ancestors.rs
783 lines
| 25.6 KiB
| application/rls-services+xml
|
RustLexer
Georges Racinet
|
r40307 | // ancestors.rs | ||
// | ||||
// Copyright 2018 Georges Racinet <gracinet@anybox.fr> | ||||
// | ||||
// This software may be used and distributed according to the terms of the | ||||
// GNU General Public License version 2 or any later version. | ||||
//! Rust versions of generic DAG ancestors algorithms for Mercurial | ||||
use super::{Graph, GraphError, Revision, NULL_REVISION}; | ||||
Georges Racinet
|
r40995 | use std::cmp::max; | ||
Georges Racinet
|
r40307 | use std::collections::{BinaryHeap, HashSet}; | ||
/// Iterator over the ancestors of a given list of revisions | ||||
/// This is a generic type, defined and implemented for any Graph, so that | ||||
/// it's easy to | ||||
/// | ||||
/// - unit test in pure Rust | ||||
/// - bind to main Mercurial code, potentially in several ways and have these | ||||
/// bindings evolve over time | ||||
pub struct AncestorsIterator<G: Graph> { | ||||
graph: G, | ||||
visit: BinaryHeap<Revision>, | ||||
seen: HashSet<Revision>, | ||||
stoprev: Revision, | ||||
} | ||||
Georges Racinet
|
r41084 | /// Lazy ancestors set, backed by AncestorsIterator | ||
pub struct LazyAncestors<G: Graph + Clone> { | ||||
graph: G, | ||||
containsiter: AncestorsIterator<G>, | ||||
initrevs: Vec<Revision>, | ||||
stoprev: Revision, | ||||
inclusive: bool, | ||||
} | ||||
Georges Racinet
|
r40995 | pub struct MissingAncestors<G: Graph> { | ||
graph: G, | ||||
bases: HashSet<Revision>, | ||||
} | ||||
Georges Racinet
|
r40307 | impl<G: Graph> AncestorsIterator<G> { | ||
/// Constructor. | ||||
/// | ||||
/// if `inclusive` is true, then the init revisions are emitted in | ||||
/// particular, otherwise iteration starts from their parents. | ||||
Yuya Nishihara
|
r41138 | pub fn new( | ||
Georges Racinet
|
r40307 | graph: G, | ||
Yuya Nishihara
|
r41138 | initrevs: impl IntoIterator<Item = Revision>, | ||
Georges Racinet
|
r40307 | stoprev: Revision, | ||
inclusive: bool, | ||||
Yuya Nishihara
|
r41138 | ) -> Result<Self, GraphError> { | ||
Georges Racinet
|
r40307 | let filtered_initrevs = initrevs.into_iter().filter(|&r| r >= stoprev); | ||
if inclusive { | ||||
let visit: BinaryHeap<Revision> = filtered_initrevs.collect(); | ||||
let seen = visit.iter().map(|&x| x).collect(); | ||||
return Ok(AncestorsIterator { | ||||
visit: visit, | ||||
seen: seen, | ||||
stoprev: stoprev, | ||||
graph: graph, | ||||
}); | ||||
} | ||||
let mut this = AncestorsIterator { | ||||
visit: BinaryHeap::new(), | ||||
seen: HashSet::new(), | ||||
stoprev: stoprev, | ||||
graph: graph, | ||||
}; | ||||
this.seen.insert(NULL_REVISION); | ||||
for rev in filtered_initrevs { | ||||
Georges Racinet
|
r40969 | for parent in this.graph.parents(rev)?.iter().cloned() { | ||
this.conditionally_push_rev(parent); | ||||
} | ||||
Georges Racinet
|
r40307 | } | ||
Ok(this) | ||||
} | ||||
#[inline] | ||||
fn conditionally_push_rev(&mut self, rev: Revision) { | ||||
if self.stoprev <= rev && !self.seen.contains(&rev) { | ||||
self.seen.insert(rev); | ||||
self.visit.push(rev); | ||||
} | ||||
} | ||||
Georges Racinet
|
r40336 | /// Consumes partially the iterator to tell if the given target | ||
/// revision | ||||
/// is in the ancestors it emits. | ||||
/// This is meant for iterators actually dedicated to that kind of | ||||
/// purpose | ||||
Yuya Nishihara
|
r40898 | pub fn contains(&mut self, target: Revision) -> Result<bool, GraphError> { | ||
Georges Racinet
|
r40336 | if self.seen.contains(&target) && target != NULL_REVISION { | ||
Yuya Nishihara
|
r40898 | return Ok(true); | ||
Georges Racinet
|
r40336 | } | ||
Yuya Nishihara
|
r40898 | for item in self { | ||
let rev = item?; | ||||
Georges Racinet
|
r40336 | if rev == target { | ||
Yuya Nishihara
|
r40898 | return Ok(true); | ||
Georges Racinet
|
r40336 | } | ||
if rev < target { | ||||
Yuya Nishihara
|
r40898 | return Ok(false); | ||
Georges Racinet
|
r40336 | } | ||
} | ||||
Yuya Nishihara
|
r40898 | Ok(false) | ||
Georges Racinet
|
r40336 | } | ||
Georges Racinet
|
r41084 | |||
pub fn peek(&self) -> Option<Revision> { | ||||
self.visit.peek().map(|&r| r) | ||||
} | ||||
/// Tell if the iterator is about an empty set | ||||
/// | ||||
/// The result does not depend whether the iterator has been consumed | ||||
/// or not. | ||||
/// This is mostly meant for iterators backing a lazy ancestors set | ||||
pub fn is_empty(&self) -> bool { | ||||
if self.visit.len() > 0 { | ||||
return false; | ||||
} | ||||
if self.seen.len() > 1 { | ||||
return false; | ||||
} | ||||
// at this point, the seen set is at most a singleton. | ||||
// If not `self.inclusive`, it's still possible that it has only | ||||
// the null revision | ||||
self.seen.is_empty() || self.seen.contains(&NULL_REVISION) | ||||
} | ||||
Georges Racinet
|
r40307 | } | ||
Georges Racinet
|
r41084 | /// Main implementation for the iterator | ||
Georges Racinet
|
r40307 | /// | ||
/// The algorithm is the same as in `_lazyancestorsiter()` from `ancestors.py` | ||||
/// with a few non crucial differences: | ||||
/// | ||||
/// - there's no filtering of invalid parent revisions. Actually, it should be | ||||
/// consistent and more efficient to filter them from the end caller. | ||||
Georges Racinet
|
r40968 | /// - we don't have the optimization for adjacent revisions (i.e., the case | ||
/// where `p1 == rev - 1`), because it amounts to update the first element of | ||||
/// the heap without sifting, which Rust's BinaryHeap doesn't let us do. | ||||
Georges Racinet
|
r40307 | /// - we save a few pushes by comparing with `stoprev` before pushing | ||
impl<G: Graph> Iterator for AncestorsIterator<G> { | ||||
Yuya Nishihara
|
r40898 | type Item = Result<Revision, GraphError>; | ||
Georges Racinet
|
r40307 | |||
Yuya Nishihara
|
r40898 | fn next(&mut self) -> Option<Self::Item> { | ||
Georges Racinet
|
r40847 | let current = match self.visit.peek() { | ||
Georges Racinet
|
r40307 | None => { | ||
return None; | ||||
} | ||||
Georges Racinet
|
r40847 | Some(c) => *c, | ||
Georges Racinet
|
r40307 | }; | ||
Georges Racinet
|
r40969 | let [p1, p2] = match self.graph.parents(current) { | ||
Yuya Nishihara
|
r40898 | Ok(ps) => ps, | ||
Err(e) => return Some(Err(e)), | ||||
}; | ||||
Georges Racinet
|
r40847 | if p1 < self.stoprev || self.seen.contains(&p1) { | ||
self.visit.pop(); | ||||
} else { | ||||
*(self.visit.peek_mut().unwrap()) = p1; | ||||
self.seen.insert(p1); | ||||
}; | ||||
Georges Racinet
|
r40867 | self.conditionally_push_rev(p2); | ||
Yuya Nishihara
|
r40898 | Some(Ok(current)) | ||
Georges Racinet
|
r40307 | } | ||
} | ||||
Georges Racinet
|
r41084 | impl<G: Graph + Clone> LazyAncestors<G> { | ||
pub fn new( | ||||
graph: G, | ||||
initrevs: impl IntoIterator<Item = Revision>, | ||||
stoprev: Revision, | ||||
inclusive: bool, | ||||
) -> Result<Self, GraphError> { | ||||
let v: Vec<Revision> = initrevs.into_iter().collect(); | ||||
Ok(LazyAncestors { | ||||
graph: graph.clone(), | ||||
containsiter: AncestorsIterator::new( | ||||
graph, | ||||
v.iter().cloned(), | ||||
stoprev, | ||||
inclusive, | ||||
)?, | ||||
initrevs: v, | ||||
stoprev: stoprev, | ||||
inclusive: inclusive, | ||||
}) | ||||
} | ||||
pub fn contains(&mut self, rev: Revision) -> Result<bool, GraphError> { | ||||
self.containsiter.contains(rev) | ||||
} | ||||
pub fn is_empty(&self) -> bool { | ||||
self.containsiter.is_empty() | ||||
} | ||||
pub fn iter(&self) -> AncestorsIterator<G> { | ||||
// the arguments being the same as for self.containsiter, we know | ||||
// for sure that AncestorsIterator constructor can't fail | ||||
AncestorsIterator::new( | ||||
self.graph.clone(), | ||||
self.initrevs.iter().cloned(), | ||||
self.stoprev, | ||||
self.inclusive, | ||||
) | ||||
.unwrap() | ||||
} | ||||
} | ||||
Georges Racinet
|
r40995 | impl<G: Graph> MissingAncestors<G> { | ||
pub fn new(graph: G, bases: impl IntoIterator<Item = Revision>) -> Self { | ||||
let mut bases: HashSet<Revision> = bases.into_iter().collect(); | ||||
if bases.is_empty() { | ||||
bases.insert(NULL_REVISION); | ||||
} | ||||
MissingAncestors { graph, bases } | ||||
} | ||||
pub fn has_bases(&self) -> bool { | ||||
self.bases.iter().any(|&b| b != NULL_REVISION) | ||||
} | ||||
/// Return a reference to current bases. | ||||
/// | ||||
/// This is useful in unit tests, but also setdiscovery.py does | ||||
/// read the bases attribute of a ancestor.missingancestors instance. | ||||
pub fn get_bases<'a>(&'a self) -> &'a HashSet<Revision> { | ||||
&self.bases | ||||
} | ||||
pub fn add_bases( | ||||
&mut self, | ||||
new_bases: impl IntoIterator<Item = Revision>, | ||||
) { | ||||
self.bases.extend(new_bases); | ||||
} | ||||
/// Remove all ancestors of self.bases from the revs set (in place) | ||||
pub fn remove_ancestors_from( | ||||
&mut self, | ||||
revs: &mut HashSet<Revision>, | ||||
) -> Result<(), GraphError> { | ||||
revs.retain(|r| !self.bases.contains(r)); | ||||
// the null revision is always an ancestor | ||||
revs.remove(&NULL_REVISION); | ||||
if revs.is_empty() { | ||||
return Ok(()); | ||||
} | ||||
// anything in revs > start is definitely not an ancestor of bases | ||||
// revs <= start need to be investigated | ||||
// TODO optim: if a missingancestors is to be used several times, | ||||
// we shouldn't need to iterate each time on bases | ||||
let start = match self.bases.iter().cloned().max() { | ||||
Some(m) => m, | ||||
None => { | ||||
// bases is empty (shouldn't happen, but let's be safe) | ||||
return Ok(()); | ||||
} | ||||
}; | ||||
// whatever happens, we'll keep at least keepcount of them | ||||
// knowing this gives us a earlier stop condition than | ||||
// going all the way to the root | ||||
let keepcount = revs.iter().filter(|r| **r > start).count(); | ||||
let mut curr = start; | ||||
while curr != NULL_REVISION && revs.len() > keepcount { | ||||
if self.bases.contains(&curr) { | ||||
revs.remove(&curr); | ||||
self.add_parents(curr)?; | ||||
} | ||||
curr -= 1; | ||||
} | ||||
Ok(()) | ||||
} | ||||
/// Add rev's parents to self.bases | ||||
#[inline] | ||||
fn add_parents(&mut self, rev: Revision) -> Result<(), GraphError> { | ||||
// No need to bother the set with inserting NULL_REVISION over and | ||||
// over | ||||
for p in self.graph.parents(rev)?.iter().cloned() { | ||||
if p != NULL_REVISION { | ||||
self.bases.insert(p); | ||||
} | ||||
} | ||||
Ok(()) | ||||
} | ||||
/// Return all the ancestors of revs that are not ancestors of self.bases | ||||
/// | ||||
/// This may include elements from revs. | ||||
/// | ||||
/// Equivalent to the revset (::revs - ::self.bases). Revs are returned in | ||||
/// revision number order, which is a topological order. | ||||
pub fn missing_ancestors( | ||||
&mut self, | ||||
revs: impl IntoIterator<Item = Revision>, | ||||
) -> Result<Vec<Revision>, GraphError> { | ||||
// just for convenience and comparison with Python version | ||||
let bases_visit = &mut self.bases; | ||||
let mut revs: HashSet<Revision> = revs | ||||
.into_iter() | ||||
.filter(|r| !bases_visit.contains(r)) | ||||
.collect(); | ||||
let revs_visit = &mut revs; | ||||
let mut both_visit: HashSet<Revision> = | ||||
revs_visit.intersection(&bases_visit).cloned().collect(); | ||||
if revs_visit.is_empty() { | ||||
return Ok(Vec::new()); | ||||
} | ||||
let max_bases = | ||||
bases_visit.iter().cloned().max().unwrap_or(NULL_REVISION); | ||||
let max_revs = | ||||
revs_visit.iter().cloned().max().unwrap_or(NULL_REVISION); | ||||
let start = max(max_bases, max_revs); | ||||
// TODO heuristics for with_capacity()? | ||||
let mut missing: Vec<Revision> = Vec::new(); | ||||
Yuya Nishihara
|
r41137 | for curr in (0..=start).rev() { | ||
Georges Racinet
|
r40995 | if revs_visit.is_empty() { | ||
break; | ||||
} | ||||
if both_visit.contains(&curr) { | ||||
// curr's parents might have made it into revs_visit through | ||||
// another path | ||||
// TODO optim: Rust's HashSet.remove returns a boolean telling | ||||
// if it happened. This will spare us one set lookup | ||||
both_visit.remove(&curr); | ||||
for p in self.graph.parents(curr)?.iter().cloned() { | ||||
if p == NULL_REVISION { | ||||
continue; | ||||
} | ||||
revs_visit.remove(&p); | ||||
bases_visit.insert(p); | ||||
both_visit.insert(p); | ||||
} | ||||
continue; | ||||
} | ||||
// in Rust, one can't just use mutable variables assignation | ||||
// to be more straightforward. Instead of Python's | ||||
// thisvisit and othervisit, we'll differentiate with a boolean | ||||
Yuya Nishihara
|
r41167 | let this_visit_is_revs; | ||
if revs_visit.remove(&curr) { | ||||
missing.push(curr); | ||||
this_visit_is_revs = true; | ||||
} else if bases_visit.contains(&curr) { | ||||
this_visit_is_revs = false; | ||||
} else { | ||||
// not an ancestor of revs or bases: ignore | ||||
continue; | ||||
} | ||||
Georges Racinet
|
r40995 | |||
Yuya Nishihara
|
r41167 | { | ||
for p in self.graph.parents(curr)?.iter().cloned() { | ||||
if p == NULL_REVISION { | ||||
continue; | ||||
} | ||||
let in_other_visit = if this_visit_is_revs { | ||||
bases_visit.contains(&p) | ||||
Georges Racinet
|
r40995 | } else { | ||
Yuya Nishihara
|
r41167 | revs_visit.contains(&p) | ||
}; | ||||
if in_other_visit || both_visit.contains(&p) { | ||||
// p is implicitely in this_visit. | ||||
// This means p is or should be in bothvisit | ||||
// TODO optim: hence if bothvisit, we look up twice | ||||
revs_visit.remove(&p); | ||||
Georges Racinet
|
r40995 | bases_visit.insert(p); | ||
Yuya Nishihara
|
r41167 | both_visit.insert(p); | ||
} else { | ||||
// visit later | ||||
if this_visit_is_revs { | ||||
revs_visit.insert(p); | ||||
} else { | ||||
bases_visit.insert(p); | ||||
} | ||||
Georges Racinet
|
r40995 | } | ||
} | ||||
} | ||||
} | ||||
missing.reverse(); | ||||
Ok(missing) | ||||
} | ||||
} | ||||
Georges Racinet
|
r40307 | #[cfg(test)] | ||
mod tests { | ||||
use super::*; | ||||
Georges Racinet
|
r40995 | use std::iter::FromIterator; | ||
Georges Racinet
|
r40307 | |||
#[derive(Clone, Debug)] | ||||
struct Stub; | ||||
/// This is the same as the dict from test-ancestors.py | ||||
impl Graph for Stub { | ||||
Georges Racinet
|
r40969 | fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> { | ||
Georges Racinet
|
r40307 | match rev { | ||
Georges Racinet
|
r40969 | 0 => Ok([-1, -1]), | ||
1 => Ok([0, -1]), | ||||
2 => Ok([1, -1]), | ||||
3 => Ok([1, -1]), | ||||
4 => Ok([2, -1]), | ||||
5 => Ok([4, -1]), | ||||
6 => Ok([4, -1]), | ||||
7 => Ok([4, -1]), | ||||
8 => Ok([-1, -1]), | ||||
9 => Ok([6, 7]), | ||||
10 => Ok([5, -1]), | ||||
11 => Ok([3, 7]), | ||||
12 => Ok([9, -1]), | ||||
13 => Ok([8, -1]), | ||||
Georges Racinet
|
r40307 | r => Err(GraphError::ParentOutOfRange(r)), | ||
} | ||||
} | ||||
} | ||||
fn list_ancestors<G: Graph>( | ||||
graph: G, | ||||
initrevs: Vec<Revision>, | ||||
stoprev: Revision, | ||||
inclusive: bool, | ||||
) -> Vec<Revision> { | ||||
AncestorsIterator::new(graph, initrevs, stoprev, inclusive) | ||||
.unwrap() | ||||
Georges Racinet
|
r40965 | .map(|res| res.unwrap()) | ||
Georges Racinet
|
r40307 | .collect() | ||
} | ||||
#[test] | ||||
/// Same tests as test-ancestor.py, without membership | ||||
/// (see also test-ancestor.py.out) | ||||
fn test_list_ancestor() { | ||||
assert_eq!(list_ancestors(Stub, vec![], 0, false), vec![]); | ||||
assert_eq!( | ||||
list_ancestors(Stub, vec![11, 13], 0, false), | ||||
vec![8, 7, 4, 3, 2, 1, 0] | ||||
); | ||||
assert_eq!(list_ancestors(Stub, vec![1, 3], 0, false), vec![1, 0]); | ||||
assert_eq!( | ||||
list_ancestors(Stub, vec![11, 13], 0, true), | ||||
vec![13, 11, 8, 7, 4, 3, 2, 1, 0] | ||||
); | ||||
assert_eq!(list_ancestors(Stub, vec![11, 13], 6, false), vec![8, 7]); | ||||
assert_eq!( | ||||
list_ancestors(Stub, vec![11, 13], 6, true), | ||||
vec![13, 11, 8, 7] | ||||
); | ||||
assert_eq!(list_ancestors(Stub, vec![11, 13], 11, true), vec![13, 11]); | ||||
assert_eq!(list_ancestors(Stub, vec![11, 13], 12, true), vec![13]); | ||||
assert_eq!( | ||||
list_ancestors(Stub, vec![10, 1], 0, true), | ||||
vec![10, 5, 4, 2, 1, 0] | ||||
); | ||||
} | ||||
#[test] | ||||
/// Corner case that's not directly in test-ancestors.py, but | ||||
/// that happens quite often, as demonstrated by running the whole | ||||
/// suite. | ||||
/// For instance, run tests/test-obsolete-checkheads.t | ||||
fn test_nullrev_input() { | ||||
let mut iter = | ||||
AncestorsIterator::new(Stub, vec![-1], 0, false).unwrap(); | ||||
assert_eq!(iter.next(), None) | ||||
} | ||||
Georges Racinet
|
r40336 | #[test] | ||
fn test_contains() { | ||||
let mut lazy = | ||||
AncestorsIterator::new(Stub, vec![10, 1], 0, true).unwrap(); | ||||
Georges Racinet
|
r40965 | assert!(lazy.contains(1).unwrap()); | ||
assert!(!lazy.contains(3).unwrap()); | ||||
Georges Racinet
|
r40336 | |||
let mut lazy = | ||||
AncestorsIterator::new(Stub, vec![0], 0, false).unwrap(); | ||||
Georges Racinet
|
r40965 | assert!(!lazy.contains(NULL_REVISION).unwrap()); | ||
Georges Racinet
|
r40336 | } | ||
Georges Racinet
|
r41084 | #[test] | ||
fn test_peek() { | ||||
let mut iter = | ||||
AncestorsIterator::new(Stub, vec![10], 0, true).unwrap(); | ||||
// peek() gives us the next value | ||||
assert_eq!(iter.peek(), Some(10)); | ||||
// but it's not been consumed | ||||
assert_eq!(iter.next(), Some(Ok(10))); | ||||
// and iteration resumes normally | ||||
assert_eq!(iter.next(), Some(Ok(5))); | ||||
// let's drain the iterator to test peek() at the end | ||||
while iter.next().is_some() {} | ||||
assert_eq!(iter.peek(), None); | ||||
} | ||||
#[test] | ||||
fn test_empty() { | ||||
let mut iter = | ||||
AncestorsIterator::new(Stub, vec![10], 0, true).unwrap(); | ||||
assert!(!iter.is_empty()); | ||||
while iter.next().is_some() {} | ||||
assert!(!iter.is_empty()); | ||||
let iter = AncestorsIterator::new(Stub, vec![], 0, true).unwrap(); | ||||
assert!(iter.is_empty()); | ||||
// case where iter.seen == {NULL_REVISION} | ||||
let iter = AncestorsIterator::new(Stub, vec![0], 0, false).unwrap(); | ||||
assert!(iter.is_empty()); | ||||
} | ||||
Georges Racinet
|
r40307 | /// A corrupted Graph, supporting error handling tests | ||
Georges Racinet
|
r41084 | #[derive(Clone, Debug)] | ||
Georges Racinet
|
r40307 | struct Corrupted; | ||
impl Graph for Corrupted { | ||||
Georges Racinet
|
r40969 | fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> { | ||
Georges Racinet
|
r40307 | match rev { | ||
Georges Racinet
|
r40969 | 1 => Ok([0, -1]), | ||
Georges Racinet
|
r40307 | r => Err(GraphError::ParentOutOfRange(r)), | ||
} | ||||
} | ||||
} | ||||
#[test] | ||||
fn test_initrev_out_of_range() { | ||||
// inclusive=false looks up initrev's parents right away | ||||
match AncestorsIterator::new(Stub, vec![25], 0, false) { | ||||
Ok(_) => panic!("Should have been ParentOutOfRange"), | ||||
Err(e) => assert_eq!(e, GraphError::ParentOutOfRange(25)), | ||||
} | ||||
} | ||||
#[test] | ||||
fn test_next_out_of_range() { | ||||
// inclusive=false looks up initrev's parents right away | ||||
let mut iter = | ||||
AncestorsIterator::new(Corrupted, vec![1], 0, false).unwrap(); | ||||
Georges Racinet
|
r40965 | assert_eq!(iter.next(), Some(Err(GraphError::ParentOutOfRange(0)))); | ||
Georges Racinet
|
r40307 | } | ||
Georges Racinet
|
r40995 | |||
#[test] | ||||
Georges Racinet
|
r41084 | fn test_lazy_iter_contains() { | ||
let mut lazy = | ||||
LazyAncestors::new(Stub, vec![11, 13], 0, false).unwrap(); | ||||
let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect(); | ||||
// compare with iterator tests on the same initial revisions | ||||
assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]); | ||||
// contains() results are correct, unaffected by the fact that | ||||
// we consumed entirely an iterator out of lazy | ||||
assert_eq!(lazy.contains(2), Ok(true)); | ||||
assert_eq!(lazy.contains(9), Ok(false)); | ||||
} | ||||
#[test] | ||||
fn test_lazy_contains_iter() { | ||||
let mut lazy = | ||||
LazyAncestors::new(Stub, vec![11, 13], 0, false).unwrap(); // reminder: [8, 7, 4, 3, 2, 1, 0] | ||||
assert_eq!(lazy.contains(2), Ok(true)); | ||||
assert_eq!(lazy.contains(6), Ok(false)); | ||||
// after consumption of 2 by the inner iterator, results stay | ||||
// consistent | ||||
assert_eq!(lazy.contains(2), Ok(true)); | ||||
assert_eq!(lazy.contains(5), Ok(false)); | ||||
// iter() still gives us a fresh iterator | ||||
let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect(); | ||||
assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]); | ||||
} | ||||
#[test] | ||||
Georges Racinet
|
r40995 | /// Test constructor, add/get bases | ||
fn test_missing_bases() { | ||||
let mut missing_ancestors = | ||||
MissingAncestors::new(Stub, [5, 3, 1, 3].iter().cloned()); | ||||
let mut as_vec: Vec<Revision> = | ||||
missing_ancestors.get_bases().iter().cloned().collect(); | ||||
as_vec.sort(); | ||||
assert_eq!(as_vec, [1, 3, 5]); | ||||
missing_ancestors.add_bases([3, 7, 8].iter().cloned()); | ||||
as_vec = missing_ancestors.get_bases().iter().cloned().collect(); | ||||
as_vec.sort(); | ||||
assert_eq!(as_vec, [1, 3, 5, 7, 8]); | ||||
} | ||||
fn assert_missing_remove( | ||||
bases: &[Revision], | ||||
revs: &[Revision], | ||||
expected: &[Revision], | ||||
) { | ||||
let mut missing_ancestors = | ||||
MissingAncestors::new(Stub, bases.iter().cloned()); | ||||
let mut revset: HashSet<Revision> = revs.iter().cloned().collect(); | ||||
missing_ancestors | ||||
.remove_ancestors_from(&mut revset) | ||||
.unwrap(); | ||||
let mut as_vec: Vec<Revision> = revset.into_iter().collect(); | ||||
as_vec.sort(); | ||||
assert_eq!(as_vec.as_slice(), expected); | ||||
} | ||||
#[test] | ||||
fn test_missing_remove() { | ||||
assert_missing_remove( | ||||
&[1, 2, 3, 4, 7], | ||||
Vec::from_iter(1..10).as_slice(), | ||||
&[5, 6, 8, 9], | ||||
); | ||||
assert_missing_remove(&[10], &[11, 12, 13, 14], &[11, 12, 13, 14]); | ||||
assert_missing_remove(&[7], &[1, 2, 3, 4, 5], &[3, 5]); | ||||
} | ||||
fn assert_missing_ancestors( | ||||
bases: &[Revision], | ||||
revs: &[Revision], | ||||
expected: &[Revision], | ||||
) { | ||||
let mut missing_ancestors = | ||||
MissingAncestors::new(Stub, bases.iter().cloned()); | ||||
let missing = missing_ancestors | ||||
.missing_ancestors(revs.iter().cloned()) | ||||
.unwrap(); | ||||
assert_eq!(missing.as_slice(), expected); | ||||
} | ||||
#[test] | ||||
fn test_missing_ancestors() { | ||||
// examples taken from test-ancestors.py by having it run | ||||
// on the same graph (both naive and fast Python algs) | ||||
assert_missing_ancestors(&[10], &[11], &[3, 7, 11]); | ||||
assert_missing_ancestors(&[11], &[10], &[5, 10]); | ||||
assert_missing_ancestors(&[7], &[9, 11], &[3, 6, 9, 11]); | ||||
} | ||||
// A Graph represented by a vector whose indices are revisions | ||||
// and values are parents of the revisions | ||||
type VecGraph = Vec<[Revision; 2]>; | ||||
impl Graph for VecGraph { | ||||
fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> { | ||||
Ok(self[rev as usize]) | ||||
} | ||||
} | ||||
/// An interesting case found by a random generator similar to | ||||
/// the one in test-ancestor.py. An early version of Rust MissingAncestors | ||||
/// failed this, yet none of the integration tests of the whole suite | ||||
/// catched it. | ||||
#[test] | ||||
fn test_remove_ancestors_from_case1() { | ||||
let graph: VecGraph = vec![ | ||||
[NULL_REVISION, NULL_REVISION], | ||||
[0, NULL_REVISION], | ||||
[1, 0], | ||||
[2, 1], | ||||
[3, NULL_REVISION], | ||||
[4, NULL_REVISION], | ||||
[5, 1], | ||||
[2, NULL_REVISION], | ||||
[7, NULL_REVISION], | ||||
[8, NULL_REVISION], | ||||
[9, NULL_REVISION], | ||||
[10, 1], | ||||
[3, NULL_REVISION], | ||||
[12, NULL_REVISION], | ||||
[13, NULL_REVISION], | ||||
[14, NULL_REVISION], | ||||
[4, NULL_REVISION], | ||||
[16, NULL_REVISION], | ||||
[17, NULL_REVISION], | ||||
[18, NULL_REVISION], | ||||
[19, 11], | ||||
[20, NULL_REVISION], | ||||
[21, NULL_REVISION], | ||||
[22, NULL_REVISION], | ||||
[23, NULL_REVISION], | ||||
[2, NULL_REVISION], | ||||
[3, NULL_REVISION], | ||||
[26, 24], | ||||
[27, NULL_REVISION], | ||||
[28, NULL_REVISION], | ||||
[12, NULL_REVISION], | ||||
[1, NULL_REVISION], | ||||
[1, 9], | ||||
[32, NULL_REVISION], | ||||
[33, NULL_REVISION], | ||||
[34, 31], | ||||
[35, NULL_REVISION], | ||||
[36, 26], | ||||
[37, NULL_REVISION], | ||||
[38, NULL_REVISION], | ||||
[39, NULL_REVISION], | ||||
[40, NULL_REVISION], | ||||
[41, NULL_REVISION], | ||||
[42, 26], | ||||
[0, NULL_REVISION], | ||||
[44, NULL_REVISION], | ||||
[45, 4], | ||||
[40, NULL_REVISION], | ||||
[47, NULL_REVISION], | ||||
[36, 0], | ||||
[49, NULL_REVISION], | ||||
[NULL_REVISION, NULL_REVISION], | ||||
[51, NULL_REVISION], | ||||
[52, NULL_REVISION], | ||||
[53, NULL_REVISION], | ||||
[14, NULL_REVISION], | ||||
[55, NULL_REVISION], | ||||
[15, NULL_REVISION], | ||||
[23, NULL_REVISION], | ||||
[58, NULL_REVISION], | ||||
[59, NULL_REVISION], | ||||
[2, NULL_REVISION], | ||||
[61, 59], | ||||
[62, NULL_REVISION], | ||||
[63, NULL_REVISION], | ||||
[NULL_REVISION, NULL_REVISION], | ||||
[65, NULL_REVISION], | ||||
[66, NULL_REVISION], | ||||
[67, NULL_REVISION], | ||||
[68, NULL_REVISION], | ||||
[37, 28], | ||||
[69, 25], | ||||
[71, NULL_REVISION], | ||||
[72, NULL_REVISION], | ||||
[50, 2], | ||||
[74, NULL_REVISION], | ||||
[12, NULL_REVISION], | ||||
[18, NULL_REVISION], | ||||
[77, NULL_REVISION], | ||||
[78, NULL_REVISION], | ||||
[79, NULL_REVISION], | ||||
[43, 33], | ||||
[81, NULL_REVISION], | ||||
[82, NULL_REVISION], | ||||
[83, NULL_REVISION], | ||||
[84, 45], | ||||
[85, NULL_REVISION], | ||||
[86, NULL_REVISION], | ||||
[NULL_REVISION, NULL_REVISION], | ||||
[88, NULL_REVISION], | ||||
[NULL_REVISION, NULL_REVISION], | ||||
[76, 83], | ||||
[44, NULL_REVISION], | ||||
[92, NULL_REVISION], | ||||
[93, NULL_REVISION], | ||||
[9, NULL_REVISION], | ||||
[95, 67], | ||||
[96, NULL_REVISION], | ||||
[97, NULL_REVISION], | ||||
[NULL_REVISION, NULL_REVISION], | ||||
]; | ||||
let problem_rev = 28 as Revision; | ||||
let problem_base = 70 as Revision; | ||||
// making the problem obvious: problem_rev is a parent of problem_base | ||||
assert_eq!(graph.parents(problem_base).unwrap()[1], problem_rev); | ||||
let mut missing_ancestors: MissingAncestors<VecGraph> = | ||||
MissingAncestors::new( | ||||
graph, | ||||
[60, 26, 70, 3, 96, 19, 98, 49, 97, 47, 1, 6] | ||||
.iter() | ||||
.cloned(), | ||||
); | ||||
assert!(missing_ancestors.bases.contains(&problem_base)); | ||||
let mut revs: HashSet<Revision> = | ||||
[4, 12, 41, 28, 68, 38, 1, 30, 56, 44] | ||||
.iter() | ||||
.cloned() | ||||
.collect(); | ||||
missing_ancestors.remove_ancestors_from(&mut revs).unwrap(); | ||||
assert!(!revs.contains(&problem_rev)); | ||||
} | ||||
Georges Racinet
|
r40307 | } | ||