##// END OF EJS Templates
rust-ancestors: duplicate loop that visits parents of revs/bases...
Yuya Nishihara -
r41168:55dc1da8 default
parent child Browse files
Show More
@@ -1,783 +1,804
1 // ancestors.rs
1 // ancestors.rs
2 //
2 //
3 // Copyright 2018 Georges Racinet <gracinet@anybox.fr>
3 // Copyright 2018 Georges Racinet <gracinet@anybox.fr>
4 //
4 //
5 // This software may be used and distributed according to the terms of the
5 // This software may be used and distributed according to the terms of the
6 // GNU General Public License version 2 or any later version.
6 // GNU General Public License version 2 or any later version.
7
7
8 //! Rust versions of generic DAG ancestors algorithms for Mercurial
8 //! Rust versions of generic DAG ancestors algorithms for Mercurial
9
9
10 use super::{Graph, GraphError, Revision, NULL_REVISION};
10 use super::{Graph, GraphError, Revision, NULL_REVISION};
11 use std::cmp::max;
11 use std::cmp::max;
12 use std::collections::{BinaryHeap, HashSet};
12 use std::collections::{BinaryHeap, HashSet};
13
13
14 /// Iterator over the ancestors of a given list of revisions
14 /// Iterator over the ancestors of a given list of revisions
15 /// This is a generic type, defined and implemented for any Graph, so that
15 /// This is a generic type, defined and implemented for any Graph, so that
16 /// it's easy to
16 /// it's easy to
17 ///
17 ///
18 /// - unit test in pure Rust
18 /// - unit test in pure Rust
19 /// - bind to main Mercurial code, potentially in several ways and have these
19 /// - bind to main Mercurial code, potentially in several ways and have these
20 /// bindings evolve over time
20 /// bindings evolve over time
21 pub struct AncestorsIterator<G: Graph> {
21 pub struct AncestorsIterator<G: Graph> {
22 graph: G,
22 graph: G,
23 visit: BinaryHeap<Revision>,
23 visit: BinaryHeap<Revision>,
24 seen: HashSet<Revision>,
24 seen: HashSet<Revision>,
25 stoprev: Revision,
25 stoprev: Revision,
26 }
26 }
27
27
28 /// Lazy ancestors set, backed by AncestorsIterator
28 /// Lazy ancestors set, backed by AncestorsIterator
29 pub struct LazyAncestors<G: Graph + Clone> {
29 pub struct LazyAncestors<G: Graph + Clone> {
30 graph: G,
30 graph: G,
31 containsiter: AncestorsIterator<G>,
31 containsiter: AncestorsIterator<G>,
32 initrevs: Vec<Revision>,
32 initrevs: Vec<Revision>,
33 stoprev: Revision,
33 stoprev: Revision,
34 inclusive: bool,
34 inclusive: bool,
35 }
35 }
36
36
37 pub struct MissingAncestors<G: Graph> {
37 pub struct MissingAncestors<G: Graph> {
38 graph: G,
38 graph: G,
39 bases: HashSet<Revision>,
39 bases: HashSet<Revision>,
40 }
40 }
41
41
42 impl<G: Graph> AncestorsIterator<G> {
42 impl<G: Graph> AncestorsIterator<G> {
43 /// Constructor.
43 /// Constructor.
44 ///
44 ///
45 /// if `inclusive` is true, then the init revisions are emitted in
45 /// if `inclusive` is true, then the init revisions are emitted in
46 /// particular, otherwise iteration starts from their parents.
46 /// particular, otherwise iteration starts from their parents.
47 pub fn new(
47 pub fn new(
48 graph: G,
48 graph: G,
49 initrevs: impl IntoIterator<Item = Revision>,
49 initrevs: impl IntoIterator<Item = Revision>,
50 stoprev: Revision,
50 stoprev: Revision,
51 inclusive: bool,
51 inclusive: bool,
52 ) -> Result<Self, GraphError> {
52 ) -> Result<Self, GraphError> {
53 let filtered_initrevs = initrevs.into_iter().filter(|&r| r >= stoprev);
53 let filtered_initrevs = initrevs.into_iter().filter(|&r| r >= stoprev);
54 if inclusive {
54 if inclusive {
55 let visit: BinaryHeap<Revision> = filtered_initrevs.collect();
55 let visit: BinaryHeap<Revision> = filtered_initrevs.collect();
56 let seen = visit.iter().map(|&x| x).collect();
56 let seen = visit.iter().map(|&x| x).collect();
57 return Ok(AncestorsIterator {
57 return Ok(AncestorsIterator {
58 visit: visit,
58 visit: visit,
59 seen: seen,
59 seen: seen,
60 stoprev: stoprev,
60 stoprev: stoprev,
61 graph: graph,
61 graph: graph,
62 });
62 });
63 }
63 }
64 let mut this = AncestorsIterator {
64 let mut this = AncestorsIterator {
65 visit: BinaryHeap::new(),
65 visit: BinaryHeap::new(),
66 seen: HashSet::new(),
66 seen: HashSet::new(),
67 stoprev: stoprev,
67 stoprev: stoprev,
68 graph: graph,
68 graph: graph,
69 };
69 };
70 this.seen.insert(NULL_REVISION);
70 this.seen.insert(NULL_REVISION);
71 for rev in filtered_initrevs {
71 for rev in filtered_initrevs {
72 for parent in this.graph.parents(rev)?.iter().cloned() {
72 for parent in this.graph.parents(rev)?.iter().cloned() {
73 this.conditionally_push_rev(parent);
73 this.conditionally_push_rev(parent);
74 }
74 }
75 }
75 }
76 Ok(this)
76 Ok(this)
77 }
77 }
78
78
79 #[inline]
79 #[inline]
80 fn conditionally_push_rev(&mut self, rev: Revision) {
80 fn conditionally_push_rev(&mut self, rev: Revision) {
81 if self.stoprev <= rev && !self.seen.contains(&rev) {
81 if self.stoprev <= rev && !self.seen.contains(&rev) {
82 self.seen.insert(rev);
82 self.seen.insert(rev);
83 self.visit.push(rev);
83 self.visit.push(rev);
84 }
84 }
85 }
85 }
86
86
87 /// Consumes partially the iterator to tell if the given target
87 /// Consumes partially the iterator to tell if the given target
88 /// revision
88 /// revision
89 /// is in the ancestors it emits.
89 /// is in the ancestors it emits.
90 /// This is meant for iterators actually dedicated to that kind of
90 /// This is meant for iterators actually dedicated to that kind of
91 /// purpose
91 /// purpose
92 pub fn contains(&mut self, target: Revision) -> Result<bool, GraphError> {
92 pub fn contains(&mut self, target: Revision) -> Result<bool, GraphError> {
93 if self.seen.contains(&target) && target != NULL_REVISION {
93 if self.seen.contains(&target) && target != NULL_REVISION {
94 return Ok(true);
94 return Ok(true);
95 }
95 }
96 for item in self {
96 for item in self {
97 let rev = item?;
97 let rev = item?;
98 if rev == target {
98 if rev == target {
99 return Ok(true);
99 return Ok(true);
100 }
100 }
101 if rev < target {
101 if rev < target {
102 return Ok(false);
102 return Ok(false);
103 }
103 }
104 }
104 }
105 Ok(false)
105 Ok(false)
106 }
106 }
107
107
108 pub fn peek(&self) -> Option<Revision> {
108 pub fn peek(&self) -> Option<Revision> {
109 self.visit.peek().map(|&r| r)
109 self.visit.peek().map(|&r| r)
110 }
110 }
111
111
112 /// Tell if the iterator is about an empty set
112 /// Tell if the iterator is about an empty set
113 ///
113 ///
114 /// The result does not depend whether the iterator has been consumed
114 /// The result does not depend whether the iterator has been consumed
115 /// or not.
115 /// or not.
116 /// This is mostly meant for iterators backing a lazy ancestors set
116 /// This is mostly meant for iterators backing a lazy ancestors set
117 pub fn is_empty(&self) -> bool {
117 pub fn is_empty(&self) -> bool {
118 if self.visit.len() > 0 {
118 if self.visit.len() > 0 {
119 return false;
119 return false;
120 }
120 }
121 if self.seen.len() > 1 {
121 if self.seen.len() > 1 {
122 return false;
122 return false;
123 }
123 }
124 // at this point, the seen set is at most a singleton.
124 // at this point, the seen set is at most a singleton.
125 // If not `self.inclusive`, it's still possible that it has only
125 // If not `self.inclusive`, it's still possible that it has only
126 // the null revision
126 // the null revision
127 self.seen.is_empty() || self.seen.contains(&NULL_REVISION)
127 self.seen.is_empty() || self.seen.contains(&NULL_REVISION)
128 }
128 }
129 }
129 }
130
130
131 /// Main implementation for the iterator
131 /// Main implementation for the iterator
132 ///
132 ///
133 /// The algorithm is the same as in `_lazyancestorsiter()` from `ancestors.py`
133 /// The algorithm is the same as in `_lazyancestorsiter()` from `ancestors.py`
134 /// with a few non crucial differences:
134 /// with a few non crucial differences:
135 ///
135 ///
136 /// - there's no filtering of invalid parent revisions. Actually, it should be
136 /// - there's no filtering of invalid parent revisions. Actually, it should be
137 /// consistent and more efficient to filter them from the end caller.
137 /// consistent and more efficient to filter them from the end caller.
138 /// - we don't have the optimization for adjacent revisions (i.e., the case
138 /// - we don't have the optimization for adjacent revisions (i.e., the case
139 /// where `p1 == rev - 1`), because it amounts to update the first element of
139 /// where `p1 == rev - 1`), because it amounts to update the first element of
140 /// the heap without sifting, which Rust's BinaryHeap doesn't let us do.
140 /// the heap without sifting, which Rust's BinaryHeap doesn't let us do.
141 /// - we save a few pushes by comparing with `stoprev` before pushing
141 /// - we save a few pushes by comparing with `stoprev` before pushing
142 impl<G: Graph> Iterator for AncestorsIterator<G> {
142 impl<G: Graph> Iterator for AncestorsIterator<G> {
143 type Item = Result<Revision, GraphError>;
143 type Item = Result<Revision, GraphError>;
144
144
145 fn next(&mut self) -> Option<Self::Item> {
145 fn next(&mut self) -> Option<Self::Item> {
146 let current = match self.visit.peek() {
146 let current = match self.visit.peek() {
147 None => {
147 None => {
148 return None;
148 return None;
149 }
149 }
150 Some(c) => *c,
150 Some(c) => *c,
151 };
151 };
152 let [p1, p2] = match self.graph.parents(current) {
152 let [p1, p2] = match self.graph.parents(current) {
153 Ok(ps) => ps,
153 Ok(ps) => ps,
154 Err(e) => return Some(Err(e)),
154 Err(e) => return Some(Err(e)),
155 };
155 };
156 if p1 < self.stoprev || self.seen.contains(&p1) {
156 if p1 < self.stoprev || self.seen.contains(&p1) {
157 self.visit.pop();
157 self.visit.pop();
158 } else {
158 } else {
159 *(self.visit.peek_mut().unwrap()) = p1;
159 *(self.visit.peek_mut().unwrap()) = p1;
160 self.seen.insert(p1);
160 self.seen.insert(p1);
161 };
161 };
162
162
163 self.conditionally_push_rev(p2);
163 self.conditionally_push_rev(p2);
164 Some(Ok(current))
164 Some(Ok(current))
165 }
165 }
166 }
166 }
167
167
168 impl<G: Graph + Clone> LazyAncestors<G> {
168 impl<G: Graph + Clone> LazyAncestors<G> {
169 pub fn new(
169 pub fn new(
170 graph: G,
170 graph: G,
171 initrevs: impl IntoIterator<Item = Revision>,
171 initrevs: impl IntoIterator<Item = Revision>,
172 stoprev: Revision,
172 stoprev: Revision,
173 inclusive: bool,
173 inclusive: bool,
174 ) -> Result<Self, GraphError> {
174 ) -> Result<Self, GraphError> {
175 let v: Vec<Revision> = initrevs.into_iter().collect();
175 let v: Vec<Revision> = initrevs.into_iter().collect();
176 Ok(LazyAncestors {
176 Ok(LazyAncestors {
177 graph: graph.clone(),
177 graph: graph.clone(),
178 containsiter: AncestorsIterator::new(
178 containsiter: AncestorsIterator::new(
179 graph,
179 graph,
180 v.iter().cloned(),
180 v.iter().cloned(),
181 stoprev,
181 stoprev,
182 inclusive,
182 inclusive,
183 )?,
183 )?,
184 initrevs: v,
184 initrevs: v,
185 stoprev: stoprev,
185 stoprev: stoprev,
186 inclusive: inclusive,
186 inclusive: inclusive,
187 })
187 })
188 }
188 }
189
189
190 pub fn contains(&mut self, rev: Revision) -> Result<bool, GraphError> {
190 pub fn contains(&mut self, rev: Revision) -> Result<bool, GraphError> {
191 self.containsiter.contains(rev)
191 self.containsiter.contains(rev)
192 }
192 }
193
193
194 pub fn is_empty(&self) -> bool {
194 pub fn is_empty(&self) -> bool {
195 self.containsiter.is_empty()
195 self.containsiter.is_empty()
196 }
196 }
197
197
198 pub fn iter(&self) -> AncestorsIterator<G> {
198 pub fn iter(&self) -> AncestorsIterator<G> {
199 // the arguments being the same as for self.containsiter, we know
199 // the arguments being the same as for self.containsiter, we know
200 // for sure that AncestorsIterator constructor can't fail
200 // for sure that AncestorsIterator constructor can't fail
201 AncestorsIterator::new(
201 AncestorsIterator::new(
202 self.graph.clone(),
202 self.graph.clone(),
203 self.initrevs.iter().cloned(),
203 self.initrevs.iter().cloned(),
204 self.stoprev,
204 self.stoprev,
205 self.inclusive,
205 self.inclusive,
206 )
206 )
207 .unwrap()
207 .unwrap()
208 }
208 }
209 }
209 }
210
210
211 impl<G: Graph> MissingAncestors<G> {
211 impl<G: Graph> MissingAncestors<G> {
212 pub fn new(graph: G, bases: impl IntoIterator<Item = Revision>) -> Self {
212 pub fn new(graph: G, bases: impl IntoIterator<Item = Revision>) -> Self {
213 let mut bases: HashSet<Revision> = bases.into_iter().collect();
213 let mut bases: HashSet<Revision> = bases.into_iter().collect();
214 if bases.is_empty() {
214 if bases.is_empty() {
215 bases.insert(NULL_REVISION);
215 bases.insert(NULL_REVISION);
216 }
216 }
217 MissingAncestors { graph, bases }
217 MissingAncestors { graph, bases }
218 }
218 }
219
219
220 pub fn has_bases(&self) -> bool {
220 pub fn has_bases(&self) -> bool {
221 self.bases.iter().any(|&b| b != NULL_REVISION)
221 self.bases.iter().any(|&b| b != NULL_REVISION)
222 }
222 }
223
223
224 /// Return a reference to current bases.
224 /// Return a reference to current bases.
225 ///
225 ///
226 /// This is useful in unit tests, but also setdiscovery.py does
226 /// This is useful in unit tests, but also setdiscovery.py does
227 /// read the bases attribute of a ancestor.missingancestors instance.
227 /// read the bases attribute of a ancestor.missingancestors instance.
228 pub fn get_bases<'a>(&'a self) -> &'a HashSet<Revision> {
228 pub fn get_bases<'a>(&'a self) -> &'a HashSet<Revision> {
229 &self.bases
229 &self.bases
230 }
230 }
231
231
232 pub fn add_bases(
232 pub fn add_bases(
233 &mut self,
233 &mut self,
234 new_bases: impl IntoIterator<Item = Revision>,
234 new_bases: impl IntoIterator<Item = Revision>,
235 ) {
235 ) {
236 self.bases.extend(new_bases);
236 self.bases.extend(new_bases);
237 }
237 }
238
238
239 /// Remove all ancestors of self.bases from the revs set (in place)
239 /// Remove all ancestors of self.bases from the revs set (in place)
240 pub fn remove_ancestors_from(
240 pub fn remove_ancestors_from(
241 &mut self,
241 &mut self,
242 revs: &mut HashSet<Revision>,
242 revs: &mut HashSet<Revision>,
243 ) -> Result<(), GraphError> {
243 ) -> Result<(), GraphError> {
244 revs.retain(|r| !self.bases.contains(r));
244 revs.retain(|r| !self.bases.contains(r));
245 // the null revision is always an ancestor
245 // the null revision is always an ancestor
246 revs.remove(&NULL_REVISION);
246 revs.remove(&NULL_REVISION);
247 if revs.is_empty() {
247 if revs.is_empty() {
248 return Ok(());
248 return Ok(());
249 }
249 }
250 // anything in revs > start is definitely not an ancestor of bases
250 // anything in revs > start is definitely not an ancestor of bases
251 // revs <= start need to be investigated
251 // revs <= start need to be investigated
252 // TODO optim: if a missingancestors is to be used several times,
252 // TODO optim: if a missingancestors is to be used several times,
253 // we shouldn't need to iterate each time on bases
253 // we shouldn't need to iterate each time on bases
254 let start = match self.bases.iter().cloned().max() {
254 let start = match self.bases.iter().cloned().max() {
255 Some(m) => m,
255 Some(m) => m,
256 None => {
256 None => {
257 // bases is empty (shouldn't happen, but let's be safe)
257 // bases is empty (shouldn't happen, but let's be safe)
258 return Ok(());
258 return Ok(());
259 }
259 }
260 };
260 };
261 // whatever happens, we'll keep at least keepcount of them
261 // whatever happens, we'll keep at least keepcount of them
262 // knowing this gives us a earlier stop condition than
262 // knowing this gives us a earlier stop condition than
263 // going all the way to the root
263 // going all the way to the root
264 let keepcount = revs.iter().filter(|r| **r > start).count();
264 let keepcount = revs.iter().filter(|r| **r > start).count();
265
265
266 let mut curr = start;
266 let mut curr = start;
267 while curr != NULL_REVISION && revs.len() > keepcount {
267 while curr != NULL_REVISION && revs.len() > keepcount {
268 if self.bases.contains(&curr) {
268 if self.bases.contains(&curr) {
269 revs.remove(&curr);
269 revs.remove(&curr);
270 self.add_parents(curr)?;
270 self.add_parents(curr)?;
271 }
271 }
272 curr -= 1;
272 curr -= 1;
273 }
273 }
274 Ok(())
274 Ok(())
275 }
275 }
276
276
277 /// Add rev's parents to self.bases
277 /// Add rev's parents to self.bases
278 #[inline]
278 #[inline]
279 fn add_parents(&mut self, rev: Revision) -> Result<(), GraphError> {
279 fn add_parents(&mut self, rev: Revision) -> Result<(), GraphError> {
280 // No need to bother the set with inserting NULL_REVISION over and
280 // No need to bother the set with inserting NULL_REVISION over and
281 // over
281 // over
282 for p in self.graph.parents(rev)?.iter().cloned() {
282 for p in self.graph.parents(rev)?.iter().cloned() {
283 if p != NULL_REVISION {
283 if p != NULL_REVISION {
284 self.bases.insert(p);
284 self.bases.insert(p);
285 }
285 }
286 }
286 }
287 Ok(())
287 Ok(())
288 }
288 }
289
289
290 /// Return all the ancestors of revs that are not ancestors of self.bases
290 /// Return all the ancestors of revs that are not ancestors of self.bases
291 ///
291 ///
292 /// This may include elements from revs.
292 /// This may include elements from revs.
293 ///
293 ///
294 /// Equivalent to the revset (::revs - ::self.bases). Revs are returned in
294 /// Equivalent to the revset (::revs - ::self.bases). Revs are returned in
295 /// revision number order, which is a topological order.
295 /// revision number order, which is a topological order.
296 pub fn missing_ancestors(
296 pub fn missing_ancestors(
297 &mut self,
297 &mut self,
298 revs: impl IntoIterator<Item = Revision>,
298 revs: impl IntoIterator<Item = Revision>,
299 ) -> Result<Vec<Revision>, GraphError> {
299 ) -> Result<Vec<Revision>, GraphError> {
300 // just for convenience and comparison with Python version
300 // just for convenience and comparison with Python version
301 let bases_visit = &mut self.bases;
301 let bases_visit = &mut self.bases;
302 let mut revs: HashSet<Revision> = revs
302 let mut revs: HashSet<Revision> = revs
303 .into_iter()
303 .into_iter()
304 .filter(|r| !bases_visit.contains(r))
304 .filter(|r| !bases_visit.contains(r))
305 .collect();
305 .collect();
306 let revs_visit = &mut revs;
306 let revs_visit = &mut revs;
307 let mut both_visit: HashSet<Revision> =
307 let mut both_visit: HashSet<Revision> =
308 revs_visit.intersection(&bases_visit).cloned().collect();
308 revs_visit.intersection(&bases_visit).cloned().collect();
309 if revs_visit.is_empty() {
309 if revs_visit.is_empty() {
310 return Ok(Vec::new());
310 return Ok(Vec::new());
311 }
311 }
312
312
313 let max_bases =
313 let max_bases =
314 bases_visit.iter().cloned().max().unwrap_or(NULL_REVISION);
314 bases_visit.iter().cloned().max().unwrap_or(NULL_REVISION);
315 let max_revs =
315 let max_revs =
316 revs_visit.iter().cloned().max().unwrap_or(NULL_REVISION);
316 revs_visit.iter().cloned().max().unwrap_or(NULL_REVISION);
317 let start = max(max_bases, max_revs);
317 let start = max(max_bases, max_revs);
318
318
319 // TODO heuristics for with_capacity()?
319 // TODO heuristics for with_capacity()?
320 let mut missing: Vec<Revision> = Vec::new();
320 let mut missing: Vec<Revision> = Vec::new();
321 for curr in (0..=start).rev() {
321 for curr in (0..=start).rev() {
322 if revs_visit.is_empty() {
322 if revs_visit.is_empty() {
323 break;
323 break;
324 }
324 }
325 if both_visit.contains(&curr) {
325 if both_visit.contains(&curr) {
326 // curr's parents might have made it into revs_visit through
326 // curr's parents might have made it into revs_visit through
327 // another path
327 // another path
328 // TODO optim: Rust's HashSet.remove returns a boolean telling
328 // TODO optim: Rust's HashSet.remove returns a boolean telling
329 // if it happened. This will spare us one set lookup
329 // if it happened. This will spare us one set lookup
330 both_visit.remove(&curr);
330 both_visit.remove(&curr);
331 for p in self.graph.parents(curr)?.iter().cloned() {
331 for p in self.graph.parents(curr)?.iter().cloned() {
332 if p == NULL_REVISION {
332 if p == NULL_REVISION {
333 continue;
333 continue;
334 }
334 }
335 revs_visit.remove(&p);
335 revs_visit.remove(&p);
336 bases_visit.insert(p);
336 bases_visit.insert(p);
337 both_visit.insert(p);
337 both_visit.insert(p);
338 }
338 }
339 continue;
339 continue;
340 }
340 }
341 // in Rust, one can't just use mutable variables assignation
341 // in Rust, one can't just use mutable variables assignation
342 // to be more straightforward. Instead of Python's
342 // to be more straightforward. Instead of Python's
343 // thisvisit and othervisit, we'll differentiate with a boolean
343 // thisvisit and othervisit, we'll differentiate with a boolean
344 let this_visit_is_revs;
344 let this_visit_is_revs;
345 if revs_visit.remove(&curr) {
345 if revs_visit.remove(&curr) {
346 missing.push(curr);
346 missing.push(curr);
347 this_visit_is_revs = true;
347 this_visit_is_revs = true;
348 } else if bases_visit.contains(&curr) {
349 this_visit_is_revs = false;
350 } else {
351 // not an ancestor of revs or bases: ignore
352 continue;
353 }
354
355 {
356 for p in self.graph.parents(curr)?.iter().cloned() {
348 for p in self.graph.parents(curr)?.iter().cloned() {
357 if p == NULL_REVISION {
349 if p == NULL_REVISION {
358 continue;
350 continue;
359 }
351 }
360 let in_other_visit = if this_visit_is_revs {
352 let in_other_visit = if this_visit_is_revs {
361 bases_visit.contains(&p)
353 bases_visit.contains(&p)
362 } else {
354 } else {
363 revs_visit.contains(&p)
355 revs_visit.contains(&p)
364 };
356 };
365 if in_other_visit || both_visit.contains(&p) {
357 if in_other_visit || both_visit.contains(&p) {
366 // p is implicitely in this_visit.
358 // p is implicitely in this_visit.
367 // This means p is or should be in bothvisit
359 // This means p is or should be in bothvisit
368 // TODO optim: hence if bothvisit, we look up twice
360 // TODO optim: hence if bothvisit, we look up twice
369 revs_visit.remove(&p);
361 revs_visit.remove(&p);
370 bases_visit.insert(p);
362 bases_visit.insert(p);
371 both_visit.insert(p);
363 both_visit.insert(p);
372 } else {
364 } else {
373 // visit later
365 // visit later
374 if this_visit_is_revs {
366 if this_visit_is_revs {
375 revs_visit.insert(p);
367 revs_visit.insert(p);
376 } else {
368 } else {
377 bases_visit.insert(p);
369 bases_visit.insert(p);
378 }
370 }
379 }
371 }
380 }
372 }
373 } else if bases_visit.contains(&curr) {
374 this_visit_is_revs = false;
375 for p in self.graph.parents(curr)?.iter().cloned() {
376 if p == NULL_REVISION {
377 continue;
378 }
379 let in_other_visit = if this_visit_is_revs {
380 bases_visit.contains(&p)
381 } else {
382 revs_visit.contains(&p)
383 };
384 if in_other_visit || both_visit.contains(&p) {
385 // p is implicitely in this_visit.
386 // This means p is or should be in bothvisit
387 // TODO optim: hence if bothvisit, we look up twice
388 revs_visit.remove(&p);
389 bases_visit.insert(p);
390 both_visit.insert(p);
391 } else {
392 // visit later
393 if this_visit_is_revs {
394 revs_visit.insert(p);
395 } else {
396 bases_visit.insert(p);
397 }
398 }
399 }
400 } else {
401 // not an ancestor of revs or bases: ignore
381 }
402 }
382 }
403 }
383 missing.reverse();
404 missing.reverse();
384 Ok(missing)
405 Ok(missing)
385 }
406 }
386 }
407 }
387
408
388 #[cfg(test)]
409 #[cfg(test)]
389 mod tests {
410 mod tests {
390
411
391 use super::*;
412 use super::*;
392 use std::iter::FromIterator;
413 use std::iter::FromIterator;
393
414
394 #[derive(Clone, Debug)]
415 #[derive(Clone, Debug)]
395 struct Stub;
416 struct Stub;
396
417
397 /// This is the same as the dict from test-ancestors.py
418 /// This is the same as the dict from test-ancestors.py
398 impl Graph for Stub {
419 impl Graph for Stub {
399 fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
420 fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
400 match rev {
421 match rev {
401 0 => Ok([-1, -1]),
422 0 => Ok([-1, -1]),
402 1 => Ok([0, -1]),
423 1 => Ok([0, -1]),
403 2 => Ok([1, -1]),
424 2 => Ok([1, -1]),
404 3 => Ok([1, -1]),
425 3 => Ok([1, -1]),
405 4 => Ok([2, -1]),
426 4 => Ok([2, -1]),
406 5 => Ok([4, -1]),
427 5 => Ok([4, -1]),
407 6 => Ok([4, -1]),
428 6 => Ok([4, -1]),
408 7 => Ok([4, -1]),
429 7 => Ok([4, -1]),
409 8 => Ok([-1, -1]),
430 8 => Ok([-1, -1]),
410 9 => Ok([6, 7]),
431 9 => Ok([6, 7]),
411 10 => Ok([5, -1]),
432 10 => Ok([5, -1]),
412 11 => Ok([3, 7]),
433 11 => Ok([3, 7]),
413 12 => Ok([9, -1]),
434 12 => Ok([9, -1]),
414 13 => Ok([8, -1]),
435 13 => Ok([8, -1]),
415 r => Err(GraphError::ParentOutOfRange(r)),
436 r => Err(GraphError::ParentOutOfRange(r)),
416 }
437 }
417 }
438 }
418 }
439 }
419
440
420 fn list_ancestors<G: Graph>(
441 fn list_ancestors<G: Graph>(
421 graph: G,
442 graph: G,
422 initrevs: Vec<Revision>,
443 initrevs: Vec<Revision>,
423 stoprev: Revision,
444 stoprev: Revision,
424 inclusive: bool,
445 inclusive: bool,
425 ) -> Vec<Revision> {
446 ) -> Vec<Revision> {
426 AncestorsIterator::new(graph, initrevs, stoprev, inclusive)
447 AncestorsIterator::new(graph, initrevs, stoprev, inclusive)
427 .unwrap()
448 .unwrap()
428 .map(|res| res.unwrap())
449 .map(|res| res.unwrap())
429 .collect()
450 .collect()
430 }
451 }
431
452
432 #[test]
453 #[test]
433 /// Same tests as test-ancestor.py, without membership
454 /// Same tests as test-ancestor.py, without membership
434 /// (see also test-ancestor.py.out)
455 /// (see also test-ancestor.py.out)
435 fn test_list_ancestor() {
456 fn test_list_ancestor() {
436 assert_eq!(list_ancestors(Stub, vec![], 0, false), vec![]);
457 assert_eq!(list_ancestors(Stub, vec![], 0, false), vec![]);
437 assert_eq!(
458 assert_eq!(
438 list_ancestors(Stub, vec![11, 13], 0, false),
459 list_ancestors(Stub, vec![11, 13], 0, false),
439 vec![8, 7, 4, 3, 2, 1, 0]
460 vec![8, 7, 4, 3, 2, 1, 0]
440 );
461 );
441 assert_eq!(list_ancestors(Stub, vec![1, 3], 0, false), vec![1, 0]);
462 assert_eq!(list_ancestors(Stub, vec![1, 3], 0, false), vec![1, 0]);
442 assert_eq!(
463 assert_eq!(
443 list_ancestors(Stub, vec![11, 13], 0, true),
464 list_ancestors(Stub, vec![11, 13], 0, true),
444 vec![13, 11, 8, 7, 4, 3, 2, 1, 0]
465 vec![13, 11, 8, 7, 4, 3, 2, 1, 0]
445 );
466 );
446 assert_eq!(list_ancestors(Stub, vec![11, 13], 6, false), vec![8, 7]);
467 assert_eq!(list_ancestors(Stub, vec![11, 13], 6, false), vec![8, 7]);
447 assert_eq!(
468 assert_eq!(
448 list_ancestors(Stub, vec![11, 13], 6, true),
469 list_ancestors(Stub, vec![11, 13], 6, true),
449 vec![13, 11, 8, 7]
470 vec![13, 11, 8, 7]
450 );
471 );
451 assert_eq!(list_ancestors(Stub, vec![11, 13], 11, true), vec![13, 11]);
472 assert_eq!(list_ancestors(Stub, vec![11, 13], 11, true), vec![13, 11]);
452 assert_eq!(list_ancestors(Stub, vec![11, 13], 12, true), vec![13]);
473 assert_eq!(list_ancestors(Stub, vec![11, 13], 12, true), vec![13]);
453 assert_eq!(
474 assert_eq!(
454 list_ancestors(Stub, vec![10, 1], 0, true),
475 list_ancestors(Stub, vec![10, 1], 0, true),
455 vec![10, 5, 4, 2, 1, 0]
476 vec![10, 5, 4, 2, 1, 0]
456 );
477 );
457 }
478 }
458
479
459 #[test]
480 #[test]
460 /// Corner case that's not directly in test-ancestors.py, but
481 /// Corner case that's not directly in test-ancestors.py, but
461 /// that happens quite often, as demonstrated by running the whole
482 /// that happens quite often, as demonstrated by running the whole
462 /// suite.
483 /// suite.
463 /// For instance, run tests/test-obsolete-checkheads.t
484 /// For instance, run tests/test-obsolete-checkheads.t
464 fn test_nullrev_input() {
485 fn test_nullrev_input() {
465 let mut iter =
486 let mut iter =
466 AncestorsIterator::new(Stub, vec![-1], 0, false).unwrap();
487 AncestorsIterator::new(Stub, vec![-1], 0, false).unwrap();
467 assert_eq!(iter.next(), None)
488 assert_eq!(iter.next(), None)
468 }
489 }
469
490
470 #[test]
491 #[test]
471 fn test_contains() {
492 fn test_contains() {
472 let mut lazy =
493 let mut lazy =
473 AncestorsIterator::new(Stub, vec![10, 1], 0, true).unwrap();
494 AncestorsIterator::new(Stub, vec![10, 1], 0, true).unwrap();
474 assert!(lazy.contains(1).unwrap());
495 assert!(lazy.contains(1).unwrap());
475 assert!(!lazy.contains(3).unwrap());
496 assert!(!lazy.contains(3).unwrap());
476
497
477 let mut lazy =
498 let mut lazy =
478 AncestorsIterator::new(Stub, vec![0], 0, false).unwrap();
499 AncestorsIterator::new(Stub, vec![0], 0, false).unwrap();
479 assert!(!lazy.contains(NULL_REVISION).unwrap());
500 assert!(!lazy.contains(NULL_REVISION).unwrap());
480 }
501 }
481
502
482 #[test]
503 #[test]
483 fn test_peek() {
504 fn test_peek() {
484 let mut iter =
505 let mut iter =
485 AncestorsIterator::new(Stub, vec![10], 0, true).unwrap();
506 AncestorsIterator::new(Stub, vec![10], 0, true).unwrap();
486 // peek() gives us the next value
507 // peek() gives us the next value
487 assert_eq!(iter.peek(), Some(10));
508 assert_eq!(iter.peek(), Some(10));
488 // but it's not been consumed
509 // but it's not been consumed
489 assert_eq!(iter.next(), Some(Ok(10)));
510 assert_eq!(iter.next(), Some(Ok(10)));
490 // and iteration resumes normally
511 // and iteration resumes normally
491 assert_eq!(iter.next(), Some(Ok(5)));
512 assert_eq!(iter.next(), Some(Ok(5)));
492
513
493 // let's drain the iterator to test peek() at the end
514 // let's drain the iterator to test peek() at the end
494 while iter.next().is_some() {}
515 while iter.next().is_some() {}
495 assert_eq!(iter.peek(), None);
516 assert_eq!(iter.peek(), None);
496 }
517 }
497
518
498 #[test]
519 #[test]
499 fn test_empty() {
520 fn test_empty() {
500 let mut iter =
521 let mut iter =
501 AncestorsIterator::new(Stub, vec![10], 0, true).unwrap();
522 AncestorsIterator::new(Stub, vec![10], 0, true).unwrap();
502 assert!(!iter.is_empty());
523 assert!(!iter.is_empty());
503 while iter.next().is_some() {}
524 while iter.next().is_some() {}
504 assert!(!iter.is_empty());
525 assert!(!iter.is_empty());
505
526
506 let iter = AncestorsIterator::new(Stub, vec![], 0, true).unwrap();
527 let iter = AncestorsIterator::new(Stub, vec![], 0, true).unwrap();
507 assert!(iter.is_empty());
528 assert!(iter.is_empty());
508
529
509 // case where iter.seen == {NULL_REVISION}
530 // case where iter.seen == {NULL_REVISION}
510 let iter = AncestorsIterator::new(Stub, vec![0], 0, false).unwrap();
531 let iter = AncestorsIterator::new(Stub, vec![0], 0, false).unwrap();
511 assert!(iter.is_empty());
532 assert!(iter.is_empty());
512 }
533 }
513
534
514 /// A corrupted Graph, supporting error handling tests
535 /// A corrupted Graph, supporting error handling tests
515 #[derive(Clone, Debug)]
536 #[derive(Clone, Debug)]
516 struct Corrupted;
537 struct Corrupted;
517
538
518 impl Graph for Corrupted {
539 impl Graph for Corrupted {
519 fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
540 fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
520 match rev {
541 match rev {
521 1 => Ok([0, -1]),
542 1 => Ok([0, -1]),
522 r => Err(GraphError::ParentOutOfRange(r)),
543 r => Err(GraphError::ParentOutOfRange(r)),
523 }
544 }
524 }
545 }
525 }
546 }
526
547
527 #[test]
548 #[test]
528 fn test_initrev_out_of_range() {
549 fn test_initrev_out_of_range() {
529 // inclusive=false looks up initrev's parents right away
550 // inclusive=false looks up initrev's parents right away
530 match AncestorsIterator::new(Stub, vec![25], 0, false) {
551 match AncestorsIterator::new(Stub, vec![25], 0, false) {
531 Ok(_) => panic!("Should have been ParentOutOfRange"),
552 Ok(_) => panic!("Should have been ParentOutOfRange"),
532 Err(e) => assert_eq!(e, GraphError::ParentOutOfRange(25)),
553 Err(e) => assert_eq!(e, GraphError::ParentOutOfRange(25)),
533 }
554 }
534 }
555 }
535
556
536 #[test]
557 #[test]
537 fn test_next_out_of_range() {
558 fn test_next_out_of_range() {
538 // inclusive=false looks up initrev's parents right away
559 // inclusive=false looks up initrev's parents right away
539 let mut iter =
560 let mut iter =
540 AncestorsIterator::new(Corrupted, vec![1], 0, false).unwrap();
561 AncestorsIterator::new(Corrupted, vec![1], 0, false).unwrap();
541 assert_eq!(iter.next(), Some(Err(GraphError::ParentOutOfRange(0))));
562 assert_eq!(iter.next(), Some(Err(GraphError::ParentOutOfRange(0))));
542 }
563 }
543
564
544 #[test]
565 #[test]
545 fn test_lazy_iter_contains() {
566 fn test_lazy_iter_contains() {
546 let mut lazy =
567 let mut lazy =
547 LazyAncestors::new(Stub, vec![11, 13], 0, false).unwrap();
568 LazyAncestors::new(Stub, vec![11, 13], 0, false).unwrap();
548
569
549 let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect();
570 let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect();
550 // compare with iterator tests on the same initial revisions
571 // compare with iterator tests on the same initial revisions
551 assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]);
572 assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]);
552
573
553 // contains() results are correct, unaffected by the fact that
574 // contains() results are correct, unaffected by the fact that
554 // we consumed entirely an iterator out of lazy
575 // we consumed entirely an iterator out of lazy
555 assert_eq!(lazy.contains(2), Ok(true));
576 assert_eq!(lazy.contains(2), Ok(true));
556 assert_eq!(lazy.contains(9), Ok(false));
577 assert_eq!(lazy.contains(9), Ok(false));
557 }
578 }
558
579
559 #[test]
580 #[test]
560 fn test_lazy_contains_iter() {
581 fn test_lazy_contains_iter() {
561 let mut lazy =
582 let mut lazy =
562 LazyAncestors::new(Stub, vec![11, 13], 0, false).unwrap(); // reminder: [8, 7, 4, 3, 2, 1, 0]
583 LazyAncestors::new(Stub, vec![11, 13], 0, false).unwrap(); // reminder: [8, 7, 4, 3, 2, 1, 0]
563
584
564 assert_eq!(lazy.contains(2), Ok(true));
585 assert_eq!(lazy.contains(2), Ok(true));
565 assert_eq!(lazy.contains(6), Ok(false));
586 assert_eq!(lazy.contains(6), Ok(false));
566
587
567 // after consumption of 2 by the inner iterator, results stay
588 // after consumption of 2 by the inner iterator, results stay
568 // consistent
589 // consistent
569 assert_eq!(lazy.contains(2), Ok(true));
590 assert_eq!(lazy.contains(2), Ok(true));
570 assert_eq!(lazy.contains(5), Ok(false));
591 assert_eq!(lazy.contains(5), Ok(false));
571
592
572 // iter() still gives us a fresh iterator
593 // iter() still gives us a fresh iterator
573 let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect();
594 let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect();
574 assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]);
595 assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]);
575 }
596 }
576
597
577 #[test]
598 #[test]
578 /// Test constructor, add/get bases
599 /// Test constructor, add/get bases
579 fn test_missing_bases() {
600 fn test_missing_bases() {
580 let mut missing_ancestors =
601 let mut missing_ancestors =
581 MissingAncestors::new(Stub, [5, 3, 1, 3].iter().cloned());
602 MissingAncestors::new(Stub, [5, 3, 1, 3].iter().cloned());
582 let mut as_vec: Vec<Revision> =
603 let mut as_vec: Vec<Revision> =
583 missing_ancestors.get_bases().iter().cloned().collect();
604 missing_ancestors.get_bases().iter().cloned().collect();
584 as_vec.sort();
605 as_vec.sort();
585 assert_eq!(as_vec, [1, 3, 5]);
606 assert_eq!(as_vec, [1, 3, 5]);
586
607
587 missing_ancestors.add_bases([3, 7, 8].iter().cloned());
608 missing_ancestors.add_bases([3, 7, 8].iter().cloned());
588 as_vec = missing_ancestors.get_bases().iter().cloned().collect();
609 as_vec = missing_ancestors.get_bases().iter().cloned().collect();
589 as_vec.sort();
610 as_vec.sort();
590 assert_eq!(as_vec, [1, 3, 5, 7, 8]);
611 assert_eq!(as_vec, [1, 3, 5, 7, 8]);
591 }
612 }
592
613
593 fn assert_missing_remove(
614 fn assert_missing_remove(
594 bases: &[Revision],
615 bases: &[Revision],
595 revs: &[Revision],
616 revs: &[Revision],
596 expected: &[Revision],
617 expected: &[Revision],
597 ) {
618 ) {
598 let mut missing_ancestors =
619 let mut missing_ancestors =
599 MissingAncestors::new(Stub, bases.iter().cloned());
620 MissingAncestors::new(Stub, bases.iter().cloned());
600 let mut revset: HashSet<Revision> = revs.iter().cloned().collect();
621 let mut revset: HashSet<Revision> = revs.iter().cloned().collect();
601 missing_ancestors
622 missing_ancestors
602 .remove_ancestors_from(&mut revset)
623 .remove_ancestors_from(&mut revset)
603 .unwrap();
624 .unwrap();
604 let mut as_vec: Vec<Revision> = revset.into_iter().collect();
625 let mut as_vec: Vec<Revision> = revset.into_iter().collect();
605 as_vec.sort();
626 as_vec.sort();
606 assert_eq!(as_vec.as_slice(), expected);
627 assert_eq!(as_vec.as_slice(), expected);
607 }
628 }
608
629
609 #[test]
630 #[test]
610 fn test_missing_remove() {
631 fn test_missing_remove() {
611 assert_missing_remove(
632 assert_missing_remove(
612 &[1, 2, 3, 4, 7],
633 &[1, 2, 3, 4, 7],
613 Vec::from_iter(1..10).as_slice(),
634 Vec::from_iter(1..10).as_slice(),
614 &[5, 6, 8, 9],
635 &[5, 6, 8, 9],
615 );
636 );
616 assert_missing_remove(&[10], &[11, 12, 13, 14], &[11, 12, 13, 14]);
637 assert_missing_remove(&[10], &[11, 12, 13, 14], &[11, 12, 13, 14]);
617 assert_missing_remove(&[7], &[1, 2, 3, 4, 5], &[3, 5]);
638 assert_missing_remove(&[7], &[1, 2, 3, 4, 5], &[3, 5]);
618 }
639 }
619
640
620 fn assert_missing_ancestors(
641 fn assert_missing_ancestors(
621 bases: &[Revision],
642 bases: &[Revision],
622 revs: &[Revision],
643 revs: &[Revision],
623 expected: &[Revision],
644 expected: &[Revision],
624 ) {
645 ) {
625 let mut missing_ancestors =
646 let mut missing_ancestors =
626 MissingAncestors::new(Stub, bases.iter().cloned());
647 MissingAncestors::new(Stub, bases.iter().cloned());
627 let missing = missing_ancestors
648 let missing = missing_ancestors
628 .missing_ancestors(revs.iter().cloned())
649 .missing_ancestors(revs.iter().cloned())
629 .unwrap();
650 .unwrap();
630 assert_eq!(missing.as_slice(), expected);
651 assert_eq!(missing.as_slice(), expected);
631 }
652 }
632
653
633 #[test]
654 #[test]
634 fn test_missing_ancestors() {
655 fn test_missing_ancestors() {
635 // examples taken from test-ancestors.py by having it run
656 // examples taken from test-ancestors.py by having it run
636 // on the same graph (both naive and fast Python algs)
657 // on the same graph (both naive and fast Python algs)
637 assert_missing_ancestors(&[10], &[11], &[3, 7, 11]);
658 assert_missing_ancestors(&[10], &[11], &[3, 7, 11]);
638 assert_missing_ancestors(&[11], &[10], &[5, 10]);
659 assert_missing_ancestors(&[11], &[10], &[5, 10]);
639 assert_missing_ancestors(&[7], &[9, 11], &[3, 6, 9, 11]);
660 assert_missing_ancestors(&[7], &[9, 11], &[3, 6, 9, 11]);
640 }
661 }
641
662
642 // A Graph represented by a vector whose indices are revisions
663 // A Graph represented by a vector whose indices are revisions
643 // and values are parents of the revisions
664 // and values are parents of the revisions
644 type VecGraph = Vec<[Revision; 2]>;
665 type VecGraph = Vec<[Revision; 2]>;
645
666
646 impl Graph for VecGraph {
667 impl Graph for VecGraph {
647 fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
668 fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
648 Ok(self[rev as usize])
669 Ok(self[rev as usize])
649 }
670 }
650 }
671 }
651
672
652 /// An interesting case found by a random generator similar to
673 /// An interesting case found by a random generator similar to
653 /// the one in test-ancestor.py. An early version of Rust MissingAncestors
674 /// the one in test-ancestor.py. An early version of Rust MissingAncestors
654 /// failed this, yet none of the integration tests of the whole suite
675 /// failed this, yet none of the integration tests of the whole suite
655 /// catched it.
676 /// catched it.
656 #[test]
677 #[test]
657 fn test_remove_ancestors_from_case1() {
678 fn test_remove_ancestors_from_case1() {
658 let graph: VecGraph = vec![
679 let graph: VecGraph = vec![
659 [NULL_REVISION, NULL_REVISION],
680 [NULL_REVISION, NULL_REVISION],
660 [0, NULL_REVISION],
681 [0, NULL_REVISION],
661 [1, 0],
682 [1, 0],
662 [2, 1],
683 [2, 1],
663 [3, NULL_REVISION],
684 [3, NULL_REVISION],
664 [4, NULL_REVISION],
685 [4, NULL_REVISION],
665 [5, 1],
686 [5, 1],
666 [2, NULL_REVISION],
687 [2, NULL_REVISION],
667 [7, NULL_REVISION],
688 [7, NULL_REVISION],
668 [8, NULL_REVISION],
689 [8, NULL_REVISION],
669 [9, NULL_REVISION],
690 [9, NULL_REVISION],
670 [10, 1],
691 [10, 1],
671 [3, NULL_REVISION],
692 [3, NULL_REVISION],
672 [12, NULL_REVISION],
693 [12, NULL_REVISION],
673 [13, NULL_REVISION],
694 [13, NULL_REVISION],
674 [14, NULL_REVISION],
695 [14, NULL_REVISION],
675 [4, NULL_REVISION],
696 [4, NULL_REVISION],
676 [16, NULL_REVISION],
697 [16, NULL_REVISION],
677 [17, NULL_REVISION],
698 [17, NULL_REVISION],
678 [18, NULL_REVISION],
699 [18, NULL_REVISION],
679 [19, 11],
700 [19, 11],
680 [20, NULL_REVISION],
701 [20, NULL_REVISION],
681 [21, NULL_REVISION],
702 [21, NULL_REVISION],
682 [22, NULL_REVISION],
703 [22, NULL_REVISION],
683 [23, NULL_REVISION],
704 [23, NULL_REVISION],
684 [2, NULL_REVISION],
705 [2, NULL_REVISION],
685 [3, NULL_REVISION],
706 [3, NULL_REVISION],
686 [26, 24],
707 [26, 24],
687 [27, NULL_REVISION],
708 [27, NULL_REVISION],
688 [28, NULL_REVISION],
709 [28, NULL_REVISION],
689 [12, NULL_REVISION],
710 [12, NULL_REVISION],
690 [1, NULL_REVISION],
711 [1, NULL_REVISION],
691 [1, 9],
712 [1, 9],
692 [32, NULL_REVISION],
713 [32, NULL_REVISION],
693 [33, NULL_REVISION],
714 [33, NULL_REVISION],
694 [34, 31],
715 [34, 31],
695 [35, NULL_REVISION],
716 [35, NULL_REVISION],
696 [36, 26],
717 [36, 26],
697 [37, NULL_REVISION],
718 [37, NULL_REVISION],
698 [38, NULL_REVISION],
719 [38, NULL_REVISION],
699 [39, NULL_REVISION],
720 [39, NULL_REVISION],
700 [40, NULL_REVISION],
721 [40, NULL_REVISION],
701 [41, NULL_REVISION],
722 [41, NULL_REVISION],
702 [42, 26],
723 [42, 26],
703 [0, NULL_REVISION],
724 [0, NULL_REVISION],
704 [44, NULL_REVISION],
725 [44, NULL_REVISION],
705 [45, 4],
726 [45, 4],
706 [40, NULL_REVISION],
727 [40, NULL_REVISION],
707 [47, NULL_REVISION],
728 [47, NULL_REVISION],
708 [36, 0],
729 [36, 0],
709 [49, NULL_REVISION],
730 [49, NULL_REVISION],
710 [NULL_REVISION, NULL_REVISION],
731 [NULL_REVISION, NULL_REVISION],
711 [51, NULL_REVISION],
732 [51, NULL_REVISION],
712 [52, NULL_REVISION],
733 [52, NULL_REVISION],
713 [53, NULL_REVISION],
734 [53, NULL_REVISION],
714 [14, NULL_REVISION],
735 [14, NULL_REVISION],
715 [55, NULL_REVISION],
736 [55, NULL_REVISION],
716 [15, NULL_REVISION],
737 [15, NULL_REVISION],
717 [23, NULL_REVISION],
738 [23, NULL_REVISION],
718 [58, NULL_REVISION],
739 [58, NULL_REVISION],
719 [59, NULL_REVISION],
740 [59, NULL_REVISION],
720 [2, NULL_REVISION],
741 [2, NULL_REVISION],
721 [61, 59],
742 [61, 59],
722 [62, NULL_REVISION],
743 [62, NULL_REVISION],
723 [63, NULL_REVISION],
744 [63, NULL_REVISION],
724 [NULL_REVISION, NULL_REVISION],
745 [NULL_REVISION, NULL_REVISION],
725 [65, NULL_REVISION],
746 [65, NULL_REVISION],
726 [66, NULL_REVISION],
747 [66, NULL_REVISION],
727 [67, NULL_REVISION],
748 [67, NULL_REVISION],
728 [68, NULL_REVISION],
749 [68, NULL_REVISION],
729 [37, 28],
750 [37, 28],
730 [69, 25],
751 [69, 25],
731 [71, NULL_REVISION],
752 [71, NULL_REVISION],
732 [72, NULL_REVISION],
753 [72, NULL_REVISION],
733 [50, 2],
754 [50, 2],
734 [74, NULL_REVISION],
755 [74, NULL_REVISION],
735 [12, NULL_REVISION],
756 [12, NULL_REVISION],
736 [18, NULL_REVISION],
757 [18, NULL_REVISION],
737 [77, NULL_REVISION],
758 [77, NULL_REVISION],
738 [78, NULL_REVISION],
759 [78, NULL_REVISION],
739 [79, NULL_REVISION],
760 [79, NULL_REVISION],
740 [43, 33],
761 [43, 33],
741 [81, NULL_REVISION],
762 [81, NULL_REVISION],
742 [82, NULL_REVISION],
763 [82, NULL_REVISION],
743 [83, NULL_REVISION],
764 [83, NULL_REVISION],
744 [84, 45],
765 [84, 45],
745 [85, NULL_REVISION],
766 [85, NULL_REVISION],
746 [86, NULL_REVISION],
767 [86, NULL_REVISION],
747 [NULL_REVISION, NULL_REVISION],
768 [NULL_REVISION, NULL_REVISION],
748 [88, NULL_REVISION],
769 [88, NULL_REVISION],
749 [NULL_REVISION, NULL_REVISION],
770 [NULL_REVISION, NULL_REVISION],
750 [76, 83],
771 [76, 83],
751 [44, NULL_REVISION],
772 [44, NULL_REVISION],
752 [92, NULL_REVISION],
773 [92, NULL_REVISION],
753 [93, NULL_REVISION],
774 [93, NULL_REVISION],
754 [9, NULL_REVISION],
775 [9, NULL_REVISION],
755 [95, 67],
776 [95, 67],
756 [96, NULL_REVISION],
777 [96, NULL_REVISION],
757 [97, NULL_REVISION],
778 [97, NULL_REVISION],
758 [NULL_REVISION, NULL_REVISION],
779 [NULL_REVISION, NULL_REVISION],
759 ];
780 ];
760 let problem_rev = 28 as Revision;
781 let problem_rev = 28 as Revision;
761 let problem_base = 70 as Revision;
782 let problem_base = 70 as Revision;
762 // making the problem obvious: problem_rev is a parent of problem_base
783 // making the problem obvious: problem_rev is a parent of problem_base
763 assert_eq!(graph.parents(problem_base).unwrap()[1], problem_rev);
784 assert_eq!(graph.parents(problem_base).unwrap()[1], problem_rev);
764
785
765 let mut missing_ancestors: MissingAncestors<VecGraph> =
786 let mut missing_ancestors: MissingAncestors<VecGraph> =
766 MissingAncestors::new(
787 MissingAncestors::new(
767 graph,
788 graph,
768 [60, 26, 70, 3, 96, 19, 98, 49, 97, 47, 1, 6]
789 [60, 26, 70, 3, 96, 19, 98, 49, 97, 47, 1, 6]
769 .iter()
790 .iter()
770 .cloned(),
791 .cloned(),
771 );
792 );
772 assert!(missing_ancestors.bases.contains(&problem_base));
793 assert!(missing_ancestors.bases.contains(&problem_base));
773
794
774 let mut revs: HashSet<Revision> =
795 let mut revs: HashSet<Revision> =
775 [4, 12, 41, 28, 68, 38, 1, 30, 56, 44]
796 [4, 12, 41, 28, 68, 38, 1, 30, 56, 44]
776 .iter()
797 .iter()
777 .cloned()
798 .cloned()
778 .collect();
799 .collect();
779 missing_ancestors.remove_ancestors_from(&mut revs).unwrap();
800 missing_ancestors.remove_ancestors_from(&mut revs).unwrap();
780 assert!(!revs.contains(&problem_rev));
801 assert!(!revs.contains(&problem_rev));
781 }
802 }
782
803
783 }
804 }
General Comments 0
You need to be logged in to leave comments. Login now