##// END OF EJS Templates
rust: factorized testing Graphs...
Georges Racinet -
r41277:168041fa default
parent child Browse files
Show More
@@ -0,0 +1,72 b''
1 // testing.rs
2 //
3 // Copyright 2018 Georges Racinet <georges.racinet@octobus.net>
4 //
5 // This software may be used and distributed according to the terms of the
6 // GNU General Public License version 2 or any later version.
7
8 use crate::{Graph, GraphError, Revision, NULL_REVISION};
9
10 /// A stub `Graph`, same as the one from `test-ancestor.py`
11 ///
12 /// o 13
13 /// |
14 /// | o 12
15 /// | |
16 /// | | o 11
17 /// | | |\
18 /// | | | | o 10
19 /// | | | | |
20 /// | o---+ | 9
21 /// | | | | |
22 /// o | | | | 8
23 /// / / / /
24 /// | | o | 7
25 /// | | | |
26 /// o---+ | 6
27 /// / / /
28 /// | | o 5
29 /// | |/
30 /// | o 4
31 /// | |
32 /// o | 3
33 /// | |
34 /// | o 2
35 /// |/
36 /// o 1
37 /// |
38 /// o 0
39 #[derive(Clone, Debug)]
40 pub struct SampleGraph;
41
42 impl Graph for SampleGraph {
43 fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
44 match rev {
45 0 => Ok([NULL_REVISION, NULL_REVISION]),
46 1 => Ok([0, NULL_REVISION]),
47 2 => Ok([1, NULL_REVISION]),
48 3 => Ok([1, NULL_REVISION]),
49 4 => Ok([2, NULL_REVISION]),
50 5 => Ok([4, NULL_REVISION]),
51 6 => Ok([4, NULL_REVISION]),
52 7 => Ok([4, NULL_REVISION]),
53 8 => Ok([NULL_REVISION, NULL_REVISION]),
54 9 => Ok([6, 7]),
55 10 => Ok([5, NULL_REVISION]),
56 11 => Ok([3, 7]),
57 12 => Ok([9, NULL_REVISION]),
58 13 => Ok([8, NULL_REVISION]),
59 r => Err(GraphError::ParentOutOfRange(r)),
60 }
61 }
62 }
63
64 // A Graph represented by a vector whose indices are revisions
65 // and values are parents of the revisions
66 pub type VecGraph = Vec<[Revision; 2]>;
67
68 impl Graph for VecGraph {
69 fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
70 Ok(self[rev as usize])
71 }
72 }
@@ -1,775 +1,754 b''
1 1 // ancestors.rs
2 2 //
3 3 // Copyright 2018 Georges Racinet <gracinet@anybox.fr>
4 4 //
5 5 // This software may be used and distributed according to the terms of the
6 6 // GNU General Public License version 2 or any later version.
7 7
8 8 //! Rust versions of generic DAG ancestors algorithms for Mercurial
9 9
10 10 use super::{Graph, GraphError, Revision, NULL_REVISION};
11 11 use std::cmp::max;
12 12 use std::collections::{BinaryHeap, HashSet};
13 13
14 14 /// Iterator over the ancestors of a given list of revisions
15 15 /// This is a generic type, defined and implemented for any Graph, so that
16 16 /// it's easy to
17 17 ///
18 18 /// - unit test in pure Rust
19 19 /// - bind to main Mercurial code, potentially in several ways and have these
20 20 /// bindings evolve over time
21 21 pub struct AncestorsIterator<G: Graph> {
22 22 graph: G,
23 23 visit: BinaryHeap<Revision>,
24 24 seen: HashSet<Revision>,
25 25 stoprev: Revision,
26 26 }
27 27
28 28 /// Lazy ancestors set, backed by AncestorsIterator
29 29 pub struct LazyAncestors<G: Graph + Clone> {
30 30 graph: G,
31 31 containsiter: AncestorsIterator<G>,
32 32 initrevs: Vec<Revision>,
33 33 stoprev: Revision,
34 34 inclusive: bool,
35 35 }
36 36
37 37 pub struct MissingAncestors<G: Graph> {
38 38 graph: G,
39 39 bases: HashSet<Revision>,
40 40 }
41 41
42 42 impl<G: Graph> AncestorsIterator<G> {
43 43 /// Constructor.
44 44 ///
45 45 /// if `inclusive` is true, then the init revisions are emitted in
46 46 /// particular, otherwise iteration starts from their parents.
47 47 pub fn new(
48 48 graph: G,
49 49 initrevs: impl IntoIterator<Item = Revision>,
50 50 stoprev: Revision,
51 51 inclusive: bool,
52 52 ) -> Result<Self, GraphError> {
53 53 let filtered_initrevs = initrevs.into_iter().filter(|&r| r >= stoprev);
54 54 if inclusive {
55 55 let visit: BinaryHeap<Revision> = filtered_initrevs.collect();
56 56 let seen = visit.iter().map(|&x| x).collect();
57 57 return Ok(AncestorsIterator {
58 58 visit: visit,
59 59 seen: seen,
60 60 stoprev: stoprev,
61 61 graph: graph,
62 62 });
63 63 }
64 64 let mut this = AncestorsIterator {
65 65 visit: BinaryHeap::new(),
66 66 seen: HashSet::new(),
67 67 stoprev: stoprev,
68 68 graph: graph,
69 69 };
70 70 this.seen.insert(NULL_REVISION);
71 71 for rev in filtered_initrevs {
72 72 for parent in this.graph.parents(rev)?.iter().cloned() {
73 73 this.conditionally_push_rev(parent);
74 74 }
75 75 }
76 76 Ok(this)
77 77 }
78 78
79 79 #[inline]
80 80 fn conditionally_push_rev(&mut self, rev: Revision) {
81 81 if self.stoprev <= rev && !self.seen.contains(&rev) {
82 82 self.seen.insert(rev);
83 83 self.visit.push(rev);
84 84 }
85 85 }
86 86
87 87 /// Consumes partially the iterator to tell if the given target
88 88 /// revision
89 89 /// is in the ancestors it emits.
90 90 /// This is meant for iterators actually dedicated to that kind of
91 91 /// purpose
92 92 pub fn contains(&mut self, target: Revision) -> Result<bool, GraphError> {
93 93 if self.seen.contains(&target) && target != NULL_REVISION {
94 94 return Ok(true);
95 95 }
96 96 for item in self {
97 97 let rev = item?;
98 98 if rev == target {
99 99 return Ok(true);
100 100 }
101 101 if rev < target {
102 102 return Ok(false);
103 103 }
104 104 }
105 105 Ok(false)
106 106 }
107 107
108 108 pub fn peek(&self) -> Option<Revision> {
109 109 self.visit.peek().map(|&r| r)
110 110 }
111 111
112 112 /// Tell if the iterator is about an empty set
113 113 ///
114 114 /// The result does not depend whether the iterator has been consumed
115 115 /// or not.
116 116 /// This is mostly meant for iterators backing a lazy ancestors set
117 117 pub fn is_empty(&self) -> bool {
118 118 if self.visit.len() > 0 {
119 119 return false;
120 120 }
121 121 if self.seen.len() > 1 {
122 122 return false;
123 123 }
124 124 // at this point, the seen set is at most a singleton.
125 125 // If not `self.inclusive`, it's still possible that it has only
126 126 // the null revision
127 127 self.seen.is_empty() || self.seen.contains(&NULL_REVISION)
128 128 }
129 129 }
130 130
131 131 /// Main implementation for the iterator
132 132 ///
133 133 /// The algorithm is the same as in `_lazyancestorsiter()` from `ancestors.py`
134 134 /// with a few non crucial differences:
135 135 ///
136 136 /// - there's no filtering of invalid parent revisions. Actually, it should be
137 137 /// consistent and more efficient to filter them from the end caller.
138 138 /// - we don't have the optimization for adjacent revisions (i.e., the case
139 139 /// where `p1 == rev - 1`), because it amounts to update the first element of
140 140 /// the heap without sifting, which Rust's BinaryHeap doesn't let us do.
141 141 /// - we save a few pushes by comparing with `stoprev` before pushing
142 142 impl<G: Graph> Iterator for AncestorsIterator<G> {
143 143 type Item = Result<Revision, GraphError>;
144 144
145 145 fn next(&mut self) -> Option<Self::Item> {
146 146 let current = match self.visit.peek() {
147 147 None => {
148 148 return None;
149 149 }
150 150 Some(c) => *c,
151 151 };
152 152 let [p1, p2] = match self.graph.parents(current) {
153 153 Ok(ps) => ps,
154 154 Err(e) => return Some(Err(e)),
155 155 };
156 156 if p1 < self.stoprev || self.seen.contains(&p1) {
157 157 self.visit.pop();
158 158 } else {
159 159 *(self.visit.peek_mut().unwrap()) = p1;
160 160 self.seen.insert(p1);
161 161 };
162 162
163 163 self.conditionally_push_rev(p2);
164 164 Some(Ok(current))
165 165 }
166 166 }
167 167
168 168 impl<G: Graph + Clone> LazyAncestors<G> {
169 169 pub fn new(
170 170 graph: G,
171 171 initrevs: impl IntoIterator<Item = Revision>,
172 172 stoprev: Revision,
173 173 inclusive: bool,
174 174 ) -> Result<Self, GraphError> {
175 175 let v: Vec<Revision> = initrevs.into_iter().collect();
176 176 Ok(LazyAncestors {
177 177 graph: graph.clone(),
178 178 containsiter: AncestorsIterator::new(
179 179 graph,
180 180 v.iter().cloned(),
181 181 stoprev,
182 182 inclusive,
183 183 )?,
184 184 initrevs: v,
185 185 stoprev: stoprev,
186 186 inclusive: inclusive,
187 187 })
188 188 }
189 189
190 190 pub fn contains(&mut self, rev: Revision) -> Result<bool, GraphError> {
191 191 self.containsiter.contains(rev)
192 192 }
193 193
194 194 pub fn is_empty(&self) -> bool {
195 195 self.containsiter.is_empty()
196 196 }
197 197
198 198 pub fn iter(&self) -> AncestorsIterator<G> {
199 199 // the arguments being the same as for self.containsiter, we know
200 200 // for sure that AncestorsIterator constructor can't fail
201 201 AncestorsIterator::new(
202 202 self.graph.clone(),
203 203 self.initrevs.iter().cloned(),
204 204 self.stoprev,
205 205 self.inclusive,
206 206 )
207 207 .unwrap()
208 208 }
209 209 }
210 210
211 211 impl<G: Graph> MissingAncestors<G> {
212 212 pub fn new(graph: G, bases: impl IntoIterator<Item = Revision>) -> Self {
213 213 let mut bases: HashSet<Revision> = bases.into_iter().collect();
214 214 if bases.is_empty() {
215 215 bases.insert(NULL_REVISION);
216 216 }
217 217 MissingAncestors { graph, bases }
218 218 }
219 219
220 220 pub fn has_bases(&self) -> bool {
221 221 self.bases.iter().any(|&b| b != NULL_REVISION)
222 222 }
223 223
224 224 /// Return a reference to current bases.
225 225 ///
226 226 /// This is useful in unit tests, but also setdiscovery.py does
227 227 /// read the bases attribute of a ancestor.missingancestors instance.
228 228 pub fn get_bases<'a>(&'a self) -> &'a HashSet<Revision> {
229 229 &self.bases
230 230 }
231 231
232 232 pub fn add_bases(
233 233 &mut self,
234 234 new_bases: impl IntoIterator<Item = Revision>,
235 235 ) {
236 236 self.bases.extend(new_bases);
237 237 }
238 238
239 239 /// Remove all ancestors of self.bases from the revs set (in place)
240 240 pub fn remove_ancestors_from(
241 241 &mut self,
242 242 revs: &mut HashSet<Revision>,
243 243 ) -> Result<(), GraphError> {
244 244 revs.retain(|r| !self.bases.contains(r));
245 245 // the null revision is always an ancestor
246 246 revs.remove(&NULL_REVISION);
247 247 if revs.is_empty() {
248 248 return Ok(());
249 249 }
250 250 // anything in revs > start is definitely not an ancestor of bases
251 251 // revs <= start need to be investigated
252 252 // TODO optim: if a missingancestors is to be used several times,
253 253 // we shouldn't need to iterate each time on bases
254 254 let start = match self.bases.iter().cloned().max() {
255 255 Some(m) => m,
256 256 None => {
257 257 // bases is empty (shouldn't happen, but let's be safe)
258 258 return Ok(());
259 259 }
260 260 };
261 261 // whatever happens, we'll keep at least keepcount of them
262 262 // knowing this gives us a earlier stop condition than
263 263 // going all the way to the root
264 264 let keepcount = revs.iter().filter(|r| **r > start).count();
265 265
266 266 let mut curr = start;
267 267 while curr != NULL_REVISION && revs.len() > keepcount {
268 268 if self.bases.contains(&curr) {
269 269 revs.remove(&curr);
270 270 self.add_parents(curr)?;
271 271 }
272 272 curr -= 1;
273 273 }
274 274 Ok(())
275 275 }
276 276
277 277 /// Add rev's parents to self.bases
278 278 #[inline]
279 279 fn add_parents(&mut self, rev: Revision) -> Result<(), GraphError> {
280 280 // No need to bother the set with inserting NULL_REVISION over and
281 281 // over
282 282 for p in self.graph.parents(rev)?.iter().cloned() {
283 283 if p != NULL_REVISION {
284 284 self.bases.insert(p);
285 285 }
286 286 }
287 287 Ok(())
288 288 }
289 289
290 290 /// Return all the ancestors of revs that are not ancestors of self.bases
291 291 ///
292 292 /// This may include elements from revs.
293 293 ///
294 294 /// Equivalent to the revset (::revs - ::self.bases). Revs are returned in
295 295 /// revision number order, which is a topological order.
296 296 pub fn missing_ancestors(
297 297 &mut self,
298 298 revs: impl IntoIterator<Item = Revision>,
299 299 ) -> Result<Vec<Revision>, GraphError> {
300 300 // just for convenience and comparison with Python version
301 301 let bases_visit = &mut self.bases;
302 302 let mut revs: HashSet<Revision> = revs
303 303 .into_iter()
304 304 .filter(|r| !bases_visit.contains(r))
305 305 .collect();
306 306 let revs_visit = &mut revs;
307 307 let mut both_visit: HashSet<Revision> =
308 308 revs_visit.intersection(&bases_visit).cloned().collect();
309 309 if revs_visit.is_empty() {
310 310 return Ok(Vec::new());
311 311 }
312 312
313 313 let max_bases =
314 314 bases_visit.iter().cloned().max().unwrap_or(NULL_REVISION);
315 315 let max_revs =
316 316 revs_visit.iter().cloned().max().unwrap_or(NULL_REVISION);
317 317 let start = max(max_bases, max_revs);
318 318
319 319 // TODO heuristics for with_capacity()?
320 320 let mut missing: Vec<Revision> = Vec::new();
321 321 for curr in (0..=start).rev() {
322 322 if revs_visit.is_empty() {
323 323 break;
324 324 }
325 325 if both_visit.contains(&curr) {
326 326 // curr's parents might have made it into revs_visit through
327 327 // another path
328 328 // TODO optim: Rust's HashSet.remove returns a boolean telling
329 329 // if it happened. This will spare us one set lookup
330 330 both_visit.remove(&curr);
331 331 for p in self.graph.parents(curr)?.iter().cloned() {
332 332 if p == NULL_REVISION {
333 333 continue;
334 334 }
335 335 revs_visit.remove(&p);
336 336 bases_visit.insert(p);
337 337 both_visit.insert(p);
338 338 }
339 339 } else if revs_visit.remove(&curr) {
340 340 missing.push(curr);
341 341 for p in self.graph.parents(curr)?.iter().cloned() {
342 342 if p == NULL_REVISION {
343 343 continue;
344 344 }
345 345 if bases_visit.contains(&p) || both_visit.contains(&p) {
346 346 // p is an ancestor of revs_visit, and is implicitly
347 347 // in bases_visit, which means p is ::revs & ::bases.
348 348 // TODO optim: hence if bothvisit, we look up twice
349 349 revs_visit.remove(&p);
350 350 bases_visit.insert(p);
351 351 both_visit.insert(p);
352 352 } else {
353 353 // visit later
354 354 revs_visit.insert(p);
355 355 }
356 356 }
357 357 } else if bases_visit.contains(&curr) {
358 358 for p in self.graph.parents(curr)?.iter().cloned() {
359 359 if p == NULL_REVISION {
360 360 continue;
361 361 }
362 362 if revs_visit.contains(&p) || both_visit.contains(&p) {
363 363 // p is an ancestor of bases_visit, and is implicitly
364 364 // in revs_visit, which means p is ::revs & ::bases.
365 365 // TODO optim: hence if bothvisit, we look up twice
366 366 revs_visit.remove(&p);
367 367 bases_visit.insert(p);
368 368 both_visit.insert(p);
369 369 } else {
370 370 bases_visit.insert(p);
371 371 }
372 372 }
373 373 }
374 374 }
375 375 missing.reverse();
376 376 Ok(missing)
377 377 }
378 378 }
379 379
380 380 #[cfg(test)]
381 381 mod tests {
382 382
383 383 use super::*;
384 use crate::testing::{SampleGraph, VecGraph};
384 385 use std::iter::FromIterator;
385 386
386 #[derive(Clone, Debug)]
387 struct Stub;
388
389 /// This is the same as the dict from test-ancestors.py
390 impl Graph for Stub {
391 fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
392 match rev {
393 0 => Ok([-1, -1]),
394 1 => Ok([0, -1]),
395 2 => Ok([1, -1]),
396 3 => Ok([1, -1]),
397 4 => Ok([2, -1]),
398 5 => Ok([4, -1]),
399 6 => Ok([4, -1]),
400 7 => Ok([4, -1]),
401 8 => Ok([-1, -1]),
402 9 => Ok([6, 7]),
403 10 => Ok([5, -1]),
404 11 => Ok([3, 7]),
405 12 => Ok([9, -1]),
406 13 => Ok([8, -1]),
407 r => Err(GraphError::ParentOutOfRange(r)),
408 }
409 }
410 }
411
412 387 fn list_ancestors<G: Graph>(
413 388 graph: G,
414 389 initrevs: Vec<Revision>,
415 390 stoprev: Revision,
416 391 inclusive: bool,
417 392 ) -> Vec<Revision> {
418 393 AncestorsIterator::new(graph, initrevs, stoprev, inclusive)
419 394 .unwrap()
420 395 .map(|res| res.unwrap())
421 396 .collect()
422 397 }
423 398
424 399 #[test]
425 400 /// Same tests as test-ancestor.py, without membership
426 401 /// (see also test-ancestor.py.out)
427 402 fn test_list_ancestor() {
428 assert_eq!(list_ancestors(Stub, vec![], 0, false), vec![]);
403 assert_eq!(list_ancestors(SampleGraph, vec![], 0, false), vec![]);
429 404 assert_eq!(
430 list_ancestors(Stub, vec![11, 13], 0, false),
405 list_ancestors(SampleGraph, vec![11, 13], 0, false),
431 406 vec![8, 7, 4, 3, 2, 1, 0]
432 407 );
433 assert_eq!(list_ancestors(Stub, vec![1, 3], 0, false), vec![1, 0]);
434 408 assert_eq!(
435 list_ancestors(Stub, vec![11, 13], 0, true),
409 list_ancestors(SampleGraph, vec![1, 3], 0, false),
410 vec![1, 0]
411 );
412 assert_eq!(
413 list_ancestors(SampleGraph, vec![11, 13], 0, true),
436 414 vec![13, 11, 8, 7, 4, 3, 2, 1, 0]
437 415 );
438 assert_eq!(list_ancestors(Stub, vec![11, 13], 6, false), vec![8, 7]);
439 416 assert_eq!(
440 list_ancestors(Stub, vec![11, 13], 6, true),
417 list_ancestors(SampleGraph, vec![11, 13], 6, false),
418 vec![8, 7]
419 );
420 assert_eq!(
421 list_ancestors(SampleGraph, vec![11, 13], 6, true),
441 422 vec![13, 11, 8, 7]
442 423 );
443 assert_eq!(list_ancestors(Stub, vec![11, 13], 11, true), vec![13, 11]);
444 assert_eq!(list_ancestors(Stub, vec![11, 13], 12, true), vec![13]);
424 assert_eq!(
425 list_ancestors(SampleGraph, vec![11, 13], 11, true),
426 vec![13, 11]
427 );
445 428 assert_eq!(
446 list_ancestors(Stub, vec![10, 1], 0, true),
429 list_ancestors(SampleGraph, vec![11, 13], 12, true),
430 vec![13]
431 );
432 assert_eq!(
433 list_ancestors(SampleGraph, vec![10, 1], 0, true),
447 434 vec![10, 5, 4, 2, 1, 0]
448 435 );
449 436 }
450 437
451 438 #[test]
452 439 /// Corner case that's not directly in test-ancestors.py, but
453 440 /// that happens quite often, as demonstrated by running the whole
454 441 /// suite.
455 442 /// For instance, run tests/test-obsolete-checkheads.t
456 443 fn test_nullrev_input() {
457 444 let mut iter =
458 AncestorsIterator::new(Stub, vec![-1], 0, false).unwrap();
445 AncestorsIterator::new(SampleGraph, vec![-1], 0, false).unwrap();
459 446 assert_eq!(iter.next(), None)
460 447 }
461 448
462 449 #[test]
463 450 fn test_contains() {
464 451 let mut lazy =
465 AncestorsIterator::new(Stub, vec![10, 1], 0, true).unwrap();
452 AncestorsIterator::new(SampleGraph, vec![10, 1], 0, true).unwrap();
466 453 assert!(lazy.contains(1).unwrap());
467 454 assert!(!lazy.contains(3).unwrap());
468 455
469 456 let mut lazy =
470 AncestorsIterator::new(Stub, vec![0], 0, false).unwrap();
457 AncestorsIterator::new(SampleGraph, vec![0], 0, false).unwrap();
471 458 assert!(!lazy.contains(NULL_REVISION).unwrap());
472 459 }
473 460
474 461 #[test]
475 462 fn test_peek() {
476 463 let mut iter =
477 AncestorsIterator::new(Stub, vec![10], 0, true).unwrap();
464 AncestorsIterator::new(SampleGraph, vec![10], 0, true).unwrap();
478 465 // peek() gives us the next value
479 466 assert_eq!(iter.peek(), Some(10));
480 467 // but it's not been consumed
481 468 assert_eq!(iter.next(), Some(Ok(10)));
482 469 // and iteration resumes normally
483 470 assert_eq!(iter.next(), Some(Ok(5)));
484 471
485 472 // let's drain the iterator to test peek() at the end
486 473 while iter.next().is_some() {}
487 474 assert_eq!(iter.peek(), None);
488 475 }
489 476
490 477 #[test]
491 478 fn test_empty() {
492 479 let mut iter =
493 AncestorsIterator::new(Stub, vec![10], 0, true).unwrap();
480 AncestorsIterator::new(SampleGraph, vec![10], 0, true).unwrap();
494 481 assert!(!iter.is_empty());
495 482 while iter.next().is_some() {}
496 483 assert!(!iter.is_empty());
497 484
498 let iter = AncestorsIterator::new(Stub, vec![], 0, true).unwrap();
485 let iter =
486 AncestorsIterator::new(SampleGraph, vec![], 0, true).unwrap();
499 487 assert!(iter.is_empty());
500 488
501 489 // case where iter.seen == {NULL_REVISION}
502 let iter = AncestorsIterator::new(Stub, vec![0], 0, false).unwrap();
490 let iter =
491 AncestorsIterator::new(SampleGraph, vec![0], 0, false).unwrap();
503 492 assert!(iter.is_empty());
504 493 }
505 494
506 495 /// A corrupted Graph, supporting error handling tests
507 496 #[derive(Clone, Debug)]
508 497 struct Corrupted;
509 498
510 499 impl Graph for Corrupted {
511 500 fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
512 501 match rev {
513 502 1 => Ok([0, -1]),
514 503 r => Err(GraphError::ParentOutOfRange(r)),
515 504 }
516 505 }
517 506 }
518 507
519 508 #[test]
520 509 fn test_initrev_out_of_range() {
521 510 // inclusive=false looks up initrev's parents right away
522 match AncestorsIterator::new(Stub, vec![25], 0, false) {
511 match AncestorsIterator::new(SampleGraph, vec![25], 0, false) {
523 512 Ok(_) => panic!("Should have been ParentOutOfRange"),
524 513 Err(e) => assert_eq!(e, GraphError::ParentOutOfRange(25)),
525 514 }
526 515 }
527 516
528 517 #[test]
529 518 fn test_next_out_of_range() {
530 519 // inclusive=false looks up initrev's parents right away
531 520 let mut iter =
532 521 AncestorsIterator::new(Corrupted, vec![1], 0, false).unwrap();
533 522 assert_eq!(iter.next(), Some(Err(GraphError::ParentOutOfRange(0))));
534 523 }
535 524
536 525 #[test]
537 526 fn test_lazy_iter_contains() {
538 527 let mut lazy =
539 LazyAncestors::new(Stub, vec![11, 13], 0, false).unwrap();
528 LazyAncestors::new(SampleGraph, vec![11, 13], 0, false).unwrap();
540 529
541 530 let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect();
542 531 // compare with iterator tests on the same initial revisions
543 532 assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]);
544 533
545 534 // contains() results are correct, unaffected by the fact that
546 535 // we consumed entirely an iterator out of lazy
547 536 assert_eq!(lazy.contains(2), Ok(true));
548 537 assert_eq!(lazy.contains(9), Ok(false));
549 538 }
550 539
551 540 #[test]
552 541 fn test_lazy_contains_iter() {
553 542 let mut lazy =
554 LazyAncestors::new(Stub, vec![11, 13], 0, false).unwrap(); // reminder: [8, 7, 4, 3, 2, 1, 0]
543 LazyAncestors::new(SampleGraph, vec![11, 13], 0, false).unwrap(); // reminder: [8, 7, 4, 3, 2, 1, 0]
555 544
556 545 assert_eq!(lazy.contains(2), Ok(true));
557 546 assert_eq!(lazy.contains(6), Ok(false));
558 547
559 548 // after consumption of 2 by the inner iterator, results stay
560 549 // consistent
561 550 assert_eq!(lazy.contains(2), Ok(true));
562 551 assert_eq!(lazy.contains(5), Ok(false));
563 552
564 553 // iter() still gives us a fresh iterator
565 554 let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect();
566 555 assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]);
567 556 }
568 557
569 558 #[test]
570 559 /// Test constructor, add/get bases
571 560 fn test_missing_bases() {
572 561 let mut missing_ancestors =
573 MissingAncestors::new(Stub, [5, 3, 1, 3].iter().cloned());
562 MissingAncestors::new(SampleGraph, [5, 3, 1, 3].iter().cloned());
574 563 let mut as_vec: Vec<Revision> =
575 564 missing_ancestors.get_bases().iter().cloned().collect();
576 565 as_vec.sort();
577 566 assert_eq!(as_vec, [1, 3, 5]);
578 567
579 568 missing_ancestors.add_bases([3, 7, 8].iter().cloned());
580 569 as_vec = missing_ancestors.get_bases().iter().cloned().collect();
581 570 as_vec.sort();
582 571 assert_eq!(as_vec, [1, 3, 5, 7, 8]);
583 572 }
584 573
585 574 fn assert_missing_remove(
586 575 bases: &[Revision],
587 576 revs: &[Revision],
588 577 expected: &[Revision],
589 578 ) {
590 579 let mut missing_ancestors =
591 MissingAncestors::new(Stub, bases.iter().cloned());
580 MissingAncestors::new(SampleGraph, bases.iter().cloned());
592 581 let mut revset: HashSet<Revision> = revs.iter().cloned().collect();
593 582 missing_ancestors
594 583 .remove_ancestors_from(&mut revset)
595 584 .unwrap();
596 585 let mut as_vec: Vec<Revision> = revset.into_iter().collect();
597 586 as_vec.sort();
598 587 assert_eq!(as_vec.as_slice(), expected);
599 588 }
600 589
601 590 #[test]
602 591 fn test_missing_remove() {
603 592 assert_missing_remove(
604 593 &[1, 2, 3, 4, 7],
605 594 Vec::from_iter(1..10).as_slice(),
606 595 &[5, 6, 8, 9],
607 596 );
608 597 assert_missing_remove(&[10], &[11, 12, 13, 14], &[11, 12, 13, 14]);
609 598 assert_missing_remove(&[7], &[1, 2, 3, 4, 5], &[3, 5]);
610 599 }
611 600
612 601 fn assert_missing_ancestors(
613 602 bases: &[Revision],
614 603 revs: &[Revision],
615 604 expected: &[Revision],
616 605 ) {
617 606 let mut missing_ancestors =
618 MissingAncestors::new(Stub, bases.iter().cloned());
607 MissingAncestors::new(SampleGraph, bases.iter().cloned());
619 608 let missing = missing_ancestors
620 609 .missing_ancestors(revs.iter().cloned())
621 610 .unwrap();
622 611 assert_eq!(missing.as_slice(), expected);
623 612 }
624 613
625 614 #[test]
626 615 fn test_missing_ancestors() {
627 616 // examples taken from test-ancestors.py by having it run
628 617 // on the same graph (both naive and fast Python algs)
629 618 assert_missing_ancestors(&[10], &[11], &[3, 7, 11]);
630 619 assert_missing_ancestors(&[11], &[10], &[5, 10]);
631 620 assert_missing_ancestors(&[7], &[9, 11], &[3, 6, 9, 11]);
632 621 }
633 622
634 // A Graph represented by a vector whose indices are revisions
635 // and values are parents of the revisions
636 type VecGraph = Vec<[Revision; 2]>;
637
638 impl Graph for VecGraph {
639 fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
640 Ok(self[rev as usize])
641 }
642 }
643
644 623 /// An interesting case found by a random generator similar to
645 624 /// the one in test-ancestor.py. An early version of Rust MissingAncestors
646 625 /// failed this, yet none of the integration tests of the whole suite
647 626 /// catched it.
648 627 #[test]
649 628 fn test_remove_ancestors_from_case1() {
650 629 let graph: VecGraph = vec![
651 630 [NULL_REVISION, NULL_REVISION],
652 631 [0, NULL_REVISION],
653 632 [1, 0],
654 633 [2, 1],
655 634 [3, NULL_REVISION],
656 635 [4, NULL_REVISION],
657 636 [5, 1],
658 637 [2, NULL_REVISION],
659 638 [7, NULL_REVISION],
660 639 [8, NULL_REVISION],
661 640 [9, NULL_REVISION],
662 641 [10, 1],
663 642 [3, NULL_REVISION],
664 643 [12, NULL_REVISION],
665 644 [13, NULL_REVISION],
666 645 [14, NULL_REVISION],
667 646 [4, NULL_REVISION],
668 647 [16, NULL_REVISION],
669 648 [17, NULL_REVISION],
670 649 [18, NULL_REVISION],
671 650 [19, 11],
672 651 [20, NULL_REVISION],
673 652 [21, NULL_REVISION],
674 653 [22, NULL_REVISION],
675 654 [23, NULL_REVISION],
676 655 [2, NULL_REVISION],
677 656 [3, NULL_REVISION],
678 657 [26, 24],
679 658 [27, NULL_REVISION],
680 659 [28, NULL_REVISION],
681 660 [12, NULL_REVISION],
682 661 [1, NULL_REVISION],
683 662 [1, 9],
684 663 [32, NULL_REVISION],
685 664 [33, NULL_REVISION],
686 665 [34, 31],
687 666 [35, NULL_REVISION],
688 667 [36, 26],
689 668 [37, NULL_REVISION],
690 669 [38, NULL_REVISION],
691 670 [39, NULL_REVISION],
692 671 [40, NULL_REVISION],
693 672 [41, NULL_REVISION],
694 673 [42, 26],
695 674 [0, NULL_REVISION],
696 675 [44, NULL_REVISION],
697 676 [45, 4],
698 677 [40, NULL_REVISION],
699 678 [47, NULL_REVISION],
700 679 [36, 0],
701 680 [49, NULL_REVISION],
702 681 [NULL_REVISION, NULL_REVISION],
703 682 [51, NULL_REVISION],
704 683 [52, NULL_REVISION],
705 684 [53, NULL_REVISION],
706 685 [14, NULL_REVISION],
707 686 [55, NULL_REVISION],
708 687 [15, NULL_REVISION],
709 688 [23, NULL_REVISION],
710 689 [58, NULL_REVISION],
711 690 [59, NULL_REVISION],
712 691 [2, NULL_REVISION],
713 692 [61, 59],
714 693 [62, NULL_REVISION],
715 694 [63, NULL_REVISION],
716 695 [NULL_REVISION, NULL_REVISION],
717 696 [65, NULL_REVISION],
718 697 [66, NULL_REVISION],
719 698 [67, NULL_REVISION],
720 699 [68, NULL_REVISION],
721 700 [37, 28],
722 701 [69, 25],
723 702 [71, NULL_REVISION],
724 703 [72, NULL_REVISION],
725 704 [50, 2],
726 705 [74, NULL_REVISION],
727 706 [12, NULL_REVISION],
728 707 [18, NULL_REVISION],
729 708 [77, NULL_REVISION],
730 709 [78, NULL_REVISION],
731 710 [79, NULL_REVISION],
732 711 [43, 33],
733 712 [81, NULL_REVISION],
734 713 [82, NULL_REVISION],
735 714 [83, NULL_REVISION],
736 715 [84, 45],
737 716 [85, NULL_REVISION],
738 717 [86, NULL_REVISION],
739 718 [NULL_REVISION, NULL_REVISION],
740 719 [88, NULL_REVISION],
741 720 [NULL_REVISION, NULL_REVISION],
742 721 [76, 83],
743 722 [44, NULL_REVISION],
744 723 [92, NULL_REVISION],
745 724 [93, NULL_REVISION],
746 725 [9, NULL_REVISION],
747 726 [95, 67],
748 727 [96, NULL_REVISION],
749 728 [97, NULL_REVISION],
750 729 [NULL_REVISION, NULL_REVISION],
751 730 ];
752 731 let problem_rev = 28 as Revision;
753 732 let problem_base = 70 as Revision;
754 733 // making the problem obvious: problem_rev is a parent of problem_base
755 734 assert_eq!(graph.parents(problem_base).unwrap()[1], problem_rev);
756 735
757 736 let mut missing_ancestors: MissingAncestors<VecGraph> =
758 737 MissingAncestors::new(
759 738 graph,
760 739 [60, 26, 70, 3, 96, 19, 98, 49, 97, 47, 1, 6]
761 740 .iter()
762 741 .cloned(),
763 742 );
764 743 assert!(missing_ancestors.bases.contains(&problem_base));
765 744
766 745 let mut revs: HashSet<Revision> =
767 746 [4, 12, 41, 28, 68, 38, 1, 30, 56, 44]
768 747 .iter()
769 748 .cloned()
770 749 .collect();
771 750 missing_ancestors.remove_ancestors_from(&mut revs).unwrap();
772 751 assert!(!revs.contains(&problem_rev));
773 752 }
774 753
775 754 }
@@ -1,27 +1,29 b''
1 1 // Copyright 2018 Georges Racinet <gracinet@anybox.fr>
2 2 //
3 3 // This software may be used and distributed according to the terms of the
4 4 // GNU General Public License version 2 or any later version.
5 5 mod ancestors;
6 6 pub use ancestors::{AncestorsIterator, LazyAncestors, MissingAncestors};
7 #[cfg(test)]
8 pub mod testing;
7 9
8 10 /// Mercurial revision numbers
9 11 ///
10 12 /// As noted in revlog.c, revision numbers are actually encoded in
11 13 /// 4 bytes, and are liberally converted to ints, whence the i32
12 14 pub type Revision = i32;
13 15
14 16 pub const NULL_REVISION: Revision = -1;
15 17
16 18 /// The simplest expression of what we need of Mercurial DAGs.
17 19 pub trait Graph {
18 20 /// Return the two parents of the given `Revision`.
19 21 ///
20 22 /// Each of the parents can be independently `NULL_REVISION`
21 23 fn parents(&self, Revision) -> Result<[Revision; 2], GraphError>;
22 24 }
23 25
24 26 #[derive(Clone, Debug, PartialEq)]
25 27 pub enum GraphError {
26 28 ParentOutOfRange(Revision),
27 29 }
General Comments 0
You need to be logged in to leave comments. Login now