1hzf3N7M2wzM7Lzsp8CGRGVwQmgaV/Jry+Oj53+fX/9B8y4nHSMXNxB7GNcn7zU/UANzW5Izu2fhtA/YNIhiiISkqdDFJN3c73T1kPgU9yTnHNCIuDCbDHIwStweX/ILxzebP3NTTJcwAxpbBDL95vuO/QsN/yHPP69em4VrstvdfA/8OORq2JCIuMzapPE5B/UOeRClDpz8yOvAyGSrvH8AU4Qiv/IjwyuTR2fTPgse9wN27CblauNi5er0nw7PK6NN/3ibqhvY9A+oPKRycJ+gxujrOQelG4kmgShlJWEV3P6E3ES4RI/MWFgrd/K3v7eID10rMGMO3u2G2QrN2sgS04rf3vRPG+89j2/PnTPUFA7UQ8R1SKnY1Bj+0RkRMiE9lUNFO1kqRRDA88jEmJiUZVAsf/fHuOuFl1NjI7L7ytiixvq3RrGqugLL0uJfBKMxW2MPlCfS5AmERkB/WLMw4EkNYS1tR6lToVUtUHFB7SZhAtzUrKVMbmgx0/VTusN/70aDFALtxsjWsgKhwpxGpVq0jtEO9csha1ZnjwPJaAu8RBSEnL+Y73Ua1TylWA1olW4NZJ1UxTtZEXDkcLHkd5g3c/dXtUN7Ez6TCWLc4ro2njaNZovyjbKiIrxy53sR00nfhcvHpAV4SUSJEMcI+Y0rJU6pa0F4XYHNe8FmvUuZI3jz2LpYfNg9V/nXtGt3Czee/9bNKqjOj6J6OnTCfxKMpqya1b8Gnz2DfIfBoAbASciMqM2BBok2QV9xeS2O5ZBljdV7wVsJMOUC2MaYhhxDe/jLtDtz2y2q92rCqpiqfl5oVmbKaZJ8Ip2SxKb71zFfd0O7YAOQSaCTbNL1DmFAIW7ticmcIaW9nsGLwWmhQakNYNKcj2BF2/w3tLdthyi67Ca5ao3abm5bxlIaWT5sqo9utD7tiyl7bgO05APwSNCVVNtdFQ1MvXkRmQmsAbXFrnmarXtRTbEbaNpclJxMZAAPtddoDyTS5hKtdoBmY+ZIlka6SiZeTn46qJbjyx3nZM+yQ//gS1iWXN7BHolUBYXRptm6fcB1vO2odYgFXPUk5OXIncRTJABTt6Nndx363TKm2nRaVs4+1jS+PFpRGnICnbrWmxanX7Orb/toSTyaiOERJs1d+Y0lszXHfc25yg21DZe5Z2UtyOzYptBWCAT7thNntxgu2Yqdkm3CSy4ykigyM+ZBHmbak7rKBw/HVreke/qMSnyZ2OZRKdVmkZcFuhHTAdmJ1dHAaaJVcPU6BPeEq7xZEAoLtSNk1xt20yKVrmSeQRYr0h0eJNY6ZljGiprCIwVTUeOhZ/VQSxyYSOqBL6FpxZ9pw2XY+efd3CnOfavZeZ1BkP3AsHhgLA9ztNNm0xfOzfaTKlz2OIoioheSGzYs+lPafm668v9TST+eP/O4RyCZ5OmhMClzlaJNyynhYeyl6RHXPbAxhVFIZQeEtQBnXA03uRtloxU6zg6ODlrSMY4bBg+SEw4k5kgaezqwfvnPRNObC+3MRoiapOuxM3Fz+aexzVnoMffd7HneobtViAFSdQjEvUxqlBNHuftlTxeyy2aKWlY2LCoVBgkmDGYiNkGScQqu1vDTQKuXz+uUQWCalOixNXl2+auJ0fHtYfl99mHgncE9ka1XtQ14wVBt0BWjv2tlxxc2yfqIElceKGIQqgRSC0YY7jxKb+ql/uxrPMuQl+kYQ6yVsOilNkV0ja3d1O3w7f19+rnlLcXllkVYIRWUxQhxCBhDwWNrDxfGydKLMlGSKjIN7gEiB7IVFjhKa9qh/uiXOT+NZ+ZYPXCUBOuVMdF0va6l1kny1f/d+YHoTck9mcVfrRUYyGh0MB8fw99pGxlWzt6LtlGKKaYM2gOSAbYWtjWWZOqi4uVnNguKR+NgOrSRmOWBMCl3hanp1gnzFfyd/rXp8ctJmCViVRv4y2x3RB4vxttv6xvqzSaNolcOKrINbgOmAUoVzjQ2ZxqcrubbMzuHP9w4O4COaOJxLUlw6aul0DHxrf+1+lXqGcv9mWFgFR4szgx6PCFvykdzdx920JqQ6loOLVoTqgFiBnYWZjQuZnKfauD/MNOEW9zoN9iKhN5tKT1s9afhzLnuofkl+F3oxctVmXVg4R+wzDx9ECTTzid3syP21TqVil6SMZoXhgTCCT4YejmCZvafGuPXLteBm9l0M8iF9Nl5JAlrqZ6ly7Hl8fT19Mnl8cVVmFlgtRx80fx/uCRT0md4lyle3v6bfmCKO24ZBg3CDZocDjwyaKqjvuNnLVODC9XoL1iAuNedHblhDZvxwRnjoe8l76XdncH5lg1flRiM00B+LCvr0wd+Iy+m4d6ivmv2Ps4gIhRiF4ohHkA6b4qhXue3LE+Ar9ZIKox+5MzlGk1ZKZPNuPXbvee55O3bzbk9kpFZdRvczAiAbC+P1/+AQzbK6c6rQnDKS7IozhyaHworrkWic6Kn/uTLM8d+k9KgJXB4eMlZEdlQCYpJs1HORd613KXQgbcpieVWVRZkzEyCaC872T+K8zq+8saw+n7+UhI3DiZiJBY3tkxmeOavnuqjM8d8t9L0IAx1hMEFCGFJuX9ppDnHRdAl1tXHvau9gAlSNRAozAiAIDLj3sOOK0Ny+Lq/4oaGXeJCzjG6MqY9Llh+g16wPvFDNFODJ89MHmhuDLvw/fU+PXM5m7G2xcQNy4W5jaL5ePlJFQ0kyzR9iDKD4H+V30jjB57H7pNaaxpMCkKOPrZIFmXqiwK53vSvOW+B48+0GJBqILIo9p0xqWXJjcmo0bp5urmt8ZTlcL1C9QVQxdB+oDIT5m+aA1L/D2bRCqFmea5eskzeTDpYZnCil9LAevznPxuA98wwGoxhyKu86mUkCVshfo2Zeat1qIGg8YmJZ1032Py0w9h7ZDGL6Ieii1m7GAbjLqymiY5uulyWXyZmEnyiocbMFwXrQV+EY8zIFGhdEKCw4WEZZUtVbgmIwZsNmOWSnXjpWNUvwPdIuUx7yDDj7runb2ELJXLuSr0Cmq58GnGqb251Eo3irNrYqw+7RDeIK82AEihUBJkc15UJ0TptXFF6wYVNi/F++WsNSTEisO0UtiR3zDAX8QOso2zjM5b6Ts5uqPqSuoASgQqJVpxWvQrmNxZTT6uIW85kD9hOrI0EyRj9XSiBTXVnhXJFdbFuEVgBPHkUrOYYrmhzbDMb81eyG3U3PmcLLtzavGamjpe2k+aa2q/2yk7wsyGzV7eM6894CYBJGIR4vfjsGRmZOYFTGV4JYjlb9UfRKrEFvNpUphBupDHv9a+7y333SdcY1vAy0N67hqiKq/qtjsC23JsAFy3bXFuV58zACyhDUHuIrkDeEQXRJIk9mUihTZVEsTaFG+T15M3MnSBpdDCH+APBp4sTVdMrNwBq5k7NjsJ+vS7FXtaK7+MMYzrDZZebT85IBNw9YHJAogTPXPExEqEnETIlN9EsVSAtCBzpLMCIl5hj1C7j+kfHp5CDZks6OxVq+Krkktl+13baQulnACMhh0Rjc2udJ9AMBqA3VGSslVS8DOPU+90PlRqpHQka8QjU92jXnLKIiXhdyCz3/HPNu543cy9J1ysfD9L4gvF27rrwIwE3FUszf1K/edOna9IYAIQxOF7ghDysMM3M5FD7OQI9BUkAlPSI4dDFPKfYfsRXTCrH/oPT26QbgHNd7z13J78RQwpTBu8K8xXzK09CP2HHhMuuH9RwAogrFFDketCb3LcozBDiFOj07KjpVN9gy2CyHJR4d4RMYChEAGvZ/7IrjgNue1BfPE8uxyP7H/siny+HPiNVv3F7kFe1Q9sb/LQk+ErIaSCLIKAEuzDEPNLs0zTNQMVotCyiQIR0a7RFBCV4AifcF7xTn89/X2e/UXdE7z5fOcs/E0XjVbdp84HPnGu8194T/xQe6DyYX0B2FIxsocitxLQ0uQy0cK6wnECNuHfUW1w9OCJYA6viF8aDqcOQj3+Daxtfq1VjVEtYP2Dzbft+y5K7qQPE1+Fb/awY9DZkTThkyHh8i+ySyJjknjya9JNMh6h0kGacToQ1AB7gAPfr+8yzu9Oh85OXgSd643D3c2NyB3ijht+QP6QzuhvNR+T//IAXKCg8QyRTTGBIcbh7XH0UguR85HtMbnhi1FDgQSwsXBsUAf/ts9rTxe+3e6fnm4OSf4z/jvuMW5TnnFeqP7Yzx6/WH+j3/5gNhCIoMQxBvE/kVzxflGDcZxRiVF7MVMRMkEKgM2AjUBLsAsPzO+DX1//FE7xftheua6ljqvurI62ntku8v8iv1bPjX+1L/vwIGBg4JwAsJDtkPJBHkERUSuRHWEHYPpQ12C/sISQZ3A5sAzf0h+6v4f/ap9DjzNPKh8YLx1PGR8rLzKvXr9uX4CPtB/X3/qwG8A54FRQemCLcJdArYCuQKnAoDCiEJAQiuBjQFoQMCAmQA1/5j/RT89PoJ+lj55fiw+Lf4+Pht+RD62Pq++7j8vP3C/r//rACDAT0C1gJLA5oDwwPIA6wDcgMgA7sCSQLQAVYB4QB1ABcAy/+S/23/XP9f/3L/lP/A//L/JABUAHwAmAClAJ8AhgBZABcAxP9g/+/+d/79/Yb9Gf27/HL8Rfw2/Er8g/zh/GX9Df7T/rT/qQCrAbECsgOkBH8FOQbKBioHUwdBB/IGZQacBZoEZQMGAoYA8P5R/bX7Kvq/+ID3efa09Tz1FvVH9dD1sfbk92P5JPsc/Tv/cQGuA+AF9AfYCX0L0gzKDVwOfw4wDm0NOwyfCqMIVgbHAwoBNP5a+5L49PWW843x6e+87hDu7u1b7lXv2fDd8lT1LPhR+6z+IQKZBfYIHQz1DmQRVxO6FIEVoRUZFecTExKpD7gMVgmbBaQBj/17+Yn12PGH7rLrcOnW5/Tm0+Z3597oAevR7TvxJvV1+Qf+ugJqB/ELKxD1EzEXwxmTG5IctBz2G1oa6he1FNQQYgx/B1ICAv24953y2u2W6fTlEuMK4e7fyt+h4HHiLuXE6BztFPKJ90/9OwMgCc4OGRTWGN4cECBQIoojsiPCIsAguR3BGfQUdw9zCRQDjvwQ9s/v/OnG5Fjg1txe2gXZ2tjg2RPcZN+84/vo++6P9YT8pAO5CowR5heUHWgiOybsKGMqkyp3KRUnfCPGHhUZkxJzC+kDMfyF9CLtQuYc4OLav9bV0z7SCNI508nVqdm73tzk3euJ86b79QM2DCgUjRsqIsknPCxgLxcxUzEPMFItLSnAIzIdsxV9Dc8E7PsX85fqruKb25jV1NB3zZ7LW8uxzJrPAtTI2cLgveh68bj6LgSUDaEWDR+VJv0sETKnNaE37TeFNnIzyS6rKEch0xiRD8YFv/vI8THoQ99H13zQGMtIxyzF18RPxovJdM7m1LLcneVj77n5TwTUDvUYYiLRKgAysze8O/o9WT7SPG85STSDLVEl8RuqEcsGqfuY8PDlBNwj05PLkMVNwe2+g74YwKDDA8ka0K/YguJH7a34WQT0DyIbiiXdLs42Hj2bQR9Ek0TyQkY/qDlCMkwpCR/IE98HqvuI79fj89gxz+DGQsCMu+W4ZbgRuuC9tsNpy73Ubt8p65P3TQT1ECcdhCizMmM7T0I+RwhKlUrfSO9E4j7lNjQtGCLnFf4IwvuX7ubhEdZ2y2jCMLsIthqzgLJAtE+4kb7WxuHQZdwK6W/2KwTVEQMfTStTNr0/QEehTLNPW1CTTmZK8kNmOwUxGyUFGCgK7vvG7R7gYdPzxy6+YLbHsJKt2qyprvOymLlnwh3Nadnt5kD18wOWErYg5C25OddD70u/URlV31ULVKZP00jDP7o0DiggGloLMPwV7YHe5NCrxDW61LHNq0+oeadSqc+t0LQfvnbJf9bV5Ar0qAM3Ez4iRjDiPK9HV1CVVjZaHVtAWatUgE31Q1I47yo1HJMMhPyE7A7dnc6gwX+2ka0dp1ejYKI/pOqoPrADuu/FqNPE4s/ySgO5E5sjczLOP0JLdVQeWwdfEGAvXnBZ9lH6R8c7ui1BHtEN7PwR7Mfbi8zUvg+zmKm7oq6elJ12n0ek5asWto3C6dC94I/x2gIcFM0kajR6Qo5OR1hXX4djtGTTYvBdMFbNSxY/bDBCIBIPZP2+66var8pJvOiv7qWrnliaGZn5muufy6deslK/Rc7D3k3wWgJhFNMlKTbkRJBRyFs9Y7NnBWkoZydiKVpqTztCAjM1IlQQ6/2I67rZDMkAugytlqLwmliW85TNltmb86PdrkO8vsvY3AzvywGIFK4msTcMR0ZU+F7NZodrAG0qaxJm313NUjNFeTUXJJURgf5w6/XYoMf6t3yqkJ+Ml7GSJZH2kheYYaCXq2K5WMn+2sztLwGSFF4nADnwSK9W02EEagBvoHDVbqxpTGH0VftHzTfnJdISJP9z61rYbcY4tjqo35yDlGaPs413j6aUGZ2QqLS2Fsc52ZHshwCBFOMnFzqPSspYWGTfbBty43MncvNsb2TbWJBK/TmhJwoU0v+S6+rXcsW7tEemhprWkXuMn4pTjIqRHZrLpTq0+sSL113r1f9VFD4o9jrpS5VahWZdb9d0xnYcdeNvQ2d+W+5MBDxDKTsViADL66TXsMSDs6SkhZiHj/CJ7YeOiceOcpdLo/ixCMP21TDqGv8PFHAonDv+TA9cWWh8cTB3R3mxd3hyxWnaXRJP4T3KKmIWRgEc7IfXJsSRslKj3paYjcmHnoUph1+MGZUTofKvQsF91A/pWP6yE3koCjzOTTld02k7cyV5ZHvkebJ09GvtX/tQkD80LH0XCwKF7JHX08PksVGikZUKjAaGtIMnhVWKFZMmnyiuqr8i0/vnkv0/E1soQjxYThJe82qYdLV6Gn20e412zG21YaVSEEF/LYoY0wID7cLXt8N8saGhoJTeiqqEMoKLg6qIaZGFnZ+sQ77n0fXmyPy2EhcoQzyeTplet2uTdd57aX4dfQd4S28uYw1UXkKpLocZnQOV7RnY0MNYsUKhCZQVirSDF4FUgmGHF5AznFirD73P0AHm/fsbEq4nDzygTtBeIWwrdqB8Tn8gfh55cHBXZDNVd0OvL3MaaAQ67pTYHsR4sTOhzZOuiSaDZoCFgXuGII8zm1SqELzczx/lNPtuESInqDtfTrZeL2xgdvt8y3+7ftN5OHEvZRNWW0SPMEobMAXv7jHZn8TasXSh65Oqif+CH4AfgfmFho6EmpepSLsPz1LkbPqxEHUmDjvcTU5e5Gszdu183X/tfiJ6pHGzZa1WBkVIMQsc9gWz7+7ZUsV+sgOiZJQIikCDQYAigdyFSo4qmiGpubprzp3jqvnmD6clQzoZTZhdP2uldXl8hn+1fg16sXHjZf9WeEXXMbUctQaE8MvaNMZgs+CiNZXHiuiDzYCOgSSGbI4lmvSoZbrxzQDj7vgQD7wkSTkXTJVcQmq1dJ57xX4VfpJ5X3G+ZQdXr0U8MkUdbQdf8cTbRceBtAmkXZbmi/aEwoFjgtKG7Y51mhCpTLqizX3iOvgwDrUjIjjYSkdb72hnc116nH0MfbF4rnBCZcZWqkV0MrodHAhE8tncgsjdtXul2pdkjWqGIIOgg+WHzo8cm3epcLqBzRfikfdHDZQi0DZfSbFZR2e6cbd4C3ybe2x3nm9wZDlWZ0V/MhIewAgv8wbe6clztzWnrJk/j0CI5IREhV2JDZEZnCqq0bqOzc7h8/ZZDFshVTWtR9NXTWWxb692E3rDecJ1MG5IY2FV50RaMkseVwkg9Erfd8tBuTWpz5t1kXmKDodPhzmLq5JsnSercbvKzaThY/ZnCw0gtDPERbJVAmNObUd0t3eGd7RzY2zKYT5UKEQGMmUe3wkT9aLgKs1Du3erQJ4ElBGNnIm/iXeNp5QVn3CsT7w2zprh4/VyCqse7zGoQ09TamCUaoBx+XTldEVxOWr2X89SKkOBMV8eVwoI9g3iAc94vfqt/qDplgaQi4yRjBaQ/5YToQWubb3UzrLhc/V+CTgdCDBcQa1Qh12GZ11u2nHicXZus2fOXRVR7UHLMDYevgr89ofj99Dcv7qwBqQgmlWT2I/DjxWTspllo+Ovyb6jz+zhFvWLCLcbAi7hPtBNXFomZOJqXm6Abklr02RSWxFPcUDjL+odEQvt9w/lC9NtwrWzU6eonfyWgpNTk3CWvpwKpgyyZcCj0EnizfSdByka4Ss7PLpK7VZ4YBFniGrDasFnnGGFWMRMtj7KLnodUAvZ+KLmOtUnxea246p7ofaahJc+lyWaIaAAqX60PsLW0cvimfS0BpEYpiltOW5HPVN/XO9iW2arZt9jDl5nVS9Kvjx+LecceQu++T7ogNcHyEq6sq6YpUCf25uBmzKe2KNFrDa3VcQ603Hje/TSBfIWVCd7NvFDUE9AWH5e22E+YqhfLVr7UVNHiDoBLC4ciwuc+uDp3NkLy969vLL5qdejg6AXoJOi4afXrzW6qcbQ1DzkdPT5BE0V7yRoM0dAKku+U8NZC11/XR5b/FVETjJEFzhSKlAbhgtv+4frStwuzp/B/baarrWoeaX+pESnOay0s3i9OMmX1i3lh/QsBKUTeSI2MHI8z0b+TsJU8FdyWEZWflFDSs5AazVzKE0aZws2/C/tx95t0YfFcrt4s9etuKoxqkOs3bDYt/zAAcyO2EPmsvRrA/0R9h/qLHY4QkIESoBPj1IbUyJRtkz8RSo9hjJkJiUZLwvx/NfuUeHF1JTJFcCOuDizO7Crr4qxyLVBvMDEAs+12n7n9/S3AlUQZx2HKVk0ij3URAFK60x+TbhLqUdyQUc5aS8mJNcX3Aqd/X3w4+My2MHN4sTWvdS4/rVptRa397rrwMDIOdIK3d7oV/UTArIO0BoRJh0wqTh0P0tEC0ehRwtGWUKpPCo1Fyy6IWUWbwo4/h7yfeax2wvS1clNw6S++7tlu+K8ZsDSxfvMpdWM32Lq0fWAARUNNRiLIscrpTPnOWE+8kCIQSFAzDykN9QwkygjH84U5wnD/rfzGuk932zW6c7tyKXELsKawerCEcb0ymzRQtk64grsZ/b+AH8LlxX4Hlwngi41NEo4pjo4O/45BTdmMkgs3SRgHBQTRAk8/0n1uOvV4uHaGtSyztDKkcgDyCfJ8stM0BDWD90R5dbtGPePAPMJ+RJdG94iRSlgLgwyLTS3NKczCjH1LIwn+iB1GTgRhQih/8/2Ve5z5mbfYtmV1CHRH8+bzpbPBtLW1eTaCOEQ6MPv5fc0AHIIXxC8F1Me8iNvKKorjC0KLiIt3ypUJ6Ei6xxiFjoPqwfy/0n47PAV6vbjvt6S2pLX0dVb1TDWR9iM2+TfK+U169HxzPjv/wAHyg0aFL8Zjx5nIislySY3J3QmiSSJIYwdtRgrExsNtgYtALT5ffO37Y3oJ+Sk4B3eo9w/3PHcsN5s4Q3ldOl97v/zz/m9/5wFPgt6ECYVIRlNHJUe6h9DIKIfDh6XG1EYWhTSD94KpgVTABD7BPZV8SftmenF5r3kj+NB49LjPOVv51nq4O3m8Uv26/qi/0gEvQjeDIwQrBMnFu0X9Bg1GbMYcxeDFfUS3g9ZDIQIfQRkAFv8fvjs9MDxEO/v7Gvrjupa6s/q5euS7cXvbPJu9bT4Ifyc/wcDSgZLCfULNA75DzkR7RETEqsRvRBTD3oNRAvDCA4GOgNeAJP96vp6+FT2h/Qe8yPymvGE8eDxpvLO8031E/cR+Tf7cP2t/9kB5gPEBWUHwAjKCX8K3AriCpIK8wkMCecHkAYTBX8D3wFCALf+Rv36+976+PlM+d74rvi6+AD5efkf+uv60vvO/NL91/7U/78AlAFLAuECUwOeA8UDxwOoA2wDGQOyAj8CxgFMAdcAbQAQAMb/jv9r/1z/YP91/5f/xP/2/ygAVwB/AJoApQCeAIMAVAARALz/V//l/m3+8/18/RD9tPxt/EL8NvxN/In86/xy/Rz+5f7I/74AwQHGAscDuASQBUcG1AYvB1QHPQfpBlcGiAWCBEoD5wFkAM7+Lv2T+wv6ovhn92X2p/U29Rf1T/Xg9cf2AfiG+Uz7SP1p/6AB3QMNBh4I/gmcC+oM2g1jDn0OJA5YDRwMeAp1CCIGjgPOAPf9HftY+L/1Z/Nl8cvvqO4I7vLtau5x7//wDfON9Wz4l/v1/msC4gU8CV0MLQ+TEXoT0RSKFZ0VBRXGE+URbw90DAkJSAVOATj9Jfk49Y7xRu5860fpvOfq5tnmjucF6TfrFO6K8X711Plr/h8DzAdODIAQQBRvF/EZsRudHK0c3BsuGqwXaRR6EP0LEwfiAZH8SPcz8nrtQumv5d/i6eDi39Lfv+Cj4nLlGumA7YXyAfjN/boDnAlED4QUNBkrHUogdSKYI6gjoiKJIG0dYhmGFPwO7giKAgL8h/VO74bpYOQE4JfcNtr22OTYBNpP3LffI+R06YPvIPYb/TwETgsZEmYYBB7EIn8mFyl0KogqUSnUJiIjVR6RGAES1QpFA4z74/OJ7Lflo99/2nXWptMs0hTSYtMQ1graNN9q5XvsM/RX/KYE4wzMFCMcrCI0KI0ski8rMUcx4y8HLcYoPyOaHAoVyAwSBC77XvLn6Q7iENsl1X7QQM2Jy2jL4Mzqz3DUUtpk4XDpO/KA+/gEWg5cF7cfKSd3LWwy4TW4N983UzYdM1QuGSicIBUYxA7xBOn69/Br54/eqtb6z7fKCscTxeXEg8bjye/OgNVm3WbmO/Ca+jEFsQ/GGSEjeCuIMho4/jsVPks+nDwSOccz4SyUJB4bxxDfBbv6sO8U5TvbdNICyyTFCMHQvpK+UMABxIvJw9B22WDjNu6k+VMF6BAIHF0mlC9lN5A95EE9RIVEt0LgPhs5kjF9KCIezxLcBqX6ie7l4hbYcc5Cxsq/P7vFuHO4TrpJvknEIcyV1V/gLOyh+F0F/xEjHmopfDMJPMxCj0cqSodKoEiCREo+JjZULB0h2RTlB6f6gu3g4CLVpcq7wa66tLX3so6ygLTAuC6/nMfJ0WndIuqS91AF9RITIEYsLDdxQMlH+UzYT01QUU7ySU9DmjoUMA4k4xb6CL76newE31/SEcdzvdK1a7Bqreis7a5qsz+6OcMVzn/aGOh49i4FyhPaIe8uojqYRIJMH1JDVdJVxlMsTyZI6T67M/Am6xgYCuv61+tT3dHPucNsuTyxaasjqIanmKlNroG1/r59yqXXEuZV9fYEfxR1I2Mx3D1+SPRQ/FZlWhBb+VgrVMtMEENEN8Ep7ho/Cy37M+vO23jNn8Cqte6ssqYno2yiiKRtqfew7boEx9/UE+Qs9KsEExXjJKAz1kAdTB1VjVs6XwVg5V3qWDlRCkesOn0s6hxrDIL7r+p22lbLxb0tsuyoSaJ6np+dwJ/PpKesC7euwy7SHOL98k0EiBUmJqc1kEN1T/hYzV++Y6pkiGJmXWtV00ruPSEv2x6cDen7SupJ2WvJLLv7rjilMZ4fmiKZRJt3oJOoXLN/wJfPMeDL8d0D3RU8J3U3CEaDUoNcumPuZ/1o22aZYV5ZZ04JQaoxwCDODmH8BepJ2LnH1bgTrNahb5oalvqUGpdpnMKk5K96vR3NU96Y8F0DExYmKAs5PEhEVbxfUWfGa/ls3WqBZQ1dw1H3QxU0lSIBEOj83ul210DGw7Z4qceeBZdvkiuRQ5OpmDWhpqyjusLKhtxm788CKxbkKGc6LEq4V6BijmpEb5twiG4YaXZg41S2Rl82WSQyEX791OnO1gHF9rQspw+c9ZMgj7eNxI87lfGdpan9t4rIzNo37jMCJhZ1KYk71kvcWS1lcG1kcuBz2XFdbJRjw1dDSYU4CSZfEiD+5+lS1vvDb7Mwpa6ZQpExjKGKoIwhkvma5qaKtXfGKNkN7YsBBRbbKXM8Ok2wW2Fn9G8jdcZ2z3RLb2VmYVqaS4Q6oieFE8z+FeoC1i7DLrKFo6aX7o6iieyH2olfj1GYaqRPs4zEm9fq69oAyhUXKiI9WE4yXTxpGHKAd0l5ZXfgceVouVy6TVo8ISmkFIL/Xerb1ZvCM7EroviV+ox3h5qFdYf4jPqVNqJNscvCKdbR6iAAdRUpKpk9ME9jXr1q3HN5eWh7mXkZdBJryV6eTwQ+hSq4FT4Avure1UHCf7AjoaaUZ4uwha6DcoXtiveTSqCHrzjB1NTC6WL/CRUSKtg9wU9CX+FrPnUNeyF9anv0delsj2BEUYA/zCvAFgABNusJ1h7CEbBuoK6TN4pQhCmC04NCiUySq54ArtS/ndPB6J3+hhTTKd89DFDOX6tsPXY6fHJ+1nxvd2huB2KrUstA8iy5F8YBw+ta1jLC6K8KoBOTaYlXgwyBm4L4h/mQWp26rKK+iNLQ59b97xNvKa89ElAJYBht2Hb/fFt/2n2IeI5vMWPQU+NB9i2iGI0CZOzR1nzCBLD3n9SS/4jFgliAyoEQhwGQWZy3q6S9ltHw5g/9RBPmKEs91U/0XyptEXdcfdp/d34/eVhwCWSxVMdC1i54GVUDGO1s1/vCY7A2oO+S+Iicgg6AYYGMhmWPqZv4qty8ydAk5kj8iBI6KLI8VE+NX+Fs53ZSfe9/rH6RecZwj2RMVXRDjy86GhoE2+0p2K3DBbHDoGWTU4nbgi6AYYFshiePTZuAqku8I9Bt5YX7vRFsJ+g7kk7YXj5sWnbffJt/d35+edZwwmShVehDITDmGtsEre4G2Y/E6LGfoTWUEYqAg7eAyoGxhkaPRJtQqvO7pc/N5Mb65RCAJu06j03WXUJrbHUGfNx+2n0GeYhwoGStVSNEiTB5G5YFi+8C2qLFCbPIol2VL4uNhKqBnIJch8OPkJtoqta7U89G5A/6ARB2JcQ5T0yHXO9pHnTHerV91HwpeNtvKmRxVSNExzDzG0oGdPAa2+LGaLQ8pNuWrIz/hQWD1oNriJ+QMpzJqvS7K8/a42D5FA9QJG4400rvWkZocnIjeSZ8ZnvodtBuXWPqVOdD2DBRHPQGZvFM3E3IAbb4pa6YiI7Vh8iEeIXeidmRKZ11q068Mc+K47v4Hw4RI+42HEkPWUpmaHAcdzF6kXlCdWdtPGIZVG5DuzCTHJIHXfKX3eHJ1Lf8p9Oav5ANivCGf4e2i3GTdZ5rrOa8Zc9Y4yP4JQ28IUc1L0fpVv1jBG6zdNd3V3c6c6BrxWD+UrdCcDC2HCQIWvP33pvL3LlDqkidT5OljHuJ64nvjWeVF6Csrbu9yM9E45n3JwxRIHozDEWBVGFhSGvscRp1unTQcHxp+V6YUcNB9S+6HKcIWPRr4HrNGLzLrAqgNpaaj2mMuoyJkLiXDaI3r86+WtBQ4x73KAvUHooxuELZUXleN2jJbv1xu3EGbv5m2VzoT5FASy+dHBkJWPXw4XrPhL6SrxajcJnqkrWP6Y+Ck2OaVqQLsR/AHdF+47T2KQpIHXovNED0Tklb1GRNa4JuXG7faiZkZ1rvTSE/cC5eHHoJVfaE45nRH8GUsmmm+5ySll6TdpPYlmid8aYps67BENLO4132LQmtG00thD3WS9RXImF7Z61qompcZ/Zgo1etS3M9ZC39G8cJUPcl5dTT5MPOtQCq06COml+XXZeHmsKg3amOtXrDNNNA5Br2NQgHGgUrqzqBSB1UJV1WY4BmjmaAY3BdkFQkSYk7KCx5GwAKRfjP5ijW0MY8udat9aTanrabnJuOnnGkF606uIPFidTW5Oz1QwdYGKUorDf6RChQ4FjiXgBiJGJPX5hZL1FVRmI5uirRGiMKM/mC6JPY4MncvOmxW6l0o16gMKDponKonrAsu8jHDtaQ5dT1WQajFjEmizREQflLWFQkWjFdaF3LWnBVg01CQwA3HSkFGi8KGPo66hDbEc2owDO2A65WqFSlFKWUp8Gsb7RgvkfKxNdu5tP1eQXpFKsjSzFiPZNHkU8gVRVYXlj5VftQjkntP2Q0TycVGSQK8/r0657dX9CdxLK66LJ8rZOqQ6qNrFuxh7jWwf/Mqdlx5+v1pQQuExUh7y1aOf1CkErZT7NSCVPbUD1MVEVYPJAxUyUAGAAKwfuw7TrgyNO4yGC/Brjhshewu6/OsT2247yKxe7PvduY6Bv23QNzEXQefCouNTk+WEVWSg9Nb013SzlH1kCEOIUuKCPHFsMJgvxp7+DiRtf0zDnEV72BuNu1drVUt2K7gMF7yRTT/t3j6WX2IwO7D8ob9CbjMEw57j+aRCxHlEfRRfNBGjx3NEYr0SBqFWwJNP0g8Y3l1tpN0TnJ18JXvtq7cLsavcjAW8amzW3Wa+BR68r2eQIIDhoZWyN9LDs0WTqrPhJBfUHtP288IjcxMNQnTh7qE/oI1f3Q8j/odt6+1VrOgchexA/Co8Ebw2nGb8sG0vfZBOPj7Ej34AFbDGcWth8BKAovnDSOOMQ6LzvPObI28jG2KzIkoRtHEm8IZf549PPqIeJE2pnTUM6QynXIC8hTyUDMutCa1rHdxeWX7uH3WgG4CrMTBhxyI78pvS5IMkg0sDR+M8EwjiwKJ2IgyxiCEMgH4/4W9qbt1OXb3u/YPtTo0AXPoc68z0rSNtZd25bhruht8JX45gAgCQIRURjVHl0kwSjgK6QtBC7/LJ8q+yYwImcczxWcDgcHTf+o91Xwiul941reRtpg17vVYdVR1oLY39tM4KXlvetk8mT5hgCUB1YOmhQvGuserSJZJd4mMidWJlMkPSEtHUUYrxKWDCsGov8t+f3yQu0n6NPjZODz3ZDcRNwM3eHeseFk5drp7+559E36OwAXBrML4xCCFW0Zhxy7HvsfPyCJH+IdWBsDGP8TbA9xCjUF4/+i+pz19vDV7Fbpkeab5IDjRePo42Plp+ef6jHuQfKs9k/7BQCqBBkJMg3UEOcTVBYLGAEZMhmfGFAXUhW3EpcPCgwvCCYEDQAG/C/4pfSC8d3uyexT64PqXerg6gPsvO3676nysvX8+Gz85v9OA40GiAkpDF8OGRBOEfYRDxKcEaQQMA9ODRELiwjTBf0CIgBY/bT6Sfgq9mX0BfMT8pTxiPHs8bvy6/Nw9Tz3Pvlm+6D93P8GAhAE6QWFB9kI3QmKCuAK3gqHCuIJ9QjMB3IG8gRcA7wBIQCX/ij94fvJ+uf5QfnY+K34vvgI+YX5L/r9+uf74/zo/e3+6P/SAKQBWQLsAloDowPGA8YDpANmAxEDqQI1ArwBQgHOAGQACQDA/4r/af9b/2H/d/+b/8j/+v8sAFsAgQCbAKUAnQCAAE8ACgC0/07/3P5j/un9c/0I/a38afxA/Df8UfyQ/PX8f/0s/vf+3P/TANYB3ALcA8sEoQVUBt0GNQdUBzkH3wZIBnUFagQuA8gBQwCr/gv9cvvr+Yb4UPdT9pv1MPUY9Vj18PXe9h/4qvl1+3T9mP/QAQ0EOwZICCMKuwsCDeoNaQ56DhcOQg39C1AKRgjtBVUDkgC6/eH6H/iK9TnzP/Gu75buAO727Xvuje8n8T/zx/Wt+N37Pv+2AisGgQmdDGQPwBGcE+YUkhWWFfEUpBO2ETQPLwy8CPUE9wDg/ND45vRD8QXuR+sg6aPn4ebg5qXnLelu61nu2vHX9TT6z/6DAy8IqwzVEIoUqxceGs0bpxykHMAbABpuFxsUIBCYC6cGcQEf/Nn2yvEa7e/oa+Ws4srg19/c397g1uK45XHp5u328nv4S/44BBcKuA/uFJAZdh2CIJcipCOdI38iUSAfHQIZFRR/DmgI/wF3+//0ze4S6frjsd9Z3BDa6djw2CnajdwM4I3k7+kL8LL2sv3UBOMLpRLlGHIeHiPCJkApgip7KigpkCbGIuMdDBhtETcKoQLn+kPz8ust5SzfHtos1nnTHNIi0o7TWNZt2q/f+eUa7d30B/1YBZANbxW3HCwjnCjaLMMvPDE4MbQvuSxcKLsiARxgFBIMVQNw+qXxOelw4YbatdQq0A3Nd8t3yxLNPNDh1N7aB+Im6v3ySvzCBR4PFRhgILsn7i3FMhg2zDfPNx82xjLdLYUn8B9VF/YNHAQS+ibwpubc3Q7We89Yys/G/sT2xLrGP8ptzxzWHN4x5xTxe/sTBo0QlRrdIxwsDjN+OD08LD45PmI8sjhDMz0s1CNJGuMP8gTN+cjuOeR12sfRdcq6xMbAuL6kvozAZsQVym/RPto/5CXvnPpMBtsR7hwuJ0ow+jf/PSpCV0RyRHlCeD6LON4wqyc4HdUR2AWh+Yvt9eE817PNpsVWv/W6qbiFuI66tr7fxNvMb9ZS4THtr/ltBggTHR9OKkM0rDxGQ9xHSEp0Sl5IEUSuPWQ1cSshIMoTzAaM+W7s29801NbJEsEuumO117KhssS0NLnPv2XItNJv3jvrtfh2BhMUIiE8LQM4IUFNSE5N+k86UAtOekmpQso5IS//IsEVzAeO+XTr7N1g0TLGvLxItROwRq37rDWv5bPruhDEEM+X20XpsPdoBv0U/CL3L4k7VkURTXtSaFW/VXxTrU52Rw0+uDLQJbUX1win+ZvqKNzAzsvCqLiosAqr/KeYp+Opz642tuG/hsvO2FHnofZFBsUVqSR8MtI+SUmOUV9Xjlr/WqxYplMSTChCMzaQKKYZ6gnV+ePpkdpWzKK/2LRQrEum/KJ9otak9am1sdu7G8gX1mPlifUMBmwWKibLNNtB9UzAVfdbZ1/0X5ddYFh3UBZGjTk8K5EbBQsY+k3pJ9kjyrm8ULFEqNuhSp6vnRCgXKVsrQS408R2033jbPS/BfIWfifhNqNEWVClWT5g8GOaZDdi11yiVNVJxDzSLXMdJQxu+tfo6tcqyBK6Ea6HpL2d7JkxmZabCKFgqV+0sMHt0KDhSvNgBVcXpCi+OChHclM5XTJkJGjuaIlmBmGOWGBN0z9OMEkfSA3W+oLo29Zpxq+3HqsbofSZ45UIlWyX/pyVpe+wtb5/ztHfJvLvBJwXnClhOmlJPlZ7YM9nAGzsbIpq6mQ3XLRQt0KtMhIhbQ5P+03o+dXjxJG1eagEnoSWM5I3kZaTQpkOormt6LsvzBDeAfFuBMMXZyrKO2RLvFhnYxNrgm+QcDRuf2ibX8xTbUXtNMoikQ/Y+zboRdWXw7izJKZDm26T4I7AjRiQ1pXPnr+qSrkAymHc3u/fA8oXBSv4PBlN6Vr8ZfptpXLXc4ZxwWu1YqZW8kcJN28kshBu/D3ovdSGwieyHqTbmLWQ7YupivSMvpLbmwWo37b2x8bav+5CA7UXdivsPYdOxlw4aIRwaXW/dnt0rm6CZT9ZQ0oBOf8lzxEQ/WDoYtSwwd2wa6LMlluOWonyhy2K/Y81mY6lqbQSxkLZpe2bAoQXuyulPq5PUF4aaq5yyndFeRJ3QnEAaJNbXEzQOnYn5RK9/Z/oMtQUwdqvCqEYlWGMK4eehceHl43gll2jrLJYxNfXk+zqATcX1iskP41QiF+ga3d0x3lme0h5enMraqBdPE51PNQo8hNy/vjoLdSywB6v+5+/k8qKYYWvg8OFjIvflHSh6rDJwofWi+sxAdIWxitqPyVRbWDKbN11XnsifRp7VnUBbGRf4E/tPRYq9RQu/2rpUdSJwKquQJ/DkpWJ/YMngiOE4Yk1k9efZq9pwVXVj+pyAFUWjSt3P3ZR/2CYbeB2jnx2fod80XaAbdtgRVE1Pzgr6hXw//LpntSYwHyu154kksSIAYMIgemClYjikYaeIa45wELUoemw/8EVLStMP4FRPmEKboB3V31hf4597HembgRiaVJMQDos0BazAJDqEdXewJSuwZ7gkVaIbIJRgBaCrIfpkIWdHq08v1LTw+jq/hoVpyrqPkZRK2Efbrx3t33jfy1+pHhyb95iSlMvQRotpRd5AUHrqtVawfGu/J75kUyIQIIEgKqBJYdLkNScX6xzvoTS9+ck/l8U/SlUPsdQyGDYbZR3r336f2R++Hjhb2Zj51PdQdQtaBg+AgXsZtYLwpGviJ9tkqWIfIIhgKiBA4cJkHWc5Kvgvd3RP+dg/ZQTLymKPQZQFGA3bQl3P32ofzJ+6Hj0b5xjP1RUQmguFRkBA9jsRNfuwnOwZKA7k2GJIIOogA6CRYclkGmcsKuFvV3RnOaf/LkSQSiOPARPEl88bB12aHztfph9dHiqb35jT1STQtQurBm/A7ntQtgCxJaxjaFjlH6KKoSZgd2C7IefkLGcxKtjvQXREebk+9IRNCdjO8JNwl3patB0KnvIfZV8m3cCbwxjF1SYQhcvKxp3BKbuXdlExfayAqPhlfuLm4XxghOE94h2kU2dIKx8vdjQn+Uw++AQCiYKOkJMKFw/aSNzh3k7fCp7Xnb7bUVillNiQi4vkBonBZ3vldq0xpO0wKS1l9aNb4eyhLGFZoqrkj6exazPvdfQSOWE+uUPxiSFOIhKRVpBZxlxgXdIell5vXSYbCphzVLxQRkv2RrOBZzw5ttNyGq2x6bcmQ6Qp4nYhraHOYw9lISftK1fvgLRDeXk+eMOaSPXNpVIHFjyZLRuGXXwdyN3uXLXarpfuVFDQdcuBRtoBqHxTt0Pyni4E6lUnJ+SPoxiiR6KbY4slh6h7K4rv1vR8ORP+dsN9iECNWxGrlVSYvdrUnI1dYl0VHC6aPZdXVBZQGcuFBv1Bqnyy972y7u6oasan4iVNI9NjOmMApF2mAujbbAzwOPR8eTJ+NEMbyAJMxBEAFNmX+NoL28Zco1xkG1DZt9bt04xP8gtAxt0B7TzW+AAzjC9bq4rosaYhZKYjxWQ9ZMam0ulN7J5wZnSEuVT+McL1x7vMIRBFFAxXH1lsmugbjJubmpyY3ZZyUzNPfos0RriB7/0++Eq0NS/eLGEpVScLpY/k56TRZcXnt2nSbT7wn/TVOXu970KLx22Lso+7ky2WMdh3mfMantq8WZLYLxWk0otPPwrfxo+CMf1qeNx0qPCu7QhqTCgK5o/l4KX75ppob6qo7a6xJXUt+Wc97YJextiLOY7kEn4VMZdt2OgZmtmHGPOXLRTFkhQOs8qChqGCMz2YuXS1JvFM7j/rFakep6Vm76b754Qpe6tQrm0xtrVPeZd97QIvRn0Kdo4/kX7UHxZQl8hYgVi8V7/WF5QVEU5OHIpcxm6CMr3JedL17nI3bsascOoFqM9oE6gRKMHqWmxJrzpyE/X5eY097kH+BdwJ6w1PULDTO5UgVpRXUxdc1rgVL5MT0LmNeUnuRjZCMH47ujZ2fjLtb9utXGt+6czpS6l6adNrS61TL9Yy/PYsecg98YGLBbaJF0yTz5USCBQeVU2WEVYp1V0UNVICD9bMyom3BfhCK/5uup43FXPt8P2uV2yJK1zqluq26zesTm5s8IAzsXaoOgk994FXhQzIvIuOjqzQxdLLlDTUvNSkFC/S6dEgjuYMEAk2xbRCJL6iewl383S38evvoK3jrL4r9CvFrK2tom9WMbe0Mbcs+lA9wIFkBKAH24rADbkPthFpkouTVxNM0vFRjdAvzefLSkithWpCGj7V+7e4VzWKcyTw9u8M7i9tYi1lbfRuxnCOcrx0/Pe6ep09zMEwxDCHNUnpjHrOWZA5kRKR4RHk0WJQYg7wTNyKuYfbxRoCC/8IvCf5P7ZkdCfyGTCDr69u3+7Vb0twebGU84310zhQuzC93ID+g7+GSokMS3ONMc68T4uQW9BtT8PPJ02iy8TJ3gdBRMNCOj86fFm57HdE9XOzRfIG8T0wbDBUMPExu3Lo9Kv2s/jve0p+MICNw02F3IgpCiQLwA1zjjeOiM7njlcNnsxIiuEI+AaeRGZB4/9qPMv6m/hqtka0/DNU8pbyBbIgsmRzCrRJtdU3nvmWu+r+CMCfAtsFK4cBCQ3KhcvgjJgNKY0UzN1MCUshybIHyAYyw8LByX+XfX47DblUd5/2OnTsdDuzqrO5M+R0pjW2Nsm4k7pGPFG+ZcBzAmlEeUYVh/HJBApEyy6Lfwt2SxeKp8mviHiGzoV/Q1iBqj+CPe+7wHpBuP43f3ZMden1WjVdNa+2DTctuAg5kbs9vL8+R4BKAjiDhgVnBpFH/EihSXxJisnNiYcJO8gzBzUFzESDwygBRf/pfh98s7sw+eA4ybgy91/3ErcKd0U3/jhvOVB6mHv8/TL+rkAkQYmDEwR3RW3Gb8c3x4KIDogbx+0HRkbtBeiEwUPAwrEBHL/NPo09ZnwhOwT6V/me+Ry40rjAOSM5eDn5eqE7pzyDve0+2kACwV0CYQNHBEhFIAWJxgMGS0ZihgsFyAVehJPD7sL2wfOA7f/svvg9130RPGr7qPsO+t56mLq8uoi7OftL/Dm8vb1RPm2/C8AlgPPBsQJXQyJDjgQYRH9EQsSjRGJEAsPIg3eClMIlwXAAub/Hv1++hn4APZD9O3yBPKP8Yzx+fHR8gj0lPVl92v5lfvQ/QoAMwI5BA4GpAfyCO4JlQrjCtoKfQrRCd8IsQdTBtEEOgOaAQAAd/4L/cj7tPrX+Tb50vis+ML4EPmS+T/6D/v7+/n8/v0C//3/5AC1AWcC9wJiA6cDxwPEA6ADYAMJA6ACKwKyATgBxQBcAAIAu/+H/2f/W/9i/3n/nv/M//7/MABeAIQAnQClAJsAfQBKAAQArP9E/9L+Wf7f/Wn9//ym/GT8Pvw4/FX8l/z//Iz9O/4J//D/6ADsAfIC8APeBLEFYgbnBjkHVAc0B9UGOAZhBVEEEQOpASIAif7p/FD7zPlr+Dj3QfaP9Sv1GvVh9QD29vY9+M75nvug/cf/AAI8BGgGcghICtoLGQ35DW8Odg4KDisN3QsoChcIuAUcA1YAff2l+ub3VvUL8xnxku+E7vrt/O2M7qrvT/Fx8wH27/gk/Ij/AAN0BsYJ2wybD+0RvRP7FJkVjxXcFIEThhH4DukLbgiiBKAAifx6+Jb0+vDF7RPr+eiM59nm6ea/51bppeue7iryMfaU+jP/6AORCAgNKRHTFOYXShrnG7AcmhyjG9EZLhfME8QPMgs6BgABrvtr9mLxvOyd6Cjle+Kt4M7f6N/+4AvjAObJ6UzuZ/P0+Mn+twSSCiwQVxXrGcAduCC4Iq4jkCNbIhYg0BygGKQTAQ7iB3QB6/p49E7unuiX42DfHtzs2d7Y/9hR2s3cYuD35GvqlPBF90r+bQV3DDATYxnfHnYjAydoKY4qayr9KEsmaCJvHYYX2BCYCf0BQvqj8lvrpeS23r7Z5tVP0w/SM9K906PW0tos4Inmuu2I9bj9CQY8DhEWSR2rIwMpJi3wL0oxJjGDL2ks8Cc2ImYbtRNaC5gCs/nt8Izo0+D/2UfU2c/bzGfListGzZHQVNVs26vi3OrA8xP9jAbjD84YBiFMKGMuGzNNNt03uzfnNWwyYy3vJkEfkxYoDUYDPPlW7+LlK9111f/O/MmXxuzECsX0xp7K7c+71tXe/efu8Vz89QZoEWQbmCS9LJIz3zh4PD8+JT4lPE84vDKWKxMjchn+DgYE4Pjh7WDjsNkc0evJVMSHwKO+ub7MwM7Eosoe0gnbIOUV8JX7RQfNEtId/Cf9MIs4az5sQm5EXUQ3Qgs+9zcoMNgmTRzaENUEnPiN7AfhZNb4zA7F5b6vupG4nLjSuia/eMWZzUzXR+I37r76fAcQFBYgMCsGNUs9vEMlSGJKXkoXSJ1DDz2fNIwqIh+6ErIFcfhb69jeSdMKyWzAs7kWtbuyt7INtay5dMAxyaLTd99V7Nr5mwcxFS8iMS7XOM5BzkieTRdQJFDBTf5I/0H3OCsu7iGcFJ0GXvhM6tXcYtBXxQm8w7S/ryetEa2Br2W0mrvpxA3Qsdxz6un4ogcvFhwk/TBtPBBGnE3SUolVqVUuUypOwkYtPbMxrSR+FpQHY/hf6f7asc3gwee3GLCvqtmnr6czqlWv77bHwJPM+dmS6O33kgcLF9wlkzPEPw9KI1K9V7Ja6FpbWB1TVEs7QR81XSddGJUIfviU6FXZNsunvgu0tqvppdWilKIopYGqd7LNvDbJUte15uj2bAfEF28n8jXcQshNX1ZcXI9f3l9DXdFXsU8fRWw4+ik3Gp0Jr/js59nX9Miwu3ewoKdzoSCexZ1koO2lNq4BufrFwNTf5Nz1MQdbGNMoGDiyRThRTVqqYBxkhWThYUNc01PTSJY7gSwJHK0K9Phm54zW68b8uC2t2qNOnb6ZRpnsm5+hMqpltePCRNIS48r04gbRGAkqAzpFSFxU612kZFRo2mgyZm5guVdVTJk+8C7RHcELTPkB527VHcWMti+qZqB/mbGVG5XEl5mdbab/sfS/489Q4bTzgQYlGRArtDuSSjNXNWFIaDRs2Wwxak5kXFugT3NBQzGMH9cMt/m95n7UicNitH+nRp0Ilv6RSJHvk9+Z7KLQrjC9n82c353yDgZZGegrKj2ZTLtZKWSSa7pvf3Dbbd9nul6xUiBEeDM4Ie8NMvqZ5r3TMcJ/siClfprskqeO0Y1xkHaWsp/dq5u6esv43YbxiwVtGZIsZD5YTvFbxmZ/buFyyHMscR9r0GGFVZ1GizXTIgUPvPqU5irTFcHjsBKjDpgtkK+Lt4pOjWCTwpwpqTe4eMln3HHw+gRjGQ8tYj/QT9ddCWkPcal1snYidApummQZWOdIezdZJBgQVPut5sTSNcCPr1ah+JXOjRiJ/oeHiqGQH5q3pgi2nMfs2mHvXAQ8GV4tJUD/UGlf8Wo+cw54Onm5dp1wFGdpWvtKQznJJSUR9/vj5ovSkL+Eru2fPZTPi+aGqIUgiDuOzZeJpBC06MWI2VfuswP4GIEtrEDmUadgfWwLdQ56XnvveNVyPmlyXNdM4johJysSpfw0537SJr/Crdme35IzihiFt4MahjGMzZWkolKyXsQ92FXtAQOaGHgt+UCFUpJhrW12dql7HH3DerF0E2s0XndOVjxdKCgTW/2f55zS975HrRie3pH6iLGDLIJ5hIWKI5QIodCwAcMP117sRwIiGEUtC0HbUipigG59d9x8cn4yfC12kmyqX9pPmz19KRkUGP4i6OTSAb8UraqdOpEliLGCCoE9gzmJ0JK4n42v1MH/1XPriAGTF+os5UDqUm1i9W4heKh9YH87fUl3uG3TYP1QsT58Kv0U2v696FPTQ78prZCd85CzhxqCUYBogk6I1pG2noqu18AQ1ZfqxQDuFmYsh0CzUl5iDm9geAt+5H/cfQN4hW6tYd9RlD9bK9EVnv9s6erTvb+DrcidCZGnh+uBAYD6gcWHNpEDnsmtDsBD1MvpAAA=\" type=\"audio/wav\" />\n",
|
|
|
|
|
1041
|
" Your browser does not support the audio element.\n",
|
|
|
|
|
1042
|
" </audio>\n",
|
|
|
|
|
1043
|
" "
|
|
1284
|
],
|
|
1044
|
],
|
|
1285
|
"metadata": {},
|
|
1045
|
"metadata": {},
|
|
1286
|
"output_type": "pyout",
|
|
1046
|
"output_type": "pyout",
|
|
1287
|
"prompt_number": 15,
|
|
1047
|
"prompt_number": 29,
|
|
1288
|
"text": [
|
|
1048
|
"text": [
|
|
1289
|
" \u2148\u22c5x \n",
|
|
1049
|
"<IPython.lib.display.Audio object>"
|
|
1290
|
"3\u22c5\u03c0 \u212f \n",
|
|
|
|
|
1291
|
"\u2500\u2500\u2500 + \u2500\u2500\u2500\u2500\u2500\u2500\n",
|
|
|
|
|
1292
|
" 2 2 \n",
|
|
|
|
|
1293
|
" x + y"
|
|
|
|
|
1294
|
]
|
|
1050
|
]
|
|
1295
|
}
|
|
1051
|
}
|
|
1296
|
],
|
|
1052
|
],
|
|
1297
|
"prompt_number": 15
|
|
1053
|
"prompt_number": 29
|
|
|
|
|
1054
|
},
|
|
|
|
|
1055
|
{
|
|
|
|
|
1056
|
"cell_type": "heading",
|
|
|
|
|
1057
|
"level": 2,
|
|
|
|
|
1058
|
"metadata": {},
|
|
|
|
|
1059
|
"source": [
|
|
|
|
|
1060
|
"Video"
|
|
|
|
|
1061
|
]
|
|
|
|
|
1062
|
},
|
|
|
|
|
1063
|
{
|
|
|
|
|
1064
|
"cell_type": "markdown",
|
|
|
|
|
1065
|
"metadata": {},
|
|
|
|
|
1066
|
"source": [
|
|
|
|
|
1067
|
"More exotic objects can also be displayed, as long as their representation supports the IPython display protocol. For example, videos hosted externally on YouTube are easy to load:"
|
|
|
|
|
1068
|
]
|
|
1298
|
},
|
|
1069
|
},
|
|
1299
|
{
|
|
1070
|
{
|
|
1300
|
"cell_type": "code",
|
|
1071
|
"cell_type": "code",
|
|
1301
|
"collapsed": false,
|
|
1072
|
"collapsed": false,
|
|
1302
|
"input": [
|
|
1073
|
"input": [
|
|
1303
|
"a = 1/x + (x*sin(x) - 1)/x\n",
|
|
1074
|
"from IPython.display import YouTubeVideo\n",
|
|
1304
|
"a"
|
|
1075
|
"YouTubeVideo('sjfsUzECqK0')"
|
|
1305
|
],
|
|
1076
|
],
|
|
1306
|
"language": "python",
|
|
1077
|
"language": "python",
|
|
1307
|
"metadata": {},
|
|
1078
|
"metadata": {},
|
|
1308
|
"outputs": [
|
|
1079
|
"outputs": [
|
|
1309
|
{
|
|
1080
|
{
|
|
1310
|
"latex": [
|
|
1081
|
"html": [
|
|
1311
|
"$$\\frac{1}{x} \\left(x \\sin{\\left (x \\right )} - 1\\right) + \\frac{1}{x}$$"
|
|
1082
|
"\n",
|
|
|
|
|
1083
|
" <iframe\n",
|
|
|
|
|
1084
|
" width=\"400\"\n",
|
|
|
|
|
1085
|
" height=300\"\n",
|
|
|
|
|
1086
|
" src=\"https://www.youtube.com/embed/sjfsUzECqK0\"\n",
|
|
|
|
|
1087
|
" frameborder=\"0\"\n",
|
|
|
|
|
1088
|
" allowfullscreen\n",
|
|
|
|
|
1089
|
" ></iframe>\n",
|
|
|
|
|
1090
|
" "
|
|
1312
|
],
|
|
1091
|
],
|
|
1313
|
"metadata": {},
|
|
1092
|
"metadata": {},
|
|
1314
|
"output_type": "pyout",
|
|
1093
|
"output_type": "pyout",
|
|
1315
|
"prompt_number": 16,
|
|
1094
|
"prompt_number": 20,
|
|
1316
|
"text": [
|
|
1095
|
"text": [
|
|
1317
|
"x\u22c5sin(x) - 1 1\n",
|
|
1096
|
"<IPython.lib.display.YouTubeVideo at 0x10a0d8190>"
|
|
1318
|
"\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 + \u2500\n",
|
|
|
|
|
1319
|
" x x"
|
|
|
|
|
1320
|
]
|
|
1097
|
]
|
|
1321
|
}
|
|
1098
|
}
|
|
1322
|
],
|
|
1099
|
],
|
|
1323
|
"prompt_number": 16
|
|
1100
|
"prompt_number": 20
|
|
|
|
|
1101
|
},
|
|
|
|
|
1102
|
{
|
|
|
|
|
1103
|
"cell_type": "markdown",
|
|
|
|
|
1104
|
"metadata": {},
|
|
|
|
|
1105
|
"source": [
|
|
|
|
|
1106
|
"Using the nascent video capabilities of modern browsers, you may also be able to display local\n",
|
|
|
|
|
1107
|
"videos. At the moment this doesn't work very well in all browsers, so it may or may not work for you;\n",
|
|
|
|
|
1108
|
"we will continue testing this and looking for ways to make it more robust. \n",
|
|
|
|
|
1109
|
"\n",
|
|
|
|
|
1110
|
"The following cell loads a local file called `animation.m4v`, encodes the raw video as base64 for http\n",
|
|
|
|
|
1111
|
"transport, and uses the HTML5 video tag to load it. On Chrome 15 it works correctly, displaying a control bar at the bottom with a play/pause button and a location slider."
|
|
|
|
|
1112
|
]
|
|
1324
|
},
|
|
1113
|
},
|
|
1325
|
{
|
|
1114
|
{
|
|
1326
|
"cell_type": "code",
|
|
1115
|
"cell_type": "code",
|
|
1327
|
"collapsed": false,
|
|
1116
|
"collapsed": false,
|
|
1328
|
"input": [
|
|
1117
|
"input": [
|
|
1329
|
"(1/cos(x)).series(x, 0, 6)"
|
|
1118
|
"from IPython.display import HTML\n",
|
|
|
|
|
1119
|
"from base64 import b64encode\n",
|
|
|
|
|
1120
|
"video = open(\"../images/animation.m4v\", \"rb\").read()\n",
|
|
|
|
|
1121
|
"video_encoded = b64encode(video).decode('ascii')\n",
|
|
|
|
|
1122
|
"video_tag = '<video controls alt=\"test\" src=\"data:video/x-m4v;base64,{0}\">'.format(video_encoded)\n",
|
|
|
|
|
1123
|
"HTML(data=video_tag)"
|
|
1330
|
],
|
|
1124
|
],
|
|
1331
|
"language": "python",
|
|
1125
|
"language": "python",
|
|
1332
|
"metadata": {},
|
|
1126
|
"metadata": {},
|
|
1333
|
"outputs": [
|
|
1127
|
"outputs": [
|
|
1334
|
{
|
|
1128
|
{
|
|
1335
|
"latex": [
|
|
1129
|
"html": [
|
|
1336
|
"$$1 + \\frac{x^{2}}{2} + \\frac{5 x^{4}}{24} + \\mathcal{O}\\left(x^{6}\\right)$$"
|
|
1130
|
"<video controls alt=\"test\" src=\"data:video/x-m4v;base64,AAAAHGZ0eXBNNFYgAAACAGlzb21pc28yYXZjMQAAAAhmcmVlAAAqiW1kYXQAAAKMBgX//4jcRem95tlIt5Ys2CDZI+7veDI2NCAtIGNvcmUgMTE4IC0gSC4yNjQvTVBFRy00IEFWQyBjb2RlYyAtIENvcHlsZWZ0IDIwMDMtMjAxMSAtIGh0dHA6Ly93d3cudmlkZW9sYW4ub3JnL3gyNjQuaHRtbCAtIG9wdGlvbnM6IGNhYmFjPTEgcmVmPTMgZGVibG9jaz0xOjA6MCBhbmFseXNlPTB4MzoweDExMyBtZT1oZXggc3VibWU9NyBwc3k9MSBwc3lfcmQ9MS4wMDowLjAwIG1peGVkX3JlZj0xIG1lX3JhbmdlPTE2IGNocm9tYV9tZT0xIHRyZWxsaXM9MSA4eDhkY3Q9MSBjcW09MCBkZWFkem9uZT0yMSwxMSBmYXN0X3Bza2lwPTEgY2hyb21hX3FwX29mZnNldD0tMiB0aHJlYWRzPTEgc2xpY2VkX3RocmVhZHM9MCBucj0wIGRlY2ltYXRlPTEgaW50ZXJsYWNlZD0wIGJsdXJheV9jb21wYXQ9MCBjb25zdHJhaW5lZF9pbnRyYT0wIGJmcmFtZXM9MyBiX3B5cmFtaWQ9MiBiX2FkYXB0PTEgYl9iaWFzPTAgZGlyZWN0PTEgd2VpZ2h0Yj0xIG9wZW5fZ29wPTAgd2VpZ2h0cD0yIGtleWludD0yNTAga2V5aW50X21pbj0yNSBzY2VuZWN1dD00MCBpbnRyYV9yZWZyZXNoPTAgcmNfbG9va2FoZWFkPTQwIHJjPWNyZiBtYnRyZWU9MSBjcmY9MjMuMCBxY29tcD0wLjYwIHFwbWluPTAgcXBtYXg9NjkgcXBzdGVwPTQgaXBfcmF0aW89MS40MCBhcT0xOjEuMDAAgAAACqVliIQAV/0TAAI/3gU2tIW7KawwaCmQGTGHKmuYAAADACBcshU+yICkgAA14AHowiEeT6ei7v7h3Hu0i2fpUBLGBIkbCMP3Vfz+9BVGCDXnw9Uv5o3iN030tb7eq6rsEEhHs2azbdTiE9Csz5Zm6SiUWRdmB43hbD5i6syATuODUJd7LM3d9cbFpc7zFlu5y3vUmNGd6urpvKKT9iyleIyTuR1sVS431DhevGfkUllVeIznYUe2USoMW1tufETjyRdmGldN6eNlhAOsGAH4z+HkrwKecPPU7Q5T4gDAIxj9hW84jVExMTSTHxkPTq1I4OotgUxURCGTsw60k/ezPNmNg38j1bqaGmPcruDKEIBDsK5qEytFB90Q68s0h2wmlf2KXd5bleBefiK+/p47ZsyUO4IdlW25rRy+HLjt6wQXfYee3IkiQOoOK+U7u/lxcl78zfxwIoEMjUUSKNZjkp8clnmecDDJ3Kz+viF7bPklk7N6QRyizAKPIIpnNJUuMWQmqeL2Or6cr4D0/0tOym+4tficxmhuEONKUtO2pPn3hRjMllkd12tXp70fLTfxy0dwB70ML9iLEcItHb7zVupHlP5RxdvecpREw+OsIPr9KWilIesNE19jgIbT+TkiRBjOoKvUuwcQnKg7fOTHVoLvnKuAfea+oujEdm1Rwd2tEOnkF+ZC11WaNQsiNR/eJ9EnUXjXDYGfhB+Oe7qj8nYTT+eOXg1cuJNgLXEs4vOheWEjQOqfIWMQc3DmTof5s0ksBmUQ3PQ+UHPxZSnmOEZB+j6xT3wbm7HGzDjWtSg1SjTxd1EiJ8xA4SIxxR8WIKLg+TwFxJNS7Laxq7Uglu3AkXe82P1JCdJX5PsbFbxuDbuJgakzRcTwMLLSKCiizS/eCW0uJed/lev9yb80kKlVET4S219cn/zhkpeDV83cHYOr+sJQKDRk/Wh2c7fsuxfxaEH/6reSmvFDsAnXAyPXliJ3G4VG3OkEM5K5WyGGrBizZbTrdGsBnzj5VSGGOJdCKuRrUluw/8es2vYRPs9BcTqAqvHk9M52SSIf+1T6L53EZP8VbtXB+G29CMW4xVCK/B/YDjaNmqMwJ61dapugjnWJfqeXlGGa3Ch3aA7gi30T8PucNRBjLK3lF67ZDDvkWXRQXd+VMnKWHkBbCkQ/F/fMuNpHO3C00Y2pljna1qImBhVMvPe0F7Qx7G/YyxLRzhyUU8e23HGzp0agtNJRbydbrPV+TqJMSifJMNcZIf8wkdnC3/xdpcXnLf2Ye3Kbd0o7utciTG+q5h6WTEk+PaNbXLLA0YyZ2VnLTcyV1QTS76aNCbV9Q1/OQ7QU81Gg0hPa9aSiscGary6jLVwDQaik4zLsi7jPqgPVdup7pwx7uJDqRCVcVi5QoZFp/GHdex5sJTF69A6sja69/NLkFIWNSIeRcuGahXpF+wZeYIrqJv975s1TKYKAvp1WtzgtgWNkcbzCtROqf8rPtlAIxkX8GLcEo9zfExyfimeXQ64qfFxEy0IMy2Hsxau9fSMqUnIjntuVVjCQtBL+94gx1RZLndE6wROVTq/wHwHrQzo9QL9cpPqPFJjiZ/NGZIFuudS+wsBFe6Hu8Oitf5zToLqLdtU4Smwh4ne3JsiT9lOzN+4PPw3VSx9l5FppVwdKUWELw1dYpCOppyVWlJ3YQ8H4FQQM8EcYMG9N3Bxu79y1J1ikuvuhMmLQlehLTbguhbix74hd1VIQC8EjHmOZSSWbssulYwPbr6FF49tifk6PymJvulR9/u+2585HkRfbxveGeWCz0ix1pIVfaNpESKmtLy/0mcbMg9hYDz2werz9oe0lT2BiMV6uAin6RaQcT8Vk9MPctfwae+gkvtnZA/sOBk8MbpylaHqc0KIVHhhLFMNnkOFiucjtGo/JWTa/F6g8wWeow5ZuIJUORaYHWqegZbTgM9dCsYYsfZGjjVMuSlDIvpYvIvFFooGPC7Ye2Jfawmq4Ut7EL/nv/dyAd2HRc5msmUhzeu/XpX3rVlzRmf9/Qan8Dbve3QfW1Ym0o5J/KAc3z1VBho7JBr5PgCL68RiD9jZHN0VvsT4gzsEjNlW3D91Uy4RduaodBFoNTzXwlfUYULBzdiTbH75l/UmVMC4TKeTWhNzw2UezaqeGd8at3WSY7W/VR3+hvZHDpkIjgKuNNH0DsCRa/Kk56XQoHIyvvUH/eNekNvziReqS4qgLnXUT4BRGt2BOtCifI6+X/DGHUOmWlX7TN5b4pw5U7jwfwshtbhGZM49T8JMk15Mzrc7tM6J11TYxb5R3mQhZ8TZumJ0bMJXPM69HFyihr5dJSEJMycxJVUh6NTQALUOoRTHIOwE+FpWI6feTv1SiZ0YpYe5DbkYJJbN7zAHbAKw25XvqR2mAjQmOlsfX/tK8DPjP/8h5/xgAF4EUbj1tOnQCBQL8jk9vHtfsXncsprww4Z+P/Z/UrKifuFyEpBWN8kLpF7yywE2iYdDruV9+/qKR8rC9ozNKyqQNIwtxrzYkWpE5t8K7gG4JFnrHona/Rp8dOX6VW41+jb5LB1LEtE8MwjLp3RCUOq/+6yLzaOEgBTqzvEjDeFpg/u9DMHMr4/2TOchfjg7dl+uQ6Gsx+4Ia9W7vivG95027p25eKL0nHvx/OqmAQEZYJL/JO58lOj0zPdJxrQ5dZksjMISzVZNn7DsxqE3zgBBuNzk50R8lTK3U8P12QiOAQYSTeGlYlkvfeofrfO1AitEj02m9aUkxTFd1ZZJoLQT2d3zEU5PmE4lxMVfL5ttNnIbqfcIU2RJKNWqdw77xfjfrNc/eNpRKPZ/6z50LzBprgjzBHRfKgSWWkDxHrX0aTbgwQFwd51+PoUWH4DkQg26uGslF5Hn3hB58+fkeLTosTANOIBNAeFZtTc4PIaLHw759zae7scY55xcTabzlilYIftst2RZ6ntsRC3zFxduCKvL6wLfYT+TiIWJn5P7sTwZwXuSzXY+9Q3xMZ5o4Xcpz6vD9FtTjzS69iefEYt4pXiDrZUo4ePGiLeoIFIwYB/v6GXdmG5VLLk+eKbOc9AmsX2zmvqtcvDRGQbzugXbH/kTH/lkNPBTmqN3ZJODUEXVohPEJ6th0xna0EVleB73Q3eNvaVUvhlJbjs3D/T17FRCebN7AOXvzzbLE/I5kNfEmJcv4dxtIeo2uQ/z9ohSpiZzbDj1u40nJRyJxUK60wEv0nA9f/NuJ6/PEyU0bkK16z2KH12k3Lc4+1f5fawIzkK2qJRB4wnj8VHhUW9mbJhs9vgfFmU3xrXSShY67Ygb+gYNPxxtn4K/9eTSwIA9fv/nR33lA2lZoXALRUTmOZIl3R0gAM5h6oX1y1thIyqViBK95VZc8Pvy7G3O90M9S4zkpyFQ36jrMazvMveMA4d39fvoaC7p90quiJfjI4yrl+ECVkCJL5MxRSa+iVcIL7Xbl0jVaGhZIcMYmcGOBbLzhJgloM1x1zFnnj3ggJRFAM8yNnXxhavk+mA18JC+y3lqGsp6vPReRxGlGHMou17L4It070LzkoeCzarpv8Apw59smdS5KN9qVN1WgeL7OSN8BHg94ubCvS7DW6H3/PbtRB62jFLsBhUV5YqCIbIN5VZ81AAACpUGaIWxFfwAru8x8uT3FuOjrAeSWXmAWqq9jCNGE+N5AOv//9//xjk4uBAcADN96c97AVGmzRtnWwPsgcCbLrVdQJgbKp4QSmPwQnVhv0hXyBjeFWWlcvx70urEN3FK6/lvk2tQeZgbtlbzXluvTfnSj/Ctz7vZ+O1FjhDzzdpL7uLzewzCIW5VWLAEKUVuS2J6wNk6MR7UblcEd4EtOY+R4/qJgfojCsfRvA0oC5dc41Vd0erZbSkrmPTjLCn815bxlchUJMS8gQD5hJNwoKHvNLNwn7XKuTtYIhH2wVNZvDWgzCjlPeQajnrcMsb6bZYJvNJU8HuGHvm50r7VG8qifEwmuyegAZXojh5Ul5VvjDW7kSAZyw8a7I6mHY3FZHd+OA3V4JZMbNliI3Tj1L6+MKTmilVialmyZagRtEMeKRdtxUPd3vVEtrOBVIVYWdgAGA7HmZiHQUQNxLkWxbLyWVlrh5EM0Do2NdbclHxxArz90d+MSVeUOIXQ/4V9quq8C8qVflo1gPtPMkjO2/UrdOYqhY404ReObOu/fdp4hAEDq6jhy64vOeT7XUK/Onq0rXTldtA6kvgQaJg+mgYSR9hfXtMbOUSLgLj/RmBSO8aAMHuJJZqf1tCM5pZ9eYUsrHmy+/z2NGalon0//uF6+33bQzT/RLRfBbYTjy9QrJqHLlw46lggWPGkHuPKSqk/CB7U4pNPXUbR0DdcJy9Db00wCzVzxVc6h7jfCFgiL2Y0HVqd6bgIaVUqn/gJCEyCDVplnzebv0gg3XwMJAGu639lHu7rEvxTp1smIYjWp9R5L4SspVvS07Nb+Smk1FgsMp1K3EMUT8X2Fty4VG54/Ec6bE8tNVw4/QV1VzBw7Px2/2eEhhUS+FMfbHAlD28x00jRgAAACW0GaQjwhkymEVwArOUkEOhoFqiELtH8wgecFLiUq6WqmwAP7iGEwbYzfnHacfqUNXAfD+CGR2ap0lAHL25ipuYtd5j2O0PU/MpaWPG/n2y5OkfTzaOpotaR5tWjN55B2XblVVqsFfBC/mvsiPvCBWUHFChacdY5whj5mP5rqQ0dqLJCsWjrs4TWnIbL2V/Iwfj3hwI35jfo1JkTOeR+8GhOdma9rgiKWafCbQyhYMTDmVdvhND60Flm97EDSTjF0OC+0gD9b8Yn4tNeHipCa/aWyt0n79bMmjfcjntBCPjrcB5ecRTpfGHbEHy1IRj2cjkGXKC+VYoYJXBp4rd4cMd8ygLCk5nBSd8/cTaKNRjdBscOeTXG6QEjSxj9/2pVwx9DMRVtWQR0BSaAcQcZ8W2KPSaeRC4QwmNMu2xx25CSyrDiq2rFSK/JJtmvoIjAKq0ciEXoOgw+Ke+Ylb7ULKCS3k1p/613UNRp450uSq5b7CAHo7S0b7fBMLfNmwSjRYEhLlo0HUaRe/I+IX2Z6XdZH9Hty/399ZA1PwZGC6EfvUJIf7CBeaxv7cu6IT2/s0zPRGthpvXpYw6A7P4Wwz5C4V98KnIUNUanadqabKP6eXWhvbvcQHxAjiOOiKZgXZplZW2g+B2NNyJSLiR+g48DqvWR6t9S2aGfFjdOW1Gi6oTtZ1d4p5XIslAr8mryeZ6+htSSQe4AcfVt7k+V6mOthBCYtr/LEU4ZHtl0mW9876PK8mRFAaT8DJOUFVz1lPfzRApuPggkkyq+UMvyfKTUbCk7/DpfX8Y4s4QAAAg9BmmNJ4Q8mUwIr/wAsWUPjZw3ksgRsxZ6n4fQjprPbkj2aUh30y0bZJnLmiXnWskvOGnCPwBnG9dEhatwX3hoxk7BNyG+wQ4emZUpcVzcWl2T9nKQB1euucuZWHTg7TCtM/iHyfPO2vbmGsfzs70b/egIbywUH4y4BQSL1nWc1SmpHm2zHMBcUjYLDZ5gL5vdfxn0V8FFw66G88c/LN4I5icUa7xf4fcSBKywU0ajbp1P+aJYjBgWT6Ggu0MDLDNl54tfqd42lKosQtM1aif4WXAZFP5Ww3vrQ1rH9+utSYxqZd6N6gGtNbSNMcViaKn5LcnjsbBi3T3EmGqshEbcme8VHKwR3kSfBOAprrIsv6K8R+X6az+MD23rWka/2v64m1qM69D7Xa+Kcs/n0KLCJdTilyaGadopLeaAn3eYvWTeHcucMM1Fp1KgHD1tiFeO6HvobLkZlRximsA3/7MiohYklLIcJrZL22BH+6W9d6kZsYIsej9RM681nU6mWNjepBAfAfTbrGRrVB/h2DxC5B8YyRjgSIzQjNYrse0rzChqbrsLl7mQ7W+1bsNKze5//9ZIa8rSsF+BXh/vgoRTDkPW/ws95B7VPCZEFChfX0icw+tpcpN/q7NY87tUn4vESdSiMMlyhKklMjQu/G51J69ZRQLs2oUO6YfoJFqliy4qCFCrf8SZE9Fc6DcCagAAAAodBmoRJ4Q8mUwIr/wArPWF/KOw78THwadfPqhJO0CnmR/M74/XYZLqVYKlNcEaYauf+vrRUDJPmu75sMKy2Y+Bnslc/iAISSyWtw/h/3CF8fE5ZrbrwSNst+MSyCoNWP+8imtoX2eyojpdCk8YP5K+cbK4SJPCkZXbYqSXYk7hO8AdSemBHgXKWiZ+UOr802aJo+98ZOIjX9hWL9bo31Gqx7cy4ZG+W/ar/WGlzDa1xPWnPRsEdrIcZlEVGV/jGmbirkxw1lyUYoqj8Vv7Bxube9XPQlBkXOV6Lc1LT2IzNq0V7WwVhF0kA6yxfAsFxc9krNEH8vGGntTWI608ovjatXc/CKKXw7AjJSftlTcLI0hIIGXbRUr0NCYNp7M4cVd/n73Rjetnixz4SAKpcz/P47UsijZG7T3SxzK2D79WS42aEalc12hQwCZ01LfmF/H2mmGEvOzPBie1D0YT7Jh19vxa4Dd3SQ1FrDfmSUpvv4DjbYcZ2PrPpFpWtMjWqHBeoyMiZf6RP3EfYR6z9jsVNIIHxM0bzzBQF8eeYkPgDySydxPXv9Izo+QUY94N8kWi16fI6eZSDc1G0Yo0L91jcRQuDMGGS7B2zuf/0GbJyRhUO48UbMrqnILMrbQg1LF00Q3pH9nbGEK/RRQpRN3T/J/4IZQjwW2Ft2ipWGztg1Jn9I4DmffKS60QC+JQcyakdVON6zDcKttIKlqeTcmAi4xzmo4QXa2dRKleS+fs3EtTdBBtony2wK9T2Imj+NCziOSEL7Q7VuIU8kclUHrJJsSneFcxGRgIgGGUEQM8/pklwTOqab7mMmJeRiaBrjJDEnDpkR4Vz3qXxgyn4/5x24FuTMNVPwQAAAhtBmqVJ4Q8mUwIr/wApcLwPT0/Xh9UdWqWXIs8Wbj5K1hivmN6qIQnq+aolcegdlM/63MbHsdC6xYZC1e/Q8UjQCt9N/Ejqwms8DzeWv2qxskeliZH0kt1QWkErWSEodq7V0ZNksctLkMGWayX33gBT368EehfIeGDolBZoqIbJfb4nqcfU+ev4OzVv9zVqWyLck315GFmXxQKIM8pICQc8Q5es34LH1+DmnMnW8kQpVGrztQcDXhjCU3F0fOgoSsXSVWCjc6XKqGbCwQDfJUxCfXfIT6YmQoPpVp1mpGy1wQypXus9z0bScDpyDu23hViYDntdj1O45ea0znKZkj1+tLHbBtqAGJ1WTcbGlF6Vya6hQhEsiiZUIC2fRxIj8/wEXCICIbr0gZ/m6gcOhE10tenvE7iy+BKY81wLWrnzos3S6FWxYtmCRes+LLhNGOKWRuQo6SyePH2OZ90xZm8oA1MuTe3V59euVNxjAt0FLkAc9TEiFhP/8CB+gA8mF+A8h1U01f4DVX55GzCH51jHI2xUS0L9GtsHoBxLPLK/NNel8zcnwG4X+UusfcfEb5hh+ffnXteCE9vRGbs2n9wYW0xA3ZicklfadmWKUtMiHYBfkMSULWnkBQr4CXxjpYOs6ygeEoA5+5B0B1SZObgZ42wWqddyyYE0NfwQAl75tfdJGqOa7OMHwBYNeatJaJK0zT2+bFaw2qWCWwAAAitBmsZJ4Q8mUwIr/wAstkdsayRXchoFk703izqzduZ5WsyXriI9cfUdMUWvm0iGHwYIrUujvz3Yjou+JLwv9df2kt7MJo8u+3P5CjEKbwlz4vkE5AHTAbgXn3+Xc/MMJLgW5cm7iX3KiGNnBpbphhwJRlb3u91NRDr0d1IR2up/z7lKxE7XPAPFe0siPMYVlIqWNSn5KqLABPeuxxbOsvMEb27/nH1LUVM8I2F95c1I3Lv1SpkhZXjs1JsmS9X7gsoTxkXyShGC2+zRJSGUbhCPo/q1XSFMHQyMWJ79FKPQSL/RpVsacN2bYwdKo4TFBw1SsKq/L1iOmqMI+4Gxnbbjojdk0ek0JIcDb4bHv1czxchF7FX1Ym8H6IpPuE8CeNKjzQ1a1wqhEu+wl1N0x3Y37ZryCCKJRkxj0FT7bOoH3L38/yMUuh/v3aCmxY4eCkykb2p6ZrYMFE044anM/nMjmbErMibfRFuCz58Io1rBlF7JfkIz0R2/5vjUMVskcdbX2mm7DntncOsWDIdg/XVmgsC9CzVzUyq4VsS/sk97lJggcddpWLNw/29egz8iLyzWHOAXCvl2fTIPkviYAOQXfVhZUQdxsyJUNFMTiALrZCmoQLMp2LmDbfbW8JQriDeR3fVz6P1sjT8C2yEDvzkCn7sh0aTBK+sx7BKH1nb4320+caQepQj4TCJtCeNXjdrVcNEnjvwlcRJwFT1pT+Y7HREbHnT71XYNh4EAAAGEQZrnSeEPJlMCK/8AKIjxcI58rm/ML255fOJW1zbznFna7lfgMQrka7OTPPsvVAV4EJXye/Uxiu9dlftmRypJqfDot3xwDe8lX/qAVf6pBkSlUsaLyBYtww/SUSa1bGl1JvrJCN7FXCCXbLd5R4PoYlPiDIm/DQH2puO0StIWmrR77Isc/J1pRvdu5+mQa/n0SEHUeM2KkoRzCznfD9zaaRO7BDtvC9SYIT0uYZxrwTjxQ7N7UERTrYG0P+vRLAhxkfohFIYl3HXyjPOvnlbUFP2oiiy6nkUFuaIyQcJawJv3GU8k4ObcKsC1cNDXjSpsyQRrxLFaCCjke4mikyt7vs0iN0bnrNWv9HXruG9zOFEOer1ggIFTsT1Eos5CXRkgja5HN4QUM6MhWpc5du/HgBIH8ANFcoo2kJpqcadw9r/0qk25X91MQSDJQiH8Hny2dQhqR+LFWEawiW753SJhn0ngZcv/mPj3mwcHv1SL9ErBqAjm4JGiDetPKYtFwANYY11OyQAAAVdBmwhJ4Q8mUwIr/wArOx5HV2505jRePGgMxptW4PGIHEszV1xGZS+flSkF+aq30AaqO7u6XK9jJsuWXTfYCRQTn1bZfFQ22DbO5DXAxK/TUmbQleCflFzeS6/czxkL4PJ8AwOs2U+oehekgCZC8gZyHHaQSaKbNJ46gTjNsLy84ACQ5uNt11TPuCPqPTuh+schdw9S+/lU/6m+EyaqGZ49wDFPiBFBYXglQQBjyP9k/rqq0xL7SiLjpe4riYg8SFUuUtOzPdWHyvxnI7Ug/0VLPGAAhgMISUnqe01d5QFf36yHpwMAHexjAZFIGQHAFautuMuEw6HzUZVzNdeHYxvEYOGkTo007bLwbuf/nxzrywGOxlRTYJLRdYI0mk0SdN3+LeTv1RIJwv21+e9rT5iFOTCgzeQoekEWXLYz0X8YLq5bVCtijP7/T7w1Ck71j0aqfrEn6wtIAAABNUGbKUnhDyZTAiv/ACcySi7VBgOid6qZNXvhh/JsllHkMLLq0yNbQTqv/Wk2EBoSKICZwFwAD0WRzhvvReCGirep1Fe4bxjm49/UR+OYrXRmHR18T0C83AUVeBk7KvDZmb/eHzuzEN4yfXucr/NWFJl+USVMY4r4UQ9CayrfEY9v6AQ6mzAdLy2UMfFxrRJ99g/Rfl8qx+m4jIZNjlrTaThzJ/3OpVmAliDfxVyg8+CVIlI31IykiwQrXcebgajG+av8XU1SfyAG5ibvwbtdSAxkGBcJWL387V+uTdY56w3KN2vBtoQpVKD2zb3yazIcATZ02upwIytNcM/rpaLCdMb1myWcikE25agzLhDhOS+4zwjYz2DnW6VY0gFBAPsphhsUMnauVVdUVHzCTSdvzEve/H8q4AAAAVdBm0pJ4Q8mUwIr/wAo+x5XKuiN1am7SkJKSMonFZDPU3f5XFcDQSs0FLVq2idfsKwuIkt1mxIq8NgMHpzofTnDHqs/WedvAmhBgL0N5azdQa5MNKG2rJ4IAvGQY/uFm3jKQAKzvhSS01gO1oIfizF817z9IShS4QK2WT0PeFPELqLSpED8eNOpVTR96vmwpk/WBKRVJdTQJzjiCQ5pgEwjtvk7KqoS0+lwXSbvIrXkYm8DignEts3DLNoLHrPjXlQmbIop76JZSyJEtB+91GrLwo6Km5GeebyA2E6qGL3xSkpppej/ruoFprSKrH60UMbrq/SK7eCo+1QFoySPQmqDFsMGiQFqvtld5BXDYdVI4yRaoyN7Y7wi83HRC6eVazuHU9OtIY3xJJApBWq1aJOsYwc38aTC3ee863Aa/4n9Lk4DAtyFYHNZjB5m2e2vk8G2Gny9YFlBAAABQEGba0nhDyZTAiv/ACoZSZQfHxhfQxEqOBQrP+L3DmgvHSJQtB1iVkcLTxm+vagLHBLG91OGnopwrr7gT/loDypIhoRxjcwAAOeg/jN4WBbXzCJtnWGGllUCSdtUZQzKOSp9iM4yX18C6jrY4Sq6R9PUV/lEGNveJR4gw4FMve7110XdEPL1O2VTdHvdqeANyaq0nLdEmtXnrzvdrFlBaUvmaR4EdlkqGkvkZKWJej8Vq+msbKa7JdbxjwZtRufiyGfD/NVqMgSrYRzw9z/a8Zwbr+9+19CxlWD5bCuAEfPmjY6kZJE2L/CQI6+tnCBTXOmWZtZMBoCLGOf7G2uAC3+kFlboh9as5WCkO6+iqXq29dyhKnsHInorRYsPlgxIXyU1Om/Kyhj1DJV0Am9WJK3Dln0zNUH0q6ZTOnZcFD36AAABYkGbjEnhDyZTAiv/ACcwdIOLRFfoGK2ZkKsvgMwG0m0qsY0vMLPSzefc+ebp/aztyF7MlsBz/fBeNtxFBcsKgR4pf65GvdfOMHah0ltZ918sMDmXUEZMeRHy/xpnWpTLeGz6uTs/7MATPmU5BgHbT/DkD8QeaZnFAzidyFCXDz2l/jaKhEdgqipbB2pH0+fQ039r05z9axxEWGmaLQjg6x9+po1o24yhkVO7m03YwWmPyCgy8cOwrvRyJkXJpRN4m8ZBS1zwY80HeN/VyMQQJSMwsTo7R1XMerSFuyx0nz+8qOuhiqykc2ohCCsXia/+kIKbJ5Vs+cbWtvkqBKIDSfU7FhAd3GjcY/xar0EVmi6wWFTugAogR3I7mTrQDdlTAqYgqO7Gn5NMXQVHu2i1zhFSdo9GjMbeGnbkJwsFbQ2XkoKRIDpuW7AewC9AEBt0Ox/Ah6dGXfXO1jl8pEApj2RFmgAAAPlBm61J4Q8mUwIr/wAlR+eW/VZ7bSrmwwMA62G05DZ7p/5FUugsSsQdonUq6abtbU5hjFr+I1lPgoiV5c3CkTQZS+K5zivdo+Ti2P4K90xXANp8dSMAu85uJIOCQn2TXbEnNDifLB+3V84ht5tj4lvTaZx317BcliV8D5v2zZQW8RO1mUbuJEBItst8E7hfE+ZXj7tfDxNZPTvtpFyUv0fH1cTg1pr2VLy0d0zQLiA58dg+GkRvR1/hs2LyifBgHcj6eTWz0vsypVn9iPXRH/unJ6i8cfFL69NO24tQ9QQB+nDFhoP2cRhkAvhHwn56n5PppBD/oxni2f8AAAE9QZvOSeEPJlMCK/8AJjAXVGf+Kj2XNJnFeKC/gr7dJDTC2ngpd4WeAHlg04GuJKnn9hAmiECxxo9qM1IYMRiB85t6gALnlm9sRqGmioyzAm18RJndc9Ah8RlpGzr+44a6ntRaPx0cIwNIWAA8buL2JP00dmfjNqEiAlCa8OdV8FQxjp1vDXsGcAGF3Qbd62KEpkimeI3wH2nuXpbDHm8/ZKOR49s5ifUCkxCoJpfp43aC0lTzh2NXpcfVw6h0QnK8G60R4ZAxOxaJB7c0nn8ixXSU2JVY24EtGMF53nxJnHfzUheewUfBOGYSxeo8oK7oUCqX4rztzDwoc2QywNqQUJUkFrqIN+sb5ecYvX24Zujn+ZzTW6UDAF3R6WdNyJyRAremgC8spSflTqygQNGfHyGkfIEEJJaFo/pBCBkAAAEWQZvvSeEPJlMCK/8AKI41fuekXG59Knbw4Y6YJritsh9VtQgc3QKvVmxrzzo7f4aXn8N74eyP4b2lV1Z2Q+rohxps7EHTkOY9jLdqxI3MXe7je4g2qepz71+hY+jYdX+9LO0kA0Zg3NfyAlIRX7k6c/YHAZNtNaGZgTBMqiPgmEjiJH9Luk7shbgr+srfwiYwBX9rdS3fQNNFwcT8orQC+F60LAY9+GbFo2Sw3Ld4Tw9jq9yJtrY8RtHAdzytyek/mv2+j2TbTvAQKbbCYtdC8E/KtR4V5ZTSScr5Wb63vmbw7UpddEXYvl55pARyyvMxWNSh3Li4GF8Jk5JBi5B5ASQwxCMYpX5hkAMc+d8tl2bT+IEvUTsAAAElQZoQSeEPJlMCK/8AJIAzFZs00JJ0yfm8CZiew4xWdArLklEvBVXo/+ukPLu3XP9HFOfsme3T6BJEKmPPgZw/Lxnraq6Sl2kLVW19YU1qmqgfv+80LkZaWU5gRAH4hqyo3bFYcbuY2SC3IW5Wm69gtYyAXOdbAYSEHA16fvCeRQjHEsxKVndJdrRAlrGHsKgUBQ3Up/ZXIy1vkdFOfKSjpuZnswkuqr8NZI5tJ/dnBSErBTNWPaNwWV7nNomC0EYVGo+geGBhLXzaLw0UAOCYGjiPc3803BDw1GLoLIXjrIFJxwRfBNIAXYZAglu30oYzhpAfRWSprkeULMWYJTlWvbUQ5CNewSZssuDWIRAc3w8AcFaywwn+YSGhtR8VI1OGjYkfBbcAAAD8QZoxSeEPJlMCK/8AJdokjCUETRw/nciVPtaZQSBP/VxAQSITASEzlJBl9Na1r0DJhLOz279+KQLtl/xHZ8vAKc528mTMTqtWs4sFbeVgHWyBpHcHEtgTzjIqEinp/MPuUXF5poo8YLSSMFn9Ozx2FbU5/Kh9A39oN9NHQflVxV1NA6yT/84HHyfMtfdSMS8KTvAEE2lDs14VQayNs5ctjXboQT7xMBf5OLj6thhPvgaDrFB2o/PV9ouK147lruWTP2mkoA9oDIMYW1pcBx4yyV/t9GOPZ3aXneMUb2fFmUCX43BjXfUDMaa4GO2/Ankj3UEQwDxA7ZlNUQK2AAAA4UGaUknhDyZTAiv/ACJHv33I08bkhybYiJ/JiiheW5zMPBu4n5CxGr3frhE7TkLh0vPktM8m/AhaDiJisdk5QXNe/4WmxEDSAyaVi4eUVu0iHT2ly/KNTGqiORqA2oKpTjh84nYbrpXwnGv9SOf/34Z06xN6Yo3t35UZrP8nlcs/63GtnEmnUwVZHBYfPM6bs5M5AeBfAQ/9mIqu7vnEst+5O2wpPjzdItjwGCZ2ApHVjGnYYFomlA9nm6AXnxNIWHIsDgxCk3zx+6QbXipu/CWLG1Wf0WIbt4C0JPVl3TEb0QAAAMlBmnNJ4Q8mUwIr/wAVV64OfTKmlktYOqZHH1W1DhPy/X/6sD4T6hRdzfOgNtTOX2IckRJHshfBQVkJIzns079io6kpJFCcS3VD4zrWCn/dNaGV0kWTpFBRuusfn8F0C0R/EhsQeyTsdZftEkLGb5tq+nrir3vfmeb7rjmWJRXkIrTEKu8pIuAd+4FBGp8ARgGe80Jqpp//s1433HqBFqXsIFJTmU8j/toF9HyueI1Ea4uvsQ6NANGcYCbOAKCmbNiwABMCFaiUTMAAAAPSbW9vdgAAAGxtdmhkAAAAAHwlsIB8JbCAAAAD6AAAAyAAAQAAAQAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAv10cmFrAAAAXHRraGQAAAAPfCWwgHwlsIAAAAABAAAAAAAAAyAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAABAAAAAAY4AAAGGAAAAAAAkZWR0cwAAABxlbHN0AAAAAAAAAAEAAAMgAAAAAgABAAAAAAJ1bWRpYQAAACBtZGhkAAAAAHwlsIB8JbCAAAAAGQAAABRVxAAAAAAALWhkbHIAAAAAAAAAAHZpZGUAAAAAAAAAAAAAAABWaWRlb0hhbmRsZXIAAAACIG1pbmYAAAAUdm1oZAAAAAEAAAAAAAAAAAAAACRkaW5mAAAAHGRyZWYAAAAAAAAAAQAAAAx1cmwgAAAAAQAAAeBzdGJsAAAAtHN0c2QAAAAAAAAAAQAAAKRhdmMxAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAY4BhgBIAAAASAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGP//AAAAMmF2Y0MBZAAV/+EAGWdkABWs2UGQz6mhAAADAAEAAAMAMg8WLZYBAAZo6+PLIsAAAAAcdXVpZGtoQPJfJE/FujmlG88DI/MAAAAAAAAAGHN0dHMAAAAAAAAAAQAAABQAAAABAAAAFHN0c3MAAAAAAAAAAQAAAAEAAAAYY3R0cwAAAAAAAAABAAAAFAAAAAIAAAAcc3RzYwAAAAAAAAABAAAAAQAAAAEAAAABAAAAZHN0c3oAAAAAAAAAAAAAABQAAA05AAACqQAAAl8AAAITAAACiwAAAh8AAAIvAAABiAAAAVsAAAE5AAABWwAAAUQAAAFmAAAA/QAAAUEAAAEaAAABKQAAAQAAAADlAAAAzQAAAGBzdGNvAAAAAAAAABQAAAAsAAANZQAAEA4AABJtAAAUgAAAFwsAABkqAAAbWQAAHOEAAB48AAAfdQAAINAAACIUAAAjegAAJHcAACW4AAAm0gAAJ/sAACj7AAAp4AAAAGF1ZHRhAAAAWW1ldGEAAAAAAAAAIWhkbHIAAAAAAAAAAG1kaXJhcHBsAAAAAAAAAAAAAAAALGlsc3QAAAAkqXRvbwAAABxkYXRhAAAAAQAAAABMYXZmNTIuMTExLjA=\">"
|
|
1337
|
],
|
|
1131
|
],
|
|
1338
|
"metadata": {},
|
|
1132
|
"metadata": {},
|
|
1339
|
"output_type": "pyout",
|
|
1133
|
"output_type": "pyout",
|
|
1340
|
"prompt_number": 17,
|
|
1134
|
"prompt_number": 30,
|
|
1341
|
"text": [
|
|
1135
|
"text": [
|
|
1342
|
" 2 4 \n",
|
|
1136
|
"<IPython.core.display.HTML object>"
|
|
1343
|
" x 5\u22c5x \u239b 6\u239e\n",
|
|
|
|
|
1344
|
"1 + \u2500\u2500 + \u2500\u2500\u2500\u2500 + O\u239dx \u23a0\n",
|
|
|
|
|
1345
|
" 2 24 "
|
|
|
|
|
1346
|
]
|
|
1137
|
]
|
|
1347
|
}
|
|
1138
|
}
|
|
1348
|
],
|
|
1139
|
],
|
|
1349
|
"prompt_number": 17
|
|
1140
|
"prompt_number": 30
|
|
1350
|
},
|
|
1141
|
},
|
|
1351
|
{
|
|
1142
|
{
|
|
1352
|
"cell_type": "heading",
|
|
1143
|
"cell_type": "heading",
|
|
@@
-1388,136
+1179,189
b''
|
|
1388
|
],
|
|
1179
|
],
|
|
1389
|
"metadata": {},
|
|
1180
|
"metadata": {},
|
|
1390
|
"output_type": "pyout",
|
|
1181
|
"output_type": "pyout",
|
|
1391
|
"prompt_number": 19,
|
|
1182
|
"prompt_number": 31,
|
|
1392
|
"text": [
|
|
1183
|
"text": [
|
|
1393
|
"<IPython.lib.display.IFrame at 0x10a11ff10>"
|
|
1184
|
"<IPython.lib.display.IFrame at 0x10569f950>"
|
|
1394
|
]
|
|
1185
|
]
|
|
1395
|
}
|
|
1186
|
}
|
|
1396
|
],
|
|
1187
|
],
|
|
1397
|
"prompt_number": 19
|
|
1188
|
"prompt_number": 31
|
|
1398
|
},
|
|
1189
|
},
|
|
1399
|
{
|
|
1190
|
{
|
|
1400
|
"cell_type": "heading",
|
|
1191
|
"cell_type": "heading",
|
|
1401
|
"level": 2,
|
|
1192
|
"level": 2,
|
|
1402
|
"metadata": {},
|
|
1193
|
"metadata": {},
|
|
1403
|
"source": [
|
|
1194
|
"source": [
|
|
1404
|
"LaTeX"
|
|
1195
|
"Links to local files"
|
|
1405
|
]
|
|
1196
|
]
|
|
1406
|
},
|
|
1197
|
},
|
|
1407
|
{
|
|
1198
|
{
|
|
1408
|
"cell_type": "markdown",
|
|
1199
|
"cell_type": "markdown",
|
|
1409
|
"metadata": {},
|
|
1200
|
"metadata": {},
|
|
1410
|
"source": [
|
|
1201
|
"source": [
|
|
1411
|
"And we also support the display of mathematical expressions typeset in LaTeX, which is rendered\n",
|
|
1202
|
"IPython provides builtin display classes for generating links to local files. Create a link to a single file using the `FileLink` object:"
|
|
1412
|
"in the browser thanks to the [MathJax library](http://mathjax.org)."
|
|
|
|
|
1413
|
]
|
|
1203
|
]
|
|
1414
|
},
|
|
1204
|
},
|
|
1415
|
{
|
|
1205
|
{
|
|
1416
|
"cell_type": "code",
|
|
1206
|
"cell_type": "code",
|
|
1417
|
"collapsed": false,
|
|
1207
|
"collapsed": false,
|
|
1418
|
"input": [
|
|
1208
|
"input": [
|
|
1419
|
"from IPython.display import Math\n",
|
|
1209
|
"from IPython.display import FileLink, FileLinks\n",
|
|
1420
|
"Math(r'F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx')"
|
|
1210
|
"FileLink('Cell Magics.ipynb')"
|
|
1421
|
],
|
|
1211
|
],
|
|
1422
|
"language": "python",
|
|
1212
|
"language": "python",
|
|
1423
|
"metadata": {},
|
|
1213
|
"metadata": {},
|
|
1424
|
"outputs": [
|
|
1214
|
"outputs": [
|
|
1425
|
{
|
|
1215
|
{
|
|
1426
|
"latex": [
|
|
1216
|
"html": [
|
|
1427
|
"$$F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx$$"
|
|
1217
|
"<a href='Cell Magics.ipynb' target='_blank'>Cell Magics.ipynb</a><br>"
|
|
1428
|
],
|
|
1218
|
],
|
|
1429
|
"metadata": {},
|
|
1219
|
"metadata": {},
|
|
1430
|
"output_type": "pyout",
|
|
1220
|
"output_type": "pyout",
|
|
1431
|
"prompt_number": 27,
|
|
1221
|
"prompt_number": 33,
|
|
1432
|
"text": [
|
|
1222
|
"text": [
|
|
1433
|
"<IPython.core.display.Math at 0x10a82d810>"
|
|
1223
|
"/Users/bgranger/Documents/Computing/IPython/code/ipython/examples/IPython Kernel/Cell Magics.ipynb"
|
|
1434
|
]
|
|
1224
|
]
|
|
1435
|
}
|
|
1225
|
}
|
|
1436
|
],
|
|
1226
|
],
|
|
1437
|
"prompt_number": 27
|
|
1227
|
"prompt_number": 33
|
|
1438
|
},
|
|
1228
|
},
|
|
1439
|
{
|
|
1229
|
{
|
|
1440
|
"cell_type": "markdown",
|
|
1230
|
"cell_type": "markdown",
|
|
1441
|
"metadata": {},
|
|
1231
|
"metadata": {},
|
|
1442
|
"source": [
|
|
1232
|
"source": [
|
|
1443
|
"With the `Latex` class, you have to include the delimiters yourself. This allows you to use other LaTeX modes such as `eqnarray`:"
|
|
1233
|
"Alternatively, to generate links to all of the files in a directory, use the `FileLinks` object, passing `'.'` to indicate that we want links generated for the current working directory. Note that if there were other directories under the current directory, `FileLinks` would work in a recursive manner creating links to files in all sub-directories as well."
|
|
1444
|
]
|
|
1234
|
]
|
|
1445
|
},
|
|
1235
|
},
|
|
1446
|
{
|
|
1236
|
{
|
|
1447
|
"cell_type": "code",
|
|
1237
|
"cell_type": "code",
|
|
1448
|
"collapsed": false,
|
|
1238
|
"collapsed": false,
|
|
1449
|
"input": [
|
|
1239
|
"input": [
|
|
1450
|
"from IPython.display import Latex\n",
|
|
1240
|
"FileLinks('.')"
|
|
1451
|
"Latex(r\"\"\"\\begin{eqnarray}\n",
|
|
|
|
|
1452
|
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
|
|
|
|
|
1453
|
"\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
|
|
|
|
|
1454
|
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
|
|
|
|
|
1455
|
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0 \n",
|
|
|
|
|
1456
|
"\\end{eqnarray}\"\"\")"
|
|
|
|
|
1457
|
],
|
|
1241
|
],
|
|
1458
|
"language": "python",
|
|
1242
|
"language": "python",
|
|
1459
|
"metadata": {},
|
|
1243
|
"metadata": {},
|
|
1460
|
"outputs": [
|
|
1244
|
"outputs": [
|
|
1461
|
{
|
|
1245
|
{
|
|
1462
|
"latex": [
|
|
1246
|
"html": [
|
|
1463
|
"\\begin{eqnarray}\n",
|
|
1247
|
"./<br>\n",
|
|
1464
|
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
|
|
1248
|
" <a href='./Animations Using clear_output.ipynb' target='_blank'>Animations Using clear_output.ipynb</a><br>\n",
|
|
1465
|
"\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
|
|
1249
|
" <a href='./Background Jobs.ipynb' target='_blank'>Background Jobs.ipynb</a><br>\n",
|
|
1466
|
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
|
|
1250
|
" <a href='./Beyond Plain Python.ipynb' target='_blank'>Beyond Plain Python.ipynb</a><br>\n",
|
|
1467
|
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0 \n",
|
|
1251
|
" <a href='./Capturing Output.ipynb' target='_blank'>Capturing Output.ipynb</a><br>\n",
|
|
1468
|
"\\end{eqnarray}"
|
|
1252
|
" <a href='./Cell Magics.ipynb' target='_blank'>Cell Magics.ipynb</a><br>\n",
|
|
|
|
|
1253
|
" <a href='./Custom Display Logic.ipynb' target='_blank'>Custom Display Logic.ipynb</a><br>\n",
|
|
|
|
|
1254
|
" <a href='./example-demo.py' target='_blank'>example-demo.py</a><br>\n",
|
|
|
|
|
1255
|
" <a href='./Index.ipynb' target='_blank'>Index.ipynb</a><br>\n",
|
|
|
|
|
1256
|
" <a href='./ipython-completion.bash' target='_blank'>ipython-completion.bash</a><br>\n",
|
|
|
|
|
1257
|
" <a href='./ipython-get-history.py' target='_blank'>ipython-get-history.py</a><br>\n",
|
|
|
|
|
1258
|
" <a href='./ipython-qtconsole.desktop' target='_blank'>ipython-qtconsole.desktop</a><br>\n",
|
|
|
|
|
1259
|
" <a href='./ipython.desktop' target='_blank'>ipython.desktop</a><br>\n",
|
|
|
|
|
1260
|
" <a href='./Plotting in the Notebook.ipynb' target='_blank'>Plotting in the Notebook.ipynb</a><br>\n",
|
|
|
|
|
1261
|
" <a href='./Raw Input in the Notebook.ipynb' target='_blank'>Raw Input in the Notebook.ipynb</a><br>\n",
|
|
|
|
|
1262
|
" <a href='./Rich Output.ipynb' target='_blank'>Rich Output.ipynb</a><br>\n",
|
|
|
|
|
1263
|
" <a href='./Script Magics.ipynb' target='_blank'>Script Magics.ipynb</a><br>\n",
|
|
|
|
|
1264
|
" <a href='./SymPy.ipynb' target='_blank'>SymPy.ipynb</a><br>\n",
|
|
|
|
|
1265
|
" <a href='./Terminal Usage.ipynb' target='_blank'>Terminal Usage.ipynb</a><br>\n",
|
|
|
|
|
1266
|
" <a href='./Third Party Rich Output.ipynb' target='_blank'>Third Party Rich Output.ipynb</a><br>\n",
|
|
|
|
|
1267
|
" <a href='./Trapezoid Rule.ipynb' target='_blank'>Trapezoid Rule.ipynb</a><br>\n",
|
|
|
|
|
1268
|
" <a href='./Working With External Code.ipynb' target='_blank'>Working With External Code.ipynb</a><br>\n",
|
|
|
|
|
1269
|
"./data/<br>\n",
|
|
|
|
|
1270
|
" <a href='./data/flare.json' target='_blank'>flare.json</a><br>\n",
|
|
|
|
|
1271
|
"./gui/<br>\n",
|
|
|
|
|
1272
|
" <a href='./gui/gui-glut.py' target='_blank'>gui-glut.py</a><br>\n",
|
|
|
|
|
1273
|
" <a href='./gui/gui-gtk.py' target='_blank'>gui-gtk.py</a><br>\n",
|
|
|
|
|
1274
|
" <a href='./gui/gui-gtk3.py' target='_blank'>gui-gtk3.py</a><br>\n",
|
|
|
|
|
1275
|
" <a href='./gui/gui-pyglet.py' target='_blank'>gui-pyglet.py</a><br>\n",
|
|
|
|
|
1276
|
" <a href='./gui/gui-qt.py' target='_blank'>gui-qt.py</a><br>\n",
|
|
|
|
|
1277
|
" <a href='./gui/gui-tk.py' target='_blank'>gui-tk.py</a><br>\n",
|
|
|
|
|
1278
|
" <a href='./gui/gui-wx.py' target='_blank'>gui-wx.py</a><br>"
|
|
1469
|
],
|
|
1279
|
],
|
|
1470
|
"metadata": {},
|
|
1280
|
"metadata": {},
|
|
1471
|
"output_type": "pyout",
|
|
1281
|
"output_type": "pyout",
|
|
1472
|
"prompt_number": 28,
|
|
1282
|
"prompt_number": 34,
|
|
1473
|
"text": [
|
|
1283
|
"text": [
|
|
1474
|
"<IPython.core.display.Latex at 0x10a82d090>"
|
|
1284
|
"./\n",
|
|
|
|
|
1285
|
" Animations Using clear_output.ipynb\n",
|
|
|
|
|
1286
|
" Background Jobs.ipynb\n",
|
|
|
|
|
1287
|
" Beyond Plain Python.ipynb\n",
|
|
|
|
|
1288
|
" Capturing Output.ipynb\n",
|
|
|
|
|
1289
|
" Cell Magics.ipynb\n",
|
|
|
|
|
1290
|
" Custom Display Logic.ipynb\n",
|
|
|
|
|
1291
|
" example-demo.py\n",
|
|
|
|
|
1292
|
" Index.ipynb\n",
|
|
|
|
|
1293
|
" ipython-completion.bash\n",
|
|
|
|
|
1294
|
" ipython-get-history.py\n",
|
|
|
|
|
1295
|
" ipython-qtconsole.desktop\n",
|
|
|
|
|
1296
|
" ipython.desktop\n",
|
|
|
|
|
1297
|
" Plotting in the Notebook.ipynb\n",
|
|
|
|
|
1298
|
" Raw Input in the Notebook.ipynb\n",
|
|
|
|
|
1299
|
" Rich Output.ipynb\n",
|
|
|
|
|
1300
|
" Script Magics.ipynb\n",
|
|
|
|
|
1301
|
" SymPy.ipynb\n",
|
|
|
|
|
1302
|
" Terminal Usage.ipynb\n",
|
|
|
|
|
1303
|
" Third Party Rich Output.ipynb\n",
|
|
|
|
|
1304
|
" Trapezoid Rule.ipynb\n",
|
|
|
|
|
1305
|
" Working With External Code.ipynb\n",
|
|
|
|
|
1306
|
"./data/\n",
|
|
|
|
|
1307
|
" flare.json\n",
|
|
|
|
|
1308
|
"./gui/\n",
|
|
|
|
|
1309
|
" gui-glut.py\n",
|
|
|
|
|
1310
|
" gui-gtk.py\n",
|
|
|
|
|
1311
|
" gui-gtk3.py\n",
|
|
|
|
|
1312
|
" gui-pyglet.py\n",
|
|
|
|
|
1313
|
" gui-qt.py\n",
|
|
|
|
|
1314
|
" gui-tk.py\n",
|
|
|
|
|
1315
|
" gui-wx.py"
|
|
1475
|
]
|
|
1316
|
]
|
|
1476
|
}
|
|
1317
|
}
|
|
1477
|
],
|
|
1318
|
],
|
|
1478
|
"prompt_number": 28
|
|
1319
|
"prompt_number": 34
|
|
|
|
|
1320
|
},
|
|
|
|
|
1321
|
{
|
|
|
|
|
1322
|
"cell_type": "heading",
|
|
|
|
|
1323
|
"level": 2,
|
|
|
|
|
1324
|
"metadata": {},
|
|
|
|
|
1325
|
"source": [
|
|
|
|
|
1326
|
"Rich output and security"
|
|
|
|
|
1327
|
]
|
|
1479
|
},
|
|
1328
|
},
|
|
1480
|
{
|
|
1329
|
{
|
|
1481
|
"cell_type": "markdown",
|
|
1330
|
"cell_type": "markdown",
|
|
1482
|
"metadata": {},
|
|
1331
|
"metadata": {},
|
|
1483
|
"source": [
|
|
1332
|
"source": [
|
|
1484
|
"Or you can enter latex directly with the `%%latex` cell magic:"
|
|
1333
|
"The IPython Notebook allows arbitrary code execution in both the IPython kernel and in the browser, though HTML and JavaScript output. More importantly, because IPython has a JavaScript API for running code in the browser, HTML and JavaScript output can actually trigger code to be run in the kernel. This poses a significant security risk as it would allow IPython Notebooks to execute arbitrary code on your computers.\n",
|
|
|
|
|
1334
|
"\n",
|
|
|
|
|
1335
|
"To protect against these risks, the IPython Notebook has a security model that specifies how dangerous output is handled. Here is a short summary:\n",
|
|
|
|
|
1336
|
"\n",
|
|
|
|
|
1337
|
"* When you run code in the Notebook, all rich output is displayed.\n",
|
|
|
|
|
1338
|
"* When you open a notebook, rich output is only displayed if it doesn't contain security vulberabilities,...\n",
|
|
|
|
|
1339
|
"* ..or if you have trusted a notebook, all rich output will run upon opening it.\n",
|
|
|
|
|
1340
|
"\n",
|
|
|
|
|
1341
|
"A full description of the IPython security model can be found on [this page](http://ipython.org/ipython-doc/dev/notebook/security.html)."
|
|
1485
|
]
|
|
1342
|
]
|
|
1486
|
},
|
|
1343
|
},
|
|
1487
|
{
|
|
1344
|
{
|
|
1488
|
"cell_type": "code",
|
|
1345
|
"cell_type": "heading",
|
|
1489
|
"collapsed": false,
|
|
1346
|
"level": 2,
|
|
1490
|
"input": [
|
|
|
|
|
1491
|
"%%latex\n",
|
|
|
|
|
1492
|
"\\begin{align}\n",
|
|
|
|
|
1493
|
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
|
|
|
|
|
1494
|
"\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
|
|
|
|
|
1495
|
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
|
|
|
|
|
1496
|
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n",
|
|
|
|
|
1497
|
"\\end{align}"
|
|
|
|
|
1498
|
],
|
|
|
|
|
1499
|
"language": "python",
|
|
|
|
|
1500
|
"metadata": {},
|
|
1347
|
"metadata": {},
|
|
1501
|
"outputs": [
|
|
1348
|
"source": [
|
|
|
|
|
1349
|
"Rich output and nbviewer"
|
|
|
|
|
1350
|
]
|
|
|
|
|
1351
|
},
|
|
1502
|
{
|
|
1352
|
{
|
|
1503
|
"latex": [
|
|
1353
|
"cell_type": "markdown",
|
|
1504
|
"\\begin{align}\n",
|
|
|
|
|
1505
|
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
|
|
|
|
|
1506
|
"\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
|
|
|
|
|
1507
|
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
|
|
|
|
|
1508
|
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n",
|
|
|
|
|
1509
|
"\\end{align}"
|
|
|
|
|
1510
|
],
|
|
|
|
|
1511
|
"metadata": {},
|
|
1354
|
"metadata": {},
|
|
1512
|
"output_type": "display_data",
|
|
1355
|
"source": [
|
|
1513
|
"text": [
|
|
1356
|
"Much of the power of the Notebook is that it enables users to share notebooks with each other using http://nbviewer.ipython.org, without installing IPython locally. As of IPython 2.0, notebooks rendere on nbviewer will display all output, including HTML and JavaScript. Furthermore, to provide a consistent JavaScript environment on the live Notebook and nbviewer, the following JavaScript libraries are loaded onto the nbviewer page, *before* the notebook and its output is displayed:\n",
|
|
1514
|
"<IPython.core.display.Latex at 0x10a82d790>"
|
|
1357
|
"\n",
|
|
|
|
|
1358
|
"* [jQuery](http://jquery.com/)\n",
|
|
|
|
|
1359
|
"* [RequireJS](http://requirejs.org/)\n",
|
|
|
|
|
1360
|
"\n",
|
|
|
|
|
1361
|
"Libraries such as [mpld3](http://mpld3.github.io/) use these capabilities to generate interactive visualizations that work on nbviewer."
|
|
1515
|
]
|
|
1362
|
]
|
|
1516
|
}
|
|
1363
|
}
|
|
1517
|
],
|
|
1364
|
],
|
|
1518
|
"prompt_number": 29
|
|
|
|
|
1519
|
}
|
|
|
|
|
1520
|
],
|
|
|
|
|
1521
|
"metadata": {}
|
|
1365
|
"metadata": {}
|
|
1522
|
}
|
|
1366
|
}
|
|
1523
|
]
|
|
1367
|
]
|