##// END OF EJS Templates
lookup should allow -1 to represent nullid (if passed an int as arg)
Benoit Boissinot -
r2641:156fb1fe default
parent child Browse files
Show More
@@ -1,1286 +1,1283 b''
1 """
1 """
2 revlog.py - storage back-end for mercurial
2 revlog.py - storage back-end for mercurial
3
3
4 This provides efficient delta storage with O(1) retrieve and append
4 This provides efficient delta storage with O(1) retrieve and append
5 and O(changes) merge between branches
5 and O(changes) merge between branches
6
6
7 Copyright 2005 Matt Mackall <mpm@selenic.com>
7 Copyright 2005 Matt Mackall <mpm@selenic.com>
8
8
9 This software may be used and distributed according to the terms
9 This software may be used and distributed according to the terms
10 of the GNU General Public License, incorporated herein by reference.
10 of the GNU General Public License, incorporated herein by reference.
11 """
11 """
12
12
13 from node import *
13 from node import *
14 from i18n import gettext as _
14 from i18n import gettext as _
15 from demandload import demandload
15 from demandload import demandload
16 demandload(globals(), "binascii changegroup errno heapq mdiff os")
16 demandload(globals(), "binascii changegroup errno heapq mdiff os")
17 demandload(globals(), "sha struct util zlib")
17 demandload(globals(), "sha struct util zlib")
18
18
19 # revlog version strings
19 # revlog version strings
20 REVLOGV0 = 0
20 REVLOGV0 = 0
21 REVLOGNG = 1
21 REVLOGNG = 1
22
22
23 # revlog flags
23 # revlog flags
24 REVLOGNGINLINEDATA = (1 << 16)
24 REVLOGNGINLINEDATA = (1 << 16)
25 REVLOG_DEFAULT_FLAGS = REVLOGNGINLINEDATA
25 REVLOG_DEFAULT_FLAGS = REVLOGNGINLINEDATA
26
26
27 REVLOG_DEFAULT_FORMAT = REVLOGNG
27 REVLOG_DEFAULT_FORMAT = REVLOGNG
28 REVLOG_DEFAULT_VERSION = REVLOG_DEFAULT_FORMAT | REVLOG_DEFAULT_FLAGS
28 REVLOG_DEFAULT_VERSION = REVLOG_DEFAULT_FORMAT | REVLOG_DEFAULT_FLAGS
29
29
30 def flagstr(flag):
30 def flagstr(flag):
31 if flag == "inline":
31 if flag == "inline":
32 return REVLOGNGINLINEDATA
32 return REVLOGNGINLINEDATA
33 raise RevlogError(_("unknown revlog flag %s" % flag))
33 raise RevlogError(_("unknown revlog flag %s" % flag))
34
34
35 def hash(text, p1, p2):
35 def hash(text, p1, p2):
36 """generate a hash from the given text and its parent hashes
36 """generate a hash from the given text and its parent hashes
37
37
38 This hash combines both the current file contents and its history
38 This hash combines both the current file contents and its history
39 in a manner that makes it easy to distinguish nodes with the same
39 in a manner that makes it easy to distinguish nodes with the same
40 content in the revision graph.
40 content in the revision graph.
41 """
41 """
42 l = [p1, p2]
42 l = [p1, p2]
43 l.sort()
43 l.sort()
44 s = sha.new(l[0])
44 s = sha.new(l[0])
45 s.update(l[1])
45 s.update(l[1])
46 s.update(text)
46 s.update(text)
47 return s.digest()
47 return s.digest()
48
48
49 def compress(text):
49 def compress(text):
50 """ generate a possibly-compressed representation of text """
50 """ generate a possibly-compressed representation of text """
51 if not text: return ("", text)
51 if not text: return ("", text)
52 if len(text) < 44:
52 if len(text) < 44:
53 if text[0] == '\0': return ("", text)
53 if text[0] == '\0': return ("", text)
54 return ('u', text)
54 return ('u', text)
55 bin = zlib.compress(text)
55 bin = zlib.compress(text)
56 if len(bin) > len(text):
56 if len(bin) > len(text):
57 if text[0] == '\0': return ("", text)
57 if text[0] == '\0': return ("", text)
58 return ('u', text)
58 return ('u', text)
59 return ("", bin)
59 return ("", bin)
60
60
61 def decompress(bin):
61 def decompress(bin):
62 """ decompress the given input """
62 """ decompress the given input """
63 if not bin: return bin
63 if not bin: return bin
64 t = bin[0]
64 t = bin[0]
65 if t == '\0': return bin
65 if t == '\0': return bin
66 if t == 'x': return zlib.decompress(bin)
66 if t == 'x': return zlib.decompress(bin)
67 if t == 'u': return bin[1:]
67 if t == 'u': return bin[1:]
68 raise RevlogError(_("unknown compression type %r") % t)
68 raise RevlogError(_("unknown compression type %r") % t)
69
69
70 indexformatv0 = ">4l20s20s20s"
70 indexformatv0 = ">4l20s20s20s"
71 v0shaoffset = 56
71 v0shaoffset = 56
72 # index ng:
72 # index ng:
73 # 6 bytes offset
73 # 6 bytes offset
74 # 2 bytes flags
74 # 2 bytes flags
75 # 4 bytes compressed length
75 # 4 bytes compressed length
76 # 4 bytes uncompressed length
76 # 4 bytes uncompressed length
77 # 4 bytes: base rev
77 # 4 bytes: base rev
78 # 4 bytes link rev
78 # 4 bytes link rev
79 # 4 bytes parent 1 rev
79 # 4 bytes parent 1 rev
80 # 4 bytes parent 2 rev
80 # 4 bytes parent 2 rev
81 # 32 bytes: nodeid
81 # 32 bytes: nodeid
82 indexformatng = ">Qiiiiii20s12x"
82 indexformatng = ">Qiiiiii20s12x"
83 ngshaoffset = 32
83 ngshaoffset = 32
84 versionformat = ">i"
84 versionformat = ">i"
85
85
86 class lazyparser(object):
86 class lazyparser(object):
87 """
87 """
88 this class avoids the need to parse the entirety of large indices
88 this class avoids the need to parse the entirety of large indices
89 """
89 """
90
90
91 # lazyparser is not safe to use on windows if win32 extensions not
91 # lazyparser is not safe to use on windows if win32 extensions not
92 # available. it keeps file handle open, which make it not possible
92 # available. it keeps file handle open, which make it not possible
93 # to break hardlinks on local cloned repos.
93 # to break hardlinks on local cloned repos.
94 safe_to_use = os.name != 'nt' or (not util.is_win_9x() and
94 safe_to_use = os.name != 'nt' or (not util.is_win_9x() and
95 hasattr(util, 'win32api'))
95 hasattr(util, 'win32api'))
96
96
97 def __init__(self, dataf, size, indexformat, shaoffset):
97 def __init__(self, dataf, size, indexformat, shaoffset):
98 self.dataf = dataf
98 self.dataf = dataf
99 self.format = indexformat
99 self.format = indexformat
100 self.s = struct.calcsize(indexformat)
100 self.s = struct.calcsize(indexformat)
101 self.indexformat = indexformat
101 self.indexformat = indexformat
102 self.datasize = size
102 self.datasize = size
103 self.l = size/self.s
103 self.l = size/self.s
104 self.index = [None] * self.l
104 self.index = [None] * self.l
105 self.map = {nullid: -1}
105 self.map = {nullid: -1}
106 self.allmap = 0
106 self.allmap = 0
107 self.all = 0
107 self.all = 0
108 self.mapfind_count = 0
108 self.mapfind_count = 0
109 self.shaoffset = shaoffset
109 self.shaoffset = shaoffset
110
110
111 def loadmap(self):
111 def loadmap(self):
112 """
112 """
113 during a commit, we need to make sure the rev being added is
113 during a commit, we need to make sure the rev being added is
114 not a duplicate. This requires loading the entire index,
114 not a duplicate. This requires loading the entire index,
115 which is fairly slow. loadmap can load up just the node map,
115 which is fairly slow. loadmap can load up just the node map,
116 which takes much less time.
116 which takes much less time.
117 """
117 """
118 if self.allmap: return
118 if self.allmap: return
119 start = 0
119 start = 0
120 end = self.datasize
120 end = self.datasize
121 self.allmap = 1
121 self.allmap = 1
122 cur = 0
122 cur = 0
123 count = 0
123 count = 0
124 blocksize = self.s * 256
124 blocksize = self.s * 256
125 self.dataf.seek(0)
125 self.dataf.seek(0)
126 while cur < end:
126 while cur < end:
127 data = self.dataf.read(blocksize)
127 data = self.dataf.read(blocksize)
128 off = 0
128 off = 0
129 for x in xrange(256):
129 for x in xrange(256):
130 n = data[off + self.shaoffset:off + self.shaoffset + 20]
130 n = data[off + self.shaoffset:off + self.shaoffset + 20]
131 self.map[n] = count
131 self.map[n] = count
132 count += 1
132 count += 1
133 if count >= self.l:
133 if count >= self.l:
134 break
134 break
135 off += self.s
135 off += self.s
136 cur += blocksize
136 cur += blocksize
137
137
138 def loadblock(self, blockstart, blocksize, data=None):
138 def loadblock(self, blockstart, blocksize, data=None):
139 if self.all: return
139 if self.all: return
140 if data is None:
140 if data is None:
141 self.dataf.seek(blockstart)
141 self.dataf.seek(blockstart)
142 data = self.dataf.read(blocksize)
142 data = self.dataf.read(blocksize)
143 lend = len(data) / self.s
143 lend = len(data) / self.s
144 i = blockstart / self.s
144 i = blockstart / self.s
145 off = 0
145 off = 0
146 for x in xrange(lend):
146 for x in xrange(lend):
147 if self.index[i + x] == None:
147 if self.index[i + x] == None:
148 b = data[off : off + self.s]
148 b = data[off : off + self.s]
149 self.index[i + x] = b
149 self.index[i + x] = b
150 n = b[self.shaoffset:self.shaoffset + 20]
150 n = b[self.shaoffset:self.shaoffset + 20]
151 self.map[n] = i + x
151 self.map[n] = i + x
152 off += self.s
152 off += self.s
153
153
154 def findnode(self, node):
154 def findnode(self, node):
155 """search backwards through the index file for a specific node"""
155 """search backwards through the index file for a specific node"""
156 if self.allmap: return None
156 if self.allmap: return None
157
157
158 # hg log will cause many many searches for the manifest
158 # hg log will cause many many searches for the manifest
159 # nodes. After we get called a few times, just load the whole
159 # nodes. After we get called a few times, just load the whole
160 # thing.
160 # thing.
161 if self.mapfind_count > 8:
161 if self.mapfind_count > 8:
162 self.loadmap()
162 self.loadmap()
163 if node in self.map:
163 if node in self.map:
164 return node
164 return node
165 return None
165 return None
166 self.mapfind_count += 1
166 self.mapfind_count += 1
167 last = self.l - 1
167 last = self.l - 1
168 while self.index[last] != None:
168 while self.index[last] != None:
169 if last == 0:
169 if last == 0:
170 self.all = 1
170 self.all = 1
171 self.allmap = 1
171 self.allmap = 1
172 return None
172 return None
173 last -= 1
173 last -= 1
174 end = (last + 1) * self.s
174 end = (last + 1) * self.s
175 blocksize = self.s * 256
175 blocksize = self.s * 256
176 while end >= 0:
176 while end >= 0:
177 start = max(end - blocksize, 0)
177 start = max(end - blocksize, 0)
178 self.dataf.seek(start)
178 self.dataf.seek(start)
179 data = self.dataf.read(end - start)
179 data = self.dataf.read(end - start)
180 findend = end - start
180 findend = end - start
181 while True:
181 while True:
182 # we're searching backwards, so weh have to make sure
182 # we're searching backwards, so weh have to make sure
183 # we don't find a changeset where this node is a parent
183 # we don't find a changeset where this node is a parent
184 off = data.rfind(node, 0, findend)
184 off = data.rfind(node, 0, findend)
185 findend = off
185 findend = off
186 if off >= 0:
186 if off >= 0:
187 i = off / self.s
187 i = off / self.s
188 off = i * self.s
188 off = i * self.s
189 n = data[off + self.shaoffset:off + self.shaoffset + 20]
189 n = data[off + self.shaoffset:off + self.shaoffset + 20]
190 if n == node:
190 if n == node:
191 self.map[n] = i + start / self.s
191 self.map[n] = i + start / self.s
192 return node
192 return node
193 else:
193 else:
194 break
194 break
195 end -= blocksize
195 end -= blocksize
196 return None
196 return None
197
197
198 def loadindex(self, i=None, end=None):
198 def loadindex(self, i=None, end=None):
199 if self.all: return
199 if self.all: return
200 all = False
200 all = False
201 if i == None:
201 if i == None:
202 blockstart = 0
202 blockstart = 0
203 blocksize = (512 / self.s) * self.s
203 blocksize = (512 / self.s) * self.s
204 end = self.datasize
204 end = self.datasize
205 all = True
205 all = True
206 else:
206 else:
207 if end:
207 if end:
208 blockstart = i * self.s
208 blockstart = i * self.s
209 end = end * self.s
209 end = end * self.s
210 blocksize = end - blockstart
210 blocksize = end - blockstart
211 else:
211 else:
212 blockstart = (i & ~(32)) * self.s
212 blockstart = (i & ~(32)) * self.s
213 blocksize = self.s * 64
213 blocksize = self.s * 64
214 end = blockstart + blocksize
214 end = blockstart + blocksize
215 while blockstart < end:
215 while blockstart < end:
216 self.loadblock(blockstart, blocksize)
216 self.loadblock(blockstart, blocksize)
217 blockstart += blocksize
217 blockstart += blocksize
218 if all: self.all = True
218 if all: self.all = True
219
219
220 class lazyindex(object):
220 class lazyindex(object):
221 """a lazy version of the index array"""
221 """a lazy version of the index array"""
222 def __init__(self, parser):
222 def __init__(self, parser):
223 self.p = parser
223 self.p = parser
224 def __len__(self):
224 def __len__(self):
225 return len(self.p.index)
225 return len(self.p.index)
226 def load(self, pos):
226 def load(self, pos):
227 if pos < 0:
227 if pos < 0:
228 pos += len(self.p.index)
228 pos += len(self.p.index)
229 self.p.loadindex(pos)
229 self.p.loadindex(pos)
230 return self.p.index[pos]
230 return self.p.index[pos]
231 def __getitem__(self, pos):
231 def __getitem__(self, pos):
232 ret = self.p.index[pos] or self.load(pos)
232 ret = self.p.index[pos] or self.load(pos)
233 if isinstance(ret, str):
233 if isinstance(ret, str):
234 ret = struct.unpack(self.p.indexformat, ret)
234 ret = struct.unpack(self.p.indexformat, ret)
235 return ret
235 return ret
236 def __setitem__(self, pos, item):
236 def __setitem__(self, pos, item):
237 self.p.index[pos] = item
237 self.p.index[pos] = item
238 def __delitem__(self, pos):
238 def __delitem__(self, pos):
239 del self.p.index[pos]
239 del self.p.index[pos]
240 def append(self, e):
240 def append(self, e):
241 self.p.index.append(e)
241 self.p.index.append(e)
242
242
243 class lazymap(object):
243 class lazymap(object):
244 """a lazy version of the node map"""
244 """a lazy version of the node map"""
245 def __init__(self, parser):
245 def __init__(self, parser):
246 self.p = parser
246 self.p = parser
247 def load(self, key):
247 def load(self, key):
248 n = self.p.findnode(key)
248 n = self.p.findnode(key)
249 if n == None:
249 if n == None:
250 raise KeyError(key)
250 raise KeyError(key)
251 def __contains__(self, key):
251 def __contains__(self, key):
252 if key in self.p.map:
252 if key in self.p.map:
253 return True
253 return True
254 self.p.loadmap()
254 self.p.loadmap()
255 return key in self.p.map
255 return key in self.p.map
256 def __iter__(self):
256 def __iter__(self):
257 yield nullid
257 yield nullid
258 for i in xrange(self.p.l):
258 for i in xrange(self.p.l):
259 ret = self.p.index[i]
259 ret = self.p.index[i]
260 if not ret:
260 if not ret:
261 self.p.loadindex(i)
261 self.p.loadindex(i)
262 ret = self.p.index[i]
262 ret = self.p.index[i]
263 if isinstance(ret, str):
263 if isinstance(ret, str):
264 ret = struct.unpack(self.p.indexformat, ret)
264 ret = struct.unpack(self.p.indexformat, ret)
265 yield ret[-1]
265 yield ret[-1]
266 def __getitem__(self, key):
266 def __getitem__(self, key):
267 try:
267 try:
268 return self.p.map[key]
268 return self.p.map[key]
269 except KeyError:
269 except KeyError:
270 try:
270 try:
271 self.load(key)
271 self.load(key)
272 return self.p.map[key]
272 return self.p.map[key]
273 except KeyError:
273 except KeyError:
274 raise KeyError("node " + hex(key))
274 raise KeyError("node " + hex(key))
275 def __setitem__(self, key, val):
275 def __setitem__(self, key, val):
276 self.p.map[key] = val
276 self.p.map[key] = val
277 def __delitem__(self, key):
277 def __delitem__(self, key):
278 del self.p.map[key]
278 del self.p.map[key]
279
279
280 class RevlogError(Exception): pass
280 class RevlogError(Exception): pass
281
281
282 class revlog(object):
282 class revlog(object):
283 """
283 """
284 the underlying revision storage object
284 the underlying revision storage object
285
285
286 A revlog consists of two parts, an index and the revision data.
286 A revlog consists of two parts, an index and the revision data.
287
287
288 The index is a file with a fixed record size containing
288 The index is a file with a fixed record size containing
289 information on each revision, includings its nodeid (hash), the
289 information on each revision, includings its nodeid (hash), the
290 nodeids of its parents, the position and offset of its data within
290 nodeids of its parents, the position and offset of its data within
291 the data file, and the revision it's based on. Finally, each entry
291 the data file, and the revision it's based on. Finally, each entry
292 contains a linkrev entry that can serve as a pointer to external
292 contains a linkrev entry that can serve as a pointer to external
293 data.
293 data.
294
294
295 The revision data itself is a linear collection of data chunks.
295 The revision data itself is a linear collection of data chunks.
296 Each chunk represents a revision and is usually represented as a
296 Each chunk represents a revision and is usually represented as a
297 delta against the previous chunk. To bound lookup time, runs of
297 delta against the previous chunk. To bound lookup time, runs of
298 deltas are limited to about 2 times the length of the original
298 deltas are limited to about 2 times the length of the original
299 version data. This makes retrieval of a version proportional to
299 version data. This makes retrieval of a version proportional to
300 its size, or O(1) relative to the number of revisions.
300 its size, or O(1) relative to the number of revisions.
301
301
302 Both pieces of the revlog are written to in an append-only
302 Both pieces of the revlog are written to in an append-only
303 fashion, which means we never need to rewrite a file to insert or
303 fashion, which means we never need to rewrite a file to insert or
304 remove data, and can use some simple techniques to avoid the need
304 remove data, and can use some simple techniques to avoid the need
305 for locking while reading.
305 for locking while reading.
306 """
306 """
307 def __init__(self, opener, indexfile, datafile,
307 def __init__(self, opener, indexfile, datafile,
308 defversion=REVLOG_DEFAULT_VERSION):
308 defversion=REVLOG_DEFAULT_VERSION):
309 """
309 """
310 create a revlog object
310 create a revlog object
311
311
312 opener is a function that abstracts the file opening operation
312 opener is a function that abstracts the file opening operation
313 and can be used to implement COW semantics or the like.
313 and can be used to implement COW semantics or the like.
314 """
314 """
315 self.indexfile = indexfile
315 self.indexfile = indexfile
316 self.datafile = datafile
316 self.datafile = datafile
317 self.opener = opener
317 self.opener = opener
318
318
319 self.indexstat = None
319 self.indexstat = None
320 self.cache = None
320 self.cache = None
321 self.chunkcache = None
321 self.chunkcache = None
322 self.defversion = defversion
322 self.defversion = defversion
323 self.load()
323 self.load()
324
324
325 def load(self):
325 def load(self):
326 v = self.defversion
326 v = self.defversion
327 try:
327 try:
328 f = self.opener(self.indexfile)
328 f = self.opener(self.indexfile)
329 i = f.read(4)
329 i = f.read(4)
330 f.seek(0)
330 f.seek(0)
331 except IOError, inst:
331 except IOError, inst:
332 if inst.errno != errno.ENOENT:
332 if inst.errno != errno.ENOENT:
333 raise
333 raise
334 i = ""
334 i = ""
335 else:
335 else:
336 try:
336 try:
337 st = util.fstat(f)
337 st = util.fstat(f)
338 except AttributeError, inst:
338 except AttributeError, inst:
339 st = None
339 st = None
340 else:
340 else:
341 oldst = self.indexstat
341 oldst = self.indexstat
342 if (oldst and st.st_dev == oldst.st_dev
342 if (oldst and st.st_dev == oldst.st_dev
343 and st.st_ino == oldst.st_ino
343 and st.st_ino == oldst.st_ino
344 and st.st_mtime == oldst.st_mtime
344 and st.st_mtime == oldst.st_mtime
345 and st.st_ctime == oldst.st_ctime):
345 and st.st_ctime == oldst.st_ctime):
346 return
346 return
347 self.indexstat = st
347 self.indexstat = st
348 if len(i) > 0:
348 if len(i) > 0:
349 v = struct.unpack(versionformat, i)[0]
349 v = struct.unpack(versionformat, i)[0]
350 flags = v & ~0xFFFF
350 flags = v & ~0xFFFF
351 fmt = v & 0xFFFF
351 fmt = v & 0xFFFF
352 if fmt == REVLOGV0:
352 if fmt == REVLOGV0:
353 if flags:
353 if flags:
354 raise RevlogError(_("index %s invalid flags %x for format v0" %
354 raise RevlogError(_("index %s invalid flags %x for format v0" %
355 (self.indexfile, flags)))
355 (self.indexfile, flags)))
356 elif fmt == REVLOGNG:
356 elif fmt == REVLOGNG:
357 if flags & ~REVLOGNGINLINEDATA:
357 if flags & ~REVLOGNGINLINEDATA:
358 raise RevlogError(_("index %s invalid flags %x for revlogng" %
358 raise RevlogError(_("index %s invalid flags %x for revlogng" %
359 (self.indexfile, flags)))
359 (self.indexfile, flags)))
360 else:
360 else:
361 raise RevlogError(_("index %s invalid format %d" %
361 raise RevlogError(_("index %s invalid format %d" %
362 (self.indexfile, fmt)))
362 (self.indexfile, fmt)))
363 self.version = v
363 self.version = v
364 if v == REVLOGV0:
364 if v == REVLOGV0:
365 self.indexformat = indexformatv0
365 self.indexformat = indexformatv0
366 shaoffset = v0shaoffset
366 shaoffset = v0shaoffset
367 else:
367 else:
368 self.indexformat = indexformatng
368 self.indexformat = indexformatng
369 shaoffset = ngshaoffset
369 shaoffset = ngshaoffset
370
370
371 if i:
371 if i:
372 if (lazyparser.safe_to_use and not self.inlinedata() and
372 if (lazyparser.safe_to_use and not self.inlinedata() and
373 st and st.st_size > 10000):
373 st and st.st_size > 10000):
374 # big index, let's parse it on demand
374 # big index, let's parse it on demand
375 parser = lazyparser(f, st.st_size, self.indexformat, shaoffset)
375 parser = lazyparser(f, st.st_size, self.indexformat, shaoffset)
376 self.index = lazyindex(parser)
376 self.index = lazyindex(parser)
377 self.nodemap = lazymap(parser)
377 self.nodemap = lazymap(parser)
378 else:
378 else:
379 self.parseindex(f, st)
379 self.parseindex(f, st)
380 if self.version != REVLOGV0:
380 if self.version != REVLOGV0:
381 e = list(self.index[0])
381 e = list(self.index[0])
382 type = self.ngtype(e[0])
382 type = self.ngtype(e[0])
383 e[0] = self.offset_type(0, type)
383 e[0] = self.offset_type(0, type)
384 self.index[0] = e
384 self.index[0] = e
385 else:
385 else:
386 self.nodemap = { nullid: -1}
386 self.nodemap = { nullid: -1}
387 self.index = []
387 self.index = []
388
388
389
389
390 def parseindex(self, fp, st):
390 def parseindex(self, fp, st):
391 s = struct.calcsize(self.indexformat)
391 s = struct.calcsize(self.indexformat)
392 self.index = []
392 self.index = []
393 self.nodemap = {nullid: -1}
393 self.nodemap = {nullid: -1}
394 inline = self.inlinedata()
394 inline = self.inlinedata()
395 n = 0
395 n = 0
396 leftover = None
396 leftover = None
397 while True:
397 while True:
398 if st:
398 if st:
399 data = fp.read(65536)
399 data = fp.read(65536)
400 else:
400 else:
401 # hack for httprangereader, it doesn't do partial reads well
401 # hack for httprangereader, it doesn't do partial reads well
402 data = fp.read()
402 data = fp.read()
403 if not data:
403 if not data:
404 break
404 break
405 if n == 0 and self.inlinedata():
405 if n == 0 and self.inlinedata():
406 # cache the first chunk
406 # cache the first chunk
407 self.chunkcache = (0, data)
407 self.chunkcache = (0, data)
408 if leftover:
408 if leftover:
409 data = leftover + data
409 data = leftover + data
410 leftover = None
410 leftover = None
411 off = 0
411 off = 0
412 l = len(data)
412 l = len(data)
413 while off < l:
413 while off < l:
414 if l - off < s:
414 if l - off < s:
415 leftover = data[off:]
415 leftover = data[off:]
416 break
416 break
417 cur = data[off:off + s]
417 cur = data[off:off + s]
418 off += s
418 off += s
419 e = struct.unpack(self.indexformat, cur)
419 e = struct.unpack(self.indexformat, cur)
420 self.index.append(e)
420 self.index.append(e)
421 self.nodemap[e[-1]] = n
421 self.nodemap[e[-1]] = n
422 n += 1
422 n += 1
423 if inline:
423 if inline:
424 off += e[1]
424 off += e[1]
425 if off > l:
425 if off > l:
426 # some things don't seek well, just read it
426 # some things don't seek well, just read it
427 fp.read(off - l)
427 fp.read(off - l)
428 if not st:
428 if not st:
429 break
429 break
430
430
431
431
432 def ngoffset(self, q):
432 def ngoffset(self, q):
433 if q & 0xFFFF:
433 if q & 0xFFFF:
434 raise RevlogError(_('%s: incompatible revision flag %x') %
434 raise RevlogError(_('%s: incompatible revision flag %x') %
435 (self.indexfile, q))
435 (self.indexfile, q))
436 return long(q >> 16)
436 return long(q >> 16)
437
437
438 def ngtype(self, q):
438 def ngtype(self, q):
439 return int(q & 0xFFFF)
439 return int(q & 0xFFFF)
440
440
441 def offset_type(self, offset, type):
441 def offset_type(self, offset, type):
442 return long(long(offset) << 16 | type)
442 return long(long(offset) << 16 | type)
443
443
444 def loadindex(self, start, end):
444 def loadindex(self, start, end):
445 """load a block of indexes all at once from the lazy parser"""
445 """load a block of indexes all at once from the lazy parser"""
446 if isinstance(self.index, lazyindex):
446 if isinstance(self.index, lazyindex):
447 self.index.p.loadindex(start, end)
447 self.index.p.loadindex(start, end)
448
448
449 def loadindexmap(self):
449 def loadindexmap(self):
450 """loads both the map and the index from the lazy parser"""
450 """loads both the map and the index from the lazy parser"""
451 if isinstance(self.index, lazyindex):
451 if isinstance(self.index, lazyindex):
452 p = self.index.p
452 p = self.index.p
453 p.loadindex()
453 p.loadindex()
454 self.nodemap = p.map
454 self.nodemap = p.map
455
455
456 def loadmap(self):
456 def loadmap(self):
457 """loads the map from the lazy parser"""
457 """loads the map from the lazy parser"""
458 if isinstance(self.nodemap, lazymap):
458 if isinstance(self.nodemap, lazymap):
459 self.nodemap.p.loadmap()
459 self.nodemap.p.loadmap()
460 self.nodemap = self.nodemap.p.map
460 self.nodemap = self.nodemap.p.map
461
461
462 def inlinedata(self): return self.version & REVLOGNGINLINEDATA
462 def inlinedata(self): return self.version & REVLOGNGINLINEDATA
463 def tip(self): return self.node(len(self.index) - 1)
463 def tip(self): return self.node(len(self.index) - 1)
464 def count(self): return len(self.index)
464 def count(self): return len(self.index)
465 def node(self, rev):
465 def node(self, rev):
466 return (rev < 0) and nullid or self.index[rev][-1]
466 return (rev < 0) and nullid or self.index[rev][-1]
467 def rev(self, node):
467 def rev(self, node):
468 try:
468 try:
469 return self.nodemap[node]
469 return self.nodemap[node]
470 except KeyError:
470 except KeyError:
471 raise RevlogError(_('%s: no node %s') % (self.indexfile, hex(node)))
471 raise RevlogError(_('%s: no node %s') % (self.indexfile, hex(node)))
472 def linkrev(self, node): return self.index[self.rev(node)][-4]
472 def linkrev(self, node): return self.index[self.rev(node)][-4]
473 def parents(self, node):
473 def parents(self, node):
474 if node == nullid: return (nullid, nullid)
474 if node == nullid: return (nullid, nullid)
475 r = self.rev(node)
475 r = self.rev(node)
476 d = self.index[r][-3:-1]
476 d = self.index[r][-3:-1]
477 if self.version == REVLOGV0:
477 if self.version == REVLOGV0:
478 return d
478 return d
479 return [ self.node(x) for x in d ]
479 return [ self.node(x) for x in d ]
480 def parentrevs(self, rev):
480 def parentrevs(self, rev):
481 if rev == -1:
481 if rev == -1:
482 return (-1, -1)
482 return (-1, -1)
483 d = self.index[rev][-3:-1]
483 d = self.index[rev][-3:-1]
484 if self.version == REVLOGV0:
484 if self.version == REVLOGV0:
485 return [ self.rev(x) for x in d ]
485 return [ self.rev(x) for x in d ]
486 return d
486 return d
487 def start(self, rev):
487 def start(self, rev):
488 if rev < 0:
488 if rev < 0:
489 return -1
489 return -1
490 if self.version != REVLOGV0:
490 if self.version != REVLOGV0:
491 return self.ngoffset(self.index[rev][0])
491 return self.ngoffset(self.index[rev][0])
492 return self.index[rev][0]
492 return self.index[rev][0]
493
493
494 def end(self, rev): return self.start(rev) + self.length(rev)
494 def end(self, rev): return self.start(rev) + self.length(rev)
495
495
496 def size(self, rev):
496 def size(self, rev):
497 """return the length of the uncompressed text for a given revision"""
497 """return the length of the uncompressed text for a given revision"""
498 l = -1
498 l = -1
499 if self.version != REVLOGV0:
499 if self.version != REVLOGV0:
500 l = self.index[rev][2]
500 l = self.index[rev][2]
501 if l >= 0:
501 if l >= 0:
502 return l
502 return l
503
503
504 t = self.revision(self.node(rev))
504 t = self.revision(self.node(rev))
505 return len(t)
505 return len(t)
506
506
507 # alternate implementation, The advantage to this code is it
507 # alternate implementation, The advantage to this code is it
508 # will be faster for a single revision. But, the results are not
508 # will be faster for a single revision. But, the results are not
509 # cached, so finding the size of every revision will be slower.
509 # cached, so finding the size of every revision will be slower.
510 """
510 """
511 if self.cache and self.cache[1] == rev:
511 if self.cache and self.cache[1] == rev:
512 return len(self.cache[2])
512 return len(self.cache[2])
513
513
514 base = self.base(rev)
514 base = self.base(rev)
515 if self.cache and self.cache[1] >= base and self.cache[1] < rev:
515 if self.cache and self.cache[1] >= base and self.cache[1] < rev:
516 base = self.cache[1]
516 base = self.cache[1]
517 text = self.cache[2]
517 text = self.cache[2]
518 else:
518 else:
519 text = self.revision(self.node(base))
519 text = self.revision(self.node(base))
520
520
521 l = len(text)
521 l = len(text)
522 for x in xrange(base + 1, rev + 1):
522 for x in xrange(base + 1, rev + 1):
523 l = mdiff.patchedsize(l, self.chunk(x))
523 l = mdiff.patchedsize(l, self.chunk(x))
524 return l
524 return l
525 """
525 """
526
526
527 def length(self, rev):
527 def length(self, rev):
528 if rev < 0:
528 if rev < 0:
529 return 0
529 return 0
530 else:
530 else:
531 return self.index[rev][1]
531 return self.index[rev][1]
532 def base(self, rev): return (rev < 0) and rev or self.index[rev][-5]
532 def base(self, rev): return (rev < 0) and rev or self.index[rev][-5]
533
533
534 def reachable(self, rev, stop=None):
534 def reachable(self, rev, stop=None):
535 reachable = {}
535 reachable = {}
536 visit = [rev]
536 visit = [rev]
537 reachable[rev] = 1
537 reachable[rev] = 1
538 if stop:
538 if stop:
539 stopn = self.rev(stop)
539 stopn = self.rev(stop)
540 else:
540 else:
541 stopn = 0
541 stopn = 0
542 while visit:
542 while visit:
543 n = visit.pop(0)
543 n = visit.pop(0)
544 if n == stop:
544 if n == stop:
545 continue
545 continue
546 if n == nullid:
546 if n == nullid:
547 continue
547 continue
548 for p in self.parents(n):
548 for p in self.parents(n):
549 if self.rev(p) < stopn:
549 if self.rev(p) < stopn:
550 continue
550 continue
551 if p not in reachable:
551 if p not in reachable:
552 reachable[p] = 1
552 reachable[p] = 1
553 visit.append(p)
553 visit.append(p)
554 return reachable
554 return reachable
555
555
556 def nodesbetween(self, roots=None, heads=None):
556 def nodesbetween(self, roots=None, heads=None):
557 """Return a tuple containing three elements. Elements 1 and 2 contain
557 """Return a tuple containing three elements. Elements 1 and 2 contain
558 a final list bases and heads after all the unreachable ones have been
558 a final list bases and heads after all the unreachable ones have been
559 pruned. Element 0 contains a topologically sorted list of all
559 pruned. Element 0 contains a topologically sorted list of all
560
560
561 nodes that satisfy these constraints:
561 nodes that satisfy these constraints:
562 1. All nodes must be descended from a node in roots (the nodes on
562 1. All nodes must be descended from a node in roots (the nodes on
563 roots are considered descended from themselves).
563 roots are considered descended from themselves).
564 2. All nodes must also be ancestors of a node in heads (the nodes in
564 2. All nodes must also be ancestors of a node in heads (the nodes in
565 heads are considered to be their own ancestors).
565 heads are considered to be their own ancestors).
566
566
567 If roots is unspecified, nullid is assumed as the only root.
567 If roots is unspecified, nullid is assumed as the only root.
568 If heads is unspecified, it is taken to be the output of the
568 If heads is unspecified, it is taken to be the output of the
569 heads method (i.e. a list of all nodes in the repository that
569 heads method (i.e. a list of all nodes in the repository that
570 have no children)."""
570 have no children)."""
571 nonodes = ([], [], [])
571 nonodes = ([], [], [])
572 if roots is not None:
572 if roots is not None:
573 roots = list(roots)
573 roots = list(roots)
574 if not roots:
574 if not roots:
575 return nonodes
575 return nonodes
576 lowestrev = min([self.rev(n) for n in roots])
576 lowestrev = min([self.rev(n) for n in roots])
577 else:
577 else:
578 roots = [nullid] # Everybody's a descendent of nullid
578 roots = [nullid] # Everybody's a descendent of nullid
579 lowestrev = -1
579 lowestrev = -1
580 if (lowestrev == -1) and (heads is None):
580 if (lowestrev == -1) and (heads is None):
581 # We want _all_ the nodes!
581 # We want _all_ the nodes!
582 return ([self.node(r) for r in xrange(0, self.count())],
582 return ([self.node(r) for r in xrange(0, self.count())],
583 [nullid], list(self.heads()))
583 [nullid], list(self.heads()))
584 if heads is None:
584 if heads is None:
585 # All nodes are ancestors, so the latest ancestor is the last
585 # All nodes are ancestors, so the latest ancestor is the last
586 # node.
586 # node.
587 highestrev = self.count() - 1
587 highestrev = self.count() - 1
588 # Set ancestors to None to signal that every node is an ancestor.
588 # Set ancestors to None to signal that every node is an ancestor.
589 ancestors = None
589 ancestors = None
590 # Set heads to an empty dictionary for later discovery of heads
590 # Set heads to an empty dictionary for later discovery of heads
591 heads = {}
591 heads = {}
592 else:
592 else:
593 heads = list(heads)
593 heads = list(heads)
594 if not heads:
594 if not heads:
595 return nonodes
595 return nonodes
596 ancestors = {}
596 ancestors = {}
597 # Start at the top and keep marking parents until we're done.
597 # Start at the top and keep marking parents until we're done.
598 nodestotag = heads[:]
598 nodestotag = heads[:]
599 # Turn heads into a dictionary so we can remove 'fake' heads.
599 # Turn heads into a dictionary so we can remove 'fake' heads.
600 # Also, later we will be using it to filter out the heads we can't
600 # Also, later we will be using it to filter out the heads we can't
601 # find from roots.
601 # find from roots.
602 heads = dict.fromkeys(heads, 0)
602 heads = dict.fromkeys(heads, 0)
603 # Remember where the top was so we can use it as a limit later.
603 # Remember where the top was so we can use it as a limit later.
604 highestrev = max([self.rev(n) for n in nodestotag])
604 highestrev = max([self.rev(n) for n in nodestotag])
605 while nodestotag:
605 while nodestotag:
606 # grab a node to tag
606 # grab a node to tag
607 n = nodestotag.pop()
607 n = nodestotag.pop()
608 # Never tag nullid
608 # Never tag nullid
609 if n == nullid:
609 if n == nullid:
610 continue
610 continue
611 # A node's revision number represents its place in a
611 # A node's revision number represents its place in a
612 # topologically sorted list of nodes.
612 # topologically sorted list of nodes.
613 r = self.rev(n)
613 r = self.rev(n)
614 if r >= lowestrev:
614 if r >= lowestrev:
615 if n not in ancestors:
615 if n not in ancestors:
616 # If we are possibly a descendent of one of the roots
616 # If we are possibly a descendent of one of the roots
617 # and we haven't already been marked as an ancestor
617 # and we haven't already been marked as an ancestor
618 ancestors[n] = 1 # Mark as ancestor
618 ancestors[n] = 1 # Mark as ancestor
619 # Add non-nullid parents to list of nodes to tag.
619 # Add non-nullid parents to list of nodes to tag.
620 nodestotag.extend([p for p in self.parents(n) if
620 nodestotag.extend([p for p in self.parents(n) if
621 p != nullid])
621 p != nullid])
622 elif n in heads: # We've seen it before, is it a fake head?
622 elif n in heads: # We've seen it before, is it a fake head?
623 # So it is, real heads should not be the ancestors of
623 # So it is, real heads should not be the ancestors of
624 # any other heads.
624 # any other heads.
625 heads.pop(n)
625 heads.pop(n)
626 if not ancestors:
626 if not ancestors:
627 return nonodes
627 return nonodes
628 # Now that we have our set of ancestors, we want to remove any
628 # Now that we have our set of ancestors, we want to remove any
629 # roots that are not ancestors.
629 # roots that are not ancestors.
630
630
631 # If one of the roots was nullid, everything is included anyway.
631 # If one of the roots was nullid, everything is included anyway.
632 if lowestrev > -1:
632 if lowestrev > -1:
633 # But, since we weren't, let's recompute the lowest rev to not
633 # But, since we weren't, let's recompute the lowest rev to not
634 # include roots that aren't ancestors.
634 # include roots that aren't ancestors.
635
635
636 # Filter out roots that aren't ancestors of heads
636 # Filter out roots that aren't ancestors of heads
637 roots = [n for n in roots if n in ancestors]
637 roots = [n for n in roots if n in ancestors]
638 # Recompute the lowest revision
638 # Recompute the lowest revision
639 if roots:
639 if roots:
640 lowestrev = min([self.rev(n) for n in roots])
640 lowestrev = min([self.rev(n) for n in roots])
641 else:
641 else:
642 # No more roots? Return empty list
642 # No more roots? Return empty list
643 return nonodes
643 return nonodes
644 else:
644 else:
645 # We are descending from nullid, and don't need to care about
645 # We are descending from nullid, and don't need to care about
646 # any other roots.
646 # any other roots.
647 lowestrev = -1
647 lowestrev = -1
648 roots = [nullid]
648 roots = [nullid]
649 # Transform our roots list into a 'set' (i.e. a dictionary where the
649 # Transform our roots list into a 'set' (i.e. a dictionary where the
650 # values don't matter.
650 # values don't matter.
651 descendents = dict.fromkeys(roots, 1)
651 descendents = dict.fromkeys(roots, 1)
652 # Also, keep the original roots so we can filter out roots that aren't
652 # Also, keep the original roots so we can filter out roots that aren't
653 # 'real' roots (i.e. are descended from other roots).
653 # 'real' roots (i.e. are descended from other roots).
654 roots = descendents.copy()
654 roots = descendents.copy()
655 # Our topologically sorted list of output nodes.
655 # Our topologically sorted list of output nodes.
656 orderedout = []
656 orderedout = []
657 # Don't start at nullid since we don't want nullid in our output list,
657 # Don't start at nullid since we don't want nullid in our output list,
658 # and if nullid shows up in descedents, empty parents will look like
658 # and if nullid shows up in descedents, empty parents will look like
659 # they're descendents.
659 # they're descendents.
660 for r in xrange(max(lowestrev, 0), highestrev + 1):
660 for r in xrange(max(lowestrev, 0), highestrev + 1):
661 n = self.node(r)
661 n = self.node(r)
662 isdescendent = False
662 isdescendent = False
663 if lowestrev == -1: # Everybody is a descendent of nullid
663 if lowestrev == -1: # Everybody is a descendent of nullid
664 isdescendent = True
664 isdescendent = True
665 elif n in descendents:
665 elif n in descendents:
666 # n is already a descendent
666 # n is already a descendent
667 isdescendent = True
667 isdescendent = True
668 # This check only needs to be done here because all the roots
668 # This check only needs to be done here because all the roots
669 # will start being marked is descendents before the loop.
669 # will start being marked is descendents before the loop.
670 if n in roots:
670 if n in roots:
671 # If n was a root, check if it's a 'real' root.
671 # If n was a root, check if it's a 'real' root.
672 p = tuple(self.parents(n))
672 p = tuple(self.parents(n))
673 # If any of its parents are descendents, it's not a root.
673 # If any of its parents are descendents, it's not a root.
674 if (p[0] in descendents) or (p[1] in descendents):
674 if (p[0] in descendents) or (p[1] in descendents):
675 roots.pop(n)
675 roots.pop(n)
676 else:
676 else:
677 p = tuple(self.parents(n))
677 p = tuple(self.parents(n))
678 # A node is a descendent if either of its parents are
678 # A node is a descendent if either of its parents are
679 # descendents. (We seeded the dependents list with the roots
679 # descendents. (We seeded the dependents list with the roots
680 # up there, remember?)
680 # up there, remember?)
681 if (p[0] in descendents) or (p[1] in descendents):
681 if (p[0] in descendents) or (p[1] in descendents):
682 descendents[n] = 1
682 descendents[n] = 1
683 isdescendent = True
683 isdescendent = True
684 if isdescendent and ((ancestors is None) or (n in ancestors)):
684 if isdescendent and ((ancestors is None) or (n in ancestors)):
685 # Only include nodes that are both descendents and ancestors.
685 # Only include nodes that are both descendents and ancestors.
686 orderedout.append(n)
686 orderedout.append(n)
687 if (ancestors is not None) and (n in heads):
687 if (ancestors is not None) and (n in heads):
688 # We're trying to figure out which heads are reachable
688 # We're trying to figure out which heads are reachable
689 # from roots.
689 # from roots.
690 # Mark this head as having been reached
690 # Mark this head as having been reached
691 heads[n] = 1
691 heads[n] = 1
692 elif ancestors is None:
692 elif ancestors is None:
693 # Otherwise, we're trying to discover the heads.
693 # Otherwise, we're trying to discover the heads.
694 # Assume this is a head because if it isn't, the next step
694 # Assume this is a head because if it isn't, the next step
695 # will eventually remove it.
695 # will eventually remove it.
696 heads[n] = 1
696 heads[n] = 1
697 # But, obviously its parents aren't.
697 # But, obviously its parents aren't.
698 for p in self.parents(n):
698 for p in self.parents(n):
699 heads.pop(p, None)
699 heads.pop(p, None)
700 heads = [n for n in heads.iterkeys() if heads[n] != 0]
700 heads = [n for n in heads.iterkeys() if heads[n] != 0]
701 roots = roots.keys()
701 roots = roots.keys()
702 assert orderedout
702 assert orderedout
703 assert roots
703 assert roots
704 assert heads
704 assert heads
705 return (orderedout, roots, heads)
705 return (orderedout, roots, heads)
706
706
707 def heads(self, start=None):
707 def heads(self, start=None):
708 """return the list of all nodes that have no children
708 """return the list of all nodes that have no children
709
709
710 if start is specified, only heads that are descendants of
710 if start is specified, only heads that are descendants of
711 start will be returned
711 start will be returned
712
712
713 """
713 """
714 if start is None:
714 if start is None:
715 start = nullid
715 start = nullid
716 startrev = self.rev(start)
716 startrev = self.rev(start)
717 reachable = {startrev: 1}
717 reachable = {startrev: 1}
718 heads = {startrev: 1}
718 heads = {startrev: 1}
719
719
720 parentrevs = self.parentrevs
720 parentrevs = self.parentrevs
721 for r in xrange(startrev + 1, self.count()):
721 for r in xrange(startrev + 1, self.count()):
722 for p in parentrevs(r):
722 for p in parentrevs(r):
723 if p in reachable:
723 if p in reachable:
724 reachable[r] = 1
724 reachable[r] = 1
725 heads[r] = 1
725 heads[r] = 1
726 if p in heads:
726 if p in heads:
727 del heads[p]
727 del heads[p]
728 return [self.node(r) for r in heads]
728 return [self.node(r) for r in heads]
729
729
730 def children(self, node):
730 def children(self, node):
731 """find the children of a given node"""
731 """find the children of a given node"""
732 c = []
732 c = []
733 p = self.rev(node)
733 p = self.rev(node)
734 for r in range(p + 1, self.count()):
734 for r in range(p + 1, self.count()):
735 n = self.node(r)
735 n = self.node(r)
736 for pn in self.parents(n):
736 for pn in self.parents(n):
737 if pn == node:
737 if pn == node:
738 c.append(n)
738 c.append(n)
739 continue
739 continue
740 elif pn == nullid:
740 elif pn == nullid:
741 continue
741 continue
742 return c
742 return c
743
743
744 def lookup(self, id):
744 def lookup(self, id):
745 """locate a node based on revision number or subset of hex nodeid"""
745 """locate a node based on revision number or subset of hex nodeid"""
746 if id in self.nodemap:
746 if id in self.nodemap:
747 return id
747 return id
748 if type(id) == type(0):
748 if type(id) == type(0):
749 rev = id
749 return self.node(id)
750 if rev < 0: rev = self.count() + rev
751 if rev < 0 or rev >= self.count(): return None
752 return self.node(rev)
753 try:
750 try:
754 rev = int(id)
751 rev = int(id)
755 if str(rev) != id: raise ValueError
752 if str(rev) != id: raise ValueError
756 if rev < 0: rev = self.count() + rev
753 if rev < 0: rev = self.count() + rev
757 if rev < 0 or rev >= self.count(): raise ValueError
754 if rev < 0 or rev >= self.count(): raise ValueError
758 return self.node(rev)
755 return self.node(rev)
759 except (ValueError, OverflowError):
756 except (ValueError, OverflowError):
760 c = []
757 c = []
761 for n in self.nodemap:
758 for n in self.nodemap:
762 if hex(n).startswith(id):
759 if hex(n).startswith(id):
763 c.append(n)
760 c.append(n)
764 if len(c) > 1: raise RevlogError(_("Ambiguous identifier"))
761 if len(c) > 1: raise RevlogError(_("Ambiguous identifier"))
765 if len(c) < 1: raise RevlogError(_("No match found"))
762 if len(c) < 1: raise RevlogError(_("No match found"))
766 return c[0]
763 return c[0]
767
764
768 return None
765 return None
769
766
770 def diff(self, a, b):
767 def diff(self, a, b):
771 """return a delta between two revisions"""
768 """return a delta between two revisions"""
772 return mdiff.textdiff(a, b)
769 return mdiff.textdiff(a, b)
773
770
774 def patches(self, t, pl):
771 def patches(self, t, pl):
775 """apply a list of patches to a string"""
772 """apply a list of patches to a string"""
776 return mdiff.patches(t, pl)
773 return mdiff.patches(t, pl)
777
774
778 def chunk(self, rev, df=None, cachelen=4096):
775 def chunk(self, rev, df=None, cachelen=4096):
779 start, length = self.start(rev), self.length(rev)
776 start, length = self.start(rev), self.length(rev)
780 inline = self.inlinedata()
777 inline = self.inlinedata()
781 if inline:
778 if inline:
782 start += (rev + 1) * struct.calcsize(self.indexformat)
779 start += (rev + 1) * struct.calcsize(self.indexformat)
783 end = start + length
780 end = start + length
784 def loadcache(df):
781 def loadcache(df):
785 cache_length = max(cachelen, length) # 4k
782 cache_length = max(cachelen, length) # 4k
786 if not df:
783 if not df:
787 if inline:
784 if inline:
788 df = self.opener(self.indexfile)
785 df = self.opener(self.indexfile)
789 else:
786 else:
790 df = self.opener(self.datafile)
787 df = self.opener(self.datafile)
791 df.seek(start)
788 df.seek(start)
792 self.chunkcache = (start, df.read(cache_length))
789 self.chunkcache = (start, df.read(cache_length))
793
790
794 if not self.chunkcache:
791 if not self.chunkcache:
795 loadcache(df)
792 loadcache(df)
796
793
797 cache_start = self.chunkcache[0]
794 cache_start = self.chunkcache[0]
798 cache_end = cache_start + len(self.chunkcache[1])
795 cache_end = cache_start + len(self.chunkcache[1])
799 if start >= cache_start and end <= cache_end:
796 if start >= cache_start and end <= cache_end:
800 # it is cached
797 # it is cached
801 offset = start - cache_start
798 offset = start - cache_start
802 else:
799 else:
803 loadcache(df)
800 loadcache(df)
804 offset = 0
801 offset = 0
805
802
806 #def checkchunk():
803 #def checkchunk():
807 # df = self.opener(self.datafile)
804 # df = self.opener(self.datafile)
808 # df.seek(start)
805 # df.seek(start)
809 # return df.read(length)
806 # return df.read(length)
810 #assert s == checkchunk()
807 #assert s == checkchunk()
811 return decompress(self.chunkcache[1][offset:offset + length])
808 return decompress(self.chunkcache[1][offset:offset + length])
812
809
813 def delta(self, node):
810 def delta(self, node):
814 """return or calculate a delta between a node and its predecessor"""
811 """return or calculate a delta between a node and its predecessor"""
815 r = self.rev(node)
812 r = self.rev(node)
816 return self.revdiff(r - 1, r)
813 return self.revdiff(r - 1, r)
817
814
818 def revdiff(self, rev1, rev2):
815 def revdiff(self, rev1, rev2):
819 """return or calculate a delta between two revisions"""
816 """return or calculate a delta between two revisions"""
820 b1 = self.base(rev1)
817 b1 = self.base(rev1)
821 b2 = self.base(rev2)
818 b2 = self.base(rev2)
822 if b1 == b2 and rev1 + 1 == rev2:
819 if b1 == b2 and rev1 + 1 == rev2:
823 return self.chunk(rev2)
820 return self.chunk(rev2)
824 else:
821 else:
825 return self.diff(self.revision(self.node(rev1)),
822 return self.diff(self.revision(self.node(rev1)),
826 self.revision(self.node(rev2)))
823 self.revision(self.node(rev2)))
827
824
828 def revision(self, node):
825 def revision(self, node):
829 """return an uncompressed revision of a given"""
826 """return an uncompressed revision of a given"""
830 if node == nullid: return ""
827 if node == nullid: return ""
831 if self.cache and self.cache[0] == node: return self.cache[2]
828 if self.cache and self.cache[0] == node: return self.cache[2]
832
829
833 # look up what we need to read
830 # look up what we need to read
834 text = None
831 text = None
835 rev = self.rev(node)
832 rev = self.rev(node)
836 base = self.base(rev)
833 base = self.base(rev)
837
834
838 if self.inlinedata():
835 if self.inlinedata():
839 # we probably have the whole chunk cached
836 # we probably have the whole chunk cached
840 df = None
837 df = None
841 else:
838 else:
842 df = self.opener(self.datafile)
839 df = self.opener(self.datafile)
843
840
844 # do we have useful data cached?
841 # do we have useful data cached?
845 if self.cache and self.cache[1] >= base and self.cache[1] < rev:
842 if self.cache and self.cache[1] >= base and self.cache[1] < rev:
846 base = self.cache[1]
843 base = self.cache[1]
847 text = self.cache[2]
844 text = self.cache[2]
848 self.loadindex(base, rev + 1)
845 self.loadindex(base, rev + 1)
849 else:
846 else:
850 self.loadindex(base, rev + 1)
847 self.loadindex(base, rev + 1)
851 text = self.chunk(base, df=df)
848 text = self.chunk(base, df=df)
852
849
853 bins = []
850 bins = []
854 for r in xrange(base + 1, rev + 1):
851 for r in xrange(base + 1, rev + 1):
855 bins.append(self.chunk(r, df=df))
852 bins.append(self.chunk(r, df=df))
856
853
857 text = self.patches(text, bins)
854 text = self.patches(text, bins)
858
855
859 p1, p2 = self.parents(node)
856 p1, p2 = self.parents(node)
860 if node != hash(text, p1, p2):
857 if node != hash(text, p1, p2):
861 raise RevlogError(_("integrity check failed on %s:%d")
858 raise RevlogError(_("integrity check failed on %s:%d")
862 % (self.datafile, rev))
859 % (self.datafile, rev))
863
860
864 self.cache = (node, rev, text)
861 self.cache = (node, rev, text)
865 return text
862 return text
866
863
867 def checkinlinesize(self, tr, fp=None):
864 def checkinlinesize(self, tr, fp=None):
868 if not self.inlinedata():
865 if not self.inlinedata():
869 return
866 return
870 if not fp:
867 if not fp:
871 fp = self.opener(self.indexfile, 'r')
868 fp = self.opener(self.indexfile, 'r')
872 fp.seek(0, 2)
869 fp.seek(0, 2)
873 size = fp.tell()
870 size = fp.tell()
874 if size < 131072:
871 if size < 131072:
875 return
872 return
876 trinfo = tr.find(self.indexfile)
873 trinfo = tr.find(self.indexfile)
877 if trinfo == None:
874 if trinfo == None:
878 raise RevlogError(_("%s not found in the transaction" %
875 raise RevlogError(_("%s not found in the transaction" %
879 self.indexfile))
876 self.indexfile))
880
877
881 trindex = trinfo[2]
878 trindex = trinfo[2]
882 dataoff = self.start(trindex)
879 dataoff = self.start(trindex)
883
880
884 tr.add(self.datafile, dataoff)
881 tr.add(self.datafile, dataoff)
885 df = self.opener(self.datafile, 'w')
882 df = self.opener(self.datafile, 'w')
886 calc = struct.calcsize(self.indexformat)
883 calc = struct.calcsize(self.indexformat)
887 for r in xrange(self.count()):
884 for r in xrange(self.count()):
888 start = self.start(r) + (r + 1) * calc
885 start = self.start(r) + (r + 1) * calc
889 length = self.length(r)
886 length = self.length(r)
890 fp.seek(start)
887 fp.seek(start)
891 d = fp.read(length)
888 d = fp.read(length)
892 df.write(d)
889 df.write(d)
893 fp.close()
890 fp.close()
894 df.close()
891 df.close()
895 fp = self.opener(self.indexfile, 'w', atomictemp=True)
892 fp = self.opener(self.indexfile, 'w', atomictemp=True)
896 self.version &= ~(REVLOGNGINLINEDATA)
893 self.version &= ~(REVLOGNGINLINEDATA)
897 if self.count():
894 if self.count():
898 x = self.index[0]
895 x = self.index[0]
899 e = struct.pack(self.indexformat, *x)[4:]
896 e = struct.pack(self.indexformat, *x)[4:]
900 l = struct.pack(versionformat, self.version)
897 l = struct.pack(versionformat, self.version)
901 fp.write(l)
898 fp.write(l)
902 fp.write(e)
899 fp.write(e)
903
900
904 for i in xrange(1, self.count()):
901 for i in xrange(1, self.count()):
905 x = self.index[i]
902 x = self.index[i]
906 e = struct.pack(self.indexformat, *x)
903 e = struct.pack(self.indexformat, *x)
907 fp.write(e)
904 fp.write(e)
908
905
909 # if we don't call rename, the temp file will never replace the
906 # if we don't call rename, the temp file will never replace the
910 # real index
907 # real index
911 fp.rename()
908 fp.rename()
912
909
913 tr.replace(self.indexfile, trindex * calc)
910 tr.replace(self.indexfile, trindex * calc)
914 self.chunkcache = None
911 self.chunkcache = None
915
912
916 def addrevision(self, text, transaction, link, p1=None, p2=None, d=None):
913 def addrevision(self, text, transaction, link, p1=None, p2=None, d=None):
917 """add a revision to the log
914 """add a revision to the log
918
915
919 text - the revision data to add
916 text - the revision data to add
920 transaction - the transaction object used for rollback
917 transaction - the transaction object used for rollback
921 link - the linkrev data to add
918 link - the linkrev data to add
922 p1, p2 - the parent nodeids of the revision
919 p1, p2 - the parent nodeids of the revision
923 d - an optional precomputed delta
920 d - an optional precomputed delta
924 """
921 """
925 if text is None: text = ""
922 if text is None: text = ""
926 if p1 is None: p1 = self.tip()
923 if p1 is None: p1 = self.tip()
927 if p2 is None: p2 = nullid
924 if p2 is None: p2 = nullid
928
925
929 node = hash(text, p1, p2)
926 node = hash(text, p1, p2)
930
927
931 if node in self.nodemap:
928 if node in self.nodemap:
932 return node
929 return node
933
930
934 n = self.count()
931 n = self.count()
935 t = n - 1
932 t = n - 1
936
933
937 if n:
934 if n:
938 base = self.base(t)
935 base = self.base(t)
939 start = self.start(base)
936 start = self.start(base)
940 end = self.end(t)
937 end = self.end(t)
941 if not d:
938 if not d:
942 prev = self.revision(self.tip())
939 prev = self.revision(self.tip())
943 d = self.diff(prev, str(text))
940 d = self.diff(prev, str(text))
944 data = compress(d)
941 data = compress(d)
945 l = len(data[1]) + len(data[0])
942 l = len(data[1]) + len(data[0])
946 dist = end - start + l
943 dist = end - start + l
947
944
948 # full versions are inserted when the needed deltas
945 # full versions are inserted when the needed deltas
949 # become comparable to the uncompressed text
946 # become comparable to the uncompressed text
950 if not n or dist > len(text) * 2:
947 if not n or dist > len(text) * 2:
951 data = compress(text)
948 data = compress(text)
952 l = len(data[1]) + len(data[0])
949 l = len(data[1]) + len(data[0])
953 base = n
950 base = n
954 else:
951 else:
955 base = self.base(t)
952 base = self.base(t)
956
953
957 offset = 0
954 offset = 0
958 if t >= 0:
955 if t >= 0:
959 offset = self.end(t)
956 offset = self.end(t)
960
957
961 if self.version == REVLOGV0:
958 if self.version == REVLOGV0:
962 e = (offset, l, base, link, p1, p2, node)
959 e = (offset, l, base, link, p1, p2, node)
963 else:
960 else:
964 e = (self.offset_type(offset, 0), l, len(text),
961 e = (self.offset_type(offset, 0), l, len(text),
965 base, link, self.rev(p1), self.rev(p2), node)
962 base, link, self.rev(p1), self.rev(p2), node)
966
963
967 self.index.append(e)
964 self.index.append(e)
968 self.nodemap[node] = n
965 self.nodemap[node] = n
969 entry = struct.pack(self.indexformat, *e)
966 entry = struct.pack(self.indexformat, *e)
970
967
971 if not self.inlinedata():
968 if not self.inlinedata():
972 transaction.add(self.datafile, offset)
969 transaction.add(self.datafile, offset)
973 transaction.add(self.indexfile, n * len(entry))
970 transaction.add(self.indexfile, n * len(entry))
974 f = self.opener(self.datafile, "a")
971 f = self.opener(self.datafile, "a")
975 if data[0]:
972 if data[0]:
976 f.write(data[0])
973 f.write(data[0])
977 f.write(data[1])
974 f.write(data[1])
978 f.close()
975 f.close()
979 f = self.opener(self.indexfile, "a")
976 f = self.opener(self.indexfile, "a")
980 else:
977 else:
981 f = self.opener(self.indexfile, "a+")
978 f = self.opener(self.indexfile, "a+")
982 f.seek(0, 2)
979 f.seek(0, 2)
983 transaction.add(self.indexfile, f.tell(), self.count() - 1)
980 transaction.add(self.indexfile, f.tell(), self.count() - 1)
984
981
985 if len(self.index) == 1 and self.version != REVLOGV0:
982 if len(self.index) == 1 and self.version != REVLOGV0:
986 l = struct.pack(versionformat, self.version)
983 l = struct.pack(versionformat, self.version)
987 f.write(l)
984 f.write(l)
988 entry = entry[4:]
985 entry = entry[4:]
989
986
990 f.write(entry)
987 f.write(entry)
991
988
992 if self.inlinedata():
989 if self.inlinedata():
993 f.write(data[0])
990 f.write(data[0])
994 f.write(data[1])
991 f.write(data[1])
995 self.checkinlinesize(transaction, f)
992 self.checkinlinesize(transaction, f)
996
993
997 self.cache = (node, n, text)
994 self.cache = (node, n, text)
998 return node
995 return node
999
996
1000 def ancestor(self, a, b):
997 def ancestor(self, a, b):
1001 """calculate the least common ancestor of nodes a and b"""
998 """calculate the least common ancestor of nodes a and b"""
1002
999
1003 # start with some short cuts for the linear cases
1000 # start with some short cuts for the linear cases
1004 if a == b:
1001 if a == b:
1005 return a
1002 return a
1006 ra = self.rev(a)
1003 ra = self.rev(a)
1007 rb = self.rev(b)
1004 rb = self.rev(b)
1008 if ra < rb:
1005 if ra < rb:
1009 last = b
1006 last = b
1010 first = a
1007 first = a
1011 else:
1008 else:
1012 last = a
1009 last = a
1013 first = b
1010 first = b
1014
1011
1015 # reachable won't include stop in the list, so we have to use a parent
1012 # reachable won't include stop in the list, so we have to use a parent
1016 reachable = self.reachable(last, stop=self.parents(first)[0])
1013 reachable = self.reachable(last, stop=self.parents(first)[0])
1017 if first in reachable:
1014 if first in reachable:
1018 return first
1015 return first
1019
1016
1020 # calculate the distance of every node from root
1017 # calculate the distance of every node from root
1021 dist = {nullid: 0}
1018 dist = {nullid: 0}
1022 for i in xrange(self.count()):
1019 for i in xrange(self.count()):
1023 n = self.node(i)
1020 n = self.node(i)
1024 p1, p2 = self.parents(n)
1021 p1, p2 = self.parents(n)
1025 dist[n] = max(dist[p1], dist[p2]) + 1
1022 dist[n] = max(dist[p1], dist[p2]) + 1
1026
1023
1027 # traverse ancestors in order of decreasing distance from root
1024 # traverse ancestors in order of decreasing distance from root
1028 def ancestors(node):
1025 def ancestors(node):
1029 # we store negative distances because heap returns smallest member
1026 # we store negative distances because heap returns smallest member
1030 h = [(-dist[node], node)]
1027 h = [(-dist[node], node)]
1031 seen = {}
1028 seen = {}
1032 while h:
1029 while h:
1033 d, n = heapq.heappop(h)
1030 d, n = heapq.heappop(h)
1034 if n not in seen:
1031 if n not in seen:
1035 seen[n] = 1
1032 seen[n] = 1
1036 yield (-d, n)
1033 yield (-d, n)
1037 for p in self.parents(n):
1034 for p in self.parents(n):
1038 heapq.heappush(h, (-dist[p], p))
1035 heapq.heappush(h, (-dist[p], p))
1039
1036
1040 def generations(node):
1037 def generations(node):
1041 sg, s = None, {}
1038 sg, s = None, {}
1042 for g,n in ancestors(node):
1039 for g,n in ancestors(node):
1043 if g != sg:
1040 if g != sg:
1044 if sg:
1041 if sg:
1045 yield sg, s
1042 yield sg, s
1046 sg, s = g, {n:1}
1043 sg, s = g, {n:1}
1047 else:
1044 else:
1048 s[n] = 1
1045 s[n] = 1
1049 yield sg, s
1046 yield sg, s
1050
1047
1051 x = generations(a)
1048 x = generations(a)
1052 y = generations(b)
1049 y = generations(b)
1053 gx = x.next()
1050 gx = x.next()
1054 gy = y.next()
1051 gy = y.next()
1055
1052
1056 # increment each ancestor list until it is closer to root than
1053 # increment each ancestor list until it is closer to root than
1057 # the other, or they match
1054 # the other, or they match
1058 while 1:
1055 while 1:
1059 #print "ancestor gen %s %s" % (gx[0], gy[0])
1056 #print "ancestor gen %s %s" % (gx[0], gy[0])
1060 if gx[0] == gy[0]:
1057 if gx[0] == gy[0]:
1061 # find the intersection
1058 # find the intersection
1062 i = [ n for n in gx[1] if n in gy[1] ]
1059 i = [ n for n in gx[1] if n in gy[1] ]
1063 if i:
1060 if i:
1064 return i[0]
1061 return i[0]
1065 else:
1062 else:
1066 #print "next"
1063 #print "next"
1067 gy = y.next()
1064 gy = y.next()
1068 gx = x.next()
1065 gx = x.next()
1069 elif gx[0] < gy[0]:
1066 elif gx[0] < gy[0]:
1070 #print "next y"
1067 #print "next y"
1071 gy = y.next()
1068 gy = y.next()
1072 else:
1069 else:
1073 #print "next x"
1070 #print "next x"
1074 gx = x.next()
1071 gx = x.next()
1075
1072
1076 def group(self, nodelist, lookup, infocollect=None):
1073 def group(self, nodelist, lookup, infocollect=None):
1077 """calculate a delta group
1074 """calculate a delta group
1078
1075
1079 Given a list of changeset revs, return a set of deltas and
1076 Given a list of changeset revs, return a set of deltas and
1080 metadata corresponding to nodes. the first delta is
1077 metadata corresponding to nodes. the first delta is
1081 parent(nodes[0]) -> nodes[0] the receiver is guaranteed to
1078 parent(nodes[0]) -> nodes[0] the receiver is guaranteed to
1082 have this parent as it has all history before these
1079 have this parent as it has all history before these
1083 changesets. parent is parent[0]
1080 changesets. parent is parent[0]
1084 """
1081 """
1085 revs = [self.rev(n) for n in nodelist]
1082 revs = [self.rev(n) for n in nodelist]
1086
1083
1087 # if we don't have any revisions touched by these changesets, bail
1084 # if we don't have any revisions touched by these changesets, bail
1088 if not revs:
1085 if not revs:
1089 yield changegroup.closechunk()
1086 yield changegroup.closechunk()
1090 return
1087 return
1091
1088
1092 # add the parent of the first rev
1089 # add the parent of the first rev
1093 p = self.parents(self.node(revs[0]))[0]
1090 p = self.parents(self.node(revs[0]))[0]
1094 revs.insert(0, self.rev(p))
1091 revs.insert(0, self.rev(p))
1095
1092
1096 # build deltas
1093 # build deltas
1097 for d in xrange(0, len(revs) - 1):
1094 for d in xrange(0, len(revs) - 1):
1098 a, b = revs[d], revs[d + 1]
1095 a, b = revs[d], revs[d + 1]
1099 nb = self.node(b)
1096 nb = self.node(b)
1100
1097
1101 if infocollect is not None:
1098 if infocollect is not None:
1102 infocollect(nb)
1099 infocollect(nb)
1103
1100
1104 d = self.revdiff(a, b)
1101 d = self.revdiff(a, b)
1105 p = self.parents(nb)
1102 p = self.parents(nb)
1106 meta = nb + p[0] + p[1] + lookup(nb)
1103 meta = nb + p[0] + p[1] + lookup(nb)
1107 yield changegroup.genchunk("%s%s" % (meta, d))
1104 yield changegroup.genchunk("%s%s" % (meta, d))
1108
1105
1109 yield changegroup.closechunk()
1106 yield changegroup.closechunk()
1110
1107
1111 def addgroup(self, revs, linkmapper, transaction, unique=0):
1108 def addgroup(self, revs, linkmapper, transaction, unique=0):
1112 """
1109 """
1113 add a delta group
1110 add a delta group
1114
1111
1115 given a set of deltas, add them to the revision log. the
1112 given a set of deltas, add them to the revision log. the
1116 first delta is against its parent, which should be in our
1113 first delta is against its parent, which should be in our
1117 log, the rest are against the previous delta.
1114 log, the rest are against the previous delta.
1118 """
1115 """
1119
1116
1120 #track the base of the current delta log
1117 #track the base of the current delta log
1121 r = self.count()
1118 r = self.count()
1122 t = r - 1
1119 t = r - 1
1123 node = None
1120 node = None
1124
1121
1125 base = prev = -1
1122 base = prev = -1
1126 start = end = textlen = 0
1123 start = end = textlen = 0
1127 if r:
1124 if r:
1128 end = self.end(t)
1125 end = self.end(t)
1129
1126
1130 ifh = self.opener(self.indexfile, "a+")
1127 ifh = self.opener(self.indexfile, "a+")
1131 ifh.seek(0, 2)
1128 ifh.seek(0, 2)
1132 transaction.add(self.indexfile, ifh.tell(), self.count())
1129 transaction.add(self.indexfile, ifh.tell(), self.count())
1133 if self.inlinedata():
1130 if self.inlinedata():
1134 dfh = None
1131 dfh = None
1135 else:
1132 else:
1136 transaction.add(self.datafile, end)
1133 transaction.add(self.datafile, end)
1137 dfh = self.opener(self.datafile, "a")
1134 dfh = self.opener(self.datafile, "a")
1138
1135
1139 # loop through our set of deltas
1136 # loop through our set of deltas
1140 chain = None
1137 chain = None
1141 for chunk in revs:
1138 for chunk in revs:
1142 node, p1, p2, cs = struct.unpack("20s20s20s20s", chunk[:80])
1139 node, p1, p2, cs = struct.unpack("20s20s20s20s", chunk[:80])
1143 link = linkmapper(cs)
1140 link = linkmapper(cs)
1144 if node in self.nodemap:
1141 if node in self.nodemap:
1145 # this can happen if two branches make the same change
1142 # this can happen if two branches make the same change
1146 # if unique:
1143 # if unique:
1147 # raise RevlogError(_("already have %s") % hex(node[:4]))
1144 # raise RevlogError(_("already have %s") % hex(node[:4]))
1148 chain = node
1145 chain = node
1149 continue
1146 continue
1150 delta = chunk[80:]
1147 delta = chunk[80:]
1151
1148
1152 for p in (p1, p2):
1149 for p in (p1, p2):
1153 if not p in self.nodemap:
1150 if not p in self.nodemap:
1154 raise RevlogError(_("unknown parent %s") % short(p))
1151 raise RevlogError(_("unknown parent %s") % short(p))
1155
1152
1156 if not chain:
1153 if not chain:
1157 # retrieve the parent revision of the delta chain
1154 # retrieve the parent revision of the delta chain
1158 chain = p1
1155 chain = p1
1159 if not chain in self.nodemap:
1156 if not chain in self.nodemap:
1160 raise RevlogError(_("unknown base %s") % short(chain[:4]))
1157 raise RevlogError(_("unknown base %s") % short(chain[:4]))
1161
1158
1162 # full versions are inserted when the needed deltas become
1159 # full versions are inserted when the needed deltas become
1163 # comparable to the uncompressed text or when the previous
1160 # comparable to the uncompressed text or when the previous
1164 # version is not the one we have a delta against. We use
1161 # version is not the one we have a delta against. We use
1165 # the size of the previous full rev as a proxy for the
1162 # the size of the previous full rev as a proxy for the
1166 # current size.
1163 # current size.
1167
1164
1168 if chain == prev:
1165 if chain == prev:
1169 tempd = compress(delta)
1166 tempd = compress(delta)
1170 cdelta = tempd[0] + tempd[1]
1167 cdelta = tempd[0] + tempd[1]
1171 textlen = mdiff.patchedsize(textlen, delta)
1168 textlen = mdiff.patchedsize(textlen, delta)
1172
1169
1173 if chain != prev or (end - start + len(cdelta)) > textlen * 2:
1170 if chain != prev or (end - start + len(cdelta)) > textlen * 2:
1174 # flush our writes here so we can read it in revision
1171 # flush our writes here so we can read it in revision
1175 if dfh:
1172 if dfh:
1176 dfh.flush()
1173 dfh.flush()
1177 ifh.flush()
1174 ifh.flush()
1178 text = self.revision(chain)
1175 text = self.revision(chain)
1179 text = self.patches(text, [delta])
1176 text = self.patches(text, [delta])
1180 chk = self.addrevision(text, transaction, link, p1, p2)
1177 chk = self.addrevision(text, transaction, link, p1, p2)
1181 if chk != node:
1178 if chk != node:
1182 raise RevlogError(_("consistency error adding group"))
1179 raise RevlogError(_("consistency error adding group"))
1183 textlen = len(text)
1180 textlen = len(text)
1184 else:
1181 else:
1185 if self.version == REVLOGV0:
1182 if self.version == REVLOGV0:
1186 e = (end, len(cdelta), base, link, p1, p2, node)
1183 e = (end, len(cdelta), base, link, p1, p2, node)
1187 else:
1184 else:
1188 e = (self.offset_type(end, 0), len(cdelta), textlen, base,
1185 e = (self.offset_type(end, 0), len(cdelta), textlen, base,
1189 link, self.rev(p1), self.rev(p2), node)
1186 link, self.rev(p1), self.rev(p2), node)
1190 self.index.append(e)
1187 self.index.append(e)
1191 self.nodemap[node] = r
1188 self.nodemap[node] = r
1192 if self.inlinedata():
1189 if self.inlinedata():
1193 ifh.write(struct.pack(self.indexformat, *e))
1190 ifh.write(struct.pack(self.indexformat, *e))
1194 ifh.write(cdelta)
1191 ifh.write(cdelta)
1195 self.checkinlinesize(transaction, ifh)
1192 self.checkinlinesize(transaction, ifh)
1196 if not self.inlinedata():
1193 if not self.inlinedata():
1197 dfh = self.opener(self.datafile, "a")
1194 dfh = self.opener(self.datafile, "a")
1198 ifh = self.opener(self.indexfile, "a")
1195 ifh = self.opener(self.indexfile, "a")
1199 else:
1196 else:
1200 if not dfh:
1197 if not dfh:
1201 # addrevision switched from inline to conventional
1198 # addrevision switched from inline to conventional
1202 # reopen the index
1199 # reopen the index
1203 dfh = self.opener(self.datafile, "a")
1200 dfh = self.opener(self.datafile, "a")
1204 ifh = self.opener(self.indexfile, "a")
1201 ifh = self.opener(self.indexfile, "a")
1205 dfh.write(cdelta)
1202 dfh.write(cdelta)
1206 ifh.write(struct.pack(self.indexformat, *e))
1203 ifh.write(struct.pack(self.indexformat, *e))
1207
1204
1208 t, r, chain, prev = r, r + 1, node, node
1205 t, r, chain, prev = r, r + 1, node, node
1209 base = self.base(t)
1206 base = self.base(t)
1210 start = self.start(base)
1207 start = self.start(base)
1211 end = self.end(t)
1208 end = self.end(t)
1212
1209
1213 return node
1210 return node
1214
1211
1215 def strip(self, rev, minlink):
1212 def strip(self, rev, minlink):
1216 if self.count() == 0 or rev >= self.count():
1213 if self.count() == 0 or rev >= self.count():
1217 return
1214 return
1218
1215
1219 if isinstance(self.index, lazyindex):
1216 if isinstance(self.index, lazyindex):
1220 self.loadindexmap()
1217 self.loadindexmap()
1221
1218
1222 # When stripping away a revision, we need to make sure it
1219 # When stripping away a revision, we need to make sure it
1223 # does not actually belong to an older changeset.
1220 # does not actually belong to an older changeset.
1224 # The minlink parameter defines the oldest revision
1221 # The minlink parameter defines the oldest revision
1225 # we're allowed to strip away.
1222 # we're allowed to strip away.
1226 while minlink > self.index[rev][-4]:
1223 while minlink > self.index[rev][-4]:
1227 rev += 1
1224 rev += 1
1228 if rev >= self.count():
1225 if rev >= self.count():
1229 return
1226 return
1230
1227
1231 # first truncate the files on disk
1228 # first truncate the files on disk
1232 end = self.start(rev)
1229 end = self.start(rev)
1233 if not self.inlinedata():
1230 if not self.inlinedata():
1234 df = self.opener(self.datafile, "a")
1231 df = self.opener(self.datafile, "a")
1235 df.truncate(end)
1232 df.truncate(end)
1236 end = rev * struct.calcsize(self.indexformat)
1233 end = rev * struct.calcsize(self.indexformat)
1237 else:
1234 else:
1238 end += rev * struct.calcsize(self.indexformat)
1235 end += rev * struct.calcsize(self.indexformat)
1239
1236
1240 indexf = self.opener(self.indexfile, "a")
1237 indexf = self.opener(self.indexfile, "a")
1241 indexf.truncate(end)
1238 indexf.truncate(end)
1242
1239
1243 # then reset internal state in memory to forget those revisions
1240 # then reset internal state in memory to forget those revisions
1244 self.cache = None
1241 self.cache = None
1245 self.chunkcache = None
1242 self.chunkcache = None
1246 for x in xrange(rev, self.count()):
1243 for x in xrange(rev, self.count()):
1247 del self.nodemap[self.node(x)]
1244 del self.nodemap[self.node(x)]
1248
1245
1249 del self.index[rev:]
1246 del self.index[rev:]
1250
1247
1251 def checksize(self):
1248 def checksize(self):
1252 expected = 0
1249 expected = 0
1253 if self.count():
1250 if self.count():
1254 expected = self.end(self.count() - 1)
1251 expected = self.end(self.count() - 1)
1255
1252
1256 try:
1253 try:
1257 f = self.opener(self.datafile)
1254 f = self.opener(self.datafile)
1258 f.seek(0, 2)
1255 f.seek(0, 2)
1259 actual = f.tell()
1256 actual = f.tell()
1260 dd = actual - expected
1257 dd = actual - expected
1261 except IOError, inst:
1258 except IOError, inst:
1262 if inst.errno != errno.ENOENT:
1259 if inst.errno != errno.ENOENT:
1263 raise
1260 raise
1264 dd = 0
1261 dd = 0
1265
1262
1266 try:
1263 try:
1267 f = self.opener(self.indexfile)
1264 f = self.opener(self.indexfile)
1268 f.seek(0, 2)
1265 f.seek(0, 2)
1269 actual = f.tell()
1266 actual = f.tell()
1270 s = struct.calcsize(self.indexformat)
1267 s = struct.calcsize(self.indexformat)
1271 i = actual / s
1268 i = actual / s
1272 di = actual - (i * s)
1269 di = actual - (i * s)
1273 if self.inlinedata():
1270 if self.inlinedata():
1274 databytes = 0
1271 databytes = 0
1275 for r in xrange(self.count()):
1272 for r in xrange(self.count()):
1276 databytes += self.length(r)
1273 databytes += self.length(r)
1277 dd = 0
1274 dd = 0
1278 di = actual - self.count() * s - databytes
1275 di = actual - self.count() * s - databytes
1279 except IOError, inst:
1276 except IOError, inst:
1280 if inst.errno != errno.ENOENT:
1277 if inst.errno != errno.ENOENT:
1281 raise
1278 raise
1282 di = 0
1279 di = 0
1283
1280
1284 return (dd, di)
1281 return (dd, di)
1285
1282
1286
1283
General Comments 0
You need to be logged in to leave comments. Login now