##// END OF EJS Templates
stabletailgraph: extract _parents util func
pacien -
r51420:dc372251 default
parent child Browse files
Show More
@@ -1,116 +1,120
1 # stabletailsort.py - stable ordering of revisions
1 # stabletailsort.py - stable ordering of revisions
2 #
2 #
3 # Copyright 2021-2023 Pacien TRAN-GIRARD <pacien.trangirard@pacien.net>
3 # Copyright 2021-2023 Pacien TRAN-GIRARD <pacien.trangirard@pacien.net>
4 #
4 #
5 # This software may be used and distributed according to the terms of the
5 # This software may be used and distributed according to the terms of the
6 # GNU General Public License version 2 or any later version.
6 # GNU General Public License version 2 or any later version.
7
7
8 """
8 """
9 Stable-tail sort computation.
9 Stable-tail sort computation.
10
10
11 The "stable-tail sort", or STS, is a reverse topological ordering of the
11 The "stable-tail sort", or STS, is a reverse topological ordering of the
12 ancestors of a node, which tends to share large suffixes with the stable-tail
12 ancestors of a node, which tends to share large suffixes with the stable-tail
13 sort of ancestors and other nodes, giving it its name.
13 sort of ancestors and other nodes, giving it its name.
14
14
15 Its properties should make it suitable for making chunks of ancestors with high
15 Its properties should make it suitable for making chunks of ancestors with high
16 reuse and incrementality for example.
16 reuse and incrementality for example.
17
17
18 This module and implementation are experimental. Most functions are not yet
18 This module and implementation are experimental. Most functions are not yet
19 optimised to operate on large production graphs.
19 optimised to operate on large production graphs.
20 """
20 """
21
21
22 import itertools
22 import itertools
23 from ..node import nullrev
23 from ..node import nullrev
24 from .. import ancestor
24 from .. import ancestor
25
25
26
26
27 def _sorted_parents(cl, p1, p2):
27 def _sorted_parents(cl, p1, p2):
28 """
28 """
29 Chooses and returns the pair (px, pt) from (p1, p2).
29 Chooses and returns the pair (px, pt) from (p1, p2).
30
30
31 Where
31 Where
32 "px" denotes the parent starting the "exclusive" part, and
32 "px" denotes the parent starting the "exclusive" part, and
33 "pt" denotes the parent starting the "Tail" part.
33 "pt" denotes the parent starting the "Tail" part.
34
34
35 "px" is chosen as the parent with the lowest rank with the goal of
35 "px" is chosen as the parent with the lowest rank with the goal of
36 minimising the size of the exclusive part and maximise the size of the
36 minimising the size of the exclusive part and maximise the size of the
37 tail part, hopefully reducing the overall complexity of the stable-tail
37 tail part, hopefully reducing the overall complexity of the stable-tail
38 sort.
38 sort.
39
39
40 In case of equal ranks, the stable node ID is used as a tie-breaker.
40 In case of equal ranks, the stable node ID is used as a tie-breaker.
41 """
41 """
42 r1, r2 = cl.fast_rank(p1), cl.fast_rank(p2)
42 r1, r2 = cl.fast_rank(p1), cl.fast_rank(p2)
43 if r1 < r2:
43 if r1 < r2:
44 return (p1, p2)
44 return (p1, p2)
45 elif r1 > r2:
45 elif r1 > r2:
46 return (p2, p1)
46 return (p2, p1)
47 elif cl.node(p1) < cl.node(p2):
47 elif cl.node(p1) < cl.node(p2):
48 return (p1, p2)
48 return (p1, p2)
49 else:
49 else:
50 return (p2, p1)
50 return (p2, p1)
51
51
52
52
53 def _nonoedipal_parent_revs(cl, rev):
53 def _nonoedipal_parent_revs(cl, rev):
54 """
54 """
55 Returns the non-Ε“dipal parent pair of the given revision.
55 Returns the non-Ε“dipal parent pair of the given revision.
56
56
57 An Ε“dipal merge is a merge with parents p1, p2 with either
57 An Ε“dipal merge is a merge with parents p1, p2 with either
58 p1 in ancestors(p2) or p2 in ancestors(p1).
58 p1 in ancestors(p2) or p2 in ancestors(p1).
59 In the first case, p1 is the Ε“dipal parent.
59 In the first case, p1 is the Ε“dipal parent.
60 In the second case, p2 is the Ε“dipal parent.
60 In the second case, p2 is the Ε“dipal parent.
61
61
62 Ε’dipal edges start empty exclusive parts. They do not bring new ancestors.
62 Ε’dipal edges start empty exclusive parts. They do not bring new ancestors.
63 As such, they can be skipped when computing any topological sort or any
63 As such, they can be skipped when computing any topological sort or any
64 iteration over the ancestors of a node.
64 iteration over the ancestors of a node.
65
65
66 The Ε“dipal edges are eliminated here using the rank information.
66 The Ε“dipal edges are eliminated here using the rank information.
67 """
67 """
68 p1, p2 = cl.parentrevs(rev)
68 p1, p2 = cl.parentrevs(rev)
69 if p1 == nullrev or cl.fast_rank(p2) == cl.fast_rank(rev) - 1:
69 if p1 == nullrev or cl.fast_rank(p2) == cl.fast_rank(rev) - 1:
70 return p2, nullrev
70 return p2, nullrev
71 elif p2 == nullrev or cl.fast_rank(p1) == cl.fast_rank(rev) - 1:
71 elif p2 == nullrev or cl.fast_rank(p1) == cl.fast_rank(rev) - 1:
72 return p1, nullrev
72 return p1, nullrev
73 else:
73 else:
74 return p1, p2
74 return p1, p2
75
75
76
76
77 def _parents(cl, rev):
78 p1, p2 = _nonoedipal_parent_revs(cl, rev)
79 if p2 == nullrev:
80 return p1, p2
81
82 return _sorted_parents(cl, p1, p2)
83
84
77 def _stable_tail_sort_naive(cl, head_rev):
85 def _stable_tail_sort_naive(cl, head_rev):
78 """
86 """
79 Naive topological iterator of the ancestors given by the stable-tail sort.
87 Naive topological iterator of the ancestors given by the stable-tail sort.
80
88
81 The stable-tail sort of a node "h" is defined as the sequence:
89 The stable-tail sort of a node "h" is defined as the sequence:
82 sts(h) := [h] + excl(h) + sts(pt(h))
90 sts(h) := [h] + excl(h) + sts(pt(h))
83 where excl(h) := u for u in sts(px(h)) if u not in ancestors(pt(h))
91 where excl(h) := u for u in sts(px(h)) if u not in ancestors(pt(h))
84
92
85 This implementation uses a call-stack whose size is
93 This implementation uses a call-stack whose size is
86 O(number of open merges).
94 O(number of open merges).
87
95
88 As such, this implementation exists mainly as a defining reference.
96 As such, this implementation exists mainly as a defining reference.
89 """
97 """
90 cursor_rev = head_rev
98 cursor_rev = head_rev
91 while cursor_rev != nullrev:
99 while cursor_rev != nullrev:
92 yield cursor_rev
100 yield cursor_rev
93
101
94 p1, p2 = _nonoedipal_parent_revs(cl, cursor_rev)
102 px, pt = _parents(cl, cursor_rev)
95 if p1 == nullrev:
103 if pt == nullrev:
96 cursor_rev = p2
104 cursor_rev = px
97 elif p2 == nullrev:
98 cursor_rev = p1
99 else:
105 else:
100 px, pt = _sorted_parents(cl, p1, p2)
101
102 tail_ancestors = ancestor.lazyancestors(
106 tail_ancestors = ancestor.lazyancestors(
103 cl.parentrevs, (pt,), inclusive=True
107 cl.parentrevs, (pt,), inclusive=True
104 )
108 )
105 exclusive_ancestors = (
109 exclusive_ancestors = (
106 a
110 a
107 for a in _stable_tail_sort_naive(cl, px)
111 for a in _stable_tail_sort_naive(cl, px)
108 if a not in tail_ancestors
112 if a not in tail_ancestors
109 )
113 )
110
114
111 # Notice that excl(cur) is disjoint from ancestors(pt),
115 # Notice that excl(cur) is disjoint from ancestors(pt),
112 # so there is no double-counting:
116 # so there is no double-counting:
113 # rank(cur) = len([cur]) + len(excl(cur)) + rank(pt)
117 # rank(cur) = len([cur]) + len(excl(cur)) + rank(pt)
114 excl_part_size = cl.fast_rank(cursor_rev) - cl.fast_rank(pt) - 1
118 excl_part_size = cl.fast_rank(cursor_rev) - cl.fast_rank(pt) - 1
115 yield from itertools.islice(exclusive_ancestors, excl_part_size)
119 yield from itertools.islice(exclusive_ancestors, excl_part_size)
116 cursor_rev = pt
120 cursor_rev = pt
General Comments 0
You need to be logged in to leave comments. Login now